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Abstract

During the last five decades, many different secondary constructions of bent functions
were proposed in the literature. Nevertheless, apart from a few works, the question about
the class inclusion of bent functions generated using these methods is rarely addressed.
Especially, if such a “new” family belongs to the completed Maiorana-McFarland (MM#)
class then there is no proper contribution to the theory of bent functions. In this article,
we provide some fundamental results related to the inclusion inMM# and eventually we
obtain many infinite families of bent functions that are provably outsideMM#. The fact
that a bent function f is in/outside MM# if and only if its dual is in/outsideMM# is
employed in the so-called 4-decomposition of a bent function on Fn

2 , which was originally
considered by Canteaut and Charpin [3] in terms of the second-order derivatives and later
reformulated in [16] in terms of the duals of its restrictions to the cosets of an (n − 2)-
dimensional subspace V . For each of the three possible cases of this 4-decomposition of a
bent function (all four restrictions being bent, semi-bent, or 5-valued spectra functions),
we provide generic methods for designing bent functions provably outside MM#. For
instance, for the elementary case of defining a bent function h(x, y1, y2) = f(x)⊕ y1y2 on
Fn+2
2 using a bent function f on Fn

2 , we show that h is outside MM# if and only if f is
outside MM#. This approach is then generalized to the case when two bent functions
are used. More precisely, the concatenation f1||f1||f2||(1 ⊕ f2) also gives bent functions
outside MM# if either f1 or f2 is outside MM#. The cases when the four restrictions
of a bent function are semi-bent or 5-valued spectra functions are also considered and
several design methods of designing infinite families of bent functions outside MM#,
using the spectral domain design considered in [15,16], are proposed.

Keywords: 4-decomposition, Class inclusion, 5-valued spectra functions, Bent functions,
Dual functions, Plateaued functions, Walsh support.

1 Introduction

The concept of bent functions has been introduced by Rothaus [21], as a subclass of Boolean
functions possessing several nice combinatorial properties which allowed for their great range
of applications in design and coding theory, sequences, and cryptography. A nice survey
on bent functions related to their design and properties can be found in [9], whereas their
exhaustive treatment can be found in [20]. For a detailed survey on (cryptographic) Boolean
functions, the reader is referred to the textbooks of Carlet [5] and Cusick and Stanica [11].

Two known primary classes of bent functions are the Maiorana-McFarland (MM) class
and the Partial Spreads (PS) class, which were introduced in the 1970s in [14] and [12],

1



respectively. Since it is not a simple matter to construct elements of the PS class practically,
an explicit subclass of PS, denoted by PSap, was specified by Dillon in [13]. It seems quite
unrealistic that other primary classes are yet to be discovered and therefore many secondary
constructions (using known bent functions to build possibly new ones) have been proposed in
the literature. A non-exhaustive list of various secondary constructions can be found in the
following works [4, 7, 8, 15, 19, 23, 28]. However, the question regarding the class inclusion of
bent functions stemming from these secondary construction methods is commonly left open,
apart from a few works [1, 4, 18, 19, 24–26] where some explicit families of bent functions
provably outside the completed MM class are given. The main purpose of this article is to
address the class inclusion more properly and thus also to contribute to a classification of bent
functions. Nevertheless, the problem of finding efficient indicators for the inclusion/exclusion
in the completed PS class remains unanswered. This problem is equivalent to finding cliques
in a graph which is known to be NP-hard, see also [10, p. 59].

In this article, we employ a fundamental result (though not stated explicitly in the litera-
ture) concerning the inclusion in the completedMM class (denotedMM#), which involves
the dual function of a given bent function. More precisely, it can be shown that a bent
function f is in/outside MM# if and only if its bent dual is in/outside MM#. This result
also implies that given a single bent function outside MM# (or alternatively its dual) one
essentially derives a whole equivalence class whose members are also outside MM#. To
verify these results practically, we also propose a rather simple algorithm for determining
the inclusion inMM#. The algorithm uses the graph-theoretic notion of a clique (complete
subgraph) to implement the second-order derivative criterion of Dillon [12], commonly used
when determining the inclusion/exclusion in MM#. Its performance is quite satisfactory,
allowing us to test the class inclusion for up to 12 variables efficiently. The above mentioned
fact regarding a bent function and its dual (with respect to the inclusion in MM#) is then
useful when the so-called 4-decomposition of bent functions (say on Fn2 ) is considered, which
regards the decomposition into the cosets of an (n−2)-dimensional subspace V of Fn2 . It was
originally investigated by Canteaut and Charpin [3] in terms of the second-order derivatives
of the dual function, whereas the similar properties were recently stated using duals of the
cosets of V [16]. The main conclusion in [3] is that there are exactly three possible cases of
this 4-decomposition of a bent function, namely, all four restrictions being bent, semi-bent,
or 5-valued spectra functions. For each of the cases, using the necessary and sufficient condi-
tions in [16] (see Theorem 2.1), we provide generic methods (at least one) for designing bent
functions provably outside MM#. For instance, in the elementary case of defining a bent
function h(x, y1, y2) = f(x) ⊕ y1y2 on Fn+2

2 using a bent function f on Fn2 (corresponding
to a bent 4-decomposition since h = f ||f ||f ||(1 ⊕ f)), we show that h is outside MM# if
and only if f is outside MM#. This approach is then generalized to the case when two
bent functions are used. More precisely, the concatenation f1||f1||f2||(1⊕ f2) also gives bent
functions outside MM# if either f1 or f2 is outside MM#. This also naturally leads to a
recursive construction of bent functions outside MM# on larger ambient spaces.

The cases when the four restrictions of a bent function are semi-bent or 5-valued spectra
functions are also considered and several design methods of designing infinite families of bent
functions outside MM# are proposed. We remark that the cardinality of bent functions
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that are provably outside MM# is extremely large which is also emphasized for instance in
Remark 3.3, where a single dual bent function on F8

2 which is not inMM# gives rise to ≈ 270

bent functions on F12
2 that are not in MM# as well. This only concerns our design method

of concatenating four suitable semi-bent functions (using a dual which is not in MM#),
however our other constructions are similar in this context. Most notably, it seems that
the presence of linear structures in these semi-bent functions (being restrictions of a bent
function) is of no relevance for the class inclusion. More precisely, the use of a dual bent
function outsideMM# for their specification is sufficient for ensuring that the resulting bent
function is outside MM# as well. A similar conclusion is valid when a sophisticated notion
of duals of 5-valued spectra functions is employed for the same purpose, see for instance
Theorem 3.7. Again, having a bent dual outside MM# ensures that the concatenation of
four suitably selected 5-valued spectra functions generates bent functions that do not belong
to MM# (regardless of the presence of linear structures in these constituent functions).

The rest of this paper is organized as follows. In Section 2, we give some basic definitions
related to Boolean functions and discuss the concept of dual for some important classes of
Boolean functions. The design of bent functions provably outside MM# is addressed in
Section 3. More precisely, for each of the three possible cases (bent, semi-bent, or 5-valued
spectra functions), we provide construction methods for specifying suitable quadruples of
these functions so that the resulting bent functions are provably outside MM#. In Section
4, we consider the design of bent functions by selecting 5-valued spectra functions in the
generalized Maiorana-McFarland class. However, it remains an open problem whether this
approach can generate bent functions outsideMM#. Some concluding remarks are given in
Section 5.

2 Preliminaries

The vector space Fn2 is the space of all n-tuples x = (x1, . . . , xn), where xi ∈ F2. For
x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn2 , the usual scalar (or dot) product over F2 is
defined as x ·y = x1y1⊕· · ·⊕xnyn. The Hamming weight of x = (x1, . . . , xn) ∈ Fn2 is denoted
and computed as wt(x) =

∑n
i=1 xi. By “

∑
” we denote the integer sum (without modulo

evaluation), whereas “
⊕

” denotes the sum evaluated modulo two. With 0n we denote the
all-zero vector with n coordinates, that is (0, 0, . . . , 0) ∈ Fn2 .

The set of all Boolean functions in n variables, which is the set of mappings from Fn2
to F2, is denoted by Bn. Especially, the set of affine functions in n variables is given by
An = {a · x ⊕ ε : a ∈ Fn2 , ε ∈ {0, 1}}, and similarly Ln = {a · x : a ∈ Fn2} ⊂ An denotes the
set of all linear functions. It is well-known that any f : Fn2 → F2 can be uniquely represented
by its associated algebraic normal form (ANF) as follows:

f(x1, . . . , xn) =
⊕
u∈Fn2

λu

(
n∏
i=1

xi
ui

)
, (1)

where xi, λu ∈ F2 and u = (u1, . . . , un) ∈ Fn2 .
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For an arbitrary function f ∈ Bn, the set of its values on Fn2 (the truth table) is defined as

Tf = (f(0, . . . , 0, 0), f(0, . . . , 0, 1), . . . , f(1, . . . , 1, 1)).

The corresponding (±1)-sequence of f is defined as

χf = ((−1)f(0,...,0,0), (−1)f(0,...,0,1), . . . , (−1)f(1,...,1,1)).

The Hamming distance dH between two arbitrary Boolean functions, say f, g ∈ Bn, we define
by

dH(f, g) = {x ∈ Fn2 : f(x) 6= g(x)} = 2n−1 − 1

2
χf · χg,

where χf · χg =
∑

x∈Fn2
(−1)f(x)⊕g(x).

The Walsh-Hadamard transform (WHT) of f ∈ Bn, and its inverse WHT, at any point
ω ∈ Fn2 are defined, respectively, by

Wf (ω) =
∑
x∈Fn2

(−1)f(x)⊕ω·x

and

(−1)f(x) = 2−n
∑
ω∈Fn2

Wf (ω)(−1)ω·x. (2)

The derivative of f ∈ Bn at a ∈ Fn2 , denoted by Daf , is the Boolean function defined by

Daf(x) = f(x⊕ a)⊕ f(x), for all x ∈ Fn2 ,

and the second order derivative of f ∈ Bn at a,b ∈ Fn2 , denoted by DaDbf , is the Boolean
function defined by

DaDbf(x) = f(x)⊕ f(x⊕ a)⊕ f(x⊕ b)⊕ f(x⊕ a⊕ b), for all x ∈ Fn2 .

A function f : Fn2 → F2 is said to have a linear structure γ ∈ Fn∗2 ifDγf(x) = f(x⊕γ)⊕f(x) =
c for all x ∈ Fn2 , where c ∈ F2.

The Maiorana-McFarland classMM is the set of n-variable (n is even) Boolean functions
of the form

f(x,y) = x · π(y)⊕ g(y), for all x,y ∈ Fn/22 , (3)

where π is a permutation on Fn/22 , and g is an arbitrary Boolean function on Fn/22 . We
recall that the completed class is obtained by applying the so-called extended affine (EA)
equivalence to the functions in a given class. More precisely, if we consider the class MM,
given an arbitrary f ∈ MM defined on Fn2 , this affine equivalence class includes a set of
functions {g} obtained by

g(x) = f(Ax + b)⊕ c · x⊕ d,
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where A ∈ GL(n,F2) (the group of invertible matrices under composition), b, c ∈ Fn2 and
d ∈ F2. Thus, the completed class MM# can be defined as

MM# = {f(Ax⊕ b)⊕ c · x⊕ d : f ∈MM, A ∈ GL(n,F2),b, c ∈ Fn2 , d ∈ F2}.

