
GUC-Secure Commitments via Random Oracles:

New Impossibility and Feasibility∗

Zhelei Zhou† Bingsheng Zhang‡ Hong-Sheng Zhou§ Kui Ren¶

September 22, 2022

Abstract

In the UC framework, protocols must be subroutine respecting; therefore, shared trusted
setup might cause security issues. To address this drawback, Generalized UC (GUC) framework
is introduced by Canetti et al. (TCC 2007). In this work, we investigate the impossibility
and feasibility of GUC-secure commitments using global random oracles (GRO) as the trusted
setup. In particular, we show that it is impossible to have a 2-round (1-round committing
and 1-round opening) GUC-secure commitment in the global observable RO model by Canetti
et al. (CCS 2014). We then give a new round-optimal GUC-secure commitment that uses
only Minicrypt assumptions (i.e. the existence of one-way functions) in the global observable
RO model. Furthermore, we also examine the complete picture on round complexity of the
GUC-secure commitments in various global RO models.

∗This is the full version of a paper accepted by Asiacrypt 2022. Corresponding authors: Bingsheng Zhang
bingsheng@zju.edu.cn, and Hong-Sheng Zhou hszhou@vcu.edu.

†Zhejiang University, and ZJU-Hangzhou Global Scientific and Technological Innovation Center.
‡Zhejiang University, and ZJU-Hangzhou Global Scientific and Technological Innovation Center. Work supported

by the National Key R&D Program of China (No. 2021YFB3101601), the National Natural Science Foundation
of China (Grant No. 62072401), and “Open Project Program of Key Laboratory of Blockchain and Cyberspace
Governance of Zhejiang Province”. This project is also supported by Input Output (iohk.io).

§Virginia Commonwealth University. Work supported in part by NSF grant CNS-1801470, a Google Faculty
Research Award and a research gift from Ergo Platform.

¶Zhejiang University, and ZJU-Hangzhou Global Scientific and Technological Innovation Center.

1

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Related Work . 5

2 Preliminaries 5
2.1 Notations . 5
2.2 Universal Composability . 6
2.3 The Global Random Oracle Models . 8
2.4 One-Way Functions . 10
2.5 SHVZK Protocols . 11
2.6 Non-Interactive Witness Hiding Argument . 13

2.6.1 Non-Interactive Witness Hiding Argument in the Plain Model 13
2.6.2 Non-Interactive Witness Hiding Argument in the Random Oracle Model . . . 14

2.7 Equivocal Commitment . 15
2.8 “MPC-in-the-Head” Paradigm . 16

3 Impossibility in the GORO Model 18

4 Feasibility in the GORO Model 20
4.1 Our GUC-Secure Commitment Construction . 20
4.2 Instantiation of the Building Blocks . 24

4.2.1 SHVZK Protocols from “MPC-in-the-Head” 24
4.2.2 Perfect-Hiding Non-Interactive Equivocal Commitment 29
4.2.3 Straight-Line Extractable NIWH Argument 31

5 Concluding Remarks: Towards a Complete Picture 31

A Lower Bounds on Round Complexity for GUC-Secure Commitment/ZK in the
GPRO Model 35
A.1 Result for Commitment . 35
A.2 Result for ZK . 36

B Straight-line Extractable NIWH Argument from k-Special Sound SHVZK Pro-
tocol 38

2

1 Introduction

Secure multi-party computation (MPC) [Yao82, GMW87] is one of the most important cornerstone
of modern cryptography. It enables n mutually distrustful players, P1, . . . , Pn to securely evaluate
any efficiently computable function f of their private inputs, x1, . . . , xn. Since its introduction in the
early 1980s, MPC has been extensively studied in the literature. Typically, the security properties of
an MPC protocol are formalized using the well-known “simulation-paradigm” [GMR89, GMW87].
Roughly speaking, the idea is to require that any adversarial attacker A in the real world execution
of the protocol, can be emulated by a so-called “simulator” S in an ideal world execution, where
the players provide their inputs to a trusted third party who computes f for them and relays the
result back to the players.

From UC to GUC. To facilitate modular protocol design and analysis in the complex network
environments, Canetti proposed the Universal Composibility (UC) framework [Can01], where, the
notion of indistinguishability between the real and the ideal world is replaced by a notion of “inter-
active indistinguishability”. More specifically, an interactive environment, which may communicate
with both the honest players and the corrupted ones, should not be able to distinguish whether
it is participating in the real execution or the ideal one. UC security guarantees the security of
the MPC protocols under concurrent executions, and even other arbitrary protocols running in the
same network cannot be adversarially affected — roughly speaking, the environment represents the
collection of any other concurrent protocols. Additionally, this notion is closed under composition,
enabling modular analysis of protocols.

However, protocols in the UC framework must be subroutine respecting, and shared setup cannot
be directly modeled by the basic UC notion. To address this drawback, Canetti, Dodis, Pass and
Walfish proposed the Generalized Universal Composibility (GUC) framework in 2007 [CDPW07].
Since then, many interesting and efficient protocols have been designed and analyzed under the
GUC framework [DSW08, CJS14, MRS17, CDG+18, CSW20].

Random Oracles as a global setup: GsRO, GoRO, GpRO, and GpoRO. It has been shown
[CF01, CDPW07] that, to achieve secure multi-party computation for any non-trivial functionality
in the UC and the GUC framework, certain trusted setups (e.g., CRS, PKI, etc.) are required.
Random Oracle (RO) is a classic idealized setup that can be used to design UC-secure [HM04] and
GUC-secure multi-party computation protocols [CJS14, CDG+18].

Random oracle model [BR93] is a popular idealized model that has been widely used to justify
the security of efficient cryptographic protocols. In spite of its known inability to provide prov-
able guarantees when RO is instantiated with a real-world hash function [CGH98], RO is still a
promising setup without known real-world attacks. In fact, RO draws increasing attention along
with recent advancement of the blockchain technology. It is generally viewed as a transparent setup
that can be easily deployed with no reliance on any trusted party in the blockchain and other dis-
tributed system setting. Many RO-based non-interactive ZK systems, e.g., zk-STARK [BBHR19]
and Fractal [COS20], are developed and deployed in real application scenarios. Note that, those
RO-based protocols can achieve post-quantum security.

A natural formulation of a global RO, denoted as GsRO, has been defined in [CDPW07]: it is
accessible to all parties both in the ideal world and the real world, but it offers neither “observ-
ability” nor “programmability”. We emphasize that, it has been proven that it is impossible to
achieve GUC-secure commitment in the GsRO model [CDPW07]. Later, Canetti, Jain, and Scafuro
[CJS14] proposed a strengthened version of the global RO, denoted as GoRO, which allows the sim-
ulator to “observe” the queries made by the malicious parties, and GUC-secure commitment can
be constructed in the GoRO model. Camenisch et al. [CDG+18] further strengthened the GsRO from

1

a different direction: they designed a mechanism that allows the simulator to “program” the global
RO without being detected by the adversary, and we denote this strengthened version of the global
RO as GpRO. On top of both GoRO and GpRO, Camensich et al. [CDG+18] then introduced an even
stronger variant, called GpoRO, and they constructed a round-optimal GUC-secure commitment in
the GpoRO model [CDG+18]. Figure 3 depicts the relation of these global RO models.

Problem statement. We study the round complexity of GUC-secure commitment in the global RO
models. Clearly protocols relying on a less idealized setup and weaker computational assumptions
will allow us to gain better confidence in the proved security statement. Note that, round-optimal
GUC secure commitments can be constructed based on the strong global RO setup GpoRO [CDG+18].
On the other hand, in [CDPW07], it has been proven that constructing a GUC-secure commitment
in the GsRO model is impossible. Between these two extremes, in [CJS14], Cannetti et al have
shown that it is feasible to construct a GUC-secure commitment in the GoRO model; however, their
construction relies on the discrete logarithm assumption, which cannot achieve (post-) quantum
security. We are interested in GUC-secure commitment protocols using a global RO setup and
Minicrypt [Imp95] assumptions; these protocols can additionally achieve post-quantum security.
This leads us to a natural research question:

What is the lower bounds of the round complexity1 of a GUC-secure commitment in the GoRO
model?

If there exists such a lower bound on the round complexity of a GUC-secure commitment in the
GoRO model, we would like to find a round-optimal construction. We hereby ask:

If there exists such a lower bound, is that possible to construct round-optimal GUC-secure com-

mitment in the GoRO model, using only Minicrypt assumption?

1.1 Our Results

We give affirmative answers to the above research questions. Our findings can be summarized as
follows.

A new impossibility result in the GoRO model. In this work, we show that 2-round (1-round
for committing and 1-round for opening) GUC-secure commitment does not exist in the GoRO model
(cf. Section 3).

We prove this result by contradiction, and our main observation is as follows. Suppose such a
2-round GUC-secure commitment exists. First, it is easy to see that if the committing phase only
takes one round, then there is only one message sent from the committer to the receiver; that is,
the receiver does not send any message to the committer. Analogously, the receiver is also “silent”
in the 1-round opening phase. Therefore, the potentially corrupted receiver can delay all its GoRO
queries until it receives the opening message from the committer.

Let us consider the case where the receiver is corrupted. During the simulation, the simulated
committer needs to generate the commitment message without the knowledge of the plaintext,
and it later needs to generate the opening message for any given input (a.k.a. the plaintext). As
discussed before, the corrupted receiver can choose not to query the GoRO until the simulator has
equivocated the commitment. Hence, the simulator cannot obtain any illegitimate queries from
GoRO for this corrupted receiver to facilitate this equivocation. Now, observe that this simulator

1Throughout this work, we do not consider the case of simultaneous rounds where two parties can send their
messages to each other at the same round [GIS18, MR19].

2

has no extra power over a normal party; in particular, any committer can invoke such a simulator
(algorithm) to violate the binding property of the commitment.

In the actual proof of our impossibility result, we let the corrupted committer to internally
run the simulator algorithm to generate the commitment message, providing an empty list for
the GoRO illegitimate queries. Obviously, given this commitment message, the receiver/simulator
cannot extract its plaintext; Therefore, with very high probability, the simulation would fail.

A new round-optimal commitment using GoRO. With respect to our impossibility result, a
round-optimal commitment should takes at least 3 rounds. In this work, we show how to construct
a round-optimal (2-round for committing and 1-round for opening) GUC-secure commitment only
using Minicrypt assumptions in the GoRO model (cf. Section 4).

A general framework. A typical GUC-secure commitment requires both extractability and
equivocality. The GoRO model can directly provide the simulator with extractability; therefore, the
challenge is to design an equivocation mechanism with round efficiency. A natural approach is
to utilize a (property-based) perfect hiding non-interactive equivocal commitment: (i) in the 1st
round, the receiver picks the commitment key and sends it to the committer; and (ii) in the 2nd
round, the committer uses the equivocal commitment scheme to commit the message. To deploy
this approach, the following questions need to be resolved:

• How to instantiate such a perfect-hiding non-interactive equivocal commitment?

• How can the simulator obtain the equivocation trapdoor?

In [CJS14] and [MRS17], the Pedersen commitment is used as a candidate of the equivocal
commitment. It is well-known, the security of Pedersen commitment is based on the discrete
logarithm assumption which is not (post-) quantum secure. In this work, we show how to construct
a candidate of the equivocal commitment only using Minicrypt assumptions, i.e. the existence of
one-way functions, in the GoRO model.

To address the latter question, [CJS14] introduced a 5-round mechanism that enables the sim-
ulator to obtain the equivocation trapdoor in the GoRO model; whereas, [MRS17] proposed a more
round-efficient (3-round) mechanism to do so. More precisely, [MRS17] let the receiver use a Non-
Interactive Witness Indistinguishable (NIWI) argument to prove the knowledge of equivocation
trapdoor w.r.t. the commitment key. The proof is sent together with the commitment key in the
1st round. Note that straight-line extractability is needed for this approach.

Following the technique proposed in [MRS17], our framework adopts the Non-Interactive Wit-
ness Hiding (NIWH) argument with straight-line extractability [Pas03] to prove the knowledge of
equivocation trapdoor w.r.t. the commitment key. The straight-line extractable NIWH argument
can be constructed under Minicrypt assumption in the GoRO model. Putting things together, we can
obtain a GUC-secure commitment using only Minicrypt assumptions. We present the technique
roadmap of our framework in Figure 1.

Non-interactive equivocal commitment in Minicrypt. As shown in [Dam02, MY04], it is
possible to build a non-interactive equivocal commitment from a 3-round public-coin Special Honest
Verifier Zero-Knowledge (SHVZK) protocol with 2-special soundness. In the SHVZK protocol, the
prover sends the message flow a in the 1st round, and the receiver sends a public-coin randomness
e as the challenge in the 2nd round. After receiving e, the prover computes and sends the response
z in the last round. The technique of constructing non-interactive equivocal commitment can be

3

GoRO-hybrid world

Equivocal
Commitment

GUC-secure
Commitment

Straight-line Extractable
NIWH Argument

(a) A general framework.

GoRO-hybrid world

Equivocal
Commitment

Straight-line Extractable
NIWH ArgumentOWF

MPC-in-the-head
SHVZK
Protocol

(b) Instantiation of building blocks.

Figure 1: Technique Roadmap

summarized as follows. Let RL be an NP relation whose associate language is L. The receiver
randomly samples a pair (x,w) ∈ RL and sends x to the committer. To commit a message m,
the committer invokes the SHVZK simulator for x ∈ L, using m as the challenge. The simulator
then outputs the simulated proof (a, z). The committer sends a to the receiver as its commitment
message. To open the commitment, the committer can simply send m, z to the receiver, who will
accept it if and only if (a,m, z) is an accepting SHVZK proof transcript. The equivocation trapdoor
is w, which can be extracted from the straight-line extractor of NIWH as described above.

Since we aim to construct a commitment under Minicrypt assumptions, in our construction, RL
is instantiated with a one-way function relation, i.e., g(x) = y where g is a one-way function. Next,
how to construct a 2-special sound SHVZK protocol under Minicrypt assumptions? One possible
approach is to use the “MPC-in-the-head” paradigm proposed by Ishai et al. [IKOS07]. Roughly
speaking, the main idea is for the prover to simulate the execution of an n-party computation
protocol that checks if (x,w) ∈ RL, where x is the public input and w is the witness. The prover
then commits to all views of the parties and sends the commitments to the verifier. After that,
the verifier chooses a random subset of the parties and asks the prover to open their corresponding
views. The verifier accepts the proof if the revealed views are consistent. Unfortunately, to the
best of our knowledge, none of the followups [GMO16, CDG+17, AHIV17, KKW18, dOT21] since
the initial work of [IKOS07] can lead to a 2-special sound SHVZK protocol merely under Minicrypt
assumptions. To address this issue, we propose a new technique that can construct a 2-special
sound protocol in the GoRO model (cf. Section 4.2.1).

Towards a complete picture. In terms of the GoRO, our work gives a complete answer to
our questions: we show there exists no 2-round GUC-secure commitment in the GoRO model (cf.
Section 3), and present a 3-round (round-optimal) GUC-secure commitment under only Minicrypt
assumptions in the GoRO model (cf. Section 4). Moreover, it is known that GUC-secure commitment
does not exist in the GsRO model [CDPW07], and round-optimal GUC-secure commitment can be
constructed without further assumptions in the GpoRO model [CDG+18]. What about the GpRO? In
this work, we also show some impossibility result: there exists no GUC-secure commitment with
1-round committing in the GpRO model (see details in the full version of our paper). However, the
feasibility of round-optimal GUC-secure commitment under Minicrypt assumptions in the GpRO
model remains an open question.

