
YAFA-108/146:
Implementing Ed25519-Embedding
Cocks-Pinch Curves in Arkworks-rs

Rami Akeela
rami@dzk.org

DZK Labs

Weikeng Chen
weikeng@dzk.org

DZK Labs

Abstract

This note describes two pairing-friendly curves that embed ed25519, of different bit security
levels. Our search is not novel; it follows the standard recipe of the Cocks-Pinch method. We
implemented these two curves on arkworks-rs. This note is intended to document how the
parameters are being generated and how to implement these curves in arkworks-rs 0.4.0, for
further reference.

We name the two curves as YAFA-108 and YAFA-146:

• YAFA-108 is estimated to offer 108-bit security, which we parameterized to match the 102-
bit security of BN254

• YAFA-146 is estimated to offer 146-bit security, which we parameterized to match the 131-
bit security of BLS12-446 or 122-bit security of BLS12-381

We use these curves as an example to demonstrate two things:

• The “elastic” zero-knowledge proof, Gemini (EUROCRYPT ’22), is more than being elastic,
but it is more curve-agnostic and hardware-friendly.

• The cost of nonnative field arithmetics can be drastic, and the needs of application-specific
curves may be inherent. This result serves as evidence of the necessity of EIP-1962, and the
insufficiency of EIP-2537.

The implementation and the associated Sage scripts can be found on our GitHub:

https://github.com/DZK-Labs/ark-yafa

1

https://github.com/DZK-Labs/ark-yafa

Key Experiment Results1

(on a MacBook Pro, see Section 6 for the setup)

Proof systems Curves
BN254 BLS12-381 YAFA-108 YAFA-146

Groth16 [Gro16] 52.3 s 59.6 s � �
Gemini [BCHO22] 579 s 874 s 3.03 s 3.37 s

Table A: Proving time of one scalar multiplication on ed25519 in different proof systems and
curves. One can see that Groth16 does not work with YAFA, and verifying one scalar multiplica-
tion is already close to one minute. Gemini, which has a universal setup instead of a circuit-specific
setup in Groth16, is much slower than Groth16. However, if we do the same computation over the
YAFA curves, it is 172× to 288× faster compared with Gemini on the other curves, and 16× to
20× faster than Groth16 on the other curves. However, this comparison may be unfair to YAFA—a
circuit-specific setup is a limitation because a setup ceremony for a large circuit is impractical.
One may have to resort to another universal setup proof system like Marlin [CHMMVW20], and
Marlin and Gemini exhibit similar performance.

Proof systems Curves
BN254 BLS12-381 YAFA-108 YAFA-146

Groth16 [Gro16] 1987323 1987323 � �
Gemini [BCHO22] 2747859 2747859 1520 1520

Table B: Number of constraints in the R1CS constraint system when dealing with one scalar
multiplication. Both Groth16 and Gemini use R1CS, so we use the number of constraints to help
understand where the cost comes from. One can see that when nonnative field arithmetic is used,
there will be millions of constraints. When the computation can be done natively, as in the case
of YAFA, the number of constraints is much lower. Note that the reason why the numbers stay the
same between BN254 and BLS12-381, or between YAFA-108 and YAFA-146 is that their scalar
field moduli have the same number of bits, and the nonnative field gadget will use the same strategy.
Readers may wonder why Gemini uses much more constraints than Groth16, despite that they use
the same nonnative gadget in arkworks-rs. This is because the gadget automatically detects if
the proving cost depends on the number of constraints, or the weight of the R1CS matrices, and
uses different optimization goals when generating the parameters for nonnative field simulation.
Groth16 is the former, but Gemini is the latter, so more constraints are used to reduce the weight.

1We want to put a front notice that Groth16 in arkworks-rs takes time to synthesize the constraint system and
inline the linear combinations. We may update our experiment results once we remove this overhead.

2

Ed25519-embedding curve Batch size (large)
10 20 30

YAFA-108 22.0 s 36.9 s 56.1 s
– per scalar mult 2.20 s 1.85 s 1.87 s
YAFA-146 22.0 s 38.2 s 57.0 s
– per scalar mult 2.20 s 1.91 s 1.87 s

Table C: The amortized proving time for one scalar multiplication on ed25519 with different
sizes of the batch with YAFA curves in Gemini. Recall that Gemini has two versions: time-
efficient and space-efficient. We use the time-efficient version. In this case, Gemini proving time
roughly grows linearly to the weight of the R1CS matrices. The percentage of the sublinear part
will decline when we increase the batch size, so we can see that the amortized proving time is
converging. One may be surprised that YAFA-146 is not slower than YAFA-108. This is actually
reasonable and is by design. Both YAFA curves have moduli of about 574 bits, and the difference
is in the embedding degree, which the prover does not need to worry about because the prover does
not do any pairing. This is indeed an example of a trade-off between prover efficiency and verifier
efficiency—if one chooses a reasonable but high embedding degree, we may be able to do with
curves with smaller moduli, probably one less limb. This significantly helps the prover who does
multiscalar multiplication, though the verifier’s work may increase.

General-purpose curve Batch size (small)
2 4 6

BN254 108 s 382 s 677 s
– per scalar mult 54 s 96 s 113 s
BLS12-381 123 s 450 s 686 s
– per scalar mult 62 s 112 s 114 s

Table D: The amortized proving time for one scalar multiplication on ed25519 with different
sizes of the batch with other curves in Groth16. Due to nonnative field arithmetics, the overhead
of proof generation is high. One can see that a large batch is not worthy because the per-scalar-
multiplication cost is increasing. This is expected because Groth16 is quasilinear. We want to
remind readers that Groth16 requires a circuit-specific setup. To create a circuit that verifies one
hundred scalar multiplications, one needs a setup of size 227, which is challenging. The prover
might have to instead choose a universal-setup proof system.

3

Contents
1 Introduction 5

2 Reference materials 7

3 Bit security 8

4 Yafa-108 8
4.1 Fr and Fq . 9
4.2 Fq3 in the tower . 10
4.3 Fq6 in the tower . 13
4.4 G1 . 14
4.5 G2 . 16
4.6 Ate pairing . 18

5 Yafa-146 20
5.1 Fr and Fq . 20
5.2 Fq2 in the tower . 21
5.3 Fq6 in the tower . 22
5.4 Fq12 in the tower . 24
5.5 G1 . 27
5.6 G2 . 29
5.7 Tate pairing . 31

6 Evaluation 33

Acknowledgments 34

References 34

4

1 Introduction
Our motivation to find ed25519-embedding curves comes from the needs to build SNARK-Bridge2

with chains that use ed255193 for signatures in the consensus. Today, the standard EVM only has
precompiled contracts for BN254. We expect that soon, with EIP-2537, BLS12-381 will also
have precompiled contracts in EVM. However, the more generic proposal, EIP-1962 (which plans
to support most families of pairing-friendly curves), has hardly moved forward even though it
was initially approved. In this note, we focus on the scalar multiplication part of the signature
verification. The SHA-512 part should be handled by another proof system that is not discussed in
this note. To efficiently verify such scalar multiplication, we have two types of solutions.

The first type, “the nonstop type,” is to use a proof system on BN254 to directly verify the scalar
multiplication. This can be expensive because the computation is nonnative and requires field
simulation. This is similar to taking a nonstop flight—the price may be higher, but it is one-shot.

EVMBN254
ed25519

BN254
ed25519

Yafa

Nonstop Layover

EVM

Figure 1: Two strategies of verifying ed25519 scalar multiplication (without EIP-1962).

The second type, “the layover type,” uses more than one proof system. There are many possi-
ble combinations. For example, one can use Plonky2 [plo] to recursively compose proofs about
SNARK-EVM and then compress the final proof using pairing-based proofs. This has an advan-
tage over “the nonstop type” only if the amount of work to verify scalar multiplication of ed25519
in the nonnative field is significantly higher than having BN254 verify a succinct proof for this
curve, which is also nonnative. This is similar to taking a layover flight—we may be able to reduce
the price if we travel for a long distance and are willing to take a few more steps. The concern,
however, is the high cost of verifying nonnative pairing, which can be seen as “the last mile.”

