
Faster Kyber and Dilithium on the Cortex-M4

Amin Abdulrahman1,2, Vincent Hwang3,4, Matthias J. Kannwischer3, and
Amber Sprenkels5

1 Ruhr University Bochum, Germany
amin.abdulrahman@mpi-sp.org

2 Max Planck Institute for Security and Privacy, Bochum, Germany
3 Academia Sinica, Taipei, Taiwan

vincentvbh7@gmail.com, matthias@kannwischer.eu
4 National Taiwan University, Taipei, Taiwan

5 Digital Security Group, Radboud University, Nijmegen, The Netherlands
amber@electricdusk.com

Abstract. This paper presents faster implementations of the lattice-
based schemes Dilithium and Kyber on the Cortex-M4. Dilithium is one of
three signature finalists in the NIST post-quantum project (NIST PQC),
while Kyber is one of four key-encapsulation mechanism (KEM) finalists.
Our optimizations affect the core polynomial arithmetic involving number-
theoretic transforms in both schemes. Our main contributions are three-
fold: We present a faster signed Barrett reduction for Kyber, propose to
switch to a smaller prime modulus for the polynomial multiplications cs1
and cs2 in the signing procedure of Dilithium, and apply various known
optimizations to the polynomial arithmetic in both schemes. Using a
smaller prime modulus is particularly interesting as it allows using the
Fermat number transform resulting in especially fast code.
We outperform the state-of-the-art for both Dilithium and Kyber. For
Dilithium, our NTT and iNTT are faster by 5.2% and 5.7%. Switching to
a smaller modulus results in speed-up of 33.1%–37.6% for the relevant
operations (sum of the base multiplication and iNTT) in the signing
procedure. For Kyber, the optimizations results in 15.9%–17.8% faster
matrix-vector product which is a core arithmetic operation in Kyber.

Keywords: Dilithium · Kyber · NIST PQC · Fermat Number Transform
· Number-Theoretic Transform · Arm Cortex-M4

1 Introduction

Lattice-based cryptography appears to be the most promising family of post-
quantum replacements needed for public-key cryptography broken by Shor’s al-
gorithm [Sho94]. As lattice-based key encapsulation schemes and digital signa-
tures provide reasonable key, ciphertext, and signature sizes and have particu-
larly good performance on a variety of platforms, they are expected to be stan-
dardized soon. One of such standardization efforts is the NIST PQC [Nat] project
aiming to find replacements for NIST’s standards for key establishment and dig-
ital signatures as early as 2024. NIST PQC is nearing the end of its third round

2 Abdulrahman, Hwang, Kannwischer, Sprenkels

with announcements due in early 2022. Among the third round finalists in the
competitions are 5 lattice-based schemes including the three key-encapsulation
mechanisms (KEMs) Kyber, NTRU, and Saber as well as the digital signature
schemes Dilithium, and Falcon. As there are only two other finalists (Classic
McEliece and Rainbow) that are not lattice-based, which both have excessively
large keys, it appears very likely that some of the lattice-based schemes are going
to be selected for standardization unless there are cryptanalytic breakthroughs.

Lattice-based cryptography is particularly suitable for microcontrollers as
the key material is still of manageable size and computational performance is
particularly fast with encapsulation and decapsulation in a few milliseconds while
signing and verification times in the tens to hundreds of milliseconds. NIST
has designated the Arm Cortex-M4 as the primary microcontroller optimization
target for NIST PQC, and, hence, it has received the most attention so far.

It appears that the number-theoretic transforms are cores of all high-speed
implementations of lattice-based crypto for the Cortex-M4. It is either pre-
scribed in the specification of Dilithium, Falcon, and Kyber, or maintains to be
the fastest polynomial multiplication methods in Saber, NTRU [CHK+21], and
NTRU Prime [ACC+20].

In this work, we focus on Kyber and Dilithium on the Cortex-M4. They are
both part of the “Cryptographic Suite for Algebraic Lattices (CRYSTALS)”
and are both designed to benefit from the NTT. We show that even though
implementations have been improving for many years, we can still significantly
improve the involved arithmetic.

Contributions. The contribution of this work is threefold. Firstly, we apply
various known techniques from work on the Cortex-M4 optimizing Saber, NTRU,
and NTRU Prime. While the techniques are already known, they have so far not
been applied to Kyber and Dilithium. This includes (1) the use of Cooley–Tukey
butterflies for the inverse NTT of both Kyber and Dilithium previously proposed
for Saber in [ACC+21]; (2) the use of floating point registers for caching values in
the NTT of Dilithium and Kyber which was first proposed in the context of NTTs
for NTRU Prime in [ACC+20]. This allows to merge more layers of the NTT
and reduce memory access time for loading twiddle factors; (3) we make use of
the “asymmetric multiplication” proposed in [BHK+21] which eliminates some
duplicate computation in the base multiplication of Kyber at the cost of extra
stack usage; and (4) we use an idea from [CHK+21] to improve the accumulation
in the matrix-vector product of Kyber by using a 32-bit accumulator allowing to
eliminate some modular reductions at the cost of more stack usage.

Secondly, we present a faster Cortex-M4 instruction sequence to implement
a signed Barrett reduction on packed 16-bit values applicable to the Kyber NTT.
This immediately improves the Barrett reduction code proposed in [BKS19] from
8 cycles to 6 cycles per packed reduction.

Thirdly, we propose to use a different implementation for computing the
product cs1 as well as cs2 in Dilithium. Since both c and s1/s2 have very small
absolute values, we can switch to a much smaller modulus q′ that allows effi-

Faster Kyber and Dilithium on the Cortex-M4 3

cient computation of the product. For Dilithium2 and Dilithium5, we make use
of the Fermat prime q′ = 257, which allows using a particularly fast variant of
the NTT called the Fermat number transform (FNT), similar to [LMPR08] for
SWIFFT. Furthermore, [LMPR08] implements FNT on an Intel processor while
we implement FNT on the Cortex-M4 and make use of its barrel shifter. For
Dilithium3 the FNT does not work as s1 and s2 have larger values. We instead
use an incomplete NTT with q′ = 769 which is still much faster than computing
it modulo the original Dilithium prime. To best of our knowledge, we are the first
to propose using a smaller modulus for these multiplications within Dilithium.

Code. Our code is open-source and available at https://github.com/FasterK
yberDilithiumM4/FasterKyberDilithiumM4. We will publish the code alongside
the paper under a CC0 copyright waiver.

Structure. Section 2 recalls the preliminaries regarding Kyber, Dilithium, and
the Cortex-M4. In Section 3 and Section 4, we describe the optimizations ap-
plied to Kyber and Dilithium, respectively. Lastly, in Section 5, we present the
performance results and compare them to previous work.

2 Preliminaries

This section introduces the cryptographic schemes Kyber and Dilithium, which
are both part of the Cryptographic Suite for Algebraic Lattices (CRYSTALS).
Furthermore we give a brief introduction into the polynomial multiplication using
the NTT, revisit the Barrett reduction and present relevant details considering
our target platform, the Arm Cortex-M4.

2.1 Notation

For a prime q and a power of two n, we denote the polynomial ring Zq[X]/(Xn+
1) by Rq. An element a ∈ Rq is represented by a coefficient vector ai ∈ Zq, such

that a =
∑n−1

i=0 aiX
i. We denote polynomials using lower-case letters (e.g., a),

vectors of polynomials using lower-case boldfaced letters (e.g., a), and matrices
of polynomials using upper-case boldfaced letters (e.g., A). We symbolize poly-

nomials, vectors, and matrices inside NTT-domain using â, â, and Â, respectively.
Following the definitions from [BDK+20,ABD+20], for an odd q we define

the result of the central reduction r′ = r mod ±q as the unique element in
[− q−1

2 , q−1
2] satisfying r′ ≡ r mod q. Similarly, we define the result of r′ = r mod

+q as the unique element in [0, q) satisfying r′ ≡ r mod q. For scenarios in which
the range of the reduction result does not matter, we write r′ = r mod q.

