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Abstract. Automated cryptanalysis has taken center stage in the arena of cryptanalysis
since the pioneering work by Mouha et al. which showcased the power of Mixed
Integer Linear Programming (MILP) in solving crypto problems that otherwise required
significant effort. Since this inception, research in this area has moved in primarily
two directions. One is to model more and more classical cryptanalysis tools as an
optimization problem to leverage the ease provided by state-of-the-art solvers. The
other direction is to improve existing models to make them more efficient and/or
accurate. The current work is an attempt to contribute to the latter. In this work,
a general model referred to as DEEPAND has been devised to capture the correlation
between AND gates in NLFSR-based lightweight block ciphers. DEEPAND builds upon
and generalizes the idea of joint propagation of differences through AND gates captured
using refined MILP modeling of TinyJAMBU by Saha et al. in FSE 2020. The proposed
model has been applied to TinyJAMBU and KATAN and can detect correlations that were
missed by earlier models. This leads to more accurate differential bounds for both the
ciphers. In particular, a 384-round Type 4 trail is found for TinyJAMBU with 14-active
AND gates using the new model, while the refined model reported this figure to be 19.
Moreover, we have found a full round Type 4 trail of TinyJAMBU keyed permutation
P1024 with probabilty 2−108(≫ 2−128), which violates designer’s security claim. Thus,
our results shows that TinyJAMBU’s underlying keyed-permutation have non-random
properties. As a result, it cannot be expected to provide the same security levels
as robust block ciphers and also, the provable security of TinyJAMBU AEAD scheme
should be carefully revisited. Similarly, for KATAN32, DEEPAND modeling improves the
42-round trail with 2−11 probability to 2−7. DEEPAND seems to capture the underlying
correlation better when multiple AND gates are at play and can be adapted to other
classes of ciphers as well.
Keywords: MILP · KATAN · TinyJAMBU · Symmetric-Key Cryptanalysis

1 Introduction
One of the fundamental decisions in any iterative block cipher design, once we have a good
round function, is the number of rounds. This decision is a trade-off between security and
efficiency and plays an even more critical part in the context of Lightweight Cryptography
which is referred to as crypto tailored for resource contained environments. A typical
way to decide this is to take into account the penetration of best attack available and
then adding some more rounds as the so-called security-margin. Traditionally, designers
try to prove how many rounds are sufficient to resist a certain kind of attack. This in
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general is a rigorous task and primarily limited to a specific construction. For instance
resistance against differential cryptanalysis [3] relies on the number of active sboxes in
the best available differential trail. It has been a long standing question if these seeming
critical task of cryptanalysis could be automated or aided in some generic way. Though
there have been initial attempts in this direction but the first major breakthrough in this
direction is attributed to Mouha et al. [7] who was one of the first to demonstrate how
the cryptanalytic problem of determining minimum number of active sboxes could be
modeled as an optimization problem which could in turn be solved by automated solvers.
In particular, the authors showcased how Mixed Integer Linear Programming (MILP) can
be leveraged as an ingenious cryptanalysis aid. This seminal work spawned an entirely
new line of research where the goal is at one hand to increase the breadth of the strategy
with new modelings (applications to linear, division, impossible differential cryptanalysis).
On the other had the idea to improve upon the models to capture the underlying crypto
property as closely as possible. The current aims to add to state-of-art is better MILP
modeling.

Interestingly, researchers have shown that there are mechanism to precisely model valid
transition for any crypto property [11, 10, 9]. However, the catch is that these leads to
over constrained model that is infeasible to solved in reasonable time. On the other end of
the spectrum is an over simplified model which might lead to invalid transitions. There is
a rich body of work that tries to reach a middle ground [4, 2]. In FSE 2020, Saha et al.
made an interesting observation in this line of balanced modeling for the NIST-LWC []
competition finalist TinyJAMBU [1]. The authors pointed out that correlation between
multiple AND gates could lead to them becoming dependent leading to joint propagation of
differential characteristics. This implies that simple AND gate modeling which treats evey
AND gate as an independent entity would produce loose lower bound of minimum number
of AND gates. This work shows that this refinement showed by Saha et al. can be refined
further and a generalized model can be devised to handle the class of Non-Linear Feedback
Shift Register (NLFSR) based lightweight block ciphers.

In past decades, several numbers of NLFSR-based block/stream ciphers like Grain ,
Trivium , KATAN have made great attention in our community in terms of security as
well as for the resource constraint environments. Also, this kind of NLFSR-based keyed-
permutation is directly used to design lightweight sponge-like authenticated encryption
(AE) schemes. TinyJAMBU, designed by Wu and Huang [1] is one of such NLFSR-based
sponge-like AE schemes, which is currently one of the ten finalists in the ongoing NIST
lightweight competition. The NLFSR-based permutation of TinyJAMBU uses only one NAND
gate and some tapin bits to produce a feedback bit which fed into the most significant bit
(MSB) of the state, and then apply a one bit shift operation. Recently, in [8], Saha et al.
have developed a new MILP model by taking an account of the first-order correlation of
AND gates, where two subsequent AND computations with a common input position, i.e.,
the middle bit position b out of three inputs a, b, c to the subsequent ANDs. In this work,
they have shown that a correlation betweeen multiple AND gates have a significant impact
on the actual probabilities of the differential trails. More secifically, the common input
position in the two subsequent ANDs will be revealed when a particlar difference pattern
(i.e., (∆a, ∆b, ∆c) = (1, 0, 1)) occur, i.e., for this (1, 0, 1) case, one have to pay a probability
for only the first AND whereas the second AND will pass freely. We further reinvestigate this
case and observe that due to the difference (∆a, ∆b) = (1, 0), the outut difference (∆z1) of
the first AND directly reveals the bit b, i.e., ∆z1 = b. Once ∆z1 is fixed, the second AND
will be passed freely. In another way, for an AND gate with two inuts a, b, if we know the
bit value of a, then for a given difference pattern (∆a, ∆b) = (0, 1), the output difference
∆z = a will become deterministic. We also observed that, for any NLFSR-based cipher,
some AND gates can be freely passed by fixing some particular message bits in the initial
state as we know both the input values of the AND computation.
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However, these observations are only restricted to the single AND NLFSR-based cipher.
For any NLFSR where multiple ANDs are being used inside it, we extend these observations
to make more cases (Like (1,0,1)) to increase the probability of a differential trail. Taking
all these into account, we have developed a new refined MILP model to generate more
optimal differential trails. Finally, we apply this new model in the keyed-permutation of
TinyJAMBU AE and to all the KATAN-variants and show that our model captures all possible
correlations between ANDs and provides a better optimal differential trails in compared to
previous models.

