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Abstract. Security against side-channels and faults is a must for the deployment
of embedded cryptography. A wide body of research has investigated solutions to
secure implementations against these attacks at different abstraction levels. Yet, to a
large extent, current solutions focus on one or the other threat. In this paper, we
initiate a mode-level study of cryptographic primitives that can ensure security in
a (new and practically-motivated) adversarial model combining leakage and faults.
Our goal is to identify constructions that do not require a uniform protections of all
their operations against both attack vectors. For this purpose, we first introduce a
versatile and intuitive model to capture leakage and faults. We then show that a
MAC introduced at Asiacrypt 2021 natively enables a leveled implementation where
only its underlying tweakable block cipher must be protected, as long as only its tag
verification can be faulted. We finally describe two approaches to amplify security
in the case where also the tag generation can be faulted. One is based on iteration
and requires the adversary to inject increasingly large faults to succeed. The other is
based on randomness and allows provable security against differential faults.
Keywords: side-channels · leakage · faults · combine attacks · mode-level protections

1 Introduction
The security of cryptographic implementations against leakage has been a topic of intense
attention over the last two decades. Due to the physical nature of side-channel attacks,
solutions to prevent have been shown to benefit highly from a cross-layer approach: at
the implementation level, countermeasures like masking or shuffling can amplify the
leakage noise [MOP07]; at the primitive level, the design of (tweakable) block ciphers
or permutations can be optimized for the implementation of these countermeasures (see,
e.g., [GLSV14]); at the protocol level, modes of operation can be developed in order to
enable so-called “leveled implementations”, where different parts of the mode need different
levels of security against leakage, surveyed in [BBC+20]. Overall, and despite a unified
analysis of this cross-layer approach remains a challenge (e.g., due to the difficulty to
model leakage in a way that is at the same time practically relevant and theoretically
sound), this mix of theoretical and practical advances has lead to the possibility to ensure
high security against side-channel attacks at affordable implementation cost.

This situation is echoed when considering faults. It is even amplified due to the even
larger versatility of the attack vectors [BCN+06], making the progresses towards a cross-



layer approach as developed against leakage more intricate. Here as well, implementation-
level countermeasures (e.g., taking advantage of redundant computations and error correc-
tion) were first investigated [JT12]. But recent progresses have shown that working at the
primitive level can be beneficial (see, e.g., the design of FRIET [SBD+20] or the DEFAULT
layer in [BBB+21]). And a similar observation holds for investigations at high-level abstrac-
tions, where so-called atomic models of computation capture attacks where adversaries
can induce faults between atomic operations of varying granularities [FG20, AOTZ20].

Based on this state-of-the-art, an important question is whether it is possible to
combine these solutions towards security against side-channels and faults? Such a question
is motivated by the risk of so-called combined attacks [RLK11]. It is also known to be non-
trivial when considering countermeasures at the implementation level, where side-channel
and fault resistance can lead to somewhat contradictory requirements [REB+08]. As a
result, and as a natural starting point, we consider the question whether the concept of
leveled implementation can be generalized to security against leakage and faults. In other
words, is it possible to implement basic cryptographic functionalities without uniformly
protecting all their operations against leakage and faults with countermeasures?

In this paper, we answer this question positively for the case of Message Authentication
Codes (MACs). Our contributions in this respect are twofold.

First, we show that the recent LR-MAC1 leakage-resilient MAC proposed as Asiacrypt
2021 natively offers good features for this purpose [BGPS21]. Precisely, its tag verification
can be implemented such that only the Tweakable Block Cipher (TBC) that manipulates
its long-term secret require security against leakage and faults. By contrast, all the other
operations can leak in an unbounded manner and can be faulted arbitrarily. Less positively,
we also show that this security guarantee does not extent to its tag generation.

Second, we show that the security of a tag generation can be improved against leakage
and faults in two different directions. On the one hand, and assuming that inserting
faults on multiple and large intermediate computations becomes increasingly difficult for
the adversary, we show that iterative constructions can leverage the amount of faults
to inject as a security parameter. We prove the security of a new construction, coined
LR-MACd, in order to illustrate this claim. On the other hand, the attacks against the
Asiacrypt 2021 MAC are possible under a (strong) stuck-at fault model. Assuming that,
for some technologies, only differential faults are possible, we show that randomizing the
tag generation can lead to strong (differential fault) security with leakage. We prove the
security of a third construction, coined LR-MACr, in order to illustrate this claim. It
confirms the intuition that as long as the TBC is unpredictable under leakage, faults do
not help adversaries since LR-MACr takes a random sequence together with a message as
input and the random sequence randomizes the computation of the tag.

The leakage models we use for this purpose are the (standard) ones proposed in [BGPS21]:
we mix unbounded leakage for the non-sensitive computations and require unpredictability
for the TBCs manipulating long-term secrets. As for the fault models, we use a simplified
version of the ones proposed in [FG20, AOTZ20] that easily translates into interpretable
leveled implementation guidelines. Quantitatively, we consider unbounded faults (which
can hit any number of intermediate values of the implementation per query) and bounded
faults (which can only hit a number of them). Qualitatively, we consider stuck-at and
differential faults. Besides, our results are obtained without idealized assumptions for the
cryptographic primitives (that are in general questionable with leakage or faults).

Besides, we clarify a few generalities regarding security against side-channel and fault
attacks at the mode level. Namely, we first discuss the additional requirements needed to
turn fault-resilience (where security can vanish when a fault hits the verification but is
restored afterwards) into fault-resistance (where security is always guaranteed). We then
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Table 1: Summary of our constructions. The column ‘Faults Vrfy’ says whether the scheme
is secure when the adversary can only inject faults in tag verification. The column ‘Faults
Mac’ says whether the scheme is secure when the adversary can also inject faults in tag
generation. The column ‘Fault types’ describes the type of faults where SaF stands for
Stuck-at-Faults, D stands for Differential Faults, and U / B stand for unbounded / bounded
number of faults. The column ‘#TBC’ is the number of protected TBC calls.

Faults Vrfy Faults Mac Fault types # of protected TBCs
LR-MAC1 X × (SaF&DF), U 1
LR-MACd X X (SaF&DF), B 2
LR-MACr X X DF, U 1

describe how the (quite coarse-grain) model of computation we consider can be made finer-
grain for the non-keyed operations. We finally show that the stuck-at and differential fault
models are equivalent for deterministic operations when unbounded leakage is available:
this observation provides a separation between an implementation that separately provides
security against leakage and faults and an implementation that provides security against
their combination (and therefore confirms that our unified model is necessary).
We summarize our constructions in Table 1.

Related works. There is a wide body of research on security against leakage. Theoretical
approaches have been recently surveyed in [KR19]. The most relevant constructions for
our investigation of leveled (symmetric) designs are the follow ups of [PSV15]. Practi-
cal approaches considering the secure implementation of countermeasures like masking
or shuffling are orthogonal to our concerns but are important for the secure TBC im-
plementation we need (i.e., to fulfill our assumptions). We refer the interested reader
to [GR17, CGLS21] for recent examples of masking in software and hardware, respectively.
Theoretical attempts to model faults are a bit scarcer. We refer to [GLM+04] for an early
result in this direction and to [LL12] for a first treatment of combined attacks. The most
relevant models for our investigations are the one of Fischlin and Günther [FG20] and the
one of Aranha et al. [AOTZ20] (both contain a comprehensive list of references with other
possible abstractions). We slightly simplify them in order to make their interpretation
more intuitive and (most importantly) extend them to leakage. Practical approaches
considering the secure implementation of countermeasures against faults are orthogonal
to our concerns as well. We refer the interested reader to [BBKN12] for an overview and
to [IPSW06] and [DN20] for formal attempts to analyze some of them. Eventually, we
mention the recent work of Dobraunig and Mennink [DMP20]: their goals are similar to
ours but their analysis, based on the quantification of the entropy loss due to side-channels
and faults, is finer-grain than ours and so far specialized to ideal permutations. It is an
interesting question whether such a finer-grain model can be used to improve or refine the
analysis of our constructions and lead to more efficient leveled implementations.

2 Background
Notations. Let {0, 1}n be the set of all n-bit strings and by {0, 1}∗ the set of all finite
strings. We denote by x $← X the fact that x is picked up uniformly at random from the set
X . We denote by [c] the set of {0, 1, 2, . . . , c} for some integer c. A (q1, ..., qo, t)-adversary
A is a probabilistic algorithm allowed to make qi queries to oracle Oi and runs in time
at most t. By AO1,...,Oo(x)→ y, we denote that the adversary A, on input x and having
access to oracles O1, ...,Oo, outputs y.
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2.1 Cryptographic Primitives
Our schemes use two cryptographic primitives, namely Tweakable Block Ciphers (TBCs)
and hash functions, which are defined below.

Definition 1. A tweakable block ciphers (TBC) F : K × T W × {0, 1}n → {0, 1}n is a
family of permutations, where Ftw

k (·) = F(k, tw, ·) is a permutation over {0, 1}n. Here the
key k ∈ K is secret and used to provide the security, and the tweak tw ∈ T W is public
and used to provide variability.

Definition 2. A hash function H : HK× {0, 1}∗ → {0, 1}n is said to be (t, εCR)-collision
resistant, if for any t-adversary A, we have

Pr[s $← HK, (m0,m1)← A(s) | m0 6= m1,Hs(m0) = Hs(m1)] ≤ εCR.

2.2 Message Authentication Code
A Message Authentication Code (MAC) is a symmetric-key scheme aimed to provide data
authenticity. We next provide is definition.