The function sampleUniform(·) samples coefficients for polynomials, vectors
of polynomials, or matrices of polynomials from a uniformly random distribution.
In case a seed is given as the argument, the output is pseudorandomly generated
from the seed.

https://github.com/FasterKyberDilithiumM4/FasterKyberDilithiumM4
https://github.com/FasterKyberDilithiumM4/FasterKyberDilithiumM4

4 Abdulrahman, Hwang, Kannwischer, Sprenkels

2.2 Polynomial Multiplications using the NTT

The NTT is a variant of the discrete Fourier transform (DFT) defined over fi-
nite fields and is commonly used for efficient polynomial multiplications. The
efficiency of this strategy is based on the fact that a polynomial multiplication
inside NTT domain amounts to the coefficient-wise multiplication of the two poly-
nomials. Specifically, the negacyclic NTT is used for multiplying polynomials in
Zq[X]/(Xn + 1).

Computing the negacyclic NTT can be viewed as the evaluation of a polyno-
mial at powers of a primitive n-th root of unity ζn for the polynomial ring Rq

with q prime. Additionally, multiplying all coefficients ai of a ∈ Rq by powers
of a 2n-th root of unity ζ2n =

√
ζn is called “twisting” [Ber01].

This comes down to computing

NTT(a) = â =

n−1∑
i=0

âiX
i with âi =

n−1∑
j=0

ajζ
j
2nζ

ij
n

for the forward transform (NTT) and

iNTT(â) = a =

n−1∑
i=0

aiX
i with ai = n−1ζ−i

2n

n−1∑
j=0

âjζ
−ij
n

for the inverse transform (iNTT) [AB74]. The powers of the roots of unity used
during the computation of the NTT are also frequently called “twiddle factors”.

For computing the NTT itself efficiently, fast Fourier transform (FFT) algo-
rithms, which only require Θ(n log n) operations, are commonly used. This algo-
rithm was first described by Gauss in 1805 [Gau66] but it is also oftentimes cred-
ited to Cooley and Tukey who published the same algorithm in 1965 [CT65]. The
basic idea of the algorithm is to split the computation of a length n NTT into, most
commonly, two separate number-theoretic transforms (NTTs) with an input size
of n/2 each. Formally, we compute the isomorphism Rq →

∏
i Zq[X]/(X − ζi2n)

for i = 1, 3, 5, . . . , n − 1 as given by the Chinese Remainder Theorem (CRT),
as also explained in [BDK+20, Section 2.2]. For example, in the first instance

we map Zq[X]/(Xn + 1) to Zq[X]/(Xn/2 − ζ
n/2
2n) × Zq[X]/(Xn/2 + ζ

n/2
2n). This

splitting is usually repeated for log2 n iterations, called “NTT layers”, where the

results of the i-th layer are the remainders of polynomials a mod (X2i−1 ± ζj2n)
for some j. Computing these remainders involves n/2 so-called butterfly oper-
ations per layer. The Cooley–Tukey (CT) butterfly, consisting of one addition,
one subtraction, and one multiplication in Zq, is depicted in Figure 1a.

While the CT algorithm is frequently used for computing the NTT, the Gentleman–
Sande (GS) FFT algorithm is commonly deployed for computing the iNTT. In
contrast to this, we use the CT algorithm for the computation of the NTT and
its inverse. A depiction of the GS butterfly is Figure 1b.

Using this method, the product of f, g ∈ Rq can be efficiently computed as
iNTT(NTT(f) ◦ NTT(g)), where ◦ indicates the base multiplication of two polyno-
mials. In case the NTT is computed on log n layers, base multiplication is equal to

Faster Kyber and Dilithium on the Cortex-M4 5

a + a+ ζb

b × − a− ζb

ζ

(a) Cooley–Tukey butterfly

a + a+ b

b − × 1
ζ
(a− b)

ζ

(b) Gentleman–Sande butterfly

Fig. 1: NTT butterfly operations

coefficient-wise multiplication requiring only n multiplications. In case the NTT is
computed on l < log n layers, yielding 2l polynomials mod xm−ω form = n

2l
and

ω a power of a root of unity, it is called an “incomplete” NTT. For this scenario,
the base multiplication corresponds to pairwise m × m schoolbook multiplica-
tions. This idea was initially introduced in [LS19] for the case of the modulus not
supporting an NTT on log n layers, but is also applied for performance reasons in
several other implementations, for example, [ABCG20,CHK+21,ACC+21].

2.3 Fermat Number Transform

The Fermat number transform (FNT) is a special case of NTT in that the modu-

lus is a Fermat number Ft := 22
t

+1. It was introduced in [SS71] for large integer
multiplications and in [AB74,AB75] for digital convolutions. In this paper, we
implement FNT for negacyclic convolution. For arbitrary Ft as the modulus,
cyclic transformations of sizes dividing 2t+2 are supported [AB74,AB75]. For
computing a negacyclic transformation of size n = 2t+1 and ζ2n =

√
2, the first

split becomes

ZFt
[X]/(Xn − 22

t

) ∼=ZFt
[X]/(X

n
2 − 22

t−1

)× ZFt
[X]/(X

n
2 + 22

t−1

)

=ZFt
[X]/(X

n
2 − 22

t−1

)× ZFt
[X]/(X

n
2 − 22

t−1(1+2)).

After applying t layers, all of the polynomial rings are of the form ZFt
[x]/(X

n
2t −

2j) where j is an odd number. Since ζ22n = 2, we can apply one more split.
Furthermore, if Ft is a prime, then we can compute cyclic transformations of
sizes up to 22

t

= Ft − 1 and negacyclic transformations up to 22
t−1. Since the

twiddles in initial t layers are powers of two, we can multiply with the twiddles
using shift operations which is much cheaper than explicit multiplications on
many platforms. Note that the only known prime Fermat numbers are F0 = 3,
F1 = 5, F2 = 17, F3 = 257, F4 = 65 537. Out of those, only F3 and F4 appear
promising for the use in Dilithium. They allow to compute 3 or 4 layers using
only shifts.

6 Abdulrahman, Hwang, Kannwischer, Sprenkels

2.4 Kyber

Kyber [ABD+20] is an IND-CCA2-secure lattice-based key-encapsulation mecha-
nism (KEM) constructed from an IND-CPA secure public-key encryption scheme
Kyber.CPAPKE using a variant of the Fujisaki–Okamoto (FO) transform [FO99].
The security of the scheme is based on the hardness of the module-learning
with errors (MLWE) problem, a trade-off between the ring-learning with errors
(RLWE) problem and learning with errors (LWE) problem [ABD+20, Section
1.5]. Kyber is one of four round-three KEM-finalists in the NIST PQC [Nat] next
to Saber [DKRV20], NTRU [CDH+20], and Classic McEliece [ABC+20].

Parameters. Kyber uses q = 3329 as its prime and n is chosen to be 256.
Thus, it operates on Rq = Z3329[X]/(X256 + 1) [ABD+20, Section 1.4]. The
specification defines three different security levels of Kyber, namely Kyber-512
(k = 2, η1 = 3), Kyber-768 (k = 3, η1 = 2), and Kyber-1024 (k = 4, η1 =
2) [ABD+20, Section 1.4]. Due to the fact that q and n remain constant across
the three parameter sets, almost all possible optimizations apply to all variants.

