
Finding the Impossible: Automated Search for
Full Impossible Differential, Zero-Correlation,

and Integral Attacks

Hosein Hadipour1(�), Sadegh Sadeghi2, and Maria Eichlseder1

1 Graz University of Technology, Graz, Austria
hossein.hadipour@iaik.tugraz.at, maria.eichlseder@iaik.tugraz.at

2 Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
s.sadeghi.khu@gmail.com,

Abstract. Impossible differential (ID) and zero-correlation (ZC) at-
tacks are a family of important attacks on block ciphers. For example,
the impossible differential attack was the first cryptanalytic attack on
7 rounds of AES. Evaluating the security of block ciphers against these
attacks is very important, but also challenging: Finding these attacks
usually implies a combinatorial optimization problem involving many
parameters and constraints that is very hard to solve using manual
approaches. Automated solvers, such as Constraint Programming (CP)
solvers, can help the cryptanalyst to find suitable distinguishers. How-
ever, previous CP-based methods are focused on finding only the ID or
ZC distinguishers, and often only in a limited search space. Notably, none
of them can be extended to a unified optimization problem for finding
full attacks including efficient key-recovery steps.

In this paper, we present a new CP-based method to search for ID and ZC
distinguishers and extend it to a unified constraint optimization problem
for finding full ID, ZC, and integral attacks. To show the effectiveness and
usefulness of our method, we apply it to the ISO standard block cipher
SKINNY and improve all of the existing ID, ZC, and integral attacks on
it. In particular, we improve the integral attacks on SKINNY-n-3n and
SKINNY-n-2n by 3 and 2 rounds, respectively, obtaining the best crypt-
analytic results on these variants in the single-key setting. We improve
the ZC attack on SKINNY-n-2n and SKINNY-n-n by 1 and 2 rounds,
respectively. Applying our tool to discover ID attacks, we improve the
ID attacks on all variants of SKINNY in the single-tweakey setting. Par-
ticularly, we improve the time complexity of the best previous single key
ID attack on SKINNY-128-256 by a factor of 222.57, while keeping the
data and memory complexities much smaller. We also improve the ID
attack on SKINNY-n-3n in the related-tweakey setting. Our method is
generic and applicable to other word-oriented block ciphers.

Keywords: Cryptanalysis · Impossible differential attacks · Zero-correlation
attacks · Integral attacks · SKINNY

1 Introduction

The impossible differential (ID) attack, independently introduced by Biham et
al. [4] and Knudsen [21], is one of the most important attacks on block ciphers.
For example, the ID attack is the first attack breaking 7 rounds of AES-128 [24].
The ID attack exploits an impossible differential in a block cipher that usually
originates from the slow diffusion to retrieve the master key. The zero correlation
(ZC) attack, firstly introduced by Bogdanov and Rijmen [7], is the dual method
of the ID attack in the context of linear analysis, which exploits an unbiased
linear approximation to retrieve the master key.

The integral attack is another important attack on block ciphers which was
first introduced as a theoretical generalization of differential analysis by Lai [22]
and as a practical attack by Daemen et al. [12]. The core idea of integral at-
tack is finding a set of inputs such that the sum of the resulting outputs is
key-independent in some positions. At ASIACRYPT 2012, Bogdanov et al. es-
tablished a link between the (multidimensional) ZC approximation and integral
distinguishers [6]. Sun et al. at CRYPTO 2015 [34] developed further the links
among the ID, ZC, and integral attacks. Thanks to the link developed between
the ZC and integral attacks, we can use the techniques for finding the ZC dis-
tinguishers to find integral distinguishers. As another development of the ZC
attack, Ankele et al. studied the influence of the tweakey schedule in ZC analy-
sis of tweakable block ciphers at ToSC 2019 [1]. In particular, they showed that
when searching for ZC approximations, taking the tweakey schedule into account
can result in a longer ZC distinguisher. For instance, they used the links between
the ZC and integral attacks and provided integral attacks on 20 and 23 rounds
of SKINNY-64-128 and SKINNY-64-192, respectively, which have been the best
single key attacks on these variants of SKINNY so far.

The search for ID, ZC, and integral attacks on a block cipher contain two
main phases: finding a distinguisher and mounting a key recovery based on the
discovered distinguisher. One of the main techniques to find the ID and ZC
distinguishers is the miss-in-the-middle technique [4, 6]. The idea is to find two
differences (linear masks) that propagate halfway through the cipher forward
and backward with certainty but contradict each other in the middle. However,
applying this technique requires tracing the propagation of differences (resp.
linear masks) at the word- or bit-level of block ciphers, which is a time-consuming
and potentially error-prone process using a manual approach. When it comes to
the key recovery, we should extend the distinguisher at both sides and trace the
propagation of more cryptographic properties taking many critical parameters
into account. In general, finding an optimum complete ID, ZC, or integral attack
usually implies a combinatorial optimization problem which is very hard to solve
using a manual approach. Especially when the block size is large enough and
the number of possible solutions is extensive. Therefore, developing automatic
tools is important to evaluate the security of block ciphers against these attacks,
mainly, in designing and analyzing lightweight cryptographic primitives, where
a higher precision in security analysis lets us minimize security margins.