Definition 3. A MAC scheme Π is a triplet of algorithms (Gen,Mac,Vrfy) where:

• Gen. The key-generation algorithm Gen generates k which is usually picked uniformly
at random over the key space K;

• Mac. The tag-generation algorithm Mac takes as input a key k ∈ K and a message
m ∈ {0, 1}∗, and outputs a tag τ ∈ T AG.

• Vrfy. The verification algorithm Vrfy takes as input a key k ∈ K, a message
m ∈ {0, 1}∗ and a tag τ ∈ T AG, and outputs either 1 (accept) or 0 (reject).

We require correctness: ∀(k,m) ∈ K × {0, 1}∗, Vrfy(k,m,Mac(k,m)) = 1.

2.3 Security in the Presence of Leakage
When an adversary has access not only to the outputs of an oracle but also to its leakage,
we denote her as ALO . In this case, on input x, the leaking oracle LO returns y = O(x)
and the leakage lo := LO(x). If the oracle has a key k, then we write the leakage function
as LO(x; k). Adversaries are sometimes allowed to “model" the leakage as in the case of
profiled side-channel attacks [CRR02]. Hence, we grant them oracle access to L. This
oracle allows the adversary to make queries on inputs x and keys k′ of her choice.

Strong Unforgeability with Leakage (SUF-L2). We consider the security of MACs in
the presence of leakage. Informally, it should be hard for the adversary to forge a tag even
having access to the leakage of the tag-generation and the verification algorithms. That is,
to find a fresh and valid pair of message and tag (m, τ) such that Vrfyk(m, τ) = >. We
use the SUF-L2 definition by Berti et al. [BGP+19] for this purpose.

Definition 4 (SUF-L2). A MAC = (Gen,Mac,Vrfy) with tag-generation leakage function
LMac and verification leakage function LVrfy is (qL, qM , qV , t, ε)-strongly existentially un-
forgeable leakage resistant in both tag-generation and verification against chosen-message
attacks if for all (qL, qM , qV , t)-adversaries A, for L = (LMac, LVrfy), we have

Pr
[
FORGE-L2suf-vcma

MAC,L,A ⇒ 1
]
≤ ε,

where the FORGE-L2suf-vcma
MAC,L,A experiment is defined in Table 2.1

1 It is a natural extension of the standard unforgeability definition (without leakage), which is
FORGE-L2suf-vcma where the leakage functions LM and LV do not output anything.
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Table 2: The FORGE-L2suf-vcma experiment.

The FORGE-L2suf-vcma
MAC,L,A experiment

Initialization: Oracle LMac(m):
k ← Gen (τ, lmac) = LMack(m)
S ← ∅ S ← S ∪ {(m, τ)}

Return (τ, lmac)
Finalization:

(m, τ)← AL,LMac,LVrfy Oracle LVrfy(m, τ):
If (m, τ) ∈ S return 0 Return LVrfyk(m, τ)
Return Vrfyk(m, τ)

For simplicity, we will denote the final output of the adversary as the (qV + 1)th
verification query in the rest of the paper.

The Unbounded Leakage Model. In the unbounded leakage model [BKP+18], the
leakage function reveals all the internal states produced during the execution of the scheme,
except the ones of the strongly protected components used to manipulate long-term secret
keys. This model is based on the observation that in order to implement a leakage-resilient
cryptographic scheme, it is sometimes possible to let most of its underlying building blocks
leak in an unrestricted manner, and to only protect some sensitive computations strongly.
More precisely, in the unbounded leakage model, the building blocks are divided in:

• Unprotected building blocks that fully leak their inputs, outputs and keys;

• Strongly protected building blocks that leak their inputs and outputs in full, and
only leak their keys in a strongly restricted manner.

For simplicity, the strongly protected component is sometimes modeled as leak-free. In
this paper, we rather require the (weaker, non-idealized and falsifiable) assumption that it
ensure strong unpredictability with leakage.

Strong unpredictability with leakage (SUP-L2). Unpredictability is among the simplest
requirements for TBCs. It is appealing in leakage-resilient cryptography since it can be
tested by an evaluation laboratory. We consider the strong unpredictability of TBCs with
leakage. Intuitively, it says that it is hard for the adversary to find a fresh and valid
triplet (tw, x, y) such that y = Ftw

k (x) even with access to the leakage associated to the
implementation of the TBC. We recall the SUP-L2 definition by Berti et al. [BGP+19].

Definition 5 (SUP-L2). A tweakable block cipher F : K × T W × {0, 1}n → {0, 1}n with
leakage function pair L = (LEval, LInv) is (qL, qE , qI , t, ε)-strongly unpredictable with leakage
in evaluation and inversion (SUP-L2), or (qL, qE , qI , t, ε)-SUP-L2, if for any (qL, qE , qI , t)-
adversary A, we have

Pr[SUP-L2A,F,L ⇒ 1] ≤ ε,
where the SUP-L2 experiment is defined in Table 3.

2.4 The LR-MAC1 Construction
Finally, LR-MAC1 is a leakage-resilient MAC with SUF-L2 security in the unbounded leak-
age model, assuming a collision-resistant hash function and a SUP-L2 secure TBC [BGPS21].
It improves over HBC [BPPS17] by avoiding the difficult interaction between the hash
function and the TBC. The code description and figure of LR-MAC1 are illustrated in
Algorithm 1 and Figure 1 respectively.
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Table 3: Strong unpredictability with leakage in evaluation & inversion.

The SUP-L2A,F,L experiment
Initialization: Oracle LEval(tw, x):
k

$← K z = Fk(tw, x)
L ← ∅ le = LEval(tw, x; k)

L ← L ∪ {(x, tw, z)}
Finalization: Return (z, le)

(x, tw, z)← AL,LEval,LInv

If (x, tw, z) ∈ L Oracle LInv(tw, z):
Return 0 x = F−1

k (tw, z)
If z = Fk(tw, x) li = LInv(tw, z; k)

Return 1 L ← L ∪ {(x, tw, z)}
Return 0 Return (x, li)

Algorithm 1 The LR-MAC1 algorithm.
It uses a strongly protected TBC F : K × T W × {0, 1}n → {0, 1}n and a hash function
H : HK× {0, 1}∗ → TW.

Gen:

• k $← K

• s $← HK

Mack(m):

• h = Hs(m)

• τ = Fh
k(0n)

• Return τ

Vrfyk(m, τ):

• h = Hs(m)

• x̃ = Fh,−1
k (τ)

• If x̃ == 0n Return 1

• Else Return 0

3 Modeling Fault and Leakage

We now give a general model to capture Fault-then-Leak (FL) attacks, where the adversary
can inject faults on any ephemeral value during the computation and observe these values
thanks to leakage (for the same query). Injecting faults is adaptive through the different
faulting-and-leaking queries. Our way to capture faults on the (ephemeral) values unifies
both persistent memory faults (as if the fault occurs in the memory and overwrites the
correct input once and for all) and transient faults (as if the fault only occurs during a
chosen computation). We then apply our model to the case of MACs, and give the first
experiment formally capturing strong unforgeability against chosen-message attacks with
faults-then-leakage in tag generation and verification.

3.1 Faulty Matrix & Atomic Computation Model

Let (f1, . . . , fm) be an implementation of a cryptographic algorithm Algok, where k is a
key viewed as a parameter encoded in (some of) the functions fj ’s.

By this, if we write Algok(x) = y with input x = (x1, . . . , xn), we mean that the

6



F−1hHm

k

τ

x̃ ?
= 0n

2n

n

n
FhHm

k

0n

τ
2n

n

n

Mac Vrfy

Figure 1: LR-MAC1.

following sequence of computations:

f1(x1, x2, . . . , xn) = y1,

f2(x1, x2, . . . , xn, y1) = y2,

...
fm(x1, x2, . . . , xn, y1, y2, . . . , ym−1) = ym,

return Select(y1, . . . , ym) = y, where Select is a deterministic function independent of k
which simply selects those of the yj ’s (that are the outputs of the fj ’s) that are included
in y. For simplicity we do not include Select in the sequence (f1, . . . , fm), but formally,
Select is part of the implementation.

The definition of an implementation (f1, . . . , fm) is general and covers cases where, for
instance, f1 does not depend on x3 or y3 = k. It might also be that f1 and f2 can be
run in parallel if f2 does not depend on y2, and so on and so forth. That is, the ordered
sequence of the functions fj ’s does not strictly force the computation to be sequential
and, in that sense, it does not fully capture the time. Nevertheless, we need to capture
the dependencies between the functions fj ’s and their inputs (x1, . . . , xn, y1, . . . , yj−1). In
other words, we want to know the inputs that are “really used” by the functions.

We capture the dependency on the inputs of the functions fj ’s by replacing all the
components that are not used by the empty string ε. This way, we can represent the
inputs of all the fj ’s by the m× (n+m− 1) matrix below:

x̃11 x̃12 · · · x̃1n ε ε · · · ε
x̃21 x̃22 · · · x̃2n ỹ21 ε · · · ε
...

...
. . .

...
x̃m1 x̃m2 · · · x̃mn ỹm1 ỹm2 · · · ỹm m−1


where the j-th line corresponds to fj ’s inputs so that x̃ji = xi if fj depends on xi and
x̃ji = ε otherwise, and ỹji = yi if fj depends on the fi’s output yi and ỹji = ε otherwise.
As a result, each column contains at most 2 distinct values which, in the case of the first
column, are x1 and ε. Obviously, we always have ỹ11 = · · · = ỹ1 m−1 = ε as f1 depends on
none of the y1, . . . , ym−1. In the rest of the paper, we call this matrix the dependency
matrix of the implementation (f1, . . . , fm) of Algok.

