
Breaking KASLR on Mobile Devices without Any Use of Cache
Memory

Milad Seddigh
ID Cyberspace Research Institute,
Shahid Beheshti University, Iran
milladseddigh7@gmail.com

Mahdi Esfahani
ID Department of Electrical

Engineering, Sharif University of
Technology, Tehran, Iran
m.esfahani@sharif.edu

Sarani Bhattacharya
ID IMEC, Belgium

Sarani.Bhattacharya@imec.be

Mohammad Reza Aref
Department of Electrical Engineering,

Sharif University of Technology,
Tehran, Iran

aref@sharif.edu

Hadi Soleimany
ID Cyberspace Research Institute,
Shahid Beheshti University, Iran

h_soleimany@sbu.ac.ir

ABSTRACT
Microarchitectural attacks utilize the performance optimization
constructs that have been studied over decades in computer archi-
tecture research and show the vulnerability of such optimizations
in a realistic framework. One such highly performance driven vul-
nerable construct is speculative execution. In this paper, we focus
on the problem of breaking the kernel address-space layout random-
ization (KASLR) on modern mobile devices without using cache
memory as a medium of observation. However, there are some
challenges to breaking KASLR on ARM CPUs. The first challenge is
that eviction strategies on ARM CPUs are slow, and the microarchi-
tectural attacks exploiting the cache as a covert channel cannot be
implemented on modern ARM CPUs. The second challenge is that
non-canonical addresses are stored in the store buffer, although
they are invalid. As a result, previous microarchitectural attacks
distinguish such addresses as valid kernel addresses erroneously.

In this paper, we focus on these challenges to close current
gaps in the implementation of recent attacks against modern CPUs.
We show how a Translation Look-aside Buffer (TLB) can be used
to circumvent the cache memory as a covert channel in order to
attack ASLR on both ARM and Intel CPUs. To the best of our
knowledge, we are the first to break KASLR on ARM-based Android
and iOS mobile devices. Furthermore, our attacks can be performed
in JavaScript to break KASLR of the browser without the need for an
Evict+Reload operation, which consumes a lot of time. The results
of our attacks show that the attacker can distinguish whether or not
the virtual address is valid in less than 0.0417 seconds and 0.0488
seconds on Android and iOS mobile devices, respectively.

This paper has been accepted at ASHES 2022 and will be presented there.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
Speculative execution, Non-canonical addresses, KASLR

ACM Reference Format:
Milad Seddigh, Mahdi Esfahani, Sarani Bhattacharya, Mohammad Reza
Aref, and Hadi Soleimany. 2022. Breaking KASLR on Mobile Devices with-
out Any Use of Cache Memory. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Microarchitectural attacks exploiting the weaknesses of the spec-
ulative execution of modern CPUs have posed a serious threat to
the security of computer systems. They have devastating impacts
on operating systems, virtual machines, as well as cryptographic
algorithms like AES hardware accelerators [22]. For instance, cache-
based side-channel attacks [19] have been mounted on ARM-based
mobile phones, showing that these devices have the same vulner-
ability as computer systems. As most cache attacks on ARM use
the Evict+Reload technique to leak the victim’s sensitive informa-
tion, the researchers have focused on discovering the method for
countering this technique. As a result, Williamson [30] proposed a
method for preventing the eviction of an inclusive cache line in the
cross-core attacks.

We have witnessed a variety of attacks in recent years, including
Meltdown-like [6, 24, 25] and Spectre-like [8, 18, 27] attacks on the
microarchitecture of processors, which make the internal state of
the CPU visible to the attacker. In Meltdown-like attacks, an unpriv-
ileged attacker gains access to a kernel address that is inaccessible
to the user. Subsequently, accessing that kernel address causes an
exception that diverts the control flow to an exception handler.
However, the CPU performs the subsequent transient instruction
based on the secret value of that kernel address. Finally, the attacker
reveals the secret value via a microarchitectural covert channel. In
other words, Meltdown-like attacks violate any hardware isolation
of virtual machines and do not rely on any software weakness.

On the other hand, KAISER was built to combat the Meltdown
attack, which violates hardware isolation. By using KAISER, there
is no kernel address mapped in the user space. In other words, the
translation table related to kernel addresses is isolated from the

https://orcid.org/0000-0001-7340-5269
https://orcid.org/0000-0001-7674-7600
https://orcid.org/0000-0002-4190-2671
https://orcid.org/0000-0002-3961-4988
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Milad Seddigh, Mahdi Esfahani, Sarani Bhattacharya, Mohammad Reza Aref, and Hadi Soleimany

translation table relevant to user-space addresses. This countermea-
sure for Intel CPUs is now available in the latest releases of the
Linux kernel, named Kernel Page Table Isolation (KPTI) [11, 13, 16].
Additionally, ARM developers provided FEAT_CSV3 [3], a counter-
measure which recognizes whether or not a load operation from a
kernel address can be used to leak private data.

There are some Meltdown-like attacks that exploit other internal
components of the CPU, such as the store buffer and the line fill
buffer. For instance, Fallout [22], a transient attack that recovers
private information from the store buffer by exploiting the Write
Transient Forwarding optimization, which forwards speculatively
the store to the subsequent load with the same page offset. The
RIDL attack [28] is a class of speculative-execution attacks that
leaks arbitrary in-flight data with no assumptions from a microar-
chitectural component called the Line Fill Buffer that keeps track of
outstanding memory requests and merges various in-flight stores.
Also, another Meltdown-like attack is the Zombieload [25]. This
attack targeting the line fill buffer can cause data leakage even on
CPUs that are immune to all Meltdown-like attacks.

In recent years, we have observed several Meltdown-like attacks
that aim to break KASLR from JavaScript [6, 24]. As JavaScript does
not provide any flush operations, Meltdown-like attacks usually
leverage some eviction strategies instead of flush operations in
order to evict data from the cache memory. Also, JavaScript does not
allow any access to the kernel addresses architecturally. Therefore,
previous attacks usually access an out-of-bound accessible array
instead of accessing the kernel address directly.

1.1 Challenges of Implementation of
Microarchitectural Attacks on ARM and
Intel CPUs

In this part, we discuss the probable difficulties associated with im-
plementing microarchitectural attacks on ARM and Intel CPUs, and
then demonstrate that our attack can circumvent these challenges.
These challenges are as follows:

(1) The vast majority of ARM CPUs lack a flush instruction. Ad-
ditionally, existing eviction strategies are not very efficient.
Therefore, Lipp et al. [19] addressed this issue by develop-
ing a fast eviction strategy that is also efficient on ARM
CPUs. To perform this eviction strategy, the attacker must
use /proc/self/pagemap to derive physical addresses.

(2) After microarchitetural attacks targeting store-to-load for-
warding feature have been presented by Google Project Zero,
ARM developers proposed a countermeasure called Specula-
tive Store Bypass Safe (SSBS). When this countermeasure is
enabled on a specific ARM CPU, the hardware is not permit-
ted to execute the store-to-load forwarding feature between
a store and subsequent loads. This countermeasure is en-
abled for architectures from Armv8.0 to Armv8.4. As a result,
Data Bounce and Fetch Bounce attacks [24], which exploit
the store-to-load forwarding feature cannot be performed
on ARM CPUs.

(3) The architecture of some Intel CPUs for virtual address
ranges is different from other CPUs. For instance, the of-
ficial documentation in The Linux Kernel Archive [2] states
that the bits 47 to 63 of non-canonical addresses may be

all ‘0’ or ‘1’, and such addresses in Intel CPUs range be-
tween 0x0000800000000000 and 0xffff7fffffffffff, while pre-
vious attacks, such as [24] claim that the bits 47 to 63 of
non-canonical addresses are not all ‘0’ or ‘1’.
Also, non-canonical addresses behave differently to invalid
kernel addresses, and although such addresses are invalid,
they enter the store buffer. As a result, when the attacker
performs the Data Bounce or the Fetch Bounce attacks [24]
without any knowledge of virtual address ranges, they might
erroneously recognize non-canonical addresses as valid ad-
dresses due to the fact that they enter the store buffer. In
other words, the Data+Bounce and the Fetch+Bounce at-
tacks [24] will fail in distinguishing the ranges between
0x0000800000000000 and 0x0000ffffffffffff, and also between
0xffff000000000000 and 0xffff7fffffffffff.

