
Two-Round Multi-Signature from Okamoto Signature

Kwangsu Lee* Hyoseung Kim†

Abstract

Multi-signature (MS) is a special type of public key signature (PKS) in which multiple signers par-
ticipate cooperatively to generate a signature for a single message. Recently, applications that use an
MS scheme to strengthen the security of blockchain wallets or to strengthen the security of blockchain
consensus protocols are attracting a lot of attention. In this paper, we propose an efficient two-round
MS scheme based on Okamoto signature rather than Schnorr signature. To this end, we first propose
a new PKS scheme by modifying the Okamoto signature scheme, and prove the unforgeability of our
PKS scheme under the discrete logarithm assumption in the algebraic group model (AGM) and the non-
programmable random oracle model (ROM). Next, we propose a two-round MS scheme based on the
new PKS scheme and prove the unforgeability of our MS scheme under the discrete logarithm assump-
tion in the AGM and the non-programmable ROM. Our MS scheme is the first one to prove security
among two-round MS based on Okamoto signature.

Keywords: Public-key signature, Multi-signature, Okamoto signature, Key aggregation, Algebraic group
model.

*Sejong University, Seoul, Korea. Email: kwangsu@sejong.ac.kr.
†Korea University, Seoul, Korea. Email: hyoseung kim@korea.ac.kr.

1

1 Introduction

Multi-signature (MS) is a special kind of public-key signature (PKS) in which multiple signers can coopera-
tively participate to create a signature for a single message and verify the signature by using the public keys
of all signers participated in the signature generation. Multi-signature becomes an interesting MS scheme
only when the size of the multi-signature is compact regardless of the number of cooperating signers because
an MS scheme can be easily built from the existing PKS scheme in a simple way of attaching individual sig-
natures of PKS schemes. Interactive MS schemes can be constructed from the existing Fiat-Shamir based
signature schemes [4, 7, 24], and non-interactive MS schemes also can be constructed based on bilinear
groups [5, 6, 10, 21]. In recent years, research on multi-signature is attracting heavy attention again because
it can be effectively used to enhance the security of a blockchain wallet or to perform secure consensus
among multiple nodes in a blockchain.

A popular way to design a PKS scheme is to convert an identification protocol into a PKS scheme by
using the Fiat-Shamir transformation. The Schnorr signature is the famous example of this case [28]. A
PKS scheme derived from this method has the advantage of being widely implemented and used in various
places because it can be proven under standard assumptions such as the discrete logarithm assumption
and the scheme is very efficient. One important way to design an MS scheme is to convert a Fiat-Shamir
based PKS scheme to an interactive MS scheme. Bellare and Neven [4] have shown that a three-round MS
scheme can be constructed from the Schnorr signature scheme in the plain public-key model. Afterwards,
a number of two-round MS schemes that improve the rounds required in the signature generation process
were proposed [2, 23, 30]. However, Drijvers et al. [9] showed that all of these two-round MS schemes can
be attacked by using a parallel signing session attack with the Wagner algorithm, and it is difficult to prove
the security of these MS schemes by using the meta-reduction technique. To solve this problem, a number
of secure two-round MS schemes based on the Schnorr signature or a trapdoor commitment scheme have
been proposed recently [1, 3, 9, 25, 26].

The Okamoto signature scheme is also one of the Fiat-Shamir based PKS schemes [27]. An important
feature of Okamoto signature different from Schnorr signature is that Schnorr-based signatures use the zero-
knowledge property to handle the signature query of an attacker, but Okamoto signature use the witness
indistinguishability to handle the signature query of the attacker. Due to this difference, the simulation
of the signature in the security proof of Okamoto signature can be easily processed using the private key
selected by a simulator. The Okamoto signature scheme can also be converted to a three-round MS scheme
by following the conversion method Bellare and Neven [4]. To reduce the number of rounds further, Ma et
al. [23] proposed two-round MS scheme from Okamoto signature, but this scheme is not secure against the
parallel signing session attack as shown by Drijvers et al. [9]. Many secure two-round MS schemes based
on Schnorr signature or trapdoor commitments [1,3,9,25], but constructing a secure two-round MS scheme
based on Okamoto signature is still an unsolved problem.

In this paper, we focus on the problem of constructing a two-round MS scheme based on Okamoto
signature. Multi-signature design based on Okamoto signature is an interesting problem because it can
present a new design direction for MS schemes different from the existing design of two-round MS schemes.
In addition, an MS scheme based on Okamoto signature can use a weaker random oracle model because it
uses a non-programmable random oracle model (NPROM) instead of a programmable random oracle model
(PROM).

2

1.1 Our Contributions

Public-Key Signature. We first modify the Okamoto signature scheme and propose a new PKS scheme
suitable for multi-signature. The essential part to the modification is to set the commitment element in a
message dependent way such as R = (gmh)r1(gm

2 h2)
r2 instead of R = gr1gr2

2 . And we prove that the proposed
PKS scheme is secure under the discrete logarithm problem is hard in the algebraic group model (AGM) and
non-programmable random oracle model (NPROM). Compared to the existing Okamoto signature scheme,
our proposed new PKS scheme increases the size of the public key by one group element, and the size
of the signature is the same, but requires an additional exponentiation when signing. And when verifying
the signature, the Okamoto signature scheme requires 3 exponentiations, but our PKS scheme requires 6
exponentiations. Although our PKS scheme does not provide improved efficiency compared to the Okamoto
signature scheme, our PKS scheme is meaningful in that it can be the basis of a secure two-round MS scheme
and it provides a simple way to perform the security proof in the AGM.

Two-Round Multi-Signature. Next, we propose a two-round MS scheme that supports the public key
aggregation from our PKS scheme devised above. And then we prove that our MS scheme is secure even
when an attacker performs parallel signing session queries under the discrete logarithm assumption in the
AGM and NPROM. There are two issues to consider in the security proof of the two-round MS scheme:
the rogue-key attack and parallel signing session attack. In the rogue-key attack, an attacker forges a multi-
signature by manipulating a carefully crafted public key without knowing the corresponding private key
since the attacker can select the arbitrary public key of a co-signer in the plain public-key model. Fortunately,
by using the public key aggregation method of previous study, this rogue-key attack can be easily prevented
in our MS scheme. The parallel signing session attack is a clever attack in which an attacker requests
multiple signature query sessions in parallel in a two-round MS scheme since the signing process is an
interactive protocol and the attacker manipulates the obtained signatures of parallel sessions to derive a final
forged signature. Recall that many two-round MS schemes proposed early can be attacked by using this
parallel signing session attack. To prevent this parallel signing session attack, we generate a commitment
in the form R = (gmh)r1(gm

2 h2)
r2 where m is a message. As the commitment is configured depending on the

signature message in this way, if an attacker performs the parallel signing session attack, the commitments
for the same message can be changed to a new commitment, but these commitments cannot be converted
to a new commitment for a different message. The detailed explanation of the security proof is given in the
security analysis part of our paper. The detailed comparison of our MS scheme and other MS schemes is
given in Table 1.

1.2 Related Work

Multi-Signature. Multi-signature (MS) is a kind of public key signature in which multiple signers partic-
ipate to generate a signature for a common message and anyone can verify the signature with the public
keys of multiple signers. Early MS schemes were vulnerable to a rogue-key attack, in which an attacker
arbitrarily sets the public key of a signer participating in multi-signature to perform a forgery attack. Bel-
lare and Neven [4] introduced the plain public-key model in which an attacker can freely set a signers’
public key without proving the knowledge of the secret key, and proposed a three-round MS scheme that
is secure against the rogue-key attack by modifying the Schnorr signature scheme. Since then, a number
of two-round MS schemes have been proposed to improve the round complexity of Fiat-Shamir based MS
schemes [2, 23, 30]. However, Drijvers et al. [9] showed that these two-round MS schemes are vulnerable
to parallel signing session attack by using Wagner’s algorithm, and proposed a modified MS scheme by
modifying the existing BCJ-MS scheme. Maxwell et al. [24] presented the MuSig scheme in which the

3

Table 1: Comparison of Fiat-Shamir based multi-signature schemes

Scheme RN, KA PK Size Sig Size Sign Verify Security

BN [4] 3, N |G| |G|+ |Zp| 1E (n+1)E DL, ROM
3, N 2|G| 2|G|+ |Zp| 2E 2(n+1)E DDH, ROM

MPSW [24] 3, Y |G| |G|+ |Zp| 1E 2E DL, ROM

mBCJ [9] 2, N |G|+2|Zp| 2|G|+3|Zp| 5E 6E DL, ROM
MuSig-DN [26] 2, Y |G| |G|+ |Zp| NIZK proof 2E DL, DDH, ZK,

PRF, ROM
MuSig2 [25] 2, Y |G| |G|+ |Zp| 7E 2E OMDL, ROM

2, Y |G| |G|+ |Zp| 3E 2E OMDL,
AGM + ROM

DWMS [1] 2, Y |G| |G|+ |Zp| (2n+2)E 2E OMDL + 2ES,
AGM + ROM

HBMS [3] 2, Y |G| |G|+2|Zp| 2E 3E XIDL, ROM or
DL, AGM + ROM

Ours 2, Y 2|G| 3|Zp| 4E 6E DL,
AGM + NPROM

Let λ be a security parameter and n be the number of co-signers. We denote RN for the number of rounds
and KA for key aggregation. We use |G| and |Zp| for the bit size of a group element in G and Zp respectively.
We use symbols E for an exponentiation in G.

signers’ public keys are aggregated into one short public key in the three-round MS scheme and showed that
this MS scheme can be used for Bitcoin. Recently, a number of secure two-round MS schemes, MuSig-DN,
MuSig2, DWMS, and HBMS, have been proposed [1, 3, 25, 26]. Another way to design an MS scheme is
to convert an aggregate signature scheme into a non-interactive MS scheme by setting the message to be the
same for each signer. Using this idea, Boneh et al. [7] propose an efficient non-interactive MS scheme from
the BLS short signature scheme and proved the security in the plain public-key model. Drijvers et al. [10]
propose a non-interactive MS scheme with forward security from a sequential aggregate signature scheme
that can be used in blockchain consensus protocols.