1.1 Our Contributions
This paper attempts to redescribe the two subsequent correlated AND gates A1(a, b), A2(b, c)
as first observed by Saha et al. in a general settings. Our first observation is that for a AND
gate, if the first input bit of (a, b) (i.e., a) is fixed and the corresponding input bit difference
is (∆a, ∆b) = (0, 1) then its output difference ∆z behaves non-uniformly. Similarly, if b is
known and (∆a, ∆b) = (1, 0), it follows a non-uniform distribution. Based on these two
observation, we have developed a generalized MILP model for differential cryptanalysis,
referred to as DEEPAND which captures all possible correlations between multiple ANDs
in NLFSR based lightweight block ciphers. Further, we have applied this model to the
keyed permutation of TinyJAMBU and all the variants of KATAN , and significantly we have
found a better differential bounds. Our contributions can be summarized as follows:

1. Introducing a new generalized MILP model for a class of NLFSR-based ciphers.

2. Applying the model to the KATAN family of ciphers with improved differential bounds
for most of the previous attacks reported in literature.

3. Applying the same model to achieve the best bound till date for the NIST LWC
finalist TinyJAMBU.

4. Presenting the new model in a generic way to possibly increase its scope for refining
MILP model to other class of NLFSR-based stream cipher as well.

1.2 Outline of the Paper
This paper is organized as follows. First, the basic notations, and then the description
of TinyJAMBU and KATAN are given in Section 2. In Section 3, we revisit the correlation
between two subsequent AND gates in the previous refined MILP model and further, we have
shown some observations regarding the non-uniform behaviour of the output distribution
of the AND gate. Based on our observations, a new MILP model for a class of NLFSRs
with a single/multiple AND in the feedback function to efficiently search for differential
trails is explained in Section 4. Our results on differential cryptanalysis for the keyed
permution of TinyJAMBU and KATAN family of ciphers is described in Section 5 and Section
6, respectively. Finally, the concluding remarks are furnished in Section 7.

2 Preliminaries
In this section, first of all, the notations used in the paper is described. Then a brief
description about TinyJAMBU and KATAN have been provided.

2.1 Notations
The following notations are used throughout the paper.
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Figure 1: The Permutation P ki

• F2 = {0, 1} denotes the finite field with two elements.

• Any element v ∈ Fn
2 can be represented as a vector or bit string of length n, i.e.,

| v |= n.

• For a, b ∈ F2, a⊕ b, ab, a denote the exclusive-or, logical AND, and logical negation,
respectively.

• A NAND gate takes input bits a, b, and output as ab⊕ 1.

• A n-bit state s can be represented as (sn−1, sn−2, · · · , s1, s0).

2.2 TinyJAMBU

TinyJAMBU is a small variant of JAMBU, is a family of authenticated encryption with
associated data (AEAD) schemes. Recently, it is selected as one of the ten finalists among
56 submissions in the NIST Lightweight Cryptography (LWC) Standardization process. In
this paper, we are interested to analyze the differential property of the underlying keyed
permutation used in TinyJAMBU. The 128-bit keyed permutation P K

l consists of l number
of rounds, where K ∈ F|K|

2 represents the secret key (k|K|−1, k|K|−2, · · · , k1, k0). Also, for
any key K, we use Pl to denote an l-round keyed permutation of TinyJAMBU throughout
the paper. The i − th round function of the permutation P ki : F128

2 → F128
2 transforms

a state (s127, s126, · · · , s1, s0) to (sf , s127, s126, · · · , s2, s1) with sf = s0 ⊕ s47 ⊕ s70s85 ⊕
s91 ⊕ ki mod |K|. The sketch of this permutation is depicted in Figure 1. The l-round
transformation of TinyJAMBU with a given key is computed as follows:

l−1∏
i=0

P ki = P kl−1 ◦ P kl−2 ◦ · · · ◦ P k1 ◦ P k0 .

For a given secret key K, TinyJAMBU is the sponge-like design that takes a message
M , a nonce N , and any associated data A as inputs and finally, outputs a ciphertext C
and an authentication tag T . The encryption algorithm of TinyJAMBU can be divided into
four phases: initialization, where the state is initialized by sequentially performing the
permutation P K

l1
using the key K and nonce N , associated data processing, where each

of these blocks of data is sequentially absorbed into the state by using the permutation,
encryption phase, where each block of message are sequentially absorbed into the state
and parallelly, squeeze another block to output a ciphertext by using the permutation
calling, finalization, where it sequentially squeeze a block of data using different rounds
permutation call to collect full-length tag. With three different key sizes K = 128, 192, 256,
TinyJAMBU have three variants. Further, it uses different round numbers to permute its
state. Specifically, it uses less number of rounds (P K

l1
) for initialization and associated

data processing as compared to message processing (P K
l2

) in the encryption phase, where
l1 < l2. More details can be found in [1].
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Table 1: Parameters of KATAN Variants
KATAN Variants | L1 | | L2 | x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3
KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6
KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

2.3 KATAN
The KATAN family is a very efficient NLFSR-based hardware-oriented block cipher with three
variants, namely KATAN32 , KATAN48 , KATAN64 correspond to 32, 48, and 64-bit block
sizes. All these variants have 254 rounds and use the non-linear functions NF1 and NF2.
Also, they use the same LFSR-based key schedule which takes an 80-bit key as an input.
The general structure of the KATAN cipher is as follows. First, the plaintext is loaded
into two registers L1 and L2. In each round, several bits are taken from the registers to
fed into the non-linear functions, and finally, the output of NF1 and NF2 is loaded to
the least significant bits to the registers. The key schedule function expands an 80-bit
user-provided key ki (0 ≤ i < 80) into a 508-bit subkey ski (0 ≤ i < 508) by the following
linear operations,

ski =
{

ki, 0 ≤ i < 80
ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13, 80 ≤ x < 508.

Also, the two non-linear functions are defined as follows:

NF1(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ ka

NF2(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6]))⊕ kb,

where IR is the round constant value defined in the specifica-IR is the round constant
value defined in the specification, and ka, kb are the two subkey bits. The selection of the
bits xi, 1 ≤ i ≤ 5 and yi, 1 ≤ i ≤ 6 are defined for each variant independently, and are
listed in Table 1. For KATAN32 , the i-th round function is depicted in Figure 2, where
ka ← k2i and kb ← k2i+1. Finally, after 254 rounds, the values of registers are output
as a ciphertext. For KATAN48 , the non-linear functions LF1 and LF2 are applied twice
in one round of the cipher, i.e., the first pair of LF1 and LF2 is applied, and then after
the update of the registers, they have applied again using the same subkeys. Similarly,
in KATAN64 , each round applies LF1 and LF2 three times with the same key bits. More
details about the specification of KATAN-family of ciphers can be found in [5].