Further investigation and future directions. We mainly focus on the commitment in this
work. One may also wonder the lower bounds of the round complexity of other cryptographic
primitives such as ZK, OT, etc. In fact, it is already known that there exists no NIZK in the
observable RO model [Pas03]. What about the ZK proofs in the GpRO model? In this work, we
show that our impossibility result can be extended to ZK proofs in the GpRO model: there exists

4

no non-trivial GUC-secure NIZK protocols in the GpRO model (see details in the full version of our
paper).

1.2 Related Work

In terms of UC security with local setups, non-interactive commitments (1 round for the committing
phase and 1 round for the opening phase) can be constructed under various setup assumptions. For
instance, Canetti and Fischlin gave a candidate in the CRS model [CF01]; Hofheinz and Müller-
Quade suggested a candidate in the RO model [HM04].

As for UC security with global setups, it is still unclear if it is possible to construct a non-
interactive GUC-secure commitment, and very few work, e.g., [DSW08] is dedicated to this research
area. In [CDPW07], Canetti et al. showed that it is impossible to construct a GUC-secure commit-
ment merely relying on local CRS/RO functionalities; they further proposed a 7-round GUC-secure
commitment protocol in the Agumented CRS (ACRS) model. Later, Dodis et al. proved that there
exist no GUC-secure commitment with one-round commitment phase in the ACRS model against
adaptive adversaries [DSW08]. Note that their impossibility result can be extended to any other
global setup whose output depends on the program ID (pid) of the querying party, but not the ses-
sion ID (sid), such as the Key Registration of Knowledge (KRK) model [BCNP04]. To bypass this
impossibility result, GoRO,GpRO and GpoRO are proposed; the output of those setup functionalities
depends on the session ID (sid).

Focusing on commitments in the GoRO, Canetti et al. proposed a 5-round GUC-secure commit-
ment [CJS14]. Later, Mohassel et al. gave a (1 + 2)-round GUC-secure commitment in the GoRO
model, where the committer and the receiver needs to have an additional one-round setup phase
followed by a 2-round commitment [MRS17]. Note that their construction also employed Pedersen
commitment and thus in the Cryptomania [Imp95] world. Byali et al. gave a 2-round GUC-secure
commitment construction in the CRS and GoRO hybrid model [BPRS17]. Following Byali et al.
paradigm, GUC-secure ZK protocols [GKPS18, LR22] can also be constructed in the CRS and
GoRO hybrid model. With regard to post-quantum security, [BGM19] gave a 5-round lattice-based
GUC-secure commitment and [Bra21] gave a 6-round code-based GUC-secure commitment in the
GoRO model.

In respect of the GpRO and the GpoRO, Camenisch et al. proposed a 3-round GUC-secure com-
mitment from CDH assumption in the GpRO model and an information-theoretical non-interactive
GUC-secure commitment in the GpoRO model [CDG+18]. In the following, Canetti et al. proposed
a 2-round OT adaptive-secure OT from DDH assumption in the GpRO model [CSW20], but their
protocol is only UC-secure. Baum et al. constructed a GUC-secure commitment scheme that is
additively homomorphic in the GpoRO model [BDD20].

2 Preliminaries

2.1 Notations

Let λ ∈ N be the security parameter. We say that a function negl : N → N is negligible if
for every positive polynomial p(·) and all sufficiently large λ, it holds that negl(λ) < 1

p(λ) . We

write y := Alg(x; r) when the algorithm Alg on input x and randomness r, outputs y. We write
y ← Alg(x) for the process of sampling the randomness r and setting y := Alg(x; r). We also write
y ← S for sampling y uniformly at random from the set S. We use the abbreviation PPT to denote
probabilistic polynomial-time. Let [n] denote the set {1, 2, . . . , n} for some n ∈ N. For an NP
relation R, we denote by L its associate language, i.e. L = {x | ∃w s.t. (x,w) ∈ R}. We often write

5

RL to denote the NP relation whose associate language is L for short. We also use RL(x,w) = 1
to refer to (x,w) ∈ RL. We say that two distribution ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N
are identical (resp. computationally indistinguishable), denoted by X ≡ Y (resp., X c≈ Y), if for
any unbounded (resp., PPT) distinguisher D there exists a negligible function negl(·) such that
|Pr[D(Xλ) = 1]− Pr[D(Yλ) = 1]| = 0 (resp., negl(λ)). When we define a protocol/scheme in form
of Π = Π.{Alg-1, . . . ,Alg-n}, we use the notation Π.Alg-i to refer to the algorithm Alg-i of Π where
Alg-i ∈ {Alg-1, . . . ,Alg-n}.

2.2 Universal Composability

Canetti’s UC framework. The UC framework proposed by Canetti [Can01] lays down a solid
foundation for designing and analyzing protocols secure against attacks in an arbitrary network
execution environment. Roughly speaking, in the UC framework, a protocol Π is defined to be a
computer program (or several programs) which is intended to be executed by multiple intercon-
nected parties. Every party is identified by the unique pair (pid, sid), where pid is the Program ID
(PID) and sid is the Session ID (SID). Let A be the adversary who can control the network and
corrupt the parties. When a party is corrupted, the adversary A receives its private input and its
internal state. We say a protocol is terminating if it can terminate in polynomial time, and we only
consider terminating protocols in this work.

We call a protocol, the one for which we want to prove security, the challenge protocol. A
challenge protocol Π is a UC-secure realization of a functionality F , if it satisfies that for every
PPT adversary A attacking an execution of Π, there is another PPT adversary S—known as the
simulator—attacking the ideal process that interacts with F (by corrupting the same set of parties),
such that the executions of Π with A and that of F with S makes no difference to any PPT network
execution environment Z.

The ideal world execution. In the ideal world, the set of parties P = {P1, . . . , Pn} only communicate
with an ideal functionality F and the simulator S. The corrupted parties are controlled by the
simulator S. The output of the environment Z in this execution is denoted by EXECF ,S,Z .

The real world execution. In the real world, the set of parties P = {P1, . . . , Pn} communicate with
each other and the adversary A to run the protocol Π. The corrupted parties are controlled by the
adversary A. The output of the environment Z in this execution is denoted by EXECΠ,A,Z .

Definition 1. We say a protocol Π UC-realizes functionality F , if for any PPT environment Z
and any PPT adversary A there exists a PPT simulator S s.t. EXECΠ,A,Z

c≈ EXECF ,S,Z .

In order to conceptually modularize the design of the protocols, the notion of “hybrid world”
is introduced. A protocol Π is said to be realized “in the G hybrid world” if Π invokes the ideal
functionality G as a subroutine.

Definition 2. We say protocol Π UC-realizes functionality F in the G hybrid world, if for any

PPT environment Z and any PPT adversary A there exists a PPT simulator S s.t. EXECGΠ,A,Z
c≈

EXECF ,S,Z .

Furthermore, in the UC framework, the environment Z cannot have the direct access to G, but
it can do so through the adversary. Namely, in the real world, the adversary A can access the
ideal functionality G directly, and A queries G for Z and forwards the answers; analogously, in the
ideal world, Z can query G through the simulator S. This implicitly means that G is local to the
challenge protocol instance. This allows the simulator S to simulate G in the ideal world as long
as it “looks” indistinguishable from G hybrid world.

6

Z

A

FRO

Π

Real
Z

A

FRO

Π

Ideal

F

S

(a) Basic UC: the simulator S simulates the local FRO

and has full control.

Z

A Π

Real

GRO

Z
A Π

Ideal

F
S

GRO

(b) EUC: the global GRO is external to the simulator,
and the environment Z is G-externalized constrained.

Z

A Π

Real

GRO

ρ1 ρ2 · · ·

Z
A Π

Ideal

F
S

GRO

· · ·ρ1 ρ2

(c) GUC: the global GRO is external to the simulator, and the environment Z not only has direct access to GRO,
but also invokes arbitraty protocols ρ1, ρ2, · · · alongside the challenge protocol Π.

Figure 2: Comparison of Basic UC, GUC and EUC.

Canetti et al’s GUC framework. In Canetti’s UC framework, the environment Z is con-
strained: it cannot have the direct access to the setup. It means that the setup is not global. This
assumption might be impractical in real life applications where it is more plausible that there is a
global setup published and used by many protocols.

Motivated by solving problems caused by modeling setup as a local subroutine, Canetti et al.
introduced Generalized UC (GUC) which can be used for properly analyzing concurrent execution
of protocols in the presence of global setup [CDPW07]. In the GUC framework, the environment
Z is unconstrained: Z is allowed to access the setup directly without going through the simula-
tor/adversary and invoke arbitrary protocols alongside the challenge protocol. Furthermore, the
setup can be modeled as a shared functionality that can communicate with more than one protocol
sessions. Let the output of the unconstrained PPT environment Z in the real world (resp. ideal
world) execution be denoted by GEXECΠ,A,Z (resp. GEXECF ,S,Z).

Definition 3. We say a protocol Π GUC-realizes functionality F , if for any unconstrained PPT

environment Z and any PPT adversary A there exists a PPT simulator S s.t. GEXECΠ,A,Z
c≈

GEXECF ,S,Z .

Since the unconstrained environment Z is given a high-level of flexibility: Z is allowed to
invoke arbitrary protocols in parallel with the challenge protocol. This makes it extremely hard
to prove the GUC security. Therefore, a simplified framework called Externalized UC (EUC) is
introduced in [CDPW07]. In the EUC framework, the environment Z has direct access to the
shared functionality G but does not initiate any new protocol sessions except the challenge protocol
session. We call such an environment is G-externalized constrained. We say a protocol Π is G-
subroutine respecting if it only shares state information via a single shared functionality G. We
take RO models as an example, and present the comparison of basic UC, GUC and EUC in Figure 2.

Definition 4. Let the protocol Π be G-subroutine respecting. We say a protocol Π EUC-realizes

7

functionality F with respect to shared functionality G, if for any PPT G-externalized constrained

environment Z and any PPT adversary A there exists a PPT simulator S s.t. EXECGΠ,A,Z
c≈

EXECGF ,S,Z .

In [CDPW07], Canetti et al. showed that for any G-subroutine respecting protocol Π, proving
Π EUC-realizes F with respect to G is equivalent to proving Π GUC-realizes F . Therefore, when
we want to prove the GUC security of a protocol, we always turn to EUC security for the sake of
simplicity.

2.3 The Global Random Oracle Models

In this section, we review four well-known Global Random Oracle (GRO) models: (i) Global Strict
Random Oracle (GSRO) model proposed by Canetti et al. in [CJS14], which does not give any extra
power to anyone; (ii) Global Observable Random Oracle (GORO) model2 proposed by Canetti et
al. in [CJS14], which grants the ideal world simulator access to the list of illegitimate queries (to be
defined later); (iii) Global Programmable Random Oracle (GPRO) model proposed by Camenisch
et al. in [CDG+18], which allows the simulator/adversary to program on unqueried points; (iv)
Global Programmable and Observable Random Oracle (GPORO) model proposed by Camenisch et
al. in [CDG+18], which provides both programmability and observability. We present the relation
of these models in Figure 3, and the formal description of all the global random oracle models
mentioned above in Figure 4.

GpoRO

GsRO

GoROGpRO

ob
ser

va
bil
ity

ob
ser

va
bil
ity

programmability

programmability

o
b
serva

b
ility

+
p
ro
gram

m
a
b
ility

Figure 3: Relation of the Global Random Oracle Models

The GSRO model. The GSRO model GsRO is a natural extension of local RO model FRO: as
depicted in Figure 4(a), upon receiving (Query, sid, x) from any party, GsRO first checks if the query
(sid, x) has been queried before. If not, GsRO answers with a random value of pre-specified length,
that is v ∈ {0, 1}`out(λ), and records the tuple (sid, x, v); otherwise, the previously chosen value v is
returned again even if the earlier query was made by another party. The sad truth is that Canetti
et al. remarked that GsRO does not suffice to GUC-realizes commitment functionality. Therefore,
stronger variant global random oracle models are needed to realize non-trivial functionalities.

2In [CDG+18], Camenisch et al. used the notations Restricted Observable Global Random oracles (GroRO),
Restricted Programmable Global Random Oracles (GrpRO) and Restricted Observable and Programmable Global
Random Oracles (GrpoRO). Here we adopt the notations GORO, GPRO and GPORO which skips the “r” for the
sake of the simplicity as in [CSW20].

8

The functionality interacts with a set of parties P = {P1, . . . , Pn} and an adversary S. It is parameterized
by the input/output length `in(λ) and `out(λ). It maintains an initially empty list List.

• Query. Upon receiving (Query, s, x) from a party Pi ∈ P where Pi = (pid, sid), or the adversary S:

– Find v such that (s, x, v) ∈ List. If there is no such v exists, select an uniformly random
v ∈ {0, 1}`out(λ) and record the tuple (s, x, v) in List.

– Return (QueryConfirm, s, v) to the requestor.

Shared Functionality GsRO

(a) The Global Strict Random Oracle Model GsRO

The functionality interacts with a set of parties P = {P1, . . . , Pn} and an adversary S. It is parameterized
by the input/output length `in(λ) and `out(λ), and a list of ideal functionality programs F̄ . It maintains an
initially empty list List.

• Query. Same as GsRO depicted in Figure 4(a), except when sid 6= s, add the tuple (s, x, v) to the
(initially empty) list of illegitimate queries for SID s, which we denote by Qs.

• Observe. Upon receiving a request from an instance of an ideal functionality in the list F̄ , with SID
s, return to this instance the list of illegitimate queries Qs for SID s.

Shared Functionality GoRO

(b) The Global Observable Random Oracle Model GoRO

The functionality interacts with a set of parties P = {P1, . . . , Pn} and an adversary S. It is parameterized
by the input/output length `in(λ) and `out(λ). It maintains initially empty lists List,Prog.

• Query. Same as GsRO depicted in Figure 4(a).

• Program. Upon receiving (Program, sid, x, v) with v ∈ {0, 1}`out(λ) from an adversary S:

– If ∃v′ ∈ {0, 1}`out(λ) such that (sid, x, v′) ∈ List and v 6= v′, ignore this input.

– Set List := List ∪ {(sid, x, v)} and Prog := Prog ∪ {(sid, x)}.
– Return (ProgramConfirm, sid) to S.

• IsProgramed. Upon receiving (IsProgramed, sid′, x) from a party Pi or the adversary S:

– If the input was given by Pi = (pid, sid) and sid 6= sid′, ignore this input.

– If (sid′, x) ∈ Prog, set b := 1; otherwise, set b := 0.

– Return (IsProgramed, sid′, b) to the requester.

Shared Functionality GpRO

(c) The Global Programmable Random Oracle Model GpRO

The functionality interacts with a set of parties P = {P1, . . . , Pn} and an adversary S. It is parameterized
by the input/output length `in(λ) and `out(λ), and a list of ideal functionality programs F̄ . It maintains
initially empty lists List,Prog.

• Query/Observe. Same as GoRO depicted in Figure 4(b).

• Program/IsProgramed. Same as GpRO depicted in Figure 4(c).

Shared Functionality GpoRO

(d) The Global Programmable and Observable Random Oracle Model GpoRO

Figure 4: The Global Random Oracle Models.

9

The GORO model. Compared to GsRO, the GORO model GoRO provides additionally observabil-
ity. More precisely, some of the queries can be marked as “illegitimate” and potentially disclosed
to the simulator. As depicted in Figure 4(b), the GORO functionality GoRO interacts with a list of
ideal functionality programs F̄ = {F1, . . . ,Fn}, where F1, . . . ,Fn are the protocol functionalities
(e.g., commitment functionality, ZK functionality, etc.) that share the same global setup GoRO. For
any query (s, x) from any party P = (pid, sid) where s is the content of the SID field, if s 6= sid,
then this query is considered “illegitimate”. After that, GoRO adds the tuple (s, x, v) to the list of
illegitimate queries for SID s, which we denote as Qs. The illegitimate queries Qs may be disclosed
to an instance of ideal functionality Fi ∈ F̄ whose SID is the one of the illegitimate queries. Then
the ideal functionality instance Fi leaks the illegitimate queries to the simulator.