Notation and Supporting Functions. We largely follow the notation from
the Kyber specification [ABD+20] with only minor deviations. The function
sampleCBDη(s) samples from a centered binomial distribution in [−η, η] based
on a seed s. The symbols ρ, µ, and σ stand for random bit vectors. The functions
Compress and Decompress handle bit packing, compression, and the serialization
of polynomials into byte arrays and vice versa.

Algorithmic Specification. Algorithms A.1 to A.3 illustrate the key genera-
tion, encryption, and decryption of Kyber.CPAPKE [ABD+20, Algorithms 4–6].
As the optimizations in this paper do not concern the FO transform, we omit
the IND-CCA2 scheme and refer to [ABD+20, Algorithms 7–9].

Number Theoretic Transform. Since polynomial multiplication is among
the most costly operations for Kyber, the polynomial ring has been chosen, such
that Kyber can profit from efficient polynomial multiplication using the NTT.

For q = 3329, as deployed in Kyber, no primitive 512-th but only primitive
256-th roots of unity exist forRq with the first one being ζn = 17 [ABD+20]. This
means that the defining polynomial ofRq (X

256+1) factors into 128 polynomials
of degree one and not into 256 polynomials of degree zero. Therefore, the result
of the NTT of f ∈ Rq is a vector of 128 polynomials of degree one. Thus, in
contrast to Section 2.2, the coefficients âi inside NTT domain are given by

â2i =

127∑
j=0

a2jζ
(2br7(i)+1)j
n , and â2i+1 =

127∑
j=0

a2j+1ζ
(2br7(i)+1)j
n

as defined in [ABD+20]. The function br7 computes the bit reversal of a 7-bit
integer on its argument.

Faster Kyber and Dilithium on the Cortex-M4 7

The absence of a primitive 512-th root of unity also has an impact on the
base multiplication of two polynomials inside NTT domain: Instead of coefficient-
wise multiplication, we need to perform schoolbook multiplications of size 2× 2,

i.e., we need to compute 128 products mod(X2 − ζ
2br7(i)+1
n) [ABD+20].

2.5 Dilithium

Dilithium [DKL+18,BDK+20] is a lattice-based digital signature scheme based
on the “Fiat-Shamir with Aborts” approach [Lyu09]. Its security is based on the
hardness of the modular short integer solution (MSIS) and MLWE problems and
it is currently among the three signature-finalists in the NIST PQC project [Nat],
next to Falcon [FHK+20] and Rainbow [CDK+20].

Parameters. Dilithium deploys the prime q = 8380417 = 223 − 213 + 1 and
operates on the polynomial ring Rq = Zq[X]/(Xn + 1) with n = 256. The two
parameters q and n are the same across all parameter sets.

Dilithium offers three different parameter sets, namely Dilithium2, Dilithium3,
and Dilithium5, which target the three NIST security levels 2, 3, and 5. More
details on the differences between the three parameter sets can be obtained from
Table 1. The matrix dimension is given by (k, l), the bounds for sampling the
secret key by η, the number of ±1 in the challenge polynomial c is τ , and #reps
refers to the expected number of repetitions during the rejection sampling in the
signature generation process [BDK+20]. The parameters γ1 and γ2 define the
range for the coefficient y and the low-order rounding range [BDK+20].

Table 1: Overview of Dilithium’s parameter sets [BDK+20]

Scheme NIST level (k, l) η τ γ1 γ2 #reps | pk | | sig |

Dilithium2 2 (4, 4) 2 39 217 (q − 1)/88 4.25 1312B 2420B
Dilithium3 3 (6, 5) 4 49 219 (q − 1)/32 5.1 1952B 3293B
Dilithium5 5 (8, 7) 2 60 219 (q − 1)/32 3.85 2592B 4595B

Notation and Supporting Functions. We largely follow the notation from
the Dilithium specification [BDK+20] with only minor deviations. For symbol-
izing the concatenation of two inputs as byte strings, the operator ∥ is used.
For w ∈ Rq, ∥w∥∞ refers to the absolute maximum coefficient maxi|wi mod ±q|
in w. Dilithium internally deploys two different kinds of hash functions: CRH is
a collision resistant hash function with an output length of 384 bits, while H

is a cryptographic hash function which outputs a polynomial with τ random
coefficients being ±1 and the rest set to 0 [BDK+20, Section 5.3]. Internally
both functions deploy SHAKE256 as their extendable-output function (XOF).

8 Abdulrahman, Hwang, Kannwischer, Sprenkels

Additionally, Dilithium relies on the supporting functions ExpandA, ExpandMask,
Power2Round, SampleInBall, MakeHint, UseHint, Decompose, HighBits, and
LowBits. We omit a detailed description for brevity at this point, interested
readers may refer to [BDK+20, Section 2, 5].

Algorithmic Specification. A simplified description of the key generation,
signing, and verification procedures based on the description in [BDK+20, Figure
4] can be found in Algorithms B.1 to B.3.

Number Theoretic Transform. Since the main algebraic operations used
by Dilithium are polynomial multiplications, Dilithium’s ring was chosen in such
a way that the NTT can be applied [BDK+20]. In contrast to Kyber, for the
Dilithium ring, a 2n-th primitive root of unity r = 1753 exists [BDK+20] and
thus it is possible to compute a complete NTT with eight layers as described in
Section 2.2. This allows for base multiplication by coefficient-wise multiplication.

2.6 Barrett Reduction

The Barrett reduction [Bar87] is an efficient algorithm for reductions in Zq.
Besides its performance, one advantage is that it can be easily implemented in
constant-time. A variant of the Barrett reduction that operates on signed integers
has been presented in [Sei18, Algorithm 5] which has also been deployed in a
previous implementation of Kyber [ABCG20]. Algorithm 2.1 is an illustration.

Algorithm 2.1: Signed Barrett Reduction [ABCG20]

Input : q with 0 < q < β
2 , 2 ∤ q and a with −β

2 ≤ a < β
2

Output: r with r = a (mod q), 0 ≤ r ≤ q

1 v ← ⌊ 2
log(q)−1·β

q ⌋ ▷ precomputed

2 t← ⌊ av
2log(q)−1·β ⌋ ▷ signed high product and arithmetic right shift

3 t← tq mod β ▷ signed low product
4 return r ← a− t

2.7 Arm Cortex-M4

The target platform for our implementation is the Arm Cortex-M4(F), which
is a NIST-recommended evaluation platform for the candidates of the NIST
PQC project. The Arm Cortex-M4 is based on the Armv7E-M instruction set
architecture with 14 usable 32-bit general purpose registers. Additionally, on
the Cortex-M4F, there are 32 single-precision floating-point registers [ARM11].

The instruction set also provides a number of powerful digital signal process-
ing (DSP) instructions which allow to perform arithmetic operation on two half
words or four bytes at the same time and have proven themselves to be beneficial
in numerous implementations [BKS19,ABCG20,KMSRV18] of Kyber [ABD+20],
and Saber [DKRV20]. In particular, the instructions smul{b,t}{b,t} multiply

Faster Kyber and Dilithium on the Cortex-M4 9

specific halfwords and smla{b,t}{b,t} multiply specific halfwords and accu-
mulate the product to the specified accumulator. Additionally, the instructions
smuad{,x} perform two halfword-multiplications and add up their products,
while smlad{,x} perform two halfword-multiplications and add up their prod-
ucts which is then added to an accumulator. All of these instructions take one
one cycle to execute. Moreover, the Cortex-M4 can compute the 64-bit product
of two 32-bit values (optionally, with accumulation) in a single cycle. Further-
more, the Cortex-M4 provides a barrel shifter for shifting or rotating the second
operand for certain instructions with no additional cost.