The dependency matrix offers an easy way to model all the ephemeral values that each
step of the computation of Algok actually requires and those that are useless. It becomes
simple to see all the “active” inputs of the different functions fj ’s and where an adversary
can provide an effect by injecting a fault (i.e., on any entry distinct of ε). For example, if
an adversary wants to inject a persistent memory fault on x1 and replaces this value by x′1,
it corresponds to a faulty matrix containing all the ε’s at the same place of the dependency
matrix’s first column, and filling the remaining places with x′1. If the adversary also wants
(in the same query to Algok) to inject a persistent fault on y2, even if y2 is unknown (since
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the secret k can be encoded in f2), it suffices to fill the (n+ 2)-th column with the desired
y′2. Besides, if y2 still appears in at least 2 positions of its column in the dependency
matrix, the adversary can inject different transient faults for each occurrence, and we then
fill the faulty matrix accordingly. This way, each query with chosen input x = (x1, . . . , xn)
also comes with a faulty matrix indicating when and where some correct values during
the computation of Algok(x) must be replaced and by which precise other chosen values.
Places that remain empty (even not containing the empty string) simply indicate that the
corresponding values will not be faulted during the computation.

All the possible faults that an adversary can inject during the computation of Algok(x)
are thus induced by the dependency matrix, and therefore by the implementation (f1, . . . ,
fm). Clearly, another implementation (f ′1, . . . , f ′m′) of Algok leads to an a-priori distinct
fault model, as its faulty matrix can represent other type of inputs where the adversary
can inject faults. This fact captures the inherent dependency of fault attacks on the
implementation. Moreover, given the (f1, . . . , fm), we assume that choosing the faulty
matrix is the best that the adversary can do. Therefore, the faulty matrix also models the
adversary’s ability to inject faults in the sense that we assume that the implementation
makes it unfeasible to inject any other kind of faults in the computation.

In other words, (f1, . . . , fm) also models the power of the adversary. For instance, if f1
represents the implementation of a hash function Hs with public parameter s, it means
that the adversary can only introduce a fault on its inputs. Implicitly, it says that even
if Hs is computed by iterating a compression function, the implementation must protect
these iterations making the adversary unable to introduce a chosen fault in the middle. In
that sense, we call our model atomic and denote the fj ’s as atoms (or atomic components)
that cannot be split and exploited by the adversary.

This atomic model leaves the opportunity to be finer or coarser grain. As a first
step, this paper will consider mode-level security against faults. In this case, we see the
cryptographic building blocks as atoms. As will be clear next, this coarse-grain modeling
already allows paving the way towards leveled implementations against combined attacks
mixing leakage and faults. But as mentioned in introduction, investigating whether a
finer-grain modeling (e.g., at the level of the compression of a hash function or a TBC’s
rounds) would allow improving our results is an interesting direction for further research.
The important asset of our model is that it would directly allow such advanced studies.

3.2 Protected Computations & Types of Faults
Let us assume that the atomic implementation (f1, f2, f3) of Algok has the following
dependency matrix on input x = (x1, x2):x1 ε ε ε

ε x2 ε ε
x1 ε y1 y2

 ,

which already says that f1 and f2 can be computed in parallel as f2 does not depend on
y1, and that injecting a faulty x′2 on the only place where x2 is involved is useless as it
comes to make the query x′ = (x1, x

′
2) to Algok without fault. An admissible faulty matrix

for the query (x1, x2) can be given by:x′1 ε ε ε
ε · ε ε
· ε · y′2

 ,

meaning that f1(x′1) = y′1, f2(x2) = y2 and f3(x1, y
′
1, y
′
2) are computed to answer to the

query with y = Select(y′1, y2, y
′
3). We stress that the computation of f2 remains honest
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and even if the third line only contains a faulty y′2, f3 has to take the output of f1 without
further fault (with y′1 a faulty input due to x′1).

As in the leakage setting, letting the designer fault all the atoms of an implementation
makes it impossible to reach security. Therefore we additionally model protected computa-
tions. Concretely, they correspond to requirements to implementers (i.e., they indicate
where countermeasures against faults must be deployed). Of course, our goal is to design
modes such that not all the atomic computations must be protected, which is the essence
of leveled implementations. For instance, we might want to protect y1 of the dependency
matrix. We then simply model this protection by indicating that it is forbidden in the
faulty query to inject a fault at that place, by replacing the corresponding occurrence by ⊥.
We stress again that this modeling does not mean that we (arbitrarily) prevent adversaries
to try injecting a fault at that place and time of the computation. The symbol ⊥ rather
means that the corresponding protected input should be fault-immune. In other words, it
is an assumption on the implementation, not a restriction of the adversary. In the case we
want to protect y1, we then get the following protected dependency matrix:x1 ε ε ε

ε x2 ε ε
x1 ε ⊥ y2

 .

As a result, the faulty matrix x′1 ε ε ε
ε · ε ε
· ε ⊥ y′2


is still admissible and equivalent to the previous attack, since the computation of f3(x1, y

′
1, y
′
2)

relies on a previous faulty output y′1 and not on a fresh injection of a fault happening
during the computation of f3 in its y1-component.

Note that if fi is a public function, there is no difference in faulting one of the input or
the output (see Sec. 4.2); on the other hand when the secret is encoded in fi, it is different
to fault one of the inputs of fi or the output. Moreover, for the adversary it may be useful
to see, via leakage, the output of fi with inputs of her choice.

The faulty matrix allows indicating where the adversary wants to introduce faults. It
also allows determining the type of faults. We consider two models for this purpose. In
the first stuck-at fault model, the adversary has full control on the values she can inject.
Precisely, she can replace any number of (possibly all the) bits of the target intermediate
value by bits of her choice.2 In the second differential fault model, the adversary can
only inject a difference on the target intermediate value (i.e., XORing it with a chosen
value). In our example above, an admissible differential faulty matrix for x = (x1, x2) isz1 ε ε ε

ε · ε ε
· ε ⊥ z2


∆

,

meaning that f1(x1⊕ z1) = y′1, f2(x2) = y2 and f3(x1, y
′
1, y
′
2⊕ z2) are computed to answer

to the query with y = Select(y′1, y2, y
′
3), assuming that ⊕ is clear from the context (e.g.,

it can be the XOR for some inputs and another group law for others). The ∆ subscript
indicates that we consider differential faults (matrices without ∆ denote stuck-at faults).
Quite naturally, this model can be refined, for example by assuming that certain atoms can
be hit by stuck-at faults and others by differential faults (in the latter case, a ∆ subscript
can be added for all the elements of the faulty matrix that are differentially faulted) or
even that this versatility takes place at the bit level (using similar notations).

2 For simplicity, we assume that when injecting a stuck-at fault x′, some of the bits of x′ can be set to
∅ and the corresponding bits of x are therefore not faulted.
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3.3 Fault-then-Leak Attacks & (Un)Bounded Injections

Additionally to modeling faults, we also want to capture the information that an adversary
can learn from the leakage of a faulty query. Since the leakage generated by the computation
of Algok also depends on the implementation (f1, . . . , fm), we associate to each function fj

a leakage function Lfj
, or simply Lj for short. Given this tuple of leakage functions LAlgo =

(L1, . . . , Lm), we usually write LAlgok(x) to indicate the computation of y = Algok(x) with
the associated leakage trace lalgo = LAlgo(k;x) so that LAlgok(x) = (y, lalgo).

We recall that each leaking atomic computation (fj , Lj) may also depend on k and
other (public) parameters of the black-box algorithm that are only implicit here. If fj

contains k as a parameter, so does Lj which takes the same inputs as fj . In a security proof
we will often make this dependence explicit in the notation and we can write Lj(k; ~xj),
where ~xj is the j-th input row of fj in the dependency matrix, if fj uses k as a parameter.
In practice, if the adversary injects a fault during the computation of fj , the leakage she
can observe depends on the same faulty inputs. Therefore, the use of the (differential)
faulty matrix remains unambiguous and naturally extends to LAlgo(k; ·).

In summary, given a query x to LAlgok with an admissible (possibly differential) faulty
matrix, we capture both the computation of Algok on a faulty input and the leakage
resulting from the computation obtained with the same chosen fault injection. That
means that we model the situation where the adversary knows the (stuck-at or differential)
faults she wants to inject prior to each leaking query. We denote such a model as the
fault-then-leak one. It assumes that the adversary does not have the time to first observe
the start of a leaking computation on a chosen input and to inject a fault of which the
value is adapted on-the-fly depending on this leakage. The latter seems to capture the
reality of accurate fault insertions, which require careful setup manipulations that are not
instantaneous. A more powerful and possibly unrealistic leak-then-fault model could be
considered as a scope for further research. Besides, we note that the queries are adaptive
and therefore, the adversary can make a fault-then-leak query that depends on its current
view that includes the leakage of all the previous faulty queries.

Eventually, a meaningful way to restrict the fault adversary is to assume that faulting
more intermediate computations (hence more bits) per query is increasingly difficult. In
other words, given an implementation (f1, . . . , fm), it can be difficult to fill all the possible
entries of an admissible faulty matrix in a single query. We thus differentiate the case of
unbounded faults, where the adversary is able to inject an unbounded number of faulty
inputs in any leaking query, and the case of `-bounded faults where she can only inject
at most ` faulty inputs in each query (thus in any faulty matrix). We note that the bound
on the amount of faults is defined at the level of intermediate values, as per our atomic
model. Yet, it is easy to translate into a maximum number of bits to fault by looking at
the size of these intermediate values. Here again, the model could be refined later on, by
allowing that at most a fraction of the bits of an intermediate value can be faulted, which
we leave as another interesting scope for further research.