Threshold Signature. Threshold signature (TS) is a kind of public key signature such that a threshold
number of signers cooperate to generate a signature on a message and the signature can be verified by a
single public key. Multi-signature can also be viewed as a special form of threshold signature where the
number of threshold is equal to the number of all signers. Since the ECDSA scheme is a standard signature
scheme which is widely used in cryptocurrency like Bitcoin, many studies have conducted to convert the
ECDSA scheme into an efficient threshold ECDSA scheme [12,13,19,20]. Recently, efficient threshold sig-
nature schemes have been proposed by modifying Schnorr signature scheme [18]. An important difference
between threshold signature and multi-signature is the key generation process. In multi-signature, signers
can generate keys independently of each other. Contrary to this, threshold signature requires to distribute a
common secret key to multiple signers, so a rather complicated distributed key generation protocol must be
introduced. A distributed key generation (DKG) protocol allows to share a common secret to many sign-
ers without a trusted center. If a common secret to be shared is a field element, a DKG protocol can be
implemented by using a verifiable secret sharing (VSS) scheme that can privately verify the validity of a

4

shared secret [14]. If a common secret is a group element, a DKG protocol can be implemented by using a
public verifiable secret sharing (PVSS) scheme that can publicly verify the validity of a shared secret [17].
Recently, Groth [16] proposed a PVSS scheme that can support a field element by splitting a common secret
into multiple chunks, and constructed a non-interactive DKG scheme by combining the PVSS scheme with
a binary tree encryption scheme with forward secrecy.

Aggregate Signature. Aggregate signature (AS) is a special type of public key signature that allows multi-
ple signers to create signatures for different messages and aggregate them into a single signature. The con-
cept of aggregate signatures was introduced by Boneh et al. [8] and they constructed an efficient aggregate
signature scheme by modifying the BLS short signature scheme in bilinear groups. Since then, many aggre-
gate signature schemes based on bilinear groups and trapdoor functions have been proposed [6, 15, 21, 22].
The security of aggregate signatures is proven in the knowledge of secret key (KOSK) model which requires
the proof of secret key in key registration process, and it is stronger than the plain public-key model of multi-
signatures. Aggregate signatures are divided into three types: full aggregation, sequential aggregation, and
synchronized aggregation according to the method of aggregation. A fully aggregate signature scheme is
the most flexible type of aggregate signatures that allows anyone to non-interactively aggregate individual
signatures generated by different signers on different messages into a compact signature [8]. A sequential
aggregate signature scheme supports for a signer to sequentially add his signature to the previous aggregate
signature received from the previous signer [21, 22]. A synchronized aggregate signature scheme is similar
to full aggregate signatures except that all signers have the synchronized information and individual sig-
natures with the same synchronized information can be non-interactively aggregated [15]. As previously
described, a pairing-based non-interactive multi-signature scheme can be constructed from an aggregate
signature scheme if the same message is used for all signers.

2 Preliminaries

In this section, we describe the algebraic adversary, the discrete logarithm assumption, and the Schwartz-
Zippel lemma for security proof our schemes.

Definition 2.1 (Algebraic Algorithm [11]). Let G be a group with order p. We say that an algorithm Aalg
is algebraic if it satisfies the following requirements: whenever Aalg outputs a group element Z ∈G, it also
outputs a representation z⃗ = (z1, . . . ,zℓ) ∈ Zℓ

p such that Z = ∏
ℓ
k=1V zk

k where V1, . . . ,Vℓ are group elements
that are given to Aalg during its execution.

Assumption 1 (Discrete Logarithm). Let (p,G) be a description of the group of prime order p. Let g be
a generator of G. The discrete logarithm (DL) assumption is that if the challenge values D = (p,G,g,gx)
are given, no PPT algorithm B can compute x with more than a negligible advantage. The advantage of B is
defined as AdvDL

B (λ) = Pr[B(D) = x] where the probability is taken over the random choice of x ∈ Zp.

Lemma 2.1 (Schwartz-Zippel Lemma [29]). Let f (x1, . . . ,xn) be a non-zero polynomial of total degree d.
Let S⊆ F be any finite set. Then if r1, . . . ,rn are randomly chosen from S, Pr[f (r1, . . . ,xn) = 0]≤ d/|S|.

3 Public-Key Signature

In this section, we propose a new public key signature scheme by modifying the Okamoto signature scheme,
and prove the security in the algebraic group model and random oracle model.

5

3.1 Definition

The syntax of public-key signature is generally composed of key generation, signing, and verification algo-
rithms. We consider a cryptographic scheme in which multiple users use common public parameters, so we
add a setup algorithm to generate public parameters. The detailed syntax of PKS is given as follows.

Definition 3.1 (Public-Key Signature). A public-key signature (PKS) scheme consists of four PPT algo-
rithms Setup, GenKey, Sign, and Verify, which are defined as follows:

Setup(1λ). The setup algorithm takes as input the security parameters λ in unary, and outputs public
parameters PP.

GenKey(PP). The key generation algorithm takes as input public parameters PP, and outputs a private
key SK and a public key PK.

Sign(SK,M). The signing algorithm takes as input a message M and a private key SK, and outputs a
signature σ .

Verify(PK,σ ,M). The verification algorithm takes as input a signature σ , a message M, and a public key
PK, and outputs 1 if the signature is valid and 0 otherwise.

The correctness requirement is that for PP output by Setup(1λ), any (SK,PK) output by GenKey(PP) and
any M, we have that Verify(PK,Sign(SK,M),M) = 1.

The standard security model of public-key signatures is the unforgeability under chosen message attack
(UF-CMA). In this model, an attacker is initially given a challenge public key for attack, and can request
a signature query for any message and receive a signature. Finally, the attacker outputs a forged signature
for a message. The attacker is successful if the forged signature passes the verification algorithm and the
message has not been queried before. The detailed security model of PKS is described as follows.

Definition 3.2 (Unforgeability). The security notion of a PKS scheme is unforgeability under chosen mes-
sage attack (UF-CMA), which is defined in terms of the following experiment between a challenger C and a
PPT adversary A:

1. Setup: C first generates PP by running Setup(1λ). Next, it obtains a key pair (SK,PK) by running
GenKey(PP). It gives PK to A.

2. Signature Query: A adaptively requests a signature on a message M to sign under the challenge
public key PK, and it receives a signature σ .

3. Output: Finally, A outputs a forged signature σ∗ on a message M∗ under the public key PK. C
outputs 1 if the forged signature satisfies the following two conditions, or outputs 0 otherwise: 1)
Verify(PK,σ∗,M∗) = 1, and 2) The corresponding message M∗ must not have been queried by A to
the signing oracle.

The advantage ofA is defined as AdvPKS
A (λ) = Pr[C = 1] where the probability is taken over all the random-

ness of the experiment. A PKS scheme is UF-CMA secure if all PPT adversaries have at most a negligible
advantage in the above experiment.

6

3.2 Construction

Our PKS scheme is a modification of the PKS scheme of Okamoto [27]. The Okamoto PKS scheme gen-
erates a commitment as R = gr1gr2

2 where r1 and r2 are random exponents, but our PKS scheme generates
a commitment as R = (gmh)r1(gm

2 h2)
r2 to depend on a message m. This modification helps to simplify the

security proof of our PKS scheme in the algebraic group model and it enables to construct a secure multi-
signature scheme in the next section. The detailed description of our PKS scheme is given as follows:

PKS.Setup(1λ): It first generates a cyclic group G of prime order p where the bit size of p is Θ(λ). It
generates two random generators g,h∈G. It selects a random exponent α ∈Zp and sets g2 = gα ,h2 =
hα . It chooses cryptographic hash functions H1,H2 such that H1 : {0,1}∗→Zp and H2 : {0,1}∗→Zp.
Finally, it outputs public parameters PP = (p,G,g,g2,h,h2,H1,H2).

PKS.GenKey(PP): It selects random x1,x2 ∈ Zp and computes X = gx1gx2
2 ,Y = hx1hx2

2 . It outputs a private
key SK = (PP,x1,x2) and a public key PK = (PP,X ,Y).

PKS.Sign(SK,M): Let SK = (PP,x1,x2). It first calculates a hash m = H1(M). Next, it selects random
r1,r2 ∈Zp and computes R =

(
gmh

)r1
(
gm

2 h2
)r2 . It calculates c = H2(R,M) and computes s1 = r1+x1c

mod p, s2 = r2 + x2c mod p. It outputs a signature σ = (c,s1,s2).

PKS.Verify(PK,σ ,M): Let σ = (c,s1,s2) and PK = (PP,X ,Y). It first calculates m = H1(M). Next, it
computes R =

(
gmh

)s1
(
gm

2 h2
)s2/

(
XmY

)c and checks that c ?
= H2(R,M). If the equation holds, then it

outputs 1. Otherwise, it outputs 0.

The correctness of this PKS scheme can be easily verified when m = H1(M) through the following
equation (

gmh
)s1

(
gm

2 h2
)s2 =

(
gmh

)r1+x1c(gm
2 h2

)r2+x2c

=
(
gmh

)r1
(
gm

2 h2
)r2

(
gmh

)x1c(gm
2 h2

)x2c

= R
((

gx1gx2
2

)m(hx1hx2
2

))c

= R
(
XmY

)c
.