In sum, both solutions suffer from the overhead of nonnative field arithmetics. For “the nonstop
type” it is the nonnative scalar multiplication of ed25519. For “the layover type” it is the nonnative
pairing. The challenge is that we are unlikely going to get the best of both worlds:

2We decide to use SNARK-Bridge instead of zk-Bridge because we feel that it is beneficial in the long run to adopt
a less misleading name when we explain this to the community.

3We would like to remind readers that ed25519 is a different curve from curve25519, although they are “birationally
equivalent”. For this reason, we will use ed25519 instead of curve25519 in the rest of this note. See this GitHub issue
for more information: https://github.com/arkworks-rs/curves/issues/115.

5

https://github.com/arkworks-rs/curves/issues/115

• proving scalar multiplication of ed25519 without nonnative field arithmetics
• making this proof verifiable by EVM without nonnative field arithmetics

A seemingly working solution is to find a chain of ordinary curves in which a curve’s scalar field is
the previous curve’s base field, i.e., starting from the origin E1[r = p1, q = p2] which is ed25519,
finding a way to the destination En−1[pn−1, pn] which is BN254. This is similar to flying a plane,
in which we find the shortest path from the departure airport to the destination airport, which we
illustrate as follows:

E1[p1, p2] → E2[p2, p3] → E3[p3, p4] → · · · → En−1[pn−1, pn]

This search, however, will fail. By Hasse’s theorem, we know that:

|#Ei − pi+1 − 1| < 2 · √pi+1

and pi divides #Ei. It suggests that going down this chain, it is easy to make the next prime larger
by using a cofactor, but it is difficult to make the next prime much smaller as Hasse’s theorem
shows. To build such a chain, the number of intermediate curves that we need is at least:

p1 − pn
2 · √p1

≈ 2126

As a result, it appears that nonnative field arithmetic is unavoidable. This implies an inherent
reason why verifying the scalar multiplication on another curve can often be slow.

Note that FRI protocols [BSBHR18], which actually do not work well here because ed25519 does
not have good FFT space, are also not helping since it does not help us jump between fields.

A “new” hope: EIP-1962. To some extent, the problem comes from EVM, and we should ideally
solve it in EVM. EIP-1962 once gave us some hope. This EIP plans to support common families
of elliptic curves—an infinite number of curves. This EIP was tentatively accepted for the Berlin
release, but it did not move forward.

EVM

ed25519

Yafa

Helicopter

Figure 2: A strategy of verifying ed25519 signatures (with EIP-1962).

The flexibility to pick an application-specific curve is beneficial for performance. For example,
with EIP-1962, we can have a third type of the solution, which we call “the helicopter type,” in

6

which the proof that we provide to the EVM does not necessarily be over BN254 or BLS12-381. It
allows us to remove the second step in “the layover type,” which avoids all the heavy computation.

Rest of the note. We have discussed our motivation. The rest of the paper is an engineer’s note
for how to generate the parameters of the YAFA curves and implement them in arkworks-rs and
how we conduct the experiments. There are no technical insights in these sections, and readers are
advised to just skim through them.

2 Reference materials
We would like to share the list of resources that help this work.

Cocks-Pinch method. We use the ecfactory library [Ecf], which implements the Cocks-Pinch
method, to generate the curves. The Cocks-Pinch method [CP01] is a way to find pairing-friendly
curves with a prescribed order of a prime-order subgroup. The search is efficient, but it gives a
curve whose base field modulus is twice the size of the scalar field modulus (also known as ρ ≈ 2),
for which we do not have a better solution today. There are other ways to construct pairing-friendly
embedding curves, though it requires more effort [HG20].

Twist in the pairing. The YAFA-146 curve has an embedding degree of 12, and the pairing is
defined with G1 over Fq, G2 over Fq2 , and GT over Fq12 . For this to happen, the curve needs to
meet certain conditions. Michael Scott has a note [Sco] on twists for the pairing-friendly curves.

Field selection. This problem of verifying scalar multiplication in ed25519 is closely related to
field selection. On the one hand, we want to choose a matching field to avoid nonnative compu-
tation. On the other hand, we need to ensure that the EVM can efficiently verify the final proof.
There are also other considerations about the choice of the field, such as whether it has a handy
FFT space. Gautam Botrel from Delendum Ventures has an article [Fie] that describes the general
considerations of field selection today.

Miller loop. We implemented the Tate and ate pairings following the implementation of pairing
over Cocks-Pinch curve and over BLS curve in arkworks-rs [Ark] as well as in Aurore Guillevic’s
Sage scripts [Zkc].

Final exponentiation. The last step of pairing is final exponentiation. For embedding degree of
k = 6, we power the result of the Miller loop by (q6 − 1)/r, and for k = 12 we do (q12 − 1)/r. In
practice, we implement the final exponentiation by factoring the polynomial and use the Frobenius
endomorphism for x → xq, x2q, ... and combine the result together.

Bit security. Informally speaking, for a pairing from E(Fq)×E ′(Fq2) → Fqk , the last part Fqk is
often the weakest link. In this note we estimate the bit security in a rough manner, in that we do not
look into the concrete parameters one need to use in the number field sieve algorithm [AFKLO07;
BD19]. One can analyze the bit security level more precisely by taking those parameters into
consideration [BD19; GMT20; GS21], but it is beyond the scope of this note.

7

3 Bit security
We can obtain a rough estimate of the bit security of a pairing-friendly curve by estimating the cost
of special number field sieve for Fqk . The cost can be estimated using the following formula.

cost(Fqk) = 2κ · e
3
√

c/9·ln(kq)·(ln(ln(kq)))2

with the constants c = 32 and κ = −7 based on the work by Aoki, Franke, Kleinjung, Lenstra
and Osvik [AFKLO07]. Note that our estimation is rough as it ignores the inner structure of these
curves, despite the fact that the parameters are special enough to be pairing-friendly. For a more
precise analysis, readers can look at [BD19; GMT20; GS21].

Estimated bit security of existing curves in arkworks-rs for comparison. We now use this
formula to estimate the bit security of the pairing-friendly curves implemented in arkworks-rs.

• BLS12-377, in which log q = 381 and k = 12, has 121-bit security.
• BLS12-381, in which log q = 381 and k = 12, has 122-bit security.
• BN254, in which log q = 254 and k = 12, has 102-bit security.
• BW6-761, in which log q = 761 and k = 6, has 122-bit security.
• CP6-782, in which log q = 782 and k = 6, has 123-bit security.
• MNT4-298, in which log q = 298 and k = 4, has only 66-bit security.
• MNT6-298, in which log q = 298 and k = 6, has only 80-bit security.
• MNT4-753, in which log q = 753 and k = 4, has 101-bit security.
• MNT6-753, in which log q = 753 and k = 6, has 121-bit security.

Estimated bit security of YAFA-108 and YAFA-146. Both curves have base field moduli of 574
bits. YAFA-108 has an embedding degree of 6, and YAFA-146 has an embedding degree of 12.
Using the formula above, we have:

• YAFA-108, in which log q = 574 and k = 6, has 108-bit security.
• YAFA-146, in which log q = 574 and k = 12, has 146-bit security.

Note that using a higher embedding degree comes with a cost. Though it does not affect the prover
as it only works with G1, the verifier will pay an extra cost to do a pairing.

4 Yafa-108
We want to find a pairing-friendly curve with bit security similar to that of BN254, so it can be
used for performance comparison. We use the Cocks-Pinch method [FST10], which will generate
a curve of more than 512 bits in our case. We can choose the embedding degree among k = 2, 3,
4, 6, 12. Our goal is to achieve a high level of security without paying too much cost.

An interesting observation in arkworks-rs is that field operations are implemented through limbs
each of 64 bits. The performance of field operations (excluding powering by another field element)

8

depends on the number of limbs. As a result, a base field of 530 bits will end up having almost the
same performance as that of 570 bits, while the latter offers higher security.

We aim to find a secure curve that we can obtain within an embedding degree k = 6 and with only
nine limbs (because 576/64 = 9). To do so, we make a small tweak to the implementation of the
Cocks-Pinch algorithm, so it can find a base field with a large modulus.