The following lemma, due to Dillon [12], is of crucial importance for the discussion on
class inclusion.

Lemma 2.1. [12, p. 102] A bent function f in n variables belongs to MM# if and only if
there exists an n

2 -dimensional linear subspace V of Fn2 such that the second-order derivatives

DaDbf(x) = f(x)⊕ f(x⊕ a)⊕ f(x⊕ b)⊕ f(x⊕ a⊕ b)

vanish for any a,b ∈ V .

2.1 Bent and plateaued functions and their duals

Throughout this paper we use the following definitions related to bent and plateaued func-
tions:

• A function f ∈ Bn, for even n, is called bent if Wf (u) = 2
n
2 (−1)f

∗(u) for a Boolean
function f∗ ∈ Bn, which is also a bent function, called the dual of f .

• Two functions f and g on Fn2 are said to be at bent distance if dH(f, g) = 2n−1±2n/2−1.
Similarly, for a subset B ⊂ Bn, a function f is said to be at bent distance to B if for
all g ∈ B it holds that dH(f, g) = 2n−1 ± 2n/2−1.

• A function f ∈ Bn is called s-plateaued if its Walsh spectra only takes three values 0

and ±2
n+s
2 (the value 2

n+s
2 is called the amplitude), where s ≥ 1 if n is odd and s ≥ 2

if n is even (s and n always have the same parity).

A class of 1-plateaued functions for n odd, or 2-plateaued for n even, corresponds to
so-called semi-bent functions.

• The Walsh support of f ∈ Bn is defined as Sf = {ω ∈ Fn2 : Wf (ω) 6= 0} and for an
s-plateaued function its cardinality is #Sf = 2n−s [3, Proposition 4].

• A dual function f∗ of an s-plateaued f ∈ Bn is defined through Wf (ω) = 2
n+s
2 (−1)f

∗(ω),
for ω ∈ Sf . To specify the dual function as f∗ : Fn−s2 → F2 we use the concept
of lexicographic ordering. That is, a subset E = {e0, . . . , e2n−s−1} ⊂ Fn2 is ordered
lexicographically if |ei| < |ei+1| for any i ∈ [0, 2n−s − 2], where |ei| =

∑n−1
j=0 ei,n−1−j2

j

denotes the integer representation of ei ∈ Fn2 . Since Sf is not ordered in general, we
will always represent it as Sf = v ⊕ E, where E is lexicographically ordered for some
fixed v ∈ Sf and e0 = 0n.

A direct correspondence between Fn−s2 and Sf = {ω0, . . . , ω2n−s−1} is achieved through
E so that for the lexicographically ordered Fn−s2 = {x0,x1, . . . ,x2n−s−1} we have

f
∗
(xi) = f∗(v ⊕ ei) = f∗(ωi), (4)

where xi ∈ Fn−s2 , ei ∈ E, i ∈ [0, 2n−s − 1].
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Remark 2.1. Throughout this article, from the design perspective, the dual of an s-plateaued
function f : Fn2 → F2 will be denoted by f∗ and is considered as a function on Sf (that is

f∗ : Sf → F2). However, as specified in (4), the notation f
∗

associates this dual to a function

defined on Fn−s2 , that is f
∗

: Fn−s2 → F2.

2.2 Specifying 5-valued spectra functions through duals

We first recall certain notations, introduced in [16], useful in handling the 5-valued spectra
Boolean function which has two different non-zero absolute values.

Let the WHT spectrum of a function f : Fn2 → F2 contain the values 0,±c1,±c2 (c1 6=
c2), where c1, c2 ∈ N. Some of the results in [16] are stated in a more general context,
but since the 4-decomposition of bent functions is our main objective we only consider the

cases c1 = 2n/2 and c2 = 2(n+2)/2 above. For i = 1, 2, by S
[i]
f ⊂ Fn2 we denote the set

S
[i]
f = {u ∈ Fn2 : |Wf (u)| = ci}, and we can define the functions f∗[i] : S

[i]
f → F2 such that the

following equality holds:

Wf (u) =

{
0, u 6∈ S[1]

f ∪ S
[2]
f ,

ci · (−1)
f∗
[i]
(u)
, u ∈ S[i]

f , i ∈ {1, 2}.
(5)

For i = 1, 2, let vi ∈ Fn2 and Ei = {e(i)0 , . . . , e
(i)

2λi−1} ⊂ Fn2 (e
(i)
0 = 0n) be lexicographically

ordered subsets of cardinality 2λi such that S
[i]
f = {ω(i)

0 , . . . , ω
(i)

2λi−1} = vi ⊕ Ei, where ω
(i)
j =

vi⊕e
(i)
j , for j ∈ [0, 2λi −1]. Clearly, the lexicographically ordered set Ei imposes an ordering

on S
[i]
f with respect to the equality ω

(i)
j = vi⊕e

(i)
j . Using the representation of S

[i]
f = vi⊕Ei

and the fact that the cardinality of S
[i]
f is a power of two the function f

∗
[i], as a mapping from

Fλi2 to F2, is defined as

f
∗
[i](xj) = f∗[i](vi ⊕ e

(i)
j ) = f∗[i](ω

(i)
j ), j ∈ [0, 2λi − 1], (6)

where Fλi2 = {x0, . . . ,x2λi−1} is ordered lexicographically.
A more specific method for designing 5-valued spectra functions on Fn2 (thus Wf (u) ∈

{0,±2n/2,±2
n+2
2 }), originally considered in [16], will be used in Section 3.4 for specifying

suitable quadruples of such functions whose concatenation will give bent functions outside
MM#.

2.3 Decomposition of bent functions

The decomposition of bent functions on Fn2 , n is even, to affine subspaces a ⊕ V , for some
k-dimensional linear subspace V ⊂ Fn2 , was considered in [3]. For a bent function f ∈ Bn, the
restriction to a ⊕ V is denoted by fa⊕V and it can be viewed as a function from Fk2 → F2

using

fa⊕V (xi) = fa⊕V (a⊕ vi), i ∈ [0, 2k − 1], (7)
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for lexicographically ordered V = {v0, . . . ,v2k−1} and Fk2 = {x0, . . . ,x2k−1}. This identifica-
tion between V and Fk2, and thus the definition of fa⊕V : Fk2 → F2, strongly depends on the
ordering of V .

The 4-decomposition of a bent function f ∈ Bn, as a special case considered in [3], then
defines four subfunctions on the four cosets of some (n − 2)-dimensional linear subspace.
More precisely, for nonzero a,b ∈ Fn2 with a 6= b this (n − 2)-dimensional subspace is
defined as V = 〈a,b〉⊥, where the dual of a linear subspace, say S ⊂ Fn2 , is defined as
S⊥ = {x ∈ Fn2 : x · y = 0, ∀y ∈ S}.

Let (f1, f2, f3, f4) be such a decomposition, that is, f1, . . . , f4 ∈ Bn−2 are defined on the
four cosets 0n ⊕ V,a ⊕ V,b ⊕ V, (a ⊕ b) ⊕ V respectively, thus Q = 〈a,b〉 and Q ⊕ V = Fn2
(with Q ∩ V = {0n}). Such a decomposition is called a bent 4-decomposition when all fi
(i ∈ [1, 4]), are bent; a semi-bent 4-decomposition when all fi (i ∈ [1, 4]) are semi-bent;
a 5-valued 4-decomposition when all fi (i ∈ [1, 4]) are 5-valued spectra functions so that
Wfi ∈ {0,±2(n−2)/2,±2n/2} [3]. These are the only possibilities and we strictly have that
all the restrictions have the same spectral profile, for instance the restrictions cannot be a
mixture of bent and semi-bent functions.

The 4-decomposition was fully described in [3] in terms of the second-order derivatives
(with respect to a and b) of the dual f∗ of a bent function f. Alternatively, the approach that
will be used in this article, this decomposition can be specified in terms of Walsh supports
and duals of its restrictions f1, . . . , f4 [16]. Note that functions fi are considered as functions
in (n− 2)-variables in terms of relation (7) (that is when dim(V ) = k = n− 2).

Theorem 2.1. [16] Let f ∈ Bn be a bent function, for even n ≥ 4. Let a,b ∈ Fn2 \ {0n}
(a 6= b) and V = 〈a,b〉⊥. If we denote by (f1, . . . , f4) the 4-decomposition of f with respect
to V , then (f1, . . . , f4) is:

i) A bent 4-decomposition if and only if it holds that f∗1 ⊕ f∗2 ⊕ f∗3 ⊕ f∗4 = 1.

ii) A semi-bent 4-decomposition if and only if functions fi (i ∈ [1, 4]) are pairwise disjoint
spectra semi-bent functions.

iii) A five-valued 4-decomposition if and only if the following statements hold:

a) The sets S
[1]
fi

= {ϑ ∈ Fn−22 : |Wfi(ϑ)| = 2
n
2 } (i ∈ [1, 4]) are pairwise disjoint;

b) All S
[2]
fi

= {ϑ ∈ Fn−22 : |Wfi(ϑ)| = 2
n−2
2 } are equal (i ∈ [1, 4]), and for f∗[2],i : S

[2]
fi
→ F2

it holds that f∗[2],1 ⊕ f
∗
[2],2 ⊕ f

∗
[2],3 ⊕ f

∗
[2],4 = 1.

In the rest of this article, we consider the canonical 4-decomposition so that a = (0, 0, . . . , 0, 1),
b = (0, 0, . . . , 1, 0) ∈ Fn2 and consequently V = Fn−22 × {(0, 0)} in Theorem 2.1. Then, the
function f is the concatenation of fi ∈ Bn−2 which we denote by f = f1||f2||f3||f4.

3 Decomposing bent functions - design methods

From the design perspective, Theorem 2.1 allows us to specify (possibly new) bent functions
by specifying suitable quadruples of bent, semi-bent, or 5-valued spectra functions. We
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develop these ideas below more precisely in the rest of this section, but before this we propose
an efficient algorithm for testing the inclusion in MM#.

3.1 An algorithm for determining whether f ∈MM#

We first describe an algorithmic approach to determine whether a bent function is outside
MM#. The algorithm is based on Lemma 2.1 and some graph-theoretical concepts.

Let f ∈ Bn be a bent function. Set Γ = (V,E) to be a graph with edge set

E = {{a, b} : a, b ∈ F∗2n ;DaDbf ≡ 0},

and vertex set V ⊂ F∗2n consisting of all distinct vertices appearing in the edge set E. For
simplicity, we do not add 0 to V as D0Dbf ≡ 0 for all b ∈ F2n . With this approach, we
reduce the size of the vertex set V as DaDbf 6≡ 0, for some a, b ∈ F∗2n . In practice, the size of
the vertex set becomes relatively small and for instance in dimension n = 8 we could verify
that typical values for |V | are 0 and 6. We also remark that we consider the graph Γ to be
simple as there are no loops (DaDaf ≡ 0 holds for all a ∈ F2n); and it is not directed since
DaDbf = DbDaf for any a, b ∈ F2n .

From Lemma 2.1, we know that we need to find an (n/2)-dimensional linear subspace
V of F2n on which the second-order derivatives of f vanish. From the graph-theoretical
perspective, this problem corresponds to finding a clique Λ ( a complete subgraph) of size
2n/2−1 in the graph Γ and additionally checking whether V (Λ)∪{0} forms a linear subspace
in Fn2 . Finding a clique in a graph is known to be an NP-complete problem and, specifically,

the time complexity of this search would be of size O(2n2
n/2

). However, in practice, this
number is much smaller because the number of vertices (namely |V |) of the graph Γ is almost
negligible compared to 2n. The full Sage implementation has been added to the appendix.
It might be of interest to optimize further the performance of this algorithm so that larger
input sizes can be efficiently tested.