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12

IR

ka

kb

Figure 2: Round Function of KATAN32
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Table 2: Difference Distribution of AND Gate
a b ∆a ∆b ∆z

0 0

0 0 0
0 1 0
1 0 0
1 1 1

0 1

0 0 0
0 1 0
1 0 1
1 1 0

1 0

0 0 0
0 1 1
1 0 0
1 1 0

1 1

0 0 0
0 1 1
1 0 1
1 1 1

3 Revisiting the Refined Modeling of AND Gate
Consider an AND gate A1 with (a, b) as its input, (∆a, ∆b) as its input difference, and ∆z
as its output difference. Then, the output difference ∆z can be expressed as shown in
Equation 1.

∆z = A1(a, b)⊕A1(a⊕∆a, b⊕∆b)
= (a · b)⊕ (a⊕∆a) · (b⊕∆b)
= a ·∆b⊕ b ·∆a⊕∆a ·∆b

(1)

Also, the distribution of ∆z corresponding to all values of (a, b) and (∆a, ∆b), is shown
in Table 2. It is clear from the above table that for a given non-zero input difference
(∆a, ∆b) of A1, Pr(∆z = 0) = Pr(∆z = 1) = 2−1, i.e., it behaves uniformly. But, when
we give condition on both (a, b) and (∆a, ∆b), then the output difference ∆z behaves non-
uniformly sometimes. An example for this non-uniform behavior is shown in Example 1.
From Table 2, the following observations have been made (Observation 1 may seem trivial
but it has been included for the sake of completeness).

Example 1. Pr[∆z = 0|(a = 0, ∆a = 0, ∆b = 1)] = 1

Observation 1. If the value of a, b, ∆a, and ∆b are known, then ∆z becomes deterministic.

Observation 2. If ∆a = 0, ∆b = 1 and the value of a is known, then ∆z can be determined
with probability 1. Similarly, if ∆a = 0, ∆b = 1 and the value of ∆z is known, then a can
be guessed deterministically.

Explanation : If ∆a = 0, ∆b = 1, then from Equation 1, ∆z = a. This means, for an
input difference (∆a, ∆b) = (0, 1) to A1, if a is known, then ∆z is also known and vice
versa.

Observation 3. If ∆a = 1, ∆b = 0 and the value of b is known then ∆z can be determined
with probability 1. Similarly, if ∆a = 1, ∆b = 0 and the value of ∆z is known, then b can
be guessed deterministically.
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Explanation : The explanation is similar to the explanation of Observation 2.

Based on the above observations from Table 2, the distribution ∆z of A1 is directly
depends on the input bits a, b when the input difference (∆a, ∆b) is fixed. In another way,
according to equation 1, the ∆z can be re-written in the following way.

∆z =


0, if (∆a, ∆b) = (0, 0),
a, if (∆a, ∆b) = (0, 1),
b, if (∆a, ∆b) = (1, 0),
a⊕ b⊕ 1, if (∆a, ∆b) = (1, 1),

3.1 Related Gates
Consider two subsequent AND gates A1 with (a, b), and A2 with (b, c) as their inputs,
i.e., they both share a common input as b. Also, let (∆a, ∆b), (∆b, ∆c) are the input
differences, and ∆z1, ∆z2 are the output differences of A1, A2 respectively. In [8], Saha
et al. observed that when (∆a, ∆b) = (1, 0) and (∆b, ∆c) = (0, 1) happens for A1 and
A2, then ∆z1 = ∆z2 = b. This show that, for two correlated AND gates A1 and A2,
when (∆a, ∆b, ∆b) = (1, 0, 1) happens, then both the differences are either become 0 with
probability 2−1 or 1 with probability 2−1. Whereas, for two un-correlated AND gates, we
have to pay a probability of 2−2. In Lemma 1, this same observation for two correlated
AND gates can be redescribed on the basis of Observation 2 and Observation 3.

Lemma 1. Let the input difference to two correlated AND gates are (∆a, ∆b) and (∆b,
∆c) respectively and corresponding output differences are ∆z1 and ∆z2 respectively. If
∆a = 1, ∆b = 0, ∆c = 1, then Pr[∆z1 = ∆z2] = 2−1.

Proof. First of all, the value of ∆z1 is computed first. Thus, for (∆a, ∆b) = (1, 0), it can
be concluded that ∆z1 = b according to Observation 3. Also, for the second AND gate
with (∆b, ∆c) = (0, 1), ∆z2 = b (from Observation 2). Hence, we have, Pr[∆z1 = ∆z2] =
Pr(b) = 2−1.

Note that, in [8] only Lemma 1 is used; Observation 2 and Observation 3 are not
exploited. In this work, these two observations along with Observation 1 are exploited
to penetrate more number of rounds for nonlinear-feedback shift register (NLFSR) based
ciphers.

4 Attack on Nonlinear-Feedback Shift Register (NLFSR)
based Ciphers

A nonlinear-feedback shift register (NLFSR) is a shift register whose input bit, often called
a feedback bit, is a non-linear function of its previous state. In this section, we first
review some different class of NLFSRs based on the number of AND gates it uses to define a
non-linear feedback function. We then give the explicit form of theses NLFSRs. Finally, we
give a general attack framework to capture some correlation among multiple gates.

4.1 NLFSR-based Ciphers with one AND Gates in the Feedback Function
Any n-bit cipher based on the NLFSR-based keyed permutation with single AND gate can
be further classified into two cases. In each round of the cipher, the first one is to feed the
the feedback bit using non-linear function to the most significant bit (msb) in the state
and then shift each bit towards the least significant bit (lsb) (see Figure 1). Similarly, for
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the second one, compute the feedback bit and feed into the lsb and then shift each bit
towards msb. We now give the explicit form of these two NLFSRs.

4.1.1 Computing Forward Differential

Consider an n-bit NLFSR-based cipher C with s0 being its initial state value, where s0 = (s0
0,

s0
1, · · · , s0

n−1). Then, for each round number i, 1 ≤ i ≤ l, the feedback bit f i is computed
first, in the following way:

f i ← si−1
0 ⊕ si−1

j1
⊕ · · · ⊕ si−1

jm
⊕ si−1

u1
si−1

u2
⊕K(i−1) mod |K|.

where 0, j1, · · · , jm are the tap bit positions of the NLFSR and u1, u2 (u1 < u2) are
the input bits to the AND gate. Then, the state bits in the next round (round i + 1) are
updated as follows:

si
j =

{
si−1

j+1, for 0 ≤ j ≤ (n− 2)
f i, for j = n− 1

Consider a similar cipher C′, whose tap bits are the same as that of C. The only
difference is that the bits are shifted in opposite direction as that of C and in the feedback
function si−1

n−1 is XOR-ed instead of si−1
0 . The cipher C′ is called reverse-fed cipher of C.