3.3 Security Analysis

In order to prove the security of our PKS scheme under the discrete logarithm assumption, it is needed
to devise a method to simulate the signature query requested by an adversary and to extract the discrete
logarithm from a forged signature submitted by the adversary. One nice feature of Okamoto signature is
that the signature simulation is very simple because a simulator chooses a private key itself and generates a
signature by using the private key [27]. The signature simulation of our PKS scheme is also handled very
simply as the same as that of Okamoto signature. In order to extract the discrete logarithm from the forged
signature, we take advantage of the fact that an algebraic adversary additionally submits the representation
of a group element when it submits the group element of the forged signature.

In a Schnorr-based signature scheme, a formula for discrete logarithm can be derived using the represen-
tation of a group element and the verification equation of the scheme, and the extraction of discrete logarithm
is possible because the denominator of the formula is not zero with high probability due to the randomness
of the random oracle model. However, unlike the Schnorr-based signature scheme, the Okamoto-based sig-
nature scheme additionally includes a signature element submitted by an adversary in the denominator of

7

the discrete logarithm-related formula, so it is difficult to analyze that the denominator is not zero by simply
using the randomness of the random oracle model. To solve this problem, we divided adversaries into three
types. In the case of type 1 and type 2 adversaries, the discrete logarithm problem is simply planted to
enable the extraction of the discrete logarithm. And in the case of type 3 adversary, we will show that it
is difficult for the adversary to submit a valid forged signature due to the restriction of the security model
through probability analysis. The detailed security proof of our PKS scheme is given as follows:

Theorem 3.1. The above PKS scheme is UF-CMA secure in the algebraic group model and the random
oracle model if the DL assumption hold. That is, for any PPT algebraic adversary Aalg, there exist a PPT
algorithm B such that AdvPKS

Aalg
(λ)≤ 2AdvDL

B (λ)+negl(λ).

Proof. Suppose there exists an algebraic adversary Aalg that forges the above PKS scheme with non-
negligible advantage ε . A reduction algorithm B that solves the DL assumption is given as input a challenge
tuple D = (p,G,g,ga). Then B that interacts with Aalg is described as follows:

Setup: The algorithm B first chooses a random bit b∈ {0,1} to guess the type of an adversary. If b = 0, then
it selects a random exponent h′ ∈ Zp and sets g2 = ga,h = gh′ ,h2 = gh′

2 . Otherwise, it selects a random expo-
nent α ∈ Zp and sets g2 = gα ,h = ga,h2 = (ga)α . It sets public parameters PP = (p,G,g,g2,h,h2,H1,H2)
where H1 and H2 are two hash functions that are modeled as random oracles. Next, it selects random ex-
ponents x1,x2 ∈ Zp and computes X = gx1gx2

2 ,Y = hx1hx2
2 . It keeps SK = (PP,x1,x2) internally and gives

PK = (PP,X ,Y) to Aalg.
Hash Query: If Aalg request an H1 or H2 hash query, then B handles this query as follows:

• H1 hash query for (M): If (M, ·)∈ LH1 , then it retrieves (M,m) from LH1 . Otherwise, it selects random
m ∈ Zp and adds (M,m) to LH1 . It gives m to Aalg.

• H2 hash query for (R,M): If (R,M, ·) ∈ LH2 , then it retrieves (R,M,c) from LH2 . Otherwise, it selects
random c ∈ Zp and adds (R,M,c) to LH2 . It gives c to Aalg.

Signature Query: If Aalg request a signature query for a message M, then B adds M to Q and generates a
signature σ = (c,s1,s2) by running PKS.Sign(SK,M) since it has SK. It gives σ to Aalg. Recall that Aalg

is implicitly given a commitment R =
(
gmh

)s1
(
gm

2 h2
)s2

(
XmY

)−c from the signature σ where m = H1(M).
Note that Aalg is an algebraic adversary that when it requests hash queries with a group element Z ∈G,

it also submits a representation z⃗ = (z1, . . . ,zℓ) for the group element Z such that Z = ∏
ℓ
i=1V zi

i and {Vi} are
group elements given to Aalg. For the simplicity of the notation, we do not describe representations for
group elements in hash queries. We assume that the representations of group elements submitted by Aalg
are implicitly stored in the lists maintained by B.
Output: Finally,Aalg outputs a forged signature σ∗=(c∗,s∗1,s

∗
2) on a message M∗. B checks that PKS.Verify

(PK,σ∗,M∗) = 1 and M∗ ̸∈ Q.
From the verification algorithm of the PKS scheme, it can derive the commitment group element R∗

of σ∗ by computing R∗ =
(
gm∗h

)s∗1
(
gm∗

2 h2
)s∗2

(
Xm∗Y

)−c∗ where m∗ = H1(M∗). Next, it finds the representa-
tion z⃗ = (z1, . . . ,z6,z7,1, . . . ,z7,qS) for the element R∗ such as R∗ = gz1gz2

2 hz3hz4
2 X z5Y z6 ∏

qS
k=1

(
R(k)

)z7,k where

X = gx1gx2
2 , Y = hx1hx2

2 , and R(k) =
(
gm(k)

h
)r(k)1

(
gm(k)

2 h2
)r(k)2 is the commitment of k-th signature query. By

8

combining above equations, it can derive the following equation

1 =
(
gm∗h

)s∗1
(
gm∗

2 h2
)s∗2

(
Xm∗Y

)−c∗R∗−1

=gm∗s∗1hs∗1gm∗s∗2
2 hs∗2

2

((
gx1gx2

2

)m∗(hx1hx2
2

))−c∗

·(
gz1hz3gz2

2 hz4
2

(
gx1gx2

2

)z5
(
hx1hx2

2

)z6
qS

∏
k=1

(
gm(k)

h
)r(k)1 z7,k

(
gm(k)

2 h2
)r(k)2 z7,k

)−1

=gm∗(s∗1−x1c∗)h(s
∗
1−x1c∗)gm∗(s∗2−x2c∗)

2 h(s
∗
2−x2c∗)

2 ·(
gz1+x1z5+∑

qS
k=1 m(k)r(k)1 z7,k hz3+x1z6+∑

qS
k=1 r(k)1 z7,k gz2+x2z5+∑

qS
k=1 m(k)r(k)2 z7,k

2 hz4+x2z6+∑
qS
k=1 r(k)2 z7,k

2

)−1

=gA1hA2gB1
2 hB2

2

where A1,A2,B1, and B2 are variables defined as

A1 :=m∗(s∗1− x1c∗)−
(
z1 + x1z5 +

qS

∑
k=1

m(k)r(k)1 z7,k
)
,

A2 :=(s∗1− x1c∗)−
(
z3 + x1z6 +

qS

∑
k=1

r(k)1 z7,k
)
,

B1 :=m∗(s∗2− x2c∗)−
(
z2 + x2z5 +

qS

∑
k=1

m(k)r(k)2 z7,k
)
,

B2 :=(s∗2− x2c∗)−
(
z4 + x2z6 +

qS

∑
k=1

r(k)2 z7,k
)
.

To solve the discrete logarithm, we classify algebraic adversaries into the following three types depend-
ing on the conditions of variables:

• Type-1: An algebraic adversary is Type-1 if B1 +dlogg(h)B2 ̸≡ 0 mod p.

• Type-2: An algebraic adversary is Type-2 if B1 +dlogg(h)B2 ≡ 0 mod p and B2 ̸≡ 0 mod p.

• Type-3: An algebraic adversary is Type-3 if B1 +dlogg(h)B2 ≡ 0 mod p and B2 ≡ 0 mod p.

Let F be the event that an adversary succeeds to forge a multi-signature and Ti be the event that an
adversary is Type-i. Since the random bit b is hidden to the adversary and b is independent to the type
of the adversary, we have that Pr[b = 0∧F |Ti] = Pr[b = 1∧F |Ti] for each type of the adversary. If the
Type-1 adversary is successful to forge and the guess of the reduction algorithm is correct (b = 0), then
the reduction can compute the discrete logarithm as dlogg(g2) = −(A1 + h′A2)/(B1 + h′B2) mod p since
g2 = ga and B1 + h′B2 ̸≡ 0 mod p. That is, Pr[b = 0∧ F |T1] ≤ AdvDL

B (λ). If the Type-2 adversary is
successful to forge and the guess of the reduction is correct (b = 1), then the reduction can compute the
discrete logarithm as dlogg2

(h2) =−B1/B2 mod p since g2 = gα ,h2 = (ga)α , B1+dlogg(h)B2 ≡ 0 mod p,
and B2 ̸≡ 0 mod p. That is, Pr[b = 1∧F |T2]≤ AdvDL

B (λ). From Lemma 3.3, the probability of the Type-3
adversary to successfully forge is negligible. That is, Pr[F |T3]≤ negl(λ). Therefore, we obtain the following

9

result

AdvUF-CMA
Aalg

(λ) = Pr[F ∧T1]+Pr[F ∧T2]+Pr[F ∧T3]

= Pr[T1]Pr[F |T1]+Pr[T2]Pr[F |T2]+Pr[T3]Pr[F |T3]

= Pr[T1]
(

Pr[b = 0∧F |T1]+Pr[b = 1∧F |T1]
)
+

Pr[T2]
(

Pr[b = 0∧F |T2]+Pr[b = 1∧F |T2]
)
+Pr[T3]Pr[F |T3]

≤ Pr[T1]2AdvDL
B (λ)+Pr[T2]2AdvDL

B (λ)+Pr[T3]negl(λ)

≤ Pr[T1]2AdvDL
B (λ)+(1−Pr[T1])2AdvDL

B (λ)+negl(λ)

≤ 2AdvDL
B (λ)+negl(λ).

This completes our proof.

Lemma 3.2. In the above PKS scheme, the private key exponents (x1,x2) and random exponents {(r(k)1 ,r(k)2)}
for signature queries are statistically hidden to an algebraic adversary.