We end up with the following curve, which we call YAFA-108.

q = 3478083793996464891678339190909783846671415720954951395674166166

8420080527396705590597622124144427710754148825442779617551149172

671304488041519255243374122027992030525080041

t = 3729924285556726867899356981723042288063379184733484415694627189

38730304377195952806183

r = 5789604461865809771178549250434395392663499233282028201972879200

3956564819949

k = 6

D = − 3

4.1 Fr and Fq

Scalar field Fr. Prime r is the modulus of the ed25519, i.e., 2255 − 19.

r = 5789604461865809771178549250434395392663499233282028201972879200

3956564819949

We pick 2 as the generator. The following code implements Fr using MontConfig.
1 use ark_ff::fields::{Fp256, MontBackend, MontConfig};
2

3 #[derive(MontConfig)]
4 #[modulus = "57896044...64819949"]
5 #[generator = "2"]
6 pub struct FrConfig;
7 pub type Fr = Fp256<MontBackend<FrConfig, 4>>;

Base field Fq. Prime q is the modulus of the curve’s coordinates.

q = 3478083793996464891678339190909783846671415720954951395674166166

8420080527396705590597622124144427710754148825442779617551149172

671304488041519255243374122027992030525080041

We pick 11 as the generator. The following code implements Fq.

9

1 use ark_ff::fields::{Fp576, MontBackend, MontConfig};
2

3 #[derive(MontConfig)]
4 #[modulus = "34780837...25080041"]
5 #[generator = "11"]
6 pub struct FqConfig;
7 pub type Fq = Fp576<MontBackend<FqConfig, 9>>;

We choose the two prime field structs Fp576 (for Fq) and Fp256 (for Fr) according to the number
of bits of these prime moduli. The “Mont” prefix here refers to Montgomery representations, which
is the backend for computation on the prime fields (and their extensions).
The config struct is populated by the macro MontConfig, so that developers do not need to compute
the constants themselves and fill them in like in arkworks-rs 0.3.0.

4.2 Fq3 in the tower
We want to extend the field Fq to Fq3 using an irreducible polynomial u3 − N with some number
N ∈ Fq. Now, we can represent an element in Fq3 as follows:

Au2 +Bu+ C ∈ Fq3

When we are selecting N , we additionally require that x is a quadratic nonresidue in Fq3 , which
allows us to use x as the twist when we extend Fq3 to Fq6 .

Polynomial and field extension. We use the following polynomial for the extension from Fq to
Fq3 by trying different positive numbers from small to large and checking if it is an irreducible
polynomial and if x is a quadratic nonresidue in the resultant extension field.

u3 − 11

This is implemented by setting the const NONRESIDUE as N here.
1 impl Fp3Config for Fq3Config {
2 ...
3 const NONRESIDUE: Fq = MontFp!("11");
4 ...
5 }

Two-arity and trace. Note that trace t is an odd number in the following equation.

q3 − 1 = 2s · t

10

We have s = 4 and:

t = 5259326532934353741742004886249902369166659408018188137063420147

5209937403344721013554906062262071701107167169327253835829310524

5237479379326746652814911542461087226787768095425155099716832764

9499272459627246020697373972535123748693243122031867229442149589

9122872407922564784157966010256243769216323947835677650166728147

0943697448305241626580128732062563470240610556826316286272447330

9516203402844270638665048900868492989683400902679291524718141992

7723602762582527046388437001236547231830118526844924758662156473

13615

In the config Fq3Config, we need to provide the two-arity constant s = 4 as well as (t − 1)/2,
which would be as follows:

(t− 1)/2 =

2629663266467176870871002443124951184583329704009094068531710073

7604968701672360506777453031131035850553583584663626917914655262

2618739689663373326407455771230543613393884047712577549858416382

4749636229813623010348686986267561874346621561015933614721074794

9561436203961282392078983005128121884608161973917838825083364073

5471848724152620813290064366031281735120305278413158143136223665

4758101701422135319332524450434246494841700451339645762359070996

3861801381291263523194218500618273615915059263422462379331078236

56807

This is implemented by setting the constants TWO ADICITY and TRACE MINUS ONE DIV TWO.
1 impl Fp3Config for Fq3Config {
2 ...
3 const TWO_ADICITY: u32 = 3;
4

5 const TRACE_MINUS_ONE_DIV_TWO: &’static [u64] = &[
6 0x9df37fa6adfa3f67,
7 ...,
8 0xb640003d666c6,
9];

10 ...
11 }

Quadratic residue to power t. Another const that needs to be provided is for the Tonelli-Shanks
algorithm [Ton91; Sha73], which is a quadratic nonresidue in Fq3 to power t. For convenience, we

11

choose u to be the quadratic nonresidue here, and we have:

ut = 2035221093110710540409057660676552096177332179184785243689106966

7257662057768295150100850989487484739038066884340836714918897718

329742678773708674671463699964752171757206793

This is implemented by providing this field element in Fq3 . Note that we can use MontFp macro to
avoid manual translation to the Montgomery representation.

1 impl Fp3Config for Fq3Config {
2 ...
3 const QUADRATIC_NONRESIDUE_TO_T: Fq3 = Fq3::new(
4 MontFp!("20352210...57206793"),
5 Fq::ZERO,
6 Fq::ZERO,
7);
8 ...
9 }

Frobenius endomorphism coefficients. We heavily use, especially for pairing, the Frobenius en-
domorphism, which gives an efficient mapping from an element e ∈ Fq3 to eq (and eq

2 as well), by
multiplying each modulo-q part of e with the corresponding Frobenius endomorphism coefficients
(for Fq3 , others will be slightly different). More concretely, let us consider:

e = c2u
2 + c1u+ c0

We use the Frobenius endomorphism coefficients as follows with N = 11.

f
(1)
1 = 1

f
(1)
2 = 1

f
(q)
1 = N (q−1)/3

= 2688901791050649515632005812956877256665393383448088825085135786

5717474104627594400663718411564763129536634204743601058030506421

687843844062271438195269332524424351101183828

f
(q)
2 = N2∗(q−1)/3

= 7891820029458153760463333779529065900060223375068625705890303802

7026064227691111899339037125796645812175146206991785595206427509

83460643979247817048104789503567679423896212

f
(q2)
1 = N (q2−1)/3 = f

(q)
2

f
(q2)
2 = N2∗(q2−1)/3 = f

(q)
1

We have the Frobenius endomorphism:

eq = c2 · f (q)
2 · u2 + c1 · f (q)

1 · u+ c0

eq
2

= c2 · f (q2)
2 · u2 + c1 · f (q2)

1 · u+ c0

12

This is implemented as follows:
1 impl Fp3Config for Fq3Config {
2 ...
3 const FROBENIUS_COEFF_FP3_C1: &’static [Fq] = &[
4 Fq::ONE,
5 MontFp!("26889017...01183828"),
6 MontFp!("78918200...23896212"),
7];
8

9 const FROBENIUS_COEFF_FP3_C2: &’static [Fq] = &[
10 Fq::ONE,
11 Self::FROBENIUS_COEFF_FP3_C1[2],
12 Self::FROBENIUS_COEFF_FP3_C1[1],
13];
14 ...
15 }

4.3 Fq6 in the tower
For the degree-six Cocks-Pinch curve, the next step is to construct the field extension Fq6 . We
extend Fq3 using a degree-two irreducible polynomial (with coefficients in Fq3 , not Fq), as follows,
with N ′ ∈ Fq3 .

v2 −N ′

With this, we can represent an element e ∈ Fq6 as:

e = (d2 · u2 + d1 · u+ d0) · v + (c2 · u2 + c1 · u+ c0)

Polynomial and field extension. Note that in the previous step, we have intentionally choose N ′

such that x is a quadratic nonresidue, and therefore we pick N ′ = u.

v2 − u

We can implement this extension by specifying the nonresidue, here u, in the config of Fq6 .
1 impl Fp6Config for Fq6Config {
2 ...
3 const NONRESIDUE: Fq3 = Fq3::new(Fq::ZERO, Fq::ONE, Fq::ZERO);
4 ...
5 }

Frobenius endomorphism coefficients. Similar to the case of Fq3 , we have the Frobenius endo-
morphism. The mapping e ∈ Fq6 to eq (and, eq2 to eq

5) is as follows. We first write out e.

e = (d2 · u2 + d1 · u+ d0) · v + (c2 · u2 + c1 · u+ c0)

13

for eqk where k ∈ {1, 2, 3, 4, 5}. The Frobenius endomorphism will first be applied to each of the
Fq3 coefficients, and then it multiplies the degree-one or degree-two terms (i.e., with u or u2) with
the coefficients. Let k′ = k mod 3.

eq
k

= (d2 · f (qk
′
)

2 · u2 + d1 · f (qk
′
)

1 · u+ d0) · g(q
k)

1 · v + (c2 · f (qk
′
)

2 · u2 + c1 · f (qk
′
)

1 · u+ c0)

where the new Frobenius endomorphism coefficients g
(1)
1 , g(q)1 , g(q

2)
1 , g(q

3)
1 , g(q

4)
1 , and g

(q5)
1 are as

follows.

g
(1)
1 = 1

g
(q)
1 = N ′(q−1)/2 = g

(q2)
1 + 1

g
(q2)
1 = N ′(q2−1)/2 = f

(q)
1

g
(q3)
1 = N ′(q3−1)/2 = −1

g
(q4)
1 = N ′(q4−1)/2 = f

(q2)
1

g
(q5)
1 = N ′(q5−1)/2 = g

(q4)
1 + 1

4.4 G1
First of all, we use the complex multiplication (CM) method to find a short Weierstrass curve. Note
that since D = −3, so there is no “ax” term.