The feedback bit f i for C′ is computed as follows:

f i = si−1
j1
⊕ · · · ⊕ si−1

jm
⊕ si−1

n−1 ⊕ si−1
u1

si−1
u2
⊕K(i−1) mod |K|.

and

si
j =

{
si−1

j−1, for 1 ≤ j ≤ (n− 1)
f i, for j = 0

To find the differential trails for such ciphers C,C′, the probability is only paid for the
active AND gates through rounds. Thus, given an l round differential trail, the overall
probability can be calculated by counting only the total number of active ANDs in the
trail. Also, it is to be noted that, the whole state bits become unknown after n number
of rounds. In another way, we can say that exactly n − i number of state bits are still
known for the initial i (1 ≤ i ≤ n) rounds. Therefore, in chosen plaintext scenario, we
can deterministically bypass some of the active AND gates by fixing the message bits for
up to some initial i (≤ n) rounds. This characteristic of any NLFSR-based ciphers C,C′ is
described in the following lemma.

Lemma 2. For a cipher C′, forward differential trail for the first (u1 + 1) rounds is
completely free. For the next (u2 − u1) rounds, if the input differential to the AND gate
is 0 and 1 (i.e., ∆su1 = 0, ∆su2 = 1) then the output of the AND gate can be determined
with probability 1 (conditionally free). Similarly, for a cipher C, (n− u2) rounds are
completely free and (u2 − u1) rounds are conditionally free.

Proof. As both the inputs to AND gate are known for the first (u1 + 1) rounds, the output
difference of the AND gate can be bypassed with probability 1. For the next (u2 − u1)
rounds, the u1-th bit in the state, i.e., su1 is still known to us from the given input
message. Therefore, at the intermediate rounds i (u1 + 1 < i ≤ u2) if the input difference
corresponding to the AND gate becomes (0, 1), i.e., ∆su1 = 0 and ∆su2 = 1, then by
Observation 2 the output difference of the AND gate can be deterministically bypassed. The
proof for the cipher C follows a similar approach.

Note that, in the chosen plaintext attack model (CPA), Lemma 2 can be exploited by
carefully choosing the message bits. This, in turn, reduces the degrees of freedom of
the message space. Whereas the known plaintext attack model (KPA) helps in discarding
some of the message pairs which do not follow a given differential trail.
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4.1.2 Computing Backward Differential

While computing the backward differential for a cipher C, the feedback function remains
almost the same except only the index of the bits are changed. Consider that the initial
state is t0 and the intermediate state after the ith round is ti. Then the feedback bit, f i

for the ith round is computed in the following way:

f i ← ti−1
j1−1 ⊕ · · · ⊕ ti−1

jm−1 ⊕ ti−1
n−1 ⊕ ti−1

u1−1ti−1
u2−1 ⊕K(i−1) mod |K|

and the state bits are updated as follows:

ti
j =

{
ti−1
j−1, for 1 ≤ j ≤ (n− 1)

f i, for j = 0.

Similarly, for cipher C′, the feedback bit is computed as

f i = ti−1
j1+1 ⊕ · · · ⊕ ti−1

jm+1 ⊕ ti−1
0 ⊕ ti−1

u1+1ti−1
u2+1 ⊕K(i−1) mod |K|

and

ti
j =

{
ti−1
j+1, for 0 ≤ j ≤ (n− 2)

f i, for j = n− 1.

Lemma 3. For a cipher C′, backward differential trail for first (n − u2 − 1) rounds is
completely free. The next (u2 − u1) rounds are conditinally free. Similarly, for a cipher
C, the first (u1 − 1) rounds are completely free whereas the next (u2 − u1) rounds are
conditionally free.

Proof. The proof is quite similar to that of Lemma 2

4.2 NLFSR-based Ciphers with Multiple AND Gates in the Feedback
Function

Consider an n-bit NLFSR-based block cipher D with the initial state value as s0 = (s0
0, s0

1,
· · · , s0

n−1). At each round i, the feedback bit f i is computed in the following way.

f i ← si−1
j1
⊕ · · · ⊕ si−1

jm
⊕ si−1

n−1 ⊕ si−1
u1

si−1
v1
⊕ · · · ⊕ si−1

uh
si−1

vh
⊕Ki−1,

where

1. ki−1 is the key bit used in the ith round,

2. j1, · · · , jm, n− 1 are the taps of the NLFSR,

3. uj , vj are the inputs to the AND gate Aj such that uj < vj ≤ n− 1, 1 ≤ j ≤ h,

4. j1 < j2 =⇒ uj1 < uj2 .

Also, the state in the next round is updated in the following way.

si
j =

{
si−1

j−1, for 1 ≤ j ≤ (n− 1)
f i, for j = 0.

Lemma 4. For a cipher D, in the forward differential, the output of gate Aj is deterministic
for the first (uj + 1) rounds. For the next (vj − uj) rounds, the output of the AND gate is
conditionally free. Similarly, for a cipher D′, the reverse-feed cipher of D, the output of
gate Aj is deterministic for the first (n− vj) rounds and conditionally free for the next
(vj − uj) rounds.
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Proof. For cipher D, as si
uj

and si
vj

are known for 0 ≤ i ≤ uj , so ∆Aj can be deterministi-
cally computed for the first (uj + 1) number of rounds as both inputs to the AND gate are
known.

Suppose, during the intermediate rounds, si
vj

is known and si
uj

is unknown for uj + 1 ≤
i ≤ vj (round number uj + 2 to vj + 1). If ∆si

vj
= 0 and ∆si

uj
= 1, then by Observation 3,

∆Aj = si
vj

. Hence, for round uj + 1 to vj , ∆Aj can be determined with probability 1 when
such conditions are met.

For cipher D′, si
uj

and si
vj

are known for 0 ≤ i ≤ (n − vj − 1). Hence, ∆Aj can be
determined completely free for first (n− vj) rounds. si

uj
is known and si

vj
is unknown for

(n − vj) ≤ i ≤ (n − uj − 1) (round number (n − vj + 1) to (n − uj)). If ∆si
vj

= 1 and
∆si

uj
= 0, then by Observation 2, ∆Aj = si

uj
. Therefore, for next (vj − uj) rounds, ∆Aj

can be determined with probability 1 when such conditions are met.