2

One approach to solving the optimization problems stem from cryptanalytic
attacks is developing dedicated algorithms. For instance, in CRYPTO 2016 Der-
bez and Fouque proposed a dedicated algorithm [13] to find the DS-MITM and
ID attacks. However, developing efficient algorithms is difficult and implies a
hard programming task to implement the approach as efficiently as possible. In
addition, other researchers may want to adapt these algorithms to other prob-
lems, with some common features and some differences. This may again be very
difficult and time-consuming.

Another approach is converting the cryptanalytic problem into a constraint
satisfaction problem (CSP) or a constraint optimization problem (COP) and
then solving it with the off-the-shelf constraint programming (CP) solvers. Re-
cently, many CP-based approaches have been introduced to solve challenging
symmetric cryptanalysis problems, which outperform the previous manual or
dedicated methods in terms of accuracy and efficiency [18, 26, 31, 33, 37]. For
example, at EUROCRYPT 2017, Sasaki and Todo proposed a new automatic
tool based on mixed integer linear programming (MILP) solvers to find the ID
distinguishers [31]. Almost at the same time, Cui et al. proposed a similar ap-
proach to find the ID and ZC distinguishers [11]. As another development in this
direction, Sun et al. recently proposed a new CP-based method to search for the
ID and ZC distinguishers at ToSC 2020 [35].

Although the automatic methods to search for the ID and ZC attacks had
significant advances over the past years, they have some basic limitations, which
are summarized as follows:

– The CP models for finding the ID and ZC distinguishers proposed in [11,31]
and [36] are the CP-based methods to search for differential (or liner) trails
with an extra condition fixing the input/output differences (resp. linear
masks). This approach requires an exhaustive search over all possible combi-
nations for the input/output differences (or linear masks) to find all distin-
guishers. Thus, it is infeasible when the block size is large enough. Notably,
this approach can not be extended to making a unified optimization prob-
lem to optimize the key recovery of the full ID and ZC attacks, since the
input/output differences (or linear masks) are fixed in each instance of this
model.

– The CP-based approach proposed in [35] employs a miss-in-the-middle-like
technique to find the ID and ZC distinguishers. The main advantage of this
approach is that it does not fix the input/output differences (or linear masks)
for finding the ID (resp. ZC) distinguishers. Thus, it resolves the issue of
incomplete search by transforming the exhaustive search into an inherent
feature of the model. However, the compatibility between the two parts of
the distinguisher is checked outside of the CSP model by iterating over a loop
where the activeness pattern of a state cell at the meeting point should be
fixed in each iteration. Notably, the method proposed in [35] is only focused
on finding the longest distinguishers and does not consider the key recovery.

– The previous CP-based approaches regarding the ID, ZC, and integral at-
tacks are only focused on finding the longest distinguishers. However, many

3

other important factors affect the final complexity of these attacks, which
we can not take into account by only modeling the distinguisher part. For
example, the position and the number of active cells in the input/output
of the distinguisher, the number of filters in verifying the desired properties
at the input/output of distinguishers, and the number of involved key bits
in the key recovery are only a few critical parameters that affect the final
complexity of the attack but can be considered only by modeling the key
recovery part. We show that the best attack does not necessarily require the
longest distinguisher. Hence, it is important to unify the key recovery and
distinguishing phases for finding better ID, ZC, and integral attacks.

– The tool introduced by Derbez and Fouque in [13] is the only tool to find
the full ID attack. However, this tool is based on a dedicated algorithm
implemented in C/C++ and is not as generic and easy to use as the CP-based
methods. In addition, this tool can not take all critical parameters of the ID
attacks into account. Besides these limitations, this tool is not applicable for
the ZC attacks and integral attacks based on the ZC distinguishers.

– None of the previous automatic tools takes the relationship between the ZC
and integral attack into account to find ZC distinguishers suitable for the
integral key recovery. Particularly, there is no automatic tool to take the
meet-in-the-middle technique in integral key recovery into account for the
integral attack based on the ZC distinguishers.