The GPRO model. Compared to GsRO, the GPRO model GpRO additionally allows simula-
tor/adversary to program the global random oracle on unqueried points. As depicted in Figure 4(c),
upon receiving (Program, sid, x, v) from the simulator/adversary, GpRO first checks if (sid, x) has
been queried before. If not, GpRO stores (sid, x, v) in the query-answer lists. Any honest party
can check whether a point has been programmed or not by sending the (IsProgramed, sid, x)
command to GpRO. Thus, in the real world, the programmed points can always be detected.
However, in the ideal world, the simulator S can successfully program the random oracle with-
out being detected since it can always return (IsProgramed, sid, 0) when the adversary invokes
(IsProgramed, sid, x) to verify whether a point x has been programmed or not.

The GPORO model. If we combine the GORO model and GPRO model together, we obtain
the GPORO model GpoRO which is depicted in Figure 4(d). To the best of our knowledge, the
GPORO model is the most powerful GRO model that enables efficient composable protocols in
the GUC framework. For example, Camenisch et al. gave an efficient non-interactive GUC-secure
commitment protocol in the GPORO model [CDG+18].

Remark 1. Camenisch et al. remarked that when one uses the (distinguishing) environment in a
cryptographic reduction, one can have full control over the shared functionality [CDG+18]. More
precisely, as depicted in Figure 5, the reduction algorithm B simulates the complete view of the
environment Z including the shared functionality G, thus B has full control of G.

Z
A Π F
S

Simulated by B

Reduction B

G

Challenger C

Figure 5: In order to play against the external challenger C, reduction algorithm B simulates
everything (marked as gray) including shared functionality G, starts the protocol Π with the real
world adversary A/environment Z by running A/Z internally as black-box.

2.4 One-Way Functions

One-Way Function (OWF) is the minimal cryptographic primitive, and we take this definition
from [KL20]. Informally, a one-way function g : {0, 1}λ → {0, 1}λ is: (i) easy to compute, (ii) but

10

hard to invert. The first requirement is easy to formalize: we require that g to be computable in
polynomial time. In order to formalize the second requirement, we consider the following experi-
ment:

Experiment exptHtI
A,g(λ):

1. Choose a uniformly random x← {0, 1}λ and compute y := g(x).

2. A is given 1λ and y as input, and it outputs x′.

3. If y = g(x′), output 1; otherwise, output 0.

Here we denote by AdvHtI
A,g(λ) := Pr[exptHtI

A,g(λ) = 1] the advantage of A.

Now we define what it means for a function g to be one-way.

Definition 5. We say a function g : {0, 1}λ → {0, 1}λ is one-way if the following two conditions
holds:

1. (Easy to Compute) We say it is easy to compute if there exists a PPT algorithm Mg

computing g; that is, z := Mg(x) and z = g(x) for all x.

2. (Hard to Invert (HtI)) For any PPT adversary A, we say it is hard to invert if there exists
a negligible function negl such that AdvHtI

A,g(λ) ≤ negl(λ).

2.5 SHVZK Protocols

A 3-round public coin Special Honest Verifier Zero-Knowledge (SHVZK) protocol Π = Π.{Move1,
Move2,Move3,Verify, Sim} allows a prover to convince a verifier that a statement x is true with
the aid of the witness w. In the first round, the prover computes and sends the first flow message
a := Move1(x,w; r) using the statement-witness pair (x,w) and some random coin r. In the second
round, the verifier samples and sends a uniformly random public coin challenge e ← Move2(1λ).
In the last round, the prover computes the response to the challenge z := Move3(x,w, e; r) using
the statement-witness pair (x,w), challenge e and the random coin r. Finally the verifier accepts
the statement x if and only if Verify(x, a, e, z) = 1. We put the workflow of the SHVZK protocol in
Figure 6. We often call (a, e, z) the transcript between the prover and the verifier.

Prover(x,w) Verifier(x)

a := Move1(x,w; r) a

e ← Move2(1λ)e

z := Move3(x,w, e; r) z

Output b := Verify(x, a, e, z)

Figure 6: The Workflow of the SHVZK Protocol

A SHVZK protocol should satisfy (i) perfect completeness, i.e. any honest prover who holds
the witness w such that (x,w) ∈ RL can always make the verifier accept; (ii) k-special soundness,

11

i.e. given any k distinct accepting transcripts, we can always extract the witness w; (iii) Special
Honest Verifier Zero-Knowledge (SHVZK) property, i.e. given the challenge e ahead, there should
be a PPT simulator algorithm Sim that takes the statement x, the challenge e and random coin
r as input, and outputs the simulated (a, z) which is indistinguishable from the real one. The
first property is easy to formalize. In order to formalize the k-special soundness, we consider the
following experiment:

Experiment exptk-SS
A,Π (λ):

1. A outputs a statement x along with k transcripts {(a, ei, zi)}i∈[k].

2. If ei 6= ej where i 6= j: extract the witness w′ from {(a, ei, zi)}i∈[k]

3. If (x,w′) ∈ RL, output 1; otherwise, output 0.

Here we denote by Advk-SS
A,Π (λ) := Pr[exptk-SS

A,Π (λ) = 1] the advantage of A.

We define the SHVZK property via the following experiment:

Experiment exptSHVZK
A,Π (λ):

1. A outputs a statement-witness pair (x,w) along with a challenge e.

2. If (x,w) ∈ RL: select a random string r and a random bit b ∈ {0, 1},
and compute the following:

(a) If b = 0: a := Move1(x,w; r); z := Move3(x,w, e; r).

(b) If b = 1: (a, z) := Sim(x, e; r).

3. A is given (a, z) as input, and it outputs a guess bit b′ ∈ {0, 1}.
4. If b = b′, output 1; otherwise, output 0.

Here we denote by AdvSHVZK
A,Π (λ) :=

∣∣∣Pr[exptSHVZK
A,Π (λ) = 1]− 1

2

∣∣∣ the advantage of A.

Now we can formally define the SHVZK protocol.

Definition 6. We say a protocol Π = Π.{Move1,Move2,Move3,Verify,Sim} is a SHVZK protocol
if the following condition holds:

1. (Perfect Completeness) For any (x,w) ∈ RL, we say it is perfect complete

Pr
[
a := Move1(x,w; r); e← Move2(1λ); z := Move3(x,w, e; r) : Verify(x, a, e, z) = 1

]
= 1

2. (k-Special Soundness) For any PPT adversary A, we say it has k-special soundness where
k ∈ N and k ≥ 2, if there exists a negligible function negl such that Advk-SS

A,Π (λ) ≤ negl(λ).

3. (Special Honest Verifier Zero-Knowledge) We say it has SHVZK if there exists a PPT
simulator Sim such that for any PPT adversary A, there exists a negligible function negl such
that AdvSHVZK

A,Π (λ) ≤ negl(λ).

12

2.6 Non-Interactive Witness Hiding Argument

2.6.1 Non-Interactive Witness Hiding Argument in the Plain Model

Witness Hiding (WH) interactive proofs were introduced by Feige and Shamir in [FS90], and we
employ the Non-Interactive Witness-Hiding (NIWH) argument here [KZ20]. A Non-Interactive
Witness-Hiding (NIWH) argument Π = Π.{Prove,Verify} allows the prover to generate the proof
π using the statement-witness pair (x,w) and a random string r and send π to the verifier. The
verifier checks if the proof π is valid and outputs a bit b indicating the acceptance or rejection.
Formally, the NIWH argument has the following algorithms:

• π := Prove(x,w; r) takes input as a statement-witness pair (x,w) and a random string r, and
it outputs a proof π. When r is not important, we use Prove(x,w) for simplicity.

• b := Verify(x, π) takes input as a statement x and a proof π, and it outputs a bit b indicating
acceptance or rejection.

Basically, the NIWH argument should satisfy the perfect completeness and computational
soundness. The perfect completeness is trivial. The computational soundness means that any
PPT prover cannot convince the verifier that a false statement is true with overwhelming proba-
bility. the NIWH proof/argument should satisfy the witness hiding property: given the proof π
generated by the prover, the verifier cannot compute any new witness that the verifier does not
know before the interaction. Formally, we first consider the following experiment:

Experiment exptWH
A,Π(λ):

1. Select (x,w) ∈ RL, and compute π ← Prove(x,w).

2. A is given (x, π) as input, and it outputs w′.

3. If (x,w′) ∈ RL, output 1; otherwise, output 0.

Here we denote by AdvWH
A,Π(λ) := Pr[exptWH

A,Π(λ) = 1] the advantage of A.

Before giving the formal definition of the NIWH argument, we have to define the hard instance
ensembles, as in [Pas03].

Definition 7 (Hard Instance Ensembles). Let RL be an NP relation, and L be its associate lan-
guage, and X = {Xλ}λ∈N be a probability ensemble s.t. Xλ ranges over L∩ {0, 1}λ. We say that X
is hard for NP relation RL if for any PPT A and any x ∈ X , there exists a negligible function negl
s.t. Pr[(x,A(x)) ∈ RL] = negl(λ).

Now we can formally define the NIWH argument.

Definition 8. Fix an NP relation RL whose associate language is L. We say a protocol Π =
Π.{Prove,Verify} is a NIWH argument for RL if the following conditions hold:

1. (Perfect Completeness) For any (x,w) ∈ RL, we say it is perfect complete if

Pr[π ← Prove(x,w) : Verify(x, π) = 1] = 1

2. (Computational Soundness) For any x /∈ L, we say it is computational sound if for any
PPT adversary A, there exists a negligible function negl such that

Pr[π∗ ← A(x) : Verify(x, π∗) = 1] ≤ negl(λ)

13

3. (Witness Hiding) Let X = {Xλ}λ∈N be a hard instance ensemble for RL. We say it is
witness hiding for RL under the instance ensemble X if for any PPT adversary A and any
(x,w) ∈ RL with x ∈ X , there exists a negligible function negl such that AdvWH

A,Π(λ) ≤ negl(λ).
We say it is witness hiding for RL if it is witness hiding under all hard-instance ensembles
X for RL.

2.6.2 Non-Interactive Witness Hiding Argument in the Random Oracle Model

We here discuss the NIWH argument in the random oracle model. Note that, stronger security prop-
erty such as (straight-line) extractability can now be achieved in the random oracle model: an extrac-
tion algorithm Ext could be constructed to extract the witness from a maliciously generated proof.
More concretely, in a NIWH argument in the random oracle model Π = Π.{ProveO,VerifyO,Ext},
both the prover and the verifier are allowed to query the random oracle O at any moment, dur-
ing the protocol execution. As in the plain model, the prover generates the proof π using the
statement-witness pair (x,w) and a random string r and sends π to the verifier, and the verifier
then verifies if the proof π is valid or not; the verifier outputs a bit b indicating the acceptance or
rejection. Formally, the Prove and Verify algorithms in a NIWH argument in the random oracle
model are described as follows:

• π := ProveO(x,w; r) takes input as a statement-witness pair (x,w) and a random string r, and
it is allowed to query the random oracle O. It outputs a proof π. When r is not important,
we use ProveO(x,w) for simplicity.

• b := VerifyO(x, π) takes input as a statement x and a proof π, and it is allowed to query the
random oracle O. It outputs a bit b indicating acceptance or rejection.

The basic properties, such as perfect completeness, computational soundness and witness-hiding,
can be defined for a NIWH argument in the random oracle model as that in the plain model above.
We now describe how to define the straight-line extractability property; note that our extractability
definition is taken from that by Pass [Pas03]. To enable the extractability, typically, the extraction
algorithm Ext can be developed by simulating the random oracle for the prover and the verifier,
and thus the algorithm Ext has full control of the random oracle. In this paper, we consider a much
more restricted random oracle, and the algorithm Ext is granted only with the observability; that
is, Ext is allowed to see the query-answer list of the random oracle. For that reason, we write ExtO

to indicate that, the extraction algorithm Ext does not have the full control of the random oracle,
and is only granted to have the observability capability.

Definition 9 (Straight-line Extractability in the Random Oracle Model). Fix an NP relation RL
whose associate language is L. Consider random oracle O, and a NIWH argument for RL in the
random oracle model Π = Π.{ProveO,VerifyO,ExtO}. For any x ∈ L, we say the NIWH argument
Π is straight-line extractable if for any PPT adversary A,

Pr[π∗ ← AO(x); b := VerifyO(x, π∗);w∗ ← ExtO(x, π∗) : b = 1 ∧ (x,w∗) ∈ RL] ≥ 1− negl(λ)

We call the probability of ExtO failing to extract the valid witness from any accepting proof π
the knowledge error. From the definition above, it is easy to see that the knowledge error of ExtO

should be negligible.

14

2.7 Equivocal Commitment

An equivocal commitment scheme Π = Π.{KeyGen,KeyVer,Commit,ComVer,EquCom,Equiv} allows
the committer to generate the commitment c to any value m using the commitment key ck and the
randomness r. Later, the committer can open c to m by sending the the opening d to the receiver
who verifies it. Furthermore, if the committer obtains the trapdoor td with respect to the ck, he
can generate the equivocal commitment c̃, later open c̃ to any message m̃. Formally, the equivocal
commitment has the following algorithms:

• (ck, td) ← KeyGen(1λ) takes input as the security parameter λ, and outputs a commitment
key ck and the trapdoor td.

• b := KeyVer(ck, td) takes input as a commitment key ck and a trapdoor td. It outputs a bit
b indicating acceptance or rejection.

• (c, d) := Commit(ck,m; r) takes input as a commitment key ck, a message m and a randomness
r. It outputs the commitment c and the opening d. We assume that there exists a determin-
istic algorithm that can extract m from d. When r is not important, we use Commit(ck,m)
for simplicity.

• b := ComVer(ck, c, d) takes input as a commitment key ck, and a commitment-opening pair
(c, d). It outputs a bit b indicating acceptance or rejection.

• (c̃, st) := EquCom(ck, td; r) takes input as a commitment key ck, a trapdoor td, and a ran-
domness r. It outputs a commitment c̃ and a state st. When r is not important, we use
EquCom(ck, td) for simplicity.

• d̃ := Equiv(ck, td, c̃, st, m̃) takes input as a commitment key ck, a trapdoor td, a commitment
c̃, a state st, and an arbitrary message m̃ for which equivocation is required. It outputs an
opening d̃.

The equivocal commitment requires the following properties: correctness, hiding, binding and
equivocation. Correctness means that any commitment produced by the honest committer can
always be verified. Hiding means that the commitment c reveals nothing about the message m.
This is defined via the following experiment:

Experiment expthiding
A,Π (λ):

1. Run (ck, td)← KeyGen(1λ).

2. A is given ck as input, and it outputs two distinct messages m0,m1.

3. Select a random bit b ∈ {0, 1}, and compute c← Commit(ck,mb).

4. A is given mb as input, and it outputs a bit b′.

5. If b′ = b, output 1; otherwise, output 0.

Here we denote by Advhiding
A,Π (λ) :=

∣∣∣Pr[expthiding
A,Π (λ) = 1]− 1

2

∣∣∣ the advantage of A.

Binding means that it is infeasible for the committer to output the commitment c that can be
opened in two different ways.

15

Experiment exptbinding
A,Π (λ):

1. Run (ck, td)← KeyGen(1λ).

2. A is given ck as input, and it outputs (c, d0, d1).

3. If d0 6= d1 and ComVer(ck, c, d0) = ComVer(ck, c, d1) = 1 holds,

output 1; otherwise, output 0.

Here we denote by Advbinding
A,Π (λ) := Pr[exptbinding

A,Π (λ) = 1] the advantage of A.