In the same fashion, computing the backward differential, the feedback bit f i for ith

round is computed as

f i ← ti−1
l1+1 ⊕ · · · ⊕ ti−1

lm+1 ⊕ ti−1
0 ⊕ ti−1

u1+1ti−1
v1+1 ⊕ · · · ⊕ ti−1

uh+1ti−1
vh+1 ⊕ k′i−1

and the state in the next round is updated as

ti
j =

{
ti−1
j−1, for 0 ≤ j ≤ (n− 2)

f i, for j = n− 1.

Lemma 5. For a cipher D, in the backward differential, the output of gate Aj is determin-
istic for first (n− vj − 1) rounds. For the next (vj − uj) rounds, the output of the gate is
conditionally free. Similarly, for a cipher D′, the reverse-feed cipher of D, in the backward
differential the output of gate Aj is deterministic for first (uj) rounds and conditionally
free for next (vj − uj) rounds.

Proof. For cipher D, as ti
uj+1 and ti

vj+1 are known for 0 ≤ i ≤ n− vj − 2, so ∆Aj can be
deterministically computed for first (n− vj − 1) number of rounds as both inputs to the
AND gate are known.

ti
vj+1 is known and ti

uj+1 is unknown for n− vj − 1 ≤ i ≤ n− uj − 2 (round number
n− vj to n− uj − 1). If ∆ti

uj+1 = 0 and ∆ti
vj

= 1, then by Observation 2, ∆Aj = ti
uj+1.

Hence, for round n− vj to n− uj − 1, ∆Aj can be determined with probability 1 when
such conditions are met.

In similar way, it can be proved for D′.

4.3 Generalization of Chained ANDs
Consider an n-bit cipher C with (su1 , su2), (su2 , su3) and (∆su1 = 1, ∆su2 = 0), (∆su2 =
0, ∆su3 = 1) are respectively two sequential inputs and their differences to the AND gate.
Suppose we have differential trail and at the round i, we see that the input diiference
∆su1 = 1, ∆su2 = 0 happens at the AND gate and ∆z be the coresponding output difference.
Then, according to Observation 3, the internal state bit su2 will be revealed due to the
relation ∆z = su2 . Thus, after the (u2 − u1 − 1) number of rounds, i.e., at the round
i + (u2 − u1 − 1), ∆su2 = 0, ∆su3 = 1 becomes the input difference to the AND gate. In
this case, by Observation 2, this active AND gate will be freely bypassed as we know the bit
value su2 . Therefore, if the subsequent input differences to the AND gate are 1, 0, 1 then
instead of paying the probability of 1

4 , we only have to pay the probability of 1
2 . In another

way, we can say that when this subsequent 1, 0, 1 bit difference arise in the AND gate, we
will count it as one active AND. Because, out of two subsequent active ANDs, we only pay
the probability for the first one (i.e., when ∆su1 = 1, ∆su2 = 0) whereas the second (where
∆su2 = 0, ∆su3 = 1) one will pass with probability 1.
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Table 3: An Example of ABP

Round
NLFSR State Bit Positions

∆s12 ∆s10 ∆s8 ∆s5 ∆s3 ∆s1

i 0 0 1 1 0 1

i + 5 0 1 0 0 0 0

i + 7 1 0 1 0 0 0

i + 9 0 1 0 0 0 0

In the previous work [8], for TinyJAMBU cipher, they added some extra constraints in
the simple MILP model and recorded all the two subsequent ANDs with 1, 0, 1 bit differences
which helps to increase the overall probability of the differential trail. We named this kind
of two subsequent ANDs with 1, 0, 1 bit differences as Chained AND Bit Pattern (CABP). Now,
when shifted to NLFSR with multiple ANDs-based cipher, then there might arise more than
two subsequent ANDs with various bit difference patterns which signficantly increase the
overall probability of the trail and we named it as AND Bit Pattern (ABP). Before going to
define it, we give one example to show how ABP increase the probability in the trail.

Suppose, we have an n-bit cipher D with two ANDs, where n = 32 and (3, 8), (10, 12)
are the two different AND’s input positions in the NLFSR state. At the round i (> 12), we
assume that a particular bit difference ∆s8 = 1, ∆s5 = 1, ∆s3 = 0, ∆s1 = 1 happens in
the state. Also, we choose the bit difference 0 at the third position in the state as a pivot.
In the subsequent rounds, this pivot will active the ANDs in the following way.

1. At round i, since ∆s8 = 1, ∆s3 = 0 happens, we will first recover the state bit at the
pivotal position according to Observation 2.

2. Then, at the round i+ 7, the pivot goes to the bit position 10 and activate the second
AND gate as ∆s12 = 1, ∆s10 = 0. Thus, according to the Observation 3, this active
AND will be freely passed.

3. Similarly, when the pivot goes to the 12-th position in the state at the round i + 9,
the AND will be passed detrministically according to the Observation 2.

The above steps are summarized in the Table 3. In this example, we have to only pay
the probability of 2−1 instead of 2−3, as the total number of active ANDs subject to the
pivot is 3.

Definition 1. AND Bit Pattern (ABP). Consider the cipher D. The ABP of a pivotal bit
difference ∆si

j = 0 (i is the round number and j is the bit position) is denoted by αD(i, j)
and is defined as a (2h + 1)-bit string in the following way:

αD(i, j) = lh lh−1 · · · l1 ∆si
j r1 · · · rh−1 rh.

Where lp= bit difference at position up when ∆si
j shifts to position vp after some rounds

and rp= bit difference at position vp when ∆si
j shifts to position up where 1 ≤ p ≤ h.

When ∃ at least one p ∈ {1, · · · , h} such that lp = rp = 1, then αD(i, j) is a special case of
ABP which we called as Chained AND Bit Pattern (CABP).

Definition 2. For a cipher D, ΩAj

∆b is defined as the output difference of AND gate Aj

when the bit difference ∆b shifts to position svj
.

Definition 3. For cipher D, ΘA
∆b is defined as the output difference of AND gate Aj when

the bit difference ∆b shifts to position suj .
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Definition 4. The weight of a CABP αD(i, j) is denoted by wt(αD(i, j)) and is defined as
the number of 1’s in the CABP.
Lemma 6. Consider a CABP with αD(i, j) = lh · · · l1 ∆si

j r1 · · · rh and wt(αD(i, j)) = p+
q. If lw1 = · · · = lwp = ry1 = · · · ryq = 1 then ΩAw1

∆si
j

= · · · = ΩAwp

∆si
j

= ΘAy1
∆si

j

= · · · = ΘAyq

∆si
j

.

Proof. According to the Observation 3, if lwg
= 1 and ∆si

j = 0 then ΩAwg

∆si
j

= si
j holds ∀

g ∈ {1, · · · , p}. Similarly, as ryg = 1 and ∆si
j = 0, ΘAwg

∆si
j

= si
j holds where 1 ≤ g ≤ q.