(4) As JavaScript does not include a way to flush a specific ad-
dress from the cache memory, previous works [10, 18, 23, 26]
use Evict+Reload instead of Flush+Reload. In order to per-
form Evict+Reload, the attacker accesses an array that is
bigger than the last-level cache to ensure that the targeted
address will be evicted from the cache memory. The ma-
jor disadvantage of using Evict+Reload is that the attacker
would need to evict 256 sets, which consumes a lot of time
and can lead to errors.

Although these challenges can make microarchitectural attacks
difficult for the attacker, our attack can solve these challenges due
to the fact that it does not exploit any cache memory and does not
require any eviction operations.

1.2 Our Contribution
According to the microarchitecture of ARM-based mobile devices,
the first access to a valid access results in a compulsory miss. But
a subsequent access to the same valid access results in a TLB hit.
Whereas this does not hold for the case of an invalid address, where
repeated accesses to invalid access still results in TLB misses. Thus,
a TLB miss that occurs for the second access to an invalid address
can be used as a distinguishing observation between a valid and
invalid address. Thus, the attacker can use the timing difference
between a TLB hit and a TLB miss to determine whether a target
address is valid.

In the first part of our two-fold contribution, we present amethod
that enables us to recognize valid and invalid kernel addresses on
ARM-based Android and iOS mobile devices, which effectively de-
randomizes KASLR. Our first attack exploits the timing difference
between a TLB hit and a TLB miss on ARM-based mobile devices.
By leveraging the TLB and out-of-order optimization, our attack
overcomes major challenges in performing microarchitectural at-
tacks on ARM CPUs. In other words, our attack does not need any
cache memory as a covert channel, which can circumvent eviction
strategies. On the other hand, our attack does not require to exploit
the store-to-load forwarding feature, which can lead to circumvent-
ing SSBS countermeasure. Also, our attack can be performed on
Intel CPUs successfully.

One major limitation of the attacks targeting KASLR is that the
attacker needs to find virtual address ranges on Intel CPUs. Because
the architecture of Intel CPUs is different, and the bits 47 to 63 of

Breaking KASLR on Mobile Devices without Any Use of Cache Memory

non-canonical addresses may be all ‘0’ or ‘1’. For this reason, in the
second part of our contribution, we propose another novel attack
that derives virtual address ranges by determining whether a virtual
address is canonical or non-canonical. Our attack leverages the tim-
ing difference between the execution time of the second access to
non-canonical addresses and canonical addresses. Our technique is
applicable to both Intel and ARM CPUs. Since for non-canonical ad-
dresses, there is a strange case that such addresses are entered into
the store buffer, although they are invalid. Besides, there is no page
table walk for such addresses, unlike canonical addresses. Therefore,
Data Bounce and Fetch Bounce attacks [24] exploiting store buffer
and cache memory are not able to identify non-canonical addresses
without any knowledge of virtual addresses. As a result, the major
advantage of our second contribution is that not only can it recog-
nize virtual address ranges by finding non-canonical addresses, but
it also does not require any cache memory as a covert channel. Al-
though previous microarchitectural attacks from JavaScript would
need Evict+reload operation which wastes much time, our attacks
would not require any Evict+Reload operation and is faster than
previous attacks from JavaScript.

1.3 Outline
Section 2 briefly explains the background of transient execution
attacks. In Section 3, we present our new attacks for breaking
ASLR and distinguishing canonical addresses from non-canonical
addresses. In Section 4, we discuss the results of our experiments.
In Section 5, we explain related works and related countermeasures.
Finally, we conclude our paper in Section 6.

2 PRELIMINARIES
In this section, we provide the background needed for this paper.

2.1 Transient-execution Attacks
Modern processors employ an optimization technique called "out-
of-order execution", which enables the CPU to process instructions
in parallel rather than sequentially. When the execution unit of the
current operation is running, subsequent execution units can be per-
formed ahead. For this reason, modern processors begin by fetching
and decoding instructions, which are divided into micro-operations
(`op) that are placed in the Reorder Buffer (ROB). Besides, `ops
with operands require storage space that is allocated not only from
the load buffer but also from the store buffer and from the register
file. Furthermore, the CPU is able to schedule subsequent `op when
the operation of `ops being executed is unavailable. When a `op
is available for execution, the scheduler schedules it for execution
and stores the results in the relevant registers, load buffer entries,
or store buffer entries. When the subsequent `op is completed, it is
retired and its results are committed. Similarly, speculative execu-
tion causes the CPU to guess the outcome of a conditional branch
in order to take the most likely path. When the CPU discovers that
an instruction executed speculatively was executed incorrectly, the
result is never committed and the reorder buffer and pipeline are
flushed. However, this may have unintended consequences for the
microarchitectural units such as cache and translation look aside
buffer (TLB). As a result, instructions that are executed specula-
tively have side effects on cache memory and are referred to as

transient instructions. As a consequence of these side effects on
the microarchitectural units, attacks known as "transient execution
attacks" can be used by the attacker to disclose the private data of
the victim. Typically, these attacks use a cache-based covert channel
to extract private data from other security domains [7, 17, 18, 21].

When the execution unit must store data in memory, rather than
waiting for the store to complete, data is queued in the store buffer
to allow the execution unit to continue processing instructions
from the current execution sequence. In other words, modern CPUs
use store and load buffers to interact with cache memory. The load
buffer includes the requests for data to be fetched from memory,
whereas the store buffer includes requests for data to be stored in
memory. Therefore, the store buffer prevents the CPU from stalling
while waiting for the memory subsystem to complete the store and
ensures that the results are stored in the memory in the correct se-
quence regardless of whether speculative execution is used. A store
buffer entry is allocated only when a store operation is added to the
reorder buffer. This entry in the store buffer needs both a physical
address and a virtual address. While the store buffer improves store
operation latency, it adds load complexity by requiring the load
buffer to search the whole store buffer in parallel with the L1 cache
for each load operation. When the store’s entire address is equal to
the entire address of the subsequent load, the data from the store
buffer is directly transferred to the load buffer. This performance
optimization is referred to as "store-to-load forwarding". Addition-
ally, to accelerate the store-to-load forwarding operation, the CPU
may assume that the address of a load matches the address of a
preceding store only when the least significant 12 bits match. Also,
when the processor incorrectly speculates that the data should be
sent from the store buffer to the load buffer, the data is not com-
mitted and then reorder buffer and pipeline are flushed. This is
referred to as "write transient forwarding" and can be exploited by
the attacker to extract private data from the kernel memory [3, 22].

Data Bounce [24] makes use of the store buffer’s feature in which
the whole physical address is needed for a valid entry. While the
ROB reserves the entry for store operation, store-to-load forwarding
is only possible if the virtual address of the target load is valid.
Hence, a virtual address that does not correspond to a valid physical
address cannot be forwarded to subsequent loads. If Data Bounce
is successful for a target address, the attacker will discover that
the target address is valid and backed up with a physical address.
Otherwise, the target address is invalid. As a result, Data Bounce
can only recognize which addresses are valid and which are invalid,
and the results of transient instruction are never architecturally
committed.