We have considered 100 bent functions in dimension 8 and the average time needed to
check whether one function is outside MM# was approx. 17 seconds. For n = 10, the
average time for checking the property of being in or outsideMM# was 30 minutes. On the
other hand, when n = 12, the time complexity is approximately 22 hours on average. For
the purpose of this article, the proposed algorithm is sufficiently efficient and is superior to
a straightforward approach of checking all n/2-dimensional subspaces and verifying the van-
ishing property of the second-order derivatives. Most importantly, all the examples provided
in this article (in certain cases the ANFs are also given) can be efficiently checked using the
Sage algorithm given in Appendix. We also note the following interesting observation.

Remark 3.1. We remark that the dual of a bent function f ∈ MM, given by f(x,y) =

x · π(y) ⊕ h(y) for x,y ∈ Fn/22 , where π is a permutation on Fn/22 and h is arbitrary, is
apparently in MM (see for instance [5] for the specification of f∗). The same is true when
f ∈MM# is considered since the class inclusion is invariant under the EA transform.
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3.2 Defining suitable bent 4-decompositions

Recently, a quadruple of distinct bent functions, satisfying that f∗1 ⊕ f∗2 ⊕ f∗3 ⊕ f∗4 = 1, was
identified in [2]. It was additionally shown that their concatenation f1||f2||f3||f4 is provably
outside theMM# class. More precisely, the authors considered a quadruple of bent functions
(not all of them being in MM#) that belong to the C and D class of Carlet [4] and their
suitable “modifications” for this purpose. Nevertheless, the following results show that the
same method can generate new bent functions outside MM# when a single bent function
(alternatively a pair of bent functions) outside MM# is used.

Theorem 3.1. Let n be even and f be a bent function in n variables. Set h(x, y1, y2) =
f(x)⊕y1y2 for yi ∈ F2, so that h = f ||f ||f ||f ||(1⊕f) ∈ Bn+2 is also bent. Then, f is outside
MM# if and only if h is outside MM#.

Proof. It is well-known that h = f ||f ||f ||f ||(1 ⊕ f) ∈ Bn+2 is bent if f is bent. Notice that
‘f is outside MM# if and only if h is outside MM#’ is equivalent to ‘f is in MM# if and
only if h is in MM#’.

Suppose first that h is outside MM#, thus we want to show that f is outside MM#.
Assume on the contrary that f is in MM#, thus there exists (at least) one linear subspace
V ⊂ Fn2 with dim(V ) = n/2 such that Da′Db′f ≡ 0, for any a′,b′ ∈ V . Let E = V ×
{(0, 0), (0, 1)} which is a subspace of Fn+2

2 of dimension n/2 + 1. We then have that

D(a′,a1,a2)D(b′,b1,b2)h ≡ 0,

for any a′,b′ ∈ V and (a1, a2), (b1, b2) ∈ {(0, 0), (0, 1)}, thus the second-order derivative of
h vanish on E. Hence, h is in MM# which contradicts our assumption that h is outside
MM#.

Now, we show that f is outside MM# implies that h is outside MM#. Assuming
f 6∈ MM#, then for any subspace V ⊂ Fn2 with dim(V ) = n/2, we can always find two vectors
a′,b′ such that Da′Db′f 6≡ 0. Let E ⊂ Fn2 × F2

2 be any subspace with dim(E) = n/2 + 1.
There are two cases to be considered.

a. If dim(E ∩ (Fn2 × {(0, 0)})) ≥ n/2, then we can find two vectors (a′, 0, 0), (b′, 0, 0) and
consequently

D(a′,0,0)D(b′,0,0)h = Da′Db′f 6≡ 0.

b. If dim(E ∩ (Fn2 × {(0, 0)})) < n/2, then we must have E ∩ ({0n} × F2
2) = {0n} × F2

2

since dim(E) = n/2 + 1 (using that dim(E ∩ (Fn2 × F2
2)) = n/2 + 1). Here, there are

three cases to be considered.

(a) If Da′Db′f ≡ 0 for any two vectors (a′, 0, 0), (b′, 0, 0) ∈ E ∩ (Fn2 × {(0, 0)}), then
we can specify (a1, a2) = (1, 0), (b1, b2) = (1, 1) so that

D(a1,a2)D(b1,b2)(y1y2) = 1.

Thus,

D(a′,a1,a2)D(b′,b1,b2)h = Da′Db′f ⊕D(a1,a2)D(b1,b2)(y1y2) ≡ 1 6= 0.
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(b) If Da′Db′f ≡ 1 for any two nonzero vectors (a′,02), (b
′,02) ∈ E ∩ (Fn2 × {02}),

then we select (a1, a2) = (1, 0), (b1, b2) = (0, 0) so that

D(a1,a2)D(b1,b2)y1y2 ≡ 0.

Thus,

D(a′,a1,a2)D(b′,b1,b2)h = Da′Db′f ⊕D(a1,a2)D(b1,b2)(y1y2) ≡ 1 6= 0.

(c) If Da′Db′f 6= const. for two nonzero vectors (a′,02), (b
′,02) ∈ E ∩ (Fn2 × {02}),

then
D(a′,a1,a2)D(b′,b1,b2)h = Da′Db′f 6= const.

This concludes the proof.

Corollary 1. Let n and m be even positive integers and h be a bent function in Bn. Then,
the function f(x, y1, y2, . . . , ym) = h(x)⊕ y1y2 ⊕ · · · ⊕ ym−1ym is outside MM# if and only
if h is outside MM#.

Now, we investigate another non-trivial selection of bent quadruples (different from f =
f1||f1||f1||(1⊕ f1), which satisfy the necessary and sufficient condition f∗1 ⊕ f∗2 ⊕ f∗3 ⊕ f∗4 = 1.
It turns out that the basic concatenation method of using just two bent functions, where at
least one of them is outside MM#, also generates bent functions outside MM#.

Using the convention that f(x, 0, 0) = f1(x), f(x, 0, 1) = f2(x), f(x, 1, 0) = f3(x) and
f(x, 1, 1) = f4(x), the ANF of f = f1||f2||f3||f4 is given by

f(x, y1, y2) = f1(x)⊕ y1(f1 ⊕ f3)(x)⊕ y2(f1 ⊕ f2)(x)⊕ y1y2(f1 ⊕ f2 ⊕ f3 ⊕ f4)(x). (8)

Theorem 3.2. Let n = 2m be even and f1, f2 ∈ Bn be two bent functions. Set f =
f1||f1||f2||(f2 ⊕ 1), which by (8) gives

f(x, y1, y2) = (1⊕ y1)f1(x)⊕ y1f2(x)⊕ y1y2, x ∈ Fn2 , y1, y2 ∈ F2. (9)

If either f1 or f2 are outside M#, then f ∈ Bn+2 is bent and outside M#.

Proof. Since f∗1 ⊕ f∗1 ⊕ f∗2 ⊕ (f2 ⊕ 1)∗ = 1, then f is bent.
For convenience, we denote a = (a′, a2, a3),b = (b′, b2, b3) ∈ Fn2 × F2 × F2. Let V be an

arbitrary (m + 1)-dimensional subspace of Fn+2
2 . From Lemma 2.1, it is sufficient to show

that for an arbitrary (m+1)-dimensional subspace V of Fn+2
2 one can always find two vectors

a,b ∈ V such that D(a′,a2,a3)D(b′,b2,b3)f(x, y1, y2) 6= 0 for some (x, y1, y2) ∈ Fn+2
2 . We have

D(a′,a2,a3)D(b′,b2,b3)f(x, y1, y2) = (1⊕ y1)Da′Db′f1(x)⊕ y1Da′Db′f2(x)

⊕a2Db′ (f1 ⊕ f2) (x⊕ a′)⊕ b2Da′ (f1 ⊕ f2) (x⊕ b′)
⊕a2b3 ⊕ a3b2.

(10)
There are two cases to be considered.
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a. Assuming that dim (V ∩ (Fn2 × {(0, 0)})) ≥ m implies the existence of two vectors a =
(a′, a2, a3),b = (b′, b2, b3) ∈ V such that a′ 6= b′, a2 = a3 = b2 = b3 = 0. Firstly,
suppose that f2 is outside MM#. Thus:

Da′Db′f2 6≡ 0.

From (10), for y1 = 1, we obtain

D(a′,a2,a3)D(b′,b2,b3)f(x, 1, y2) = Da′Db′f2(x) 6≡ 0.

Thus, we have found a,b ∈ V such that DaDbf(x, 1, y2) 6= 0, which also implies that
DaDbf(x, y1, y2) 6= 0.
Now, assume that f1 /∈MM#. Similarly, there will exist two vectors a = (a′′, a2, a3),b =
(b′′, b2, b3) ∈ V such that a′′ 6= b′′, a2 = a3 = b2 = b3 = 0, for which Da′′Db′′f1 6≡ 0.
Setting y1 = 0 in (10), we obtain

D(a′,a2,a3)D(b′,b2,b3)f(x, 0, y2) = Da′Db′f1(x) 6≡ 0,

and again we conclude that DaDbf(x, y1, y2) 6= 0.

b. When dim (V ∩ (Fn2 × {(0, 0)})) < m, we have V ∩({0n}×F2
2) = F2

2 since dim
(
V ∩ (Fn2 × F2

2)
)

=
m + 1. Furthermore, we can find two vectors a = (a′, a2, a3),b = (b′, b2, b3) ∈ V such
that a′ = 0n,b

′ = 0n, a2 = 1, b2 = 0, and a3 = 0, b3 = 1. From (10), we have

D(0n,1,0)D(0n,0,1)f(x, y1, y2) = 1 6= 0. (11)

Thus, there is no (m+ 1)-dimensional linear subspace of Fn+2
2 on which the second-order

derivatives of f vanish, i.e., f is outside MM#.

Example 3.1. Let f1, f2 ∈ B8 be defined by f1(x,y) = x ·y and f2(x,y) = x · π2(y)⊕ δ0(x),
respectively, where π2 = (0, 1, 2, 3, 4, 5, 8, 10, 6, 12, 7, 15, 13, 11, 9, 14) is a permutation of F4

2

in integer form and x,y ∈ F4
2. We note that f1 ∈ MM# and f2 ∈ D0 \ MM#. Let

f1 = (f1, f1, f2, f2 ⊕ 1) and f2 = (f2, f2, f1, f1 ⊕ 1) be defined via (9). Using the algorithm in
Section 3.1, we have confirmed that f1, f2 ∈ B10 are both bent function outside MM#.

An iterative design of bent functions outside MM# follows easily from Theorem 3.2.

Corollary 2. Let f1, f2 ∈ Bn be two bent functions such that either f1 or f2 is outside

MM#. Set f
(1)
1 = (f1, f1, f2, f2 ⊕ 1) and f

(1)
2 = (f2, f2, f1, f1 ⊕ 1). For k ≥ 2 we define

f
(k)
1 = (f

(k−1)
1 , f

(k−1)
1 , f

(k−1)
2 , f

(k−1)
2 ⊕ 1)

and
f
(k)
2 = (f

(k−1)
2 , f

(k−1)
2 , f

(k−1)
1 , f

(k−1)
1 ⊕ 1).