Hence, we can conclude that ΩAw1
∆si

j

= · · · = ΩAwp

∆si
j

= ΘAy1
∆si

j

= · · ·ΘAyq

∆si
j

.

Lemma 7. Let wt(αD(i, j)) = m and m ≥ 2. Then the subsequent output differences of
m active AND gates can be restricted to probability 2−1 instead of 2−m.

Proof. As wt(αD(i, j)) = m, then from Lemma 6 it can be conclude that output of m AND
gates should be si

j . Therefore, the value of si
j can be fixed with probability 2−1.

Example 2. Consider the NLFSR-based block cipher TinyJAMBU which has one AND gate
in the feedback function. Its CABP should be of the form l10r1. When l1 = r1 = 1, then by
Lemma 7 output difference of two AND gates are fixed with probability 2−1 instead of 2−2.
This is reported in the refined model [8].

4.4 MILP Modeling of CABP
The number of valid patterns of CABP which captures the dependency among the output
differences of subsequent active AND gates can is described in the following Lemma 8.
Lemma 8. The total number of valid patterns of CABP αD(i, j) will be λ (=

∑2h
m=2

(2h
m

)
).

Proof. Consider an ABP with wt(αD(i, j)) = m. There are
(2h

m

)
valid patterns of αD(i, j)

which shows the dependency between m subsequent active AND gates.
By Lemma 7, for a CABP, if m ≥ 2, then we have shown a dependency between

the output differences of AND gates. Therefore, the total number of valid CABP will be(2h
2

)
+

(2h
3

)
+ · · ·

(2h
2h

)
.

For modeling the dependency among the subsequent active AND gates, the approach
is quite similar to the model given in [8]. To do so, first, a constraint is used to identify
which AND gates are correlated and then pairs of AND gates are considered to model the
dependency between them. So, to capture any bit difference pattern in the CABP with
m ≥ 2, we have added some extra constraints corresponding to the chained active AND
gates in the simple MILP modeling. To model D, we assign j = u1 to fix the pivot position
in the CABP αD(i, j). As the CABP αD(i, u1) has λ different valid patterns, we take γz,
1 ≤ z ≤ λ to capture the correlation among wt(αD(i, u1)) number of active AND gates.

Thus for all the pivot postions at u1 in the consecutive rounds of the state, the following
constraints will be added. For any CABP with wt(αD(i, u1)) = p + q, we compute γz in the
following way.

γz = lw1 · · · lwp
l̄w′

1
· · · l̄w′

p
′
∆̄s

i

jry1 · · · ryq
r̄y

′
1
· · · r̄y

′

q
′

Where, lw1 = · · · = lwp = ry1 = · · · ryq = 1 and lw′
1

= · · · = lw′
p′

= ry′
1

= · · · ry′
q′

= 0
such that {w1, · · · , wp} ∪ {w

′

1, · · · , w
′

p′ } = {u1, · · · , uh}, {w1, · · · , wp} ∩ {w
′

1, · · · , w
′

p′} =
∅, {y1, · · · , yq} ∪ {y

′

1, · · · , y
′

q′} = {v1, · · · , vh}, {y1, · · · , yq} ∩ {y
′

1, · · · , y
′

q′} = ∅.

According to Lemma 6, we have ΩAw1
∆si

j

= · · · = ΩAwp

∆si
j

= ΘAy1
∆si

j

= · · ·ΘAyq

∆si
j

. Therefore,
for each of λ valid bit difference patterns of CABP, the following constraints are constructed
to capture its correlation.
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Table 4: Best Type 4 Trails of TinyJAMBU Correspond to Different MILP Models.
? denotes that the solver has not stopped.

Rounds Simple Model [1] Refined Model [8] DEEPAND Model

192 4 4 2

320 13 12 8

384 – 19 14

480 – 29? 22

640 – 53? 42

1024 – – 108?

1. ΩAw
i′

∆si
j

− Ω
Aw

j′

∆si
j

≤ 1− γz

Ω
Aw

j′

∆si
j

− ΩAw
i′

∆si
j

≤ 1− γz, 1 ≤ i′ < j′ ≤ p

2. ΘAy
i′

∆si
j

−Θ
Ay

j′

∆si
j

≤ 1− γz

Θ
Ay

j′

∆si
j

−ΘAy
i′

∆si
j

≤ 1− γz, 1 ≤ i′ < j′ ≤ q

3. ΩAw
i′

∆si
j

−Θ
Ay

j′

∆si
j

≤ 1− γz

Θ
Ay

j′

∆si
j

− ΩAw
i′

∆si
j

≤ 1− γz, 1 ≤ i′ ≤ p, 1 ≤ j′ ≤ q

Now, this model, which we called as DEEPAND model, is applied to find the good
differentials for KATAN and TinyJAMBU.

5 Attacks on TinyJAMBU

The refined model developed in this paper are applied to mount attacks on variants of
keyed permutation Pl of TinyJAMBU. First of all, the previous results are discussed and
then the results of this paper are elaborated.

5.1 Summary of Previous Results

The designers of TinyJAMBU have specified four different constraints regarding the input-
output active-bit positions of Pl while searching for its differential trail [1]. However, in
the context of this work the condition where no constraint is imposed on the input and
output of Pl (Type 4) is relevant and thus similar results are discussed here.

The designers have considered differential trails where each AND gates are treated
independently (simple model). Later on, Saha et al. reported differential trails where the
probability of differential trails are improved by considering the correlation between two
different AND gates [8]. This new model is called as refined model. For 320 rounds of Pl,
the maximum probability in the simple model is 2−13, whereas in the refined model the
probability for the same number of rounds is increased to 2−12. Table 4 compares the
minimum number of effectively active AND gates for various number of rounds of Pl.
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Table 5: Type 4 Differential Trails of P384 with Probability 2−14

Input: ∆S127···0 0x00000000 0x88040000 0x00000248 0x02000043

∆S255···128 0x00000000 0x80000000 0x00010000 0x00000012

∆S383···256 0x00000000 0x80000000 0x00000000 0x00000000

Output: ∆S511···384 0x04080000 0x80004000 0x00010200 0x00000010

Table 6: Part of differential trail of TinyJAMBU showing the effect of Observation 2.
#Rnd ∆s70···85

42 0000000000000000
43 0000000000000000
44 0000000000000000
45 0000000000000000
46 0000000000000000
47 0000000000000000
48 0000000000000000
49 0000000000000001
50 0000000000000010
51 0000000000000100
52 0000000000001001
53 0000000000010010
54 0000000000100100
55 0000000001001000
56 0000000010010000
57 0000000100100000

5.2 MILP Modeling for Finding Differential Trail
As the design of TinyJAMBU is similar to the cipher described in Section 4.1, from Lemma 2
it can be concluded that the first (128-85)=43 rounds are completely free and the next
(85-70)=15 rounds are conditionally free. For the rest number of rounds refined modeling [8]
is employed.