E(Fq) : y
2 = x3 + 5645376

Curve parameters. We can implement the curve in arkworks-rs as follows.
1 impl SWCurveConfig for Parameters {
2 ...
3 const COEFF_A: Fq = Fq::ZERO;
4

5 const COEFF_B: Fq = MontFp!("5645376");
6 ...
7 }

Cofactor. The number of points on this curve can be computed directly from q and t:

#E(Fq) = q + 1− t

We can compute the cofactor h as follows:

h =
#E(Fq)

r
= 6007463578739170839932058325193171774663347264961746389891235383

89804293458724181786500830516591

14

We then compute the inverse of the cofactor modulo r:

h−1 mod r = 2952570925495568874798905984554170776713758157285749085718944033

6502437830996

This is implemented as follows.
1 impl CurveConfig for Parameters {
2 type BaseField = Fq;
3 type ScalarField = Fr;
4

5 const COFACTOR: &’static [u64] = &[
6 0xed29225ad506d56f,
7 ...,
8 0x4800000815ea74e0
9];

10

11 const COFACTOR_INV: Fr =
12 MontFp!("29525709...37830996");
13 }

Prime-order subgroup generator. The last step is to find a generator of the prime-order subgroup
(with order r). To do so, we first find a point on the curve, and then we clear the cofactor to obtain
a point in that prime-order subgroup.
We start with x = 1 and, fortunately, we can solve the corresponding y via modular square-root:1,

2251806090139824558188356038789175761391042867695566584791619687

3722014247478449527082553428288574790464782511777891218675815081

95508201416938853880984464178574376900833404


Clearing its cofactor, we obtain the point (x0, y0) as the generator of this subgroup, where:

x0 = 3422488268948785689789547941874523998562936635060964448242645747

9519960220365127786522998842348723780309585364044838207298438594

720820768669193775884940942820440641403063878

y0 = 5312522487221625260440893474917313360501967352032240766685664683

0240294986689601478747340574206772469448225421072444198279859154

8014930288574006468717544900780067911325970

This is implemented as follows.
1 impl SWCurveConfig for Parameters {
2 ...
3 const GENERATOR: G1Affine =
4 G1Affine::new_unchecked(G1_GENERATOR_X, G1_GENERATOR_Y);
5 }
6

7 pub const G1_GENERATOR_X: Fq = MontFp!("34224882...03063878");
8 pub const G1_GENERATOR_Y: Fq = MontFp!("53125224...11325970");

15

4.5 G2
We now work on the tricky part. Note that the complex multiplication algorithm does not give us
a curve in Fq3 . We also cannot randomly pick a curve, as we want this curve to have a prime-order
subgroup G2 of order r. This is done by using the twist u ∈ Fq3 . We have specifically made sure
that it is a quadratic nonresidue in Fq3 . Given the curve where G1 resides:

E : y2 = x3 + b

This curve has a quadratic twist E ′ in Fq3:

E ′ : y2 = x3 + u3 · b

which would have the same number of points. The reason that this new curve has the same number
of points is that, if (x, y) ∈ E(Fq3), then the following (x′, y′) is on the twist E ′(Fq3).

x′ = u · x
y′ = u

√
u · y

Curve parameters. As discussed above, for the twist E ′ : y2 = x3 + b′ and b′ = u3 · b:

b′ = 62099136

This is implemented as follows:
1 impl SWCurveConfig for Parameters {
2 const COEFF_A: Fq3 = Fq3::new(Fq::ZERO, Fq::ZERO, Fq::ZERO);
3 const COEFF_B: Fq3 = Fq3::new(MontFp!("62099136"), Fq::ZERO, Fq::ZERO);
4 ...
5 }

Cofactor. We run the point counting algorithm to obtain the number of points:

#E ′(Fq3) = 4207461226347482993393603908999921895333327526414550509650736118

0167949922675776810843924849809657360885733735461803068663448419

6189983503461397322251929233968869781430214476340124079773466211

9599417967701796816557899178028098998954594497625493783553719671

9311270915548480520836084127997447188333033449556345333899154382

7777138434663636604680411357118442020806117785175500498887413823

4758581653888438666279055064327399868066711132079129160038896044

3712456250454022861569583984825897441500255762247915491861374004

958900

16

We then compute the cofactor h′ as follows:

h′ =
#E ′(Fq3)

r
= 4207461226347482993393603908999921895333327526414550509650736118

7267268867952248446058620690098989408616879013030756917629049857

7986219964362954936816064810151619350167295543707587565299392416

3644219867857332814382981687662806476128613460127897964217230378

1690420519170417935483302206952064067846083409532861436618735919

9056485287757573541495685890299988388746469464695785011172642357

2809242652238015382526099588420834286969916870199868835572386002

046396865439392409275568594557647057684332132868235236100

We also compute the inverse of the cofactor modulo r:

h−1 mod r = 2258272195869912045979081527145678081085882985926171848947874548

0578972630174

This is implemented as follows.
1 impl CurveConfig for Parameters {
2 type BaseField = Fq3;
3 type ScalarField = Fr;
4

5 const COFACTOR: &’static [u64] = &[
6 0x55b65ba67d349304,
7 ...
8 0x16c80007accd8dc
9];

10 const COFACTOR_INV: Fr = MontFp!("22582721...72630174");
11 }

Prime-order subgroup generator. We start with x = u + 1 and after a few attempts, we find
that when x = u+ 3, we can solve the corresponding y.

u+ 3,


163997455259147608751228227532963506701461486464

939813478010196584974651832260489547154965730230

287901162813838819504218501063654238729264453808

62056496154724756285267266888

∗ u2


+


142872544490576134282391232692327659256197038244

697042029018771513100930482222499080172512000099

708457281187517659499511059106501645721758336120

33146936098637881156817742266

∗ u


+


675813277265971329667499578581278386443237318436

659107330728403630277160345581250943954549492116

413341182297640653467835630039837549443336827320

5174134710647662056414848650




17

Clearing its cofactor, we obtain the following point as the generator of the subgroup:

x0 = c2 · u2 + c1 · u+ c0

y0 = d2 · u2 + d1 · u+ d0

with the parameters as follows.

c2 = 0

c1 = 0

c0 = 253926989048847091329990377602548766577251876676

826968131868279708657874718916407640492124172919

216820115054659488570040622968227964708223007341

23777520888334658977998568595

d2 = 0

d1 = 0

d0 = 439670844798378982320208949140295489004203042032

079135529598997067298205902095082185236596783463

954844505756691403582916377071978871636890115692

6304377953920559312066532663

This is implemented as follows:
1 impl SWCurveConfig for Parameters {
2 ...
3 const GENERATOR: G2Affine =
4 G2Affine::new_unchecked(G2_GENERATOR_X, G2_GENERATOR_Y);
5 }
6

7 const G2_GENERATOR_X: Fq3 =
8 Fq3::new(G2_GENERATOR_X_C0, G2_GENERATOR_X_C1, G2_GENERATOR_X_C2);
9 const G2_GENERATOR_Y: Fq3 =

10 Fq3::new(G2_GENERATOR_Y_C0, G2_GENERATOR_Y_C1, G2_GENERATOR_Y_C2);
11

12 pub const G2_GENERATOR_X_C0: Fq = MontFp!("25392698...98568595");
13 pub const G2_GENERATOR_X_C1: Fq = Fq::ZERO;
14 pub const G2_GENERATOR_X_C2: Fq = Fq::ZERO;
15 pub const G2_GENERATOR_Y_C0: Fq = MontFp!("43967084...66532663");
16 pub const G2_GENERATOR_Y_C1: Fq = Fq::ZERO;
17 pub const G2_GENERATOR_Y_C2: Fq = Fq::ZERO;

4.6 Ate pairing
Recall the ate pairing has the following formula:

ate(P,Q) = ft−1,Q(P)(q
6−1)/r

18

where t is the trace. Note that we can rewrite it as follows with A,B derived from q.

q6 − 1 = (q3 − 1) · (q + 1) · r · (Aq +B)

The reason we rewrite it in this way is to use the Frobenius endomorphism, which is an efficient
way to map e to eq

k for different k. We can find A and B with some calculation.