2.2 Address Translation and Address Space
Layout Randomization

In order to isolate processes from one another, modern proces-
sors support virtual memory as an isolation mechanism. Therefore,
the processes use virtual addresses rather than physical addresses
and are architecturally protected from one another. A multi-level
page translation table is used to convert a virtual address to a
physical address. Translation table base registers (TTBR0 for user
space addresses and TTBR1 for kernel addresses) on ARM CPUs

Milad Seddigh, Mahdi Esfahani, Sarani Bhattacharya, Mohammad Reza Aref, and Hadi Soleimany

indicate the location of the translation table. The translation ta-
ble base control registers determine whether TTBR0 should be
used or TTBR1. Because navigating translation tables for getting
the physical address associated with a particular virtual address
consumes considerable time, processors use smaller special caches
called translation-lookaside buffers (TLBs) to store the physical
address associated with each virtual address [3]. The Cortex-A57
processor contains a 2-level TLB structure (L1 and L2). The L1 in-
struction TLB implements a 48-entry fully-associative structure
which caches entries of three different page sizes, i.e., 4KB, 64KB,
and 1MB, of virtual address to physical address mappings. The
L1 data TLB implements a 32-entry fully-associative TLB that is
utilized for data loading and storing and caches entries of three
different page sizes, i.e., 4KB, 64KB, and 1MB, of virtual address
to physical address mappings. An instruction TLB hit takes only
a single clock cycle to access the translation and then returns the
related physical address to the instruction cache for comparison.
L2, which implements a 1024-entry 4-way set-associative structure,
handles misses from the L1 instruction and data TLBs, and also
supports the page sizes of 4K, 64K, 1MB, and 16MB [1].

To obtain confidential information about virtual addresses, the
attacker usually needs to have knowledge about the addresses of
the targeted system. Various methods, such as address space layout
randomization (ASLR), non-executable stacks, and stack canaries,
can be used to thwart such attacks. For every boot, KASLR ran-
domizes the offsets of all code, data, and so on. As a result, KASLR
makes the implementation of some microarchitectural attacks more
difficult.

3 METHODOLOGY
In this section, we build step-by-step the methodology for breaking
KASLR inARMand Intel processors. Then, we aim to find the virtual
address ranges of modern CPUs by distinguishing non-canonical
addresses. We start by defining the threat model for the adversary.

3.1 Threat Model
In our attacks on Intel CPUs, we consider a multi-user environment
that is run on a Linux-based operating system, where several con-
current processes are sharing the same physical machine. Also, the
attacker and the victim are running on the same core. The attacker
who has user-level privileges in the system, does not need to know
virtual addresses of the victim’s system. The adversary observes the
execution time with timestamp counters over a series of accesses
to various memory elements with varying virtual address spaces.

3.2 Inception of the Attack
According to the microarchitecture of ARM and Intel CPUs, the first
access to a valid target virtual address causes the corresponding
physical address of the target virtual address to be cached in the
TLB. For the consequent accesses to that same target address, a TLB
hit occurs. However, in the case of an invalid virtual address, there
is no corresponding physical address in the TLB. A TLB miss occurs
for the second access to that target invalid address. Therefore, the
attacker can distinguish whether a virtual address is valid or not by
observing a timing difference between a TLB miss and a TLB hit.

Our first attack, which aims to break KASLR, exploits this be-
havior of TLB hit and miss in modern CPUs. Our observation is
that the execution time of the second access to an invalid address
is greater than to a valid address. Since for the first access (store
operation) to a valid address, the related physical address is stored
in the TLB and then enters the store buffer, while for the first access
to an invalid address, no physical address is stored in the TLB. Thus,
there is a time difference between a TLB miss and a TLB hit for
the second access, which is executed out-of-order. In other words,
for the second access (load operation) to a valid virtual address,
the physical address is sent from TLB to the load buffer instead of
walking translation tables. As a result, a TLB hit has occurred for
the second access. But, for the second access to an invalid virtual
address, the Memory Management Unit (MMU) always walks the
translation tables, and the target virtual address is not backed by
the physical address. As a consequence, the attacker can learn that
a TLB miss has occurred for the second access. The steps of our
first attack can be summarized as follows:

Step 1: The attacker first stores the private byte in the target
virtual address.

Step 2: The attacker executes a transient instruction that is
dependent on the target virtual address. Due to the out-of-order
feature of modern CPUs, this transient instruction is executed in
parallel with the preceding instruction, but its results will not be
committed.

Step 3: The attacker measures the execution time of the store
operation and transient instruction.

If the execution time is greater than the timing threshold between
a TLB hit and a TLB miss, the attacker can interpret that the target
virtual address is invalid due to the fact that the target virtual
address is not in the TLB. However, when the execution time is
smaller than the threshold, the attacker can learn that the target
virtual address is valid since the target virtual address is in the TLB.

Our second attack is based on an observation in the ARM and
Intel CPUs that the execution time of the second access to a non-
canonical address is greater than a canonical address. Based on our
extensive observations on a varied range of devices, we report for
the first time the difference in access times for canonical and non-
canonical addresses, where the accesses to non-canonical addresses
are consistently higher than canonical addresses. For the second
access to non-canonical virtual addresses, no virtual address is
backed by a physical address, and no translation table walk occurs
for such invalid addresses. On the contrary, for the second access
to a canonical valid virtual address, the related physical address is
sent from TLB to the load buffer. However, there is a third case as
well. For the second access to a canonical invalid virtual address, a
translation table walk occurs, and the target virtual address is not
backed by a physical address.

In our second attack, the attacker first stores the private byte
in the target virtual address and then executes a transient instruc-
tion that is dependent on the target virtual address. Later on, he
measures the execution time of both accesses (store operation and
transient instruction) to the target virtual address. As it is illus-
trated in Figure 1, there are three sets of timing ranges, and the
attacker can choose the timing thresholds between these three sets
appropriately. These three sets of timing ranges can be described
as follows:

Breaking KASLR on Mobile Devices without Any Use of Cache Memory

Non-canonical
Pages

Invalid Pages Valid Pages

0 2 4 6 8 10 120

2

4

6

Page

Ex
ecu

tio
nT

im
e(
×10

7)C
yc
les

Execution Time of Per Page
First Threshold

Second Threshold

Figure 1: Our second attack shows that when the execution
time is longer than the second threshold, the target pages are
non-canonical. If the execution time is smaller than the first
threshold, the target pages are valid. Otherwise, the target
pages are invalid.

Non-canonical Address. According to our observation, if the
execution time is greater than the second threshold, the attacker
can interpret that the target virtual address is non-canonical.

Valid&CanonicalAddress.When the execution time is smaller
than the first threshold, the attacker can learn that the target virtual
address is not only valid, but also canonical, and the target virtual
address is backed by a physical address.

Invalid & Canonical Address. When the execution time is
between the first and second thresholds, the target virtual address
is not only invalid, but also canonical, and the target virtual address
is not backed by a physical address.

3.3 Breaking KASLR
In this part, we explain how our first attack, described in Section 3.2,
can break KASLR on ARM-based mobile devices and Intel CPUs.

In order to break KASLR, we leverage the property in modern
CPUs that a translation table entry that generates a permission
fault may be held in the TLB [1, 3]. In other words, valid virtual
addresses are held in the TLB, while invalid virtual addresses are
not held in the TLB. Therefore, the attacker can determine whether
or not a target virtual address is valid only by finding whether a
TLB hit has occurred for the second access to the target virtual
address or not.

When an attacker stores his private data in a valid kernel address,
theMMUwalks through translation tables to find the corresponding
physical address, which it then inserts into the TLB. For the second
access to that specific kernel address, the physical address is read
from TLB instead of walking translation tables. When the attacker
measures the execution times of both accesses to that kernel address,
he finds that the execution time is smaller than the threshold value
and that the target address is backed by a physical address. However,
for all accesses to the invalid kernel address, MMU always walks
through translation tables in search of the corresponding physical
address, but it can never discover one. As a result, an exception
occurs as no address is backed by a physical address. When the

attacker measures the execution time of both accesses to that kernel
address, he learns that the execution time exceeds the threshold.