3.4 Faulty Leaky Algorithm & Valid Query

Given a leaking implementation (f1, . . . , fm) of Algok with leakage function LAlgo =
(L1, . . . , Lm), we would like to extend the notation of LAlgok to deal with faulty inputs.
First, let F be the empty faulty matrix associated to the (protected) dependency matrix.
That is, F represents a faulty matrix with no fault to inject. Now, we observe that there
is a canonical representation between any faulty matrix and the tuple of the faulty inputs
that fills F in the reading direction and gives back the given faulty matrix. If z denotes
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this faulty tuple, we write F(z) the corresponding faulty matrix. For instance:

F =

 · ε ε ε
ε · ε ε
· ε ⊥ ·

 , F(x′1, ·, ·, y′2) =

x′1 ε ε ε
ε · ε ε
· ε ⊥ y′2

 ,

where we extend F as a function of the faulty tuples to the corresponding faulty matrix.
Here, z = (x′1, ·, ·, y′2). As a result, we can extend LAlgok into a faulty & leaky algorithm
so that LAlgok(x, z) means the leaking computation of Algok(x) with respect to the fault
injection represented by the faulty matrix F(z).

Moreover, we say that the query (x, z) is valid if for all xi of x = (x1, . . . , xn), xi

is not replaced by a persistent faulty x′i, i.e., the i-th column of F(z) does not only
contain x′i and possibly ε. Otherwise, the query is equivalent to (x′, z′), where x′ =
(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn) and the i-th column of F(z′) only contains “·” and possibly

ε. The reason we reject such kind of queries is to facilitate the description of the winning
condition in a security experiment since all valid queries do not trivially correspond to
other valid queries with distinct x-inputs. We stress that this restriction does not limit
the fault capabilities of the adversary, as she can then simply try to make a query for
another input x′i instead of xi, while the original input xi is never manipulated during the
computation (which does not require faults). Eventually, we simply define F(x, z) as the
predicate telling whether the input (x, z) is valid or not.

3.5 The MAC Case
We give the first security notion for MAC against faults-then-leak attacks. Starting with the
usual (strong) unforgeability against chosen message attacks, we augment the adversary’s
capabilities by turning the tag generation and verification oracles into their faulty and
leaking variants FLMac and FLVrfy. Let MAC = (Gen,Mac,Vrfy) be a MAC scheme with
Mac implementation (f1, . . . , fm) with n inputs and Vrfy implementation (g1, . . . , gm′)
with n′ inputs. As a result, the leaking function pair L = (LMac, LVrfy) is well defined.
Let also IMac and IVrfy be the set of double indexes (j, i) where the MAC implementation
requires protections in the dependency matrices of Mac and Vrfy. Hence, the faulty matrix
functions FMac and FVrfy (and predicates) are also well defined.

Definition 6 (SUF-FL2). A (IMac, IVrfy)-protected message authentication code MAC =
(Gen,Mac,Vrfy) with leaking function pair L = (LMac, LVrfy) and faulty injection pair
F = (FMac,FVrfy) is (qF L, qM , qV , t, ε)-strongly existentially unforgeable against stuck-
at (resp.-1 differential) unbounded (resp.-2 `-bounded) fault-then-leak attacks in tag-
generation and verification if for all (qF L, qM , qV , t)-adversaries AL,F , we have

Pr
[
FORGE-FL2suf-vcma

MAC,F,L,A ⇒ 1
]
≤ ε,

where the FORGE-FL2suf-vcma
MAC,F,L,A experiment is defined in Table 4.

This definition can be weakened by allowing fault injection either in Mac or in Vrfy,
in which case we simply say that the MAC is SUF-FL1 with respect to either the tag
generation or the verification. The above security definition could also be extended to
cross-type attacks where the adversary can mix stuck-at and differential faults in each
query, following our description on Section 3.2.

4 Warming up
Before investigating the security of concrete MAC constructions, we discuss a few generali-
ties that can help interpreting the impact of our results.
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Table 4: The FORGE-FL2suf-vcma experiment. In stuck-at (resp., differential) attacks, FMac
and FVrfy represent the stuck-at (resp., differential) faulty matrices functions and predicates.
In the `-bounded case, the predicates FMac and FVrfy return 0 if the fault injection tuple z
contains more than ` components 6= “·”.

The FORGE-FL2suf-vcma
MAC,F,L,A experiment

Initialization: Oracle FLMac(m, z):
k ← Gen If FMac(m, z) = 0, return ⊥
S ← ∅ (τ, leak) = LMack(m, z)

S ← S ∪ {(m, τ)}
Finalization: Return (τ, leak)

(m, τ)← AL,F,FLMac,FLVrfy

If (m, τ) ∈ S, return 0 Oracle FLVrfy(m, τ, z):
Return Vrfyk(m, τ) If FVrfy((m, τ), z) = 0, return ⊥

Return LVrfyk(m, τ, z)

4.1 Fault-Resilience vs. Fault-Resistance
As in the leakage setting, we denote as resilient an implementation such that security
guarantees vanish in the presence of faults but are restored afterwards, and we call resistant
an implementation where these guarantees are always maintained. It is easy to see that
fault-resistance requires some fault-immune computations since an adversary can always
hit a verification with some trivial attacks during the finalization step of the unforgeability
experiment. For example in the case of LR-MAC1 of Figure 1, she could replace x̃ by
zero or hit the reject symbol 0 to turn it into the accept symbol 1. Since these attacks
are generic and independent of the target cryptographic constructions, our focus in the
following sections is mostly on fault-resilience (with the admitted cautionary note that
fault-resistance requires a fault-immune verification step).

4.2 Sub-atomic Faults for Publicly Computable Functions
Our following investigations are mode-level, meaning that we consider a quite coarse-
grain version of the atomic model where atoms are cryptographic primitives. Yet, it is
interesting to note that for publicly computable functions, the physical security guarantees
we obtain hold even if the corresponding atoms are implemented with the finest (gate-level)
granularity. By publicly computable, we mean functions that do not encode any secret
key and for which no input is random. In this case, for any (even fine-grain) error, it is
always possible to simulate it by just observing its impact on the output (which can be
done since the function is publicly computable) and reporting it as a coarse-grain error.
This for example implies the useful observation that the hash function of LR-MAC1 does
not require any protection of its internal computations against faults.

4.3 Interpreting Fault Immunity
The model of Section 3 assumes that the long-term key is always fault-immune (as it
is encoded in the functions). Yet, how this requirement translates into implementation
guidelines depends on the type of faults that can be inserted (and possibly the type of
primitive considered). In our following treatment of MACs, fault-immunity will only
be encountered for the TBC keys. In case stuck-at faults are possible, generic attacks
that target the key bit by bit are possible. So fault immunity can only translate into a
physical assumption. Essentially, we then require that the TBC remains unpredictable
even if the key is faulted. In case only differential faults are possible, fault immunity can
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also translate into a mathematical assumption, namely that the TBC is secure against
related-key attacks. Since these concerns are quite independent of the MAC constructions,
we will not re-discuss them systematically and just mention the requirement that the
long-term key is fault immune in our theorem statements.

4.4 Model Equivalence for Deterministic Operations
Eventually, we note that for deterministic operations, the combination of a differential fault
with unbounded leakage provides the adversary with the possibility to emulate a stuck-at
fault x′ by first observing the unbounded leakage of the intermediate value x she wants
to target and then injecting a differential fault corresponding to x⊕ x′. This observation
is interesting since it provides a separation between an implementation that separately
provides security against leakage and faults (in which case stuck-at and differential faults are
always different) and an implementation that provides security against their combination
(in which case both models can be identical for deterministic operations).

5 LR-MAC1 against leakage and faults
We now prove that LR-MAC1 (illustrated in Figure 1) is secure against leakage and faults
in its tag verification and exhibit attacks against other MACs in this context. We also
show that LR-MAC1 cannot resist stuck-at nor differential faults in its tag generation.

5.1 Secure Verification
The security of LR-MAC1 against leakage and faults (in tag verification) is formalized by
the following theorem (see the experiment in Table 4).

Theorem 1. Let H be a (t1, εCR)-collision resistant hash function. Let F be a (qF L, qM , qV ,
t2, εSUP-L2)-SUP-L2 tweakable block cipher with fault-immune long-term key. Then we
show that for any (qF L, qM , qV , t)-adversary AL,F with (unbounded) leaking function pair
L = (LMac, LVrfy) and mode-level faulty injection function FVrfy in tag verification, LR-MAC1
is (qF L, qM , qV , t, ε)-strongly existentially unforgeable against both stuck-at and differential
unbounded fault-then-leak attacks in tag verification, with

ε ≤ εCR + (qV + 1)εSUP-L2,

where t1 = t+(qM +qV +qF L+1)tH+(qM +qV +qL)(tF+tL) and t2 = t+(qM +qV +qF L+1)tH.

Faulty matrix and leakage function. Before the formal proof, we first specify the mode-
level faulty function FVrfy and (unbounded) leaking function pair L = (LMac, LVrfy). For
LR-MAC1, we consider faults only in the tag verification algorithms Vrfyk, and the mode-
level atomic implementation is f1 = Hs(·) and f2(·) = F−1

k (·, ·). We recall, in particular,
that it means that the adversary is unable to modify the parameter s of the hash function H.
For input (x1, x2) = (m, τ), we thus have x1 = m ∈ {0, 1}∗, x2 = τ ∈ {0, 1}n, y1 = Hs(x1)
and y2 = F−1

k (y1, τ). We stress that we normally have to capture the check 0 == y2 with
a third function defined as f3(·) = [0 == ·]. However, as the check is not protected against
leakage, we simply give y2 in the leakage trace of LVrfy as in the unbounded leakage model
all mode-level unprotected intermediate values leak. Obviously, knowing y2 the adversary
will learn nothing more by injecting a fault on that value during the check.