Then, f
(k)
1 and f

(k)
2 are bent functions in n+ 2k variables outside MM#.
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3.3 Semi-bent case of 4-decomposition

The construction of disjoint spectra semi-bent functions was treated in several articles, see [17]
and references therein. In terms of the spectral design method in [17], constructing quadruples

of semi-bent functions on Fn2 (with n even), whose spectra belong to {0,±2
n+2
2 }, with pairwise

disjoint spectra can be easily achieved by specifying suitable Walsh supports. It has already
been observed in [15, 27] that trivial plateaued functions, having an affine subspace as their
Walsh support, essentially correspond to partially bent functions introduced by Carlet in [6]
which admit linear structures. Nevertheless, the selection of these Walsh supports as affine
subspaces or subsets will be shown to be irrelevant for the class inclusion of the resulting
bent functions, which will be entirely governed by the bent duals.

3.3.1 Known results on the design methods of plateaued Boolean functions

Before proving the main results of this section, we will give a brief overview of some known use-
ful results obtained in [17] regarding the construction and properties of s-plateaued Boolean
functions. For simplicity, we adopt these results for semi-bent functions, thus s = 2, and
employ only the parts relevant for our purposes.

Theorem 3.3. [17, Theorem 3.3 (with s = 2)] Let Sf = v⊕EM = {ω0, . . . , ω2n−2−1} ⊂ Fn2 ,
for some v ∈ Fn2 , M ∈ GL(n,F2) and subset E = {e0, e1, . . . , e2n−2−1} ⊂ Fn2 , where n is even.

For a function g : Fn−22 → F2 such that wt(g) = 2n−3 + 2
n−2
2
−1 or wt(g) = 2n−3 − 2

n−2
2
−1

(having bent weight), let the Walsh spectrum of f on Fn2 be defined (by identifying xi ∈ Fn−22

and ωi ∈ Sf through ei ∈ E using (4)) as

Wf (u) =

{
2
n+2
2 (−1)g(xi), for u = v ⊕ eiM ∈ Sf ,

0, u 6∈ Sf .
(12)

Then:

i) f is an 2-plateaued (semi-bent) function if and only if g is at bent distance to

Φf = {φu : Fn−22 → F2 : χφu = ((−1)u·ω0 , (−1)u·ω1 , . . . , (−1)u·ω2n−2−1), ωi ∈ Sf , u ∈ Fn2}.(13)

ii) If E ⊂ Fn2 is a linear subspace, then f is semi-bent if and only if g is a bent function on
Fn−22 .

Remark 3.2. Since |Sf | = 2n−2 and the absolute value of the Walsh coefficients in Theorem

3.3 is 2
n+2
2 , Parseval’s identity

∑
u∈Fn2

Wf (u)2 = 22n is clearly satisfied. For ease of notation,
we will consider f ∈ Bn+2 and use a dual bent function g ∈ Bn. The Walsh support Sf ⊂
Fn+2
2 with |Sf | = 2n, can be specified as a binary matrix of size 2n × (n + 2) of the form
Sf = (c⊕ Fn2M) o Tµ1 o Tµ2 , M ∈ GL(n,F2) and c ∈ Fn2 . Here, the part c⊕ Fn2M is an affine
permutation of Fn2 and corresponds to the first n columns of Sf ; whereas the last two columns
Tµ1 o Tµ2 of Sf are binary truth tables of µ1, µ2 ∈ Bn.
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To construct nontrivial semi-bent functions (whose Walsh supports are subsets), one can
employ bent functions in the MM class defined by

g(x,y) = x · ψ(y)⊕ t(y); x,y ∈ Fn/22 , (14)

where ψ is an arbitrary permutation on Fn/22 and t ∈ Bn/2 is arbitrary.

Theorem 3.4. [17, Theorem 4.2] Let g(x,y) = x ·ψ(y), x,y ∈ Fn/22 , be a bent function, n is
even. For an arbitrary matrix M ∈ GL(n,F2) and vector c ∈ Fn2 , let Sf = (c⊕EM) oTµ oTµ,
where E = Fn2 is ordered lexicographically and µ ∈ Bn, we have:

i) Let E1, E2 be subspaces of Fn/22 such that ψ(E2) = E⊥1 and define µ(x,y) = φE1(x)φE2(y),
where φEi denotes the characteristic function of Ei. Then, f : Fn+2

2 → F2 specified using
Sf and the dual g as in Theorem 3.3, is a semi-bent function.

ii) Let L be a subspace of Fn2 and define µ(x,y) = φL(x). If ψ−1(v + L⊥) is an affine
subspace for all v ∈ Fn2 , then f : Fn+2

2 → F2, specified using Sf and the dual g as in
Theorem 3.3, is a semi-bent function.

3.3.2 Bent functions outside MM# using semi-bent functions with suitable du-
als

By employing the above results, the authors in [17] also proposed a construction method
of disjoint spectra plateaued functions, see Theorem 4.4 in [17], and additionally showed
that these functions can be efficiently utilized for the construction of bent functions. For the
particular case of specifying four semi-bent functions on Fn+2

2 , by using a bent dual g ∈ Bn, it
is convenient to express Fn+2

2 = V ⊕Q where for simplicity V = Fn2×{(0, 0)} and Q = 0n×F2
2.

The main idea is then to specify disjoint Walsh supports of semi-bent functions fi on the
cosets of V in Fn+2

2 . Again, the use of a suitable bent dual g ∈ Bn (taken outside MM#) is
decisive when the design of bent functions outside MM# is considered.

Theorem 3.5. Let g /∈ MM# be a bent function in n variables. For an arbitrary matrix
M ∈ GL(n,F2) and vector c ∈ Fn2 , let Sf = (c ⊕ Fn2M) o Tt1 o Tt2 ⊂ Fn+2

2 , where t1, t2 ∈ Bn
such that g(x,y) ⊕ v1t1(x,y) ⊕ v2t2(x,y) is bent for any v1, v2 ∈ F2, where x,y ∈ Fn/22 .
Let Q = {0n} × F2

2 = {q0,q1,q2,q3} and set Sfi = qi ⊕ Sf , for i = 0, . . . , 3. Then, the
functions fi ∈ Bn+2, constructed using Theorem 3.3 with Sfi and g, are semi-bent functions
on Fn+2

2 with pairwise disjoint spectra. Moreover, the function f ∈ Bn+4, whose restrictions
are f|ai⊕Fn+4

2
= fi (thus f = f1||f2||f3||f4), where ai ∈ {0n+2}×F2

2, is a bent function outside

MM#.

Proof. Let c ∈ Fn2 and M ∈ GL(n,F2) be arbitrary. Let Sf = (c ⊕ Fn2M) o Tt1 o Tt2 , where
t1, t2 ∈ Bn. The columns of c ⊕ Fn2M correspond to affine functions in n variables, say
l1, . . . , ln ∈ An. Thus, the function g ⊕ v · (l1, . . . , ln, t1, t2) is bent for any v ∈ Fn+2

2 . Hence,
g is at bent distance to Φf = {φu ∈ Bn : Tφu = (u · ω0, . . . ,u · ω2n−1), ωi ∈ Sf , u ∈ Fn+2

2 }.
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Let Sfi = Sf ⊕ qi and qi ∈ Q = {0n} × F2
2. By Theorem 3.3, the functions fi ∈ Bn+2, whose

Walsh spectral values at u ∈ Fn+2
2 are defined by:

Wfi(u) =

{
2
n+4
2 (−1)g(xi,yi), u = (c⊕ (xi,yi) ·M, t1(xi,yi), t2(xi,yi))⊕ qi ∈ Sfi

0, u /∈ Sfi
,

(15)
are 2-plateaued (semi-bent) functions, for i = 0, . . . , 3.

By [17, Theorem 4.4] mentioned above, the functions fi ∈ Bn+2 are pairwise disjoint
spectra functions (this is also obvious from the definition of Sfi). Furthermore, we have
∪q∈Q(q⊕Sf ) = Fn+2

2 and the function f ∈ Bn+4 is bent by Theorem 2.1 ii). For convenience,

we write u = (α, β, γ, ωi) ∈ Fn/22 × Fn/22 × F2
2 × F2

2. Let ∆ = (t1(α, β), t2(α, β)). We know
that for some qj ∈ Q we have that (α, β, γ) = (α, β,∆) ⊕ qj . Then, the Walsh-Hadamard
transform of f at u ∈ Fn+2

2 evaluates to:

Wf(u) =
∑

(x,y,z,t)∈(Fn/22 )2×(F2
2)

2

(−1)f(x,y,z,t)⊕(x,y,z,t)·u

=
3∑
i=0

∑
(x,y,z)∈(Fn/22 )2×F2

2

(−1)f((x,y,z,02)⊕ai)⊕((x,y,z,02)⊕ai)·u

=

3∑
i=0

(−1)ai·u
∑

(x,y,z)∈(Fn/22 )2×F2
2

(−1)fi(x,y,z)⊕(x,y,z)·(α,β,γ)

=

3∑
i=0

(−1)ai·uWfi(α, β, γ) =

3∑
i=0

(−1)ai·uWfi((α, β,∆)⊕ qj)

= (−1)aj ·uWfj (α, β,∆) = (−1)aj ·u2
n+4
2 (−1)g(α,β)

= 2
n+4
2 (−1)g(α,β)⊕aj ·u.

Hence, f∗ is defined via g which is outside MM# and it follows that f∗ is outside MM#.
By Remark 3.1, it means that f is outside MM#.

Since g ∈ Bn is supposed to be a bent function outside MM#, we can employ the class
D0 of Carlet [4] or certain families of bent functions in C and D that are provably outside
MM# [18,24,25]. Alternatively g can be taken from the recent classes SC and CD [1,2], which
are specified in Corollary 3 below. Notice that the subspaces L,E1, E2 used to define g in
Corollary 3 below, satisfy certain conditions with respect to the permutation π, see [4,24,25].
However, there exist efficient design methods for specifying bent functions in the above classes
that are provably outside MM# [1, 2, 18, 24, 25]. On the other hand, for t1, t2 ∈ Bn we use
certain indicators that preserve the bentness of g(x,y)⊕ v1t1(x,y)⊕ v2t2(x,y). The results

are summarised in the following corollary, where we denote δ0(x) =
∏n/2
i=1(xi ⊕ 1) which is

the indicator function of the subspace 0n/2 × Fn/22 .
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Corollary 3. With the same notation as in Theorem 3.5, if a bent function g ∈ Bn and
t1, t2 ∈ Bn are defined by:

i) g(x,y) = x · π(y)⊕ δ0(x) ∈ D0 \MM#, t1(x,y) = t2(x,y) = δ0(x), x,y ∈ Fn/22 ,

ii) g(x,y) = x·π(y)⊕1L⊥(x) ∈ C\MM#, t1, t2 correspond to 1L⊥(x) or δ0(x), x,y ∈ Fn/22 ,

iii) g(x,y) = x · π(y) ⊕ 1L⊥(x) ⊕ δ0(x) ∈ SC \ MM#, t1, t2 correspond to 1L⊥(x) or

δ0(x), x,y ∈ Fn/22 , or

iv) g(x,y) = x · π(y) ⊕ 1L⊥(x) ⊕ 1E1(x)1E2(y) ∈ CD \ MM#, t1(x,y) = t2(x,y) =

1L⊥(x), x,y ∈ Fn/22 ,

then f ∈ Bn+4 is a bent function outside MM#.