As it is illustrated in Algorithm 1, the attacker’s objective is
to determine whether the kernel address of the victim is valid or
not. The attacker is the one who performs the transient execution.
For this purpose, an exception is generated by storing the private
byte in the target kernel address (Line 6 of Algorithm 1) and then
handling the exception via a signal handler. Following that, the
attacker executes a transient instruction which is dependent on
the content of the target kernel address (Line 7 of Algorithm 1).
Not only does the attacker measure the execution time of store
operations but also of transient instruction. If the execution time
exceeds the threshold time, a TLB miss has occurred, the target
kernel address is invalid, and the address is not backed by a physical
page. Alternatively, if the execution time is less than the threshold
time, a TLB hit has occurred, the target kernel address is valid, and
the address is backed by a physical page.

Algorithm 1 Our first attack for breaking KASLR
1: #𝑑𝑒𝑓 𝑖𝑛𝑒 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑇𝑙𝑏_𝑀𝑖𝑠𝑠 (81.69 × 106)
2: 𝑐ℎ𝑎𝑟 ∗𝑣𝑖𝑐𝑡𝑖𝑚 = (𝑐ℎ𝑎𝑟 ∗) 0xffff800000000000;
3: 𝑡𝑖𝑚𝑒1← 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 ;
4: 𝑠𝑖𝑔𝑛𝑎𝑙 (𝑆𝐼𝐺𝑆𝐸𝐺𝑉 , 𝑐𝑎𝑡𝑐ℎ_𝑠𝑒𝑔𝑣) ;
5: if (sigsetjmp (𝑗𝑏𝑢𝑓 , 1) == 0) then
6: victim [0]= ‘c’;
7: victim[0] + 1;
8: end if
9: 𝑡𝑖𝑚𝑒2← 𝑒𝑛𝑑 𝑡𝑖𝑚𝑒 ;
10: if (𝑡𝑖𝑚𝑒2 − 𝑡𝑖𝑚𝑒1) < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑇𝑙𝑏_𝑀𝑖𝑠𝑠 then
11: 𝑝𝑟𝑖𝑛𝑡 𝑓 (“kernel address is valid");
12: else
13: 𝑝𝑟𝑖𝑛𝑡 𝑓 (“kernel address is invalid");
14: end if

3.4 Finding Virtual Address Ranges
In this part, we first state why the attacker needs to find virtual
address ranges. Then, we explain how our second attack, described
in Section 3.2 can find the virtual address ranges of different CPUs.

To break KASLR using the techniques proposed in the literature,
the attacker must know the ranges of the virtual addresses such
as user space, non-canonical, and kernel space. According to [24],
there is a strange case for non-canonical addresses in which the bits
47 to 63 are not all ‘0’ or ‘1’. Despite the fact that such addresses are
invalid and never refer to a physical address, they are backed by
a physical address using Data Bounce and Fetch Bounce. In other
words, Data Bounce and Fetch Bounce attacks [24] are incapable of
discriminating non-canonical addresses from canonical addresses,
since even invalid non-canonical addresses are entered into the
store buffer. Also, [2, 22] shows that the bits 47 to 63 for non-
canonical addresses may be all ‘0’ or ‘1’. Therefore, Data Bounce
attack [24] that cannot distinguish non-canonical addresses will fail
to break KASLR without any knowledge of virtual address ranges.

Our attack identifies non-canonical addresses by measuring the
execution time of the accesses to target virtual addresses. In our
attack, the attacker first executes a transient execution which is
reliant on storing private data in a target virtual address and loading
that target virtual address out-of-order. Then, he measures the
execution time of transient execution. If the execution time is longer

Milad Seddigh, Mahdi Esfahani, Sarani Bhattacharya, Mohammad Reza Aref, and Hadi Soleimany

than the second timing threshold, the target virtual address is non-
canonical. Otherwise, the target address is canonical. After finding
non-canonical addresses, the attacker can determine virtual address
ranges such as the address range between user space, non-canonical
and kernel space.

Algorithm 2 illustrates our method for determining if the target
virtual address is non-canonical or canonical. The attacker per-
forms a transient execution that is handled by a signal handler.
For this purpose, the attacker stores the private byte in the target
kernel address (Line 7 of Algorithm 2). Following that, a transient
instruction which is reliant on the content of the target kernel ad-
dress is executed out-of-order (Line 8 of Algorithm 2). Then, the
attacker measures the execution time of the store operation and
transient instruction. When the execution time is smaller than the
first threshold time, the attacker can interpret that the virtual ad-
dress is valid and canonical and is backed by a physical page. The
main reason that the execution time is less than the first threshold
time is that the first access to a valid address requires a page table
walk, whereas the second access requires reading the target address
from the TLB. However, when the execution time is between the
first and second threshold times, the attacker can interpret that
virtual address as invalid and canonical. This comes from the fact
that for the first access to the target virtual address, MMU triggers
a page walk and cannot find the relevant physical address. Hence,
MMU triggers another page walk for the second access to that
specific virtual address. But, when the execution time exceeds the
second threshold time, the attacker learns that the target virtual
address is non-canonical and invalid, and no address is backed by
a physical address, although there is no page table walk for such
addresses.

The results of this attack show that for ARM Cortex-A57 and
ARM Cortex-A53, non-canonical address range is 0x0000ffffffffffff
- 0xffff000000000000, while for Intel Core i5-4460U, non-canonical
address range is 0x0000800000000000 - 0xffff7fffffffffff.

Algorithm 2 Our second attack for finding virtual address ranges
1: #𝑑𝑒𝑓 𝑖𝑛𝑒 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 (81.69 × 106)
2: #𝑑𝑒𝑓 𝑖𝑛𝑒 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 (82.2 × 106)
3: 𝑐ℎ𝑎𝑟 ∗𝑣𝑖𝑐𝑡𝑖𝑚 = (𝑐ℎ𝑎𝑟 ∗) 0x1234800000000000;
4: 𝑡𝑖𝑚𝑒1← 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 ;
5: 𝑠𝑖𝑔𝑛𝑎𝑙 (𝑆𝐼𝐺𝑆𝐸𝐺𝑉 , 𝑐𝑎𝑡𝑐ℎ_𝑠𝑒𝑔𝑣) ;
6: if (𝑠𝑖𝑔𝑠𝑒𝑡 𝑗𝑚𝑝 (jbuf, 1) == 0) then
7: victim [0] = ‘c’;
8: victim [0] + 1;
9: end if
10: 𝑡𝑖𝑚𝑒2← 𝑒𝑛𝑑 𝑡𝑖𝑚𝑒 ;
11: if ((𝑡𝑖𝑚𝑒2 − 𝑡𝑖𝑚𝑒1) < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1) then
12: 𝑝𝑟𝑖𝑛𝑡 𝑓 (“kernel address is valid & canonical");
13: end if
14: if ((𝑡𝑖𝑚𝑒2 − 𝑡𝑖𝑚𝑒1) > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2) then
15: 𝑝𝑟𝑖𝑛𝑡 𝑓 (“kernel address is invalid & non-canonical");
16: end if
17: if (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 < (𝑡𝑖𝑚𝑒2 − 𝑡𝑖𝑚𝑒1) < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2) then
18: 𝑝𝑟𝑖𝑛𝑡 𝑓 (“kernel address is invalid & canonical");
19: end if

4 EXPERIMENTAL SETUP AND RESULTS
In this section, we first discuss the exception handling used for ARM
and Intel processors. Then, we explain the methods we utilized to
measure time in our attacks. Finally, we evaluate the performance

and accuracy of our attacks. Also, Our experimental codes are
archived in 1.

4.1 Exception Handler
When an attacker attempts to access a kernel address, it causes
an exception, and the remainder of the program is terminated by
default.