On the Cortex-M4, store instructions always take a single cycle, while a
sequence of independent loads takes n+ 1 cycles. Using the vldm instruction, it
is possible to directly load data from the memory into the floating point registers.
This also consumes n+ 1 cycles for n data words.

3 Improvements to Kyber Implementations

For Kyber, we propose several optimizations for implementing NTT and iNTT and
some speed optimizations to the matrix-vector product at the cost of a higher
stack usage. We provide one implementation with all optimizations and one with
only the optimizations that do not impact the stack usage.

We base our implementations on [ABCG20] and the implementation in the
pqm4 [KRSS19] project. In the following we focus on our contributions and omit
details of the numerous optimizations present in previous implementations.

3.1 NTT

Caching in FPU registers. For Kyber, on the layers 7–4, 15 twiddle factors
are required and re-used multiple times throughout the iterations. By using the
floating-point registers for caching the twiddle factors, the number of cycles for
memory loads are reduced. This technique has been proven to be beneficial in
past work [ACC+20,CHK+21,ACC+21]. In our implementations, we load the 15
twiddle factors (packed into eight registers) into the floating-point registers once
with vldm instruction in nine cycles. Then, in each iteration the twiddle factors
are fetched from the floating-point registers with vmov in a single cycle each.

On the three remaining layers, it is not beneficial to make use of the floating
point registers because in each of the 16 iterations at least one unique twiddle
factor per layer is required, meaning none of the twiddle factors are re-used.

Better Layer Merging. In our implementations we make use of the common
optimization strategy of merging layers of the NTT computation [GOPS13]. The
idea behind this strategy is to load multiple coefficients at once such that more
than one layer of NTT can be computed at a time. This reduces the number of
memory operations required at the cost of taking up more registers. The state-
of-the-art implementation of Kyber [ABCG20] also deploys this strategy merging
layers 7–5 and 4–2 while computing layer 1 separately.

10 Abdulrahman, Hwang, Kannwischer, Sprenkels

By making use of the floating point registers, we instead implement the NTT
by merging layers 7–4 and 3–1. Layers 7–4 can be merged by first computing
three layers of NTT on each (a1, a3, a5, a7, a9, a11, a13, a15) and (a0, a2, a4, a6, a8,
a10, a12, a14) and then combining their results. First, the NTT on (a1, a3, . . . , a15)
is computed and each of the layer 5 outputs is multiplied by the correspond-
ing twiddle factors of the fourth layer. Then, (a1, a3, . . . , a15) are moved to the
floating point registers for later use. After that, the polynomials (a0, a2, . . . , a14)
are loaded and the NTT is computed on them. Finally, we vmov (a0, a2, . . . , a14)
one at a time and compute the final add-sub. In summary, this requires 128
additional vmovs, whereas a separate layer requires 128 loads and 128 stores.

3.2 Inverse NTT

The most significant change we apply to the inverse NTT is the switch from
Gentleman–Sande butterflies to Cooley–Tukey butterflies. Therefore, all of the
optimizations mentioned in the context of the NTT also apply to the inverse NTT.

Switch to CT-Butterflies. In previous implementations of Kyber for the Arm
Cortex-M4, the NTT was always implemented using CT butterflies, while the in-
verse NTT was implemented using GS butterflies, which is a commonly seen
pattern for implementations using the NTT in general. Opposed to that, we im-
plement the inverse NTT using CT butterflies in order to avoid the necessity
of intermediate modular reductions by limiting the coefficients’ growths, as for
example suggested in [Sei18, Section 2.1] or implemented for Saber in [ACC+21].

Using CT butterflies for the inverse NTT requires to do additional twisting
during the computation of the last layer but the total number of multiplications
does generally not increase because multiplications in the same amount can be
omitted during the butterfly operations (“light butterflies”). One side effect of
this approach is that some coefficients will grow larger than in the forward NTT

because the multiplications in the butterflies always include reductions and now
the operands of the addition and subtraction in the butterfly are not always
limited by this. To counteract, we insert two modular multiplications on the
fourth layer to limit the growth of the coefficients to be in (−9q, 9q), at most
after the fourth layer. By detailed range analysis, we found that on the last three
layers we need 20 additional reductions on packed arguments in total.

Moreover, the Montgomery multiplication during the twisting removes the
need of a separate Barrett reduction of every coefficient at the end of the last
layer. This saves 256 Barrett reductions.

Note that due to the new structure of the iNTT the input coefficients’ absolute
values need to be smaller than q.

3.3 Faster Barrett Reduction

Similar to previous implementations, we deploy the Barrett reduction to reduce
the coefficients.The Barrett reduction of two 16-bit integers packed in one 32-bit

Faster Kyber and Dilithium on the Cortex-M4 11

Algorithm 3.1: Packed Bar-
rett Reduction [BKS19]

Input : a = (at || ab)
Output: c = (ct || cb) mod ±q

1 smulbb t0, a, ⌊ 2
26

q
⌉

2 smultb t1, a, ⌊ 2
26

q
⌉

3 asr t0, t0,#26
4 asr t1, t1,#26
5 smulbb t0, t0, q
6 smulbb t1, t1, q
7 pkhbt t0, t0, t1, lsl #16

8 usub16 r, a, t0

Algorithm 3.2: Improved
Packed Barrett Reduction
Input : a = (at || ab)
Output: c = (ct || cb) mod ±q

1 smlawb t0,−⌊ 2
32

q
⌉, a, 215

2 smlabt t0, q, t0, a

3 smlawt t1,−⌊ 2
32

q
⌉, a, 215

4 smulbt t1, q, t1
5 add t1, a, t1, lsl #16

6 pkhbt c, t0, t1, lsl #16

register has been previously implemented [BKS19] as shown in Algorithm 3.1.
Using the smlaw{b,t} instructions as in Algorithm 3.2, the cycle count of one
Barrett reduction is reduced by one. This means for reducing a packed argument,
two cycles are saved. In contrast to the implementation from Algorithm 3.1, the
technique presented in Algorithm 3.2 requires two Barrett constants which are
both different from the previous one. Moreover, using this optimization removes
the guarantee of the reduction’s result being in [0, q), instead it will result in
[− q−1

2 , q−1
2] for an odd q. Therefore, its output must not be passed to one of the

packing or compression functions because they assume the input to be in [0, q).
This means, it may not be used in the poly_reduce function but it can be used
inside the NTT and iNTT.

3.4 Matrix-Vector Product

For speed optimization of the matrix-vector product, we implement two tech-
niques. Both of them require additional stack space and therefore, if a low mem-
ory footprint is a concern, the applicability needs to be checked. Further, we
re-implement the C function for the computation of the matrix-vector product
in assembly which allows us to significantly lower the number of function calls
required by efficiently using the registers and making use of macros. We proceed
similarly for the inner product in the decryption.

Asymmetric Multiplication. For the computation of the matrix-vector prod-
uct As in Kyber, we compute iNTT(Â ◦ NTT(s)). During this computation, every

row of Â needs to be multiplied by ŝ. Therefore it is a common strategy to cache
the result of ŝ instead of recomputing it for every row of Â [BKS19]. Using a
trick for integer multiplication presented in [BDL+11], [BHK+21] extended the
aforementioned concept for which incomplete NTTs are deployed.

Recall that the Kyber NTT is incomplete, i.e., 7 instead of 8 layers are com-
puted, and therefore the product of two polynomials inside NTT-domain â◦ ŝ = ĉ

12 Abdulrahman, Hwang, Kannwischer, Sprenkels

consists of 128 2× 2 schoolbook multiplications. For computing ĉ2i + ĉ2i+1X =
(â2i + â2i+1X)(ŝ2i + ŝ2i+1X) mod (X2 − ζ2br7(i)+1), we have ĉ2i = â2iŝ2i +
â2i+1ŝ2i+1ζ

2br7(i)+1 and ĉ2i+1 = â2iŝ2i+1 + ŝ2iâ2i+1.

