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Abstract. We propose the first unbounded functional encryption (FE)
scheme for quadratic functions and its extension, in which the sizes of
messages to be encrypted are not a priori bounded. Prior to our work,
all FE schemes for quadratic functions are bounded, meaning that the
message length is fixed at the setup. In the first scheme, encryption
takes {xi}i∈Sc , key generation takes {ci,j}i,j∈Sk , and decryption outputs∑
i,j∈Sk

ci,jxixj if and only if Sk ⊆ Sc, where the sizes of Sc and Sk can
be arbitrary. Our second scheme is the extension of the first scheme to
partially-hiding FE that computes an arithmetic branching program on
a public input and a quadratic function on a private input. Concretely,
encryption takes a public input u in addition to {xi}i∈Sc , a secret key is
associated with arithmetic branching programs {fi,j}i,j∈Sk , and decryp-
tion yields

∑
i,j∈Sk

fi,j(u)xixj if and only if Sk ⊆ Sc. Both our schemes
are based on pairings and secure in the simulation-based model under
the standard MDDH assumption.
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1 Introduction

Functional encryption (FE) [O’N10, BSW11] is a new cryptographic paradigm
that allows a decrypter to learn a function value of the underlying message
without revealing any other information and enables fine-grained access control
over encrypted data. This is in contrast to traditional public-key encryption,
which only provides all-or-nothing decryption. Concretely, an FE scheme that
supports a function class F allows an owner of a master secret to issue a secret
key SK for a function f ∈ F. Decryption of a ciphertext CT for a message x with
SK yields f(x) and nothing else. Functional encryption has been extensively
studied in the literature, with elegant constructions supporting various function
classes, achieving different notions of security and from various assumptions,
e.g., [GGH+13b,GGHZ16,BS15,ABDP15,BCFG17].

In this paper, we focus on the following FE system. Consider a database con-
sisting of pairs of a unique public identifier i and an encrypted private attribute
xi (e.g., age, medical history, salary, etc.). An authority can issue a secret key
SK that allows a user to compute an analysis f ′ using a portion of the encrypted
data with respect to some identifier set Sk. In other words, the user given SK can
learn f ′({xi}i∈Sk) if and only if Sk ⊆ Sc from the encrypted database, where Sc
is the set of all identifiers in the database. We consider that preventing decryp-
tion in the case Sk 6⊆ Sc is important since otherwise the decrypter may learn
specific information on some private attribute, which is undesirable in many
applications (for instance, even in the case where Sk is large and f ′ computes
average, the decrypter can learn exact xi if Sk ∩ Sc = {i}). In both theory and
practice, it is arguably desirable if the system satisfies the following properties:

1. the size of the database that can be encrypted is not a priori bounded;
2. the size of the encrypted database is linear in the number of records |Sc|;

and
3. the system is based on standard assumption and does not rely on heavy

cryptographic tools such as obfuscation [GGH+13b] and multi-linear maps
[GGH13a].

Most of the existing FE schemes do not satisfy item 1 since the size of mes-
sages to be encrypted is a priori fixed. To our knowledge, the exceptions are
FE for Turing machines [BCP14, IPS15, AS16], unbounded FE for inner prod-
uct [TT18, DP19], and FE for attribute-weighted sums [AGW20, DP21]. How-
ever, since all the FE schemes for Turing machines (secure against unbounded
collusion) rely on obfuscation, only a few FE schemes satisfy all the properties si-
multaneously. Furthermore, the output of the functions in these few FE schemes
are all linear in {xi}i∈Sc . This naturally motivates the following question:

Can we construct an FE scheme for quadratic functions with all the properties?

We basically use the term “unbounded” to describe the property of item 1,
but crucially, it also implies that the system supports variable-length plaintext.
Note that most FE schemes support only fixed-length plaintext, meaning that
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we always have Sc = Sk = [n] for a fixed polynomial n. In fixed-length schemes,
when encrypting messages shorter than the fixed length, it is necessary to do
something like zero padding, and it is impossible to encrypt messages longer
than the fixed length.

From an efficiency standpoint, the variable-length property is quite important
in systems that may handle data of various lengths. Let us consider a case where
a country introduces an FE system, and local governments use it to encrypt
the database of their residents. It is natural for the number of residents in each
district to be various sizes. At some point, local governments may annex their
regions, and the population of the new region would exceed the system limit. In
such a case, we have to re-deploy the encryption system with a larger limit if
they are using a fixed-length FE scheme. This problem can be avoided by setting
the system limit with a huge margin in the setup phase. However, this solution
brings a significant overhead to the system since the lengths of all ciphertexts
become at least linear in the fixed system limit even if most plaintexts to be
encrypted in the system are much shorter than the fixed length!

In contrast, the ciphertext sizes of variable-length FE schemes are linear in
the size |Sc| of each database as specified in item 2. Hence, variable-length FE
schemes can be much more efficient than fixed-length FE schemes in situations
as described above. Furthermore, we do not need to care even the system limit
if we can use an unbounded FE scheme. However, all previous FE schemes for
quadratic functions are fixed-length [Lin17, BCFG17, RPB+19, Gay20, Wee20,
GQ20, AGT21], and no unbounded (or even no variable-length) schemes are
known. Hence, the above question is not only of theoretical interest but also
important from a practical viewpoint.

1.1 Our Results

We construct an unbounded (public-key) FE scheme for quadratic functions and
its extension. Both schemes have semi-adaptive, simulation-based security un-
der the matrix decisional Diffie-Hellman (MDDH) assumption in the random
oracle model (ROM) and thus satisfy the three properties simultaneously. Note
that achieving adaptive security in FE for quadratic functions is a long-standing
open problem, and no quadratic FE scheme achieves adaptive security (except
the scheme based on the generic group model). We also remark that we cannot
use the ROM straightforwardly to extend the existing quadratic FE schemes to
be unbounded, and we overcome many hurdles to obtain the current results.
We elaborate on this later in the technical overview. We leave constructing un-
bounded quadratic FEs without the ROM as an interesting open problem.

The first scheme is unbounded FE for quadratic functions, that is, f ′ in the
above context can be any quadratic function. More formally, the message space
and the function space is specified as X = {(x1, x2) ∈ 2[p] ×

⋃
i∈[p] Zip | |x1| =

|x2|}, and F = {(f1, f2) ∈ 2[p]×
⋃
i∈[p] Zi

2

p | |f1|2 = |f2|}, respectively, where p is

an exponentially large prime1, and 2[p] denotes the set consisting of all subset of

1 Concretely, p is an order of bilinear groups that the scheme based on.
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Scheme |PK| |CT| |SK| Variable-length Unbounded w/o RO

Fixed-length schemes O(n) O(n) O(n) or O(1) × × X
Ours (bounded) O(n′) O(|Sc|) O(|Sk|) X × X
Ours (unbounded) O(1) O(|Sc|) O(|Sk|) X X ×
Table 1. Comparison among public-key functional encryption schemes for quadratic
functions. Fixed-length schemes refer to [BCFG17, RPB+19, Gay20, Wee20, GQ20,
AGT21]. In this table, n is the fixed vector length, Sc and Sk are the identifier sets,
and n′ is the upper bound of the vector length, i.e., Sc and Sk must be subsets of [n′]
in the bounded scheme. RO stands for random oracles.

[p]. For x = (Sc, {xi}i∈Sc) ∈ X and f = (Sk, {ci,j}i,j∈Sk) ∈ F, f(x) is defined as

f(x) =

{∑
i,j∈Sk ci,jxixj Sk ⊆ Sc

⊥ otherwise

where Sc is clear in the ciphertext. Observe that Sc can be an arbitrary subset of
[p] where p is an exponentially large prime, and thus the size of Sc is unbounded
since encryption is a polynomial time algorithm.

Our unbounded quadratic FE scheme can be easily modified to a (bounded)
variable-length quadratic FE scheme without random oracles. In the scheme, Sc
and Sk must be subsets of a fixed poly-sized set [n′] instead of an exponentially
large set [p]. We present a comparison of our quadratic FE schemes with previous
schemes in Table 1.

The second scheme is inspired by the recent works of partially-hiding func-
tional encryption [JLMS19, AJL+19, Wee20, GJLS21], where a message consists
of public input u and private input x while a secret key is associated with
f ′ in NC1 or arithmetic branching programs (ABPs), and decryption yields
f(u,x) = 〈f ′(u),x ⊗ x〉. We extend this functionality to unbounded FE for
quadratic functions. Assume that each database additionally has a public input
u (e.g., the description of the database) with a fixed length n, while a secret
key is associated with Sk and arithmetic branching program f ′2 the input and
output lengths of which are n and |Sk|2, respectively. Then, the decryption re-
veals

∑
i,j∈Sk f

′
i,j(u)xixj where f ′i,j(u) is the (i, j)-th output of f ′(u). Formally,

the message space and the function space is specified as X = {(x1, x2, x3) ∈
Znp × 2[q] ×

⋃
i∈[q] Zip | |x2| = |x3|}, and F = {(f1, f2) ∈ 2[q] ×

⋃
i∈[q] F

ABP
n,i2 |

|f1|2 = OutLen(f2)}, respectively, where q ∈ N is an exponentially large number
(q = p− 1 in our scheme), FABP

n,n′ denotes the set of all ABPs with the input and
output lengths being n and n′, respectively, and OutLen(f2) denotes the output
length of f2. For x = (u, Sc, {xi}i∈Sc) ∈ X and f = (Sk, f

′) ∈ F, f(x) is defined
as

f(x) =

{∑
i,j∈Sk f

′
i,j(u)xixj Sk ⊆ Sc

⊥ otherwise

where u, Sc are clear in the ciphertext. We call this functionality ABP ◦UQF.

2 Note that ABPs are a stronger computational model than NC1 circuits.
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By similar observation to [AGW20], we can confirm that FE for ABP ◦UQF
subsumes many classes of FE: (unbounded) FE for inner product [ABDP15,
TT18]; FE for quadratic functions [BCFG17]; attribute-based encryption for
ABPs [LL20]; attribute-based inner product FE [ACGU20]; and attribute-based
quadratic FE [Wee20] as well as unbounded FE for quadratic functions (our
first scheme)3. Hence, for instance, FE for ABP ◦ UQF allows the decryption
of an encrypted database with description u and identifier set Sc in which it
first checks whether u satisfies a NC1 predicate P and then outputs a quadratic
function f ′ over the portion {xi}i∈Sk of the private input of the database iff
P(u) = 1 and Sk ⊆ Sc, because such computation can be expressed by ABPs.

Comparison with FE for attribute-weighted sums. Although FE for
ABP ◦UQF is similar to FE for attribute-weighted sums [AGW20] in that they
can encrypt a database with unbounded length, and a secret key is associated
with an ABP, their functionalities are essentially different as follows. The public
input u is specific to a database in FE for ABP◦UQF while each record has the
public input ui in FE for attribute-weighted sums. In decryption with a secret
key for an ABP f , the output of FE for ABP ◦UQF is the weighted-sum of xixj
for i, j ∈ Sk with the weight being fi,j(u) while that of FE for attribute-weighted
sums is the weighted-sum of xi for i ∈ Sc with the weight being f(ui).

1.2 Technical Overview

For simplicity, we stick to the case using the SXDH assumption, which is the
special case of the MDDH assumption in this overview.

Why the ROM does not work straightforwardly? Before diving into
our construction, we first see why it is difficult to extend the existing quadratic
FE schemes to be unbounded by the ROM. For all public-key quadratic FE
schemes [BCFG17,RPB+19,Gay20,Wee20,GQ20], a public key PK and a secret
key SK for any quadratic function f consist of following elements:

PK = ([A1]1, [A2]2, [B]1, . . .), SK = ([D]i, . . .)

where A1,A2 are (pseudo)random matrices in Zp the sizes of which depend
on the message length m, B,D are some matrices in Zp, i ∈ {1, 2}, and [·]i
denotes element-wise exponentiation in the source group Gi. How to define these
matrices and i depends on the scheme. The natural idea to make the scheme
unbounded is to generate [A1]1, [A2]2 by hash functions H1 : {0, 1}∗ → G1 and
H2 : {0, 1}∗ → G2 in an ad hoc way in encryption. In all the existing schemes,
however, either B [Gay20] or D [BCFG17,RPB+19,GQ20,Wee20] contains the
entries of the form va1a2 + c, where a1, a2 are entries of A1,A2, respectively,
and v, c are Zp elements that are independent of both a1 and a2. It is not hard
to see that neither [va1a2 + c]1 nor [va1a2 + c]2 can be computed efficiently even
in symmetric pairings. Hence, this strategy makes encryption or key generation

3 This does not mean that our results imply the listed schemes since we ignore the
security requirement here and focus on only functionalities.
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inefficient. Furthermore, such a construction will not become collusion resistant,
that is, a user can generate a secret key for Sk,1 from secret keys for Sk,2 and
Sk,3 such that Sk,1 ⊆ Sc but Sk,2, Sk,3 6⊆ Sc in a certain case [DP19].

Starting from Lin’s secret-key FE scheme. Since the known public-key
quadratic FE schemes are not ROM-friendly as observed, we construct a new
public-key quadratic FE scheme that is inspired by the secret-key quadratic FE
scheme from pairings by Lin [Lin17]. Her scheme builds on the public-key IPFE
scheme from DDH by Abdalla et al. [ABDP15] (ABDP), which is described as
follows:

Setup(1λ): w← Zmp , PK = [w], MSK = w.
Enc(PK,x ∈ Zm): s← Zp, CT = (CT1,CT2) = ([s], [x + sw]).
KeyGen(MSK, c ∈ Zm): SK = −c>w.
Dec(CT,SK): SKCT1 + c>CT2 = −c>w[s] + c>[x + sw] = [〈c,x〉].