Generally, there are four distinct ways to handle this type of ex-
ception. The first is the fork-and-crash technique. A forked process
executes the instruction, which results in an exception, and its par-
ent resumes continuing execution after the exception occurs. The
second is a signal handler that caches the exception and resumes
execution. The third method is to suppress the exception and wrap
the attack code in a mispredicted branch that speculatively resumes
the attack. Finally, the exception can be suppressed by wrapping
it in a hardware transaction. This efficient method is called Intel’s
Transactional Synchronization Extensions (TSX), and it consists of
an x86-64 instruction set expansion that supports hardware trans-
actions. However, this efficient method is not supported on ARM
CPUs and is applicable only to Intel CPUs. As a result, we employed
a signal handler to carry out our attacks on ARM. A signal handler
is a function that the target environment calls if an exception occurs
as a result of an attempt to access an unavailable address [20, 29].
Also, we employed TSX during the implementation of our attack
on the Intel Core i5-4460U.

4.2 Experimental Setup
We analyzed our attacks on multiple modern CPUs, such as the Intel
Core i5-4460U, the ARM Cortex-A53, and the ARM Cortex-A57.

Table 1 illustrates the features of ARM CPUs which we tested.
The NVIDIA Jetson Nano Kit utilizes Linux Tegra 4.9.140 as its op-
erating system and a quad-core ARM Cortex-A57 processor clocked
at 1430 MHz. The Raspberry Pi 3 utilizes Raspbian as its operating
system and a 64-bit quad-core ARM Cortex-A53 processor clocked
at 1.2 GHz. The Samsung Galaxy J5 uses Android 5.1.1 Lollipop as
its operating system and a 4-core ARM Cortex-A53 clocked at 1200
MHz. The Xiaomi Redmi Note 8 uses Android 9.0 Pie as its operat-
ing system and has a 4-core Cortex-A73 and a 4-core Cortex-A53
CPU clocked at 1.8 GHz. Also, the Huawei CAM-L21 uses Android
6.0 as its operating system and an octa-core Cortex-A53 clocked
at 1200 MHz. The Apple iPhone 6, which we use for our attacks,
utilizes iOS 12.5.5 as the operating system and a dual-core Typhoon
(ARM v8-based) clocked at 1.4 GHz. The Intel Core i5-43460U used
for our attacks is clocked at 3.2 GHz and uses Windows 10 as its
operating system.

In order to perform our attacks on ARM-basedmobile devices, we
first deploy C4droid, which is one of the most powerful C/C++ IDEs
for Android mobile devices. Later on, we run our C-implementation
on the C4droid successfully. However, we use the C/C++ Program
Compiler, which is an IDE for our implementations on iOS mobile
devices.

4.3 Timing Measurements
While Intel x86 CPUs can utilize the unprivileged rdtsc instruction,
which returns the value of the hardware timestamp counter for
1https://anonymous.4open.science/r/KASARM-0D2D/README.md

Breaking KASLR on Mobile Devices without Any Use of Cache Memory

Table 1: ARM CPUs used in this paper

Device SoC CPU
NVIDIA Jetson Nano Kit Tegra X1 Cortex-A57

Raspberry Pi 3 Broadcom BCM2837 Cortex-A53
Samsung Galaxy J5 Qualcomm Snapdragon 410 MSM8916 Cortex-A53
Xiaomi Redmi Note 8 Qualcomm Snapdragon 665 SDM665 4-core Cortex-A73 and

4-core Cortex-A53
Huawei CAM-L21 HiSilicon Kirin 620 Chipset Cortex-A53
Apple iPhone 6 Apple A8 ARMv8-A

time measurement, ARM CPUs do not support the rdtsc instruction.
ARM CPUs instead use a performance monitoring unit called the
cycle count register PMCCNTR that requires root privileges.

Lipp et al. [19] proposed three efficient timing sources that do
not require root privileges. The first approach is to use the PERF-
COUNT-HW-CPU-CYCLES, which is included in some versions of
Android. The second method is the POSIX function clock-gettime().
The third method creates a time cycle counter by looping over an
incremental variable.

We employed the second method (clock-gettime()) during the
implementation of our attacks on ARM CPUs. Besides, we applied
rdtsc instruction during the implementation of our attacks on the
Intel Core i5-4460U.

In order to find a threshold between TLB hit events and TLB miss
events, we first need to measure the execution time of both accesses
to different target virtual addresses in our first attack. Then, we
can choose a threshold using the timing difference between TLB
miss events and TLB hit events. Also, in order to mitigate the noise
of the attack, we have to iterate our attacks numerous times. The
number of iterations is different for each targeted CPU.

For instance, Figure 2 illustrates the execution time of both ac-
cesses to 200 virtual addresses of the NVIDIA Jetson Nano Kit by
using clock-gettime(). Our results show that in 7 × 103 iterations
of the attack, timing range for TLB hit events is 81.15 × 106 cycles
- 81.67 × 106 cycles, whereas timing range for invalid addresses
is 81.7 × 106 cycles - 82.12 × 106 cycles, and for non-canonical ad-
dresses is 82.23 × 106 cycles - 82.63 × 106 cycles. As a result, the
threshold between a TLB hit and a TLB miss is 81.69 × 106 cycles
(around 0.0571 seconds), while the threshold between the execution
time of both accesses to an invalid address and a non-canonical
address is 82.2 × 106 cycles (around 0.0574 seconds).

Also, we repeated these operations on various CPUs to find
their timing thresholds. As it is illustrated in Table 2, for 5 × 103
iterations, the threshold between a TLB hit and a TLB miss for our
first attack on devices using ARM Cortex-A53 clocked at 1200 MHz
is 50.04 × 106 cycles (around 0.0417 seconds). But, this threshold
for the Xiaomi Redmi Note 8 (in 7.2 × 103 iterations) and the Apple
iPhone 6 (in 6× 103 iterations) is 106.2× 106 cycles and 68.32× 106
cycles, respectively.

Besides, the threshold between the execution time of both ac-
cesses to an invalid address and a non-canonical address for the
Apple iPhone 6 is 69.02 × 106 cycles (around 0.0492 seconds). How-
ever, this threshold for our second attack on devices using ARM
Cortex-A53 clocked at 1200 MHz and 1800 MHz is 50.28 × 106 cy-
cles (around 0.0419 seconds) and 107.1 × 106 cycles (around 0.0595
seconds), respectively.

Also, the threshold between a TLB hit and a TLB miss for 3× 103
iterations of our first attack on Intel Core i5-4460U is 78.72 × 106

815 820 825

0

20

40

Latency in Cycles (×105)

N
um

be
ro

fI
te
ra
tio

ns

TLB Hit

TLB Miss for Invalid Addresses

TLB Miss for Non-canonical Addresses

Figure 2: Timing measurements of our attacks on ARM Cor-
tex A-57

cycles (around 0.0246 seconds). However, the threshold between
the execution time of both accesses to an invalid address and a
non-canonical address for 3× 103 iterations of our second attack on
Intel Core i5-4460U is 79.68 × 106 cycles (around 0.0249 seconds).

Table 2: Timing thresholds of our attacks for different CPUs

Device CPU Threshold between a TLB Threshold between a canonical
hit and a TLB miss and a non-canonical address

Raspberry Pi 3 ARM Cortex-A53 50.04 × 106 cycles 50.28 × 106 cycles
Samsung Galaxy J5 ARM Cortex-A53 50.04 × 106 cycles 50.28 × 106 cycles

Redmi Note 8 ARM Cortex-A53 & 106.2 × 106 cycles 107.1 × 106 cycles
ARM Cortex-A73

Apple iPhone 6 ARMv8-A 68.32 × 106 cycles 69.02 × 106 cycles
Huawei CAM-L21 ARM Cortex-A53 50.04 × 106 cycles 50.28 × 106 cycles
Computer (ASUS) Intel Core i5-4460U 78.72 × 106 cycles 79.68 × 106 cycles

4.4 Payload of our Attack Scenarios
In this section, we show that our attacks mentioned in Section 3 can
break ASLR on Android and iOS mobile devices. First, we analyze
the performance of our first attack on four different locations in
the kernel memory: the kernel logical memory map, the Direct-
Physical Map, the Kernel Text Segment, and kernel modules. Then,
we discuss the results of our second attack on finding the virtual
address ranges of modern CPUs. Also, in this section, we show
the execution time of our attacks on different CPUs. To obtain the
execution time of our attacks, we repeated each experiment several
times to reduce the noise of the attack. The number of iterations of
our attacks on each CPU is different.