The dependency matrix and the empty faulty matrix are then given by(
x1 ε ε
ε x2 y1

)
, FVrfy =

(
· ε ε
ε · ·

)
.
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We require no additional protection for Vrfyk and IVrfy = ∅ is not included in the theorem
statement as it does not restrict FVrfy. If LF = (LEval, LInv) is the leakage function pair
of the TBC F, we have LMac = LEval as well as LVrfy = (LInv, y2), since LH gives no
more information than H does. Therefore, a faulty leaky verification query has the form
FLVrfyk(m, τ, (z1, z2, z3)), where the function corresponding to faulty matrix is

FVrfy =
(
z1 ε, ε
ε z2 z3

)
.

Hence (m, τ, (z1, z2, z3)) is a valid verification query if and only if z1 = z2 = · as otherwise it
comes to trivially replace m and τ by z1 and z2 respectively, which is the same as the query
(z1, z2, (·, ·, z3)). That is, FVrfy(m, (z1, z2, z3)) = 1 if and only if z1 = z2 = ·. For simplicity,
we assume that there is only a single possible faulty input and write FLVrfyk(m, τ, z) where
z represents the fault injected into y1, namely the hash value h. On the other hand, a
leaky tag generation query is in the form of LMack(m) since we only consider leakage
here. We stress that for LR-MAC1, fault-and-leak attacks and leak-and-fault attacks are
equivalent. This is because the only possible faulty value is the hash value h which can be
obtained locally by the adversary before the computation of LR-MAC1.

Discussion and overview of the proof. The proof is based on the observation that in
order to find a fresh and valid pair (m, τ) against LR-MAC1, the adversary needs to either
find a collision against the hash function H, or to find a fresh and valid tuple (tw, x, y)
against the SUP-L2 security of TBC F even with the power of injecting faults in tag
verification. In the proof, the adversary is deemed to win the game if any of her qV + 1
verification queries can be associated to a valid predication against the TBC F. This is to
capture the power of the adversary on tag verification since now the adversary can inject
any fault on the hash value h and thus has the full control of the input to the TBC F,
which is essentially different from Berti et al.’s [BGPS21] model where the adversary can
only see what h is but cannot modify it. Our analysis implies that the inversion of TBC
in tag verification not only helps to improve the security against side-channel attack, but
also significantly improves the security against fault attacks.

Proof. We use a sequence of games to proceed the proof. Denote by Ei the event that the
adversary wins the ith Game. Game 0 is exactly the SUF-FL2 game where the adversary
(qF L, qM , qV , t)-adversary AL,F aims at producing a forgery against LR-MAC1.

Game 1 is the same as Game 0 except that we abort if there is a collision in the hash
function. Clearly Game 0 and Game 1 are identical if there is no collision in the hash
function. We construct an adversary B to bound the difference between Game 0 and
Game 1. Adversary B plays the collision resistant game against the hash function H (see
Definition 2), and simulates adversary A’s oracles by using its own oracle. At the start of
game, adversary B picks up a key k uniformly at random from K for the TBC F. By using
s the key of hash function and k the key of the TBC, adversary B can correctly simulate
A’s oracles that are defined in experiment in Table 4. During the simulation, adversary B
holds a list H to record the input-output pairs of hash function H. That is, every time
when H is invoked y = Hs(x), she will put the pair (x, y) into the list H. At the end of
game, adversary A outputs a pair (m, τ). Adversary B then computes h = H(m) and put
the pair (m,h) into the list H. She checks whether there is a collision in the list H, namely
x 6= x′ but Hs(x) = Hs(x′). If so, she outputs this collision and wins the game. The time
complexity of adversary B is t1 = t+ (qM + qV + qF L)(tF + tL + tH) + tH. Hence, we have

|Pr[E0]− Pr[E1]| ≤ εCR.

Game 2 is the same as Game 1 except that we abort if in some faulty verification
query (mi, τi, zi) made by A, it can be transformed into a valid prediction against the
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TBC F. That is, (zi, 0n, τi) a valid prediction against F. To analyze the difference between
Game 1 and Game 2, we build a sequence of qV + 2 games Game 10, . . . , Game 1qV +1 as
follows. Game 1j is the same as Game 1 except that we abort if one of the first j faulty
verification queries can be associated to a valid prediction against the TBC F. Thus, Game
10 is exactly Game 1 while Game 1qV +1 is exactly Game 2. Let Ej

1 be the event that the
adversary A wins Game 1j . Clearly, Game 1j and Game 1j+1 are identical if the (j + 1)th
faulty verification query cannot be associated to a valid prediction against the TBC F. We
regard adversary A’s final output (m, τ) as the (qV + 1)th verification query, where there
are no faults otherwise trivial forgery exists.

We then build an adversary Cj to bound the difference between any two sub-games
1j and 1j+1. Adversary Cj plays the SUP-L2 game (illustrated in Table 3) against the
TBC F, and simulates adversary A’s oracles by using its own oracles. At the start of game,
adversary Cj picks up a key s uniformly at random from HK for the hash function H.
With the help of s and its own oracles, she can simulate correctly Game 1j for adversary
A. Then when A asks her (j + 1)th faulty verification query (mj+1, τj+1, zj+1), adversary
Cj computes hj+1 = Hs(mj+1) and outputs (zj+1, 0n, τj+1) as her prediction against F.
Here the value of zj+1 depends on different types of fault attacks: (1) in the stuck-at
model, z1 is the value controlled by the adversary A; (2) in the differential fault model,
zj+1 = zj+1 ⊕ hj+1 where zj+1 is the differential value chosen by the adversary A. In any
of these faults, adversary Cj can simulate it correctly for adversary A since she has the key
s of the hash function and she has the full control of queries to her oracles. Adversary Cj

makes at most qF L queries to L, qM queries to LEval and j ≤ qV queries to LInv. She runs
in time at most t+ (qM + qF L + qV + 1)tH. Thus,

|Pr[Ej
1]− Pr[Ej+1

1 ]| ≤ εSUP-L2.

From the hybrid argument,

|Pr[E1]− Pr[E2]| ≤
qV∑

j=0
|Pr[Ej

1]− Pr[Ej+1
1 ]| ≤ (qV + 1)εSUP-L2.

For Game 2, since (hqV +1, 0n, τqV +1) cannot be a valid predication against the TBC F,
we have Pr[E2] = 0. Finally, wrapping up,

Pr[E0] ≤ εCR + (qV + 1)εSUP-L2

and conclude the proof of Theorem 1.

5.2 Attacks against other MACs
The previous positive result heavily relies on the inverse-based verification of LR-MAC1.
In this subsection, we show that such a positive result is not always obtained by ex-
hibiting attacks against other verification algorithms that recompute the correct tag like
analyzed in [DM21]. Those are typically encountered in permutation-based designs like
Ascon [DEMS21] or ISAP [DEM+20]. The first attack is a generic bit-level fault one while
the second attack is combining faults and leakage.

Bit-level fault attack. Let Vrfyk be a verification algorithm that recomputes the correct
tag τ in verification. The goal of this attack is to recover one by one the bits of the correct
tag τ of the message m. For this purpose, the adversary can simply use stuck-at faults
where all the bits of the re-computed tag are set to zero but one, and use an all-zero tag
candidate in the comparison. If the verification algorithm accepts the re-computed tag, it
means the corresponding bit of the tag is zero, otherwise it is one. After performing |τ |
faulted queries on different bits, the adversary has recovered the tag in full.
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Attacking a SPA-secure Design with DPA. Consider Figure 1 in [DM21]. The high-level
idea of this leakage-resilient tag verification algorithm is that it maintains the message
integrity if the inputs S and T (corresponding to the tag) of a permutation are secure
against Simple Power Analysis (i.e., single-input attacks, roughly). Yet, in the context of a
combined attack, an adversary can easily use a fault in order to modify the value of S while
keeping T constant, in such a way that a DPA (i.e., a multi-input attack) against T becomes
possible. Applied to ISAP or Ascon, it means that their leveled implementation should
additionally protect this permutation with strong side-channel or fault countermeasures or
it becomes possible to forge tags without knowledge of the long-term key.

5.3 Insecure Tag Generation
We finally observe that the good properties of LR-MAC1’s tag verification do not extend
to its tag generation by exhibiting an attack in this context. If an adversary can inject
stuck-at faults, she first computes locally h′ = Hs(m′). She next queries m and injects a
fault to replace the hash value h = Hs(m) with h′, and obtain the tag τ . Then, (m′, τ) is
a valid forgery for LR-MAC1 since (m′, τ) is fresh and it can pass the verification oracle. If
an adversary can only inject differential faults, she first computes locally two hash values
h′ = Hs(m′) and h = Hs(m). She next obtains the differential value ∆ = h′ ⊕ h. Then,
she queries m and injects the differential fault ∆ into the hash value h in order to obtain
the tag τ so that (m′, τ) is again a valid forgery for LR-MAC1. While this attack is in a
relatively strong model, it naturally raises the question whether improved security can
be reached at the mode level. The next two sections answer this question positively by
exhibiting two approaches allowing to improve physical security against side-channel and
fault attacks in contexts where also the tag generation can be targeted.

6 LR-MACd: improved security by iteration
In this section, we propose an new MAC algorithm called LR-MACd that has better security
against fault attacks in tag generation, under the plausible assumption that inserting
faults on multiple and large intermediate computations in one execution is difficult for the
adversary. LR-MACd requires one more TBC call and one more hash function call than
LR-MAC1, but it is SUF-FL2 secure, while LR-MAC1 is SUF-FL1 secure.