Proof. In order to show that the private key exponents (x1,x2) and random exponents {(r(k)1 ,r(k)2)} selected
by the reduction algorithm are statistically hidden from the adversary, we should show that these exponents
can be changed to different exponents (x̃1, x̃2) and {(r̃(k)1 , r̃(k)2)} while the public key group elements, the
commitment group elements, and the signatures given to the adversary are fixed.

Let (X ,Y) be the challenge public key. If the private key exponents (x1,x2) can be changed to differ-
ent private key exponents (x̃1, x̃2), then we obtain the first relation x1 +αx2 ≡ x̃1 +α x̃2 mod p from the
following equation

X =
(
gx1gx2

2

)
= gx1+αx2 = gx̃1+α x̃2 =

(
gx̃1gx̃2

2

)
,

Y =
(
hx1hx2

2

)
= hx1+αx2 = hx̃1+α x̃2 =

(
hx̃1hx̃2

2

)
.

Let R(k) be the commitment element of the k-th signature query. If the random exponents (r(k)1 ,r(k)2) can
be changed to different random exponents (r̃(k)1 , r̃(k)2), then we obtain the second relation r(k)1 + αr(k)2 ≡
r̃(k)1 +α r̃(k)2 mod p from the following equation

R(k) =
(
gm(k)

h
)r(k)1

(
gm(k)

2 h2
)r(k)2 = g(m

(k)+h′)(r(k)1 +αr(k)2)

=g(m
(k)+h′)(r̃(k)1 +α r̃(k)2) =

(
gm(k)

h
)r̃(k)1

(
gm(k)

2 h2
)r̃(k)2 .

Let (s(k)1 ,s(k)2) be the signature of the k-th signature query where s(k)1 = r(k)1 + x1c(k) and s(k)2 = r(k)2 + x2c(k).
If the random exponents (x1,x2) and (r(k)1 ,r(k)2) can be changed to different random exponents (x̃1, x̃2) and
(r̃(k)1 , r̃(k)2), then we obtain the following third and fourth relations

r(k)1 + x1c(k) ≡ r̃(k)1 + x̃1c(k) mod p,

r(k)2 + x2c(k) ≡ r̃(k)2 + x̃2c(k) mod p.

Now, we argue that new private key exponents and new random exponents can satisfy the above four
relations and these exponents are different with the original exponents. From the above first, second, and

10

third relations, we set the new exponents as follows

x̃1← Z∗p,
x̃2 := x2 +(x1− x̃1)α

−1 mod p,

r̃(k)1 := r(k)1 +(x1− x̃1)c(k) mod p,

r̃(k)2 := r(k)2 +(r(k)1 − r̃(k)1)α−1 mod p.

Next, we show that these new exponents satisfy the fourth relation as follows

r(k)2 − r̃(k)2 + x2c(k)− x̃2c(k)

≡−(r(k)1 − r̃(k)1)α−1− (x1− x̃1)α
−1c(k)

≡−
(
(r(k)1 − r̃(k)1)+(x1− x̃1)c(k)

)
α
−1

≡ 0 mod p.

This completes our proof.

Lemma 3.3. If the algebraic adversary is Type-3, then the advantage of the adversary in UF-CMA game is
negligible.

Proof. From Theorem 3.1, we have the equation gA1hA2gB1
2 hB2

2 = 1 where variables B1 and B2 are defined as
follows

B1 :=m∗(s∗2− x2c∗)−
(
z2 + x2z5 +

qS

∑
k=1

m(k)r(k)2 z7,k
)
,

B2 :=(s∗2− x2c∗)−
(
z4 + x2z6 +

qS

∑
k=1

r(k)2 z7,k
)
.

Now, we analyze the conditions to satisfy B2 ≡ 0 mod p. From Lemma 3.2, we know that x2 and {r(k)2 }
are statistically hidden to the adversary. To satisfy B2 ≡ 0 mod p, the term x2c∗ of B2 that is not directly
controlled by the adversary should be cancelled out. To analyze this, we consider the following two cases:

• Case 1: Let BAD1 be an event that x2c∗ is cancelled by
(
z4+x2z6+∑

qS
k=1 r(k)2 z7,k

)
. Recall that the term(

z4 +x2z6 +∑
qS
k=1 r(k)2 z7,k

)
is associated with the element R∗. In the signing algorithm, c∗ is the output

of a hash function H2 that takes R∗ as an input and H2 is modeled as a random oracle. Thus, c∗ is a
random value independent of R∗ by the property of the random oracle. This means that the probability
of BAD1 is at most 1/p.

• Case 2: Let BAD2 be the event that the term x2c∗ is cancelled by s∗2. Recall that the term s∗2 is the
output of the adversary as the forged signature and x2 is statistically hidden to the adversary. The
only way to cancel out this term is for the adversary to construct a forged signature by combining
the simulated signatures {(s(k)1 ,s(k)2)} given from the signature queries since the reduction algorithm
simply constructs a signature s(k)2 = r(k)2 + x2c(k) by using the hidden private key element x2. In this
case, the term (s∗2− x2c∗) additionally contains a statistically hidden random exponent r(k)2 from the
commitment R(k) for some k. Thus, there should exist an index k ∈ {1, . . . ,qS} such that z7,k ̸≡ 0

11

mod p since Aalg is an algebraic adversary that submits a group element with a representation of
group elements given to the adversary.

From the conditions B1 + dlogg(h)B2 ≡ 0 mod p and B2 ≡ 0 mod p of the Type-3 adversary, we
have that B1 ≡ B2 ≡ 0 mod p. By combining B1 and B2, we have the following equation

−B1 +m∗B2 ≡
(

z2 + x2z5−m∗(z4 + x2z6)+
qS

∑
k=1

(m(k)−m∗)r(k)2 z7,k

)
≡ 0 mod p.

Since z7,k ̸≡ 0 mod p for some k and r(k)2 is statistically hidden to the adversary, the above equa-
tion can be reshaped as a degree-one polynomial C1r(k)2 +C0 ≡ 0 mod p where a coefficient C1 is
expressed as C1 = (m(k)−m∗)z7,k. By the Schwartz-Zippel lemma, the probability of the above poly-
nomial to be zero is at most 1/p if r(k)2 is randomly selected and C1 ̸≡ 0 mod p. By the restrictions
of the security model 3.2, we have M∗ ̸∈ Q. Thus the probability that m(k)−m∗ ≡ 0 mod p for some
k when M∗ ̸∈ Q is bounded by qS/p since H1 is modeled as a random oracle. This means that the
probability of BAD2 is at most (qS +1)/p.

The success probability of the adversary is bounded by the probability of all bad events and the probability
of all bad events are bounded as

Pr[BAD]≤ Pr[BAD1]+Pr[BAD2]≤ (qS1 +2)/p.

This completes our proof.

3.4 Discussion

Multi-User Security. In the security proof, we analyzed the security of our PKS scheme in the single-
user setting. In the multi-user setting, many public keys PK1, . . . ,PKn are given to an adversary where n is
bounded by a polynomial, and the adversary forges a signature for one of these public keys. In general, a
PKS scheme which provides the single-user security also satisfies the multi-user security, but the security
reduction is not tight since it has a loss of a factor n. In the security proof of our PKS scheme, a simulator
can freely select the private key of each user. Thus, it is possible to prove the multi-user security our PKS
scheme with tight proof.

4 Multi-Signature

In this section, we propose a two-round multi-signature scheme supporting public-key aggregation based on
the PKS scheme in the previous section and prove that it is secure in the discrete logarithm assumption in
the AGM and ROM.

4.1 Definition

Multi-signature (MS) is a special kind of PKS in which multiple signers participate to generate a multi-
signature for a message, and the multi-signature can be verified by using all public keys of the signers
participated in the signature generation. We define the syntax of MS that supports the aggregation the public
keys of the signers into a single public key. The detailed syntax of MS supporting public key aggregation is
given as follows.

12

Definition 4.1 (Multi-Signature). A multi-signature (MS) scheme with key aggregation consists of five PPT
algorithms Setup, GenKey, AggKey, Sign, and Verify, which are defined as follows:

Setup(1λ). The setup algorithm takes as input the security parameters λ in unary, and outputs public
parameters PP.

GenKey(PP). The key generation algorithm takes as input public parameters PP, and outputs a private
key SK and a public key PK.

AggKey(LK). The key aggregation algorithm takes as input a list of public keys LK = (PK1, . . . ,PKn), and
outputs an aggregated public key AK.

Sign(SKi,LK,M). The signing algorithm takes as input a private key SKi, a list of public keys LK, and a
message M, and outputs a multi-signature σ .

Verify(LK,σ ,M). The verification algorithm takes as input a list of public keys LK, a signature σ , and a
message M, and outputs either 1 or 0 depending on the validity of the signature.

The correctness requirement is that for PP output by Setup(1λ), (SKi,PKi) output by GenKey(PP), and
any M, we have that Verify(LK,Sign(SKi,LK,M),M) = 1.

The security model of MS extends the standard security model of PKS to the multi-user setting, which
is called the plain public-key model [4]. In this plain public-key model, it is possible for an attacker to freely
select the public keys of co-signers except the target public key. Because of this relaxation, the attacker can
create a fake public key without knowing the private key of that public key, which is called a rogue-key
attack. Additionally, if the signing protocol is composed of multiple rounds, the attacker can request parallel
signing queries for multiple signatures when querying the signature. Finally, the attacker succeeds in forgery
if the target public key is included in the final multi-signature and a target message not been queried before
in the signing queries. The detailed definition of the plain security model of MS is defined as follows.