In the following example, we take g ∈ D0 \ MM# in 8 variables to construct a bent
function in 12 variables outside MM# by means of Theorem 3.5. The result was also
confirmed using our algorithm in Section 3.1.

Example 3.2. Let g(x,y) = x · π(y) ⊕ δ0(x), x,y ∈ F4
2, be a bent function in D0 (out-

side MM#), where π = (0, 1, 11, 13, 9, 14, 6, 7, 12, 5, 8, 3, 15, 2, 4, 10) is a permutation of F4
2

represented in integer form. Let c ∈ F8
2 and M ∈ GL(8,F2) be arbitrary, say,

c = (0, 0, 1, 0, 1, 1, 1, 1), M =



0 0 0 1 0 0 1 1
1 1 1 1 1 1 0 1
0 1 1 1 0 1 0 1
1 1 0 1 1 1 1 1
0 0 1 0 0 1 1 1
1 1 0 0 0 0 0 1
0 1 0 0 0 0 1 1
1 1 0 1 1 1 0 0


.

Let Sf = (c ⊕ F8
2 ·M) o Tδ0 o Tδ0, where Tδ0 is the truth table of the function δ0(x) viewed

as a function on F8
2. That is, δ0(x,y) = δ0(x) ∈ B8. Then, fi ∈ B10 defined via Sfi

and g, using Theorem 3.3, are pairwise disjoint spectra functions, where Sfi = Sf ⊕ qi and
qi ∈ Q = {08} × F2

2. In other words, f = (f0, f1, f2, f3) ∈ B12 is a bent function and can be
viewed as a concatenation of four semi-bent functions. Furthermore, using our algorithm in
Section 3.1, we have confirmed that f lies outside MM#. The ANF of f is given by (22) in
Appendix.

The following remarks are important with respect to the cardinality of bent functions
outside MM# or the presence linear structures of the constituent semi-bent functions.

Remark 3.3. Notice that the number of possibilities of selecting Sfi (which is a binary
matrix of size 2n × (n + 2)) is quite large. We have 2n possible choices for c ∈ Fn2 and∏n
k=0(2

n − 2k) choices for M ∈ GL(n,F2). Thus, for fixed Boolean functions t1, t2 ∈ Bn, we
have 2n

∏n
k=0(2

n − 2k) choices for Sf . For example, for n = 8 this number equals ≈ 270.2.
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Remark 3.4. The existence of linear structures in the semi-bent functions fi, used in The-
orem 3.5 to specify f, is of no importance when determining whether f 6∈ MM#. We have
confirmed this, using our algorithm from Section 3.1, by verifying that the resulting bent func-
tions are always outside MM# provided that the bent function g used to define the dual of
fi (by means of (15)) is outside MM#. It is completely irrelevant whether these semi-bent
functions possess linear structures (having affine supports Sfi) or not.

3.4 Four bent decomposition in terms of 5-valued spectra functions

To specify 5-valued spectra Boolean functions, the authors in [16] provided a sufficient and
necessary condition that the Walsh spectra of fi (corresponding to two different amplitudes)
must satisfy, see Section 2.2. The notion of totally disjoint spectra functions was also intro-
duced in [16], which can be regarded as a sufficient condition so that the Walsh spectrum
specified by (5) is a valid spectrum of a Boolean function.

Definition 3.1. [16, Definition 4.1] For two disjoint sets S
[1]
f , S

[2]
f ⊂ Fn2 , with #S

[1]
f +#S

[2]
f =

2λ1 + 2λ2 < 2n, we say that functions f∗[1] : S
[1]
f → F2 and f∗[2] : S

[2]
f → F2 are totally disjoint

spectra functions if it holds that

X1(u)X2(u) = 0 and |X1(u)|+ |X2(u)| > 0

for all u ∈ Fn2 , where Xi(u) =
∑

ω∈S[i]
f

(−1)
f∗
[i]
(ω)⊕u·ω

, for i = 1, 2.

Remark 3.5. Note that the second condition implies the nonexistence of a vector u ∈ Fn2
for which X1(u) = X2(u) = 0. Without this condition, the notion of totally disjoint spectra
coincides with non-overlap disjoint spectra functions in [22].

Furthermore, a generic method of specifying totally disjoint spectra functions was also
given in [16].

Construction 1. [16] Let n, m and k be even with n = m+ k. Let h ∈ Bm and g ∈ Bk be
two bent functions. Let H be any subspace of Fm2 of co-dimension 1, and let H = Fm2 \H. Let
also E1 = Fk2×H and E2 = {0k}×H. The Walsh spectrum of f ∈ Bn, with (α, β) ∈ Fk2×Fm2 ,
can be constructed as follows:

Wf (α, β) =


(−1)g(α)⊕h(β) · 2n/2, (α, β) ∈ E1

(−1)h(β) · 2m/2+k, (α, β) ∈ E2

0, otherwise.

(16)

Then, Wf is a valid spectrum of a Boolean function f ∈ Bn. Let now

f1(α, β) = g(α)⊕ h(β), (α, β) ∈ E1

f2(α, β) = h(β), (α, β) ∈ E2.

Then, f1 : E1 → F2 and f2 : E2 → F2 are totally disjoint spectra functions.
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Now, we need to specify a quadruple of 5-valued spectra functions which are all of this
kind and, additionally satisfying the condition given by item iii) of Theorem 2.1. More
precisely:

a) The sets S
[1]
fi

= {ϑ ∈ Fn−22 : |Wfi(ϑ)| = 2
n
2 } (i ∈ [1, 4]) are pairwise disjoint;

b) All S
[2]
fi

= {ϑ ∈ Fn−22 : |Wfi(ϑ)| = 2
n−2
2 } are equal (i ∈ [1, 4]), and for f∗[2],i : S

[2]
fi
→ F2 it

holds that f∗[2],1 ⊕ f
∗
[2],2 ⊕ f

∗
[2],3 ⊕ f

∗
[2],4 = 1.

When k = 2, Construction 1 can generate suitable quadruples of 5-valued spectra func-
tions (which are individually totally disjoint spectra functions) as shown below.

Theorem 3.6. Let n = m+ 2 be even so that m is also even. Let h ∈ Bm and g ∈ Bk = B2
be two bent functions. Let H be any subspace of Fm2 of co-dimension 1, and let H = Fm2 \H.

Let also E
(i)
1 = F2

2×H and E
(i)
2 = {c(i)}×H, for i = 1, . . . , 4, where c(i) ∈ F2

2 and c(i) 6= c(j)

for 1 ≤ i 6= j ≤ 4. We specify the spectra of fi ∈ Bn as follows:

Wfi(α, β) =


(−1)g(α)⊕h(β)+d · 2n/2, (α, β) ∈ E(i)

1

(−1)h(β) · 2
n−2
2

+2, (α, β) ∈ E(i)
2

0, otherwise,

(17)

where d = 1 if i = 4, otherwise d = 0. Then, the function f ∈ Bn+2 given as the concatenation
f = f1||f2||f3||f4 is a bent function.

Proof. The functions fi ∈ Bn, specified by (17), are clearly 5-valued spectra functions. We
need to verify that their spectra corresponds to Boolean functions. By Construction 1, this

is true for f1. Due to the definition of E
(i)
1 and E

(i)
2 , the same is true for any fi which are

all Boolean 5-valued spectra functions. Now, the condition for a valid 4-decomposition into

5-valued spectra functions is given by iii) in Theorem 2.1. The supports E
(i)
2 are clearly

disjoint by their definition, whereas E
(i)
1 are defined on the same subspace of Fn2 . The last

condition that the bent duals defined on E
(i)
1 satisfies f∗[2],1 ⊕ f

∗
[2],2 ⊕ f

∗
[2],3 ⊕ f

∗
[2],4 = 1 follows

from the specification of the spectra on E
(i)
1 , using the fact that d = 1 only when i = 4.

Remark 3.6. Since d = 1 when i = 4, the complement of the dual is used for the fourth
constituent function f4. This ensures that the bent duals satisfy f∗[2],1⊕f

∗
[2],2⊕f

∗
[2],3⊕f

∗
[2],4 = 1.

Nevertheless, this is not the only choice and the bent duals can be specified in other ways
(through the complement operation) as long as their sum equals 1.

The following examples illustrate the details of this construction and the possibility of
getting bent functions outside MM#. Notice that the dual h used to specify f is not
necessarily in MM#.

Example 3.3. Let n = 8 and let h ∈ B6, g ∈ B2 be defined by h(x0, . . . , x5) = x0x1 ⊕ x2x3 ⊕
x4x5 ∈ MM and g(x0, x1) = x0x1. Using the mathematical software Sage, we constructed
the functions f (i) ∈ B8 for i = 1, . . . , 4 defined by (17) and their ANF’s are given as follows:

f1(x0, . . . , x7) = x0x1 ⊕ x2x3 ⊕ x4x5 ⊕ x4x6x7 ⊕ x6x7,
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f2(x0, . . . , x7) = x0x1 ⊕ x2x3 ⊕ x4x5 ⊕ x4x6x7 ⊕ x4x6 ⊕ x6x7,
f3(x0, . . . , x7) = x0x1 ⊕ x2x3 ⊕ x4x5 ⊕ x4x6x7 ⊕ x4x7 ⊕ x6x7,
f4(x0, . . . , x7) = x0x1 ⊕ x2x3 ⊕ x4x5 ⊕ x4x6x7 ⊕ x4x6 ⊕ x4x7 ⊕ x4 ⊕ x6x7 ⊕ 1

Then, the function f ∈ B10 given as the concatenation f = f1||f2||f3||f4 is a cubic bent
function defined by

f(x0, . . . , x9) = x0x1 ⊕ x2x3 ⊕ x4x5 ⊕ x4x6x7 ⊕ x4x6x8 ⊕ x4x7x9 ⊕ x4x8x9 ⊕ x6x7 ⊕ x8x9.

Using our algorithm in Section 3.1, we could verify that f ∈MM#.

On the other hand, the following two examples illustrate that selecting the dual h to
be outside MM# the resulting bent functions (constructed using Theorem 3.6) are outside
MM#.

Example 3.4. Let h ∈ B8 defined by h(x, y) = Tr41(xy7) + δ0(x), x, y ∈ F24, be a bent
function in the class D0 \ MM# [4, 24], and let g ∈ B2 be defined by g(x0, x1) = x0x1.
Using Sage we constructed the functions fi ∈ B10 for i = 1, . . . , 4 defined by (17). Then, the
function f ∈ B12 given as f = f1||f2||f3||f4 is a bent function of algebraic degree 5. This time
the function f , whose ANF is given by (20) in Appendix, is outside MM#.

Example 3.5. Let n = 10 and h ∈ B8, g ∈ B2 be bent functions, where g(x0, x1) = x0x1. The
function h ∈ B8, whose ANF is given by (19) in Appendix, lies in PS# and is outside M#.
Using Sage, we constructed the functions fi ∈ B10 for i = 1, . . . , 4 defined by (17). Then, the
function f ∈ B12 given as f = f1||f2||f3||f4 is a bent function of algebraic degree 5. Again, it
could be confirmed that f is outside MM# (its ANF is given by (21) in Appendix).

The above examples indicate that the conclusions (related to the dual) given in Section
3.2 seem to be applicable in this case as well. More precisely, the class belongingness of f in
Theorem 3.6 is strongly related to the choice of the dual bent functions.