Equivocation means that given the trapdoor td, one can open a previously constructed com-
mitment c of message m to other message m̃ 6= m.

Experiment exptequivocal
A,Π (λ):

1. A is given 1λ as input, and it outputs (ck, td,m).

2. If KeyVer(ck, td) = 1: select a random string r and a random bit b ∈ {0, 1},
and compute the following:

(a) If b = 0: invoke (c, d) := Commit(ck,m; r).

(b) If b = 1: invoke (c, st) := EquCom(ck, td; r); d := Equiv(ck, td, c̃, st,m).

3. A is given (c, d) as input, and it outputs a bit b′.

4. If b = b′, output 1; otherwise, output 0.

Here we denote by Advequivocal
A,Π (λ) :=

∣∣∣Pr[exptequivocal
A,Π (λ) = 1]− 1

2

∣∣∣ the advantage of A.

Now we can formally define the equivocal commitment, and it should satisfy the following
definition:

Definition 10. We say a scheme Π = Π.{KeyGen,KeyVer,Commit,ComVer,EquCom,Equiv} is an
equivocal commitment if the following conditions hold:

1. (Perfect Correctness) For any message m, we say it is perfect correct if

Pr[(ck, td)← KeyGen(1λ); (c, d)← Commit(ck,m) : ComVer(ck, c, d) = 1] = 1

2. (Perfect Hiding) We say it is perfect hiding if for any adversary A s.t. Advhiding
A,Π (λ) = 0.

3. (Computational Binding) We say it is computational binding if for any PPT adversary

A, there exists a negligible function negl s.t. Advbinding
A,Π (λ) ≤ negl(λ).

4. (Equivocation) We say it is equivocal if for any PPT adversary A, there exists a negligible

function negl s.t. Advequivocal
A,Π (λ) ≤ negl(λ).

2.8 “MPC-in-the-Head” Paradigm

In [IKOS07], Ishai et al. proposed the famous “MPC-in-the-head” paradigm from which we can con-
struct a SHVZK protocol using the MPC protocol. Before introducing the details of the paradigm,
we have to define the MPC protocol first.

16

Consider a function f : ({0, 1}λ)n+1 → {0, 1}λ. We let P1, . . . , Pn be n parties modeled as PPT
interactive machines. Assume that each party Pi holds a private input wi ∈ {0, 1}λ and a public
input x ∈ {0, 1}λ, and wants to compute y = f(x,w), where w = (w1, . . . , wn). They communicate
with each other using point-to-point secure channels (e.g. encrypted channels or OT channels) in the
synchronous model. To achieve this goal, the parties jointly run a secure Multi-Party Computation
(MPC) protocol ΠMPC. The protocol ΠMPC is specified via the next-message functions: there are
multiple communication rounds, and in each round the party Pi sends into the channel a message
that is computed as a deterministic function of the internal state of Pi (including private input wi
and random tape ki) and the messages that Pi has received in the previous rounds. We denote
by viewi(x,wi) the view of Pi, which is the concatenation of the inputs x,wi, the random tape ki
and all the messages received by Pi during the execution of ΠMPC. Each secure channel defines a
relation of consistency between views. For instance, in the plain model, we say viewi(x,wi) and
viewj(x,wj) are consistent if the outgoing messages in viewi(x,wi) are identical to the incoming
messages in viewj(x,wj) and vice versa. Finally, all the views should yield the same output y, i.e.
there are n functions Πf,1, . . . ,Πf,n such that y = Πf,i(viewi(x,wi)) for all i ∈ [n]. We note that,
for our purpose of use, we require that every party Pi in the honest execution of ΠMPC has the
same output y; while in the general case, the output of Pi can be different from each other.

In this work, we only consider security of MPC protocols in the semi-honest model. In the
semi-honest model, the corrupted parties follow the instructions of the protocol, but are curious
about the private information of other parties. Thus, the protocol needs to be designed in such a
way that a corrupted Pi cannot infer information about wj from its view viewi(x,wi), where j 6= i.

We denote by viewT (x,w1, . . . , wn) the joint view of players in set T ⊂ [n] for the execution of
ΠMPC on input (x,w1, . . . , wn). Consider a PPT simulator algorithm Sim that given the set T ⊂ [n],
the output of ΠMPC which realizes f on input (x,w1, . . . , wn) (i.e. f(x,w1, . . . , wn)), and the input
of parties in T (i.e. (x, (wi)i∈T)), it can output the simulated joint view of players in set T for the
execution of ΠMPC on input (x,w1, . . . , wn) which we denote by Sim(T, x, (wi)i∈T , f(x,w1, . . . , wn)).
With these notations, we have the following definition.

Definition 11. We say an n-party protocol ΠMPC realizes f in the semi-honest model, if the
following conditions hold:

1. (Perfect Correctness) For any inputs x,w = (w1, . . . , wn) and any random tape, we say
ΠMPC realizes f with perfect correctness if ∀i ∈ [n] : Pr[y = Πf,i(viewi(x,wi))] = 1.

2. (t-Privacy) Let 1 ≤ t < n. We say ΠMPC realizes f with t-privacy if it is perfect correct and
for every set of corrupted parties T ⊂ [n] satisfying |T | ≤ t, there exists a PPT simulator Sim
such that

viewT (x,w1, . . . , wn) ≡ Sim(T, x, (wi)i∈T , f(x,w1, . . . , wn))

Now we can introduce the “MPC-in-the-head” paradigm. Let f be the following (n + 1)-
argument function corresponding to an NP relation RL: f(x,w1, . . . , wn) = RL(x,w1 ⊕ · · · ⊕ wn).
Here x is a public input known to all parties, wi is the private input of party Pi, and the output is
received by all parties. In a high-level description, the main idea is for the prover to simulate the
execution of a t-private n-party MPC protocol that realizes f . Then the prover employs a statically
binding commitment to commit to all views of the parties and sends them to the verifier. After
that, the verifier chooses a random subset of the parties, where the size of the subset equals t, and
asks the prover to open their corresponding views. Finally the verifier accepts the statement if and
only if (i) the commitment is correctly opened and (ii) the received views are consistent with each
other. We refer interesting readers to see more details in [IKOS07].

17

3 Impossibility in the GORO Model

In this section, we show that it is impossible to construct 2-round GUC-secure commitment (one
round for the committing phase and one round for the opening phase) in the GoRO hybrid world
against static adversaries. We first provide the formal description of transferable commitment
functionality FtCOM from [CJS14] in Figure 7. The main difference with the traditional commitment
functionality is that in FtCOM, the simulator can request the list of the illegitimate queries from
FtCOM. If we use the traditional commitment functionality which has no such power in the GoRO
hybrid world, the simulator will have no advantage over others at all. This is one of the reasons
why transferable ideal functionalities were designed in the presence of the GoRO model, and we refer
interesting readers to see more discussions in [CJS14].

The functionality interacts with two parties C,R and an adversary S.

• Upon receiving (Commit, sid, C,R,m) from C, do:

– Record the tuple (sid, C,R,m), and send (Receipt, sid, C,R) to R and S.

– Ignore any subsequent Commit command.

• Upon receiving (Decommit, sid, C,R) from C, do:

– If there is a tuple (sid, C,R,m) recorded, send (Decommit, sid, C,R,m) to R and S, and halt.

– Otherwise, ignore the message.

• When asked by the adversary S, obtain from GoRO the list of illegitimate queries Qsid that pertain to
SID sid, and send Qsid to the adversary S.

Functionality FtCOM

Figure 7: The Transferable Functionality FtCOM for Commitment

We prove this impossibility by contradiction. Suppose that there exists such a 2-round GUC-
secure protocol. Let us first consider the case where the receiver is corrupted, the simulator needs
to produce an equivocal commitment without knowing the plaintext in the committing phase,
and later open it to any given message (a.k.a. the plaintext) in the opening phase. We observe
that the receiver does not need to send any message during the 2-round protocol execution, thus
when the receiver is controlled by adversary, the corrupted receiver can delay all its GoRO queries
until it receives the opening message. In this case, the simulator cannot obtain the illegitimate
queries of the corrupted receiver before producing the equivocal commitments, and thus has no
advantage over the real world adversary. If the simulator still succeeds to produce the equivocal
commitments even if it has no illegitimate queries, then distinctions will be revealed when the
adversary performs the following attacks. The adversary corrupts the committer, and instructs the
committer to run the simulator algorithm mentioned above to generate the commitment message.
In this case, where the committer is corrupted, the receiver/simulator needs to extract the plaintext
from this commitment message. However, the entire computation of the commitment message is
totally independent of the plaintext, thus with high probability the simulation would fail. Formally,
we prove this impossibility through Theorem 1.

Theorem 1. There exists no terminating 2-round (one round for commitment phase and one
round for decommitment phase) protocol Π that GUC-realizes FtCOM depicted in Figure 7 with
static security, using only the shared functionality for global observable random oracle GoRO.

Proof. Suppose there exists such a protocol Π that GUC-realizes FtCOM in the GoRO hybrid world.

18

Then there must exist a PPT simulator S such that EXECGoROFtCOM,S,Z
c≈ EXECGoROΠ,A,Z for any PPT

adversary A and any PPT GoRO-externally constrained environment Z.
In particular, let us first consider the session with SID sid1, and let A be a dummy adversary

that simply forwards protocol flows between corrupt parties and the environment Z. Let Z corrupt
the receiver R∗ at first. Then Z chooses a random bit b ∈ {0, 1} and gives it as the input to the
honest committer C. After that, Z waits for C to send the commitment ψ. Next, Z lets C reveal
the committed value b′. If b = b′, Z outputs 1; otherwise, Z outputs 0.

In order to make the GUC experiments above remain indistinguishable, the simulator S needs
to build an equivocal commitment ψ̃ without knowing b in the committing phase, where ψ̃ is
computational indistinguishable from the real commitment ψ; later in the opening phase, S obtains
b from FtCOM and needs to open the previously sent commitment ψ̃ to b. For notation convenience,
we write S = (S1,S2) to split the simulator algorithm in two phases: (i) S1 works in the committing
phase, and it needs to output an equivocal commitment ψ̃ without knowing b; (ii) while S2 works
in the opening phase, and upon receiving the message b from FtCOM, it needs to output the opening
message r such that (b, r) correctly opens the previously sent commitment ψ̃.

We first describe the simulation strategy in the committing phase. Recall that, the main
advantage of the simulator over the others is that it can obtain illegitimate queries of R∗. More
precisely, S1 can request the illegitimate queries Qsid1 from the commitment functionality FtCOM

who forwards this request to GoRO. The simulator S1 also can query GoRO just like normal parties.
In order to describe the process of querying to GoRO, we denote by G∗oRO the simplified version of

the GoRO, that is, the GoRO with only the Query interface. We write SG
∗
oRO

1 to denote the event
that S1 has the access to GoRO and can continuously query to GoRO. With above notations, we will

write SG
∗
oRO

1 (sid1,Qsid1) to denote the output (i.e., the equivocal commitment ψ̃ and the state st)
produced by S1 after querying to GoRO, when running on the the illegitimate queries Qsid1 sent by
R∗. We note that, S1 should be able to handle any PPT environment Z. Consider such a case
where Z instructs R∗ to delay all its GoRO queries until it receives the opening message. In this case,
S1 finds nothing sent by R∗ in Qsid1 , but should still be able to produce the equivocal commitment

ψ̃. In other words, the algorithm (ψ̃, st)← SG
∗
oRO

1 (sid1,Qsid1) still works when Qsid1 = ∅, where ∅ is
an empty set; otherwise, the environment Z will find the distinction. We note that, the algorithm

SG
∗
oRO

1 (sid1, ∅), i.e. we replace the Qsid1 with the empty set ∅, can be run by any party, since the
algorithm only makes use of the Query interface and anyone can query to GoRO. Now let us turn to

the opening phase. Analogously, we can write r ← SG
∗
oRO

2 (sid1, ψ̃, st, b, ∅) to denote the event where
S2 can still open ψ̃ to the value b and the corresponding opening message r after querying to GoRO,
even if there is noting sent by R∗ in the list of the illegitimate queries (i.e. Qsid1 = ∅). We note that,

even if we switch to a session with a different SID, both SG
∗
oRO

1 (sid1, ∅) and SG
∗
oRO

2 (sid1, ψ̃, st, b, ∅) still
work as long as the appropriate inputs are provided.

In the following, we show that the existence of the simulator S = (S1,S2) above contradicts the
security of Π against static corruptions, by creating a particular environment Z ′ which succeeds in
distinguishing EXECGoROFtCOM,S′,Z′ from EXECGoROΠ,A′,Z′ after a static corruption operation for any PPT
simulator S ′. Let us consider the session with SID sid2. Our Z ′ proceeds by corrupting the
committer C∗ at first, and then choosing a random bit b ∈ {0, 1} which it gives as the input to

C∗. Next Z ′ instructs C∗ to run the algorithm (ψ̃, st)← SG
∗
oRO

1 (sid2, ∅) and send ψ̃ to R. When R

outputs (Receipt, sid2, C,R), Z ′ instructs C∗ to run the algorithm r ← SG
∗
oRO

2 (sid2, ψ̃, st, b, ∅) and
send (b, r) to R. Finally Z ′ waits for R to output b′. In the real world, R always outputs b′ = b.
In the ideal world, S ′ should determine the committed value b′ from ψ̃ in the committing phase.
This means that in the ideal world, we must have that b′ = b with probability at most 1

2 , since

19

the entire computation of ψ̃ is totally independent of b. Therefore, Z ′ can distinguish between the
real world and the ideal world with probability at least 1

2 , contradicting our assumption that Π is
GUC-secure.

4 Feasibility in the GORO Model

In this section, we propose a 3-round (2 rounds for the committing phase and 1 round for the opening
phase) GUC-secure commitment protocol in the GoRO hybrid world, assuming the straight-line
extractable NIWH arguments and perfect-hiding non-interactive equivocal commitment schemes
exist. Then we instantiate the building blocks using only Minicrypt assumptions in the GoRO
hybrid world. Therefore, our GUC-secure commitment protocol can be constructed via Minicrypt
in the GoRO hybrid world. Since we prove that it is impossible to construct 2-round GUC-secure
commitments in the GoRO hybrid world in Theorem 1, we stress that our construction is round-
optimal.

4.1 Our GUC-Secure Commitment Construction

Recall that a GUC-secure commitment protocol requires two main properties: (i) Equivocality:
when the receiver is corrupted, the simulator should be able to produce equivocal commitments
that can open to any value later; (ii) Extractability: when the committer is corrupted, the simulator
should be able to extract the committed value from the commitment.

The GoRO directly provides the desired extractability. Then we have to design a protocol that
capture the equivocality. A natural approach is to employ the perfect-hiding non-interactive equiv-
ocal commitments. More precisely, we let the receiver generate the commitment key and send it
to the committer in the first round; and then let the committer commit to the message using the
equivocal commitment scheme. In order to provide extractability, we let the committer query the
GoRO on the opening message of the commitment message above. Then we require the committer
to commit to the answer of the GoRO via another instance of the equivocal commitment scheme.
The committer sends all the commitment messages in the second round. The opening phase just
takes one round, namely, the committer sends all the opening messages.

The only thing left is to provide the simulator with the advantage of getting the equivocation
trapdoor over the others. Our solution is to let the receiver execute the straight-line extractable
NIWH argument in the GoRO hybrid world which proves the knowledge of the equivocation trap-
door with respect to the commitment key. The receiver is required to send the proof along with
the commitment key in the first round. Subsequently, the simulator can invoke the straight-line
extractor to obtain the equivocation trapdoor.