Definition 4.2 (Unforgeability). The security notion of an MS scheme in the plain public-key model is
unforgeability under a chosen message attack (MS-UF-CMA), which is defined in terms of the following
experiment between a challenger C and a PPT adversary A:

1. Setup: C obtains public parameters PP by running Setup(1λ) and obtains a challenge key pair
(SK∗,PK∗) by running GenKey(PP). It gives PK∗ to A.

2. Signature Query: A adaptively requests a multi-signature on a message M to sign under the challenge
public key PK, and it receives a multi-signature σ .

3. Output: Finally, A outputs a forged multi-signature σ∗ on a message M∗ under public keys LK∗ =
(PK1, . . . ,PKn). C outputs 1 if the forged multi-signature satisfies the following three conditions, or
outputs 0 otherwise: 1) Verify(LK∗,σ∗,M∗) = 1, 2) The challenge public key PK∗ must exist in LK∗,
and 3) The message M∗ must not have been queried by A to the signing oracle.

The advantage of A is defined as AdvMS
A (λ) = Pr[C = 1] where the probability is taken over all the ran-

domness of the experiment. An MS scheme is MS-UF-CMA secure if all PPT adversaries have at most a
negligible advantage in the above experiment.

13

4.2 Construction

In order to design a secure two-round MS scheme, it is necessary to design a method to be secure against
the Wagner algorithm using parallel signing query as shown in previous studies [9]. To do this, we change
the random commitment element dependent on the signature message. That is, a commitment element is
formed as R = (gmh)r1(gm

2 h2)
r2 where m is a message and r1,r2 are random exponents. The advantage of

message dependent commitment like this is that even if an attacker obtains multiple commitment elements
by requesting parallel signing queries, it is difficult for the attacker to derive another commitment for a new
message because the commitment elements can be converted only for the same message. To perform such a
commitment, the MS scheme needs to include h and h2 elements in addition to g and g2 elements in public
parameters. Each private key of a user is set to the same x1 and x2 field elements as the Okamoto signature,
the public key is set to X = gx1gx2

2 and Y = hx1hx2
2 due to additional public parameters. Note that the public

key of the Okamoto signature scheme consists of one group element X , but our MS scheme consists of
two group elements X and Y . The method of supporting the public key aggregation follows the previous
method [24], and the aggregated public key consists of two group elements. The detailed description of our
MS scheme is given as follows:

MS.Setup(1λ): It first generates a cyclic group G of prime order p of bit size Θ(λ). It chooses random
generators g,h ∈G. It selects a random exponent α ∈ Zp and sets g2 = gα ,h2 = hα . Next, it chooses
cryptographic hash functions H1,H2,H3 such that H1 : {0,1}∗ → Zp, H2 : {0,1}∗ → Zp, and H3 :
{0,1}∗→ Zp. It outputs public parameters PP = (p,G,g,g2,h,h2,H1,H2,H3).

MS.GenKey(PP): It chooses random xi,1,xi,2 ∈ Zp and computes Xi = gxi,1gxi,2
2 ,Yi = hxi,1hxi,2

2 . It outputs a
private key SKi = (PP,xi,1,xi,2) and a public key PKi = (PP,Xi,Yi).

MS.AggKey(LK): Let LK = (PK1, . . . ,PKn) be the list of public keys where PKi = (PP,Xi,Yi). It calculates
ai = H3(LK,PKi) for all i ∈ [n]. Next, it computes AX = ∏

n
i=1 Xai

i and AY = ∏
n
i=1Y ai

i . It outputs an
aggregated public key AK = (PP,AX ,AY).

MS.Sign(SKi,LK,M): Let SKi = (PP,xi,1,xi,2) and LK = (PK1, . . . ,PKn) where PKi = (PP,Xi,Yi). It obtains
AK by running MS.AggKey(LK) and calculates ai = H3(LK,PKi).

1. It calculates a hash m=H1(M). It selects random ri,1,ri,2 ∈Zp and computes Ri =
(
gmh

)ri,1
(
gm

2 h2
)ri,2 .

Next, it broadcasts Ri to all co-signers.

2. It receives {R j}1≤ j ̸=i≤n from the co-signers. It computes AR = ∏
n
i=1 Ri. It calculates c =

H2(AK,AR,M). Next, it computes si,1 = ri,1 + xi,1aic mod p and si,2 = ri,2 + xi,2aic mod p.
It broadcasts (si,1,si,2) to all co-signers.

3. It receives {(s j,1,s j,2)}1≤ j ̸=i≤n from the co-signers. Next, it sets s1 = ∑
n
i=1 si,1 mod p and s2 =

∑
n
i=1 si,2 mod p. It outputs a multi-signature σ = (c,s1,s2).

MS.Verify(LK,σ ,M): Let σ = (c,s1,s2) be a multi-signature on a message M under the list of public keys
LK. It obtains AK = (PP,AX ,AY) by running MS.AggKey(LK). It calculates a hash m = H1(M).
Next, it derives

AR =
(
gmh

)s1
(
gm

2 h2
)s2/

(
AXmAY

)c

and checks that c ?
= H2(AK,AR,M). If the equation holds, then it outputs 1. Otherwise, it outputs 0.

14

The correctness of this MS scheme can be easily verified when m = H1(M) through the following equa-
tion (

gmh
)s1

(
gm

2 h2
)s2 =

(
gmh

)
∑

n
i=1(ri,1+xi,1aic)(gm

2 h2
)

∑
n
i=1(ri,2+xi,2aic)

=
(
gmh

)
∑

n
i=1 ri,1

(
gm

2 h2
)

∑
n
i=1 ri,2

(
gmh

)
∑

n
i=1 xi,1aic(gm

2 h2
)

∑
n
i=1 xi,2aic

=
n

∏
i=1

((
gmh

)ri,1
(
gm

2 h2
)ri,2

)
·

n

∏
i=1

((
gmh

)xi,1ai
(
gm

2 h2
)xi,2ai

)c

=
n

∏
i=1

Ri ·
n

∏
i=1

((
gxi,1gxi,2

2

)aim(hxi,1hxi,2
2

)ai
)c

=
n

∏
i=1

Ri ·
(n

∏
i=1

Xaim
i

n

∏
i=1

Y ai
i

)c

= AR ·
(
AXmAY

)c
.

4.3 Security Analysis

The overall strategy to prove the security of our MS scheme is mostly similar to the strategy to prove the
security of our PKS scheme in the previous section. That is, the simulator of security proof processes the
signature query of an adversary by using a self-selected private key, and divides the algebraic adversaries
into three types to derive discrete logarithms from the forged signature of the adversary. First, in the case
of type 1 and type 2 adversaries, if the challenge element of the discrete logarithm assumption is embedded
in g2 and h respectively, it is possible for the simulator to extract the discrete logarithm without difficulty
by using the forged signature submitted by the adversary and the representation of a group element in
the forged signature. The difficult part of the proof is to show that a type 3 adversary has a negligible
probability of succeeding in forgery. To do this, we take advantage of the fact that the private key elements
and the random commitment exponents are statistically hidden from the adversary, which is the important
characteristic of Okamoto signature. In this case, if we use the condition that the target message m∗ is
different from a message m(k) queried in the signing query which is the security constraint of the MS-UF-
CMA security model. In this case, it can be shown that the probability of successful forgery of the type
3 adversary is negligible. Additionally, in the case of our MS scheme, the type 3 adversary analysis is
somewhat complicated because the final commitment element is aggregated from individual commitment
elements generated by co-signers. The detailed security proof of our MS scheme is given as follows:

Theorem 4.1. The above MS scheme is MS-UF-CMA secure in the algebraic group model if the DL as-
sumption holds. That is, for any PPT algebraic adversary Aalg, there exist PPT algorithms B such that
AdvMS

Aalg
(λ)≤ 2AdvDL

B (λ)+negl(λ).

Proof. Suppose there exists an algebraic adversaryAalg that forges the above MS scheme with non-negligible
advantage ε . A reduction algorithm B that solves the DL assumption is given as input a challenge tuple
D = (p,G,g,ga). Then B that interacts with Aalg is described as follows:

Setup: The algorithm B first chooses a random bit b∈ {0,1} to guess the type of an adversary. If b = 0, then
it selects a random exponent h′ ∈ Zp and sets g2 = ga,h = gh′ ,h2 = gh′

2 . Otherwise, it selects a random expo-
nent α ∈ Zp and sets g2 = gα ,h = ga,h2 = (ga)α . It sets public parameters PP = (p,G,g,g2,h,h2,H1,H2)
where H1 and H2 are hash functions that are modeled as random oracles. Next, it selects random exponents
x∗1,x

∗
2 ∈ Zp and computes X∗ = gx∗1gx∗2

2 ,Y ∗ = hx∗1hx∗2
2 . It sets a challenge private key SK∗ = (PP,x∗1,x

∗
2) and a

challenge public key PK∗ = (PP,X∗,Y ∗). It keeps SK∗ internally and gives PK1 = PK∗ to Aalg.

15

Hash Query: If Aalg request an H1, H2, or H3 hash query, then B handles this query as follows:

• H1 hash query for (M): If (M, ·)∈ LH1 , then it retrieves (M,m) from LH1 . Otherwise, it selects random
m ∈ Zp and adds (M,m) to LH1 . It gives m to Aalg.

• H2 hash query for (AK,AR,M): If (AK,AR,M, ·) ∈ LH2 , then it retrieves (AK,AR,M,c) from LH2 .
Otherwise, it selects random c ∈ Zp and adds (AK,AR,M,c) to LH2 . It gives c to Aalg.

• H3 hash query for (LK,PKi): If (LK,PKi, ·)∈ LH3 , then it retrieves (LK,PKi,ai) from LH3 . Otherwise,
it selects random ai ∈ Zp and adds (LK,PKi,ai) to LH3 . It gives ai to Aalg.