Theorem 3.7. Let f ∈ Bn+2 be constructed by means of Theorem 3.6, thus f = f1||f2||f3||f4
where fi ∈ Bn. Then, f is outside MM# if and only if the dual bent function h ∈ Bn−2 in
Theorem 3.6 is outside MM#.

Proof. By Remark 3.1, f is outside MM# if and only if its dual f∗ is outside MM#.
Hence, it is enough to show that f∗ is outside MM#. The “duals” of the restrictions fi are

actually given by (17). By the definition of f∗, we have that (−1)f
∗(u) = 2−

n+2
2 Wf (u) for

any u ∈ Fn+2
2 , since f ∈ Bn+2. For convenience, we write u = (α, β, γ) ∈ F2

2 × Fm2 × F2
2 with

n = m+2 as used in Theorem 3.6. We notice that in general, using that x = (x′, xn+1, xn+2),
we have

Wf (α, β, γ) =
∑

x∈Fn2×F2
2

(−1)f(x)+u·x

=
∑

x∈Fn2×(0,0)

(−1)f(x
′,0,0)+(α,β)·x′ +

∑
x∈Fn2×(0,1)

(−1)f(x
′,0,1)+(α,β)·x′+γ2
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+
∑

x∈Fn2×(1,0)

(−1)f(x
′,1,0)+(α,β)·x′+γ1 +

∑
x∈Fn2×(1,1)

(−1)f(x
′,1,1)+(α,β)·x′+γ1+γ2

= Wf1(α, β) + (−1)γ2Wf2(α, β) + (−1)γ1Wf3(α, β)

+ (−1)γ1+γ2Wf4(α, β). (18)

Hence, for any fixed γ ∈ F2
2, we can compute the value of Wf (α, β, γ) by using the Walsh

spectra of the constituent functions fi.

We first notice that Wfi(α, β) = (−1)h(β) · 2
n−2
2

+2 when (α, β) ∈ E(i)
2 , and furthermore

by construction the sets E
(i)
2 are mutually disjoint for i = 1, . . . , 4. Hence, if for instance

(α, β) ∈ E
(1)
2 then Wf1(α, β) = (−1)h(β) · 2

n−2
2

+2 and Wfi(α, β) = 0 for 2 ≤ i ≤ 4, which

implies that Wf (α, β, γ) = (−1)h(β) ·2
n
2
+1 when (α, β) ∈ E(1)

2 . The other cases when (α, β) ∈
E

(i)
2 for i 6= 1 are similar.

Now, considering the case (α, β) ∈ E
(i)
1 , we first notice that E1 := E

(1)
1 = · · · = E

(4)
1

(by construction), where E1 = F2
2 × H as in Theorem 3.6. In addition, Wfi(α, β) =

(−1)g(α)⊕h(β)+d · 2n/2, where d = 1 when i = 4 only. This also implies that Wf1(α, β) =
Wf2(α, β) = Wf3(α, β) = −Wf4(α, β) when (α, β) ∈ E1. Therefore, using (18), we have

Wf (α, β, 0, 0) = Wf1(α, β) +Wf2(α, β) +Wf3(α, β)−Wf4(α, β) = 2Wf1(α, β)

Wf (α, β, 0, 1) = Wf1(α, β)−Wf2(α, β) +Wf3(α, β) +Wf4(α, β) = 2Wf1(α, β)

Wf (α, β, 1, 0) = Wf1(α, β) +Wf2(α, β)−Wf3(α, β) +Wf4(α, β) = 2Wf1(α, β)

Wf (α, β, 1, 1) = Wf1(α, β)−Wf2(α, β)−Wf3(α, β)−Wf4(α, β) = −2Wf1(α, β).

Hence, Wf (α, β, γ1, γ2) = 2·2n/2(−1)g(α)⊕h(β)+γ1γ2 when (α, β) ∈ E1, where g(α)⊕h(β)+γ1γ2
falls into the framework of Theorem 3.1 and additionally Remark 3.1 applies. Notice that the
case (α, β) 6∈ E1 and at the same time having Wfi(α, β) = 0 is already covered above since

then (α, β) ∈ E(j)
2 for some j 6= i. This is a consequence of the fact that E1∪(∪4i=1E

(i)
2 ) = Fn2 .

To summarize, the dual f∗ is equal to g(α) ⊕ h(β) + γ1γ2 when f∗ is restricted to the
subspace (α, β, γ) ∈ E1×F2

2 and to h(β) when f∗ is restricted to the complement of E1×F2
2.

Notice that g is a 2-variable quadratic bent function, thus g(α1, α2) = α1α2. Therefore, using
the assumption that h 6∈ MM#, Remark 3.1 and Corollary 1 imply that f∗ 6∈ MM# and
hence f 6∈ MM#.

4 5-valued spectra functions from the generalized MM class

Another method of specifying 5-valued spectra functions, also given in [16], uses the gener-
alized Maiorana-McFarland class (GMM).

Theorem 4.1. [16] Let E0 ⊂ Fs2 with 1 ≤ s ≤ bn/2c. Let E1 = E0×Ft2, where E0 = Fs2\E0

and 0 ≤ t ≤ bn/2c. Let φ0 be an injective mapping from E0 to Fn−s2 , and φ1 be an injective

mapping from E1 to Fn−s−t2 . Let X = (x1, . . . , xn) ∈ Fn2 and X(i,j) = (xi, . . . , xj) ∈ Fj−i+1
2 .
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f ∈ Bn is defined as follows:

f(X) =

{
φ0(X(1,s)) ·X(s+1,n), if X(1,s) ∈ E0

φ1(X(1,s+t)) ·X(s+t+1,n), if X(1,s+t) ∈ E1.

Let
T0 = {φ0(η) | η ∈ E0},

and
T1 = {φ1(θ) | θ ∈ E1}.

Then, we have

a) Wf (ω) ∈ {0,±2n−s,±2n−s−t} if t 6= 0 and T0 ⊂ Ft2 × T1, where T1 = Fn−s−t2 \T1;

b) Wf (ω) ∈ {0,±2n−s,±2n−s+1} if t = 0, T0 ∩ T1 6= ∅ and T0 6= T1.

Example 4.1. Let n = 8, s = 3 and t = 1. Now, we employ Theorem 4.1 to construct
5-valued spectra functions f (1), . . . , f (4) that satisfy Theorem 2.1. The resulting function f =
f (1)||f (2)||f (3)||f (4) ∈ B10 is then bent. Let Fn2 = {v0, . . . ,v2n−1} be ordered lexicographically.
Furthermore, we note that all sets defined below are also lexicographically ordered. We define

E0 = {e(0)0 , e
(0)
1 , e

(0)
2 }, where e

(0)
i = vi ∈ F3

2, and E1 = E0 × F2 = {e(1)0 , e
(1)
1 , . . . , e

(1)
9 } ⊂ F4

2,
where E0 = F3

2 \ E0. Let φ1 : E1 → F4
2 be defined by

φ1(e
(1)
i ) = v

(1)
i , e

(1)
i ∈ E1.

Let T1 = {φ1(θ) : θ ∈ E1} and T1 = F4
2 \ T1. Let Γ = F2 × T1 ⊂ F4

2 = {γ0, . . . , γ11} ⊂ F5
2 and

let φ
(j)
0 : E0 → F5

2 be defined by

φ
(j)
0 (e

(0)
i ) = γi+3j , e

(0)
i ∈ E0,

for j = 1, . . . , 4. If T0 = {φ0(η) : η ∈ E0}, then T0 ⊂ F2 × T1 (as required in Theorem
4.1-(a)). Now let X = (x0, . . . , x7) ∈ F8

2 and X(i,j) = (xi, . . . , xj) ∈ Fj−i+1
2 . For j = 1, 2, 3, 4,

f (j) ∈ B8 is defined as follows:

f (j)(X) =

{
φ
(j)
0 (X(0,2)) ·X(3,7) + δ1(j), if X(0,2) ∈ E0

φ1(X(0,3)) ·X(4,7) + δ1(j), if X(0,3) ∈ E1,

where δ1(j) = 1 for j = 1 and 0 otherwise. Let S
(j)
1 = {x ∈ F8

2 : |Wf (j)(x)| = 25} and

S
(j)
2 = {x ∈ F8

2 : |Wf (j)(x)| = 24}. Using Sage we could verify that all S
(j)
1 are pairwise

disjoint and all S
(j)
2 are equal. Furthermore, by the construction, f∗[2],1 ⊕ . . . ⊕ f∗[2],4 = 1.

Hence, by Theorem 2.1, the function f = f (1)||f (2)||f (3)||f (4) ∈ B10 of algebraic degree 5 is
bent, and its ANF is defined by:

f(x0, . . . , x9) = x0x1x2x3x4⊕x0x1x2x3x9⊕x0x1x2x4x8⊕x0x1x2x4⊕x0x1x2x6⊕x0x1x3x4⊕
x0x1x3x9⊕ x0x1x4x8⊕ x0x1x4⊕ x0x1x6⊕ x0x1x7⊕ x0x2x4⊕ x0x2x5x8⊕ x0x2x5⊕ x0x2x6⊕
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x0x4 ⊕ x0x5x8 ⊕ x1x2x5 ⊕ x1x2x6x8 ⊕ x1x5 ⊕ x1x6x8 ⊕ x1x6 ⊕ x2x3x4 ⊕ x2x3x9 ⊕ x2x4x8 ⊕
x2x5x8 ⊕ x2x6x8 ⊕ x2x7 ⊕ x3x9 ⊕ x4x8 ⊕ x5x8 ⊕ x5 ⊕ x6x8 ⊕ x7 ⊕ x8x9 ⊕ x8 ⊕ x9 ⊕ 1.

Nevertheless, using our algorithm in Section 3.1 implemented in Sage, we could confirm
that f ∈MM#.

As a generalization of the previous example, we give the following result. We assume that

all sets are ordered lexicographically and we denote Fn2 = {v(n)
0 ,v

(n)
1 , . . . ,v

(n)
2n−1}.

Theorem 4.2. Let n = 2m ≥ 8, E0 = {v(m−1)
0 , . . . ,v

(m−1)
τ−1 }, where τ < 2s−1 and 4τ ≤ 2m+1,

and E1 = E0 × F2 = {e(1)0 , . . . , e
(1)
λ }, where λ = 2 · (2m−1 − τ)− 1 and E0 = Fm−12 \ E0. Let

φ1 : E1 → Fm2 be defined by

φ1(e
(1)
i ) = v

(m)
i , e

(1)
i ∈ E1,

and let φ
(j)
0 : E0 → Fm+1

2 be defined by

φ
(j)
0 (e

(0)
i ) = γi+τ(j−1), e

(0)
i ∈ E0

for j = 1, 2, 3, 4 and Γ = F2 × (Fm2 \ T1), where T1 = {φ1(θ) : θ ∈ E1}. Now let X =
(x0, . . . , xn−1) ∈ Fn2 and X(i,j) = (xi, . . . , xj) ∈ Fj−i+1

2 . For j = 1, 2, 3, 4, f (j) ∈ Bn is defined
as follows:

f (j)(X) =

{
φ
(j)
0 (X(0,m−2)) ·X(m−1,n−1) + δ1(j), if X(0,m−2) ∈ E0

φ1(X(0,m−1)) ·X(m,n−1) + δ1(j), if X(0,m−1) ∈ E1,

where δ1(j) = 1 for j = 1 and 0 otherwise. Then, the function f ∈ Bn+2 given as the
concatenation f = f (1)||f (2)||f (3)||f (4) is a bent function.