Ate pairing loop count. For the ate pairing, we simply use t− 1 as the ate pairing loop count.

t− 1 = 372992428555672686789935698172304228806337918473

348441569462718938730304377195952806182

The constants related to the Miller loop portion of the ate pairing are implemented as follows:
1 pub const TWIST: Fq3 = Fq3::new(Fq::ZERO, Fq::ONE, Fq::ZERO);
2 pub const ATE_IS_LOOP_COUNT_NEG: bool = false;
3 pub const ATE_LOOP_COUNT: [u64; 5] = [
4 0x55792745f9e71926,
5 0xe5e55257bec5baaf,
6 0x2678d0333aa42ad6,
7 0xc7e345c9559a9a4a,
8 0xc000000a,
9];

Final exponentiation last chuck coefficients. We compute A and B as follows.

A = 195337293085561601097948255628327070921

349915223494308615383446369080415607858

669660363239183637292195622151106655339

507466377082955432158022590305655966218

23690292271103113

B = 600746357873917083993205832519317177466

334726496174638989123538389804293458724

181786507272967556

This is implemented as follows.
1 pub const FINAL_EXPONENT_LAST_CHUNK_W0_IS_NEG: bool = false;
2 pub const FINAL_EXPONENT_LAST_CHUNK_ABS_OF_W0: BigInt<9> = BigInt::new([
3 0x7d919d468ad5bc89,
4 ...
5 0x1437eba2e55524f8,
6]);
7 pub const FINAL_EXPONENT_LAST_CHUNK_W1: BigInt<9> = BigInt::new([
8 0xed29225c5506d584,
9 ...

10 0x0,
11]);

19

5 Yafa-146
We now want to find a pairing-friendly curve that achieves 128-bit security. To avoid having a very
large q, we choose to increase the embedding degree to k = 12. Then, leveraging the observation
that the performance depends on the number of limbs rather than exactly the number of bits, we
choose to find q that is not far away from, but lower than 2575, which allows us to obtain a desirable
bit security without performance overhead.

q = 347808467935976491159023607593301147659538310377

620365965388902199388348386346598101672702796413

236015098861083339046516024649685450016420130751

02043510458751533543897428201

t = 372992476029187189170462968044878524314803726725

266721356058824603476064987295668589899

r = 578960446186580977117854925043439539266

34992332820282019728792003956564819949

k = 12

D = − 3

5.1 Fr and Fq

Scalar field Fr. Prime r is the modulus of the ed25519, i.e., 2255 − 19.

r = 578960446186580977117854925043439539266

34992332820282019728792003956564819949

We pick 2 as the generator. The following code implements Fr where “57896044...64819949”,
which is given as a parameter to MontConfig, is r above.

1 use ark_ff::fields::{Fp256, MontBackend, MontConfig};
2

3 #[derive(MontConfig)]
4 #[modulus = "57896044...64819949"]
5 #[generator = "2"]
6 pub struct FrConfig;
7 pub type Fr = Fp256<MontBackend<FrConfig, 4>>;

Base field Fq. Prime q is the modulus of the Yafa curve’s coordinates.

q = 347808467935976491159023607593301147659538310377

620365965388902199388348386346598101672702796413

236015098861083339046516024649685450016420130751

02043510458751533543897428201

We pick 59 as the generator. The following code implements Fq.

20

1 use ark_ff::fields::{Fp576, MontBackend, MontConfig};
2

3 #[derive(MontConfig)]
4 #[modulus = "34780846...97428201"]
5 #[generator = "59"]
6 pub struct FqConfig;
7 pub type Fq = Fp576<MontBackend<FqConfig, 9>>;

5.2 Fq2 in the tower
We want to extend the field Fq to Fq2 using an irreducible polynomial in Fq that looks like u2 −N
with some number N ∈ Fq. Now, we can represent an element in Fq2 as follows:

Au+B ∈ Fq2

Polynomial and field extension. We use the following polynomial for the extension from Fq to
Fq2 by trying different positive numbers from small to large and checking if it is an irreducible
polynomial and if x is a quadratic nonresidue in the resultant field extension.

u2 − 17

This is implemented by setting the const NONRESIDUE as N here.
1 impl Fp2Config for Fq2Config {
2 ...
3 const NONRESIDUE: Fq = MontFp!("17");
4 ...
5 }

Frobenius endomorphism coefficients. We use the Frobenius endomorphism coefficients as
follows with N = 17.

f (1) = 1

f (q) = −1

We have the Frobenius endomorphism:

eq = c1 · f (q)
1 · u+ c0

eq
2

= c1 · f (q2)
1 · u+ c0

This is implemented as follows.
1 impl Fp2Config for Fq2Config {
2 ...
3 const FROBENIUS_COEFF_FP2_C1: &’static [Fq] = &[
4 Fq::ONE, MontFp!("-1"),
5];
6 ...
7 }

21

5.3 Fq6 in the tower
The next step is to construct the field extension Fq6 . We choose to extend Fq2 using a degree-three
irreducible polynomial (with coefficients in Fq2 , not Fq), as follows, with N ′ ∈ Fq2 .

v3 −N ′

With this, we can represent an element e ∈ Fq6 as:

e = (h1 · u+ h0) · v2 + (d1 · u+ d0) · v + (c1 · u+ c0)

Polynomial and field extension. We pick N ′ = 7 · u.

v3 − 7 · u

We can implement this extension by specifying the nonresidue in the config of Fq6 .
1 impl Fp6Config for Fq6Config {
2 ...
3 const NONRESIDUE: Fq2 = Fq2::new(Fq::ZERO, MontFp!("7"));
4 ...
5 }

Frobenius endomorphism coefficients. Similar to the case of Fq3 , we have the Frobenius endo-
morphism. The mapping e ∈ Fq6 to eq (and, eq2 to eq

5) is as follows. We first write out e.

e = (h1 · u+ h0) · v2 + (d1 · u+ d0) · v + (c1 · u+ c0)

for eqk where k ∈ {1, 2, 3, 4, 5}. The Frobenius endomorphism will first be applied to each of the
Fq2 coefficients, and then it multiplies the degree-one term (i.e., with u) with the coefficients. Let
k′ = k mod 2.

eq
k

= (h1 · f (qk
′
)

1 · u+ h0) · g(q
k)

2 · v2 + (d1 · f (qk
′
)

1 · u+ d0) · g(q
k)

1 · v + (c1 · f (qk
′
)

1 · u+ c0)

where the new Frobenius endomorphism coefficients g(1)1 to g
(q5)
1 and g

(1)
2 to g

(q5)
2 are as follows.

g
(1)
1 = 1

g
(q)
1 = N ′(q−1)/3 = g

(q2)
1 + 1

g
(q2)
1 = N ′(q2−1)/3 = f

(q)
1

g
(q3)
1 = N ′(q3−1)/3 = −1

g
(q4)
1 = N ′(q4−1)/3 = f

(q2)
1

g
(q5)
1 = N ′(q5−1)/3 = g

(q4)
1 + 1

g
(1)
2 = 1

22

g
(q)
2 = N ′2(q−1)/3 = g

(q2)
1

g
(q2)
2 = N ′2(q2−1)/3 = g

(q4)
1

g
(q3)
2 = N ′2(q3−1)/3 = 1

g
(q4)
2 = N ′2(q4−1)/3 = g

(q2)
1

g
(q5)
2 = N ′2(q5−1)/3 = g

(q4)
1

This is implemented as follows.
1 impl Fp6Config for Fq6Config {
2 ...
3 const FROBENIUS_COEFF_FP6_C1: &’static [Fp2<Self::Fp2Config>] = &[
4 Fq2::new(
5 Fq::ONE,
6 Fq::ZERO,
7),
8 Fq2::new(
9 MontFp!("22684684...49413060"),