Lin’s quadratic FE scheme uses a clever interleaving of IPFE schemes. To
compress the size of ABDP ciphertexts for quadratic terms, she uses function-
hiding IPFE where a secret key hides the underlying vector as well as a ciphertext
hides the message [BJK15]. Decryption of components in this scheme yields a
ciphertext of the ABDP IPFE scheme, while a secret key of the ABDP scheme
is generated using another function-hiding IPFE. Finally, decryption of ABDP
IPFE allows to recover the output. In more detail, let iFE = (iSetup, iEnc, iKeyGen,
iDec) be a function-hiding IPFE scheme based on pairings, which outputs a de-
cryption value as an exponent of the target-group generator. Her quadratic FE
scheme is informally described as follows (we omit the components of the scheme
that are only used in the security proof):

Setup(1λ): w = (w1, . . . , wm), w̃ = (w̃1, . . . , w̃m)← Zmp , iMSK′ ← iSetup(1λ)

MSK = (iMSK′,w, w̃).
Enc(MSK,x ∈ Zm): s← Zp, iCT′ ← iEnc(iMSK′, s), iMSK← iSetup(1λ)

iCTi ← iEnc(iMSK, (xi, wi)), iSKi ← iKeyGen(iMSK, (xi, sw̃i)).
CT = (iCT′, {iCTi, iSKi}i∈[m]).

KeyGen(MSK, c = {ci,j}i,j∈[m] ∈ Zm2

): a

SK = iSK′ ← iKeyGen(iMSK′, c>(w ⊗ w̃)).
Dec(CT,SK):

∑
i,j∈[m] ci,j iDec(iCTi, iSKj)− iDec(iCT′, iSK′) = [〈c,x⊗ x〉]T .

In decryption, we compute iDec(iCTi, iSKj) = [xixj + swiw̃j ]T , which can be
seen as the (i, j)-th element of the ABDP ciphertext [x ⊗ x + sw ⊗ w̃]T , and
−iDec(iCT′, iSK′) = [−sc>(w⊗w̃)]T , where −c>(w⊗w̃) is an ABDP secret key
for c. Since w⊗ w̃ only appears on the exponent, it looks uniformly distributed
under the SXDH assumption.

Making Lin’s scheme public-key. We next show how to turn her scheme
into a public-key scheme. Observe that her scheme is secret-key since it uses the
function-hiding property of the secret-key IPFE. More specifically, encryption
chooses fresh iMSK by itself while iMSK′ is the part of MSK. This means that we
would be able to make her scheme public-key if we can publicly encrypt s into
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iCT′ in encryption, and at the same time, iSK′ is still function-hiding so that the
security proof goes well.

Fortunately, we already have slotted IPFE [LV16], which is a hybrid between
public-key IPFE and a function-hiding IPFE and satisfies the above properties.
Specifically, both message and key spaces of slotted IPFE are separated into
two slots Zm1

p and Zm2
p , and we can publicly encrypt all messages of the form

(x1,0) for x1 ∈ Zm1
p via slot encryption algorithm iSlotEnc while we need a

master secret key to encrypt a message of the form (x1,x2) ∈ Zm1
p × Zm2

p for
x2 6= 0 via encryption algorithm iEnc. A secret key for (y1,y2) ∈ Zm1

p × Zm2
p is

function-hiding with respect to y2, which is essential for the security proof.
Another nice property of (slotted) IPFE is that (slot) encryption and key

generation can take a group element in G1 and G2 of pairing groups as input,
respectively [LL20]. Thus, we can publish [w]1 and [w̃]2 as a part of public key
and use them to generate iCTi, iSKi in encryption. It seems that the modified
scheme is now public-key, but unfortunately, this is not the case. This is because,
in the security proof of Lin’s scheme, we argue that [wiw̃]2 looks random given
PK, but it is not the case if [w]1 is included in PK. To circumvent this problem,
we modify Lin’s scheme to obtain a public-key scheme using a slotted IPFE
scheme iFE′ = (iSetup′, iSlotEnc′, iEnc′, iKeyGen′, iDec′) as follows (we again omit
the components of the scheme that are only required for the proof of security):

Setup(1λ): w = (w1, . . . , wm)← Zmp , (iPK′, iMSK′)← iSetup′(1λ)

PK = ([w]2, iPK
′), MSK = iMSK′.

Enc(PK,x ∈ Zm): s = (s1, . . . , sm)← Zmp , iCT
′ ← iSlotEnc′(iPK′, [s]1)

iMSK← iSetup(1λ)
iCTi ← iEnc(iMSK, [(xi, si)]1), iSKi ← iKeyGen(iMSK, [(xi, wi)]2).
CT = (iCT′, {iCTi, iSKi}i∈[m]).

KeyGen(PK,MSK, c = {ci,j}i,j∈[m] ∈ Zm2

): a
SK = iSK′ ← iKeyGen′(iMSK′, [(

∑
j∈[m] c1,jwj , . . . ,

∑
j∈[m] cm,jwj)]2).

Dec(CT,SK):
∑
i,j∈[m] ci,j iDec(iCTi, iSKj)− iDec′(iCT′, iSK′) = [〈c,x⊗ x〉]T .

The above issue does not occur in this modified scheme, that is, we can argue
that [siw]2 looks random under the SXDH assumption even if PK is given. Even
better, this scheme is ROM-friendly in a sense that Enc and KeyGen are still
efficient even if [w]2 is generated by hashing as [wi]2 = H(i)! Note that the
ciphertext size of the above scheme is still linear in m since the ciphertext size
of the slotted IPFE scheme is linear in m1 and m2, and m2 = 1 is sufficient for
the security proof.

How to achieve the partial decryption. As discussed above, our goal is
to allow an owner of a secret key with respect to Sk to decrypt the portion
Sk of a ciphertext for Sc if and only if Sk ⊆ Sc. Our observation is that
if the underlying slotted IPFE scheme iFE′ is unbounded and allows the par-
tial decryption, the entire quadratic FE scheme is also unbounded and allows
the partial decryption. Intuitively, {iDec(iCTi, iSKj)}i,j∈Sc in CT reveals only
{[xixj + siwj ]T }i,j∈Sc , and {[siwj ]T }i,j∈Sc looks random under the SXDH as-
sumption. Therefore, the decrypter can learn [

∑
i,j∈Sk ci,jxixj ]T if and only if
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it can compute [
∑
i,j∈Sk ci,jsiwj ]T . This is why the decryption condition of the

quadratic FE scheme is reduced to that of the underlying slotted IPFE scheme.
Thus, the remaining task is to construct an unbounded IPFE that allows the
partial decryption armed with the slotted property, which is necessary to achieve
simulation-based security of our unbounded quadratic FE schemes.4

The closest scheme to what we need is the public-key unbounded IPFE
scheme by Tomida and Takashima [TT18], which is an unbounded IPFE allow-
ing the partial decryption. However, their scheme is deficient in the two points.
First, it is not slotted. Second, it can encode only a Zp element for each identifier
while we need to encode a vector consisting of group elements for each identifier
in encryption and key generation5. This is why we construct a new unbounded
slotted IPFE scheme, which is of independent interest. Recall that their scheme
is a direct construction based on the DPVS framework [OT10], and its security
analysis is rather complex. In contrast, our scheme is generically obtained from
slotted IPFE and thus much simpler.

We construct the unbounded slotted IPFE (slotted uIPFE) scheme in two
steps. First, we construct a predicate slotted IPFE (slotted pIPFE) from a slotted
IPFE, which is a slotted variant of the predicate IPFE proposed in [AGT21].
Then, we construct a slotted uIPFE from a slotted pIPFE.

Slotted pIPFE is an extension of slotted IPFE in which we can control de-
cryption conditions by an inner product predicate. Specifically, the message space
is separated in two slots Zdp × G

m1
1 and Gm2

1 , and we can publicly encrypt all

messages of the form (u, [x1]1, [0]1) for (u, [x1]1) ∈ Zdp ×G
m1
1 while we need the

master secret key to encrypt a message of the form (u, [x1]1, [x2]1) for x2 6= 0.
A secret key for (v, [y1]2, [y2]2) ∈ Zdp × G

m1
2 × Gm2

2 is function-hiding with re-
spect to [y2]2, and decryption of these reveals [〈(x1,x2), (y1,y2)〉]T if and only
if 〈u,v〉 = 0. The construction is almost the same as pIPFE in [AGT21] except
that we use a slotted IPFE as a building block instead of an IPFE.

We next define slotted uIPFE more formally. The message space consists
of two slots {(x1, x2) ∈ 2[p] ×

⋃
i∈[p](G

m1
1 )i | |x1| = |x2|/m1} and Gm2

1 , and

we can publicly encrypt all messages of the form (Sc, {[xi]1}i∈Sc , [0]1) while we
need a master secret key to encrypt of the form (Sc, {[xi]1}i∈Sc , [x0]1) for x0 6= 0
similarly to the other slotted FE schemes. A secret key for (Sk, {[yi]2}i∈Sk , [y0]2)
is function-hiding with respect to [y0]2, and decryption reveals [

∑
i∈Sk〈xi,yi〉+

〈x0,y0〉]T if and only if Sk ⊆ Sc.
The high-level idea of the construction of slotted uIPFE is similar to the

uIPFE scheme in [TT18]. For ease of exposition, let us ignore the second slot of
uIPFE for now. Informally, slot encryption for (Sc, {[xi]1}i∈Sc) chooses z ← Zp

4 We require only indistinguishability-based security for unbounded slotted IPFE to
prove simulation-based security of unbounded quadratic FE schemes. Note that the
slotted property with indistinguishability-based security basically implies simulation-
based security, and thus our approach essentially follows previous quadratic FE
schemes with simulation-based security [Gay20,Wee20,GQ20].

5 The second property is required for our unbounded quadratic FE from MDDHk for
k > 1 and FE for ABP ◦UQF.
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and encrypts (ui, [x̃i]1) by slot encryption of pIPFE for all i ∈ Sc, where ui =
(1, i) and x̃i = (xi, z). Key generation for (Sk, {[yi]2}i∈Sk) chooses ai ← Zp so
that

∑
i∈Sk ai = 0 and computes a secret key of pIPFE for (vi, [ỹi]1) for all

i ∈ Sk, where vi = (i,−1) and ỹi = (yi, ai). Then, a decrypter can learn only
[
∑
i∈Sc∩Sk〈xi,yi〉 + zai]T via decryption of pIPFE, where zai = 0 only when

Sk ⊆ Sc, and zai looks random otherwise. Thus, we can recover [
∑
i∈Sk〈xi,yi〉]T

iff Sk ⊆ Sc. We defer how to obtain the slotted property to Section 4.

Put it all together. Let uFE = (uSetup, uSlotEnc, uEnc, uKeyGen, uDec) be
a slotted uIPFE scheme and H : {0, 1}∗ → G2 be a hash function. Then, our
unbounded quadratic FE scheme qFE is informally given as follows:

Setup(1λ): (PK,MSK) = (uPK, uMSK)← uSetup(1λ)
Enc(PK, (Sc, {xi}i∈Sc)): si ← Zp, uCT← uSlotEnc(uPK, (Sc, {si}i∈Sc))

iMSK← iSetup(1λ), [wi]2 = H(i)
iCTi ← iEnc(iMSK, [(xi, si)]1), iSKi ← iKeyGen(iMSK, [(xi, wi)]2).
CT = (uCT, {iCTi, iSKi}i∈Sc).

KeyGen(PK,MSK, (Sk, {ci,j}i,j∈Sk)): [wi]2 = H(i)
SK = uSK← uKeyGen(uMSK, (Sk, {[

∑
j∈Sk ci,jwj ]2}i∈Sk)).

Dec(CT,SK):
∑
i,j∈Sk ci,j iDec(iCTi, iSKj)−uDec(uCT, uSK) = [

∑
i,j∈Sk ci,jxixj ]T .

Since the ciphertext size of slotted uIPFE is linear in |Sc|, that of the above
quadratic FE scheme is also linear in |Sc|. The variable-length scheme without
random oracles can be obtained by generating [w1]2, . . . , [wn′ ]2 in the setup.

Security. Simulation-based security essentially asserts that a challenge cipher-
text can be simulated without a challenge message, and secret keys can be sim-
ulated from corresponding decryption values. In our scheme, the simulation al-
gorithms leverage the second slot of slotted uIPFE scheme uFE. Specifically, a
simulated ciphertext is generated in the same manner as Enc except that uCT
additionally encrypts [1]1 (the generator of g1) in the second slot, and iCTi, iSKi
encrypt [(0, si)]1, [(0, wi)]2 instead of [(xi, si)]1, [(xi, wi)]2, respectively. A simu-
lated secret key for decryption value α is a secret key uSK of uFE that additional
encodes [−α]2 if Sk ⊆ Sc and [0]2 otherwise in the second slot. Thanks to the
slotted property, −uDec(uCT, uSK) = [−

∑
i,j∈Sk ci,jsiwj +α]T if Sk ⊆ Sc in the

above setting and the simulation goes well.
The indistinguishability between the real system and the simulated system

can be proven by a series of hybrids similar to that used in Lin’s secret-key
quadratic FE scheme. Concretely, in the `-th hybrid for ` ∈ Sc, iCTi and iSKi is
encrypting vectors xi and x̃i where

xi =

{
(0, si) (i ≤ `)
(xi, si) (i > `)

, x̃i = (xi, wi)

However, this change is detectable by decrypting the challenge ciphertext, and
we need to adjust the difference using the second slot of uFE in each hybrid.
Concretely, we encode [1]1 into the second slot of uCT in the challenge ciphertext
and [−

∑
i∈S`c∩Sk,j∈Sk

ci,jxixj ]2 into the second slot of uSK iff Sk ⊆ Sc, where S`c
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denotes the set consisting of the first ` elements of Sc. The indistinguishability
between the `− 1-th hybrid and the `-th hybrid can be proven similarly to the
proof of Lin’s scheme. Observe that, in the final hybrid, the view of the adversary
basically corresponds to that in the simulated system.