4.4.1 De-randomizing the Direct-Physical Map and the Kernel Text
Segment. The Linux kernel maps the entire physical memory into
the kernel’s virtual address space by using a direct-physical map. To
avoid microarchitectural attacks that require knowledge of kernel
addresses, the map is located at a random offset within a defined
range for each boot. However, our attack can find the offset of
the direct-physical map and the kernel text segment of the In-
tel Core i5-4460U in around 0.0246 seconds for 3 × 103 iterations,
according to Table 3. Also, our results on the Intel Core i5-4460
demonstrate that the address range for the direct-physical-map and
the kernel text segment is 0xffff888000000000 - 0xffffc87fffffffff, and
0xffffffff80000000 - 0xffffffff9fffffff, respectively.

Milad Seddigh, Mahdi Esfahani, Sarani Bhattacharya, Mohammad Reza Aref, and Hadi Soleimany

User Space Non-Canonical Kernel Space

0 0x0000FFFFFFFFFFFF 0xFFFF000000000000

Code ... Stack ... Code ...

Figure 3: ARM Virtual Memory Layout

4.4.2 De-randomizing Kernel Logical Memory Map. Our attack’s
primary objective is to retrieve the location of the kernel logical
memory map on ARMCPUs. The results of our attack show that the
address range for the kernel logicalmemorymap is 0xffff000000000000
- 0xffff7fffffffffff, i.e., a 128 TB region. Therefore, according to Ta-
ble 3, we were able to extract the offset in less than 0.0571 seconds
on the ARM Cortex-A57 and less than 0.0417 seconds on the Rasp-
berry Pi 3, Samsung J5, and Huawei CAM-L21. Also, our attack can
derive the offset in less than 0.0488 seconds on the Apple iPhone 6
for 6 × 103 iterations.
4.4.3 De-randomizing Kernel Modules. The results of our first at-
tack show that the address range for kernel modules of ARMCortex-
A53 and Cortex-A57 is 0xffff800008000000 - 0xffff80000fffffff, while
the kernel modules of Intel Core i5-4460U range 0xffffffffa0000000
- 0xfffffffffeffffff. When we use our technique to recover kernel
modules, we can determine the beginning and end of a module.
Although /proc/modules can be used to extract information about
kernel modules, it requires root access to provide the attacker with
knowledge about module addresses. Thus, our first attack can iden-
tify the address where the module starts and ends.

4.4.4 Finding Virtual Address Ranges. The results of our second
attack demonstrate that for ARM Cortex-A57 and ARM Cortex-A53,
the user address range is 0x0000000000000000 - 0x0000ffffffffffff,
non-canonical range is 0x0000ffffffffffff - 0xffff000000000000 and
kernel address range is 0xffff000000000000 - 0xfffffdffffffffff, as it
can be seen in Figure 3. Also, our results on the Intel Core i5-
4460U illustrate that the user address range is 0x0000000000000000
- 0x00007fffffffffff, non-canonical range is 0x0000800000000000 -
0xffff7fffffffffff and the kernel address range is 0xffff800000000000
- 0xffffffff9fffffff (Figure 4).

Also, according to Table 3, our second attack can distinguish a
non-canonical address on ARM Cortex-A57, A53, and Intel Core
i5-4460U in less than 0.0574 seconds, 0.0419 seconds, and 0.0249
seconds, respectively. Moreover, our second attack can find non-
canonical addresses in less than 0.0492 seconds on the Apple iPhone
6.

Table 3: Experimental Results

Device CPU Time of Breaking Time of Finding
KASLR Virtual Address Ranges

NVIDIA Jetson Nano Kit ARM Cortex-A57 0.0571s 0.0574s
Raspberry Pi 3 ARM Cortex-A53 0.0417s 0.0419s

Samsung Galaxy J5 ARM Cortex-A53 0.0417s 0.0419s
Redmi Note 8 ARM Cortex-A53 & 0.0590s 0.0595s

ARM Cortex-A73
Apple iPhone 6 ARMv8-A 0.0488s 0.0492s

Huawei CAM-L21 ARM Cortex-A53 0.0417s 0.0419s
Computer (ASUS) Intel Core i5-4460U 0.0246s 0249s

User Space Non-Canonical Kernel Space

0 0x7FFFFFFFFFFF 0xFFFF800000000000

Code ... Stack ... Code ...

Figure 4: Intel Virtual Memory Layout

Also, we show the effect of microarchitectural attacks on ARMv8-
A CPUs in Table 4. [5] states that Meltdown attack [20] cannot be
performed on ARMv8-A CPUs because of their microarchitecture.
Also, Data Bounce and Fetch Bounce attacks [24] cannot be im-
plemented on ARMv8-A CPUs due to FEAT_SSBS countermeasure.
However, our attack can be performed on ARMv8-A CPUs. The
primary reason why our attack is applicable to this family of ARM
CPUs is that kernel translation table isolation is optional in ARMv8-
A CPUs and is mandatory in ARMv8.5A CPUs. Also, Table 4 shows
that all important microarchitectural attacks can be performed on
Intel CPUs. However, when KPTI is enabled, the attacker is not able
to perform microarchitectural attacks on Intel CPUs.

Table 4: Effect of microarchitectural attacks on different
ARM CPUs

Core Meltdown Data Bounce Fetch Bounce Our attack
[20] [24] [24]

ARMv8-A:
Cortex-A53 ✗ ✗ ✗ ✓
Cortex-A57 ✗ ✗ ✗ ✓
Cortex-A72 ✗ ✗ ✗ ✓
Cortex-A73 ✗ ✗ ✗ ✓

Intel:
Intel Core i5-4460U ✓ ✓ ✓ ✓
Intel Core i7-1165G7 ✓ ✓ ✓ ✓

4.4.5 Breaking ASLR from JavaScript. Our attacks can be used not
only from unprivileged native applications but also from JavaScript
to de-randomize KASLR in the browser. We analyze the perfor-
mance of our attacks from JavaScript running in two browsers. Our
analysis was carried out on Google Chrome 103.0.5060.66 (64-bit)
and Microsoft Edge 103.0.1264.44 (64-bit).

There are some challenges for performing previous microarchi-
tectural attacks [10, 18, 23, 26] in JavaScript. First, there is no timer
with high accuracy in JavaScript. Second, because JavaScript lacks
a flush instruction, previous attacks must use Evict+Reload rather
than Flush+Reload. However, as our attacks do not require any
cache memory as a covert channel, the second challenge of previ-
ous attacks is circumvented. The third challenge is that there is no
access to kernel addresses architecturally in JavaScript.

TimingMeasurement. In order to obtain timing measurements
of our attacks, we can use a combination of a counting thread
and SharedArrayBuffers, which has been re-enabled in Google
Chrome. In comparison to the prior attacks [10, 26] which uti-
lized Uint32Array, we can also utilize BigUint64Array to make sure
that the counting thread does not overflow. Furthermore, as some
browsers reduced the accuracy of the Performance.now() function,
we can still use this function. By iterating our attacks numerous
times, we can mitigate the noise of Performance.now().

Breaking KASLR on Mobile Devices without Any Use of Cache Memory

Covert Channel. As JavaScript does not include any flush oper-
ations, the attacker is not able to use Flush+Reload as a covert chan-
nel. As a result, previous attacks [10, 18, 23, 26] used Evict+Reload
instead of the Flush+Reload operation. In Evict+Reload, the attacker
accesses an array bigger than the last level cache to make sure that
the target address will be evicted from the cache memory. The disad-
vantage of the use of Evict+Reload is that it can waste time and can
cause errors. However, our attacks do not require any Evict+Reload
operations since we do not exploit any cache memory as a covert
channel.