We denote committer algorithm as C and receiver algorithm as R. We denote the event where
queries GoRO on input x and gets the answer y as y := oRO(x). We assume ideal private and
authenticated channels for all communications. Formally, we present our protocol ΠtCOM in Figure 8
and prove the security through Theorem 2.

Theorem 2. Assume ΠNIWH is a straight-line extractable NIWH argument in the GoRO hybrid
world. Assume ΠECom is an equivocal commitment scheme. Then the protocol ΠtCOM described
in Figure 8 GUC-realizes the functionality FtCOM depicted in Figure 7 in the GoRO hybrid world
against static malicious corruption.

Proof. We now prove the security of our protocol ΠtCOM by showing it is a GUC-secure realiza-
tion of FtCOM. We only need to prove that ΠtCOM EUC-realizes FtCOM with respect to the shared

20

Primitives: Straight-line extractable NIWH argument in the GoRO hybrid world ΠNIWH = ΠNIWH.{ProveGoRO ,
VerifyGoRO ,ExtGoRO}, non-interactive equivocal commitment ΠECom = ΠECom.{KeyGen,KeyVer,Commit,ComVer,
EquCom,Equiv}.
Inputs: C has a private input m ∈ {0, 1}λ. R has no input.

Committing Phase: This phase consists of 2 rounds.

• Round 1: R works as follows:

– Generate the parameters of the commitment by invoking (ck, td)← ΠECom.KeyGen(1λ).

– Compute the straight-line extractable NIWH proof by invoking π ← ΠNIWH.Prove
GoRO(ck, td) for

proving the knowledge of td. Send (ck, π) to C.

• Round 2: C works as follows:

– Abort if ΠNIWH.Verify
GoRO(ck, π) = 0.

– Commit to the message m by invoking (c1, d1)← ΠECom.Commit(ck,m).

– Compute h := oRO(sid, ‘C’||m||d1||r) where r ← {0, 1}λ.

– Commit to the answer h by invoking (c2, d2)← ΠECom.Commit(ck, h). Send (c1, c2) to R.

Opening Phase: This phase consists of 1 round.

• Round 3: C sends (m, d1, d2, r) to R.

• R computes h := oRO(sid, ‘C’||m||d1||r), and accepts m if and only if
ΠECom.ComVer(ck, c1, d1) = ΠECom.ComVer(ck, c2, d2) = 1 holds.

Protocol ΠtCOM

Figure 8: Protocol ΠtCOM in the GoRO Hybrid World

functionality GoRO. Therefore, we describe the workflow of S in the ideal-world with FtCOM, and
give a proof that the simulation in the ideal-world setting EXECGoROFtCOM,S,Z is computationally indis-

tinguishable from a real-world execution EXECGoROΠtCOM,A,Z for any PPT adversary A and any PPT
GoRO-constrained environment Z.

Simulating Communication with Z. The simulator S simply forwards the communication
between A and Z.

Simulating Two Honest Parties. Since we are in the secure channels model, S simply notifies A
that communications (with messages of appropriate length) have taken place between the committer
C and the receiver R.

Simulating the Honest Committer Against the Malicious Receiver. In this case, we
suppose that the committer C is honest while the receiver R∗ is statically corrupted. Here S needs
to send a simulated commitment without knowing the message m in the committing phase, and
open it to the message m in the opening phase. We describe the strategy of S as follows:

• Commitment Phase: Upon receiving (Receipt, sid, C,R) from FtCOM, do

– Round 1: Wait until the message (ck, π) arrives. Check if ΠNIWH.Verify
GoRO(ck, π) = 1

holds. If not, abort; otherwise, employ the straight-line extractor ΠNIWH.Ext
GoRO(ck, π)

to compute td s.t. ΠECom.KeyVer(ck, td) = 1 (note that, the proof π is verified and the
simulator S is granted the observability of GoRO, therefore, the simulator S is able to
invoke the extraction algorithm ΠNIWH.Ext

GoRO). Abort if the straight-line extractor fails.

21

– Round 2: Generate equivocal commitments (c1, st1) ← ΠECom.EquCom(ck, td) and
(c2, st2)← ΠECom.EquCom(ck, td). Send (c1, c2) to R∗.

• Opening Phase: Upon receiving (Decommit, sid, C,R,m) from FtCOM, do

– Round 3: Obtain d1 := ΠECom.Equiv(ck, td, c1, st1,m). Select a λ-bit random r and
compute h := oRO(sid, ‘C’||m||d1||r). Obtain d2 := ΠECom.Equiv(ck, td, c2, st2, h). Send
(m, d1, d2, r) to R∗.

We prove the indistinguishability through the following hybrid experiments:

• H0: This is the real-world execution EXECGoROΠtCOM,A,Z .

• H1: Same as H0, except that S aborts when the straight-line extractor ΠNIWH.Ext
GoRO fails

to extract a valid trapdoor td such that ΠECom.KeyVer(ck, td) = 1.

Lemma 1. If ΠNIWH is a NIWH argument that has a straight-line extractor ΠNIWH.Ext
GoRO

with knowledge error ε(λ), then H1 is indistinguishable from H0 with adversarial advantage
ε(λ).

Proof. The probability of S aborting is equal to the knowledge error ε(λ). Therefore, H1 is
indistinguishable from H0 with adversarial advantage ε(λ).

• H2: Same as H1, except that S successfully uses the straight-line extractor of ΠNIWH to find
the valid td, generates the equivocal commitments (c1, c2) on dummy strings and equivocate
(c1, c2) to new openings (d1, d2) with respect to (m,h), where h = oRO(sid, ‘C’||m||d1||r).

Lemma 2. If ΠNIWH is a NIWH argument that has a straight-line extractor ΠNIWH.Ext
GoRO

with knowledge error ε(λ), and ΠECom is an equivocal commitment satisfying equivocal prop-

erty with adversarial advantage Advequivocal
A,ΠECom

(λ), then H2 is indistinguishable from H1 with

adversarial advantage (2− 2ε(λ)) ·Advequivocal
A,ΠECom

(λ).

Proof. The probability of S extracting the valid td such that ΠECom.KeyVer(ck, td) = 1 is
1 − ε(λ). Since the output of oRO is truly random, h sent by S is perfect indistinguishable
from the one sent by the honest committer. The only thing left is to show the (c1, c2, d1, d2)
are indistinguishable. In this case, we observe that if there is a PPT adversary A such that
Z can distinguish H1 from H0, then we can construct a PPT B which breaks the equivocal
property of the underlying ΠECom scheme. We first focus on the case concerning (c1, d1).
During the reduction, B simulates GoRO and starts ΠtCOM with A by running A internally as
black-box. First B waits for A to send the first round message (ck, π). Then B invokes the
straight-line extractor of the ΠNIWH to extract the valid td. After that, B sends (ck, td) along
with the message m to C. After receiving (c1, d1) from C, B simulates other messages and
continues the protocol with A. When A outputs a bit b, where b = 0 indicates (c1, d1) is the
real commitment-opening pair and b = 1 indicates (c1, d1) is the equivocated one, B forwards
the same bit b to C. Clearly, B wins whenever A wins. The situation concerning (c2, d2)
is similar. Therefore, we conclude that H3 is indistinguishable from H2 with adversarial
advantage (2− 2ε(λ)) ·Advequivocal

A,ΠECom
(λ).

22

Hybrid H3 is identical to the ideal world execution EXECGoROFtCOM,S,Z . In conclusion, when receiver is

corrupted, the overall distinguishing advantage is at most ε(λ) + (2− 2ε(λ)) ·Advequivocal
A,ΠECom

(λ).

Simulating the Honest Receiver Against the Malicious Committer. In this case, we
suppose that the committer C∗ is statically corrupted while the receiver R is honest. Here S needs
to extract the committed value from the commitment sent by C∗ in the committing phase. We
describe the strategy of S as follows:

• Committing Phase:

– Round 1: Act as an honest receiver in Round 1 described in ΠtCOM.

– Round 2: Upon receiving (c1, c2) from C∗, request the illegitimate queries from FtCOM.
After receiving Qsid, check if there exists a query of the form (sid, ‘C’||m||d1||r) such
that ΠECom.ComVer(ck, c1, d1) = 1. If so, set m′ := m; otherwise, set m′ := 0λ. Send
(Commit, sid, C,R,m′) to FtCOM on behalf the dummy committer.

• Opening Phase:

– Round 3: Act as a honest receiver described in Round 3 in ΠtCOM. If the receiver
algorithm accepts m∗ from C∗, then check if m∗ = m′. If so, send (Decommit, sid, C,R)
to FtCOM on behalf the dummy committer; otherwise, abort.

We prove the indistinguishability through the following hybrid experiments:

• H0: This is the real-world execution EXECGoROΠtCOM,A,Z .

• H1: Same as H0, except that in the committing phase, S obtains Qsid, determines m′ and
sends (Commit, sid, C,R,m′) to FtCOM. The perfect indistinguishability between H0 and H1

is trivial since S does not modify anything.

• H2: Same as H1, except that S aborts in the opening phase when m∗ 6= m′.

Lemma 3. If ΠNIWH is a NIWH argument satisfying witness hiding property with adversar-
ial advantage AdvWH

A,ΠNIWH
(λ), ΠECom is an equivocal commitment scheme satisfying binding

property with adversarial advantage Advbinding
A,ΠECom

(λ), and GoRO is parameterized by the out-

put length `out(λ), then H2 is indistinguishable from H1 with advantage AdvWH
A,ΠNIWH

(λ) +

Advbinding
A,ΠECom

(λ) + 2−`out(λ).

Proof. Here S aborts when m∗ 6= m′. This would happen when (i) C∗ does not query GoRO
on input (sid, ‘C’||m||d1||r), but guesses the output of GoRO precisely; (ii) C∗ is able to open
the commitment sent earlier to any value. It is easy to see that the former case would happen
at at a negligible probability, namely 2−`out(λ).

Now let us focus on the latter case. The witness hiding property guarantees that the corrupted
committer cannot obtain the td. Therefore, we observe that if there is a PPT adversary A
such that Z can distinguish H2 from H1, then we can construct a PPT B which breaks
the binding property of the underlying ΠECom. During the reduction, B simulates GoRO
and starts ΠtCOM with A by running A internally as black-box. First B interacts with the
binding game challenger C, and receives ck from C. Then B simulates the NIWH proof π
and sends (ck, π) to A. When A makes S aborts, i.e., A queries GoRO on input m||d1||r,
but later sends another valid opening d′1, B sends c1, d1, d

′
1 to C. It is easy to see that B

wins whenever A wins. We conclude that H2 is indistinguishable from H1 with adversarial
advantage AdvWH

A,ΠNIWH
(λ) + Advbinding

A,ΠECom
(λ) + 2−`out(λ).

23

Hybrid H3 is identical to the ideal world execution EXECGoROFtCOM,S,Z . In conclusion, when com-

mitter is statically corrupted, the overall distinguishing advantage is at most AdvWH
A,ΠNIWH

(λ) +

Advbinding
A,ΠECom

(λ) + 2−`out(λ).
In conclusion, the protocol ΠtCOM GUC-realizes FtCOM in the GoRO hybrid world against static

malicious corruption with advantage max{ε(λ) + (2 − 2ε(λ)) · Advequivocal
A,ΠECom

(λ),AdvWH
A,ΠNIWH

(λ) +

Advbinding
A,ΠECom

(λ) + 2−`out(λ)}. This completes the proof.

4.2 Instantiation of the Building Blocks

There are two building blocks, i.e. straight-line extractable NIWH arguments and perfect-hiding
non-interactive equivocal commitment schemes, in our construction. In this section, we show how
to instantiate them using only Minicrypt assumptions in the GoRO hybrid world. We start by
constructing a SHVZK protocol, since it is needed in both building blocks.

4.2.1 SHVZK Protocols from “MPC-in-the-Head”

In this section, we aim to construct a SHVZK protocol using only Minicrypt assumptions in the
GoRO hybrid world. Our starting point is the “MPC-in-the-head” paradigm proposed by Ishai et
al. [IKOS07] which is introduced in Section 2.8.

Note that our construction requires an SHVZK protocol with 2-special soundness (, which
we will explain the necessarity later in Section 4.2.2, below); unfortunately, to the best of our
knowledge, none of the followups [GMO16, CDG+17, AHIV17, KKW18, dOT21] since the original
work of [IKOS07], can lead to a 2-special sound protocol based on only Minicrypt assumptions.
Therefore, we need to design a new technique approach that transforms a MPC protocol into a
SHVZK protocol with 2-special soundness.

Our starting point: [KKW18]. We start with the 5-round SHVZK protocol proposed by Katz
et al. in [KKW18] which is based on only Minicrypt assumptions. In the high-level description,
Katz et al. employed the (n − 1)-private n-player MPC protocol in the preprocessing model and
let the verifier provide its challenges in two phases: one for checking the correctness of the opened
preprocessing execution, and the other for checking the consistency of the opened views. Roughly
speaking, the 5-round protocol of Katz et al. works as follows:

• Round 1: The prover simulates m independent executions of the preprocessing phase, and
commits to the states of the parties which can be obtained at the end of the preprocessing
phase.

• Round 2: The verifier samples an uniform random challenge c ∈ [m] and asks the prover to
open the views of all the executions of the preprocessing phase except the c-th one.

• Round 3: The prover opens the states of all parties for each challenged execution of prepro-
cessing phase. Beside that, the prover simulates the execution of ΠMPC that realizes fR using
the remaining unopened execution of the preprocessing phase. The prover then commits to
each view of the parties.

• Round 4: The verifier samples an uniform random challenge p ∈ [n] and asks the prover to
open all the views of the parties except the p-th one.

24

• Round 5: The prover reveals the state of each challenged party following the preprocessing
phase as well as its view in the execution of ΠMPC. The verifier checks that the opened views
are consistent with each other and with an honest execution of ΠMPC (using the state from
the preprocessing phase) that yields the output 1.

In [KKW18], Katz et al. compressed the above 5-round protocol into a 3-round one by the following
approach: (i) let the prover simulate the execution of ΠMPC for every emulation of the preprocessing
phase and commit to all the resulting views as well as the states; (ii) let the verifier send its challenge
(c, p), and asks the prover to open all the states except the c-th one of the preprocessing phase as
well as all the views except the p-th one from the unopened preprocessing phase.

Let ΠMPC be the n-party MPC protocol which realizes f with (n − 1)-privacy in the prepro-
cessing model, where f(x,w1, · · · , wn) = RL(x,w1⊕· · ·⊕wn). Let Preprocess be the preprocessing
algorithm that takes a λ-bit random string seed as input, and outputs the states {state}i∈[n] which
are used for the computation later (cf. [KKW18] for details). We use the GoRO to instantiate the
statically binding commitment (i.e., to commit msg with random coin r, we use the answer of the
GoRO on input (msg, r) as the commitment and reveal (msg, r) as the opening). We denote the event
where queries GoRO on input x and gets the answer y as y := oRO(x) in the context. We denote
by m the number of the executions of the preprocessing phase. Formally, we recall the 3-round
SHVZK protocol ΠKKW

SHVZK from [KKW18] in Figure 9. We emphasize that the protocol ΠKKW
SHVZK

cannot be 2-special sound, and we argue this through Proposition 1.

Proposition 1. Assume the n-party MPC protocol ΠMPC is (n − 1)-private in the preprocessing
model. Let m be the number of executions of preprocessing phase, where m ≥ 2. The 3-round
SHVZK protocol ΠKKW

SHVZK depicted in Figure 9:

• cannot achieve k-special soundness, for k ≤ m.

• satisfies k-special soundness, for k ≥ m+ 1.

Proof. In order to prove the proposition above, we have to show that (i) given any k distinct valid
transcripts, where k ≥ m+ 1, there exists a PPT algorithm that can efficiently recover the witness;
(ii) there always exists a PPT adversary A that can produce k distinct valid transcripts without
knowing the witness, where k ≤ m.