Extension to FE for ABP ◦ UQF. The high-level idea to extend our un-
bounded quadratic FE to FE for ABP ◦ UQF is similar to the technique used
when achieving unboundedness in quadratic FE. That is, we can basically ob-
tain FE for ABP ◦ UQF by enhancing the unbounded uIPFE uFE so that it
can compute ABPs on a public input and linear functions on a private input. A
similar idea is also used in the construction of Wee’s recent partially-hiding FE
scheme [Wee20]. We use a partially garbling scheme (PGS) for ABPs [IW14] for
a building block.

We can formulate PGS for ABPs as follows. A garbling algorithm pgb takes
an ABP f : Znp → Zn′p , a public input u ∈ Znp , a private input x ∈ Zn′p , a random
tape t ∈ Zt−1p and outputs

` = (u′>L1t, . . . ,u
′>Lmt, x1 + u′>Lm+1t, . . . , xn′ + u′>Ltt) ∈ Ztp

where u′ = (u, 1), the parameter t and matrices Li ∈ Z(n+1)×(t−1)
p are deter-

mined by f , and m = t − n′. The correctness of the PGS requires that we can
reconstruct 〈f(u),x〉 given ` together with f and u. Furthermore, the reconstruc-
tion is linear in `, that is, there exists df,u ∈ Ztp and we have 〈df,u, `〉 = 〈f(u),x〉.
The PGS is secure if there is an efficient algorithm pgb∗ that takes (f,u, α, t) for
α ∈ Zp, and the output distributions of pgb(f,u,x; t) and pgb∗(f,u, 〈f(u),x〉; t)
are statistically close where the probability is taken over t← Zt−1p .

Given the PGS for ABPs, we modify our unbounded quadratic FE scheme
qFE to obtain FE for ABP ◦ UQF as follows. In encryption of (u, Sc, {xi}i∈Sc),
now uCT encrypts ru′ with respect to identifier p in addition to {si}i∈Sc where
r ← Zp (recall that Sc ⊆ [p− 1] in FE for ABP ◦UQF). A secret key for (Sk, f)
consists of a set {uSKh}h∈[t] of secret keys of slotted uIPFE where uSKh encodes
[wi]2 for i ∈ Sk and Lht such that uDec(uCT, uSKh) decrypts to the h-th element
of [`]T where

` = (ru′>L1t, . . . , ru
′>Lmt, (siwj + ru′>Lφ(i,j)t)i,j∈Sk) ∈ Ztp (1.1)

and φ : Sk × Sk → {m + 1, . . . , t} is a bijective function. Then, the decryption
works as follows:∑

i,j∈Sk

fi,j(u)iDec(iCTi, iSKj)− 〈df,u, [`]T 〉

=[
∑
i,j∈Sk

fi,j(u)(xixj + siwj)]T − [
∑
i,j∈Sk

fi,j(u)siwj ]T = [
∑
i,j∈Sk

fi,j(u)xixj ]T

where the first equality follows from the correctness of the PGS.
The simulation algorithms of this extension scheme can be constructed in a

similar manner to our unbounded quadratic FE scheme. A simulated ciphertext
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is the same as a normal ciphertext except that uCT encrypts [0]1 in the first slot
and [1]1 in the second slot, and iCTi, iSKi encrypt [(0, si)]1, [(0, wi)]2 instead of
[(xi, si)]1, [(xi, wi)]2, respectively. A simulated secret key for decryption value α is
the same as a normal secret key except that the h-th element of [pgb∗(f,u,−α+∑
i,j∈Sk fi,j(u)siwj , t)]2 (if Sk ⊆ Sc) or 0 (if Sk 6⊆ Sc) is encoded in the second

slot of uSKh, where t is a random vector in Zt−1p . In this simulation, we have
〈df,u, (uDec(uCT, uSKh)h∈[t]〉 = [−α +

∑
i,j∈Sk fi,j(u)siwj ]T if Sk ⊆ Sc, and

thus the simulation works.6

The intuition for the indistinguishability between the real system and the
simulated system is given as follows. The adversary in the real system can basi-
cally learn {[xixj + siwj ]T }i,j∈Sc from iCTi, iSKi in the challenge ciphertext and
[`]T defined in Eq. (1.1) with respect to secret keys for Sk ⊆ Sc from uCT, uSKh.
Under the SXDH, the adversary cannot detect the change if ` is computed as

` = (u′>L1t̃, . . . ,u
′>Lmt̃, (siwj + u′>Lφ(i,j)t̃)i,j∈Sk)

where t̃ is a random vector that is independent of t used in generating uSKh.
Then, due to the security of the PGS, ` reveals only [

∑
i,j∈Sk fi,j(u)siwj ]T .

Again, {siwj}i,j∈Sc looks random under the SXDH, and thus we have

{{[xixj + siwj ]T }i,j∈Sc , [
∑
i,j∈Sk

fi,j(u)siwj ]T }

≈c {{[siwj ]T }i,j∈Sc , [
∑
i,j∈Sk

fi,j(u)(siwj − xixj)]T }

where the RHS basically corresponds to the view in the simulated system.

2 Preliminaries

2.1 Notations

For m ∈ N, [m] denotes a set {1, . . . ,m}. For vectors v1, . . . ,vn, (v1, . . . ,vn)
denotes the vector concatenation as row vectors regardless of whether each vi
is a row or column vector. For instance, for v1 ∈ Zm×1p ,v2 ∈ Z1×n

p , (v1,v2) =

(v>1 ||v2). For a matrix A = (aj,`)j,` over Zp, [A]i denotes a matrix over Gi
whose (j, `)-th entry is g

aj,`
i , and we use this notation for vectors and scalars

similarly. We use ⊗ for the Kronecker product. For a matrix M ∈ Za×bp and

vectors a ∈ Zap,b ∈ Zbp, we denote a vector m such that 〈a ⊗ b,m〉 = a>Mb
by vec(M). For families of distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we
denote X ≈c Y and X ≈s Y as computational indistinguishability and statistical
indistinguishability, respectively.

6 It is not hard to see that the security of the partially garbling scheme implies that
〈df,u, pgb∗(f,u, α; t)〉 = α for all α ∈ Zp.
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2.2 Basic Tools and Assumptions

Definition 2.1 (Bilinear Groups). Let {Gλ}λ∈N be a family of bilinear groups.
Bilinear groups Gλ=(p,G1, G2, GT , g1, g2, e) are specified by a prime p, cyclic
groups G1, G2, GT of order p, generators g1 and g2 of G1 and G2 respectively,
and a bilinear map e : G1 ×G2 → GT , which has two properties.

– (Bilinearity): ∀h1 ∈ G1, h2 ∈ G2, a, b ∈ Zp, e(ha1 , hb2) = e(h1, h2)ab.

– (Non-degeneracy): For g1 and g2, gT = e(g1, g2) is a generator of GT .

In what follows, we omit the index λ from Gλ and abuse notation by denoting
a family of bilinear groups {Gλ}λ∈N also by G if it is clear in the context.

Definition 2.2 (Dj,k-MDDH Assumption [EHK+17]). Let {G} be a fam-
ily of bilinear groups. For j > k, let Dj,k be a matrix distribution over matrices in
Zj×kp , which outputs a full-rank matrix with overwhelming probability. We can
assume that, wlog, the first k rows of a matrix chosen from Dj,k form an invert-
ible matrix. We consider the following distribution: A ← Dj,k, z ← Zkp, k0 =

Az, k1 ← Zjp, Pi,β = (G, [A]i, [kβ ]i). We say that the Dj,k-MDDH assumption
holds with respect to {G} if, for any PPT adversary A,

Adv
Dj,k-MDDH
A = max

i∈{1,2}
|Pr[1← A(Pi,0)]− Pr[1← A(Pi,1)]| ≤ negl(λ).

In what follows, we denote Dk+1,k by Dk. Note that the well-known k-Lin as-
sumption can be captured as the Dk-MDDH assumption.

Uniform Distribution. Let Uj,k be a uniform distribution over Zj×kp . Then,
the following holds with tight reductions: Dk-MDDH⇒ Uk-MDDH⇒ Uj,k-MDDH.
We denote Dk-MDDH by MDDHk.

Definition 2.3 (Arithmetic Branching Programs (ABPs)). An arithmetic
branching program f : Znp → Zp is defined by a prime p, a directed acyclic graph

(V,E), two special vertices v0, v1 ∈ V , and a labeling function σ : E → FAffine,
where FAffine consists of all affine functions g : Znp → Zp. The size of f is the
number of vertices |V |. Given an input x ∈ Znp to the ABP, we can assign a Zp
element to edge e ∈ E by σ(e)(x). Let P be the set of all paths from v0 to v1.
Each element in P can be represented by a subset of E. The output of the ABP
on input x is defined as

∑
E′∈P

∏
e∈E′ σ(e)(x). We can extend the definition of

ABPs for functions f : Znp → Zn′p by evaluating each output in a coordinate-wise

manner and denote such a function class by FABP
n,n′ .

Note that we can convert any boolean formula, boolean branching program
or arithmetic formula to an arithmetic branching program with a constant blow-
up in the representation size. Thus, ABPs are a stronger computational model
than all of the above.
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2.3 Functional Encryption

We first define functional encryption (FE). In FE, the system can generate a
secret key that is associated with a function f , and a ciphertext for a message x
decrypts to f(x) when it is decrypted by the secret key for f . Typically, FE is
defined as the ciphertext for x entirely hides x. Recently, the more generalized
notion called partially hiding FE [AJS18] was introduced, where the ciphertext
of x partially hides x. More precisely, x consists of the public part xpub and the
private part xpriv, and the ciphertext for x hides only xpriv. In this paper, we use
several classes of partially hiding FE, which is formally defined as follows.

Definition 2.4 (Functional Encryption). Let X = Xpub×Xpriv be a message
space. Let F be a function family such that, for all f ∈ F, f : X→ Z. A (public-
key) functional encryption (FE) scheme for F, FE, consists of four algorithms.

Setup(1λ): It takes a security parameter 1λ and outputs a public parameter PK
and a master secret key MSK. The other three algorithms implicitly take PK
as input.

Enc(x): It takes x ∈ X and outputs a ciphertext CT.
KeyGen(MSK, f): It takes MSK and f ∈ F, and outputs a secret key SK.
Dec(CT,SK): It takes CT and SK, and outputs a decryption value d ∈ Z or a

symbol ⊥.

Correctness. FE is correct if it satisfies the following condition. For all λ ∈
N, x ∈ X, f ∈ F, we have

Pr

Dec(CT,SK) = f(x)

∣∣∣∣∣∣
PK,MSK← Setup(1λ)
CT← Enc(x)
SK← KeyGen(MSK, f)

 = 1.

Security. We define two types of partially-hiding security for FE, namely,
indistinguishability-based security and simulation-based security7. We first de-
fine indistinguishability-based security. For a stateful PPT adversary A and
λ ∈ N, let

AdvFE
A,i-ph(λ) =

∣∣∣∣∣∣∣∣Pr

β′ = β

∣∣∣∣∣∣∣∣
β ← {0, 1}, PK,MSK← Setup(1λ)
(xpub, x

0
priv, x

1
priv)← A(PK)

CT← Enc((xpub, x
β
priv))

β′ ← AKeyGen(MSK,·)(CT)

− 1/2

∣∣∣∣∣∣∣∣
(2.1)

Let qk be a number of queries to KeyGen and f ` be the `-th function on which
A queries KeyGen. We say A is admissible if A’s queries satisfy the followings:

f `((xpub, x
0
priv)) = f `((xpub, x

1
priv)) for all ` ∈ [qk].

7 We consider only selective (or semi-adaptive more precisely) security in this paper.
It is well-known that semi-adaptive simulation-based security implies semi-adaptive
indistinguishability-based security.
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FE is said to be IND-partially hiding if, for all admissible PPT adversaries A,
we have AdvFE

A,i-ph(λ) ≤ negl(λ).
Next we define simulation-based security. For a stateful PPT adversary A,

λ ∈ N, and simulation algorithms (Setup∗,Enc∗,KeyGen∗) let

AdvFE
A,s-ph(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

β = 1

∣∣∣∣∣∣∣∣
PK,MSK← Setup(1λ)
x = (xpub, xpriv)← A(PK)
CT← Enc((xpub, xpriv))
β ← AKeyGen(MSK,·)(CT)



−Pr

β = 1

∣∣∣∣∣∣∣∣
PK∗,MSK∗ ← Setup∗(1λ)
x = (xpub, xpriv)← A(PK∗)
CT∗ ← Enc∗(MSK∗, xpub)

β ← AKeyGen∗(MSK∗,·)(CT∗)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.2)

where KeyGen∗ obtains f(x) and xpub together with f whenever A queries f to
KeyGen∗. FE is said to be SIM-partially hiding if, for all A, there exist simulation
algorithms (Setup∗,Enc∗,KeyGen∗) and we have AdvFE

A,s-ph(λ) ≤ negl(λ). It is
not well-known that simulation-based security implies indistinguishability-based
security in (public-key) FE.

Next, we define a more generalized notion that we call slotted functional en-
cryption. Slotted FE was first introduced in [LV16] for inner product function-
ality, which is called slotted inner product FE. We extend it to handle general
functions since we use slotted FE schemes for other classes in this paper.

Before explaining the definition of slotted FE, let us recall the notion of
function-hiding FE. In function-hiding FE, a secret key for f hides f as well
as a ciphertext for x hides x. We usually consider the secret-key setting where
encryption requires a master secret key for function-hiding FE. This is because
an adversary can learn f(x) for any x from a secret key for f in public-key FE,
and it is difficult to achieve meaningful function-hiding security.