The idea behind the proposal from [BHK+21, Section 4.2] is that during the

computation of Â ◦ ŝ, each polynomial of ŝ is used k times which means that
the computation of ŝ2i+1ζ

2br7(i)+1 is repeated k times. This can be avoided by
caching the intermediate results of ŝ2i+1ζ

2br7(i)+1 in a separate vector ŝ′.

We implement two separate variants for the base multiplication, one of which
is only used for the first row of the matrix in the matrix-vector product, while the
other one is used for all of the following ones. The first variant computes the same
base multiplication as before except that it stores the result of ŝ2i+1ζ

2br7(i)+1 sep-
arately. This comes at the cost of two additional stores and one additional load
from the stack for the argument containing the address of ŝ′ per two polynomial
multiplications. The second variant saves two smultb instructions, two mont-
gomery reductions, and the load of one twiddle factor per two polynomials by
loading the cached values instead. The precomputed vector can also be re-used
in the inner product following the matrix-vector multiplication in encryption.

Better Accumulation. We also make use of an improved accumulation strat-
egy in the matrix-vector product as presented in [CHK+21]. For the computation
of one element of the output vector in a matrix-vector product, a total number
of k base multiplications as well as k − 1 accumulating additions are required.
Instead of reducing each coefficient directly after the base multiplication before
accumulating, we delay this step until all three base multiplication results have
been accumulated. We also implement this technique for the computation of the
inner product. For the implementation, we define three variants of the caching
and non-caching base multiplication functions each: One that takes 16-bit input
values and writes to a 32-bit output array, one that takes unreduced 32-bit in-
put values and writes to a 32-bit output array, as well as one function that also
takes unreduced 32-bit input values but outputs reduced and packed coefficients
in a 16-bit integer array. For the second type of the function, the operation on
32-bit values also allows for usage of smla{b,t} instead of smul{b,t} such that
no extra addition is required for the accumulation, compared to the case when
computing on packed 16-bit coefficients.

Due to the small size of the Kyber prime, the sum will never overflow a signed
32-bit integer: For the matrix-vector products in Kyber using asymmetric multi-
plication, possible vector-inputs are the output of an NTT which is in [− q−1

2 , q−1
2]

or the cached Montgomery multiplication result from the asymmetric multipli-
cation which is in (−q, q). The coefficients of the matrix generated using the
on-the-fly approach from [BKS19] are smaller than q. Therefore, the maximum
result for one of the multiplications is ∈ (−q2, q2). For k accumulations with
k ∈ {2, 3, 4}, we get a maximum absolute intermediate value of kq2 = 4q2 < 231.

Faster Kyber and Dilithium on the Cortex-M4 13

4 Improvements to Dilithium Implementations

For Dilithium we deploy similar strategies for optimizing the NTT and iNTT as for
Kyber and optimize the multiplication of c and s1, as well as c and s2.

4.1 NTT and Inverse NTT

For the NTT, we merge the layers as 7–5, 4–2, 1–0 to reduce the number of mem-
ory operations. This differs from the previous implementation [GKS20,GKOS18]
where layers 7–6, 5–4, 3–2, and 1–0 are merged. For the iNTT, we similarly switch
to CT-butterflies and merge as in the NTT.

Switch to CT-Butterflies. Just as for Kyber, we switch to CT butterflies for
the computation of the iNTT. Further, we make use of a technique introduced
in [ACC+21, Appendix D] which computes light butterflies with one less reduc-
tion. As opposed to the Kyber, the coefficients’ growth due to the light butterflies
is not of concern for the Dilithium since values up to 256q fit in a 32-bit register.

4.2 Small NTTs for Dilithium

In the signature generation of Dilithium, we recall that the polynomial c consists
of τ ±1’s and 256− τ 0’s, and all polynomials in s1 and s2 consist of elements in
[−η, η]. The absolute values of the coefficients in cs1 and cs2 are bounded by τη,
and the computation can be regarded as in Zq′ for q

′ > 2τη [CHK+21, Section
2.4.6]. As far as we know, all implementations choose q′ = 8380417 and employ
the NTT defined for Dilithium. However, since only the correct cs1 and cs2 are
required, there is some freedom for choosing q′. The parameters τ ·η are 39·2 = 78
for, 49 · 4 = 196 for Dilithium3, and 60 · 2 = 120 for Dilithium5. Consequently,
we choose the Fermat number q′ = F3 = 257 for Dilithium2 and Dilithium5,
and q′ = 769 for Dilithium3. Alternatively, one can also re-use the Kyber prime
q′ = 3329 for any of the parameters in case re-using the code is of interest. We
have also experimented with the Fermat number q′ = F4 = 65537 for Dilithium3.
However, this did not result in in a speed-up compared to q′ = 769.

FNT for Dilithium2 and Dilithium5. For q′ = 257 = 28 + 1, we have FNT de-
fined over Z257[X]/(X256 + 1). We implement the forward transformation with
7 layers of CT butterflies. Since the input coefficients for c, s1, and s2 are at
most in [−η, η], we only need very few reductions. Recall that a CT butterfly
maps (a, b) to (a + ωb, a − ωb), we can implement it with mla and mls. Fur-
thermore, we can also take a closer look at the initial layers. Since −1 ≡ 28

(mod 257), the first layer can be written as Z257[X]/(X256 + 1) ∼= Z257[X]/
(X128 − 24) × Z257[X]/(X128 + 24) and the corresponding CT butterfly maps
(a, b) to (a + 24b, a − 24b). We denote such computation as CT FNT(a, b, 4). No-
tice that without loading twiddle factors, we can implement CT FNT(a, b, logW)
efficiently with barrel shifter as illustrated in Algorithm 4.1.

14 Abdulrahman, Hwang, Kannwischer, Sprenkels

Algorithm 4.1: CT FNT(a, b, logW).

Input : (a, b) = (a, b)
Output: (a, b) =

(a+ 2logWb, a− 2logWb)
1 add a, a, b, lsl #logW

2 sub b, a, b, lsl #(logW+1)

Algorithm 4.2: CT iFNT(a, b, logW).

Input : (a, b) = (a, b)
Output: (a, b) =

(a− 2logWb, a+ 2logWb)
1 sub a, a, b, lsl #logW

2 add b, a, b, lsl #(logW+1)

Let iFNT be the inverse of FNT. We first observe that the inverse of 2k can be
written as 2−k ≡ 216−k ≡ −28−k (mod 28 + 1). There are two places where we
need to multiply by an inverse of a power of two: (i) the inverses corresponded
to the butterflies with ω = 2logW in CT FNT, and (ii) the scaling by 128−1 at
the end of iFNT. We denote CT iFNT(a, b, logW) as the function mapping (a, b)
to (a − 2logWb, a + 2logWb) = (a + 28+logWb, a − 28+logWb) and implement it with
barrel shifter as shown in Algorithm 4.2. Clearly, if CT FNT(a, b, k) computes
(a+2kb, a− 2kb), then CT iFNT(a, b, 8− k) computes (a+2−kb, a− 2−kb) which
can be used in iFNT. We compute iFNT with four layers of GS butterflies followed
by three layers of CT butterflies. During the GS butterflies, since the twiddle
factors are also very small, we can replace some of the mul, add, and sub with
mla and mls. For CT butterflies, since the twiddle factors are powers of two,
we implement them with Algorithm 4.2. Lastly, at the end of CT butterflies, we
merge the twisting by powers of two with the multiplication by 128−1.