Proof. Firstly, we note that Wf (j)(x) ∈ {0,±2m,±2m+1} by Theorem 4.1 for j = 1, 2, 3, 4. It
remains to show that these functions satisfy Theorem 2.1-(iii). From [16, Theorem V.6], we

have thatWf (j)(X) = ±2m+1 if φ
(j)−1

0 (X(0,m−2)) exists, andWf (j)(X) = ±2m if φ−11 (X(0,m−1))

exists. Let S
[1]

f (j)
= {x ∈ Fn2 : |Wf (j)(x)| = 2m+1 and S

[2]

f (j)
= {x ∈ Fn2 : |Wf (j)(x)| = 2m. The

cardinality of Γ can be computed as

|Γ| = 2 · |Fm2 \ T1| = 2(2m − |E1|) = 2 · (2m − 2(2m−1 − τ)) = 2m+1 − 2m+1 + 4τ = 4τ.

Because |Γ| = 4τ ≤ 2m+1 and |φ(j)0 (E0)| = τ , it is easy to see that φ
(j)
0 splits Γ into 4 disjoint

subsets and consequently the sets S
[1]

f (j)
are pairwise disjoint for j = 1, 2, 3, 4. As the function

φ1 is the same for all f (j), it follows that all sets S
[2]

f (j)
are equal. The condition that the

bent duals defined on S
[2]

f (j)
satisfy f∗[2],1 ⊕ f

∗
[2],2 ⊕ f

∗
[2],3 ⊕ f

∗
[2],4 = 1, follows from the fact that

δ1(j) = 1 only for j = 1.

Remark 4.1. The above statement also holds if E0 is a collection of arbitrary τ elements
in Fm−12 . However, (partial) computer simulations indicate that this approach only generates
bent functions inside the MM# class, regardless of the choice of E0.

Open Problem 1. Prove or disprove that the bent functions constructed using Theorem 4.2
always belong to MM# regardless of the choice of E0.
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5 Conclusions

This article significantly increases the cardinality of bent functions provably outside the com-
pleted Maiorana-McFarland class by specifying many infinite families of such functions, which
can additionally be combined for the same purpose. In the context of enumeration of bent
functions, it would be of interest to investigate whether the obtained families, that belong to
different cases of 4-decomposition, are fully/partially non-intersecting. Another important
question that remains unanswered, due to the lack of indicators for the partial spread class,
is whether these families intersect with the PS class.
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[16] S. Hodžić, E. Pasalic, W. G. Zhang. “Generic constructions of five-valued spectra
Boolean functions”. IEEE Trans. Inf. Theory 65(11): 7554–7565 (2019)
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Appendix

Sage implementation of Lemma 2.1

def is in MM(f,n):
s=[];
for a in [1..2^n−1]:

for b in [a+1..2^n−1]:
if set(ttab(f.derivative(a).derivative(b)))=={0}:

s.append([a,b]);
G=Graph();
G.add edges(s);
cl=list(sage.graphs.cliquer.all cliques(G,2^(n/2)−1,2^(n/2)−1));
V=VectorSpace(GF(2),n);
V1=sorted(V);
b1=[V.subspace([V1[0]]+[V1[i] for i in s]) for s in cl];
for K in b1:

if len(K)==2^(n/2):
return True;

return False;

ANF representations of certain bent functions

x0x1x2x4 ⊕ x0x1x2x6 ⊕ x0x1x3x4 ⊕ x0x1x3x5 ⊕ x0x1x3x7 ⊕ x0x1x4x5 ⊕ x0x1x4x7 ⊕ x0x1x4 ⊕
x0x1x5x7 ⊕ x0x1x6x7 ⊕ x0x2x3x6 ⊕ x0x2x3x7 ⊕ x0x2x4x5 ⊕ x0x2x5x6 ⊕ x0x2x5x7 ⊕ x0x2x5 ⊕
x0x2x6x7⊕x0x3x4x6⊕x0x3x4x7⊕x0x3x4⊕x0x3x5x7⊕x0x3x6x7⊕x0x3x6⊕x0x3x7⊕x0x4x5x6⊕
x0x4x5⊕ x0x4x6⊕ x0x5x6x7⊕ x0x5x6⊕ x0x5x7⊕ x0x7⊕ x1x2x3x5⊕ x1x2x3x6⊕ x1x2x4x5⊕
x1x2x4x6⊕x1x2x4⊕x1x2x5x6⊕x1x2x5⊕x1x2x6x7⊕x1x2x7⊕x1x3x4x7⊕x1x3x5x6⊕x1x3x5⊕
x1x3x6⊕x1x3x7⊕x1x4x6x7⊕x1x4x7⊕x1x4⊕x1x5x6⊕x1x5x7⊕x1x6⊕x2x3x4x5⊕x2x3x4x7⊕
x2x3x4⊕ x2x3x5x6⊕ x2x3x5x7⊕ x2x3x5⊕ x2x4x5x6⊕ x2x4x5x7⊕ x2x4x5⊕ x2x4x7⊕ x2x4⊕
x2x6x7 ⊕ x2x7 ⊕ x3x4x5x7 ⊕ x3x4x6x7 ⊕ x3x5x6 ⊕ x3x5 ⊕ x3x6x7 ⊕ x3x6

(19)

x0x1x2x6+x0x1x2x7+x0x1x2x8x9+x0x1x2x8x10+x0x1x2x9x11+x0x1x2x10x11+x0x1x3x4+
x0x1x3x5 +x0x1x4 +x0x1x7 +x0x1x8x9 +x0x1x8x10 +x0x1x9x11 +x0x1x10x11 +x0x2x3x6 +
x0x2x4+x0x2x5+x0x2x7+x0x2x8x9+x0x2x8x10+x0x2x9x11+x0x2x10x11+x0x3x4+x0x3x5+
x0x3x6+x0x3x7+x0x3x8x9+x0x3x8x10+x0x3x9x11+x0x3x10x11+x0x6+x1x2x3x4+x1x2x4+
x1x2x6 + x1x3x5 + x1x3x6 + x1x5 + x1x6 + x1x7 + x1x8x9 + x1x8x10 + x1x9x11 + x1x10x11 +
x2x3x4+x2x3x5+x2x3x6+x2x4+x2x6+x2x7+x2x8x9+x2x8x10+x2x9x11+x2x10x11+x3x4+
x4x5x6x7 + x4x5x6x8x9 + x4x5x6x8x10 + x4x5x6x9x11 + x4x5x6x10x11 + x4x5x6 + x4x5x7 +
x4x5x8x9 + x4x5x8x10 + x4x5x9x11 + x4x5x10x11 + x4x5 + x4x6x7 + x4x6x8x9 + x4x6x8x10 +
x4x6x9x11+x4x6x10x11+x4x6+x4x7+x4x8x9+x4x8x10+x4x9x11+x4x10x11+x4+x5x6x7+
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x5x6x8x9+x5x6x8x10+x5x6x9x11+x5x6x10x11+x5x6+x5x7+x5x8x9+x5x8x10+x5x9x11+
x5x10x11 + x5 + x6x7 + x6x8x9 + x6x8x10 + x6x9x11 + x6x10x11 + x6 + x7 + x8x10 + x9x11 + 1

(20)

x0x1x2x5⊕x0x1x2x6⊕x0x1x3x6⊕x0x1x3x7⊕x0x1x3x8x9⊕x0x1x3x8x10⊕x0x1x3x9x11⊕
x0x1x3x10x11⊕x0x1x4x6⊕x0x1x4x7⊕x0x1x4x8x9⊕x0x1x4x8x10⊕x0x1x4x9x11⊕x0x1x4x10x11⊕
x0x1x4⊕x0x1x5x6⊕x0x1x6x7⊕x0x1x6x8x9⊕x0x1x6x8x10⊕x0x1x6x9x11⊕x0x1x6x10x11⊕
x0x1x6⊕x0x2x3x5⊕x0x2x4x7⊕x0x2x4x8x9⊕x0x2x4x8x10⊕x0x2x4x9x11⊕x0x2x4x10x11⊕
x0x2x5x6 ⊕ x0x2x5 ⊕ x0x2x6 ⊕ x0x2x7 ⊕ x0x2x8x9 ⊕ x0x2x8x10 ⊕ x0x2x9x11 ⊕ x0x2x10x11 ⊕
x0x3x4x5⊕x0x3x4x7⊕x0x3x4x8x9⊕x0x3x4x8x10⊕x0x3x4x9x11⊕x0x3x4x10x11⊕x0x3x4⊕
x0x3x5x7⊕x0x3x5x8x9⊕x0x3x5x8x10⊕x0x3x5x9x11⊕x0x3x5x10x11⊕x0x3x6x7⊕x0x3x6x8x9⊕
x0x3x6x8x10⊕x0x3x6x9x11⊕x0x3x6x10x11⊕x0x4x5x7⊕x0x4x5x8x9⊕x0x4x5x8x10⊕x0x4x5x9x11⊕
x0x4x5x10x11⊕x0x4x6x7⊕x0x4x6x8x9⊕x0x4x6x8x10⊕x0x4x6x9x11⊕x0x4x6x10x11⊕x0x4x6⊕
x0x4x7⊕x0x4x8x9⊕x0x4x8x10⊕x0x4x9x11⊕x0x4x10x11⊕x0x5x7⊕x0x5x8x9⊕x0x5x8x10⊕
x0x5x9x11⊕x0x5x10x11⊕x0x5⊕x0x6x7⊕x0x6x8x9⊕x0x6x8x10⊕x0x6x9x11⊕x0x6x10x11⊕
x0x7 ⊕ x0x8x9 ⊕ x0x8x10 ⊕ x0x9x11 ⊕ x0x10x11 ⊕ x1x2x3x4 ⊕ x1x2x3x7 ⊕ x1x2x3x8x9 ⊕
x1x2x3x8x10 ⊕ x1x2x3x9x11 ⊕ x1x2x3x10x11 ⊕ x1x2x4x5 ⊕ x1x2x4x6 ⊕ x1x2x4 ⊕ x1x2x5x6 ⊕
x1x2x5x7 ⊕ x1x2x5x8x9 ⊕ x1x2x5x8x10 ⊕ x1x2x5x9x11 ⊕ x1x2x5x10x11 ⊕ x1x2x5 ⊕ x1x2x7 ⊕
x1x2x8x9⊕x1x2x8x10⊕x1x2x9x11⊕x1x2x10x11⊕x1x3x4x5⊕x1x3x4x6⊕x1x3x4x7⊕x1x3x4x8x9⊕
x1x3x4x8x10⊕x1x3x4x9x11⊕x1x3x4x10x11⊕x1x3x5⊕x1x3x6x7⊕x1x3x6x8x9⊕x1x3x6x8x10⊕
x1x3x6x9x11⊕x1x3x6x10x11⊕x1x3x6⊕x1x3x7⊕x1x3x8x9⊕x1x3x8x10⊕x1x3x9x11⊕x1x3x10x11⊕
x1x4x5x6⊕x1x4x5x7⊕x1x4x5x8x9⊕x1x4x5x8x10⊕x1x4x5x9x11⊕x1x4x5x10x11⊕x1x5x6⊕
x1x6 ⊕ x1x7 ⊕ x1x8x9 ⊕ x1x8x10 ⊕ x1x9x11 ⊕ x1x10x11 ⊕ x2x3x4x5 ⊕ x2x3x4x6 ⊕ x2x3x5x6 ⊕
x2x3x6x7 ⊕ x2x3x6x8x9 ⊕ x2x3x6x8x10 ⊕ x2x3x6x9x11 ⊕ x2x3x6x10x11 ⊕ x2x3x6 ⊕ x2x3x7 ⊕
x2x3x8x9 ⊕ x2x3x8x10 ⊕ x2x3x9x11 ⊕ x2x3x10x11 ⊕ x2x4x5x6 ⊕ x2x4x6x7 ⊕ x2x4x6x8x9 ⊕
x2x4x6x8x10 ⊕ x2x4x6x9x11 ⊕ x2x4x6x10x11 ⊕ x2x4x6 ⊕ x2x4 ⊕ x2x5x6x7 ⊕ x2x5x6x8x9 ⊕
x2x5x6x8x10⊕ x2x5x6x9x11⊕ x2x5x6x10x11⊕ x2x5x7⊕ x2x5x8x9⊕ x2x5x8x10⊕ x2x5x9x11⊕
x2x5x10x11 ⊕ x2x7 ⊕ x2x8x9 ⊕ x2x8x10 ⊕ x2x9x11 ⊕ x2x10x11 ⊕ x3x4x5x7 ⊕ x3x4x5x8x9 ⊕
x3x4x5x8x10⊕x3x4x5x9x11⊕x3x4x5x10x11⊕x3x4x6⊕x3x5x6x7⊕x3x5x6x8x9⊕x3x5x6x8x10⊕
x3x5x6x9x11⊕x3x5x6x10x11⊕x3x5x6⊕x3x5⊕x3x6x7⊕x3x6x8x9⊕x3x6x8x10⊕x3x6x9x11⊕
x3x6x10x11 ⊕ x3x6 ⊕ x8x9 ⊕ x10x11