Illegal Access. JavaScript does not allow any access to the kernel
addresses architecturally. Therefore, we have to use the way Kocher
et al. proposed in [18] to gain access to an out-of-bound offset of
the array transiently. According to Kocher’s way, we repeat our
attack over the virtual memory (relative to the accessible array) to
distinguish whether the target virtual address is valid or not.

Prior microarchitectural attacks [10, 18, 23, 26] in the JavaScript
environment are slower than the native environment due to slow
Evict+Reload operations. However, the speed of our attacks in the
JavaScript implementation is the same as the native implementation
because we do not use any Evict+Reload operations in our attacks.
As a result, the speed of our attacks in JavaScript is higher than
prior microarchitectural attacks.

5 RELATEDWORKS & COUNTERMEASURES
In this section, we first compare our attacks with previous side-
channel attacks that broke KASLR. Then, we show that there are
various countermeasures for mitigating previous attacks, but our
attacks can circumvent these countermeasures.

5.1 Comparison to other Related Side-Channel
Attacks on ASLR

Hund et al. [14] proposed three timing side-channel attacks to break
ASLR. To carry out the first attack, it is necessary to keep track
of the cache collisions with kernel addresses. This attack is not
possible on mobile devices due to the existence of slow eviction
strategies. The second attack makes use of double page faults and
measures the difference in timing between a TLBmiss and a TLB hit.
The major drawback of this attack is that the attacker must employ
an OS exception handler for each access to a kernel address, which
decreases the speed of the attack, especially when this attack is
performed in the cross-VM setting. For the third attack, the attacker
leverages the timing differences of page faults caused by the TLB
and address translation caches. Due to the attack’s reliance on
evicting cache lines, eviction strategies in ARM processors mitigate
it. In contrast to Hund’s attack [14, 15], our attack does not require
any OS page fault handler. Furthermore, Hund’s attack requires
two exception handlers for both accesses to a target kernel address,
whereas our attack requires just one exception handler for both
accesses to a target kernel address, which speeds up the attack
process. Also, our attackmakes use of an optimization known as out-
of-order execution. By out-of-order execution, when the attacker
accesses a target kernel address, subsequent instruction which
accesses that target kernel address for the second time is executed
partially, but is not retired. Gruss et al. [12] proposed a prefetch side-
channel attack that exploits weaknesses in prefetch instructions and

is dependent on cache eviction. Additionally, this attack relies on
evicting cache lines, which is not possible on mobile devices using
ARM CPUs due to the slow eviction strategies. Evtyushkin et al. [9]
presented attacks that need knowledge of the branch target buffer,
which is not available on later CPUs than Haswell. Their attack
relies on reverse engineering in order to obtain BTB addresses. Jang
et al. [15] exploited Intel TSX and mitigated the noise of Hund’s
attack [14] for breaking KASLR. This attack is dependent on Intel
TSX and cannot be performed on processors manufactured prior to
2013. In addition, this attack is not applicable to ARM CPUs as TSX
is not supported by ARM CPUs. Gruss et al. [24] presented the Data
Bounce attack to defeat KASLR using the store buffer and a covert
channel such as Flush+Reload. A Data Bounce attack cannot be
performed on ARM CPUs due to eviction strategies. Additionally,
this attack can be prevented by using the SSBS countermeasure on
the newest ARM processors [3]. In the same work [24], Gruss et
al. proposed the Fetch Bounce attack, which uses a combination of
store buffer and TLB. As illustrated in Figure 4 of [24], the Fetch
Bounce attack also uses the Flush+Reload attack to break KASLR.
As a result, the Fetch Bounce attack cannot be performed on ARM-
based mobile devices because of the eviction strategies and SSBS
countermeasure. Canella et al. [6] showed that the Echoload attack
can recognize load stalls from transiently executed loads. Although
this attack detects valid from invalid virtual addresses, it needs the
Flush+Reload technique, which cannot be carried out on most ARM
CPUs.

Our attack does not need any cache memory as a covert channel.
As shown in Table 5, our approach is the sole microarchitectural
attack that can be carried out on Android and iOS mobile devices
and requires only 0.0571 seconds to find whether the virtual address
of the ARM Cortex-A57 is valid or not. In addition, our attack
imposes no prerequisites, and hence all countermeasures designed
to defend ARM CPUs from earlier microarchitectural attacks will
fail.

Table 5: Comparison of timing side-channel attacks on ASLR
of ARM CPUs

Attack ARM CPUs Time Requirements
Hund et al. [14] ✗ - -
Gruss et al. [12] ✗ - Cache Eviction
Jang et al. [15] ✗ - Intel TSX

Evtyushkin et al. [9] ✗ - BTB reverse engineering
Data Bounce et al. [24] ✗ - Evict+Reload

Our attack on ARM Cortex-A57 ✓ 0.0571s -

5.2 Discussion on Ineffectiveness of Existing
Countermeasures for our Proposed Attacks

Several countermeasures have been developed or implemented to
mitigate known microarchitectural attacks on both ARM and In-
tel CPUs. In this part, we first briefly discuss the impact of these
countermeasures on our attack. Also, we show that these counter-
measures cannot protect ARM and Intel CPUs from our attacks.

Kernel Translation Table Isolation: Separating the kernel
translation table from the user translation table is the best approach
to defend against microarchitectural attacks on ARM. Kernel ad-
dresses are not mapped into a user translation table when this

Milad Seddigh, Mahdi Esfahani, Sarani Bhattacharya, Mohammad Reza Aref, and Hadi Soleimany

strategy is used, resulting in the failure of most microarchitec-
tural attacks. ARM processors have a countermeasure known as
FEAT_CSV3 [3]. FEAT_CSV3 adds a mechanism for determining
whether or not data loaded under speculation with a permission
or domain fault can be used to form an address. This feature is
optional in ARMv8.0 (Cortex-A72 and -A73) and is mandatory for
ARMv8.5. Also, [4] notes that FEAT_CSV3 has been implemented in
the latest releases of Cortex-A75, -A76, -A77, and -A78. Therefore,
our attack is applicable to the most recent releases of Cortex-A53,
-A57, -A72, and -A73.

Speculative Store Bypass Safe: After researchers at Microsoft
Security Response Center and Google Project Zero presented Spec-
tre attack variant 4 in 2018, ARM developers devised a counter-
measure called "speculative store bypass safe" (FEAT_SSBS) which
indicates if a speculative store or load operation can result in the
leakage of personal information via cache timing attacks. For ARM
architectures using FEAT_SSBS, PSTATE.SSBS is a control that can
be set by software to determine whether hardware is allowed to
execute the load instruction, which has the same virtual address as
the latest store instruction.

When the value of PSTATE.SSBS is set to 0, hardware is not per-
mitted to load or store speculatively, whereas when the value of
PSTATE.SSBS is 1, hardware is permitted to load or store specula-
tively. Software written for architectures fromARMv8.0 to ARMv8.4
will set PSTATE.SSBS to 0. In other words, hardware cannot be al-
lowed to load or store speculatively in these architectures. It’s worth
noting that this mitigation cannot protect ARM CPUs against our
attack because our attack does not exploit the store-to-load forward-
ing feature, whereas FEAT_SSBS mitigates the attacks leveraging
store-to-forwarding optimization [3].

Speculative Store Bypass Barrier Instruction: The Specula-
tive Store Bypass Barrier (SSBB) instruction is a memory barrier
that protects ARM CPUs against write transient forwarding attacks.
When a load operation to a specific address appears in program
order after the SSBB instruction, and a store operation occurs before
the SSBB instruction, then no store-to-load forwarding is executed
between the store buffer and the load buffer. Also, the SSBB in-
struction is ineffective against our attack since our attack does not
exploit the store-to-load forwarding capability of modern CPUs [3].