5.3 Attacks on Pl

To find the differential characteristics of Pl, in addition to the refined model, the Observa-
tion 1 and Observation 2 are employed to improve the probability. By Lemma 2 it can be
concluded that the first (128-85-1)=42 rounds is completely free and the next (85-70)=15
rounds is free whenever difference 0 and 1 appears in the input of the AND gate where
the actual bit corresponding to input difference 0 is known.

Refer to Table 6. Consider the bits 70 and 85 in round number 43 to 57 of the trail
given in Table 5. It is clearly evident from the table, that in round number 49 and 52,
∆si

70 = ∆si
70 = 0 and ∆si

85 = ∆si
85 = 1. As si

70 and si
70 is known, the output differential

of the corresponding AND gate is deterministic. Hence, this gives a factor of 22 advantage
in the probability.

Cluster Differential Trail for 384 Rounds

By employing the above refined model in MILP, we are able to find differential trails
with more improved probabilities. For 320 rounds, our model gives a differential trail
with probability 2−8 which is much better than previously reported results. For P384, a
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differential trail with probability 2−14 is found. The trail is shown in Table 5. We obtained
4 differential trails with the same input and output difference as shown in Table 5 each
with probability 2−14, 2−15, 2−16 and 2−17. Thus the overall probability for the differential
trail is 2−13.17.

Differential Trail of P640, P1024

In TinyJAMBU v2, the designers have increased the number of rounds of the permutation
which is used to process nonce and associated data to 640 rounds [1, Page 12] due to
effect of correlated AND gates as shown in [8]. The MILP model developed in this work
is applied on the keyed permutations P640 and P1024. For, P640, we have found a trail
with probability 2−42. However, for P1024, as the solver is unable to finish due to a higher
number of rounds, we have found upto a differential trail with probabilty 2−108.

6 Attacks on KATAN

Here, we apply the MILP model developed in this paper to mount attacks on KATAN .
First, we show that for certain number of initial rounds for variants of KATAN , differential
characteristics with much better probability, in comparison to the designer’s claims [5],
can be found. Then we have shown that the related key boomerang attacks against KATAN
[6] can also be improved by employing the same model.

6.1 MILP Model for Differential Cryptanalysis of KATAN

Modeling the Free Rounds.

Consider that in the generalized design of KATAN , the bits y3, y4 (y3 > y4) are inputs to
AND gate A1, y5, y6 (y5 > y6) are inputs to gate A2 and x3, x4 (x3 > x4) are inputs to
gate A3. Then by Lemma 4, the differential output of gate A1, A2 and A3 in the forward
differential trail are deterministic for first (y4 + 1) rounds, first (y6 + 1) rounds and first
(x4 + 1) rounds respectively and conditionally free from round number (y4 + 2) to (y3 + 1),
(y6 + 2) to (y5 + 1) and (x4 + 2) to (x3 + 1) respectively.

Similarly, by Lemma 5, it can be concluded that in the backward differential trail, the
differential output of gate A1, A2 and A3 are deterministic for the first (n− y3− 1) rounds,
first (n− y5 − 1) rounds and first (n− x3 − 1) rounds respectively and conditionally free
from round number (n − y3) to (n − y4 − 1), (n − y5) to (n − y6 − 1) and (n − x3) to
(n− x4 − 1) respectively.

Example 3. For KATAN32 , in the forward differential trail, the differential output of gate
A1 is completely free for the first (10+1)=11 rounds and is conditionally free from round
number (10+2)=12 to (12+1)=13. Table 7 shows the number of completely free rounds
and conditionally free rounds for variants of KATAN .

Modeling the Dependency Between AND Gates

In the L1 register, there is only one AND gate. Thus the refined modeling described in [8]
can be employed to find the differential trails. In L2 register, there are two AND gates
and the dependency between two different AND gates is not captured in the refined model.
Consider a bit si

3 in register L2. For KATAN32 , as (y5 − y6) > (y3 − y4), the ABP of
∆si

3 is ∆si
8∆si+7

12 ∆si
3∆si+9

10 ∆si+5
3 which can also be considered as ∆si

8∆si
5∆si

3∆si
1∆si

−2
(∆si+k

j = ∆si
j−k) where ∆si

−k = ∆si+k
0 .
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Table 7: Number of completely free rounds and conditionally free rounds for AND gate A1,
A2 and A3. rfree denotes the round numbers in which the differential output of the AND
gate is completely free whereas rcond denotes the round numbers in which the output is
conditionally free.

Variant
A1 A2 A3

rfree rcond rfree rcond rfree rcond

KATAN32 1 → 11 12 → 13 1 → 4 5 → 9 1 → 6 7→9

KATAN48 1 → 14 15 → 22 1 → 7 8 →16 1 → 8 9→16

KATAN64 1 → 22 23 → 34 1 → 10 11→15 1 → 12 13→21

Table 8: CABP of si
3 and the corresponding differential value of related bits.

CABP ∆si
8 ∆si

5 ∆si
1 ∆si

−2
11011 1 1 1 1
11010 1 1 1 0
11001 1 1 0 1
10011 1 0 1 1
01011 0 1 1 1
11000 1 1 0 0
10010 1 0 1 0
01010 0 1 1 0
10001 1 0 0 1
01001 0 1 0 1
00011 0 0 1 1

If the CABP is considered, then by Lemma 8 there are
(4

4
)

+
(4

3
)

+
(4

2
)

= 11 patterns
for which output differential of several AND computations are inter-related. The CABP
and the corresponding differential bits are shown in Table 8

In KATAN48 , y3 − y4 > y5 − y6. Consider a difference bit ∆si
21 in L2 register.