NTT over 769 for Dilithium3. For Dilithium3, since the maximum absolute
value of cs1 and cs2 is bounded by τη = 4 · 49 = 196, we cannot use q′ = 257 <
2 · 196. We therefore choose q′ = 769 and modify the NTT and iNTT from Kyber.
Except for discarding most of the Barrett reductions, the code is the same.

Recall that for the NTT in Kyber, we require the output to be in [− q′

2 ,
q′

2] for
the secret key. However, for Dilithium3, since we are only using 16-bit NTT for
computing cs1 and cs2, we can remove the Barrett reductions at the end and
allow elements growing up to 7q′ in absolute value.

For the iNTT, replacing with q′ = 769 allows us to postpone the Barrett
reductions by one layer and reduce the number of Barrett reductions by half. At
the end of iNTT, we replace the 16-bit Montgomery multiplication with straight
multiplication and 32-bit Barrett reduction. By using 32-bit Barrett reduction,
the result is within [−384, 384] if the product is in [−113025697, 113025697].
Since log2(

113025697
384) ≈ 18.17, we derive values in [−384, 384] by applying 32-bit

Barrett reduction to the product of any signed 16-bit value and any constant
from [−384, 384]. The downside for using 32-bit Barrett reduction is a slightly
higher register pressure, but overall it is more favorable because we don’t need
to reduce them again. This is different from the 16-bit NTT in [ACC+21]. They
implemented the twist with Montgomery multiplication and then reduced the
result to [−384, 384] with an additional 32-bit Barrett reduction.

Faster Kyber and Dilithium on the Cortex-M4 15

5 Results

In this section, we present the implementations results of Kyber and Dilithium.

5.1 Benchmarking setup

Our concrete hardware target is the STM32F4DISCOVERY with the STM32-
F407VG MCU, which also is the target of previous publications concerning im-
plementations of post-quantum schemes on microcontrollers. It comes with 1MiB
of flash memory, and 192KiB of RAM.

Our benchmarking setup is based on pqm4 [KRSS19]. During the bench-
marks, we clock the microcontroller at 24MHz in order to avoid wait states
during memory operations. We compile the code using arm-none-eabi-gcc ver-
sion 10.2.1 with the -O3 option. Regarding the Keccak implementation, we make
use of the code provided in pqm4. For the randomness generation we rely on the
microcontroller’s hardware random number generator (RNG).

We compare our Kyber implementations to the code currently present in
pqm4 which is based on the work in [ABCG20] and [BKS19]. Similarly, we com-
pare our implementations of Dilithium (2 and 3) to the code in pqm4 which is
based on [GKS20]. For Dilithium5, pqm4 does not currently have an implemen-
tation due to a lack of stack space. We apply some of the stack optimizations of
[GKS20] to our implementations, especially to make Dilithium5 work as well. It
is important to note that the parameters of Kyber and Dilithium were changed
at the start of the third round of the NISTPQC competition. The numbers
presented here reflect the round 3 versions contained in pqm4. Those are opti-
mizations from the original papers ported to the third round parameters. The
performance results for the full schemes do not match the original publications.

5.2 Performance of NTT-Related Functions

In Table 2, we present the cycle counts for the transformations we deploy in our
implementations of Kyber and Dilithium. For the Kyber NTT, we achieve a speedup
of 12.6%. Regarding the Kyber iNTT, we obtain a speedup of up-to 21.3%. Note
that for the stack-optimized variant an additional reduction is required before
the iNTT because of the absence of asymmetric multiplication.

We achieve a speedup of 5.2% for the Dilithium NTT, and 5.7% for the iNTT.
For the small NTTs the metric we are optimizing is (k + l) · NTT + #reps ·
(NTT + (k + l) · (basemul + iNTT)). As most of the small NTT are computed
outside of the loop, we moved some of the reductions into the NTT resulting in
a faster basemul. Note that for q = 257 and q = 769 the NTT and iNTT have
very close performance, but the basemul differs. This results in the FNT being
advantageous for Dilithium2 and Dilithium5. For (basemul + iNTT), we achieve a
speedup of 37.6% for q = 257, and 33.1% for q = 769 compared to q = 8380417
from [GKS20]. We also compare our q = 769 implementation to an existing one
by [ACC+21], because theoretically, their 6-layer approach could also be used
as well. Since the computation is dominated by (basemul + iNTT), we find that

16 Abdulrahman, Hwang, Kannwischer, Sprenkels

our 7-layer approach is faster. We also carefully examine the code by [ACC+21],
and find that the last 32-bit Barrett reduction is performed outside the reported
iNTT, so the speedup is more.

Table 2: Cycle counts for transformation operations of Kyber and Dilithium. NTT
and iNTT correspond to the schemes default transformations, i.e., q = 3329 for
Kyber and q = 8380417 for Dilithium. The NTT with q = 257 is deployed for
Dilithium2 and Dilithium5, and the NTT with q = 769 is used used for Dilithium3.

Prime Implementation NTT iNTT basemul

Kyber q = 3329
[ABCG20] 6 852 6 979 2 317

This work 5 992 5 491/6 282a 1 613b

Dilithium

q = 8380417
[GKS20] 8 540 8 923 1 955
This work 8 093 8 415 1 955

q = 257 This work 5 524 5 563 1 225

q = 769
[ACC+21] (6-layer) 4 852 4 817 2 966
This work 5 200 5 537 1 740

a First value is for speed-optimization, second for stack-optimization.
b Asymmetric basemul as used in the IP (enc). As the basemul in the MVP
and IP consists of individual function calls, the cycle count is not straight
forward to measure.

Table 3 contains the result for our benchmarks of the MVP and inner product
(IP) functions as deployed in Kyber. For the MVP, we consider the MVP as it
is computed in the key generation. The MVP in the encryption is similar but
contains k NTTs less. Note that in the actual implementation of Kyber, the
MVP is interleaved with the on-the-fly generation of the matrix. For ease of
comparison, we additionally provide benchmarks for a stripped down variant
of the MVP excluding the hashing. Regarding our benchmarks, we count the
caching for the asymmetric multiplication towards the MVP although the IP for
the encryption also benefits of this pre-computation. For the same reasons as for
the MVP, the benchmarks of our IP functions only include the NTTs, the base
multiplications, and deserialization, if applicable. For the speed optimized MVP
implementation, we get speedups between 15.9% and 17.8% (excl. hashing). The
stack optimized variant, achieves speedups between 12.1% and 12.5%. We achieve
speedups of 26.9%–31.7% (enc) and 21.6%–23.3% (dec) for the speed optimized
inner product, while for the stack variant we obtain speedups of 4%–6.3% and
17.3%–18.9%, respectively. We observe that for larger k, the speed optimization
strategy gives increasingly lower cycle counts due to asym. multiplication.

5.3 Performance of Schemes

Per Table 4, we achieve speedups of 3.3%–4.2%, 3.1%–3.6%, and 5.1%–5.2%
for the key generation, encapsulation, and decapsulation our speed optimized

Faster Kyber and Dilithium on the Cortex-M4 17

Table 3: Cycle counts for matrix-vector and inner products used in Kyber.

implementation variant operation Kyber-512 Kyber-768 Kyber-1024

pqm4

Matrix-Vector Producta 66 291 127 634 209 517

Matrix-Vector Productb 226 580 484 077 840 498
Inner Product (enc) 11 978 14 696 17 429
Inner Product (dec) 29 888 41 910 53 792

This work

speed

Matrix-Vector Producta 55 746 106 380 172 152

Matrix-Vector Productb 211 606 457 213 796 349
Inner Product (enc) 8 762 10 331 11 898
Inner Product (dec) 23 425 32 354 41 275

stack

Matrix-Vector Producta 58 028 112 503 184 149

Matrix-Vector Productb 214 053 463 590 808 206
Inner Product (enc) 11 218 13 877 16 733
Inner Product (dec) 24 722 34 167 43 619

a Measurement excluding the hashing.
b Measurement including the hashing.

variant. As to be expected due to the caching of intermediate values for speed
optimizations, our speed implementation has a higher stack usage. Our stack
implementations use essentially the same stack as previous work.