Scheme description. Let F : K × T W × {0, 1}n → {0, 1}n be a tweakable block cipher
(TBC) and H : HK× {0, 1}∗ → TW be a hash function. The algorithm LR-MACd is built
by invoking two calls of hash function H and two calls of TBC F. See Algorithm 2 and
Figure 2 for code description and figure of LR-MACd respectively.
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Figure 2: LR-MACd.

Note that the scheme uses two protected TBCs sequentially. So in practice, the same
countermeasures should be implemented for both so that even the intermediate value w is
protected (which is at the same time natural and required).
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Algorithm 2 The LR-MACd algorithm.
It uses a strongly protected TBC F : K × T W × {0, 1}n → {0, 1}n and a hash function
H : HK× {0, 1}∗ → TW.

Gen:
• k $← K

• s $← HK
Mack(m):
• h1 = Hs(0 ‖m)

• w = Fh1
k (0n)

• h2 = Hs(1 ‖m)

• τ = Fh2
w (0n−11)

• Return τ

Vrfyk(m, τ):

• h1 = Hs(0 ‖m)

• w = Fh1
k (0n)

• h2 = Hs(1 ‖m)

• x̃ = Fh2,−1
w (τ)

• If x̃ == 0n−11 Return 1

• Else Return 0

6.1 Secure Tag Generation and Verification
Self-preserving unpredictability of TBC. Since LR-MACd uses the first TBC to derive
the key for the second TBC which is invisible from the adversary, the previous SUP-L2
security definition is not suitable here. Instead, we present an new security definition called
self-preserving unpredictability (SPU-L2) to capture the property needed in LR-MACd.
Intuitively, it says that the adversary has the oracle access to the TBC Fk under the
long-term secret key k. The output y of TBC Fk can be used as the key for another TBC.
In this case, the adversary can only receive the leakage and not the output y. The adversary
can also query the TBC under the derived key, whose output can also be used as the key
for other TBCs. Finally, it should be hard for the adversary to output a valid predication
(tw, x, y) against any of these TBCs. Formally, it leads to the following definition:

Definition 7 (SPU-L2). A tweakable block cipher F : K × T W × {0, 1}n → {0, 1}n

with leakage function pair L = (LEval, LInv) is (qL, qE , qI , qEk, qIk, t, ε)-self-preserving un-
predictable with leakage in evaluation and inversion (SPU-L2), or (qL, qE , qI , qEk, qIk, t, ε)-
SPU-L2, if for any (qL, qE , qI , qEk, qIk, t)-adversary A, we have:

Pr[SPU-L2A,F,L ⇒ 1] ≤ ε,

where the SPU-L2 experiment is defined in Table 5.

Remark. In the game of self-preserving unpredictability of F (Table 5), Q1 is the set of
forbidden evaluation queries that are used to derive subkeys. Similarly, Q2 is the set of
forbidden key queries that are used in the evaluation of the TBC.

Security of LR-MACd. The security of LR-MACd against leakage and faults is captured
by the following theorem. We consider faults in both tag generation and verification.
Recall that the security experiment is illustrated in Table 4.

Theorem 2. Let H be a (t1, εCR)-collision resistant hash function. Let F be a (qF L, qM , qV ,
qM + qV , 0, t2, εSPU-L2)-SPU-L2 tweakable block cipher with fault-immune long-term key.
Then we show that for any (qF L, qM , qV , t)-adversary AL,F with leaking function pair
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Table 5: Self-preserving unpredictability of F with leakage.

The SPU-L2A,F,L experiment.
Initialization: Oracle LEval(i, t, x):
k0

$← K If i /∈ [c] or (+, i, t, x) ∈ Q1
L,Q1,Q2 ← ∅ Return ⊥
c← 0 z = Fki

(t, x)
le = LEval(t, x; ki)

Finalization: Q2 ← Q2 ∪ {(+, i, t, x), (−, i, t, z)}
(i, t, x, z)← AL,LKey,LInk,LEval,LInv L ← L ∪ {(i, t, x, z)}
If (i, t, x, z) ∈ L or i /∈ [c] Return (z, le)
Return 0

If z = Fki(t, x) Oracle LInv(i, t, z):
Return 1 If i /∈ [c] or (−, i, t, x) ∈ Q1

Return 0 Return ⊥
x = F−1

ki
(t, z)

Oracle LKey(i, t, x) li = LEval(t, z; ki)
If i /∈ [c] or (+, i, t, x) ∈ Q1 ∪Q2 L ← L ∪ {(i, t, x, z)}
Return ⊥ Q2 ← Q2 ∪ {(−, i, t, z), (+, i, t, x)}

c = c+ 1 Return (y, li)
kc = Fki

(t, x)
le = LEval(t, x; ki) Oracle LInk(i, t, z)
Q1 ← Q1 ∪ {(+, i, t, x)} If i /∈ [c] or (−, i, t, x) ∈ Q1 ∪Q2
Return le Return ⊥

c = c+ 1
kc = F−1

ki
(t, z)

li = LInv(t, z; ki)
Q1 ← Q1 ∪ {(−, i, t, z)}
Return li

L = (LMac, LVrfy) and faulty injection pair F = (FMac,FVrfy), LR-MACd is (qF L, qM , qV , t, ε)-
strongly existentially unforgeable against both stuck-at and differential 1-bounded fault-then-
attacks in tag verification and verification, with

ε ≤ εCR + (qV + 1)εSPU-L2,

where t1 = t+2(qM +qV +qL)(tH+tF+tL)+2tH and t2 = t+2(qM +qV +qL)(tH+tF+tL)+2tH.

Faulty matrix and leakage function. As before, we first specify the faulty injection pair
F = (FMac,FVrfy) and leaking function pair L = (LMac, LVrfy). We begin with the faulty
injection function FMac in tag generation. The mode-level atomic implementation for
FMac is f1 = Hs(0 ‖ ·), f2 = Fk(·, 0n), f3 = Hs(1 ‖ ·), and f4 = F·(·, 0n−11). This means
that the adversary is unable to modify the parameter s, the two one-bit prefixes 0 and
1, the two constant inputs 0n and 0n−11. For input m, we have x1 = m, y1 = Hs(0 ‖ x1),
y2 = Fk(y1, 0n), y3 = Hs(1 ‖ x1), and y4 = Fy2(y3, 0n−11). The dependency matrix and
the empty faulty matrix are then given by


x1 ε ε ε
ε y1 ε ε
x1 ε ε ε
ε ε y2 y3

 , FMac =


· ε ε ε
ε · ε ε
· ε ε ε
ε ε · ·

 .
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We require an additional protection on y2 which is the key of the second TBC in Mack.
Hence the protected dependency matrix and empty faulty matrix become

x1 ε ε ε
ε y1 ε ε
x1 ε ε ε
ε ε ⊥ y3

 , FMac =


· ε ε ε
ε · ε ε
· ε ε ε
ε ε ⊥ ·

 .

A faulty leaky tag generation query has the form FLMack(m, (z1, z2, z3, z4)), where the
function corresponding to faulty matrix is

FMac =


z1 ε ε ε
ε z2 ε ε
z3 ε ε ε
ε ε ⊥ z4

 .

Note that (m, (z1, z2, z3, z4)) is a valid tag generation query if and only if z1 6= z3 as
otherwise it is the same as the query (z1, (·, z2, ·, z4)). That is, FMac(m, (z1, z2, z3, z4)) = 1
if and only if z1 6= z3. For simplicity, we write FLMack(m, z) where z = (z1, z2, z3, z4).

On the other hand, the mode-level atomic implementation for FVrfy in the tag verification
is f1 = Hs(0 ‖ ·), f2 = Fk(0n, ·), f3 = Hs(1 ‖ ·), and f4 = F−1

· (·, ·). For input (m, τ), we
thus have x1 = m, x2 = τ , y1 = Hs(0 ‖ x1), y2 = Fk(0n, y1), y3 = Hs(1 ‖ x1), and
y4 = F−1

y2
(y3, x2). Similarly to the case of LR-MAC1, we reveal the check value y4 in the

leakage trace of LVrfy and thus ignore the function regarding the check operation. The
protected dependency matrix and the empty fault matrix are then given by

x1 ε ε ε ε
ε ε y1 ε ε
x1 ε ε ε ε
ε x2 ε ⊥ y3

 , FVrfy =


· ε ε ε ε
ε ε · ε ε
· ε ε ε ε
ε · ε ⊥ ·

 ,

where the protected set IVrfy = {(4, 4)}. Hence a faulty leaky tag verification query has
the form FLVrfyk(m, τ, (z1, z2, z3, z4, z5)), where the faulty matrix function is

FVrfy =


z1 ε ε ε ε
ε ε z2 ε ε
z3 ε ε ε ε
ε z4 ε ⊥ z5

 .

Note that (m, τ, (z1, z2, z3, z4, z5)) is a valid tag generation query if and only if z1 6= z3
and z5 = · as otherwise it is trivially the same as the query (z1, z5, (·, z2, ·, z4, ·)). Hence
without loss of generality, we write FLVrfyk(m, τ, z) where z = (z1, z2, z3, z4). Since we are
working on the 1-bounded model, the adversary can select any one of these faulty inputs
to inject in each query, either in tag generation or verification.

Finally, for leaking function pair L = (LMac, LVrfy), we assume LF = (LEval, LInv) is the
leakage function pair of the TBC F. Then we have LMac = (LEval, LEval) since there are two
TBCs involved. Similarly, LVrfy = (LEval, LInv, y4) since the second TBC is in the backward
direction and the check value y4 is leaked to the adversary.