αKATAN48(i, 21) = ∆si
33∆si−12

14 ∆si
21∆si−7

9 ∆si+12
21

= ∆si
33∆si

26∆si
21∆si

16∆si
9

6.2 Differential Trails of KATAN

In [5], the designers have claimed that for 42-round KATAN32 , the best differential charac-
teristic has probability 2−11. However, for the initial 42 rounds our MILP model is able to
find two identical differential trails with probability 2−7. The trail is shown in Fig. 3. It
can be observed that in the trail, that ∆L8

2[3] = 1 and ∆L8
2[8] = 0. As L8

2[8] = L0
2[0], then

the corresponding output differential of the AND gate A1 in round 8 is L0
2[0]. Hence, the

probability is improved by a factor of 2.
However, one of these trail is invalid which can be figured out by considering the

dependency between the AND gates for the initial rounds (the dependency between the
AND gates when both the input of the AND gate are known is not considered in our
model). Consider,

∆zk
i,j = Lk

2 [i]Lk
2 [j]⊕ (Lk

2 [i]⊕∆Lk
2 [i])(Lk

2 [j]⊕∆Lk
2 [j])

. As, in the trail, ∆L2
2[3] = 0, ∆L2

2[8] = 1, ∆L2
2[10] = 0, ∆L2

2[12] = 1, ∆L2
2[18] = 1 and

∆L3
1[0] = 0, then there are two cases.
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0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0
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Figure 3: Differential trail for 42-round KATAN32 with probability 2−7. #R denotes the
number of rounds. The differential bits input to AND gates are colored red whereas the
bits that are XOR-ed in the feedback function are colored blue.
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• Case 1: ∆z2
3,8 = 0 and ∆z2

10,12 = 1,

• Case 2: ∆z2
3,8 = 1 and ∆z2

10,12 = 0.

Consider the case 1. As ∆z2
10,12 = 1, then by Observation 2, L2

2[10] = 1. Due to the
shifting of bits, ∆L4

2[12] = ∆L2
2[10] = 0 and L4

2[12] = L2
2[10]. As ∆L4

2[10] = 1, then by
Observation 3, ∆z4

10,12 = ∆L4
2[12] = 1. As all other differential tapping bits are 0, so

∆L5
1[0] = ∆z4

10,12 = 1. However, it can be observed from Fig. 3 that ∆L5
1[0] = 0. Hence,

this is an invalid trail. It can be verified that case 2 gives a valid trail.
Note that, such invalid trails can only be yielded from the model for some initial number

of rounds when both the inputs to the AND gate are known because the constraints
regarding the correlation between two AND gates are relaxed. However, such constraints
are not relaxed for later number of rounds when both the inputs to the AND gate are not
known. Hence, for later number of rounds such invalid trails can not be yielded from the
model.

For 43-round KATAN48 and 37-round KATAN64 , the best differential trail, as claimed
by the designers, can be found with probability 2−18 and 2−20 respectively whereas for
both variants our model finds differential trails with probability 2−14.

Dependency between Multiple AND Gate

Although, in the optimal trail the DEEPAND model is unable to find dependencies between
multiple AND gate, in non-optimal trail it succesfully detects such dependencies. One
such trail returned by DEEPAND model is shown in Fig. 4. In the trail, ∆L15

2 [3] = 0 and
∆L15

2 [8] = 1. So, the corresponding AND gate is active in round 15. Also, ∆L22
2 [10] = 0

and ∆L22
2 [12] = 1, which also activates the corresponding AND gate. However, the input

∆L22
2 [10] and ∆L15

2 [3] is the same. Thus the above two AND gates are correlated and
instead of 2−2 and 2−1 probability is required to be paid. This is captured by DEEPAND
model.

6.3 Related Key Differential Attack
In the related-key setting, we have applied our new model to KATAN 32, and found the best
optimal differential trail with probability 2−4. Also, we have found a probabilty of 2−6

and 2−8 for 75 and 80 rounds respectively.

6.3.1 Related Key Boomerang Attack in [6]

Related key boomerang distinguishers are consists of two different differential trails. The
strategy to find differential trails is consists of three steps-

• Collision step

• Blank step

• Brute force step

Initially a plaintext difference and a key difference is provided. At the end of the collision
step, it is expected that the both the differences will cancel each other. Thereafter, for
some rounds the state difference and the subkey difference remains zero and thus no
probability is required to pay for transitions through this rounds. This step is called blank
step. Finally, after some rounds the subkey differences introduce some differences in the
state and from here the best differential trail is considered. This is the brute force step.

Attack on KATAN32 . It is observed in [6], that carefully choosing the plaintext bits
can result in a 49-round blank step and thus it is expected that the overall probability
would increase for such distinguishers.
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Figure 4: Differential trail for 42-round KATAN32 with probability 2−32. #R denotes the
number of rounds. The differential bits input to AND gates are colored red whereas the
bits that are XOR-ed in the feedback function are colored blue.
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In [6], 11 input sets based on the initial key differences are defined. For set 8, the upper
trail and the lower trail of the distinguisher is constructed where both trails are of 70
rounds each. It is shown that the upper trail has 8 trails with probability 2−9, 16 trails each
with probability 2−10 and 2−11 and 64 trails with probability 2−12. All these trails have
same input differences. Thus the cumulative probability is approximately 2−7.1. Similarly
for lower trail the cumulative probability is 2−6.5. Hence, 140-round related key boomerang
distinguisher for KATAN32 is constructed with probability (2−7.1)2(2−6.5)2 = 2−27.2.

The DEEPAND MILP model for KATAN32 is devised for finding trail E0 of [6] and
initialized using the set 8. However, our model has not shown any significant improvement
over the 70-round related key differential trails found in [6]. One possible reason is for
lower number of rounds there is very less chance of observing correlation between AND
gates.

7 Conclusion
The DEEPAND model developed in this paper is primarily based on Observation 2 and
Observation 3. In this model, it is shown that there can be dependencies in between
multiple gates in NLFSR-based ciphers. To capture the dependencies in a proper way,
CABP has been introduced. In addition, it is also shown that if one of the inputs of AND
gate is known, then for certain values of input differentials of the AND gate, the output
differential is deterministic.

In the context of this paper, only the L2 register in KATAN has more than one AND
gate. CABP has been applied for L2 register. Although the probabilities of the trails
have been improved considering only one of the inputs to the AND gates is known, but
in the optimal trails that have been furnished in this paper, no dependencies between
multiple AND gates have been observed. One possible reason is devising MILP model for a
small number of rounds. In case refined modeling of TinyJAMBU [8], it has been observed
that for 224 rounds of TinyJAMBU there are no correlated AND gates. However, as the
number of rounds is increased, the effect of correlated AND is increased. From this, it can
be concluded that in the case of KATAN , if more number of rounds can be penetrated, then
the dependencies between multiple AND gate can be observed. However, as of now, we are
unable to provide any theoretical bounds on the minimum number of rounds to observe
such effects. Another question that requires to be pondered upon is whether the positions
of tapping bits have any significant effect on this bound. It would be an interesting open
problem to find a relationship between the position of tapping bits, round numbers, and
dependencies between multiple AND gates.

The main limitation of this work is due to a large number of constraints in the developed
MILP model, the solver does not stop for a large number of rounds. So, in this regard, if
an algorithm can be developed which reduces the effective number of constraints, then
there is a possibility that the developed model can be applied on more number of rounds,
and thus more dependencies between the AND gates can be observed.
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