Signature Query: If Aalg request a first round or second round signature query, then B handles this query
as follows:

• First round signature query for (M): It adds M to Q and calculates m = H1(M). It selects random
exponents r1,1,r1,2 ∈ Zp and computes R1 = (gmh)r1,1(gm

2 h2)
r1,2 . It adds (M,R1,r1,1,r1,2) to LS1 . It

gives R1 to Aalg.

• Second round signature query for (LK,M,{Ri}n
i=1) where LK = (PK1, . . . ,PKn): If (M,R1, ·, ·) ̸∈ LS1

or PK1 ̸= PK∗, then it returns 0. It retrieves (M,R1,r1,1,r1,2) from LS1 . It computes AR = ∏
n
i=1 Ri.

It obtains AK by running MS.AggKey(LK) and calculates a1 = H3(LK,PK1). It calculates c =
H2(AK,AR,M). Next, it computes s1,1 = r1,1 + x∗1a1c mod p and s1,2 = r1,2 + x∗2a1c mod p. It adds
(LK,M,{Ri}n

i=1,AR,c,s1,1,s1,2,r1,1,r1,2) to LS2 . It gives (s1,1,s1,2) to Aalg.

Note that Aalg is an algebraic adversary that when it requests hash and signature queries with a group
element Z ∈ G, it also submits a representation z⃗ = (z1, . . . ,zℓ) for the group element Z such that Z =

∏
ℓ
i=1V zi

i and {Vi} are group elements given to Aalg. For the simplicity of the notation, we do not describe
representations for group elements in hash and signature queries. We assume that the representations of
group elements submitted by Aalg are implicitly stored in the lists maintained by B.
Output: Finally, Aalg outputs a forged multi-signature σ∗ = (c∗,s∗1,s

∗
2) on a message M∗ under a list of

public keys LK∗ = (PK1, . . . ,PKn). B checks that MS.Verify(LK∗,σ∗,M∗) = 1, PK1 = PK∗, and M∗ ̸∈ Q.
From the verification algorithm of the MS scheme, it can derive the following equation

AR∗ =
(
gm∗h

)s∗1
(
gm∗

2 h2
)s∗2

(
AXm∗AY

)−c∗

= gm∗s∗1hs∗1gm∗s∗2
2 hs∗2

2

(
Xa1

1

n

∏
i=2

Xai
i

)−m∗c∗(
Y a1

1

n

∏
i=2

Y ai
i

)−c∗

where X1 = gx∗1gx∗2
2 and Y1 = hx∗1hx∗2

2 . Next, it finds representations z⃗ = (z1, . . . ,z7,1, . . . ,z7,qS1
) for the group

element AR∗, u⃗(i) = (u(i)1 , . . . ,u(i)7,1, . . . ,u
(i)
7,qS1

) for the group element Xi, and v⃗(i) = (v(i)1 , . . . ,v(i)7,1, . . . ,v
(i)
7,qS1

) for
the group element Yi such as

AR∗ = gz1gz2
2 hz3hz4

2 X z5
1 Y z6

1

qS1

∏
k=1

(
R(k)

1

)z7,k ,

Xi = gu(i)1 gu(i)2
2 hu(i)3 hu(i)4

2 Xu(i)5
1 Y u(i)6

1

qS1

∏
k=1

(
R(k)

1

)u(i)7,k ,

Yi = gv(i)1 gv(i)2
2 hv(i)3 hv(i)4

2 Xv(i)5
1 Y v(i)6

1

qS1

∏
k=1

(
R(k)

1)v(i)7,k

16

where R(k)
1 =

(
gm(k)

h
)r(k)1,1

(
gm(k)

2 h2
)r(k)2,2 is the commitment of k-th first round signature query. By combining

above equations, it can derive the following simplified equation

gA1hA2gB1
2 hB2

2 = gA1+dlogg(h)A2g
B1+dlogg(h)B2

2 = 1

where A1,A2,B1,B2 are variables defined by the forged signature (c∗,s∗1,s
∗
2), the representations z⃗, {⃗u(i), v⃗(i)},

private key elements x∗1,x
∗
2, random exponents {r(k)1,1,r

(k)
1,2}, and message hashes m∗,{m(k)}.

To solve the discrete logarithm, we classify algebraic adversaries into the following three types depend-
ing on the conditions of variables:

• Type-1: An algebraic adversary is Type-1 if B1 +dlogg(h)B2 ̸≡ 0 mod p.

• Type-2: An algebraic adversary is Type-2 if B1 +dlogg(h)B2 ≡ 0 mod p and B2 ̸≡ 0 mod p.

• Type-3: An algebraic adversary is Type-3 if B1 +dlogg(h)B2 ≡ 0 mod p and B2 ≡ 0 mod p.

Let F be the event that an adversary succeeds to forge a multi-signature and Ti be the event that an
adversary is Type-i. Since the random bit b is hidden to the adversary and b is independent to the type of
the adversary, we have that Pr[b = 0∧F |Ti] = Pr[b = 1∧F |Ti] for each type of the adversary. If the Type-1
adversary is successful to forge and the guess of the reduction algorithm is correct (b= 0), then the reduction
can compute the discrete logarithm as dlogg(g2) = −(A1 + h′A2)/(B1 + h′B2) mod p since g2 = ga and
B1 +h′B2 ̸≡ 0 mod p. That is, Pr[b = 0∧F |T1]≤AdvDL

B (λ). If the Type-2 adversary is successful to forge
and the guess of the reduction is correct (b = 1), then the reduction can compute the discrete logarithm as
dlogg2

(h2) =−B1/B2 mod p since g2 = gα ,h2 = (ga)α , B1 +dlogg(h)B2 ≡ 0 mod p, and B2 ̸≡ 0 mod p.
That is, Pr[b = 1∧F |T2] ≤ AdvDL

B (λ). From Lemma 4.3, If the probability of the Type-3 adversary to
successfully forge is negligible. That is, Pr[F |T3]≤ negl(λ). Therefore, we obtain the following result

AdvMS-UF-CMA
Aalg

(λ) = Pr[F ∧T1]+Pr[F ∧T2]+Pr[F ∧T3]

= Pr[T1]Pr[F |T1]+Pr[T2]Pr[F |T2]+Pr[T3]Pr[F |T3]

= Pr[T1]
(

Pr[b = 0∧F |T1]+Pr[b = 1∧F |T1]
)
+

Pr[T2]
(

Pr[b = 0∧F |T2]+Pr[b = 1∧F |T2]
)
+Pr[T3]Pr[F |T3]

≤ Pr[T1]2AdvDL
B (λ)+Pr[T2]2AdvDL

B (λ)+Pr[T3]negl(λ)

≤ Pr[T1]2AdvDL
B (λ)+(1−Pr[T1])2AdvDL

B (λ)+negl(λ)

≤ 2AdvDL
B (λ)+negl(λ).

This completes our proof.

Lemma 4.2. In the above MS scheme, the private key exponents (x∗1,x
∗
2) and random exponents {(r(k)1,1,r

(k)
1,2)}

for first round signature queries are statistically hidden to an algebraic adversary.

Proof. In order to show that the private key exponents (x∗1,x
∗
2) and random exponents {(r(k)1,1,r

(k)
1,2)} selected

by the reduction algorithm are statistically hidden from the adversary, we should show that these exponents
can be changed to different exponents (x̃∗1, x̃

∗
2) and {(r̃(k)1,1, r̃

(k)
1,2)} while the public key group elements, the

commitment group elements, and the partial signatures given to the adversary are fixed.

17

Let (X1,Y1) be the challenge public key. If the private key exponents (x∗1,x
∗
2) can be changed to differ-

ent private key exponents (x̃∗1, x̃
∗
2), then we obtain the first relation x∗1 +αx∗2 ≡ x̃∗1 +α x̃∗2 mod p from the

following equation

X1 =
(
gx∗1gx∗2

2

)
= gx∗1+αx∗2 = gx̃∗1+α x̃∗2 =

(
gx̃∗1gx̃∗2

2

)
,

Y1 =
(
hx∗1hx∗2

2

)
= hx∗1+αx∗2 = hx̃∗1+α x̃∗2 =

(
hx̃∗1hx̃∗2

2

)
.

Let R(k)
1 be the commitment element of the k-th signature query. If the random exponents (r(k)1,1,r

(k)
1,2) can

be changed to different random exponents (r̃(k)1,1, r̃
(k)
1,2), then we obtain the second relation r(k)1,1 + αr(k)1,2 ≡

r̃(k)1,1 +α r̃(k)1,2 mod p from the following equation

R(k)
1 =

(
gm(k)

h
)r(k)1,1

(
gm(k)

2 h2
)r(k)1,2 = g(m

(k)+h′)(r(k)1,1+αr(k)1,2)

=g(m
(k)+h′)(r̃(k)1,1+α r̃(k)1,2) =

(
gm(k)

h
)r̃(k)1,1

(
gm(k)

2 h2
)r̃(k)1,2 .

Let (s(k)1,1,s
(k)
1,2) be the partial signature of the k-th signature query where s(k)1,1 = r(k)1,1 + x∗1a1c(k) and s(k)1,2 =

r(k)1,2+x∗2a1c(k). If the random exponents (x∗1,x
∗
2) and (r(k)1,1,r

(k)
1,2) can be changed to different random exponents

(x̃∗1, x̃
∗
2) and (r̃(k)1,1, r̃

(k)
1,2), then we obtain the following third and fourth relations

r(k)1,1 + x∗1a1c(k) ≡ r̃(k)1,1 + x̃∗1a1c(k) mod p,

r(k)1,2 + x∗2a1c(k) ≡ r̃(k)1,2 + x̃∗2a1c(k) mod p.