Slotted FE is a hybrid between public-key FE and function-hiding secret-key
FE. In slotted FE, a private message space Xpriv consists of two spaces Xpriv1 and
Xpriv2, that is, a massage space consists of three spaces: X = Xpub×Xpriv1×Xpriv2.
For some default value e ∈ Xpriv2, a user can publicly encrypt (xpub, xpriv, e) ∈ X

for all (xpub, xpriv) ∈ Xpub×Xpriv1 while an owner of master secret key can encrypt
all x ∈ X. On the other hand, a function space F consists of two spaces Fpub

and Fpriv. A secret key for f = (fpub, fpriv) ∈ Fpub × Fpriv hides fpriv. Intuitively,
meaningful function-hiding security with respective to Fpriv can be achieved by
the fact that the adversary can encrypt only messages of the form (xpub, xpriv, e) ∈
X. Slotted FE is formally defined as follows.

Definition 2.5 (Slotted Functional Encryption). Let X = Xpub ×Xpriv1 ×
Xpriv2 be a message space. We sometimes denote Xpriv1 × Xpriv2 by Xpriv. Let
F = Fpub × Fpriv be a function family such that, for all f ∈ F, f : X → Z.
A slotted functional encryption (SlotFE) scheme for F, SlotFE, consists of five
algorithms.
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Setup(1λ): It takes a security parameter 1λ and outputs a public key PK and
a master secret key MSK. The other four algorithms implicitly take PK as
input.

Enc(MSK, x): It takes MSK and x ∈ X and outputs a ciphertext CT.
SlotEnc(x): It takes x ∈ Xpub × Xpriv1 and outputs a ciphertext CT.
KeyGen(MSK, f): It takes MSK and f ∈ F, and outputs a secret key SK.
Dec(CT,SK): It takes CT and SK, and outputs a decryption value d ∈ Z or a

symbol ⊥.

Correctness. SlotFE is correct if it satisfies the following condition. For all
λ ∈ N, x ∈ X, f ∈ F, we have

Pr

Dec(CT,SK) = f(x)

∣∣∣∣∣∣
PP,MSK← Setup(1λ)
CT← Enc(MSK, x)
SK← KeyGen(MSK, f)

 = 1.

Slot-mode correctness. SlotFE is slot-mode correct with respect to a public
element e ∈ Xpriv2 if it satisfies the following condition. For all λ ∈ N, x ∈
Xpub × Xpriv1, the following distributions are identical:{

(PK,MSK,CT) | (PK,MSK)← Setup(1λ), CT← Enc(MSK, (x, e))
}{

(PK,MSK,CT) | (PK,MSK)← Setup(1λ), CT← SlotEnc(x)
}

Security. We define partially-hiding security for SlotFE. For slotted FE, we
consider only indistinguishability-based security. For a stateful PPT adversary
A and λ ∈ N, let

AdvSlotFE
A,ph =

∣∣∣∣Pr

[
β′ = β

∣∣∣∣ β ← {0, 1}, PK,MSK← Setup(1λ)
β′ ← AcO(β,·),kO(β,·)(PK)

]
− 1/2

∣∣∣∣ (2.3)

where cO(β, ·) takes (xpub, x
0
priv, x

1
priv) ∈ Xpub×X2

priv and returns Enc(MSK, (xpub, x
β
priv)),

kO(β, ·) takes (fpub, f
0
priv, f

1
priv) ∈ Fpub×F2

priv and returns KeyGen(MSK, (fpub, f
β
priv)).

Let qc, qk be a number of queries to cO, kO, respectively. Let xj,β = (xjpub, x
j,β
priv)

for j ∈ [qc], and f `,β = (f `pub, f
`,β
priv) for ` ∈ [qk]. We say A is admissible if A’s

queries satisfy the followings:

– A never queries cO after querying kO even once8;
– f `,0(xj,0) = f `,1(xj,1) for all j ∈ [qc], ` ∈ [qk]; and
– f `,0((x, e)) = f `,1((x, e)) for all ` ∈ [qk], x ∈ Xpub × Xpriv1 where e is the

public element defined in slot-mode correctness9.

8 This condition implies selective security (or semi-adaptive security more precisely).
9 In general, this condition is necessary since the adversary can publicly encrypt (x, e)

for all x ∈ Xpub × Xpriv1 and decrypt the ciphertexts with its own secret keys. In
this paper, however, we handle only function classes where this condition is always
satisfied as long as the public parts of f `,0 and f `,1 are the same. Thus, we can
ignore this condition in this paper.
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SlotFE is said to be IND-qc-partially hiding if, for all admissible PPT adversaries
A querying cO at most qc times, we have AdvSlotFE

A,ph ≤ negl(λ). When qc can be
any polynomial, i.e., qc = poly(λ), we call the scheme just IND-partially hiding.

We define slotted FE for inner product over bilinear groups called slotted
IPFE, which we extensively use in this paper. A concrete construction of slotted
IPFE is found in [LL20, Appendix A].

Definition 2.6 (Slotted IPFE). Let G = (p,G1, G2, GT , g1, g2, e) be bilinear
groups, Xpub = ∅,Xpriv1 = Gm1

1 ,Xpriv2 = Gm2
1 ,Fpub = Gm1

2 ,Fpriv = Gm2
2 . A

function family FIP
m1,m2,G = Fpub × Fpriv consists of functions f : Xpub × Xpriv1 ×

Xpriv2 → GT ∪{⊥}. Each f ∈ FIP
m1,m2,G is specified by ([y1]2, [y2]2) ∈ Fpub×Fpriv

where yi = Zmip and defined as

f([x1]1, [x2]1) = [〈x1,y1〉+ 〈x2,y2〉]T

where xi ∈ Zmip . We refer to slotted FE for FIP
m1,m2,G as slotted IPFE. Note that

when m1 = 0, slotted IPFE corresponds to secret-key function-hiding IPFE.

We define FE for unbounded quadratic functions (UQF) and its extension to
the combination with ABPs (ABP◦UQF). Our goal in this paper is to construct
FE (not slotted FE) schemes for the two functionalities. We formally define the
two functionalities as follows.

Definition 2.7 (Unbounded Quadratic Functional Encryption). Let
G = (p,G1, G2, GT , g1, g2, e) be bilinear groups, Xpub × Xpriv = {(x1, x2) ∈
2[p] ×

⋃
i∈[p] Zip | |x1| = |x2|} where |x1| denotes the cardinality of x1, and |x2|

denotes the length of x2. Let F = {(f1, f2) ∈ 2[p] ×
⋃
i∈[p] Zi

2

p | |f1|2 = |f2|}. A

function family FUQF
G = F consists of functions f : Xpub×Xpriv → GT ∪{⊥}. Each

f ∈ FUQF
G is specified by (Sk, c) ∈ F where Sk ⊆ [p], c = (ci.j)i.j∈Sk ∈ (Zp)Sk×Sk

and defined as

f((Sc,x)) =

{
[
∑
i,j∈Sk ci,jxixj ]T Sk ⊆ Sc

⊥ otherwise

where Sc ⊆ [p],x = (xi)i∈Sc ∈ ZScp . Note that Sc is the public input while x is a

private input. We refer to FE for FUQF
G with the ciphertext-size being linear in

|Sc| as unbounded quadratic functional encryption.

Definition 2.8 (Functional Encryption for ABP◦UQF). Let G = (p,G1,
G2, GT , g1, g2, e) be bilinear groups, q = p − 1, Xpub × Xpriv = {((x1, x2), x3)
∈ (Znp × 2[q]) ×

⋃
i∈[q] Zip | |x2| = |x3|} where |x2| denotes the cardinality of x2,

and |x3| denotes the length of x3. Let F = {(f1, f2) ∈ 2[q]×
⋃
i∈[q] F

ABP
n,i2 | |f1|2 =

OutLen(f2)} where |f1| denotes the cardinality of f1, and OutLen(f2) denotes
the output length of f2. A function family FABP◦UQF

n,G = F consists of functions
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f : Xpub × Xpriv → GT ∪ {⊥}. Each f ∈ FABP◦UQF
n,G is specified by (Sk, f

ABP) ∈ F

where Sk ⊆ [q], fABP ∈ FABP
n,|Sk|2 and defined as

f((u, Sc,x)) =

{
[
∑
i,j∈Sk f

ABP
i,j (u)xixj ]T Sk ⊆ Sc

⊥ otherwise

where u ∈ Znp , Sc ⊆ [q],x = (xi)i∈Sc ∈ ZScp and fABP
i,j (u) is the (i, j)-th element

of fABP(u). Note that u, Sc are the public input while x is a private input. We
refer to FE for FABP◦UQF

n,G with the ciphertext-size being linear in |Sc| and |u| as
FE for ABP ◦UQF.

Note that our scheme computes function values as an exponent of a group
element where the discrete log problem is hard. Thus, we require the exponent
to be in a polynomial range if the decrypter needs to obtain the function value
as a Zp element. Note that this restriction is common in all previous FE schemes
for inner product or quadratic functions based on cyclic groups.

3 Predicate Slotted Inner Product Functional Encryption

In this section, we define a new primitive called predicate slotted IPFE and show
how to construct it. We use it as a building block of our unbounded slotted IPFE
scheme that we present in Section 4.

3.1 Definitions

Definition 3.1 (Predicate Slotted IPFE). Let G be bilinear groups, Xpub =
Zdp,Xpriv1 = Gm1

1 ,Xpriv2 = Gm2
1 ,Fpub = Zdp×G

m1
2 ,Fpriv = Gm2

2 . A function family

FPIP
d,m1,m2,G = Fpub×Fpriv consists of functions f : Xpub×Xpriv1×Xpriv2 → GT∪{⊥}.

Each f ∈ FPIP
d,m1,m2,G is specified by ((v, [y1]2), [y2]2) ∈ Fpub × Fpriv where v ∈

Zdp,yi ∈ Zmip and defined as

f(u, [x1]1, [x2]1) =

{
[〈x1,y1〉+ 〈x2,y2〉]T if 〈u,v〉 = 0

⊥ if 〈u,v〉 6= 0

where u ∈ Zdp,xi ∈ Zmip . We refer to slotted FE (Definition 2.5) for FPIP
d,m1,m2,G

as predicate slotted IPFE.

3.2 Predicate Slotted IPFE from Slotted IPFE

We construct a partially hiding slotted FE scheme for FPIP
d,m1,m2,G from a partially

hiding FE scheme for FIP
kd+m1,2m2+1,G in a generic way. Note that k is a parameter

for the MDDHk assumption.
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Construction. Let iFE = (iSetup, iEnc, iSlotEnc, iKeyGen, iDec) be a partially
hiding slotted FE scheme for FIP

kd+m1,2m2+1,G with slot-mode correctness for e =

[02m2+1]1. Then, our partially hiding slotted FE scheme pFE = (pSetup, pEnc,
pSlotEnc, pKeyGen, pDec) for FPIP

d,m1,m2,G with slot-mode correctness for e = [0m2 ]1
is constructed as follows.

pSetup(1λ): It outputs (pPK, pMSK) = (iPK, iMSK)← iSetup(1λ).
pEnc(pMSK, (u, [x1]1, [x2]1)): It outputs pCT as follows:

z← Zkp, x̃1 = (z⊗ u,x1) ∈ Zkd+m1
p , x̃2 = (x2, 0

m2 , 0) ∈ Z2m2+1
p

iCT← iEnc(iMSK, ([x̃1]1, [x̃2]1)), pCT = (u, iCT).

pSlotEnc(u, [x1]1): It outputs pCT as follows:

z← Zkp, x̃1 = (z⊗ u,x1) ∈ Zkd+m1
p , iCT← iSlotEnc([x̃1]1), pCT = (u, iCT).

pKeyGen(pMSK, (v, [y1]2, [y2]2)): It outputs pSK as follows:

a← Zkp, ỹ1 = (a⊗ v,y1) ∈ Zkd+m1
p , ỹ2 = (y2, 0

m2 , 0) ∈ Z2m2+1
p

iSK← iKeyGen(iMSK, ([ỹ1]1, [ỹ2]1)), pSK = (v, iSK).

pDec(pCT, pSK): If 〈u,v〉 6= 0, it outputs ⊥. Otherwise, outputs iDec(iCT, iSK).

Correctness. Since 〈z ⊗ u,a ⊗ v〉 = 〈z,a〉 · 〈u,v〉, iDec(iCT, iSK) outputs
[〈x̃1, ỹ1〉+ 〈x̃2, ỹ2〉]T = [〈x1,y1〉+ 〈x2,y2〉]T if 〈u,v〉 = 0. This follows from the
correctness of iFE.

Slot-mode correctness. Thanks to slot-mode correctness of iFE, iSlotEnc([x̃1]1)
and iEnc(iMSK, ([x̃1]1, [0

2m2+1]1)) are identically distributed for all correctly gen-
erated (iMSK, iPK) and x̃1 ∈ Zkd+m1

p . Hence, pSlotEnc(u, [x1]1) and pEnc(pMSK,
(u, [x1]1, [0

m2 ]1)) are identically distributed for all correctly generated (pMSK, pPK),
u ∈ Zdp, and x1 ∈ Zm1

p .

3.3 Security Analysis

For security, we have the following theorem.

Theorem 3.1. If iFE is IND-partially hiding, and the MDDHk assumption holds
in G, then pFE is IND-partially hiding.

Proof. We prove Theorem 3.1 via a series of hybrid games Hβι,1, . . . ,H
β
ι,4 for

ι ∈ [qc] and Hβf . We show that Hβs ≈c Hβ1,1 ≈c · · · ≈c Hβ1,4 ≈c Hβ2,1 ≈c · · · ≈c
Hβqc,4 ≈c Hβf , where Hβs for β ∈ {0, 1} is the original security game (described

in Eq. (2.3)). Especially, the oracles cO and kO works as Fig 1 in Hβs . In the
hybrid sequence, the behavior of the oracles is gradually changed. Each hybrid
is defined as follows.