We first discuss the former case. Recall that the challenge of the protocol is (c, p), and the
domain of the first challenge c is [m]. Therefore, given k distinct transcripts where k ≥ m + 1,
there must exist a c∗ ∈ [m] and p 6= p′ such that (c∗, p) and (c∗, p′) are the challenges that
corresponds to two of the given transcripts. For transcript that corresponds to (c∗, p), it re-
veals {statec∗,j , viewc∗,j(x,wj)}j∈[n]\{p}; and for transcript that corresponds to (c∗, p′), it reveals
{statec∗,j , viewc∗,j(x,wj)}j∈[n]\{p′}. Since p 6= p′, we obtain {statec∗,j , viewc∗,j(x,wj)}j∈[n]. Then we
yield the private input wj from the statec∗,j , viewc∗,j(x,wj), and finally computes w := w1⊕· · ·⊕wn.
Therefore, there exists a PPT algorithm that can efficiently recover the witness w when given m+1
distinct valid transcripts.

We then discuss the latter case. For k ≤ m, we can construct a PPT adversary A that produces
k distinct accepting transcripts without knowing the witness w as follows:

• Sample uniformly random p ∈ [n].

• For i ∈ [k]:

– Sample λ-bit randomness seedi and generate {statei,j}j∈[n] ← Preprocess(seedi).

25

Primitives: n-party MPC protocol ΠMPC which realizes f with (n − 1)-privacy in the preprocessing model,
where f(x,w1, . . . , wn) = RL(x,w1 ⊕ · · · ⊕ wn).
Inputs: P, V have a public input x and an NP relation RL. P has a private input w s.t. RL(x,w) = 1.

Protocol:

• Move1(x,w; r):

– For i ∈ [m]:

∗ Derive λ-bit random seedi from randomness r and generate
{statei,j}j∈[n] ← Preprocess(seedi).

∗ Simulate the execution of ΠMPC using (x,w) and the states {statei,j}j∈[n], and output the
views of the parties {viewi,j(x,wj)}j∈[n].

∗ For j ∈ [n]: select random ri,j , r̃i,j ← {0, 1}λ, and compute the state-commitments
comi,j := oRO(sid, statei,j ||ri,j) and the view-commitments
c̃omi,j := oRO(sid, viewi,j(x,wj)||r̃i,j).

– Send a := ({comi,j , c̃omi,j}i∈[m],j∈[n]).

• Move2(1λ): Send e := (c, p), where c is uniformly random in [m] and p is uniformly random in [n].

• Move3(x,w, e; r): Send z := ({statei,j , ri,j}i∈[m]\{c},j∈[n], {statec,j , viewc,j(x,wj), r̃c,j}j∈[n]\{p}).
• Verify(x, a, e, z): Output 1 if and only if the following checks pass:

– Check the commitments are opened correctly:

∗ For i ∈ [m] \ {c}, j ∈ [n]: check comi,j = oRO(sid, statei,j ||ri,j) holds.

∗ For j ∈ [n] \ {p}: check comc,j = oRO(sid, statec,j ||rc,j) and
c̃omc,j = oRO(sid, viewc,j(x,wj)||r̃i,j) hold.

– Check the correctness of the executions of the preprocessing phase:

∗ For i ∈ [m] \ {c}: check {statei,j}j∈[n] are well-formed.

– Check the consistency between the opened views:

∗ For j ∈ [n] \ {p}: check viewc,j(x,wj) correctly follows from the statec,j and viewc,j(x,wj)
yields output 1.

∗ Check {viewc,j(x,wj)}∈[n]\{p} are consistent with each other.

Protocol ΠKKW
SHVZK

Figure 9: Protocol ΠKKW
SHVZK from [KKW18]

26

– Run the simulator algorithm of ΠMPC using x, p and the states generated by the i-th pre-
processing phase (i.e., {statei,j}j∈[n]), and output the simulated views {viewi,j}∈[n]\{p}.
Sample a random viewi,p of appropriate length.

– For j ∈ [n]: select λ-bit randomness ri,j , r̃i,j , and compute comi,j := oRO(sid, statei,j ||ri,j)
and c̃omi,j := oRO(sid, viewi,j(x,wj)||r̃i,j).

– Set ei := (i, p) and zi := ({statek,j , rk,j}k 6=i,j∈[n], {statei,j , viewi,j(x,wj), r̃i,j}j∈[n]\{p}).

• Set a := ({comi,j , c̃omi,j}i∈[m],j∈[n]), and output {(a, ei, zi)}i∈[m].

It is easy to see that (a, ei, zi) is an accepting transcript for every i ∈ [k], and {ei}i∈[k] are distinct
with each other where ei = (i, p). Therefore, there exists a PPT adversary A that can produce k
distinct valid transcripts without knowing w, where k ≤ m. In other words, given only k distinct
valid transcripts where k ≤ m, it is not guaranteed that we can recover the witness from them.

In conclusion, we prove that ΠKKW
SHVZK: (i) cannot achieve k-special soundness, for k ≤ m; (ii)

satisfies k-special soundness, for k ≥ m+ 1.

Remark 2. Katz et al. proposed a generalized 3-round SHVZK protocol in [KKW18] for better
efficiency. More precisely, they let the verifier select m − τ (instead of m − 1) of the executions
of the preprocessing phase to check, where τ is a parameter and 1 ≤ τ ≤ m − 1; the remaining
τ executions of the preprocessing phase are used to run τ (instead of one) instances of the MPC
protocol ΠMPC; each of the executions of ΠMPC is verified by revealing the view of all-but-one party
as before. We note that, this generalized SHVZK protocol cannot achieve k-special soundness, where
k ≤

(
m−1
τ

)
+ 1; but it satisfies k-special soundness, where k ≥

(
m−1
τ

)
+ 2. The proof is analogously

to the Proposition 1, and we omit the proof here.

Our protocol construction. Our key observation is that we can compress the above 5-round
protocol into a 3-round one by applying the Fiat-Shamir transformation [FS87] to replace Round 2.
Therefore, Round 1 and Round 3 can be merged, and we obtain a 3-round protocol with 2-special
soundness. We can regard the first round of the resulting 3-round protocol as a “non-interactive
proof” that proves the correctness of the execution of the preprocessing phase, but its soundness
error is not negligible (i.e., 1

m , wherem is the number of the executions of preprocessing phase). This
issue can be addressed by applying parallel repetition. Compared with the approach of [KKW18],
our approach needs additional RO assumptions but it is an SHVZK protocol with 2-special sound.

Let ΠMPC be the n-party MPC protocol which realizes f with (n − 1)-privacy in the prepro-
cessing model, where f(x,w1, · · · , wn) = RL(x,w1⊕· · ·⊕wn). Let Preprocess be the preprocessing
algorithm that takes a λ-bit random string seed as input, and outputs the states {state}i∈[n] which
are used for the computation later (cf. [KKW18] for details). We denote the event where queries
GoROi on input x and gets the answer y as y := oROi(x) for i ∈ {1, 2} in the context, where
oRO1 : {0, 1}`in(λ) → {0, 1}` and oRO2 : {0, 1}`in(λ) → (Z+

m+1)λ. We denote by m the number of the
executions of the preprocessing phase. Formally, we present our protocol ΠSHVZK in Figure 10 and
prove the security through Theorem 3.

Theorem 3. Assume ΠMPC is a secure n-party protocol that realizes fR with perfect (n−1)-privacy,
where f(x,w1, · · · , wn) = RL(x,w1⊕ · · · ⊕wn). Then the protocol ΠSHVZK depicted in Figure 10 is
a SHVZK protocol that is perfect complete, 2-special sound, perfect SHVZK.

Proof. Perfect Completeness. It is straightforward.

Perfect SHVZK. In order to show perfect SHVZK, We have to present the simulation strategy
first. Given the statement x, the challenge e = (p1, . . . , pλ) and the random string r, the simulator
Sim(x,w; r) works as follows:

27

Primitives: n-party MPC protocol ΠMPC which realizes f with (n − 1)-privacy in the preprocessing model,
where f(x,w1, . . . , wn) = RL(x,w1 ⊕ · · · ⊕ wn).
Random Oracles: oRO1 : {0, 1}`in(λ) → {0, 1}` and oRO2 : {0, 1}`in(λ) → (Z+

m+1)λ

Inputs: P, V have a common x and an NP relation RL. P has a private w s.t. RL(x,w) = 1.

Protocol:

• Move1(x,w; r):

– For i ∈ [λ], j ∈ [m]:

∗ Derive λ-bit random seedi,j from randomness r and generate
{statei,j,k}k∈[n] ← Preprocess(seedi,j).

∗ For k ∈ [n]: select ri,j,k ← {0, 1}λ and commit to the states, i.e. compute
state-commitments comi,j,k := oRO1(sid, statei,j,k||ri,j,k).

– Compute (c1, . . . , cλ) := oRO2(sid, {comi,j,k}i∈[λ],j∈[m],k∈[n]), where ci ∈ [m].

– For i ∈ [λ]:

∗ Simulate the execution of ΠMPC using (x,w) and the states generated by the ci-th
preprocessing phase (i.e., {statei,ci,k}k∈[n]), and output the views of the parties
{viewi,k(x,wk)}k∈[n].

∗ For k ∈ [n]: select r̃i,k←{0, 1}λ and commit to the view of each party, i.e. compute
view-commitments c̃omi,k := oRO1(sid, viewi,k(x,wk)||r̃i,k).

– Send a := ({comi,j,k, c̃omi,k}i∈[λ],j∈[m],k∈[n], {statei,j,k, ri,j,k}i∈[λ],j∈[m]\{ci},k∈[n])

• Move2(1λ): Send e := (p1, . . . , pλ), where pi ∈ [n] and pi is uniformly random.

• Move3(x,w, e; r): Send z := ({viewi,k(x,wk), r̃i,k, statei,ci,k, ri,ci,k}i∈[λ],k∈[n]\{pi}).
• Verify(x, a, e, z): Output 1 if and only if the following checks pass:

– Check the commitments are opened correctly:

∗ For i ∈ [λ], j ∈ [m] \ {ci}, k ∈ [n]: check comi,j,k = oRO1(sid, statei,j,k||ri,j,k) holds.

∗ For i ∈ [λ], k ∈ [n] \ {pi}: check comi,ci,k = oRO1(sid, statei,ci,k||ri,ci,k) and
c̃omi,k = oRO1(sid, viewi,k(x,wk)||r̃i,k) hold.

– Check the correctness of the executions of the preprocessing phase:

∗ Compute (c1, . . . , cλ) := oRO2(sid, {comi,j,k}i∈[λ],j∈[m],k∈[n]).

∗ For i ∈ [λ], j ∈ [m] \ {ci}: check {statei,j,k}k∈[n] are well-formed.

– Check the consistency between the opened views:

∗ For i ∈ [λ], k ∈ [n] \ {pi}: check viewi,k(x,wk) follows from the statei,ci,k correctly and
viewi,k(x,wk) yields output 1.

∗ For i ∈ [λ]: check {viewi,k(x,wk)}k∈[n]\{pi} are consistent with each other.

Protocol ΠSHVZK

Figure 10: Protocol ΠSHVZK in the GoRO Hybrid World

28

• For i ∈ [λ], j ∈ [m]:

– Derive λ-bit random seedi,j from r and generate {statei,j,k}k∈[n] ← Preprocess(seedi,j).

– For k ∈ [n]: select ri,j,k←{0, 1}λ and commit to states comi,j,k := oRO1(sid, statei,j,k||ri,j,k).

• Compute (c1, . . . , cλ) := oRO2(sid, {comi,j,k}i∈[λ],j∈[m],k∈[n]), where ci ∈ [m] for i ∈ [λ].

• For i ∈ [λ]:

– Run the simulator algorithm of ΠMPC using x, pi and the states generated by the ci-th pre-
processing phase (i.e., {statei,ci,k}k∈[n]), and output the simulated views {viewi,k}k∈[n]\{pi}.
Sample a random viewi,pi of appropriate length.

– For k ∈ [n]: select r̃i,k←{0, 1}λ and commit to the view of each party c̃omi,k :=
oRO1(sid, viewi,k||r̃i,k).

• Output a := ({comi,j,k, c̃omi,k}i∈[λ],j∈[m],k∈[n], {statei,j,k, ri,j,k}i∈[λ],j∈[m]\{ci},k∈[n]) and z :=
({viewi,k, r̃i,k, statei,ci,k, ri,ci,k}i∈[λ],k∈[n]\{pi}).

Now the only thing left is to show the indistinguishability. Since the simulator emulates the
executions of the preprocessing phase honestly, the real states of the parties and the simulated ones
are perfectly indistinguishable. Now we turn to the views of the parties: given e = (p1, . . . , pλ)
ahead, by perfect (n − 1)-privacy of ΠMPC, the real opened views of the parties and simulated
ones are perfectly indistinguishable. Thus, the real z and simulated z′ are perfectly indistinguish-
able. Due to the unpredictability of the output of GoRO, the real a and simulated a′ are perfectly
indistinguishable. Therefore, we prove that our protocol satisfies perfect SHVZK property.

2-Special Soundness. Due to the unpredictability of the random oracle, any PPT adversary can
cheat in proving the correctness of the preprocessing phase without being detected with only m−λ

probability, which is only negligible. In other words, given a in an accepting transcript, the pre-
processing phase must be executed correctly with overwhelming probability. Fixing such a =
({comi,j,k, c̃omi,k}i∈[λ],j∈[m],k∈[n], {statei,j,k, ri,j,k}i∈[λ],j∈[m]\{ci},k∈[n]), for any two distinct accepting
transcripts (a, e, z), (a, e′, z′) where e 6= e′ and e = (p1, . . . , pλ), e′ = (p′1, . . . , p

′
λ), we can find a i ∈ [λ]

such that pi 6= p′i. Thus, we can obtain all the committed views {viewi,k(x,wk), statei,ci,k}k∈[n]

given these transcripts. Then we can yield wk from viewi(x,wk) and statei,ci,k, and compute
w := w1 ⊕ · · · ⊕ wn. Since all the views and states has been verified due to the definition of
the special soundness, the extracted witness w must satisfy (x,w) ∈ RL. Therefore, we prove that
our protocol is 2-special sound.

4.2.2 Perfect-Hiding Non-Interactive Equivocal Commitment

Given a SHVZK protocol, we can obtain a perfect-hiding non-interactive equivocal commitment.
The intuition is as follows. Let RL be a hard NP relation. The receiver selects (x,w) ∈ RL, and
sets x as the commitment key and w as the equivocation trapdoor. The message m is used as the
challenge on which to run the simulator for the SHVZK protocol with respect to x, producing the
prover’s first flow a and the response z. The first flow a is used as the commitment. The message
m and response z are used as the opening. Equivocation is achieved by using the knowledge of w
to execute the honest prover algorithm instead of the simulator algorithm. Similar ideas can be
found in [Dam02, MY04].

Let g be a one-way function. Formally, we present our non-interactive equivocal commitment
in Figure 11 and prove the security through Theorem 4. The proof of computational binding relies

29

on the 2-special soundness, and this explains the reason why 2-special soundness is necessary in
Section 4.2.1. We instantiate the NP relation with one-way function, i.e. R1 = {(y, seed) | y =
g(seed)} where (y, seed) is the statement-witness pair and g is a one-way function. If we use our
SHVZK protocol ΠSHVZK depicted in Figure 10 as the building block, then we can obtain a perfect
hiding non-interactive equivocal commitment scheme via only Minicrypt assumptions in the GoRO
hybrid world.

Primitives: SHVZK protocol ΠSHVZK = ΠSHVZK.{Move1,Move2,Move3,Verify, Sim} and one-way function g.