6 CONCLUSION
In this paper, we proposed a microarchitectural attack that can be
leveraged to break KASLR on not only Android and iOS mobile
devices, but also Intel CPUs. Our attack relies on measuring the
execution time of the transient instruction and does not exploit any
cache memory as a covert channel. Furthermore, our attack targets
TLB and does not need any root access to derive virtual address
ranges. The results of our attack demonstrate that the attacker can
find whether the target virtual address is valid in less than 0.0417
seconds and 0.0488 seconds on ARM-based Android and iOS mobile
devices, respectively. Also, we show that our attacks can be used
from JavaScript to break ASLR in modern browsers. Consequently,
we stress that isolation between the kernel translation table and
the user translation table should be enabled for operating systems
to prevent breaking KASLR by the attackers.

REFERENCES
[1] 2017. ARM LIMITED. Cortex-A57 MPCore Processor Revision: r1p3 Technical

Reference Manual. http://infocenter.arm.com/help/topic/com.
[2] 2019. Linux. Complete virtual memory map with 4-level page tables.

https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt.
[3] 2021. Arm Architecture Reference Manual Armv8, for A-profile architecture.

https://developer.arm.com/documentation/ddi0487/gb/.
[4] 2021. Armv8.5-A CPU Updates - Arm Developer. https://developer.arm.com.
[5] 2021. Vulnerability of Speculative Processors to Cache Timing Side-

Channel Mechanism. https://developer.arm.com/support/arm-security-
updates/speculative-processor-vulnerability.

[6] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl, and
Daniel Gruss. 2020. KASLR: Break it, fix it, repeat. In Proceedings of the 15th ACM
Asia Conference on Computer and Communications Security. 481–493.

[7] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019.
A systematic evaluation of transient execution attacks and defenses. In 28th
{USENIX} Security Symposium ({USENIX} Security 19). 249–266.

[8] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H Lai. 2019. Sgxpectre: Stealing intel secrets from sgx enclaves via speculative
execution. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 142–157.

[9] Dmitry Evtyushkin, Dmitry V. Ponomarev, and Nael B. Abu-Ghazaleh. 2016.
Jump over ASLR: Attacking branch predictors to bypass ASLR. In 49th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 2016, Taipei,
Taiwan, October 15-19, 2016. IEEE Computer Society, 40:1–40:13. https://doi.org/
10.1109/MICRO.2016.7783743

[10] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida. 2017.
ASLR on the Line: Practical Cache Attacks on the MMU.. In NDSS, Vol. 17. 26.

[11] Daniel Gruss, Dave Hansen, and Brendan Gregg. 2018. Kernel isolation: From
an academic idea to an efficient patch for every computer. ; login: the USENIX
Magazine 43, 4 (2018), 10–14.

[12] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. 2016. Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, Vienna, Austria, October 24-28, 2016, Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.).
ACM, 368–379. https://doi.org/10.1145/2976749.2978356

[13] D Hansen. 2017. KAISER: unmap most of the kernel from userspace page table.
Linux Kernel Mailing List (2017).

[14] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In 2013 IEEE Symposium on Security
and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013. IEEE Computer Society,
191–205. https://doi.org/10.1109/SP.2013.23

[15] Yeongjin Jang, Sangho Lee, and Taesoo Kim. 2016. Breaking Kernel Address
Space Layout Randomization with Intel TSX. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi (Eds.). ACM, 380–392. https://doi.org/10.
1145/2976749.2978321

[16] K Johnson. 2018. KVA Shadow: Mitigating Meltdown on Windows.
[17] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative buffer overflows:

Attacks and defenses. arXiv preprint arXiv:1807.03757 (2018).
[18] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and Nael

Abu-Ghazaleh. 2018. Spectre returns! speculation attacks using the return stack
buffer. In 12th {USENIX} Workshop on Offensive Technologies ({WOOT} 18).

[19] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Ste-
fan Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In 25th
USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-
12, 2016, Thorsten Holz and Stefan Savage (Eds.). USENIX Association, 549–
564. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/lipp

[20] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, Mike
Hamburg, and Raoul Strackx. 2020. Meltdown: reading kernel memory from user
space. Commun. ACM 63, 6 (2020), 46–56. https://doi.org/10.1145/3357033

[21] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative execution
using return stack buffers. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 2109–2122.

[22] Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz, Jo Van Bulck,
Daniel Genkin, Daniel Gruss, Frank Piessens, Berk Sunar, and Yuval Yarom. 2019.
Fallout: Reading Kernel Writes From User Space. CoRR abs/1905.12701 (2019).
arXiv:1905.12701 http://arxiv.org/abs/1905.12701

[23] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Angelos D
Keromytis. 2015. The spy in the sandbox: Practical cache attacks in javascript
and their implications. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. 1406–1418.

https://doi.org/10.1109/MICRO.2016.7783743
https://doi.org/10.1109/MICRO.2016.7783743
https://doi.org/10.1145/2976749.2978356
https://doi.org/10.1109/SP.2013.23
https://doi.org/10.1145/2976749.2978321
https://doi.org/10.1145/2976749.2978321
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://doi.org/10.1145/3357033
https://arxiv.org/abs/1905.12701
http://arxiv.org/abs/1905.12701

Breaking KASLR on Mobile Devices without Any Use of Cache Memory

[24] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss. 2019.
Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant CPUs. CoRR
abs/1905.05725 (2019). arXiv:1905.05725 http://arxiv.org/abs/1905.05725

[25] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London, UK, November 11-15,
2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz
(Eds.). ACM, 753–768. https://doi.org/10.1145/3319535.3354252

[26] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard. 2017.
Fantastic timers and where to find them: High-resolution microarchitectural
attacks in JavaScript. In International Conference on Financial Cryptography and
Data Security. Springer, 247–267.

[27] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
2019. NetSpectre: Read Arbitrary Memory over Network. In Computer Security

- ESORICS 2019 - 24th European Symposium on Research in Computer Security,
Luxembourg, September 23-27, 2019, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 11735), Kazue Sako, Steve A. Schneider, and Peter Y. A. Ryan (Eds.).
Springer, 279–299. https://doi.org/10.1007/978-3-030-29959-0_14

[28] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue In-Flight Data Load. (2019), 88–105. https://doi.org/10.1109/SP.2019.00087

[29] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F Wenisch, and Yuval Yarom.
2018. Foreshadow-NG: Breaking the virtual memory abstraction with transient
out-of-order execution. (2018).

[30] WILLIAMSON. 2012. Line allocation in multi-level hierarchical data stores.
Patent US8271733 B2, ARM Limited. In 26th USENIX Security Symposium, USENIX
Security 2017, Vancouver, BC, Canada, August 16-18, 2017. USENIX Association,
1075–1091.

https://arxiv.org/abs/1905.05725
http://arxiv.org/abs/1905.05725
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1007/978-3-030-29959-0_14
https://doi.org/10.1109/SP.2019.00087

	Abstract
	1 Introduction
	1.1 Challenges of Implementation of Microarchitectural Attacks on ARM and Intel CPUs
	1.2 Our Contribution
	1.3 Outline

	2 Preliminaries
	2.1 Transient-execution Attacks
	2.2 Address Translation and Address Space Layout Randomization

	3 Methodology
	3.1 Threat Model
	3.2 Inception of the Attack
	3.3 Breaking KASLR
	3.4 Finding Virtual Address Ranges

	4 Experimental Setup and Results
	4.1 Exception Handler
	4.2 Experimental Setup
	4.3 Timing Measurements
	4.4 Payload of our Attack Scenarios

	5 RELATED WORKS & Countermeasures
	5.1 Comparison to other Related Side-Channel Attacks on ASLR
	5.2 Discussion on Ineffectiveness of Existing Countermeasures for our Proposed Attacks

	6 Conclusion
	References