Hβι,1: This game is the same as Hβs except that
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cO(β, ·)
Input: u ∈ Xpub, ([(x

0
1,x

0
2)]1, [(x

1
1,x

1
2)]1) ∈ X2

priv

z← Zkp, x̃1 = (z⊗ u,xβ1 ), x̃2 = (xβ2 , 0
m2 , 0)

iCT← iEnc(iMSK, ([x̃1]1, [x̃2]1))

Output: pCT = (u, iCT)

kO(β, ·)
Input: (v, [y1]2) ∈ Fpub, ([y

0
2]2, [y

1
2]2) ∈ F2

priv

a← Zkp, ỹ1 = (a⊗ v,y1), ỹ2 = (yβ2 , 0
m2 , 0)

iSK← iKeyGen(iMSK, ([ỹ1]1, [ỹ2]1))

Output: pSK = (v, iSK)

Fig 1. The behavior of cO and kO in Hβs .

– for the j-th query to cO on (uj , ([(xj,01 ,xj,02 )]1, [(x
j,1
1 ,xj,12 )]1)), it chooses

zj ← Zkp and sets x̃j1, x̃
j
2 as

x̃j1 =


(zj ⊗ uj ,xj,01 ) (j < ι)

(0kd ,xj,β1 ) (j = ι)

(zj ⊗ uj ,xj,β1 ) (j > ι)

, x̃j2 =


(0m2 ,xj,02 , 0) (j < ι)

(xj,β2 , 0m2 , 1) (j = ι)

(xj,β2 , 0m2 , 0) (j > ι)

– for the `-th query to kO on (v`, [y`1]2, ([y
`,0
2 ]2, [y

`,1
2 ]2)), it chooses a` ← Zkp

and sets

ỹ`1 = (a` ⊗ v`,y`1), ỹ`2 = (y`,β2 ,y`,02 , 〈zι,a`〉 · 〈uι,v`〉)

Hβι,2: This game is the same as Hβι,1 except that in each query to kO, it samples

t` ← Zp and sets ỹ`2 = (y`,β2 ,y`,02 , t` · 〈uι,v`〉).
Hβι,3: This game is the same as Hβι,2 except that cO sets x̃ι1 = (0kd,xι,01 ) and

x̃ι2 = (0m2 ,xι,02 , 1).

Hβι,4: This game is the same as Hβι,3 except that

– cO sets x̃ι1 = (zι ⊗ uι,xι,01 ) and x̃ι2 = (0m2 ,xι,02 , 0).

– kO sets ỹ`2 = (y`,β2 ,y`,02 , 0) for all queries.

Hβf : This game is the same as Hβqc,4 except that kO sets ỹ`2 = (0m2 ,y`,02 , 0) for
all queries.

Observe that the adversary does not obtain the information on β in Hβf , and
thus its advantage is 0. Thanks to Lemmata 3.1 to 3.5, Theorem 3.1 holds. ut

Lemma 3.1. Let Hβs = Hβ0,4. For all ι ∈ [qc], Hβι−1,4 ≈c Hβι,1 if iFE is IND-
partially hiding.

Proof. Observe that the difference between Hβι−1,4 and Hβι,1 is

– x̃ι1 = (zι ⊗ uι,xι,β1 ) −→ x̃ι1 = (0kd,xι,β1 )

– x̃ι2 = (xι,β2 , 0m2 , 0) −→ x̃ι2 = (xι,β2 , 0m2 , 1)

– ỹ2 =

{
(yβ2 , 0

m2 , 0) (ι = 1)

(yβ2 ,y
0
2, 0) (ι > 1)

−→ ỹ2 = (yβ2 ,y
0
2, 〈zι,a〉 · 〈uι,v〉) for all queries

to kO.
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For j ∈ [qc] and ` ∈ [qk], let (x̂j,01 , x̂j,02 ) and (ŷ`,01 , ŷ`,02 ) be (x̃j1, x̃
j
2) and (ỹ`1, ỹ

`
2)

defined in Hβι−1,4, respectively. Similarly, let (x̂j,11 , x̂j,12 ) and (ŷ`,11 , ŷ`,12 ) be (x̃j1, x̃
j
2)

and (ỹ`1, ỹ
`
2) defined in Hβι,1, respectively. Then, it is not hard to see that 〈x̂j,01 , ŷ`,01 〉

+ 〈x̂j,02 , ŷ`,02 〉 = 〈x̂j,11 , ŷ`,11 〉 + 〈x̂j,12 , ŷ`,12 〉 and ŷ`,01 = ŷ`,11 for all j ∈ [qc] and

` ∈ [qk]. Thus, we can reduce the indistinguishability between Hβι−1,4 and Hβι,1
to the partially-hiding security of iFE. This concludes the proof. ut

Lemma 3.2. For all ι ∈ [qc], H
β
ι,1 ≈c H

β
ι,2 if the MDDHk assumption holds in

G.

Proof. We can construct an adversary B against an MDDHk problem from a
distinguisher A of the two hybrids as follows.

1. B obtains a Uqk,k-MDDH instance (G, [A]2, [kδ]2), where A ∈ Zqk×kp , k0 =
Az, k1 ← Zqkp .

2. B sets (pPK, pMSK) = (iPK, iMSK)← iSetup and gives pPK to A.

3. For all queries to cO, B replies in the same way as Hβι,1. This is possible since
A generates pMSK by itself.

4. For the `-th query to kO on (v`, [y`1]2, ([y
`,0
2 ]2, [y

`,1
2 ]2)), B replies in the same

way as Hβι,1 except that it sets ỹ`2 = (y`,β2 ,y`,02 , k` · 〈uι,v`〉), where a` is the
`-th row of A and k` is the `-th entry of kδ.

5. B outputs 1 if A outputs β, and outputs 0 otherwise.

It is not hard to see that A’s view corresponds to Hβι,1 if δ = 0 and Hβι,2 otherwise.
ut

Lemma 3.3. For all ι ∈ [qc], H
β
ι,2 ≈c H

β
ι,3 if iFE is IND-partially hiding.

Proof. For j ∈ [qc] and ` ∈ [qk], let (x̂j,01 , x̂j,02 ) and (ŷ`,01 , ŷ`,02 ) be (x̃j1, x̃
j
2) and

(ỹ`1, ỹ
`
2) defined in Hβι,2, respectively. Similarly, let (x̂j,11 , x̂j,12 ) and ŷ`,11 be (x̃j1, x̃

j
2)

and ỹ`1 defined in Hβι,3, respectively. Let

ŷ`,12 = (y`,β2 ,y`,02 , t` · 〈uι,v`〉+ 〈xι,β1 − xι,01 ,y`1〉+ 〈xι,β2 ,y`,β2 〉 − 〈x
ι,0
2 ,y`,02 〉).

Then, it is not hard to see that 〈x̂j,01 , ŷ`,01 〉+〈x̂
j,0
2 , ŷ`,02 〉 = 〈x̂j,11 , ŷ`,11 〉+〈x̂

j,1
2 , ŷ`,12 〉

and ŷ`,01 = ŷ`,11 for all j ∈ [qc] and ` ∈ [qk]. Thus, we can reduce the indistin-
guishability between the 0-side and 1-side to the function-hiding property of iFE.
Here, we have the two cases:

〈uι,v`〉 = 0: Due to the admissibility of A, we have

〈xι,β1 − xι,01 ,y`1〉+ 〈xι,β2 ,y`,β2 〉 − 〈x
ι,0
2 ,y`,02 〉 = 0

〈uι,v`〉 6= 0: Since t` is distributed randomly in Zp, the term t` · 〈uι,v`〉 is also
distributed randomly.

Hence, ŷ`,02 and ŷ`,12 are identically distributed in both cases, which means that

the 0-side corresponds to Hβι,2 and the 1-side corresponds to Hβι,3. ut
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Lemma 3.4. For all ι ∈ [qc], H
β
ι,3 ≈c H

β
ι,4 if iFE is IND-partially hiding and the

MDDHk assumption holds in G.

We omit the proof since Lemma 3.4 can be proven similarly to Lemmata 3.1
and 3.2.

Lemma 3.5. Hβqc,4 ≈c H
β
f if iFE is IND-partially hiding.

We omit the proof since Lemma 3.5 can be proven similarly to Lemma 3.1.

4 Unbounded Slotted Inner Product Functional
Encryption

In this section, we define a new primitive called unbounded slotted IPFE and
show how to construct it. We use it as a building block of our FE schemes for
unbounded quadratic functions (Section 5) and ABP ◦ UQF (Section 6).

4.1 Definitions

Definition 4.1 (Unbounded Slotted IPFE). Let G be bilinear groups,
Xpub×Xpriv1×Xpriv2 = {(x1, x2, x3) ∈ 2[p]×

⋃
i∈[p](G

m1
1 )i×Gm2

1 | |x1| = |x2|/m1},
where |x1| denotes the cardinality of x1, and |x2| denotes the length of x2. Let
Fpub × Fpriv = {((f1, f2), f3) ∈ (2[p] ×

⋃
i∈[p](G

m1
2 )i) × Gm2

2 | |f1| = |f2|/m1}. A

function family FUIP
m1,m2,G = Fpub × Fpriv consists of functions f : Xpub × Xpriv →

GT ∪ {⊥}. Each f ∈ FUIP
m1,m2,G is specified by ((Sk, [y]2), [y0]2) ∈ Fpub × Fpriv

where Sk ⊆ [p],y = (yi)i∈Sk ∈ (Zm1
p )Sk ,y0 ∈ Zm2

p and defined as

f(Sc, [x]1, [x0]1) =

{
[
∑
i∈Sk〈xi,yi〉+ 〈x0,y0〉]T if Sk ⊆ Sc

⊥ otherwise

where Sc ⊆ [p],x = (xi)i∈Sc ∈ (Zm1
p )Sc ,x0 ∈ Zm2

p . Note that Sc is the public
input while [x]1 is a private input for the first slot, and [x0]1 is a private input
for the second slot. We refer to slotted FE (Definition 2.5) for FUIP

m1,m2,G as
unbounded slotted IPFE.

4.2 Unbounded Slotted IPFE from Predicate Slotted IPFE

Construction. Let k be the parameter of the MDDHk assumption. Let pFE =
(pSetup, pEnc, pSlotEnc, pKeyGen, pDec) be a partially hiding slotted FE scheme
for FPIP

2,m1+k,1,G with slot-mode correctness for e = [0]1. Let iFE = (iSetup, iEnc,

iSlotEnc, iKeyGen, iDec) be a partially hiding slotted FE scheme for FIP
k,m2+1,G

with slot-mode correctness for e = [0m2+1]1. Then, our partially hiding slot-
ted FE scheme uFE = (uSetup, uEnc, uSlotEnc, uKeyGen, uDec) for FUIP

m1,m2,G with
slot-mode correctness for e = [0m2 ]1 is constructed as follows.
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uSetup(1λ): It runs (pPK, pMSK)← pSetup(1λ), (iPK, iMSK)← iSetup(1λ), and
outputs (uPK, uMSK) = ((pPK, iPK), (pMSK, iMSK)).

uEnc(uMSK, (Sc, [x]1, [x0]1)): It chooses z← Zkp and outputs uCT as follows:

ui = (1, i), x̃i = (xi, z, 0), pCTi ← pEnc(pMSK, (ui, [x̃i]1)) for i ∈ Sc
x̃0 = (z,x0, 0), iCT← iEnc(iMSK, [x̃0]1), uCT = (Sc, {pCTi}i∈Sc , iCT).

uSlotEnc(Sc, [x]1): It chooses z← Zkp and outputs uCT as follows:

ui = (1, i), x̃i = (xi, z), pCTi ← pSlotEnc(ui, [x̃i]1) for i ∈ Sc
iCT← iSlotEnc([z]1), uCT = (Sc, {pCTi}i∈Sc , iCT).

uKeyGen(uMSK, (Sk, [y]2, [y0]2)): It chooses ai ← Zkp for all i ∈ Sk, sets a0 =
−
∑
i∈Sk ai, and outputs uSK as follows:

vi = (i,−1), ỹi = (yi,ai, 0), pSKi ← pKeyGen(pMSK, (vi, [ỹi]2)) for i ∈ Sk
ỹ0 = (a0,y0, 0), iSK← iKeyGen(iMSK, [ỹ0]2), uSK = (Sk, {pSKi}i∈Sk , iSK).

uDec(uCT, uSK): If Sk 6⊆ Sc, it outputs ⊥. Otherwise, outputs iDec(iCT, iSK) +∑
i∈Sk pDec(pCTi, pSKi).

Correctness. Thanks to the correctness of iFE and pFE, uDec(uCT, uSK) out-
puts [

∑
i∈Sk(〈xi,yi〉+〈z,ai〉)+〈x0,y0〉+〈z,a0〉]T = [

∑
i∈Sk〈xi,yi〉+〈x0,y0〉]T .

Slot-mode correctness. Thanks to slot-mode correctness of pFE, pSlotEnc(ui,
[x̃1]1) and pEnc(pMSK, (ui, [(x̃1, 0)]1)) are identically distributed for all correctly
generated (pMSK, pPK), ui ∈ Z2

p, and x̃1 ∈ Zm1+k
p . Similarly, iSlotEnc([z]1)

and iEnc(iMSK, ([(z, 0m2+1)]1)) are identically distributed for all correctly gen-
erated (iMSK, iPK) and x ∈ Zkp. Hence, uSlotEnc(Sc, [x]1) and uEnc(uMSK,
(Sc, [x]1, [0

m2 ]1)) are identically distributed for all correctly generated (uMSK,
uPK), Sc ⊆ [p], and x ∈ (Zm1

p )Sc .

4.3 Security Analysis

For security, we have the following theorem.

Theorem 4.1. If pFE and iFE are IND-partially hiding, and the MDDHk as-
sumption holds in G, then uFE is IND-1-partially hiding.

Proof. We prove Theorem 4.1 via a series of hybrid games Hβ1 ,H
β
2 ,H

β
f . We show

that Hβs ≈c Hβ1 ≈c Hβ2 ≈c Hβf , where Hβs for β ∈ {0, 1} is the original security
game (described in Eq. (2.3)). Especially, the oracles cO and kO works as Fig 2
in Hβs . In the hybrid sequence, the behavior of the oracles is gradually changed.
Each hybrid is defined as follows.