Now, we argue that new private key exponents and new random exponents can satisfy the above four
relations and these exponents are different with the original exponents. From the above first, second, and
third relations, we set the new exponents as follows

x̃∗1← Z∗p,
x̃∗2 := x∗2 +(x∗1− x̃∗1)α

−1 mod p,

r̃(k)1,1 := r(k)1,1 +(x∗1− x̃∗1)a1c(k) mod p,

r̃(k)1,2 := r(k)1,2 +(r(k)1,1− r̃(k)1,1)α
−1 mod p.

Next, we show that these new exponents satisfy the fourth relation as follows

r(k)1,2− r̃(k)1,2 + x∗2a1c(k)− x̃∗2a1c(k)

≡−(r(k)1,1− r̃(k)1,1)α
−1− (x∗1− x̃∗1)α

−1a1c(k)

≡−
(
(r(k)1,1− r̃(k)1,1)+(x∗1− x̃∗1)a1c(k)

)
α
−1

≡ 0 mod p.

This completes our proof.

Lemma 4.3. If the algebraic adversary is Type-3, then the advantage of the adversary in MS-UF-CMA
game is negligible.

18

Proof. Let AR∗ be the group element derived from a forged multi-signature σ∗. From the verification
algorithm, the forged signature σ∗ = (c∗,s∗1,s

∗
2) with the element AR∗ satisfies the following equation

1 =
(
gm∗h

)s∗1
(
gm∗

2 h2
)s∗2AR∗−1(AXm∗AY

)−c∗

= gm∗s∗1hs∗1gm∗s∗2
2 hs∗2

2 AR∗−1
(n

∏
i=1

Xai
i

)−m∗c∗(n

∏
i=1

Y ai
i

)−c∗

= gm∗s∗1hs∗1gm∗s∗2
2 hs∗2

2 ·X
−a1m∗c∗
1 Y−a1c∗

1 ·AR∗−1 ·
n

∏
i=2

X−m∗aic∗
i

n

∏
i=2

Y−aic∗
i

= gm∗s∗1hs∗1gm∗s∗2
2 hs∗2

2 · (g
x∗1gx∗2

2)−a1m∗c∗(hx∗1hx∗2
2)−a1c∗ ·AR∗−1 ·

n

∏
i=2

X−m∗aic∗
i

n

∏
i=2

Y−aic∗
i

= gm∗s∗1−m∗x∗1a1c∗hs∗1−x∗1a1c∗gm∗s∗2−m∗x∗2a1c∗

2 hs∗2−x∗2a1c∗

2 ·AR∗−1 ·
n

∏
i=2

X−m∗aic∗
i

n

∏
i=2

Y−aic∗
i .

Next, we find the representation z⃗ = (z1, . . . ,z6,z7,1, . . . ,z7,k) from LH2 for the group element AR∗ such as

AR∗ = gz1gz2
2 hz3hz4

2 X z5
1 Y z6

1

qS1

∏
k=1

(
R(k)

1

)z7,k

= gz1gz2
2 hz3hz4

2 (g
x∗1gx∗2

2)z5(hx∗1hx∗2
2)z6

qS1

∏
k=1

(
(gm(k)

h)r(k)1,1(gm(k)

2 h2)
r(k)1,2

)z7,k

= gz1gz2
2 hz3hz4

2 gx∗1z5gx∗2z5
2 hx∗1z6hx∗2z6

2 g∑
qS1
k=1 m(k)r(k)1,1z7,k h∑

qS1
k=1 r(k)1,1z7,k g

∑
qS1
k=1 m(k)r(k)1,2z7,k

2 h
∑

qS1
k=1 r(k)1,2z7,k

2

= gz1+x∗1z5+∑
qS1
k=1 m(k)r(k)1,1z7,k hz3+x∗1z6+∑

qS1
k=1 r(k)1,1z7,k g

z2+x∗2z5+∑
qS1
k=1 m(k)r(k)1,2z7,k

2 h
z4+x∗2z6+∑

qS1
k=1 r(k)1,2z7,k

2 .

We can also find the representations u⃗(i) = (u(i)1 , . . . ,u(i)6 ,u(i)7,1, . . . ,u
(i)
7,k), v⃗(i) = (v(i)1 , . . . ,v(i)6 ,v(i)7,1, . . . ,v

(i)
7,k) from

LH2 for the group elements Xi,Yi respectively such as

Xi = gu(i)1 gu(i)2
2 hu(i)3 hu(i)4

2 Xu(i)5
1 Y u(i)6

1

qS1

∏
k=1

(
R(k)

1

)u(i)7,k

= gu(i)1 +x∗1u(i)5 +∑
qS1
k=1 m(k)r(k)1,1u(i)7,k hu(i)3 +x∗1u(i)6 +∑

qS1
k=1 r(k)1,1u(i)7,k g

u(i)2 +x∗2u(i)5 +∑
qS1
k=1 m(k)r(k)1,2u(i)7,k

2 h
u(i)4 +x∗2u(i)6 +∑

qS1
k=1 r(k)1,2u(i)7,k

2 ,

Yi = gv(i)1 gv(i)2
2 hv(i)3 hv(i)4

2 Xv(i)5
1 Y v(i)6

1

qS1

∏
k=1

(
R(k)

1

)v(i)7,k

= gv(i)1 +x∗1v(i)5 +∑
qS1
k=1 m(k)r(k)1,1v(i)7,k hv(i)3 +x∗1v(i)6 +∑

qS1
k=1 r(k)1,1v(i)7,k g

v(i)2 +x∗2v(i)5 +∑
qS1
k=1 m(k)r(k)1,2v(i)7,k

2 h
v(i)4 +x∗2v(i)6 +∑

qS1
k=1 r(k)1,2v(i)7,k

2 .

By combining above equations, we can derive the equation gA1hA2gB1
2 hB2

2 = 1 where variables B1 and B2 are

19

defined as follows

B1 =m∗(s∗2− x∗2a1c∗)−
(

z2 + x∗2z5 +

qS1

∑
k=1

m(k)r(k)1,2z7,k

)
−

n

∑
i=2

(
u(i)2 + x∗2u(i)5 +

qS1

∑
k=1

m(k)r(k)1,2u(i)7,k

)
(m∗aic∗)−

n

∑
i=2

(
v(i)2 + x∗2v(i)5 +

qS1

∑
k=1

m(k)r(k)1,2v(i)7,k

)
(aic∗),

B2 =(s∗2− x∗2a1c∗)−
(

z4 + x∗2z6 +

qS1

∑
k=1

r(k)1,2z7,k

)
−

n

∑
i=2

(
u(i)4 + x∗2u(i)6 +

qS1

∑
k=1

r(k)1,2u(i)7,k

)
(m∗aic∗)−

n

∑
i=2

(
v(i)4 + x∗2v(i)6 +

qS1

∑
k=1

r(k)1,2v(i)7,k

)
(aic∗).

Now, we analyze the conditions to satisfy B2 ≡ 0 mod p. From Lemma 4.2, we know that x∗2 and {r(k)1,2}
are statistically hidden to the adversary. To satisfy B2 ≡ 0 mod p, the term x∗2a1c∗ of B2 that is not directly
controlled by the adversary should be cancelled out. To analyze this, we consider the following three cases:

• Case 1: Let BAD1 be an event that x∗2a1c∗ is cancelled by
(
z4 + x∗2z6 +∑

qS1
k=1 r(k)1,2z7,k

)
. Recall that the

term
(
z4 +x∗2z6 +∑

qS1
k=1 r(k)1,2z7,k

)
is associated with the group element AR∗. In the signing algorithm, c∗

is the output of a hash function H2 that takes AR∗ as an input and H2 is modeled as a random oracle.
Thus, c∗ is a random value independent of AR∗ by the property of the random oracle. This means that
the probability of BAD1 is at most 1/p.

• Case 2: Let BAD2 be the event that x∗2a1c∗ is cancelled by ∑
n
i=2

(
u(i)4 +x∗2u(i)6 +∑

qS1
k=1 r(k)1,2u(i)7,k

)
(m∗aic∗)+

∑
n
i=2

(
v(i)4 +x∗2v(i)6 +∑

qS1
k=1 r(k)1,2v(i)7,k

)
(aic∗). Recall that the terms

(
u(i)4 +x∗2u(i)6 +∑

qS1
k=1 r(k)1,2u(i)7,k

)
and

(
v(i)4 +

x∗2v(i)6 +∑
qS1
k=1 r(k)1,2v(i)7,k

)
are associated with the group elements Xi and Yi respectively. In the key ag-

gregation algorithm, a1 is the output of a hash function H2 that takes LK = (PK1, . . . ,PKn) and
PKi = (PP,Xi,Yi) as inputs and H3 is modeled as a random oracle. Thus, a1 is a random value in-
dependent of LK and PKi by the property of the random oracle. This means that the probability of
BAD2 is at most 1/p.

• Case 3: Let BAD3 be the event that the term x∗2a1c∗ is cancelled by s∗2. Recall that the term s∗2 is the
output of the adversary as the forged multi-signature and x∗2 is statistically hidden to the adversary.
The only way to cancel out this term is for the adversary to construct a forged multi-signature by
combining the simulated signatures {(s(k)1,1,s

(k)
1,2)} given from the second round signature queries since

the reduction algorithm simply constructs a partial signature s(k)2 = r(k)1,2 +x∗2a1c(k) by using the hidden
private key element x∗2. In this case, the term (s∗2− x∗2a1c∗) additionally contains a statistically hid-
den random exponent r(k)1,2 from the commitment R(k)

1 for some k. Thus, there should exist an index
k ∈ {1, . . . ,qS1} such that z7,k ̸≡ 0 mod p since Aalg is an algebraic adversary that submits a group
element with a representation of group elements given to the adversary.