• KeyGen(1λ) : Select a random string seed← {0, 1}λ, compute y := g(seed), and output
ck := y, td := seed.

• KeyVer(ck, td) : Check if ck = g(td) holds. If so, output 1; otherwise, output 0.

• Commit(ck,m) : Select a random string r ← {0, 1}λ, invoke (a, z) := ΠSHVZK.Sim(ck,m; r), and output
c := a, d := (m, z).

• ComVer(ck, c, d) : Check if ΠSHVZK.Verify(ck, c,m, z) = 1 holds. If so, output 1; otherwise, output 0.

• EquCom(ck, td) : Select a random string s← {0, 1}λ, invoke ã := ΠSHVZK.Move1(ck, td; s), and output
c̃ := ã, st := s.

• Equiv(ck, td, c̃, st, m̃) : Invoke z̃ := ΠSHVZK.Move3(ck, td, m̃; st), and output d̃ := z̃.

Scheme ΠECom

Figure 11: Scheme ΠECom Based on One-Way Function

Theorem 4. Assume ΠSHVZK is a SHVZK protocol that is 2-special sound and perfect SHVZK.
Assume g is a one-way function that is hard to invert. Then ΠECom depicted in Figure 11 is an
equivocal commitment that satisfies perfect correctness, perfect hiding, computational binding and
perfect equivocation.

Proof. Perfect Correctness. It is straightforward.

Perfect Hiding. Note that, the first move message of the honest prover algorithm (i.e., the
real a, where a ← ΠSHVZK.Move1(x,w)) is totally independent of the challenge m. By per-
fect SHVZK property of ΠSHVZK, the simulated first move message (i.e., the simulated ã, where
(ã, z̃) ← ΠSHVZK.Sim(x,m)) should also be uncorrelated to m. Since ã is the commitment to the
message m, any computationally unbounded adversary A cannot learn m from ã. Therefore, we
prove that our construction is perfect hiding.

Computational Binding. We proceed by contradiction. Assume there exists a PPT adversary A
that breaks the computational binding property of the ΠECom with non-negligible probability, then
we are able to build a reduction B which violates the Hard to Invert (HI) property of the underlying
g. First B interacts with HI game challenger C. After receiving y from C, C forwards y to A. Then
B waits for A to send c := a, d := (m1, z1), d′ := (m2, z2), where m1 6= m2. Due to the 2-special
soundness, B is able to extract the witness seed such that y = g(seed), sends seed to C and wins
the game. Therefore, we prove that our construction is computational binding.

Perfect Equivocation. In order to prove perfect equivocal property, we have to show that the real
commitment-opening pair (c := a, d := (m, z)) is perfectly indistinguishable from the equivocated
commitment-opening pair (c̃ := ã, d̃ := (m, z̃)). By perfect SHVZK property of ΠSHVZK, (a, z)
is perfectly indistinguishable from (ã, z̃). Therefore, we prove that our construction is perfect
equivocal.

30

4.2.3 Straight-Line Extractable NIWH Argument

We construct the straight-line extractable NIWH argument in the GoRO hybrid world using the
technique described in [Pas03]. We here describe the high-level description and the details can be
found in Appendix B. Given a SHVZK protocol with 2-special soundness, we let the prover execute
the honest prover algorithm to obtain the first flow message. Fixing this first flow message, we let
the prover pick two distinct random challenges and compute the corresponding responses. Then
the prover commits to the response by querying GoRO and using the answer as the commitment.
Next the prover sends the first flow message along with all the challenges and the commitments to
the verifier. After that, the verifier asks the prover to open one commitment. Finally the verifier
receives the response, and checks if the corresponding transcript is valid. The soundness error of
the protocol described above is 1

2 , and it can be reduced by parallel repetitions. We also apply
Fiat-Shamir transformation to remove the interaction [FS87]. The straight-line extractablity relies
on the observability provided by GoRO and 2-special soundness.

Theorem 5 ([Pas03]). Assume there is a 2-special sound SHVZK protocol, then there exists a
straight-line extractable NIWH argument in the GoRO hybrid world.

If we instantiate the 2-special sound SHVZK protocol with ours that depicted in Figure 10, then
the resulting straight-line extractable NIWH argument also only requires Minicrypt assumptions.
We show a more general case that transforms a k-special sound SHVZK protocol for k ≥ 2, into a
straight-line NIWH argument in Appendix B.

5 Concluding Remarks: Towards a Complete Picture

In this work, we mainly focus on the lower bounds on round complexity for GUC-secure commitment
protocols in the global random oracle models. We also wonder if such lower bounds exist, is it
possible to construct round-optimal GUC-secure commitment protocols via Minicrypt assumptions?

In terms of the GoRO, our work gives a complete answer: we show it is impossible to construct
2-round GUC-secure commitment in the GoRO hybrid world against static adversaries in Section 3,
and construct a 3-round (round-optimal) GUC-secure commitment protocol via Minicrypt in the
GoRO hybrid world in Section 4. In the remaining, let us turn our attention on other global random
oracle models.

As for the GsRO, the results of [CDPW07] rules out the possibility of constructing any GUC-
secure commitment protocol in the GsRO hybrid world. More precisely, they argued that no “public
setup”, namely no setup that provides only public information that is available to all parties,
can suffice for realizing commitment protocols in the GUC framework. It is easy to see that this
impossibility result holds in the GsRO hybrid world.

Regarding the GpoRO, non-interactive GUC-secure commitment protocol can be achieved. In
fact, Camenisch et al. proposed a non-interactive GUC-secure commitment in the GpoRO hybrid
world without any further assumptions [CDG+18].

Among all the global random oracle models depicted in Figure 4, only the GpRO has yet to be
fully investigated. Actually, we already have some impossibility result: we find that there exists
no GUC-secure commitment protocols with one-round committing phase in the GpRO hybrid world
against static adversaries. Intuitively, we observe that the receiver does not have the chance to
send any message in the committing phase in such commitment protocols. Note that, the GpRO
only allows the simulator to program on the unqueried points without being detected, and the
simulator benefits itself by letting the corrupted parties to work on its programmed points. Now
let us consider the case where the committer is corrupted and the simulator acts as the receiver, the

31

simulator needs to extract the committed value before the opening phase. In a commitment protocol
where the committing phase only takes one round, the simulator (acting as the receiver) does not
need to send any message, thus it cannot enforce the corrupted committer to produce its message
on the programmed points. If the simulator still succeeds in extracting the committed value from
the commitment message, then we can use such a simulator to break the hiding property of the
commitment scheme since anyone can run this simulator without relying on the programmability
of the GpRO. In conclusion, the committing phase requires at least 2 rounds, plus (at least) 1 round
of the opening phase, and the entire commitment protocol requires at least 3 rounds. We refer
interesting readers to see the formal theorem and proof in Appendix A.1.

Given this lower bound in the GpRO, we find the 3-round (2 rounds for the committing phase, 1
round for the opening phase) GUC-secure commitment protocol proposed in [CDG+18] is round-
optimal. But their construction relies on CDH assumption which lives in the Cryptomania world.
The sad truth is that we find it extremely hard to construct a round-optimal GUC-secure commit-
ment protocol via Minicrypt in the GpRO hybrid world, so we leave it as an open question.

References

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. Ligero: Lightweight sublinear arguments without a trusted setup. In ACM CCS
2017, pages 2087–2104. ACM Press, 2017.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowl-
edge with no trusted setup. In Crypto 2019, Part III, volume 11694 of LNCS, pages
701–732. Springer, 2019.

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally compos-
able protocols with relaxed set-up assumptions. In FOCS 2004, pages 186–195. IEEE
Computer Society Press, 2004.

[BDD20] Carsten Baum, Bernardo David, and Rafael Dowsley. Insured MPC: Efficient secure
computation with financial penalties. In FC 2020, volume 12059 of LNCS, pages 404–
420. Springer, 2020.

[BGM19] Pedro Branco, Manuel Goulão, and Paulo Mateus. UC-commitment schemes with
phase-adaptive security from trapdoor functions. Cryptology ePrint Archive, Report
2019/529, 2019. https://eprint.iacr.org/2019/529.

[BPRS17] Megha Byali, Arpita Patra, Divya Ravi, and Pratik Sarkar. Fast and universally-
composable oblivious transfer and commitment scheme with adaptive security. Cryptol-
ogy ePrint Archive, Report 2017/1165, 2017. https://eprint.iacr.org/2017/1165.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM CCS 1993, pages 62–73. ACM Press, 1993.

[Bra21] Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle
model from code-based assumptions. Advances in Mathematics of Communications,
15(1):113, 2021.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS 2001, pages 136–145. IEEE Computer Society Press, 2001.

32

https://eprint.iacr.org/2019/529
https://eprint.iacr.org/2017/1165

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher,
Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-
knowledge and signatures from symmetric-key primitives. In ACM CCS 2017, pages
1825–1842. ACM Press, 2017.

[CDG+18] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory
Neven. The wonderful world of global random oracles. In Eurocrypt 2018, Part I,
volume 10820 of LNCS, pages 280–312. Springer, 2018.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable
security with global setup. In TCC 2007, volume 4392 of LNCS, pages 61–85. Springer,
2007.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Crypto 2001,
volume 2139 of LNCS, pages 19–40. Springer, 2001.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited (preliminary version). In ACM STOC 1998, pages 209–218. ACM Press,
1998.

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a
global random oracle. In ACM CCS 2014, pages 597–608. ACM Press, 2014.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and trans-
parent recursive proofs from holography. In Eurocrypt 2020, Part I, volume 12105 of
LNCS, pages 769–793. Springer, 2020.

[CSW20] Ran Canetti, Pratik Sarkar, and Xiao Wang. Efficient and round-optimal oblivious
transfer and commitment with adaptive security. In Asiacrypt 2020, Part III, volume
12493 of LNCS, pages 277–308. Springer, 2020.

[Dam02] Ivan Damg̊ard. On σ-protocols. https://www.cs.au.dk/~ivan/Sigma.pdf.

[dOT21] Cyprien de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy. Limbo: Efficient
zero-knowledge MPCitH-based arguments. In ACM CCS 2021, pages 3022–3036. ACM
Press, 2021.

[DSW08] Yevgeniy Dodis, Victor Shoup, and Shabsi Walfish. Efficient constructions of compos-
able commitments and zero-knowledge proofs. In Crypto 2008, volume 5157 of LNCS,
pages 515–535. Springer, 2008.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Crypto 1986, volume 263 of LNCS, pages 186–194. Springer,
1987.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols.
In ACM STOC 1990, pages 416–426. ACM Press, 1990.

[GIS18] Sanjam Garg, Yuval Ishai, and Akshayaram Srinivasan. Two-round MPC: Information-
theoretic and black-box. In TCC 2018, Part I, volume 11239 of LNCS, pages 123–151.
Springer, 2018.

33

https://www.cs.au.dk/~ivan/Sigma.pdf

[GKPS18] Chaya Ganesh, Yashvanth Kondi, Arpita Patra, and Pratik Sarkar. Efficient adaptively
secure zero-knowledge from garbled circuits. In PKC 2018, Part II, volume 10770 of
LNCS, pages 499–529. Springer, 2018.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-knowledge
for Boolean circuits. In USENIX Security 2016, pages 1069–1083. USENIX Association,
2016.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In ACM STOC 1987, pages
218–229. ACM Press, 1987.

[HM04] Dennis Hofheinz and Jörn Müller-Quade. Universally composable commitments using
random oracles. In TCC 2004, volume 2951 of LNCS, pages 58–76. Springer, 2004.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from
secure multiparty computation. In ACM STOC 2007, pages 21–30. ACM Press, 2007.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In SCT 1995, pages
134–147. IEEE, 1995.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero
knowledge with applications to post-quantum signatures. In ACM CCS 2018, pages
525–537. ACM Press, 2018.

[KL20] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC press,
2020.

[KZ20] Benjamin Kuykendall and Mark Zhandry. Towards non-interactive witness hiding. In
TCC 2020, Part I, volume 12550 of LNCS, pages 627–656. Springer, 2020.

[LR22] Anna Lysyanskaya and Leah Namisa Rosenbloom. Universally composable sigma-
protocols in the global random-oracle model. Cryptology ePrint Archive, Report
2022/290, 290. https://eprint.iacr.org/2022/290.

[MR19] Daniel Masny and Peter Rindal. Endemic oblivious transfer. In ACM CCS 2019, pages
309–326. ACM Press, 2019.

[MRS17] Payman Mohassel, Mike Rosulek, and Alessandra Scafuro. Sublinear zero-knowledge
arguments for RAM programs. In Eurocrypt 2017, Part I, volume 10210 of LNCS,
pages 501–531. Springer, 2017.

[MY04] Philip D. MacKenzie and Ke Yang. On simulation-sound trapdoor commitments. In
Eurocrypt 2004, volume 3027 of LNCS, pages 382–400. Springer, 2004.

[Pas03] Rafael Pass. On deniability in the common reference string and random oracle model.
In Crypto 2003, volume 2729 of LNCS, pages 316–337. Springer, 2003.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
FOCS 1982, pages 160–164. IEEE Computer Society Press, 1982.

34

https://eprint.iacr.org/2022/290

A Lower Bounds on Round Complexity for GUC-Secure Commit-
ment/ZK in the GPRO Model

A.1 Result for Commitment

Here we show that it is impossible to achieve GUC-secure commitment with one round for the
committing phase in the GpRO hybrid world against static adversaries. We stress that this result is
stronger than Theorem 1, since this result rules out the possibility of a commitment scheme which
consists of one round for the committing phase and multiple rounds for the opening phase. We
first provide a traditional commitment functionality FCOM in Figure 12, since FtCOM does not fit
the GpRO hybrid world.

The functionality interacts with two parties C,R and an adversary S.

• Upon receiving (Commit, sid, C,R,m) from C, do:

– Record the tuple (sid, C,R,m), and send (Receipt, sid, C,R) to R and S.

– Ignore any subsequent Commit command.

• Upon receiving (Decommit, sid, C,R) from C, do:

– If there is a tuple (sid, C,R,m) recorded, send (Decommit, sid, C,R,m) to R and S, and halt.

– Otherwise, ignore the message.

Functionality FCOM

Figure 12: The Functionality FCOM for Commitment

Theorem 6. There exists no terminating single-message (only restricted in the committing phase)
protocol Π that GUC-realizes FCOM depicted in Figure 12 with static security, using only the shared
functionality for global programmable random oracle GpRO.

Proof. We proceed by contradiction. Suppose there exists such a protocol Π that GUC-realizes

FCOM in the GpRO hybrid world. Then there must exist a PPT simulator S such that EXEC
GpRO
FCOM,S,Z

c≈
EXEC

GpRO
Π,A,Z for any PPT adversary A and any PPT GpRO-externally constraint environment Z.

In particular, let us consider the session with SID sid1, and let A be a dummy adversary that
simply forwards protocol flows between corrupt parties and the environment Z. Let Z corrupt
the committer C∗ at first. Then Z chooses a random bit b ∈ {0, 1} and instructs C∗ to execute
the honest committer algorithm to produce the commitment ψ on input b, which we denote by
ψ ← C(sid1, b,Qsid1,C), where Qsid1,C is the queries to GpRO sent by C∗. In the opening phase, Z
instructs C∗ to reveal the committed value b and waits for R to output b′. If b = b′, Z outputs 1;
otherwise, Z outputs 0.