10 Fq::ZERO,
11),
12 Fq2::new(
13 MontFp!("22684684...49413059"),
14 Fq::ZERO,
15),
16 Fq2::new(
17 MontFp!("-1"),
18 Fq::ZERO,
19),
20 Fq2::new(
21 MontFp!("12096162...48015141"),
22 Fq::ZERO,
23),
24 Fq2::new(
25 MontFp!("12096162...48015142"),
26 Fq::ZERO,
27),
28

29];
30 const FROBENIUS_COEFF_FP6_C2: &’static [Fp2<Self::Fp2Config>] = &[
31 Fq2::new(
32 Fq::ONE,
33 Fq::ZERO,
34),
35 Fq2::new(
36 MontFp!("22684684...49413059"),
37 Fq::ZERO,
38),
39 Fq2::new(
40 MontFp!("12096162...48015141"),
41 Fq::ZERO,

23

42),
43 Fq2::new(
44 Fq::ONE,Fq::ZERO,
45),
46 Fq2::new(
47 MontFp!("22684684...49413059"),
48 Fq::ZERO,
49),
50 Fq2::new(
51 MontFp!("12096162...48015141"),
52 Fq::ZERO,
53),
54];
55 }

5.4 Fq12 in the tower
We choose D = −3 because it provides us a sextic twist [Sco] from Fq2 immediately to Fq12 . This
is important for pairing. There are two ways to instantiate Fq12 . One is to extend Fq6 with w2 − v,
and the other one is to extend Fq2 with w6 − 7 · u. We implement this part as follows.

1 impl Fp12Config for Fq12Config {
2 ...
3 const NONRESIDUE: Fq6 = Fq6::new(Fq2::ZERO, Fq2::ONE, Fq2::ZERO);
4 ...
5 }

Frobenius endomorphism coefficients. The mapping e ∈ Fq12 to eq (and, eq2 to eq
11) can be

described as follows. We first write out e.

e = ((h′
1 · u+ h′

0) · v2 + (d′1 · u+ d′0) · v + (c′1 · u+ c′0)) · w
+ (h1 · u+ h0) · v2 + (d1 · u+ d0) · v + (c1 · u+ c0)

for eqk where k ∈ {1, 2, ..., 11}. The Frobenius endomorphism will work as follows. Let k′ = k

mod 6 and k̃ = k mod 2.

e = ((h′
1 · f

(qk̃)
1 · u+ h′

0) · g
(qk

′
)

2 · v2 + (d′1 · f
(qk̃)
1 · u+ d′0) · g

(qk
′
)

1 · v + (c′1 · f
(qk̃)
1 · u+ c′0))

·m(qk)
1 · w

+ (h1 · f (qk̃)
1 · u+ h0) · g(q

k′)
2 · v2 + (d1 · f (qk̃)

1 · u+ d0) · g(q
k′)

1 · v + (c1 · f (qk̃)
1 · u+ c0)

where the new Frobenius endomorphism coefficients k(1)
1 to k

(q11)
1 are as follows.

m
(1)
1 = 1

m
(q)
1 = N ′(q−1)/6

= 975734302998759106901343072333255571676417776465

24

697872884144449453115934974315121023213181685672

698564002001728679061487120265024356223971517281

6245122613981088516801294330

m
(q2)
1 = N ′(q2−1)/6

= 226846845052298824169482852702189974408396832353

271327852564696072456936806040291234042824375634

745519442955169998410645424802405588455971629047

26440521080541363789749413060

m
(q3)
1 = N ′(q3−1)/6

= 109072623024622875577605900830993263333057444493

314244198124955915257296435238514290205084430276

054637842038121517190952645802340488999931273961

34080477967224420449328059879

m
(q4)
1 = N ′(q4−1)/6

= 226846845052298824169482852702189974408396832353

271327852564696072456936806040291234042824375634

745519442955169998410645424802405588455971629047

26440521080541363789749413059

m
(q5)
1 = N ′(q5−1)/6

= 114991927247469648874715935976677061654156668467

444569097105109699457029378070021878837662617087

847814418379486492848039337758380533775341222331

7835355353243331932526765549

m
(q6)
1 = N ′(q6−1)/6 = −1

m
(q7)
1 = N ′(q7−1)/6

= 250235037636100580468889300359975590491896532731

050578676974457254076754888915085999351384627845

966158698660910471140367312623183014394022979022

85798387844770445027096133871

m
(q8)
1 = N ′(q8−1)/6

= 120961622883677666989540754891111173251141478024

349038112824206126931411580306306867629878420778

490495655905913340635870599847279861560448501703

75602989378210169754148015141

25

m
(q9)
1 = N ′(q9−1)/6

= 238735844911353615581417706762307884326480865884

306121767263946284131051951108083811467618366137

181377256822961821855563378847344961016488856789

67963032491527113094569368322

m
(q10)
1 = N ′(q10−1)/6

= 120961622883677666989540754891111173251141478024

349038112824206126931411580306306867629878420778

490495655905913340635870599847279861560448501703

75602989378210169754148015142

m
(q11)
1 = N ′(q11−1)/6

= 336309275211229526271552013995633441494122643530

875909055678391229442645448539595913788936534704

451233657023134689761712090873847396638886008517

84208155105508201611370662652

This is implemented as follows.
1 impl Fp12Config for Fq12Config {
2 ...
3 const FROBENIUS_COEFF_FP12_C1: &’static [Fq2] = &[
4 Fq2::new(Fq::ONE, Fq::ZERO),
5 Fq2::new(
6 MontFp!("97573430...01294330"),
7 Fq::ZERO,
8),
9 Fq2::new(

10 MontFp!("22684684...49413060"),
11 Fq::ZERO,
12),
13 Fq2::new(
14 MontFp!("10907262...28059879"),
15 Fq::ZERO,
16),
17 Fq2::new(
18 MontFp!("22684684...49413059"),
19 Fq::ZERO,
20),
21 Fq2::new(
22 MontFp!("11499192...26765549"),
23 Fq::ZERO,
24),
25 Fq2::new(
26 MontFp!("-1"),
27 Fq::ZERO,

26

28),
29 Fq2::new(
30 MontFp!("25023503...96133871"),
31 Fq::ZERO,
32),
33 Fq2::new(
34 MontFp!("12096162...48015141"),
35 Fq::ZERO,
36),
37 Fq2::new(
38 MontFp!("23873584...69368322"),
39 Fq::ZERO,
40),
41 Fq2::new(
42 MontFp!("12096162...48015142"),
43 Fq::ZERO,
44),
45 Fq2::new(
46 MontFp!("33630927...70662652"),
47 Fq::ZERO,
48),
49];
50 }

5.5 G1
The complex multiplication (CM) method gives us the following curve where a = 0.

E(Fq) : y
2 = x3 + b

where b = 33355508094144.