Discussion and overview of the proof. Theorem 2 can be interpreted as a claim that
LR-MACd provides SUF-FL2 security as long as the underlying hash function is collision
resistant and the TBC F is self-preserving unpredictable (SPU-L2). In the proof, the
adversary is deemed to win the game if any of her qV + 1 verification queries can be
associated to a valid predication against the SPU-L2 security of the TBC F.
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Proof. Similarly to the proof of LR-MAC1, we use a sequence of games to facilitate the
proof. We next denote as Ei the event that the adversary A wins the ith Game.

Game 0 is exactly the SUF-FL2 game where the (qF L, qM , qV , t)-adversary AL,F aims
at producing a forgery against LR-MACd.

Game 1 is the same as Game 0 except that we abort if there is a collision in the
hash function H. Obviously Game 0 and Game 1 are identical if there is no collision in
the hash function. We construct an adversary B to bound the difference between these
two games. Adversary B plays the game against the collision-resistance property of H,
and simulates A’s oracles by using its own oracle. The simulation strategy is similar to
Theorem 1, since by using s the key of hash function H and k the selected key of the TBC
F, adversary B can always simulate correctly A’s oracles. The time complexity of adversary
B is t1 = t+ 2(qM + qV + qF L)(tF + tL + tH) + 2tH. Hence, we have

|Pr[E0]− Pr[E1]| ≤ εCR.

Game 2 is the same as Game 1 except that we abort if in some faulty verification
query (mi, τi, zi) where zi = (zi,1, zi,2, zi,3, zi,4) made by A, it can be transformed into a
valid prediction against the SPU-L2 security of the TBC F. To analyze the difference
between Game 1 and Game 2, we construct a sequence of qV +2 games Game 10,. . . , Game
1qV +1 as follows. Game 1j is the same as Game 1 except that we abort if one of the first
j faulty verification queries can be associated to a valid prediction against the SPU-L2
security of TBC F. Thus, Game 10 is exactly Game 1 while Game 1qV +1 is exactly Game
2. Let Ej

1 be the event that the adversary A wins Game 1j . Clearly, Game 1j and Game
1j+1 are identical if the (j + 1)th faulty verification query cannot be associated to a valid
prediction against the SPU-L2 security of TBC F. We regard adversary A’s final output as
the (qV + 1)th verification query, where there are no faults otherwise trivial forgery exists.

We then build an adversary Cj to bound the difference between any two sub-games 1j

and 1j+1. Adversary Cj plays the game against the SPU-L2 security of TBC F (illustrated
in Table 5), and simulates adversary A’s oracles by using its own oracles. At the start of
game, adversary Cj picks up a key s uniformly at random from HK for the hash function H.
With the help of s and its own oracles, she can simulate correctly Game 1j for adversary A.
For example, for each tag verification query (mi, τi, zi) with i ≤ j from adversary A where
zi = (zi,1, zi,2, zi,3, zi,4), adversary Cj first computes hi,1 = Hs(0 ‖ zi,1), and queries her
oracle LKey with input (i, zi,2, 0n) to obtain leakage le. She then queries her oracle LInv with
input (i, zi,3, τi) to obtain x̃ and leakage li. She replies (x̃ == 1, (le, li)) to the adversary A.
The simulation for tag generation query is similar. Then when A asks her (j + 1)th faulty
verification query (mj+1, τj+1, zj+1), adversary Cj computes h1,j+1 = Hs(0 ‖ zj+1,1), and
queries her oracle LKey with input (j+ 1, zj+1,2, 0n). She computes h2,j+1 = Hs(1‖ zj+1,3),
and outputs (j + 1, zj+1,4, 0n−11, τj+1) as her prediction against the SPU-L2 security of
the TBC F. Here the adversary can only select one of zj+1,1, zj+1,2, zj+1,3 and zj+1,4 to
be faulty input since we work on the 1-bounded model. However, the selected one can be
either stuck-at fault or differential fault as the adversary wants. In any of these faults,
adversary Cj can simulate it correctly for adversary A since she has the key s of the hash
function and she has the full control of queries to her oracles. Adversary Cj makes at most
qL queries to L, qM queries to LEval, j ≤ qV queries to LInv, and qM + j ≤ qM + qV queries
to LKey. She runs in time at most t2 = t+ 2(qM + qV + qL)(tH + tF + tL) + 2tH. Thus,

|Pr[Ej
1]− Pr[Ej+1

1 ]| ≤ εSPU-L2.

From the hybrid argument,

|Pr[E1]− Pr[E2]| ≤
qV∑

j=0
|Pr[Ej

1]− Pr[Ej+1
1 ]| ≤ (qV + 1)εSPU-L2.
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For Game 2, since (hqV +1, 0n, τqV +1) cannot be a valid prediction against the TBC F,
we have Pr[E2] = 0. Finally, wrapping up,

Pr[E0] ≤ εCR + (qV + 1)εSPU-L2

and conclude the proof of Theorem 2.

6.2 Grating Attack on Iterative Constructions
We finally put forward that the additional (1-bounded fault) assumption used in this
section is needed by showing a generic stuck-at attack (coined grating attack) on iterative
construction without additional countermeasure. The attack idea is contained in the name
“grating attack”: it works by placing a portion of one query into a branch of another query
in such a way that a union will form a valid forgery. For simplicity, we assume that a
scheme S is build from cascading two components H and F , namely S(m) = F ◦H(m) for
a message m where h = H(m) is the internal value. Whether the adversary has the oracle
access to H or F (namely whether H and F have a secret key or not) is irrelevant to this
attack. First, the adversary queries message m1 to the scheme S. After the computation
of component H, she injects an arbitrary faulted value h∗ (h∗ 6= h1) as the input to F .
She then obtains h1 = H(m1) from the leakage. Secondly, she queries message m2 to the
scheme S. After the computation of component H, she injects the faulted value h1 as the
input to F . She obtains the tag τ2 which is the output of the scheme S. Then the pair
(m1, τ2) is a valid forgery since it is fresh and can pass the verification oracle.

We note that one option to get rid of this attack is to generalize Figure 2 with more
protected TBCs, which could lead to security in the `-bounded fault model with larger `
values and is left as an open problem. But this naturally also increases the cost of the
construction. We next study another option that works with different requirements.

7 LR-MACr: improved security with randomness
In this section, we propose a MAC algorithm called LR-MACr that is secure against
leakage and faults in both tag generation and verification with the addition of auxiliary
randomness. This randomness helps improving security against differential faults in the
fault-then-leak model because it prevents the hash function to be publicly computable
during tag generation. As a result, the adversary can only XOR a chosen string to an
unknown randomness and the model equivalence of Section 4.4 does not hold. In verification,
the hash function remains publicly computable and essentially follows LR-MAC1.

Scheme description. Let F : K × T W × {0, 1}n → {0, 1}n be a tweakable block cipher
(TBC) and H : HK× {0, 1}∗ → TW be a hash function. The algorithm LR-MACr is built
from a hash function H and a TBC F with an auxiliary randomness r ∈ {0, 1}n. The
value r is always freshly chosen uniformly at random from the set {0, 1}n for each tag
generation, while for verification, the adversary can arbitrarily choose r as she wants. The
code description and figure of LR-MACr are in Algorithm 3 and Figure 3.
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Figure 3: LR-MACr.
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Algorithm 3 The LR-MACr algorithm.
It uses a strongly protected TBC F : K × T W × {0, 1}∗ → {0, 1}n and a hash function
H : HK× {0, 1}∗ → TW.

Gen:
• k $← K, s $← HK

Mack(m):

• r $← {0, 1}n

• h = Hs(r‖m)

• τ = Fh
k(r)

• Return (r, τ)

Vrfyk(m, r, τ):

• h = Hs(r‖m)

• x̃ = Fh,−1
k (τ)

• If x̃ == r Return 1

• Else Return 0

Table 6: The preimage resistance of H in the hash oracle.

The PRCH,A experiment
Initialization: Finalization:
s

$← HK (h̃, m̃)← AH(s)
H ← ∅ If (∗, h̃) ∈ H

Return 0
Oracle H(m): If h̃ = Hs(m̃)
h = Hs(m) Return 1
H ← H∪ {(m,h)} Return 0
Return h

Hash oracle model. In the security analysis we would like to learn the off-line hash
evaluations made by the adversary. That is, we model H as a hash oracle so that whenever
the adversary wants to locally compute Hs(x) on chosen input x, the environment gets x
and stores (x, y) in a hash list H, where y = Hs(x). The hash oracle allows knowing each
pair (x, y) at the time of the Hs(x) computation made by the adversary but it does not
control the distribution of the outputs y which, given the adversary’s input x, remains
deterministic. The hash oracle model is thus a non-idealized computational model which
remains compatible with the fact the the adversary knows the implementation of H.

Preimage resistance in the hash oracle model. In the hash oracle model, we capture
the preimage resistance of H by allowing the adversary, on input s, to choose her target y
whenever she wants as long as she never got y as an output from a previous evaluation of
Hs. This definition captures the essence of preimage resistance in the sense that it is hard
to find any preimage of a value that is not already known as an output. The hash oracle
allows knowing which targets are already an output or not, thanks to the hash list H.

Definition 8. A hash function H : HK×{0, 1}∗ → {0, 1}n is a (t, εPRC)-collision resistant
after computation hash function, if for every t-adversary A, the probability

Pr[PRCH,A ⇒ 1] ≤ εPRC,

where the experiment PRCH,A is illustrated in Table 6.
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Security of LR-MACr. The security of LR-MACr against leakage and faults is formalized
by the following theorem (see the experiment in Table 4).