Our contributions. We propose a new generic and easy-to-use automatic method
to address the above limitations to find the full ID and ZC attacks. We also
propose a new method to automatically find the integral attacks based on ZC
distinguishers taking the meet-in-the-middle technique into account. Unlike the
method proposed in [13], our method is a CP-based method that can take ad-
vantage of the state-of-the-art CP/MILP/SAT solvers to solve multiple cryptan-
alytic problems. To show the usefulness of our method, we apply it to SKINNY
and significantly improve all of the previous ZC, ID, and integral attacks on
this cipher. Table 1 summarizes our discoveries regarding ID, ZC, and integral
attacks on SKINNY. Notably, we improve the integral attacks on SKINNY-n-2n
and SKINNY-n-3n by 2 and 3 rounds, respectively. To the best of our knowledge,
our integral attacks are the best single key attacks on these variants of SKINNY
so far. Regarding the ZC attacks, we improve the ZC attacks on SKINNY-n-n by
2 rounds. We also provide the first 19-round ZC attack on SKINNY, which covers
the same number of rounds as the ID attack on this variant. Regarding the ID
attacks, we could improve all previous ID attacks on all variants of SKINNY
in the single tweakey setting. We also improved the related-tweakey ID attack
on SKINNY-n-3n. The source code of our tool will be publicly available in the
following Github repository: https://github.com/hadipourh.

Outline. We recall the background on the ID and ZC attacks and briefly review
the link between the ZC and integral attacks in Section 2. We also briefly review
the specification of SKINNY in Section 2. In Section 3, we show how to convert

4

https://github.com/hadipourh

Table 1: Summary of our cryptanalytic results. ID/ZC/Int = impossible differ-
ential, zero-correlation, integral. SK/RK = single/related key with given keysize,
CP/KP = chosen/known plaintext, CT = chosen tweak.

Cipher #R Time Data Memory Attack Setting / Model Ref.

SKINNY-64-192

21 2185.83 262.63 249 ZC SK / KP C.2
21 2180.50 262 2170 ID SK / CP [38]
21 2174.42 262.43 2168 ID SK / CP C.1
23 2155.60 273.20 2138 Int 180,SK / CP,CT [1]
26 2172 261 2172 Int 180,SK / CP,CT C.3

27 2189 263.53 2184 ID RK / CP [23]
27 2183.83 263.64 2110 ID RK / CP C.1

SKINNY-128-384

21 2372.82 2122.81 298 ZC SK / KP C.2
21 2353.60 2123 2341 ID SK / CP [38]
21 2347.35 2122.89 2336 ID SK / CP C.1
26 2344 2121 2340 Int 360,SK / CP,CT C.3

27 2378 2126.03 2368 ID RK / CP [23]
27 2364.49 2124.86 2360 ID RK / CP C.1

SKINNY-64-128

18 2126 262.68 264 ZC SK / KP [30]
19 2119.12 262.89 249 ZC SK / KP C.2
19 2119.80 262 2110 ID SK / CP [38]
19 2110.34 260.86 2104 ID SK / CP C.1
20 297.50 268.40 282 Int 120,SK / CP,CT [1]
22 2110 257.58 2108 Int 120,SK / CP,CT C.3

SKINNY-128-256

19 2240.07 2122.90 298 ZC SK / KP C.2
19 2241.80 2123 2221 ID SK / CP [38]
19 2219.23 2117.86 2208 ID SK / CP C.1
22 2216 2113.58 2216 Int 240,SK / CP,CT C.3

SKINNY-64-64

14 262 262.58 264 ZC SK / KP [30]
16 262.71 261.35 237.80 ZC SK / KP C.2
17 261.80 259.50 249.60 ID SK / CP [38]
17 259 258.79 240 ID SK / CP C.1

SKINNY-128-128
16 2122.79 2122.30 274.80 ZC SK / KP C.2
17 2116.51 2116.137 280 ID SK / CP C.1

the problem of searching for the ID and ZC distinguishers to a CSP problem
whose feasible solutions correspond to ID and ZC distinguishers, respectively. In
Section 4 we show how to extend our distinguisher models to create a unified
model for finding optimum ID attacks. We discuss about the extension of our
models for ZC and integral attacks in Section 5, and lastly conclude in Section 6.

5

2 Background

Here, we recall the basics of ID and ZC attacks and briefly review the link be-
tween the ZC and integral attacks. Moreover, we briefly review the specification
of SKINNY and introduce the notations we use in the rest of this paper.

2.1 Impossible Differential Attack

The impossible differential attack was independently introduced by Biham et
al. [4] and Knudsen [21]. The core idea of an impossible differential attack is
exploiting an impossible differential in a cipher to retrieve the key by discarding
all key candidates leading to such an impossible differential. The first require-
ment of the ID attack is an ID distinguisher, i.e., an input difference that can
never propagate to a particular output difference. Then, we extend the ID dis-
tinguisher by some rounds backward and forward. A candidate for the key that
partially encrypts/decrypts a given pair to the impossible differential is certainly
not valid. Thus, we can derive (some bits of) the correct key by discarding all the
keys leading to the impossible differential. The goal is to discard as many wrong
keys as possible. Lastly, we uniquely retrieve the key by exhaustively searching
the remaining candidates.