Hβ1 : This game is the same as Hβs except that
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cO(β, ·)
Input: Sc ∈ Xpub, ([x

0]1, [x
1]1) ∈ X2

priv1, ([x
0
0]1, [x

1
0]1) ∈ X2

priv2

z← Zkp, ui = (1, i)

x̃i = (xβi , z, 0), pCTi ← pEnc(pMSK, (ui, [x̃i]1))

x̃0 = (z,xβ0 , 0), iCT← iEnc(iMSK, [x̃0]1)

Output: uCT = (Sc, {pCTi}i∈Sc , iCT)

kO(β, ·)
Input: (Sk, [y]2) ∈ Fpub, ([y

0
0]2, [y

1
0]2) ∈ F2

priv

ai ← Zkp, a0 = −
∑
i∈Sk

ai, vi = (i,−1)

ỹi = (yi,ai, 0), pSKi ← pKeyGen(pMSK, (vi, [ỹi]2))

ỹ0 = (a0,y
β
0 , 0), iSK← iKeyGen(iMSK, [ỹ0]2)

Output: uSK = (Sk, {pSKi}i∈Sk , iSK).

Fig 2. The behavior of cO and kO in Hβs .

– for the query to cO, it chooses z← Zkp and sets x̃i, x̃
j
0 as

x̃i = (0m1 , 0k, 1), x̃0 = (0k, 0m2 , 1)

– for the `-th query to kO on (S`k, [y
`]2, ([y

`,0
0 ]2, [y

`,1
0 ]2)), it chooses a`i ← Zkp

for i ∈ S`k and sets a`0 = −
∑
i∈Sk a`i and

ỹ`i =

{
(y`i ,a

`
i , 〈x

β
i ,y

`
i 〉+ 〈z,a`i〉) (i ∈ Sc)

(y`i ,a
`
i , 0) (i 6∈ Sc)

ỹ`0 = (a`0,y
`,0
0 , 〈z,a`0〉+ 〈xβ0 ,y

`,β
0 〉)

Hβ2 : This game is the same as Hβ1 except the following: in each query to kO, it
samples t`i ← Zp for i ∈ S`k ∪ {0} so that

∑
i∈S`k∪{0}

t`i = 0 if S`k ⊆ Sc, and

otherwise it just randomly samples t`i ← Zp for i ∈ (Sc ∩ S`k)∪ {0}. Then, it
sets

ỹ`i =

{
(y`i ,a

`
i , 〈x

β
i ,y

`
i 〉+ t`i) (i ∈ Sc)

(y`i ,a
`
i , 0) (i 6∈ Sc)

, ỹ`0 = (a`0,y
`,0
0 , t`0 + 〈xβ0 ,y

`,β
0 〉)

Hβf : This game is the same as Hβ2 except the following: it sets

ỹ`i =

{
(y`i ,a

`
i , 〈x0

i ,y
`
i 〉+ t`i) (i ∈ Sc)

(y`i ,a
`
i , 0) (i 6∈ Sc)

, ỹ`0 = (a`0,y
`,0
0 , t`0 + 〈x0

0,y
`,0
0 〉)

Observe that the adversary does not obtain the information on β in Hβf , and
thus its advantage is 0. Thanks to Lemmata ?? to ??, Theorem 4.1 holds. ut

5 Unbounded Quadratic Functional Encryption

In this section, we present our FE scheme for unbounded quadratic functions
defined in Definition 2.7.

5.1 Construction

Let k be the parameter of the MDDHk assumption. Let uFE = (uSetup, uEnc,
uSlotEnc, uKeyGen, uDec) be a partially hiding slotted FE scheme for FUIP

k,1,G with

slot-mode correctness for e = [0]1. Let H : [p]→ Gk2 be a hash function modeled
as a random oracle. Then, our partially hiding FE scheme qFE = (qSetup, qEnc,
qKeyGen, qDec) for FUQF

G is constructed as follows.
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qSetup(1λ): It runs (uPK, uMSK)← uKeyGen(1λ) outputs (qPK, qMSK) = (uPK,
uMSK).

qEnc(Sc,x = (xi)i∈Sc): First, it defines vectors as follows:

[ai]2 = H(i), zi ← Zkp, bi = (xi, zi, 0), b̃i = (xi,ai, 0)

di = zi, d = (di)i∈Sc .

Then, it outputs qCT as follows: let iFE = (iSetup, iEnc, iSlotEnc, iKeyGen,
iDec) be a partially hiding slotted FE scheme for FIP

0,k+2,G with slot-mode

correctness for e = [0k+2]1, or equivalently standard function-hiding IPFE
scheme with the vector length being k + 2.

(iPK, iMSK)← iSetup(1λ)

iCTi ← iEnc(iMSK, [bi]1), iSKi ← iKeyGen(iMSK, [b̃i]2)

uCT← uSlotEnc(Sc, [d]1), qCT = (iPK, {iCTi, iSKi}i∈Sc , uCT)

qKeyGen(qMSK, (Sk, c = (ci,j)i,j∈Sk)): It outputs qSK as follows:

[aj ]2 = H(j), d̃i =
∑
j∈Sk

ci,jaj , d̃ = (d̃i)i∈Sk

uSK← uKeyGen(uMSK, (Sk, [d̃]2, [0]2)), qSK = uSK

qDec(qCT, qSK): If Sk 6⊆ Sc, it outputs ⊥. Otherwise, it outputs [z]T as follows:

[z1]T =
∑
i,j∈Sk

ci,j iDec(iCTi, iSKj), [z2]T = uDec(uCT, uSK)

[z]T = [z1 − z2]T .

Correctness. Due to the correctness of iFE and uEF, we have

z1 =
∑
i,j∈Sk

(ci,jxixj + ci,j〈zi,aj〉), z2 =
∑
i,j∈Sk

ci,j〈zi,aj〉

Hence, we have z =
∑
i,j∈Sk ci,jxixj .

5.2 Security

For security, we have the following theorem.

Theorem 5.1. If iFE is IND-partially hiding, uFE is IND-1-partially hiding,
and the MDDHk assumption holds in G, then qFE is SIM-partially-hiding.

Proof. First, we show our simulation algorithms. Note that our simulation al-
gorithm for key key generation takes a G2 element instead of a GT element,
which follows [Wee20,GQ20].
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Hs
qPK, qMSK← qSetup(1λ)

x̃ = (Sc,x)← A(1λ, qPK)

qCT← qEnc(x̃)

β ← AqKeyGen(qMSK,·)(qCT)

Hη

qPK, qMSK← qSetup(1λ)

x̃ = (Sc,x)← A(1λ, qPK)

qCT← q̃Encη(qMSK, x̃)

β ← A
˜qKeyGenη(qMSK,x̃,·)(qCT)

Fig 3. Hybrids for qFE.

qSetup∗(1λ): It runs (uPK, uMSK) ← uKeyGen(1λ) outputs (qPK∗, qMSK∗) =
(uPK, uMSK).

qEnc∗(qMSK∗, Sc): First, it defines vectors as follows:

[ai]2 = H(i), zi ← Zkp, bi = (0, zi, 0), b̃i = (0,ai, 0)

di = zi, d = (di)i∈Sc .

Then, it outputs qCT∗ as follows: let iFE = (iSetup, iEnc, iSlotEnc, iKeyGen,
iDec) be a partially hiding slotted FE scheme for FIP

0,k+2,G with slot-mode

correctness for e = [0k+2]1.

(iPK, iMSK)← iSetup(1λ)

iCTi ← iEnc(iMSK, [bi]1), iSKi ← iKeyGen(iMSK, [b̃i]2)

uCT← uEnc(uMSK, (Sc, [d]1, [1]1)), qCT∗ = (iPK, {iCTi, iSKi}i∈Sc , uCT)

qKeyGen∗(qMSK∗, (Sk, c = (ci,j)i,j∈Sk , Sc, [α]2 or ⊥)): It outputs qSK∗ as follows:

[aj ]2 = H(j), d̃i =
∑
j∈Sk

ci,jaj , d̃ = (d̃i)i∈Sk

uSK←

{
uKeyGen(uMSK, (Sk, [d̃]2, [−α]2)) Sk ⊆ Sc
uKeyGen(uMSK, (Sk, [d̃]2, [0]2)) otherwise

, qSK∗ = uSK

We prove Theorem 5.1 via a series of hybrid games Hη for η ∈ [smax] ∪ {f}
where smax is the maximum size of the challenge index set Sc. We show that
Hs ≈c H1 ≈c · · · ≈c Hsmax ≈c Hf , where Hs is the real game. Each hybrid is

defined as described in Fig 3, where qEnc and qKeyGen are replaced with q̃Encη

and ˜qKeyGenη. They work as follows for η ∈ [smax].

q̃Encη(qMSK, x̃): Let Sc = (s1, . . . , s|Sc|). First, it defines vectors as follows:

[ai]2 = H(i), zi ← Zkp

bi =

{
(0, zi, 0) (i ≤ sη)

(xi, zi, 0) (i > sη)
, b̃i = (xi,ai, 0) (5.1)

di = zi, d = (di)i∈Sc (5.2)
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Then, it outputs qCT as follows:

(iPP, iMSK)← iSetup(1λ)

iCTi ← iEnc(iMSK, [bi]1), iSKi ← iKeyGen(iMSK, [b̃i]2)

uCT← uEnc(uMSK, (Sc, [d]1, [1]1)), qCT = (iPP, {iCTi, iSKi}i∈Sc , uCT)

˜qKeyGenη(qMSK, x̃, (Sk, c)): Let Sc,η = (s1, . . . , sη) where si is the i-th element
of the challenge index set Sc. It outputs qSK as follows:

[aj ]2 = H(j), d̃i =
∑
j∈Sk

ci,jaj , d̃ = (d̃i)i∈Sk

d̂ =

−
∑
i∈Sc,η∩Sk
j∈Sk

ci,jxixj Sk ⊆ Sc

0 otherwise

uSK← uKeyGen(uMSK, (Sk, [d̃]2, [d̂]2)), qSK = uSK

Hf is the same as Hsmax except that q̃Encη sets b̃i = (0,ai, 0) in Eq. (5.1).
Observe that the adversary’s view in Hf is equivalent to that in the simulated
game. Thanks to Lemmata 5.1 and 5.2, Theorem 5.1 holds. ut

Lemma 5.1. Hsmax ≈c Hf if iFE is IND-partially hiding.

Proof. For all i ∈ [|Sc|], let b0
i and b̃0

i be bi and b̃i defined in Hsmax . Similarly,

let b1
i and b̃1

i be bi and b̃i defined in Hf . Then, it is not hard to see that

〈b0
i , b̃

0
j 〉 = 〈b1

i , b̃
1
j 〉 for all i, j ∈ [|Sc|]. Hence, the difference between Hsmax and

Hf can be reduced to partially hiding security of iFE. ut

Lemma 5.2. Let Hs = H0. For η ∈ [smax], we have Hη−1 ≈c Hη if iFE and uFE
are IND-partially hiding and the MDDHk assumption holds in G.

Proof. We define intermediate hybrids Ĥη,1, Ĥη,2, Ĥη,3 and prove that Hη−1 ≈c
Ĥη,1 ≈c Ĥη,2 ≈c Ĥη,3 ≈c Hη. Ĥη,i for i ∈ {1, 2, 3} is the same as Hη−1 ex-

cept that ˜qEncη−1, ˜qKeyGenη−1 are replaced by q̂Encη,i, ̂qKeyGenη,i, respectively,
which work as follows:

q̂Encη,1(qMSK, x̃): It is the same as ˜qEncη−1 except that it defines vectors as
follows:

bi =


(0, zi, 0) (i < sη)

(0, 0, 1) (i = sη)

(xi, zi, 0) (i > sη)

, b̃i = (xi,ai, 〈zsη ,ai〉+ xsηxi) (5.3)

di =

{
0 i = sη

zi i 6= sη
, d = (di)i∈Sc (5.4)
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̂qKeyGenη,1(qMSK, x̃, (Sk, c)): It is the same as ˜qEncη−1 except that, if and only
if Sk ⊆ Sc, it defines uSK as follows:

uSK← uKeyGen(uMSK, (Sk, [d̃]2, [d̂+
∑
i∈Sk

csη,i〈zsη ,ai〉]2))

where csη,i = 0 if sη 6∈ Sk.

q̂Encη,2(qMSK, x̃): It is the same as q̂Encη,1 except that it defines vectors as
follows:

r = (ri)i∈Sc ← ZScp , b̃i = (xi,ai, ri + xsηxi)

̂qKeyGenη,2(qMSK, x̃, (Sk, c)): Let r = (ri)i∈Sc be the random vector chosen in

q̂Encη,2. It is the same as ̂qKeyGenη,1 except that, if and only if Sk ⊆ Sc, it
defines uSK as follows:

uSK← uKeyGen(uMSK, (Sk, [d̃]2, [d̂+
∑
i∈Sk

csη,iri]2))

q̂Encη,3(qMSK, x̃): It is the same as q̂Encη,2 except that it defines vectors as
follows:

r = (ri)i∈Sc ← ZScp , b̃i = (xi,ai, ri +���xsηxi)

̂qKeyGenη,3(qMSK, x̃, (Sk, c)): Let r = (ri)i∈Sc be the random vector chosen in

q̂Encη,3. It is the same as ̂qKeyGenη,2 except that, if and only if Sk ⊆ Sc, it
defines uSK as follows:

uSK← uKeyGen(uMSK, (Sk, [d̃]2, [d̂+
∑
i∈Sk

csη,i(ri−xsηxi)]2))

Lemma 5.2 immediately follows from Lemmata 5.3 to 5.6. ut

Lemma 5.3. For η ∈ [smax], we have Hη−1 ≈c Ĥη,1 if iFE and uFE are IND-(1-
)partially hiding.