From the conditions B1 + dlogg(h)B2 ≡ 0 mod p and B2 ≡ 0 mod p of the Type-3 adversary, we

20

have that B1 ≡ B2 ≡ 0 mod p. By combining B1 and B2, we have the following equation

−B1 +m∗B2 ≡
(

z2 + x∗2z5−m∗(z4 + x∗2z6)+

qS1

∑
k=1

(m(k)−m∗)r(k)1,2z7,k

)
+

n

∑
i=2

(
u(i)2 + x∗2u(i)5 −m∗(u(i)4 + x∗2u(i)6)+

qS1

∑
k=1

(m(k)−m∗)r(k)1,2u(i)7,k

)
(m∗aic∗)+

n

∑
i=2

(
v(i)2 + x∗2v(i)5 −m∗(v(i)4 + x∗2v(i)6)+

qS1

∑
k=1

(m(k)−m∗)r(k)1,2v(i)7,k

)
(aic∗)

≡ 0 mod p.

Since z7,k ̸≡ 0 mod p for some k and r(k)1,2 is statistically hidden to the adversary, the above equa-

tion can be reshaped as a degree-one polynomial C1r(k)1,2 +C0 ≡ 0 mod p where a coefficient C1 is
expressed as

C1 = (m(k)−m∗)
(

z7,k +
n

∑
i=2

u(i)7,k(m
∗aic∗)+

n

∑
i=2

v(i)7,k(aic∗)
)
.

By the Schwartz-Zippel lemma, the probability of the above polynomial to be zero is at most 1/p if r(k)1,2
is randomly selected and C1 ̸≡ 0 mod p. By the restrictions of the security model 4.2, we have M∗ ̸∈
Q. The probability that m(k)−m∗ ≡ 0 mod p for some k when M∗ ̸∈ Q is bounded by qS1/p since
H1 is modeled as a random oracle. The probability that z7,k +∑

n
i=2 u(i)7,k(m

∗aic∗)+∑
n
i=2 v(i)7,k(aic∗)≡ 0

mod p is bounded by 1/p since c∗ is the output of H2 when AR∗, Xi, and Yi are given as inputs where
z7,k,u

(i)
7,k,v

(i)
7,k are associated with AR∗,Xi,Yi respectively. Thus the probability that C1 ≡ 0 mod p is

bounded by (qS1 +1)/p. This means that the probability of BAD3 is at most (qS1 +2)/p.

The success probability of the adversary is bounded by the probability of all bad events and the probability
of all bad events are bounded as

Pr[BAD]≤Pr[BAD1]+Pr[BAD2]+Pr[BAD3]≤ (qS1 +4)/p.

This completes our proof.

4.4 Discussion

Proof-of-Possession Multi-Signature. Our MS scheme requires 2n exponentiations to aggregate the public
keys of co-signers. As suggested by the previous studies, if a public key additionally includes the proof
of possession of a private key, it is possible to simply aggregate public keys by multiplying the public key
elements without using expensive exponentiations. At this time, the security model that uses the proof of
possession of the private key is a weaker model than the plain public-key model.

Synchronized Multi-Signature. If signers participating in multi-signature share the same information that
is synchronized with each other, such as time or session count information, it is possible for co-signers to
create a commitment by using the synchronized information instead of a message when creating a commit-
ment. As an example, in the consensus protocol of a blockchain, the information of a previous block can be
used as synchronization information. If such synchronized information exists, the signers can compute the
commitment in advance and share it before the message to be signed is provided.

21

5 Conclusion

In this paper, we proposed a new PKS scheme and a two-round MS scheme by modifying the Okamoto
signature scheme. And we proved the unforgeability of these PKS and MS schemes under the discrete
logarithm assumption in the AGM and the non-programmable ROM. Our proposed MS scheme is the first
two-round MS scheme with the security proof derived from Okamoto signature. An interesting open prob-
lem is to construct an efficient two-round MS scheme based on Okamoto signature in the standard model
rather than in the AGM.

References

[1] Handan Kilinç Alper and Jeffrey Burdges. Two-round trip Schnorr multi-signatures via delinearized
witnesses. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021, volume
12825 of Lecture Notes in Computer Science, pages 157–188. Springer, 2021.

[2] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In Peng Ning, Paul F. Syverson, and Somesh
Jha, editors, ACM Conference on Computer and Communications Security - CCS 2008, pages 449–
458. ACM, 2008.

[3] Mihir Bellare and Wei Dai. Chain reductions for multi-signatures and the HBMS scheme. In Mehdi
Tibouchi and Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2021, volume 13093 of
Lecture Notes in Computer Science, pages 650–678. Springer, 2021.

[4] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general fork-
ing lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM
Conference on Computer and Communications Security - CCS 2006, pages 390–399. ACM, 2006.

[5] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-
diffie-hellman-group signature scheme. In Yvo Desmedt, editor, Public-Key Cryptography - PKC
2003, volume 2567 of Lecture Notes in Computer Science, pages 31–46. Springer, 2003.

[6] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure routing. Cryptology ePrint
Archive, Report 2007/438, 2010. http://eprint.iacr.org/2007/438.

[7] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller blockchains. In
Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018, volume
11273 of Lecture Notes in Computer Science, pages 435–464. Springer, 2018.

[8] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted signa-
tures from bilinear maps. In Eli Biham, editor, Advances in Cryptology - EUROCRYPT 2003, volume
2656 of Lecture Notes in Computer Science, pages 416–432. Springer, 2003.

[9] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and Igors
Stepanovs. On the security of two-round multi-signatures. In IEEE Symposium on Security and Pri-
vacy, SP 2019, pages 1084–1101. IEEE, 2019.

22

http://eprint.iacr.org/2007/438

[10] Manu Drijvers, Sergey Gorbunov, Gregory Neven, and Hoeteck Wee. Pixel: Multi-signatures for
consensus. In Srdjan Capkun and Franziska Roesner, editors, USENIX Security 2020, pages 2093–
2110. USENIX Association, 2020.

[11] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications. In
Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology - CRYPTO 2018, volume
10992 of Lecture Notes in Computer Science, pages 33–62. Springer, 2018.

[12] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless setup. In
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM Conference on
Computer and Communications Security - CCS 2018, pages 1179–1194. ACM, 2018.

[13] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal DSA/ECDSA sig-
natures and an application to bitcoin wallet security. In Mark Manulis, Ahmad-Reza Sadeghi, and
Steve A. Schneider, editors, Applied Cryptography and Network Security - ACNS 2016, volume 9696
of Lecture Notes in Computer Science, pages 156–174. Springer, 2016.

[14] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key generation
for discrete-log based cryptosystems. J. Cryptol., 20(1):51–83, 2007.

[15] Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public-Key Cryptography - PKC 2006, volume 3958
of Lecture Notes in Computer Science, pages 257–273. Springer, 2006.

[16] Jens Groth. Non-interactive distributed key generation and key resharing. Cryptology ePrint Archive,
Paper 2021/339, 2021. https://eprint.iacr.org/2021/339.

[17] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin Tomescu.
Aggregatable distributed key generation. In Anne Canteaut and François-Xavier Standaert, editors,
Advances in Cryptology - EUROCRYPT 2021, volume 12696 of Lecture Notes in Computer Science,
pages 147–176. Springer, 2021.

[18] Chelsea Komlo and Ian Goldberg. FROST: flexible round-optimized Schnorr threshold signatures. In
Orr Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn, editors, Selected Areas in Cryptography
- SAC 2020, volume 12804 of Lecture Notes in Computer Science, pages 34–65. Springer, 2020.

[19] Yehuda Lindell. Fast secure two-party ECDSA signing. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology - CRYPTO 2017, volume 10402 of Lecture Notes in Computer Science, pages
613–644. Springer, 2017.

[20] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed key generation
and applications to cryptocurrency custody. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM Conference on Computer and Communications Security - CCS 2018,
pages 1837–1854. ACM, 2018.

[21] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential aggregate
signatures and multisignatures without random oracles. In Serge Vaudenay, editor, Advances in Cryp-
tology - EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 465–485.
Springer, 2006.

23

https://eprint.iacr.org/2021/339

[22] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential aggregate sig-
natures from trapdoor permutations. In Christian Cachin and Jan Camenisch, editors, Advances in
Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 74–90.
Springer, 2004.

[23] Changshe Ma, Jian Weng, Yingjiu Li, and Robert H. Deng. Efficient discrete logarithm based multi-
signature scheme in the plain public key model. Des. Codes Cryptogr., 54(2):121–133, 2010.

[24] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple Schnorr multi-
signatures with applications to Bitcoin. Des. Codes Cryptogr., 87(9):2139–2164, 2019.

[25] Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-round Schnorr multi-signatures.
In Tal Malkin and Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021, volume 12825 of
Lecture Notes in Computer Science, pages 189–221. Springer, 2021.

[26] Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. MuSig-DN: Schnorr multi-signatures
with verifiably deterministic nonces. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, ACM Conference on Computer and Communications Security - CCS ’20, pages 1717–1731.
ACM, 2020.

[27] Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding signature
schemes. In Ernest F. Brickell, editor, Advances in Cryptology - CRYPTO ’92, volume 740 of Lecture
Notes in Computer Science, pages 31–53. Springer, 1992.

[28] Claus-Peter Schnorr. Efficient signature generation by smart cards. J. Cryptol., 4(3):161–174, 1991.

[29] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM,
27(4):701–717, 1980.

[30] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ismail Khoffi, and Bryan Ford. Keeping authorities “honest or bust” with decentralized witness
cosigning. In IEEE Symposium on Security and Privacy - SP 2016, pages 526–545. IEEE Computer
Society, 2016.

24

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Public-Key Signature
	Definition
	Construction
	Security Analysis
	Discussion

	Multi-Signature
	Definition
	Construction
	Security Analysis
	Discussion

	Conclusion