Theorem 3. Let hash function H be (t1, εCR)-collision resistance and (t2, εPRC)-preimage
resistance in the hash oracle model. Let F be a (qF L, qM , qV , t3, εSUP-L2)-SUP-L2 tweakable
block cipher with fault-immune long-term key. Then we show that for any (qF L, qM , qV , t)-
adversary AL,F with leaking function pair L = (LMac, LVrfy) and faulty injection pair
F = (FMac,FVrfy), LR-MACr is (qF L, qM , qV , t, ε)-strongly existentially unforgeable against
unbounded differential fault-then-attacks in tag verification and verification, with

ε ≤ εCR + (qV + 1)εSUP-L2 + εPRC + q2
M

2n+1 + qM

2n
,

where t1 = t+ (qM + qV + qL)(tF + tL + 2tH) + tH, t2 = t+ (qM + qV + qL)(2tH + tF + tL),
and t3 = t+ (qM + qV + qL)(tH + tF + tL) + tH.

Faulty matrix and leakage function. We begin by specifying the faulty function pair
(FMac,FVrfy) and leaking function pair L = (LMac, LVrfy). Differently from the two previous
constructions, we assume that the adversary can only inject differential faults. To simplify
the notation, we omit all the ∆ subscript in the fault descriptions. For the tag generation
function of LR-MACr, we consider the mode-level atomic implementation with f0 = r

$←
{0, 1}n, that is, the random sampling of r, f1 = Hs(·) and f2(·) = F ·k(·). For input (x1) = m
we thus have x1 = m, y0 = r, y1 = Hs(r ‖ x1) and y2 = Fk(y1, y0). The dependency matrix
and the empty faulty matrix are then given by ε ε ε

x1 x2 ε
ε x2 y1

 , FMac =

 ε ε ε
· · ε
ε · ·

 .

We require no additional protection for Mack, i.e., IMac = ∅. Therefore, a faulty leaky
tag generation query has the form FLMack(m, r, (z1, z2, z3, z4)), where the function corre-
sponding to faulty matrix is

FMac =

 ε ε ε
z1 z2 ε
ε z3 z4

 .

Then FMac(m, (z1, z2, z3, z4)) = 1 (i.e., valid query) if and only if z1 = ·, as otherwise it
comes to trivially replace m by z1, which is the same as the query (z1, (·, z2, z3, z4)). Thus,
we can write FLMack(m, (z1, z2, z3)) where z1, z2, and z3 represent the faults injected into
y0 the left n-bit input of H, y0 the input of the TBC F, and y1 the hash value.

For the verification function of LR-MACr, we consider the mode-level atomic implemen-
tation with f1 = Hs(·) and f2(·) = F−1

k (·, ·). For input (x1, x2, x3) = (m, r, τ), we thus
have x1 = m, x2 = r, x3 = τ , y1 = Hs(x1) and y2 = F−1

k (y1, x3). The dependency matrix
and the empty faulty matrix are then given by(

x1 x2 ε ε
ε ε x3 y1

)
, FVrfy =

(
· · ε ε
ε ε · ·

)
.

We require no additional protection for Vrfyk. Therefore IVrfy = ∅.
If LF = (LEval, LInv) is the leakage function pair of the TBC F, we have LMac = LEval as

well as LVrfy = (LInv, y2), since LH gives no more information.
Therefore, a faulty leaky verification query has the form FLVrfyk(m, τ, (z1, z2, z3, z4)),

where the function corresponding to faulty matrix is

FVrfy =
(
z1 z2 ε ε
ε ε z3 z4

)
.
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Hence (m, r, τ, (z1, z2, z3, z4)) is a valid verification query if and only if z1 = z2 = z3 = ·.
For simplicity, we assume that there is only a single possible faulty input and write
FLVrfyk(m, r, τ, z) where z is the fault injected into z4, namely the hash value h.

Finally, if LF = (LEval, LInv) is the leakage function pair of the TBC F, then LMac = LEval
as well as LVrfy = (LInv, y2), since LH gives no more information than H does.

Discussion and overview of the proof. The proof is based on the observation that as
long as the adversary can only do differential faults, the value r ⊕∆ still remains random
for any differential value ∆. Hence it avoids fault attacks by leveraging the tag generation
in LR-MAC1. More concretely, in order to find a forgery, the adversary needs to (1) guess
the correct ri in the tag generation when choosing her differential fault (recall that we work
on the fault-and-leak model, the adversary should choose her fault before the evaluation
of each query), or find a collision between two ri and rj in the tag generation; (2) find a
collision against the hash function H; (3) find a preimage for some target value of the hash
function H; (4) find a valid prediction against the TBC F.

Proof. As usual, we use a sequence of games to proceed the proof. Denote by Ei the event
that the adversary wins the ith Game. Game 0 is exactly the SUF-FL2 game where the
adversary (qF L, qM , qV , t)-adversary AL,F aims at producing a forgery against LR-MAC1.

Game 1 is the same as Game 0 except that we abort if at the i-th tag-generation query,
the adversary can somehow guess the correct randomness ri. If so, then adversary can
compute the hash value hi = Hs(ri ‖mi) locally, and inject a differential fault ∆ = hi ⊕ h′
where h′ = Hs(ri ‖m′) to the hash value hi, and obtain the tag τ ′i . Then (m′, ri, τ

′
i) is

a valid forgery. Recall that for each tag-generation query, the randomness ri is always
selected uniformly at random from {0, 1}n. Hence, the probability that ri = r̂ is at most
1/2n. Summing over at most qM tag-generation queries,

|Pr[E0]− Pr[E1]| ≤ qM

2n
.

Game 2 is the same as Game 1 except that we abort if for two tag generation queries
(mi, ri, zi) and (mj , rj , zj) where zi = (zi,1, zi,2, zi,3) and zj = (zj,1, zj,2, zj,3), we have
ri⊕ zi,1 = rj ⊕ zj,1 or ri⊕ zi,3 = rj ⊕ zj,3, namely either the inputs to the hash function H
collide or the inputs to the TBC F collide. Note that each ri is uniformly chosen from the
set {0, 1}n. Hence the probability of any of these two equations hold is 1/2n. Summing
over at most

(
qM

2
)
pairs of (i, j), we have

|Pr[E1]− Pr[E2]| ≤ q2
M

2n+1 .

Game 3 is the same as Game 2 except that we abort if there is a collision in the hash
oracle H. We construct an adversary B to bound the difference between these two games.
Adversary B plays the collision resistant game against the hash function H, and simulates
adversary A’s oracle by using its own oracle. Adversary B picks up a key k uniformly at
random for the TBC F. For each tag-generation query from A, adversary B will also pick
up ri uniformly at random from the set {0, 1}n. By using s the key of hash function, k the
key of the TBC F, and ri for each tag-generation query, adversary B can correctly simulates
A’oracles. The time complexity of adversary B is t1 = t+ (qM + qV + qL)(tF + tL + 2tH) + tH.
Hence, we have

|Pr[E2]− Pr[E3]| ≤ εCR.

Game 4 is the same as Game 3 except that we abort if in the output tuple (mqV +1, rqV +1,
τqV +1), the value rqV +1 ‖mqV +1 happens to be the preimage of some faulted hash value
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ĥi and ri = rqV +1 in previous queries and, ĥi has not been recorded in the hash oracle H.
Formally, this difference is captured by the following event

ri = rqV +1 ∧ (∗, ĥi) /∈ H ∧ ĥi = H(rqV +1 ‖mqV +1)

This event can be reduced to the preimage resistance of hash function H in the hash oracle
that is defined in Definition 8. We then construct another adversary C to bound the
probability of this event. Adversary C plays the game against the PRC security of the
hash function H, and tries to output a preimage for some target value she selects. She
picks up a key k uniformly at random for the TBC F, and simulates A’s oracles by using
her own oracles. The hash oracle records the hash computation during the interaction
of A with her oracles. At the end of the game, when adversary A outputs her forgery
(mqV +1, rqV +1, τqV +1), adversary C outputs ĥi where ri = rqV +1 as her target value (if
there is any, otherwise adversary C aborts this game), and then outputs rqv+1 ‖mqV +1
as the image for ĥi. The time complexity of C is t2 = t+ (qM + qV + qL)(2tH + tF + tL).
Hence,

|Pr[E3]− Pr[E4]| ≤ εPRC.

Game 5 is the same as Game 4 except that we abort if at the i-th verification query
(mi, ri, τi, zi) by A, we can do a valid prediction against the TBC F, namely (hi ⊕ zi, ri, τi)
is a valid prediction for F where hi = Hs(mi). Similarly in the proof of LR-MAC1, we can
build a sequence of qv +2 games Game 40, . . . , Game 4qV +1 where Game 40 is exactly Game
4 and Game 4qV +1 is exactly Game 5, and construct a (qL, qM , qV , t2)-SUP-L2-adversary
Dj to bound the difference between any two subgames. The time complexity of Dj is at
most t3 = t+ (qM + qV + qL)(tH + tF + tL) + tH. Hence, by using the hybrid argument,

∣∣Pr[E4]− Pr[E5]
∣∣ ≤ qV∑

j=0

∣∣Pr[Ej
4]− Pr[Ej+1

4 ]
∣∣ ≤ (qV + 1)εSUP-L2.

For Game 4, since (hqV +1, rqV +1, τqV +1) cannot be a valid predication against the TBC
F, we have Pr[E5] = 0. Finally, we conclude the proof by

Pr[E0] =
4∑

i=0

∣∣Pr[Ei]− Pr[Ei+1]
∣∣+ Pr[E5] ≤ εCR + εPRC + (qV + 1)εSUP-L2 + q2

M

2n+1 + qM

2n
.
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