Table 4: Cycle counts and stack usage for Kyber for the key generation, encap-
sulation, and decapsulation. Cycle counts are averaged over 100 executions.

implementation variant
Kyber-512 Kyber-768 Kyber-1024
cc stack [B] cc stack [B] cc stack [B]

pqm4, [ABCG20]
K 458k 2 220 745k 3 100 1 188k 3 612
E 553k 2 308 899k 2 780 1 373k 3 292
D 513k 2 324 839k 2 804 1 294k 3 324

This work

speed
K 443k 4 272 718k 5 312 1 138k 6 336
E 536k 5 376 870k 6 416 1 324k 7 432
D 487k 5 384 796k 6 432 1 227k 7 448

stack
K 444k 2 220 724k 2 736 1 149k 3 256
E 540k 2 308 879k 2 808 1 341k 3 328
D 492k 2 324 807k 2 824 1 246k 3 352

Table 5 contains the results for Dilithium. We achieve consistent speedups for
all parameter sets. The absolute savings due to our optimizations are clearly seen,
particularly in signing. The speedup for signing ranges from 1.5% to 5.6%. In
relative terms, the impact of our optimizations on the full Kyber and Dilithium
seem relatively small compared to the speedups we gain for the polynomial

18 Abdulrahman, Hwang, Kannwischer, Sprenkels

arithmetic. This is due to dominance of the hashing operations as thoroughly
analyzed in previous work [KRSS19].

Table 5: Cycle counts and stack usage for Dilithium. K, S, and V correspond to
the key generation, signature generation, and signature verification. Cycle counts
are averaged over 10000 executions.

implementation variant
Dilithium2 Dilithium3 Dilithium5
cc stack [B] cc stack [B] cc stack [B]

pqm4, [GKS20]
K 1 602k 38k 2 835k 61k 4 836k 98k
S 4 336k 49k 6 721k 74k 9 037k 115k
V 1 579k 36k 2 700k 58k 4 718k 93k

This work speed
K 1 596k 8 508 2 827k 9 540 4 829k 11 696
S 4 093k 49k 6 623k 69k 8 803k 116k
V 1 572k 36k 2 692k 58k 4 707k 93k

Acknowledgments This work has been supported by the European Commis-
sion through the ERC Starting Grant 805031 (EPOQUE), the Sinica Investiga-
tor Award AS-IA-109-M01, and the Taiwan Ministry of Science and Technology
Grant 109-2221-E-001-009-MY3. We thank Bo-Yin Yang for sharing the idea of
16-bit Barrett reductions.

References

AB74. Ramesh C. Agarwal and C. Sidney Burrus. Fast convolution using Fermat
number transforms with applications to digital filtering. IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, 22(2):87–97, 1974.

AB75. Ramesh C. Agarwal and C. Sidney Burrus. Number theoretic transforms
to implement fast digital convolution. Proceedings of the IEEE, 63(4):550–
560, 1975.

ABC+20. Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan
Gilcher, Tanja Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki,
Ruben Niederhagen, Kenneth G. Paterson, Edoardo Persichetti, Chris-
tiane Peters, Peter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung
Tjhai, Martin Tomlinson, and Wen Wang. Classic McEliece. Submission
to the NIST Post-Quantum Cryptography Standardization Project [Nat],
2020. https://classic.mceliece.org/.

ABCG20. Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard.
Cortex-M4 Optimizations for {R,M}LWE Schemes. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2020(3):336–357, Jun.
2020.

ABD+20. Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler,

https://classic.mceliece.org/

Faster Kyber and Dilithium on the Cortex-M4 19

and Stehlé Damien. CRYSTALS-Kyber: Algorithm Specifications And Sup-
porting Documentation (version 3.0). Submission to round 3 of the NIST
post-quantum project [Nat], October 2020.

ACC+20. Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Marvin Chung, Hülya
Evkan, Leo Wei-Lun Huang, Vincent Hwang, Ching-Lin Trista Li, Ruben
Niederhagen, Cheng-Jhih Shih, Julian Wälde, and Bo-Yin Yang. Polyno-
mial multiplication in NTRU Prime: Comparison of optimization strate-
gies on Cortex-M4. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2021(1):217–238, Dec. 2020.

ACC+21. Amin Abdulrahman, Jiun-Peng Chen, Yu-Jia Chen, Vincent Hwang,
Matthias J. Kannwischer, and Bo-Yin Yang. Multi-moduli NTTs for
Saber on Cortex-M3 and Cortex-M4. Cryptology ePrint Archive, Report
2021/995, 2021. https://ia.cr/2021/995.

ARM11. ARM. Cortex-M4 Devices Generic User Guide. ARM, August 2011.
Bar87. Paul Barrett. Implementing the Rivest Shamir and Adleman public key

encryption algorithm on a standard digital signal processor. In Andrew M.
Odlyzko, editor, Advances in Cryptology — CRYPTO’ 86, pages 311–323,
Berlin, Heidelberg, 1987. Springer Berlin Heidelberg.

BDK+20. Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium:
Algorithm Specifications And Supporting Documentation (version 3.0).
Submission to round 3 of the NIST post-quantum project [Nat], Octo-
ber 2020.

BDL+11. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. In Bart Preneel and Tsuyoshi
Takagi, editors, Cryptographic Hardware and Embedded Systems – CHES
2011, pages 124–142, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

Ber01. Daniel J. Bernstein. Multidigit multiplication for mathematicians, 2001.
BHK+21. Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang,

and Shang-Yi Yang. Neon NTT: Faster Dilithium, Kyber, and Saber on
Cortex-A72 and Apple M1. Cryptology ePrint Archive, Report 2021/986,
2021. https://ia.cr/2021/986.

BKS19. Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. Memory-
efficient high-speed implementation of Kyber on Cortex-M4. In Jo-
hannes Buchmann, Abderrahmane Nitaj, and Tajjeeddine Rachidi, ed-
itors, Progress in Cryptology – AFRICACRYPT 2019, pages 209–228,
Cham, 2019. Springer International Publishing.

CDH+20. Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost
Rijneveld, John M. Schanck, Peter Schwabe, William Whyte, Zhenfei
Zhang, Tsunekazu Saito, Takashi Yamakawa, and Keita Xagawa. NTRU.
Submission to the NIST Post-Quantum Cryptography Standardization
Project [Nat], 2020. https://ntru.org/.

CDK+20. Ming-shing Chen, Jintai Ding, Matthias Kannwischer, Jacques Patarin,
Albrecht Petzoldt, Dieter Schmidt, and Bo-Yin Yang. Rainbow. Submis-
sion to round 3 of the NIST post-quantum project [Nat], 2020.

CHK+21. Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gre-
gor Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT multiplication for
NTT-unfriendly rings: New speed records for Saber and NTRU on Cortex-
M4 and AVX2. IACR Transactions on Cryptographic Hardware and Em-
bedded Systems, 2021(2):159–188, Feb. 2021.

https://ia.cr/2021/995
https://ia.cr/2021/986
https://ntru.org/

20 Abdulrahman, Hwang, Kannwischer, Sprenkels

CT65. James W. Cooley and John W. Tukey. An algorithm for the machine calcu-
lation of complex Fourier series. Mathematics of computation, 19(90):297–
301, 1965.