Curve parameters. We can implement the curve in arkworks-rs as follows.
1 impl SWCurveConfig for Parameters {
2 ...
3 const COEFF_A: Fq = Fq::ZERO;
4 const COEFF_B: Fq = MontFp!("33355508094144");
5 ...
6 }

Cofactor. The number of points on this curve can be computed directly from q and t:

#E(Fq) = q + 1− t

We compute the cofactor h as follows:

h =
#E(Fq)

r
= 600746510796850913325441891520214792552399427644

760978176030334322268158184417708567424169484347

27

We also compute the inverse of the cofactor modulo r:

h−1 mod r = 547366927025064792663595456301355350087346833896

54089840601071154286118289550

This is implemented as follows.
1 impl CurveConfig for Parameters {
2 type BaseField = Fq;
3 type ScalarField = Fr;
4

5 const COFACTOR: &’static [u64] = &[
6 0xba0cbd29dbed203b,
7 ...,
8 0x4800013b93e07009
9];

10

11 const COFACTOR_INV: Fr =
12 MontFp!("54736692...18289550");
13 }

Prime-order subgroup generator. The last step of the implementation is to find a generator of
the prime-order subgroup (with order r). To do so, we first find a point on the curve, and we clear
the cofactor to obtain a point in that prime-order subgroup.
We start with x = 4 and, fortunately, we can solve the corresponding y via modular square-root:4,

99800639034807737474853744110207141738162768156064178612254

39654554390745719005727274055955009294624578956029865160575

967717579468338487582878433342359310352690204717350854


Clearing its cofactor, we obtain the point (x0, y0) as the generator of this subgroup, where:

x0 = 21041479060334059994917916352561995599681496683378184338495

04414855433486592228504327546552874196430698038347500145540

4610600675285973607295911295491046433550562665948850109

y0 = 18418972137743452151940802135445362757814136369287429966682

40879239998760310806751411541978966337027054045888026250482

482159097701195947482630556667627310741134774424209442

This is implemented as follows.
1 impl SWCurveConfig for Parameters {
2 ...
3 const GENERATOR: G1Affine =
4 G1Affine::new_unchecked(G1_GENERATOR_X, G1_GENERATOR_Y);
5 }
6

7 pub const G1_GENERATOR_X: Fq = MontFp!("21041479...48850109");
8 pub const G1_GENERATOR_Y: Fq = MontFp!("18418972...24209442");

28

5.6 G2
Different from Yafa-108, here we consider a divisive twist, using the quadratic residue 7 · u.

E : y2 = x3 + b

This curve has a quadratic twist E ′ in Fq2:

E ′ : y2 = x3 + b/(7 · u)

which would have the same number of points.

Curve parameters. The parameters for the twist E ′ : y2 = x3 + b′ where b′ = b/(7 · u) are:

b′ = 13444697079878082851525282310329288060788875863336585575132

68025308560002165709538880415489801261248461726689901982868

8854734357588824164139508022638667908424962826678905810 · u

This is implemented as follows:
1 impl SWCurveConfig for Parameters {
2 const COEFF_A: Fq2 = Fq2::new(Fq::ZERO, Fq::ZERO);
3 const COEFF_B: Fq2 = Fq2::new(Fq::ZERO, MontFp!("13444697...78905810"));
4 ...
5 }

Cofactor. We run the point counting algorithm to obtain the number of points:

#E ′(Fq2) = 120970730367971186952170100350029060741575749677703948471

554800354400170696597121513142416976376118268825700786993

368383443316269548758861668375393494050065893469576613563

609358444253845876818888589332253391608769436909946181275

415785184259524560205574601021756234710113763268938289871

541824699828556788056871025445866901845642443798896947695

2804

We compute the cofactor h′ as follows:

h′ =
#E ′(Fq2)

r
= 208944723538136275842934825487721719944357363218924936521

565367644832496954484236054395518029919319763436921041473

784490674990167148701594903075840663632617329304570348691

066252329593815218958316022039606562245974422679493723682

42654610238587983559434866653274386897396

29

We compute the inverse of the cofactor modulo r:

h−1 mod r = 523422516247586569624246355426002464323907082649476187366

39330869844643473789

This is implemented as follows.
1 impl CurveConfig for Parameters {
2 type BaseField = Fq2;
3 type ScalarField = Fr;
4

5 const COFACTOR: &’static [u64] = &[
6 0x97eb95cb492a99f4
7 ...
8 0xa200058c197e205
9];

10 const COFACTOR_INV: Fr = MontFp!("52342251...43473789");
11 }

Prime-order subgroup generator. We start with x = u + 1 and we find that when x = u + 2,
we can solve the corresponding y.

u+ 2,


204969787758012799026154024371373832296014658848

732706653049815538381360314301762726790038835107

457007031775662957978759574627970322261114591306

1907093766175112489542886987

∗ u


+


297193948951725081085851912091654615844446020802

279641967398198474274417080435326345281998947026

297284754408512141057936897148317974634029705392

25407932021570845701203976101




Clearing its cofactor, we obtain the following point as the generator of the subgroup:

x0 = c1 · u+ c0

y0 = d1 · u+ d0

30

with the parameters as follows.

c1 = 650966855759905342444096668027249778491139980324

049753763524734907310739708621631645672763056181

680906869079696151064953623466928504377995969683

4452566361542235889236045835

c0 = 276877800888102642891595917708168330711695521882

153924606117580050716422113944769779227015367634

170510326250994267548021751651803755130267995138

29826051305654731318363059026

d1 = 571527274820342672130635162888797885508208950312

775860491897599778790338317661362807521821317769

992408593831310540033309510466456343599759688185

7549150409526964137574350316

d0 = 119253991112167965184771381516912355685685107114

940606503400176200676449391489397367837567649698

058122232666762736423692806603088960585248269986

85162758646355912991543336123

This is implemented as follows:
1 impl SWCurveConfig for Parameters {
2 ...
3 const GENERATOR: G2Affine =
4 G2Affine::new_unchecked(G2_GENERATOR_X, G2_GENERATOR_Y);
5 }
6

7 const G2_GENERATOR_X: Fq2 =
8 Fq2::new(G2_GENERATOR_X_C0, G2_GENERATOR_X_C1);
9 const G2_GENERATOR_Y: Fq2 =

10 Fq2::new(G2_GENERATOR_Y_C0, G2_GENERATOR_Y_C1);
11

12 pub const G2_GENERATOR_X_C0: Fq = MontFp!("27687780...63059026");
13 pub const G2_GENERATOR_X_C1: Fq = MontFp!("65096685...36045835");
14 pub const G2_GENERATOR_Y_C0: Fq = MontFp!("11925399...43336123");
15 pub const G2_GENERATOR_Y_C1: Fq = MontFp!("57152727...74350316");

5.7 Tate pairing
Since r = 2255 − 19, here we actually want to use Tate pairing, which has the following formula:

Tate(P,Q) = fr,P (Q)(q
12−1)/r

31

Note that we can rewrite it as follows with A,B,C,D derived from q.

q12 − 1 = (q6 − 1) · (q2 + 1) · r · (Aq3 +Bq2 + Cq +D)

The reason we rewrite it in this way is to use the Frobenius endomorphism, which is an efficient
way to map e to eq

k for different k. We can find A and B with some calculations.

Tate pairing loop count. For the Tate pairing, we use r as the loop count, as follows:
1 pub const TWIST: Fq2 = Fq2::new(Fq::ZERO, Fq::ONE);
2 pub const TATE_LOOP_COUNT: [u64; 4] = [
3 0xffffffffffffffed,
4 0xffffffffffffffff,
5 0xffffffffffffffff,
6 0x7fffffffffffffff
7];

Final exponentiation last chuck coefficients. We compute A to D as follows.

A = 600746510796850913325441891520214792552399427644760978176

030334322268158184417708567430611936132

B = 187875560996923904376762258748852607264234432078697552704

163978066223964481890030695744137525710640362181506969575

809778064299062395080249974197915679369870762814158500106

64

C = 195337342809628261513007105967343431370333625352945232921

346926017502773512159370287059500101658952606652219497406

040410875183317615347849812200980879667269084124303920125

72

D = 278166797193920395909169859615948913295927548893474708621

243707887222351979100300555804991790078846206369744330340

819160250039564863803006437031333083927475352754988818095

81

This is implemented as follows.
1 pub const FINAL_EXPONENT_LAST_CHUNK_W0: BigInt<9> = BigInt::new([
2 0xbc41361f419dfcad,
3 ...,
4 0x1ccaaec847ce3756,
5]);
6 pub const FINAL_EXPONENT_LAST_CHUNK_W1: BigInt<9> = BigInt::new([
7 0x4a8171212b68af1c,
8 ...,
9 0x1437ebf93e40e187,

10]);

32

11 pub const FINAL_EXPONENT_LAST_CHUNK_W2: BigInt<9> = BigInt::new([
12 0x3e418200ad402828,
13 ...,
14 0x1372344f3c10e50b,
15]);
16 pub const FINAL_EXPONENT_LAST_CHUNK_W3: BigInt<9> = BigInt::new([
17 0xba0cbd2b5bed2384,
18 ...,
19 0x0,
20]);

6 Evaluation
In this section we provide additional detail about the experiments. The results are shown previously
in Table A, Table B, Table C, and Table D.