(21)

f(x0, . . . , x11) = x0x1x2x3x8 ⊕ x0x1x2x3x9 ⊕ x0x1x2x4x8 ⊕ x0x1x2x4x9 ⊕ x0x1x2x5x8 ⊕
x0x1x2x5x9⊕x0x1x2x5⊕x0x1x2x6x8⊕x0x1x2x6x9⊕x0x1x2x6⊕x0x1x2x7x8⊕x0x1x2x7x9⊕
x0x1x2x7⊕x0x1x2x8⊕x0x1x2x9⊕x0x1x2⊕x0x1x3x6x8⊕x0x1x3x6x9⊕x0x1x3x6⊕x0x1x3x8⊕
x0x1x3x9 ⊕ x0x1x4x5 ⊕ x0x1x4x6x8 ⊕ x0x1x4x6x9 ⊕ x0x1x4x6 ⊕ x0x1x4x7 ⊕ x0x1x4x8 ⊕
x0x1x4x9⊕x0x1x4⊕x0x1x5x6x8⊕x0x1x5x6x9⊕x0x1x5x6⊕x0x1x5x8⊕x0x1x5x9⊕x0x1x6x7x8⊕
x0x1x6x7x9 ⊕ x0x1x6x7 ⊕ x0x1x6x8 ⊕ x0x1x6x9 ⊕ x0x1x6 ⊕ x0x1x7x8 ⊕ x0x1x7x9 ⊕ x0x1x7 ⊕
x0x1x8 ⊕ x0x1x9 ⊕ x0x2x3x4x8 ⊕ x0x2x3x4x9 ⊕ x0x2x3x5 ⊕ x0x2x3x6x8 ⊕ x0x2x3x6x9 ⊕
x0x2x3x6⊕x0x2x3x7⊕x0x2x3x8⊕x0x2x3x9⊕x0x2x3⊕x0x2x4x5x8⊕x0x2x4x5x9⊕x0x2x4x7x8⊕
x0x2x4x7x9 ⊕ x0x2x4x8 ⊕ x0x2x4x9 ⊕ x0x2x4 ⊕ x0x2x5x6x8 ⊕ x0x2x5x6x9 ⊕ x0x2x5x6 ⊕
x0x2x5x7 ⊕ x0x2x5x8 ⊕ x0x2x5x9 ⊕ x0x2x6x7x8 ⊕ x0x2x6x7x9 ⊕ x0x2x6x7 ⊕ x0x2x6x8 ⊕
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x0x2x6x9⊕x0x2x6⊕x0x2x7x8⊕x0x2x7x9⊕x0x2x8⊕x0x2x9⊕x0x2⊕x0x3x4x6x8⊕x0x3x4x6x9⊕
x0x3x4x6 ⊕ x0x3x4x7 ⊕ x0x3x4x8 ⊕ x0x3x4x9 ⊕ x0x3x6x8 ⊕ x0x3x6x9 ⊕ x0x3x7 ⊕ x0x3x8 ⊕
x0x3x9⊕x0x3⊕x0x4x5x6x8⊕x0x4x5x6x9⊕x0x4x5x6⊕x0x4x5x8⊕x0x4x5x9⊕x0x4x6x7x8⊕
x0x4x6x7x9 ⊕ x0x4x6x7 ⊕ x0x4x6x8 ⊕ x0x4x6x9 ⊕ x0x4x7x8 ⊕ x0x4x7x9 ⊕ x0x4x7 ⊕ x0x4x8 ⊕
x0x4x9 ⊕ x0x4 ⊕ x0x5x6x8 ⊕ x0x5x6x9 ⊕ x0x5x8 ⊕ x0x5x9 ⊕ x0x5 ⊕ x0x6x7x8 ⊕ x0x6x7x9 ⊕
x0x6x8⊕ x0x6x9⊕ x0x6⊕ x0x7x8⊕ x0x7x9⊕ x0x7⊕ x0x8⊕ x0x9⊕ x1x2x3x4⊕ x1x2x3x5x8⊕
x1x2x3x5x9 ⊕ x1x2x3x5 ⊕ x1x2x3x6x8 ⊕ x1x2x3x6x9 ⊕ x1x2x3x6 ⊕ x1x2x3x8 ⊕ x1x2x3x9 ⊕
x1x2x4x5x8 ⊕ x1x2x4x5x9 ⊕ x1x2x4x6x8 ⊕ x1x2x4x6x9 ⊕ x1x2x4x6 ⊕ x1x2x4x7 ⊕ x1x2x4x8 ⊕
x1x2x4x9⊕x1x2x5x6⊕x1x2x5x7x8⊕x1x2x5x7x9⊕x1x2x5x7⊕x1x2x5x8⊕x1x2x5x9⊕x1x2x5⊕
x1x2x6x7x8⊕x1x2x6x7x9⊕x1x2x6x8⊕x1x2x6x9⊕x1x2x6⊕x1x2x7x8⊕x1x2x7x9⊕x1x2x7⊕
x1x2x8 ⊕ x1x2x9 ⊕ x1x2 ⊕ x1x3x4x5 ⊕ x1x3x4x6 ⊕ x1x3x4x7 ⊕ x1x3x5x6x8 ⊕ x1x3x5x6x9 ⊕
x1x3x5x6 ⊕ x1x3x5x8 ⊕ x1x3x5x9 ⊕ x1x3x6x8 ⊕ x1x3x6x9 ⊕ x1x3x7 ⊕ x1x3x8 ⊕ x1x3x9 ⊕
x1x4x5x6x8 ⊕ x1x4x5x6x9 ⊕ x1x4x5x6 ⊕ x1x4x5x8 ⊕ x1x4x5x9 ⊕ x1x4x6x8 ⊕ x1x4x6x9 ⊕
x1x4x7 ⊕ x1x4x8 ⊕ x1x4x9 ⊕ x1x5x6x7x8 ⊕ x1x5x6x7x9 ⊕ x1x5x6x7 ⊕ x1x5x6x8 ⊕ x1x5x6x9 ⊕
x1x5x7x8⊕ x1x5x7x9⊕ x1x5x8⊕ x1x5x9⊕ x1x5⊕ x1x6x7x8⊕ x1x6x7x9⊕ x1x6x7⊕ x1x6x8⊕
x1x6x9⊕ x1x6⊕ x1x7x8⊕ x1x7x9⊕ x1x8⊕ x1x9⊕ x2x3x4x5x8⊕ x2x3x4x5x9⊕ x2x3x4x6x8⊕
x2x3x4x6x9 ⊕ x2x3x4x6 ⊕ x2x3x4x8 ⊕ x2x3x4x9 ⊕ x2x3x5x6x8 ⊕ x2x3x5x6x9 ⊕ x2x3x5x6 ⊕
x2x3x5x7 ⊕ x2x3x5x8 ⊕ x2x3x5x9 ⊕ x2x3x5 ⊕ x2x3x6x7 ⊕ x2x3x6x8 ⊕ x2x3x6x9 ⊕ x2x3x6 ⊕
x2x3x8⊕x2x3x9⊕x2x3⊕x2x4x5x6x8⊕x2x4x5x6x9⊕x2x4x5x7x8⊕x2x4x5x7x9⊕x2x4x5x7⊕
x2x4x5x8⊕x2x4x5x9⊕x2x4x5⊕x2x4x6x7x8⊕x2x4x6x7x9⊕x2x4x6x7⊕x2x4x6x8⊕x2x4x6x9⊕
x2x4x7x8⊕x2x4x7x9⊕x2x4x8⊕x2x4x9⊕x2x5x6x7x8⊕x2x5x6x7x9⊕x2x5x6x7⊕x2x5x6x8⊕
x2x5x6x9⊕ x2x5x6⊕ x2x5x7x8⊕ x2x5x7x9⊕ x2x5x7⊕ x2x5x8⊕ x2x5x9⊕ x2x5⊕ x2x6x7x8⊕
x2x6x7x9⊕x2x6x8⊕x2x6x9⊕x2x7x8⊕x2x7x9⊕x2x8⊕x2x9⊕x2⊕x3x4x5x6x8⊕x3x4x5x6x9⊕
x3x4x5x8⊕x3x4x5x9⊕x3x4x5⊕x3x4x6x7⊕x3x4x6x8⊕x3x4x6x9⊕x3x4x6⊕x3x4x8⊕x3x4x9⊕
x3x5x6x8⊕ x3x5x6x9⊕ x3x5x7⊕ x3x5x8⊕ x3x5x9⊕ x3x6x8⊕ x3x6x9⊕ x3x7⊕ x3x8⊕ x3x9⊕
x4x5x6x7x8⊕x4x5x6x7x9⊕x4x5x6x8⊕x4x5x6x9⊕x4x5x7x8⊕x4x5x7x9⊕x4x5x8⊕x4x5x9⊕
x4x5⊕ x4x6x7x8⊕ x4x6x7x9⊕ x4x6x7⊕ x4x6x8⊕ x4x6x9⊕ x4x6⊕ x4x7x8⊕ x4x7x9⊕ x4x8⊕
x4x9⊕x4⊕x5x6x7x8⊕x5x6x7x9⊕x5x6x7⊕x5x6x8⊕x5x6x9⊕x5x7x8⊕x5x7x9⊕x5x7⊕x5x8⊕
x5x9⊕x5⊕x6x7x8⊕x6x7x9⊕x6x7⊕x6x8⊕x6x9⊕x6⊕x7x8⊕x7x9⊕x8x11⊕x8⊕x9x10⊕x9⊕1

(22)
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