DKL+18. Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: A
lattice-based digital signature scheme. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2018(1):238–268, Feb. 2018.

DKRV20. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Fred-
erik Vercauteren. SABER. Submission to round 3 of the NIST post-
quantum project [Nat], 2020.

FHK+20. Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-
shevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler,
William Whyte, and Zhenfei Zhang. FALCON. Submission to round 3 of
the NIST post-quantum project [Nat], 2020. https://falcon-sign.info/.

FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asym-
metric and symmetric encryption schemes. In Advances in Cryptology
- CRYPTO ’99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings, volume 1666
of Lecture Notes in Computer Science, pages 537–554. Springer, 1999.

Gau66. Carl Friedrich Gauss. Theoria Interpolationis Methodo Nova Tractata.
Nachlass, (3):265–330, 1866.

GKOS18. Tim Güneysu, Markus Krausz, Tobias Oder, and Julian Speith. Evalu-
ation of Lattice-Based Signature Schemes in Embedded Systems. 2018
25th IEEE International Conference on Electronics, Circuits and Systems
(ICECS), pages 385–388, 2018.

GKS20. Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan Sprenkels.
Compact Dilithium implementations on Cortex-M3 and Cortex-M4.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(1):1–24, Dec. 2020.

GOPS13. Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe.
Software speed records for lattice-based signatures. In PQCrypto, 2013.

KMSRV18. Angshuman Karmakar, Jose Mera, Sujoy Sinha Roy, and Ingrid Ver-
bauwhede. Saber on ARM: CCA-secure module lattice-based key encap-
sulation on ARM. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 243–266, 08 2018.

KRSS19. Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffe-
len. pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4.
Second NIST PQC Standardization Conference, 2019.

LMPR08. Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen.
SWIFFT: A Modest Proposal for FFT Hashing. In Kaisa Nyberg, editor,
Fast Software Encryption, pages 54–72, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

LS19. Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly Fast NTRU Us-
ing NTT. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2019(3):180–201, May 2019.

Lyu09. Vadim Lyubashevsky. Fiat-Shamir with Aborts: Applications to lattice
and factoring-based signatures. In Mitsuru Matsui, editor, Advances in
Cryptology – ASIACRYPT 2009, pages 598–616, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

Nat. National Institute of Standards and Technology. Post-Quantum Cryptog-
raphy Standardization Project. Accessed: 04/04/2021.

https://falcon-sign.info/

Faster Kyber and Dilithium on the Cortex-M4 21

Sei18. Gregor Seiler. Faster AVX2 optimized NTT multiplication for Ring-LWE
lattice cryptography, 2018. Report 2018/039.

Sho94. P.W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In FOCS 1994, pages 124–134. IEEE, 1994.

SS71. Arnold Schönhage and Volker Strassen. Schnelle Multiplikation großer
Zahlen. Computing, 7(3-4):281–292, 1971.

22 Abdulrahman, Hwang, Kannwischer, Sprenkels

A Kyber

Algorithm A.1: Kyber-
.CPAPKE key generation

Output: public key: pk = (t̂, ρ)
Output: secret key: sk = (ŝ)

1 ρ, σ ∈ {0, 1}256 ← sampleUniform()

2 Â ∈ Rk×k
q ← sampleUniform(ρ)

3 s, e ∈ Rk×1
q ← sampleCBDη1(σ)

4 t̂← Â ◦ NTT(s) + NTT(e)
5 return (pk, sk)

Algorithm A.2: Kyber-
.CPAPKE decryption

Input : secret key: sk = (ŝ)
Input : compressed ciphertext:

(u′, v′)
Output: message m ∈ Rq

1 u← Decompress(u′)
2 v ← Decompress(v′)

3 return m← v− iNTT(ŝT ◦ NTT(u))

Algorithm A.3: Kyber-
.CPAPKE encryption

Input : public key: pk = (t̂, ρ)
Input : message: m ∈ Rq

Input : random coins:
µ ∈ {0, 1}256

Output: ciphertext (u′, v′)
1 Â ∈ Rk×k

q ← sampleUniform(ρ)

2 r ∈ Rk×1
q ← sampleCBDη1(µ)

3 e1 ∈ Rk×1
q , e2 ∈ Rq ←

sampleCBDη2(µ)
4 r̂← NTT(r)

5 u← iNTT(ÂT ◦ r̂) + e1

6 v ← iNTT(t̂T ◦ r̂) + e2 +m
7 return (Compress(u), Compress(v))

B Dilithium

Algorithm B.1: Dilithium key generation

Output: secret key sk = (ρ,K, tr, s1, s2, t0)
Output: public key pk = (ρ, t1)

1 ρ, ς,K ∈ {0, 1}256 ← sampleUniform()

2 s1 ∈ [−η, η]l×1, s2 ∈ [−η, η]k×1 ← sampleUniform(ς)

3 Â ∈ Rk×l
q ← ExpandA(ρ)

4 t← iNTT(Â ◦ NTT(s1)) + s2
5 (t1, t0)← Power2Round(t)
6 tr ∈ {0, 1}256 ← CRH(ρ∥t1)
7 return (pk, sk)

Faster Kyber and Dilithium on the Cortex-M4 23

Algorithm B.2: Dilithium signing

Input : secret key sk = (ρ,K, tr, s1, s2, t0)
Input : message: M ∈ {0, 1}∗
Output: signature σ = (z,h, c̃)

1 Â ∈ Rk×l
q ← ExpandA(ρ)

2 µ ∈ {0, 1}512 ← CRH(tr∥M)
3 κ← 0, (z,h)←⊥
4 ρ′ ∈ {0, 1}512 ← CRH(K∥µ)
5 ŝ1 ← NTT(s1), ŝ2 ← NTT(s2), t̂0 := NTT(t0)
6 while (z,h) =⊥ do
7 y ∈ Rl×1

q ← ExpandMask(ρ′, κ)

8 w← iNTT(Â ◦ NTT(y))
9 w1 ← HighBits(w, 2γ2)

10 c̃← H(µ∥w1)
11 c← SampleInBall(c̃)
12 ĉ← NTT(c)
13 z← y + iNTT(ĉ ◦ ŝ1)
14 r0 ← LowBits(w − iNTT(ĉ ◦ ŝ2), 2γ2)
15 if ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β then
16 (z,h)←⊥
17 else

18 h← MakeHint(−iNTT(ĉ ◦ t̂0),w− iNTT(ĉ ◦ ŝ2 + iNTT(ĉ ◦ t̂0)), 2γ2)
19 if ∥iNTT(ĉ ◦ t̂0)∥∞ ≥ γ2 or # of 1’s in h > ω then
20 (z,h)←⊥
21 κ← κ+ l

22 return σ = (z,h, c̃)

Algorithm B.3: Dilithium verification

Input : public key pk = (ρ, t1)
Input : message: M ∈ {0, 1}∗
Input : signature σ = (z,h, c̃)
Output: signature valid or signature invalid

1 Â ∈ Rk×l
q ← ExpandA(ρ)

2 c← SampleInBall(c̃)
3 µ ∈ {0, 1}512 ← CRH(CRH(ρ∥t1)∥M)

4 w′
1 ← UseHint(h, iNTT(Â ◦ NTT(z)− NTT(c) ◦ NTT(2d · t1)))

5 if ∥z∥∞ < γ1 − β and c̃ = H(µ∥w′
1) and # of 1’s in h ≤ ω then

6 return signature valid
7 else
8 return signature invalid

	Faster Kyber and Dilithium on the Cortex-M4