Proof. First, we consider the case of η ≥ 2. Let b0
i , b̃

0
i be bi, b̃i defined in Hη−1,

i.e., Eq. (5.1), and b1
i , b̃

1
i be bi, b̃i defined in Ĥη,1, i.e., Eq. (5.3). Then, it is not

hard to see that we have 〈b0
i , b̃

0
j 〉 = 〈b1

i , b̃
1
j 〉 for all i, j ∈ Sc. Thus, we can reduce

the indistinguishability between the 0-side and 1-side to partially-hiding security
of iFE.

Let d0
i be di defined in Hη−1, i.e., Eq. (5.2), and d1

i be di defined in Ĥη,1,
i.e., Eq. (5.4). Then, for ` ∈ [qk] where qk is the number of queries to the key
generation oracle, we have∑

i∈S`k

〈d0
i , d̃

`
i〉+ d̂ =

∑
i∈S`k

〈d1
i , d̃

`
i〉+ d̂+

∑
i∈S`k

csη,i〈zsη ,ai〉 if S`k ⊆ Sc
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where csη,i = 0 if sη 6∈ Sk. Thus, we can reduce the indistinguishability between
the 0-side and 1-side to the partially function-hiding property of uFE.

Next, we consider the case of η = 1, which can be similarly proven to the
case of η ≥ 2. A main difference is that we need to first change uSlotEnc(Sc, [d]1)
in qEnc to uEnc(uMSK, (Sc, [d]1, [0]1)), which are identically distributed by the
slot-mode correctness of uFE. The remaining proof is almost the same as the
case of η ≥ 2. ut

Lemma 5.4. Let qr be the maximum number of queries to the random oracle
H in the security game. For all η ∈ [smax], we have Ĥη,1 ≈c Ĥη,2 if the MDDHk
assumption holds in G.

Proof. We can construct an adversary B against an MDDHk problem from a
distinguisher A of the two hybrids as follows.

1. B obtains a Uqr,k-MDDH instance (G, [A]2, [kδ]2), where A ∈ Zqr×kp , k0 =
Az, k1 ← Zqrp .

2. B simulates the random oracle H as follows: when H is queried on i ∈ [p] as
the j-th fresh query to H, it returns [ai]2 where ai is the j-th row of A. B
also defines ki as the j-th entry of kδ.

3. B runs (uPK, uMSK) ← uSetup(1λ) and gives qPK = (G, uPK) to A. It sets
qMSK = uMSK.

4. When A outputs x̃, B computes qCT in the same way as q̂Encη,1 except that

it defines b̃i = (xi,ai, ki + xsηxi).
5. When A queries to the key generation oracle on (Sk, c), B computes qSK

in the same way as ̂qKeyGenη,1 except that it computes uSK as uSK ←
uKeyGen(uMSK, (Sk, [d̃]2, [d̂+

∑
i∈Sk csη,iki]2)) if Sk ⊆ Sc.

6. B outputs what A outputs.

It is not hard to see that A’s view corresponds to Ĥη,1 if δ = 0 and Ĥη,2 otherwise.
ut

Lemma 5.5. For η ∈ [smax], Ĥη,2 and Ĥη,3 are identically distributed.

Proof. For i ∈ Sc, by implicitly defining ri = r′i − xsηxi where r′i ← Zp, it is

obvious that A’s views in Ĥη,2 and Ĥη,3 are identical since the distribution of ri
is not changed from the original definition. ut

Lemma 5.6. For η ∈ [smax], we have Ĥη,3 ≈c Hη if iFE and uFE are IND-(1-
)partially hiding and the MDDHk assumption holds in G.

This lemma can be proven similarly to lemmata 5.3 to 5.4.

5.3 Bounded Variable-Length Scheme without Random Oracles.

The scheme in Section 5.1 is easily modified into a bounded variable-length
scheme that does not rely on random oracles. Note that the functionality of
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the scheme is the same as Definition 2.7 except that Sc and Sk is subsets of
a fixed polynomial-sized set [n′] instead of [p]. The modification is simple: the
setup algorithm randomly chooses [a1]2, . . . , [an′ ]2 from Gk2 and publish these.
The encryption and key generation algorithms use them instead of computing
by the hash function on the fly.

6 Functional Encryption for ABP ◦ UQF

In this section, we present our FE scheme for unbounded quadratic functions
defined in Definition 2.8.

6.1 Partial Garbling Scheme for FABP
n,n′

We use the following partial garbling scheme for FABP
n,n′ [IW14] for the construction

of our FE scheme.

Syntax. A partial garbling scheme for FABP
n,n′ consists of the four algorithms.

Note that lgen and rec are deterministic algorithms while pgb and pgb∗ are
probabilistic algorithms.

lgen(f): It takes f ∈ FABP
n,n′ and outputs L1, . . . ,Lt ∈ Z(n+1)×(t−1)

p where t de-
pends on f .

pgb(f,u,x; t): Let u′> = (u, 1). It takes f ∈ FABP
n,n′ ,u ∈ Znp ,x ∈ Zn′p , and a

random tape t ∈ Zt−1p . It then outputs

(u′>L1t, . . . ,u
′>Lmt, x1 + u′>Lm+1t, . . . , xn′ + u′>Ltt) ∈ Ztp

where m = t− n′ and (L1, . . . ,Lt) = lgen(f).
pgb∗(f,u, µ; t): It takes µ ∈ Zp and f,u, t as above and outputs

(u′>L1t + µ,u′>L2t, . . . ,u
′>Ltt) ∈ Ztp

where (L1, . . . ,Lt) = lgen(f).
rec(f,u): It takes f,u ∈ Znp and outputs df,u ∈ Ztp.

The concrete description of lgen, rec that satisfies the following properties is
found in [AGW20, Appendix A]. We slightly modify the format of the output of
lgen from [AGW20] for convenience in our construction, but note that they are
essentially the same.

Correctness. The garbling scheme is correct if for all f ∈ FABP
n,n′ ,u ∈ Znp ,x ∈

Zn′p , t ∈ Zt−1p , we have

〈pgb(f,u,x; t), rec(f,u)〉 = 〈f(u),x〉.

Security. The garbling scheme is secure if for all f ∈ FABP
n,n′ ,u ∈ Znp ,x ∈ Zn′p ,

the following distributions are statistically close:

pgb(f,u,x; t) and pgb∗(f,u, 〈f(u),x〉; t)
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where the random tape is chosen over t← Zt−1p .

Linearlity. Observe that pgb and pgb∗ are an affine functions in t and µ,
respectively. This means that t in pgb and µ in pgb∗ can be group elements of
order p.

6.2 Construction

Let k be the parameter of the MDDHk assumption, n be the input length of
arithmetic branching programs in FABP◦UQF

n,G . Let uFE = (uSetup, uEnc, uSlotEnc,

uKeyGen, uDec) be a partially hiding slotted FE scheme for FUIP
k(n+1),1,G with

slot-mode correctness for e = [0]1. Let (lgen, pgb, pgb∗, rec) be a partial garbling
scheme defined in the above. Let H : [p] → Gk2 be a hash function modeled as
a random oracle. Then, our partially hiding FE scheme aFE = (aSetup, aEnc,
aKeyGen, aDec) for FABP◦UQF

n,G is constructed as follows.

aSetup(1λ): It runs (uPK, uMSK)← uKeyGen(1λ) outputs (aPK, aMSK) = (uPK,
uMSK).

aEnc(u, Sc,x = (xi)i∈Sc): First, it defines vectors as follows:

[ai]2 = H(i), zi, z̃← Zkp, bi = (xi, zi, 0), b̃i = (xi,ai, 0)

di =

{
(zi, 0

kn) (i ∈ Sc)
(u, 1)⊗ z̃ (i = p)

, d = (di)i∈Sc∪{p}. (6.1)

Then, it outputs aCT as follows: let iFE = (iSetup, iEnc, iSlotEnc, iKeyGen,
iDec) be a partially hiding slotted FE scheme for FIP

0,k+2,G with slot-mode

correctness for e = [0k+2]1, or equivalently standard function-hiding IPFE
scheme with the vector length being k + 2.

(iPK, iMSK)← iSetup(1λ)

iCTi ← iEnc(iMSK, [bi]1), iSKi ← iKeyGen(iMSK, [b̃i]2)

uCT← uSlotEnc(Sc ∪ {p}, [d]1), aCT = (u, iPK, {iCTi, iSKi}i∈Sc , uCT)

(6.2)

aKeyGen(aMSK, (Sk, f ∈ FABP
n,|Sk|2)): Let φ : S2

k → {m+ 1, . . . , t} be the bijective

function defined as φ(µ, ν) = m+ (µ− 1)|Sk|+ ν (see Section 6.1 for how to
define m, t). It outputs aSK as follows: first it computes L1, . . . ,Lt ← lgen(f)

and chooses T← Z(t−1)×k
p . For j ∈ [m], µ, ν ∈ Sk, it defines

d̃j,i =

{
0 (i ∈ Sk)

vec(LjT) (i = p)
, d̃φ(µ,ν),i =


0 (i ∈ Sk\{µ})
(aν , 0

kn) (i = µ)

vec(Lφ(µ,ν)T) (i = p)

where [aν ]2 = H(ν). It then defines d̃j = (d̃j,i)i∈Sk∪{p} for j ∈ [t]. Finally it

computes uSKj ← uKeyGen(uMSK, (Sk ∪ {p}, [d̃j ]2, [0]2)) for all j ∈ [t], and
sets aSK = (f, {uSKj}j∈[t]).
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aDec(aCT, aSK): Parse aCT = (u, iPK, {iCTi, iSKi}i∈Sc , uCT) and aSK = (f,
{uSKj}j∈[t]). If Sk 6⊆ Sc, it outputs ⊥. Otherwise, it computes df,u =
rec(f,u) and outputs [δ]T as follows:

[δ0]T =
∑
i,j∈Sk

fi,j(u)iDec(iCTi, iSKj), [δi]T = uDec(uCT, uSKi)

[δ]T = [δ0 − 〈df,u, δ〉]T

where δ = (δ1, . . . , δt).

Correctness. Due to the correctness of iFE, uEF, we have

δ0 =
∑
i,j∈Sk

(fi,j(u)xixj + fi,j(u)〈zi,aj〉), δ = pgb(f,u, (〈zi,aj〉)i,j∈Sk ; Tz̃)

Hence, we have 〈df,u, δ〉 =
∑
i,j∈Sk fi,j(u)〈zi,aj〉 and thus z =

∑
i,j∈Sk fi,j(u)xixj ,

which follows from the correctness of the partial garbling scheme.

6.3 Security

For security, we have the following theorem.

Theorem 6.1. If iFE is IND-partially hiding, uFE is IND-1-partially hiding, the
partial garbling scheme is secure, and the MDDHk assumption holds in G, then
aFE is SIM-partially-hiding.

Proof. First, we show our simulation algorithms. Note that our simulation algo-
rithm takes a G2 element instead of a GT element, which follows [Wee20,GQ20].

aSetup∗(1λ): It runs (uPK, uMSK) ← uKeyGen(1λ) outputs (aPK∗, aMSK∗) =
(uPK, uMSK).

aEnc∗(aMSK∗,u, Sc): First, it defines vectors as follows:

[ai]2 = H(i), zi, z̃← Zkp, bi = (0, zi, 0), b̃i = (0,ai, 0)

di = 0, d = (di)i∈Sc∪{p}.

Then, it outputs aCT∗ as follows: let iFE = (iSetup, iEnc, iSlotEnc, iKeyGen,
iDec) be a partially hiding slotted FE scheme for FIP

0,k+2,G with slot-mode

correctness for e = [0k+2]1.

(iPK, iMSK)← iSetup(1λ)

iCTi ← iEnc(iMSK, [bi]1), iSKi ← iKeyGen(iMSK, [b̃i]2)

uCT← uEnc(uMSK, (Sc ∪ {p}, [d]1, [1]1)), aCT∗ = (u, iPK, {iCTi, iSKi}i∈Sc , uCT)

aKeyGen∗(aMSK∗, (Sk, f,u, Sc, [α]2 or ⊥)): Let φ : S2
k → {m + 1, . . . , t} be the

bijective function defined as φ(µ, ν) = m+(µ−1)|Sk|+ν (see Section 6.1 for
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Hs
aPK, aMSK← aSetup(1λ)

x̃ = (u, Sc,x)← A(1λ, aPK)

aCT← aEnc(x̃)

β ← AaKeyGen(aMSK,·)(aCT)

Hη

aPK, aMSK← aSetup(1λ)

x̃ = (u, Sc,x)← A(1λ, aPK)

aCT← ãEnc(aMSK, x̃)

β ← A
˜aKeyGenη(aMSK,x̃,·)(aCT)

Fig 4. Hybrids for aFE.

how to define m, t). It outputs aSK∗ as follows: first it computes L1, . . . ,Lt ←
lgen(f) and chooses T← Z(t−1)×k

p . For j ∈ [m], µ, ν ∈ Sk, it defines

d̃j,i =

{
0 (i ∈ Sk)

vec(LiT) (i = p)
, d̃φ(µ,ν),i =


0 (i ∈ Sk\{µ})
(aν , 0

kn) (i = µ)

vec(Lφ(µ,ν)T) (i = p)

where [aν ]2 = H(ν). It then defines d̃j = (d̃j,i)i∈Sk∪{p} for j ∈ [t]. If Sk ⊆ Sc,
it chooses t̃← Zt−1p and defines

δ = (δ1, . . . , δt) = pgb∗(f,u,−α+
∑
i,j∈Sk

fi,j(u)〈zi,aj〉; t̃)

where zi for i ∈ Sk is the random vectors generated in aEnc 10. Finally it
computes

uSKj ←

{
uKeyGen(uMSK, (Sk ∪ {p}, [d̃j ]2, [δj ]2)) Sk ⊆ Sc
uKeyGen(uMSK, (Sk ∪ {p}, [d̃j ]2, [0]2)) otherwise

for all j ∈ [t], and sets aSK∗ = (f, {uSKj}j∈[t]).