Setup. For convenience we run the experiments on a MacBook Pro with Intel Core i7 Quad-Core
at 2.3 GHz and a memory of 32 GB. We use the parallel feature of the arkworks-rs library.

Baselines. We recognize that BN254 and BLS12-381 both have sufficient FFT space and can
be most efficiently implemented in Groth16 [Gro16], while only a few proof systems work with
YAFA-108 and YAFA-146, and we choose Gemini [BCHO22] for them.
We previously mentioned BLS12-446, which has 131-bit security, and should be a more fair choice
to compare with YAFA-146, which offers 146-bit security, over BLS12-381. We choose not to
compare with BLS12-446 for the following two reasons.
• BLS12-381 is a popular curve, with many (audited) implementations, and its universal setup

parameters are widely available. It offers 122-bit security, which is not far from 128-bit security.
• Although definitions of G1 for the BLS12-446 curve is clear from [Gui20], the quadratic non-

residue for the extension from Fq to Fq2 has not been standardized or been included in the official
implementation. We believe that we are not the right person to pick this parameter, as it might
contribute to conflicting implementations in the future.

Limitations. Our experiments are for a qualitative analysis of the benefit of application-specific
curves, and it is imprecise. In addition, our experiment is not a comprehensive study of this over-
head, for the following reasons.
First, this experiment result only reflects the situation on a consumer-grade laptop. The streaming
nature of Gemini is hardware-friendly and suitable for ASICs, in which case the experiment re-
sults will be more favorable to Gemini. Several companies in the industry have observed that the
bottlenecks in software implementations do not necessarily translate to hardware implementations.
Rahul Maganti from Jump Crypto [Jum] has summarized a list of different considerations for proof
acceleration between a software implementation and an FPGA prover.
Second, this experiment result does not reflect the situation with application-specific proof systems,
such as TurboPlonk and Halo2. Customized gates can reduce the overhead of nonnative field
arithmetics, such as binary checking, and have been used in production. We want to point out that

33

such optimization also benefits the native one—customized gates can help reduce the cost of native
scalar multiplication over twisted Edwards curves (which is the case of ed25519). More work is
needed to assess how customized gates change the results.
Finally, the problem of verifying a large number of scalar multiplications is an example of verifying
repeated computation. Protocols that work with structured circuits [XZZPS19; ZXZS20] or with
succinct reduction [BSCGGRS19] may have an advantage here.

Acknowledgments
The authors want to thank Simon Masson and Pratyush Mishra for their advice and guideline. We
thank Kobi Gurkan, Zhenfei Zhang, and Zihan Zheng for information regarding the situation with
EIP-1962 and EIP-2537. We also thank our client Greater Heat from which we learned about the
state-of-the-art hardware acceleration for zero-knowledge proofs in professional SNARK-mining
services. We thank Aurore Guillevic whose Sage scripts and research papers have been crucial
in making this work possible. We thank Alessandro Chiesa, Peter Manohar, Madars Virza, and
Howard Wu for their ecfactory toolkit.

References
[AFKLO07] Kazumaro Aoki, Jens Franke, Thorsten Kleinjung, Arjen K. Lenstra, and Dag

Arne Osvik. “A kilobit special number field sieve factorization”. In: ASIACRYPT ’07.
2007.

[Ark] ark-ec::models. URL: https://github.com/arkworks-rs/algebra/
tree/master/ec/src/models.

[BCHO22] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrù. “Gemini:
Elastic SNARKs for diverse environments”. In: EUROCRYPT ’22. 2022.

[BD19] Razvan Barbulescu and Sylvain Duquesne. “Updating key size estimations for
pairings”. In: JoC ’19. 2019.

[BSBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Scalable,
transparent, and post-quantum secure computational integrity”. In: IACR ePrint’ 18.
2018.

[BSCGGRS19] Eli Ben-Sasson, Alessandro Chiesa, Lior Goldberg, Tom Gur, Michael Riabzev,
and Nicholas Spooner. “Linear-size constant-query IOPs for delegating compu-
tation”. In: TCC ’19. 2019.

[CHMMVW20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely,
and Nicholas P. Ward. “Marlin: Preprocessing zkSNARKs with universal and
updatable SRS”. In: EUROCRYPT ’20. 2020.

[CP01] Clifford Christopher Cocks and Richard G. E. Pinch. “Identity-based cryptosys-
tems based on the Weil pairing”. In: Unpublished manuscript. 2001.

34

https://github.com/arkworks-rs/algebra/tree/master/ec/src/models
https://github.com/arkworks-rs/algebra/tree/master/ec/src/models

[Ecf] ecfactory: A SageMath library for constructing elliptic curves. URL: https:
//github.com/scipr-lab/ecfactory/.

[FST10] David Freeman, Michael Scott, and Edlyn Teske. “A taxonomy of pairing-
friendly elliptic curves”. In: JoC ’10. 2010.

[Fie] Field selection for recursive SNARKs. URL: https://medium.com/delendum/
field-selection-for-recursive-snarks-726ad56c3a3c.

[GMT20] Aurore Guillevic, Simon Masson, and Emmanuel Thomé. “Cocks–Pinch curves
of embedding degrees five to eight and optimal ate pairing computation”. In:
Designs, Codes and Cryptography ’20. 2020.

[GS21] Aurore Guillevic and Shashank Singh. “On the alpha value of polynomials in the
tower number field sieve algorithm”. In: Mathematical Cryptology ’21. 2021.

[Gro16] Jens Groth. “On the size of pairing-based non-interactive arguments”. In: EU-
ROCRYPT ’16. 2016.

[Gui20] Aurore Guillevic. “A short-list of pairing-friendly curves resistant to special
TNFS at the 128-bit security level”. In: PKC ’20. 2020.

[HG20] Youssef El Housni and Aurore Guillevic. “Optimized and secure pairing-friendly
elliptic curves suitable for one layer proof composition”. In: CANS ’20. 2020.

[Jum] Rahul Maganti. URL: https://mobile.twitter.com/rahulmaganti_
/status/1560365591717896192.

[Sco] Michael Scott. A note on twists for pairing friendly curves. URL: http://
indigo.ie/˜mscott/twists.pdf.

[Sha73] Daniel Shanks. “Five number theoretic algorithms”. In: Proceedings of the Sec-
ond Manitoba Conference on Numerical Mathematics. 1973, pp. 51–70.

[Ton91] Alberto Tonelli. “Bemerkung über die Auflösung quadratischer Congruenzen”.
In: Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der
Georg-Augusts-Universität zu Göttingen (1891), pp. 344–346.

[XZZPS19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and
Dawn Song. “Libra: Succinct zero-knowledge proofs with optimal prover com-
putation”. In: CRYPTO ’19. 2019.

[ZXZS20] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. “Transpar-
ent Polynomial Delegation and Its Applications to Zero Knowledge Proof”. In:
S&P ’20. 2020.

[Zkc] Families of SNARK-friendly 2-chains of elliptic curves. URL: https://gitlab.
inria.fr/zk-curves/snark-2-chains.

[plo] https://blog.polygon.technology/introducing plonky2/. “Introducing Plonky2”.
In.

35

https://github.com/scipr-lab/ecfactory/
https://github.com/scipr-lab/ecfactory/
https://medium.com/delendum/field-selection-for-recursive-snarks-726ad56c3a3c
https://medium.com/delendum/field-selection-for-recursive-snarks-726ad56c3a3c
https://mobile.twitter.com/rahulmaganti_/status/1560365591717896192
https://mobile.twitter.com/rahulmaganti_/status/1560365591717896192
http://indigo.ie/~mscott/twists.pdf
http://indigo.ie/~mscott/twists.pdf
https://gitlab.inria.fr/zk-curves/snark-2-chains
https://gitlab.inria.fr/zk-curves/snark-2-chains

	Abstract
	Contents
	1 Introduction
	2 Reference materials
	3 Bit security
	4 Yafa-108
	4.1 Fr and Fq
	4.2 Fq3 in the tower
	4.3 Fq6 in the tower
	4.4 G1
	4.5 G2
	4.6 Ate pairing

	5 Yafa-146
	5.1 Fr and Fq
	5.2 Fq2 in the tower
	5.3 Fq6 in the tower
	5.4 Fq12 in the tower
	5.5 G1
	5.6 G2
	5.7 Tate pairing

	6 Evaluation
	Acknowledgments
	References