In order to make the GUC experiments above remain indistinguishable, the simulator S needs
to extract the committed bit b from the commitment ψ sent by C∗, and send (Commit, sid1, C,R, b)
to FCOM on behalf of the dummy committer. Recall that, the main advantage of S is that it
can program the GpRO on unqueried points without being detected, and we denote by Progsid1 the
queries programmed by S. If the adversary happens to use the points that belongs to Progsid1 , then
S has the chance of extracting the private information of the adversary. Note that, the simulator S
also can query GpRO just like normal parties. In order to describe the process of querying to GpRO,
we denote by G∗pRO the simplified version of the GpRO, that is, the GpRO without the Program

interface. We write SG∗pRO to denote the event that S is given query oracle access to GpRO and

35

can continuously query to GpRO. With notations above, we will write b← SG∗pRO(sid1, ψ,Progsid1) to
denote the event where S extracts the committed bit b from ψ using Progsid1 after querying to GpRO.
We note that, S should be able to handle any PPT adversary A and any PPT Z. Consider such
a case where Z performs the following attack: Z queries GpRO everything that will be needed in
advance (recall that, these queries are denoted as Qsid1,C), then starts the protocol Π and instructs
C∗ to run the honest committer algorithm on those previously queried points. Since we are in a
commitment protocol where committing phase only takes one round, this attack can be performed
successfully. In such a case, we have Pr[Progsid1 ∩ Qsid1,C 6= ∅] = 0, where Qsid1,C is the queries
used for generating ψ. In other words, the simulator S has no advantages at all in this case. For
notation convenience, we denote by b ← SG∗pRO(sid1, ψ, ∅) the event where S is still able to extract
b from ψ even if Progsid1 ∩ Qsid1,C = ∅. We note that, the algorithm SG∗pRO(sid1, ψ, ∅) does not use
the Program interface at all and can be run by anyone, since anyone can query to GpRO. We also

note that, even if we switch to a session with a different SID, the algorithm SG∗pRO(sid1, ψ, ∅) still
works as long as the appropriate inputs are provided.

In the following, we show that the existence of the simulator S above contradicts the security of Π
against static corruptions, by creating a particular environment Z ′ which succeeds in distinguishing

EXEC
GpRO
FCOM,S′,Z′ from EXEC

GpRO
Π,A,Z′ after a static corruption operation for any PPT simulator S ′.

Now consider the session with SID sid2. We let Z ′ corrupt the receiver R∗ at first, and feed
the honest committer C with a randomly selected bit b ∈ {0, 1}, finally wait for R∗ to output
(Receipt, sid2, C,R). In this case, the simulator S ′ needs to produces an equivocal commitment ψ
without knowing b. In other words, the entire computation of ψ is totally independent of b. After
receiving ψ from the committer, Z ′ simply runs b′ ← SG∗pRO(sid,ψ, ∅). In the real-world, we always
have b′ = b. In the ideal-world, since the entire computation of ψ is independently of b, we have
b′ = b with probability at most 1

2 . Therefore, Z ′ can distinguish between the real-world and the
ideal-world experiments at least 1

2 , contradicting our assumption that Π is GUC-secure.

A.2 Result for ZK

We show it is impossible to achieve GUC-secure NIZK protocols for non-trivial NP relations in
the GpRO hybrid world against static adversaries. We first provide the ZK functionality FZK in
Figure 13.

The functionality interacts with two parties P, V and an adversary S. It is parameterized by an NP relation
RL.

• Upon receiving (ZK-prover, sid, P, V, x, w) from P , do:

– Assert RL(x,w) = 1.

– Output (ZK-proof, sid, P, V, x) to V and the adversary S.

Functionality FZK

Figure 13: The Functionality FZK for Zero-Knowledge

Definition 12. We say an NP relation RL whose associate language is L is non-trivial if there is
no PPT algorithm efficiently decides membership in L (i.e. L /∈ BPP). Furthermore, we say RL
is non-trivial with respect to shared functionality G if there is no PPT algorithm efficiently decides
membership in L even when given oracle access to G.

36

Theorem 7. There exists no terminating one-round protocol Π that GUC-realizes FZK depicted in
Figure 13 with static security, using only the shared functionality for global programmable random
oracle GpRO, for any NP relation RL that is non-trivial with respect to GpRO.

Proof. We proceed by contradiction. Suppose there exists such a protocol Π that GUC-realizes
FZK in the GpRO hybrid world for an NP relation RL whose s language is L. Then there must exist

a PPT simulator S such that EXEC
GpRO
FZK,S,Z

c≈ EXEC
GpRO
Π,A,Z for any PPT adversary A and any PPT

GpRO-externally constraint environment Z.
Let us consider the session with SID sid1, and let A be a dummy adversary that simply forwards

protocol flows between corrupt parties and the environment Z. Let Z corrupt the prover P ∗ at
first. Then Z chooses (x,w) ∈ RL as the input, instructs P ∗ to run the honest prover algorithm
π ← P (sid1, x, w,Qsid1,P), where Qsid1,P is the queries sent by P ∗. Then Z waits for V to output
x′. If x = x′, Z outputs 1; otherwise, Z outputs 0.

In order to make the GUC experiments above remain indistinguishable, the simulator S needs
to extract a valid witness w from the proof π sent by P ∗ such that (x,w) ∈ RL, and then sends
(ZK-prover, sid, P, V, x, w) to FZK on behalf of the dummy prover; otherwise, Z ′ can successfully
distinguish the two experiments, contradicting the GUC-security of the protocol Π. Recall that, the
main advantage of S is that it can program the GpRO on unqueried points without being detected,
and we denote by Progsid1 the queries programmed by S. If the adversary happens to use the
points that belongs to Progsid1 , then S has the chance of extracting the private information of the
adversary. Note that, the simulator S also can query GpRO just like normal parties. In order to
describe the process of querying to GpRO, we denote by G∗pRO the simplified version of the GpRO, that

is, the GpRO without the Program interface. We write SG∗pRO to denote the event that S is given
query oracle access to GpRO and can continuously query to GpRO. With notions above, we can write

w ← SG∗pRO(sid1, x, π,Progsid1) to denote the event where S extracts the witness w from the proof π
using Progsid1 after querying to GpRO. Analogous to the discussion of Theorem 6, S should handle
the case where Pr[Progsid1 ∩ Qsid1,P 6= ∅] = 0 where Qsid1,P is the queries used for generating the

proof π, and we write b← SG∗pRO(sid1, x, π, ∅) to denote the event where S is still able to extract b
from π even if Progsid1 ∩ Qsid1,P = ∅. We note that, the algorithm SG∗pRO(sid1, x, π, ∅) can be run
by anyone, since the algorithm does not use the Program interface at all and anyone can query
to GpRO. We also note that, even if we switch to a session with a different SID, the algorithm

SG∗pRO(sid1, x, π, ∅) still works as long as the appropriate inputs are provided.
In the following, we consider another PPT GoRO-externally constrained environment Z ′ and

PPT simulator S ′. Now consider a session with SID sid2. We let Z ′ corrupt the verifier V ∗ at first,
and feed the honest prover P with (x,w) ∈ RL. Then Z waits for P to send the proof π. If π is
valid, Z outputs 1; otherwise, Z outputs 0.

In this case, S ′ needs to simulate an accepting proof π without w, since w is the hidden input
to the honest party. Similarly, we write π ← S ′G∗pRO(sid2, x,Progsid2) to denote the event where the
simulator S ′ can produce the proof π without the witness w with the aid of the programmed queries
Progsid2 . We note that, the entire computation of π is totally independent of w since FZK hides w

from S ′ information theoretically. We also note that S ′G∗pRO(sid2, x,Progsid2) still works as long as
the appropriate inputs are provided, even if we switch to the session with another SID.

To conclude the proof, we show there exists a PPT decider D that can efficiently compute the
witness w for any given statement x ∈ L using only GpRO. Given any statement x, D first select
a party to act as P simulated by S ′ and a party to act as V ∗ controlled by A/Z, and starts the
protocol Π in the session with SID sid. First of all, we let S ′ program GpRO on queries Progsid, and let

S ′ run S ′G∗pRO(sid, x,Progsid) to produce the simulated proof π. Then we let V ∗ run SG∗pRO(sid, x, π, ∅)

37

to output the witness w. Finally, we examine if the extracted w is valid: if (x,w) ∈ RL, D outputs
1 indicating x ∈ L; otherwise, D outputs 0 indicating x /∈ L. It is easy to see that when x ∈ L, D
always outputs 1; when x /∈ L, D outputs 1 with only negligible probability. Therefore, we have
successfully constructed a PPT decider D that efficiently decides membership in L (i.e. L ∈ BPP)
when given oracle access to GpRO. This contradicts the non-triviality of RL w.r.t. GpRO.

B Straight-line Extractable NIWHArgument from k-Special Sound
SHVZK Protocol

In [Pas03], Pass showed how to transform a 2-special sound SHVZK protocol into a straight-line
extractable NIWH argument in the observable RO model. Here we generalize the idea of Pass
and construct the straight-line extractable NIWH argument from k-special sound SHVZK protocol
where k ≥ 2.

Let P be the prover algorithm and V be the verifier algorithm. Let ` = min{logk(2
`out(λ)), logk(2

λ)}
be the repetition parameter. We denote the event where queries GoRO on input x and gets the an-
swer y as y := oRO(x). Formally, we present our protocol ΠNIWH in Figure 14 and prove the
security through Theorem 8. If we use our SHVZK protocol ΠSHVZK depicted in Figure 10 as the
main building block, then we can obtain a NIWH argument via only Minicrypt assumptions in the
GoRO hybrid world.

Primitives: SHVZK protocol ΠSHVZK = ΠSHVZK.{Move1,Move2,Move3,Verify, Sim} and one-way function g.
Inputs: P and V has a common y. P has a private seed such that y = g(seed).

Proof Generation: ProveGoRO(y, seed):

• For i ∈ [`]:

– Select λ-bit random ri, {si,j}j∈[k], and compute ai := ΠSHVZK.Move1(y, seed; ri) for relation
R1 = {(y, seed) | y = g(seed)}.

– Select k distinct λ-bit random challenge {ei,j}j∈[k].
– For j ∈ [k]: compute the corresponding response zi,j := ΠSHVZK.Move3(y, seed, ei,j ; ri) for relation
R1, and commit to the response comi,j := oRO(sid, ‘P ’||zi,j ||si,j).

• Set a = ({ai, {ei,j , comi,j}j∈[k]}i∈[`]), and compute h := oRO(sid, ‘P ’||y||a).

• Convert h into a k-ary number, and use hi to represent the i-th digit of this k-ary number.

• For i ∈ [`]: set zi := zi,hi+1, si := si,hi+1.

• Set z := {zi, si}i∈[`] and send π := (a, z).

Verification: VerifyGoRO(y, π):

• Compute h := oRO(sid, ‘P ’||y||a), convert h into a k-ary number, and use hi to represent the i-th digit
of this k-ary number.

• For i ∈ [`]:

– Check if {ei,j}j∈[k] are distinct.

– Check if the following conditions hold: comi,hi+1 = oRO(sid, ‘P ’||zi||si) and
ΠSHVZK.Verify(y, ai, ei,hi+1, zi) = 1 for relation R1.

• If all the checks pass, output 1; otherwise, output 0.

Protocol ΠNIWH

Figure 14: Protocol ΠNIWH in the GoRO Hybrid World for Proving y = g(seed)

38

Theorem 8. Assume g is a one-way function that is hard to invert. Assume ΠSHVZK is a k-special
sound SHVZK protocol. The protocol ΠNIWH described in Figure 14 is a NIWH argument in the
GoRO hybrid world which satisfies perfect completeness, computational soundness, witness hiding
and straight-line extraction.

Proof. Perfect Completeness. It is straightforward.

Witness Hiding. We first prove our protocol is witness hiding. We proceed by contradiction.
Assume there exists a PPT adversary A that breaks the witness hiding property of ΠNIWH with
non-negligible probability, then we are able to build a reduction B which violates the Hard to Invert
(HI) property of the underlying g. First B interacts with the HI game challenger C, and receives y
from C. Then B simulates GoRO and starts the protocol ΠNIWH with A by running A internally as
black-box. Thus, our B sees all queries A makes to GoRO and produces their answers. The internal
description of B follows:

• Select a random h← {0, 1}`out(λ), convert h into a k-ary number, and use hi to represent the
i-th digit of this k-ary number.

• For i ∈ [`]: select random ri, ei,hi+1 ← {0, 1}λ, and run (ai, zi,hi+1) := ΠSHVZK.Sim(y, ei,hi+1; ri)
for relation {(y, seed) | y = g(seed)}. Select random {ei,j , zi,j}j∈[k],j 6=hi+1 ← {0, 1}λ such that
{ei,j}j∈[k] are distinct.

• For i ∈ [`], j ∈ [k]: select random si,j ← {0, 1}λ, and compute comi,j := oRO(sid, ‘P ’||zi,j ||si,j).
• Set a := ({ai, {ei,j , comi,j}j∈[k]}i∈[`]), and program the answer of GoRO as h on query (sid, ‘P ’||y||a).

Set z := ({zi,hi+1, si,hi+1}i∈[`]).

• Send (sid, y, π := (a, z)) to A, and wait for A to output seed∗.

When A outputs seed∗, B checks if y = g(seed∗) holds. If so, B sends seed∗ to the HI game
challenger C and wins the game. Therefore, we prove that our protocol is witness-hiding.

Straight-line Extractability. We first show the strategy of the straight-line extractor ΠNIWH.Ext
GoRO

which is granted the observability of GoRO. Given a statement y and a potentially maliciously
generated and accepting proof π, it works as follows:

• Receive the query-answer list of GoRO.

• For i ∈ [`]: check if there exists a query of the form (sid, ‘P ’||zi,j ||si,j) such that comi,j =
oRO(sid, ‘P ’||zi,j ||si,j) for j ∈ [k]. If not, start over with the next i. Otherwise, extract seedi
from {(ai, ei,j , zi,j)}j∈[k] by k-special soundness of ΠSHVZK, and output seed := seedi.

• Abort if all the steps above fails.

We then show the knowledge error of the straight-line extractorΠNIWH.Ext
GoRO is negligible. In

order to show that, we only have to prove that the straight-line extractor ΠNIWH.Ext
GoRO aborts at a

negligible probability. Note that the straight-line extractor aborts when there exists a PPT adver-
sary A which guesses hi correctly, and runs (ai, zi,hi+1) := ΠSHVZK.Sim(y, ei,hi+1; ri) to simulate the
accepting proof. Due to the unpredictability of the output of GoRO, this case happens at probability
k−` = max{2−`out(λ), 2−λ} which is negligible. In other words, our ΠNIWH.Ext

GoRO can output an
extracted witness seed with overwhelming probability. Guaranteed by the k-special soundness of
ΠSHVZK, the extracted seed must satisfy the condition y = g(seed). Therefore, we prove that our
protocol has a straight-line extractor with negligible knowledge error.

Computational Soundness. It is implied by straight-line extraction.

39

	Introduction
	Our Results
	Related Work

	Preliminaries
	Notations
	Universal Composability
	The Global Random Oracle Models
	One-Way Functions
	SHVZK Protocols
	Non-Interactive Witness Hiding Argument
	Non-Interactive Witness Hiding Argument in the Plain Model
	Non-Interactive Witness Hiding Argument in the Random Oracle Model

	Equivocal Commitment
	``MPC-in-the-Head'' Paradigm

	Impossibility in the GORO Model
	Feasibility in the GORO Model
	Our GUC-Secure Commitment Construction
	Instantiation of the Building Blocks
	SHVZK Protocols from ``MPC-in-the-Head''
	Perfect-Hiding Non-Interactive Equivocal Commitment
	Straight-Line Extractable NIWH Argument

	Concluding Remarks: Towards a Complete Picture
	Lower Bounds on Round Complexity for GUC-Secure Commitment/ZK in the GPRO Model
	Result for Commitment
	Result for ZK

	Straight-line Extractable NIWH Argument from k-Special Sound SHVZK Protocol