We prove Theorem 6.1 via a series of hybrid games H1,H2,H3,Hf . We show
that Hs ≈c H1 ≈c H2 ≈c H3 ≈c Hf , where Hs is the real game. Hη for η ∈ {1, 2, 3}
is defined as described in Fig 4, where aEnc and aKeyGen are replaced with ãEnc

and ˜aKeyGenη. They work as follows.

ãEnc(aMSK, x̃): It defines vectors as follows:

[ai]2 = H(i), zi, z̃← Zkp, bi = (xi, zi, 0), b̃i = (xi,ai, 0)

di = 0, d = (di)i∈Sc∪{p}.
(6.3)

Then, it outputs aCT as follows: let iFE = (iSetup, iEnc, iSlotEnc, iKeyGen,
iDec) be a partially hiding slotted FE scheme for FIP

0,k+2,G with slot-mode

correctness for e = [0k+2]1.

(iPK, iMSK)← iSetup(1λ)

iCTi ← iEnc(iMSK, [bi]1), iSKi ← iKeyGen(iMSK, [b̃i]2)

uCT← uEnc(uMSK, (Sc, [d]1, [1]1)), aCT = (u, iPK, {iCTi, iSKi}i∈Sc∪{p}, uCT)
10 Sharing randomness between aEnc∗ and aKeyGen∗ does not violate the definition of

SIM-security. Just including a key of a pseudorandom function in aMSK∗ suffices.
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˜aKeyGen1(aMSK, x̃, (Sk, f)): This algorithm is the same as aKeyGen except the
following: if and only if Sk ⊆ Sc, it computes

δ = (δ1, . . . , δt) = pgb(f,u, (〈zi,aj〉)i,j∈Sk ; Tz̃)

where zi and z̃ are values chosen in ãEnc to compute aCT. Then it computes
uSKi as uSKi ← uKeyGen(uMSK, (Sk, [d̃i]2, [δi]2)) for i ∈ [t].

˜aKeyGen2(aMSK, x̃, (Sk, f)): This algorithm is the same as ˜aKeyGen1 except that
it additionally chooses t̃← Zt−1p and defines δ as

δ = (δ1, . . . , δt) = pgb(f,u, (〈zi,aj〉)i,j∈Sk ; t̃).

˜aKeyGen3(aMSK, x̃, (Sk, f)): This algorithm is the same as ˜aKeyGen2 except that
it defines δ as

δ = (δ1, . . . , δt) = pgb∗(f,u,
∑
i,j∈Sk

fi,j(u)〈zi,aj〉; t̃). (6.4)

Hf is the same as H3 except that ãEnc sets bi = (0, zi, 0), b̃i = (0,ai, 0)

instead of bi = (xi, zi, 0), b̃i = (xi,ai, 0) in Eq. (6.3), and ˜aKeyGen3 sets

δ = (δ1, . . . , δt) = pgb∗(f,u,
∑
i,j∈Sk

fi,j(u)(〈zi,aj〉 − xixj); t̃).

instead of Eq. (6.4). Observe that the adversary’s view in Hf is the same as that
in the simulated game. Thanks to Lemmata 6.1 to 6.4, Theorem 6.1 holds. ut

Lemma 6.1. Hs ≈c H1 if uFE is IND-1-partially hiding.

Proof. When generating the challenge ciphertext in Hs, uCT in the challenge ci-
phertext is generated as uCT← uSlotEnc(Sc∪{p}, [d]1) as described in Eq.(6.2).
Even if the way of generating uCT is changed as uCT ← uEnc(uMSK, (Sc ∪
{p}, [d]1, [0]1)), the adversary’s view is not changed due to the slot-mode cor-
rectness of uFE.

For i ∈ Sc ∪ {p}, let d0
i be di defined in Hs, i.e., Eq. (6.1), and d1

i be di
defined in H1, i.e., Eq. (6.3). Then, for all ` ∈ [qk], j ∈ [t`], we have∑

i∈S`k∪{p}

〈d0
i , d̃

`
j,i〉 =

∑
i∈S`k∪{p}

〈d1
i , d̃

`
j,i〉+ δ`j if S`k ⊆ Sc

where d̃`j,i is d̃j,i defined in the `-th secret key query, and

δ`j = pgbj(f
`,u, (〈zi,aj〉)i,j∈Sk ; T`z̃)

=

{
u′>L`jT

`z̃ (j ∈ [m`])

〈zµ,aν〉+ u′>L`jT
`z̃ (j ∈ {m` + 1, . . . , t`})

where φ(µ, ν) = j. Thus, we can reduce the indistinguishability between the
0-side and 1-side, which corresponds to Hs and H1, respectively, to the partially-
hiding security of uFE. ut
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Lemma 6.2. H1 ≈c H2 if the MDDHk assumption holds in G.

Proof. We can construct an adversary B against an MDDHk problem from a
distinguisher A of the two hybrids as follows.

1. Let qt =
∑
`∈[qk] t

`. B obtains a Uqt,k-MDDH instance (G, [A]2, [kδ]2), where

A ∈ Zqt×kp , k0 = Az, k1 ← Zqtp .

2. B runs (uPK, uMSK) ← uSetup(1λ) and gives aPK = (G, uPK) to A. It sets
aMSK = uMSK.

3. When A outputs x̃, B computes aCT in the same way as ãEnc.
4. When A queries to the key generation oracle on (S`k, f

`) in the `-th query,

B computes aSK in the same way as ˜aKeyGenη,1 except that it computes

[δ`]2 = pgb(f `,u, (〈zi,aj〉)i,j∈Sk ; [k`]2)

where k` is the vector consisting of the
∑
`′∈[`−1] t

`′ + 1 to
∑
`′∈[`] t

`′ entries

of kδ. Note that since pgb is affine in [k`]2, B can efficiently compute [δ`]2.
5. B outputs what A outputs.

It is not hard to see that A’s view corresponds to H1 if δ = 0 and H2 otherwise.
ut

Lemma 6.3. H2 ≈s H3.

Lemma 6.3 directly follows from the security of the partial garbling scheme.

Lemma 6.4. H3 ≈c Hf if iFE is partially hiding and the MDDHk assumption
holds in G.

Proof. The proof of Lemma 6.4 is similar to that of Theorem 5.1. We define
intermediate hybrids Ĥη for η ∈ [smax] where smax is the maximum size of the

challenge index set Sc. We show that H3 ≈c Ĥ1 ≈c · · · ≈c Ĥsmax ≈c Hf . Ĥi for

η ∈ [smax] is the same as H3 except that ãEnc and ˜aKeyGen3 are replaced with

âEncη and ̂aKeyGenη. They work as follows for η ∈ [smax].

âEncη(aMSK, x̃): Let Sc = (s1, . . . , s|Sc|). This algorithm is the same as ãEnc

except that it sets bi and b̃i in Eq. (6.3) as

bi =

{
(0, zi, 0) (i ≤ sη)

(xi, zi, 0) (i > sη)
, b̃i = (xi,ai, 0) (6.5)

̂aKeyGenη(aMSK, x̃, (Sk, f)): Let Sc,η = (s1, . . . , sη) where si is the i-th element

of the challenge index set Sc. This algorithm is the same as ˜aKeyGen3 except
that it defines δ as

δ = pgb∗(f,u,
∑
i,j∈Sk

fi,j(u)〈zi,aj〉 −
∑

i∈Sc,η∩Sk
j∈Sk

fi,j(u)xixj ; t̃).
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Thanks to Lemmata 6.5 and 6.6, Lemma 6.4 holds. ut

Lemma 6.5. Ĥsmax ≈c Hf if iFE is IND-partially hiding.

Proof. For all i ∈ [|Sc|], let b0
i and b̃0

i be bi and b̃i defined in Ĥsmax . Similarly,

let b1
i and b̃1

i be bi and b̃i defined in Hf . Then, it is not hard to see that

〈b0
i , b̃

0
j 〉 = 〈b1

i , b̃
1
j 〉 for all i, j ∈ [|Sc|]. Hence, the difference between Ĥsmax and

Hf can be reduced to partially hiding security of iFE. ut

Lemma 6.6. Let H3 = Ĥ0. For η ∈ [smax], we have Ĥη−1 ≈c Ĥη if iFE is IND-
partially hiding and the MDDHk assumption holds in G.

Proof. We define intermediate hybrids Ĥη,1, Ĥη,2, Ĥη,3 and prove that Ĥη−1 ≈c
Ĥη,1 ≈c Ĥη,2 ≈c Ĥη,3 ≈c Ĥη. Ĥη,i for i ∈ {1, 2, 3} is the same as Ĥη−1 ex-

cept that ̂aEncη−1, ̂aKeyGenη−1 are replaced by âEncη,i, ̂aKeyGenη,i, respectively,
which work as follows:

̂aEncη,1(aMSK, x̃): It is the same as ̂aEncη−1 except that it defines vectors as
follows:

bi =


(0, zi, 0) (i < sη)

(0, 0, 1) (i = sη)

(xi, zi, 0) (i > sη)

, b̃i = (xi,ai, 〈zsη ,ai〉+ xsηxi) (6.6)

̂aKeyGenη,1(aMSK, x̃, (Sk, f)): It is the same as ̂aKeyGenη−1.

̂aEncη,2(aMSK, x̃): It is the same as ̂aEncη,1 except that it defines vectors as
follows:

r = (ri)i∈Sc ← ZScp , b̃i = (xi,ai, ri + xsηxi)

̂aKeyGenη,2(aMSK, x̃, (Sk, f)): Let r = (ri)i∈Sc be the random vector chosen in

̂aEncη,2. It is the same as ̂aKeyGenη,1 except that it defines δ as follows:

δ = pgb∗(f,u,
∑

i∈Sk\{sη},
j∈Sk

fi,j(u)〈zi,aj〉+
∑
j∈Sk

fsη,j(u)rj −
∑

i∈Sc,η−1∩Sk
j∈Sk

fi,j(u)xixj ; t̃)

where fsη,j(u) = 0 if sη 6∈ Sk.
̂aEncη,3(aMSK, x̃): It is the same as ̂aEncη,2 except that it defines vectors as

follows:
r = (ri)i∈Sc ← ZScp , b̃i = (xi,ai, ri����+xsηxi)

̂aKeyGenη,3(aMSK, x̃, (Sk, f)): Let r = (ri)i∈Sc be the random vector chosen in

̂aEncη,3. It is the same as ̂aKeyGenη,2 except that it defines δ as follows:

δ = pgb∗(f,u,
∑

i∈Sk\{sη},
j∈Sk

fi,j(u)〈zi,aj〉+
∑
j∈Sk

fsη,j(u)rj −
∑

i∈Sc,η∩Sk
j∈Sk

fi,j(u)xixj ; t̃).
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Lemma 6.6 immediately follows from Lemmata 6.7 to 6.10. ut

Lemma 6.7. For η ∈ [smax], we have Hη−1 ≈c Ĥη,1 if iFE is IND-partially
hiding.

Proof. Let b0
i , b̃

0
i be bi, b̃i defined in Hη−1, i.e., Eq. (6.5) for η − 1, and b1

i , b̃
1
i

be bi, b̃i defined in Ĥη,1, i.e., Eq. (6.6). Then, it is not hard to see that we have

〈b0
i , b̃

0
j 〉 = 〈b1

i , b̃
1
j 〉 for all i, j ∈ Sc. Thus, we can reduce the indistinguishability

between the 0-side and 1-side to partially-hiding security of iFE. ut

Lemma 6.8. Let qr be the maximum number of queries to the random oracle
H in the security game. For all η ∈ [smax], we have Ĥη,1 ≈c Ĥη,2 if the MDDHk
assumption holds in G.

Proof. We describe the reduction B.

1. B obtains a Uqr,k-MDDH instance (G, [A]2, [kδ]2), where A ∈ Zqr×kp , k0 =
Az, k1 ← Zqrp .

2. B simulates the random oracle H as follows: when H is queried on i ∈ [p] as
the j-th fresh query to H, it returns [ai]2 where ai is the j-th row of A. B
also defines ki as the j-th entry of kδ.

3. B runs (uPK, uMSK) ← uSetup(1λ) and gives aPK = (G, uPK) to A. It sets
aMSK = uMSK.

4. When A outputs x̃, B computes aCT in the same way as ̂aEncη,1 except that

it defines b̃i = (xi,ai, ki + xsηxi).
5. When A queries to the key generation oracle on (Sk, f), B computes aSK in

the same way as ̂aKeyGenη,1 except that it computes [δ]2 as

[δ]2 = pgb∗(f,u,

[ ∑
i∈Sk\{sη},j∈Sk

fi,j(u)〈zi,aj〉+
∑
j∈Sk

fsη,j(u)ki

−
∑

i∈Sc,η−1∩Sk,j∈Sk

fi,j(u)xixj

]
2

; t̃)

Note that pgb∗ is affine in the third input and thus [δ]2 can be computed
efficiently.

6. B outputs what A outputs.

It is not hard to see that A’s view corresponds to Ĥη,1 if δ = 0 and Ĥη,2 otherwise.
ut

Lemma 6.9. For η ∈ [smax], Ĥη,2 and Ĥη,3 are identically distributed.

Proof. For i ∈ Sc, by implicitly defining ri = r′i − xsηxi where r′i ← Zp, it is

obvious that A’s views in Ĥη,2 and Ĥη,3 are identical since the distribution of ri
is not changed from the original definition. ut

Lemma 6.10. For η ∈ [smax], we have Ĥη,3 ≈c Hη if iFE and uFE are IND-(1-
)partially hiding and the MDDHk assumption holds in G.

This lemma can be proven similarly to lemmata 6.7 to 6.8.
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