∆b

∆u

∆l

∆f

rb rounds

rd rounds

rf rounds

kb, cb

kf, cf

impossible differential distinguisher ∆u 6→ ∆l

truncated differential from ∆u to set ∆b

truncated differential from ∆l to set ∆f

Fig. 1: Main parameters of the ID attack using an rd-round impossible differential
distinguisher ∆u 6→ ∆l. The distinguisher is extended with truncated differential
propagation to sets ∆u → ∆b over rb rounds backwards and ∆l → ∆f over rf
rounds forward. The inverse differentials ∆b → ∆u and ∆f → ∆l involve kb, kf
key bits and have weight cb, cf, respectively.

In what follows, we recall the complexity analysis of the ID attack based on
[9,10]. Let E be a block cipher with n-bit block size and k-bit key. As illustrated
in Figure 1, assume that there is an impossible differential ∆u 9 ∆l for rd
rounds of E denoted by Ed. Suppose that ∆u (∆l) propagates backward (resp.
forward) with probability 1 through E−1

b (resp. Ef) to ∆b (∆f), and |∆b| (|∆f|)
denotes the dimension of vector space ∆b (resp. ∆f). Let cb (cf) be the number
of bit-conditions that should be satisfied for ∆b → ∆u (resp. ∆l ← ∆f), i.e.,

6

Pr (∆b → ∆u) = 2−cb (resp. Pr (∆l ← ∆f) = 2−cf). Moreover, assume that kb
(kf) denotes the key information, typically subkey bits, involved in Eb (resp.
Ef). With these assumptions we can divide the ID attacks into three steps as
follows:

Step 1: Pair Generation. In this step, given access to the encryption oracle
(and possibly the decryption oracle), we generate N pairs (x, y) ∈ {0, 1}2n
such that x ⊕ y ∈ ∆b and E(x) ⊕ E(y) ∈ ∆f. This is a limited birthday
problem, and according to [10] the complexity of this step is:

T0 = max

{
min

∆∈{∆b,∆f}

{√
N2n+1−|∆|

}
, N2n+1−|∆b|−|∆f|

}
(1)

We store the N generated pairs in memory for the next step.
Step 2: Guess-and-Filter. The goal of this step is to discard, among all the
subkeys kb ∪ kf, those which are invalidated by at least one of the gener-
ated pairs. Rather than guessing all subkeys kb ∪ kf at once and testing
them with all pairs, we can optimize this step by using the early abort tech-
nique [25]. Accordingly, we divide kb ∪ kf into smaller subsets, typically the
round keys, and guess them step by step. At each step, we reduce the size
of the remaining pairs by checking if they satisfy the required conditions
of truncated differential trail through Eb and Ef. The minimum number of
partial encryptions/decryptions in this step is as follows [9]:

N + 2|kb∪kf|
N

2cb+cf
, (2)

Step 3: Exhaustive Search. The probability that a wrong key survives through

the guess-and-filter step is P =
(
1− 2−(cb+cf)

)N
. Therefore, the number of

candidates after performing the guess-and-filter is P ·2|kb∪kf| on average. On
the other hand, the guess-and-filter step does not involve k − |kb ∪ kf| bits
of key information. As a result, to uniquely determine the key, we should
exhaustively search an space of size 2k−|kb∪kf| · P · 2|kb∪kf| = 2k · P .

Suppose that T2 = N , T3 = 2|kb∪kf| N
2cb+cf , and T3 = 2kP . Then, the total

time complexity of the ID attack is:

Ttot = (T0 + (T1 + T2)CE′ + T3)CE , (3)

where CE denotes the cost of one full encryption, and CE′ represents the ratio
of the cost for one partial encryption to the full encryption.

To keep the data complexity less than the full codebook, we should have
T0 < 2n. In addition, to retrieve at least one bit of key information in the guess-
and-filter step, P < 1

2 should hold. It is important to recall that Equation 2 is
the average time complexity of the guess-and-filter step. Therefore, for each ID
attack, we must compute the complexity of the guess-and-filter step accurately
to ensure we meet this bound in practice. To see the complexity analysis of the
ID attack in the related (twea)key setting see Section A.

7

2.2 Multidimensional Zero-Correlation Attack

Zero-correlation attack, firstly introduced by Bogdanov and Rijmen [7], is the
dual of the ID attack in the context of linear analysis and exploits a linear
approximation with zero correlation. The major limitation of the basic ZC at-
tack is its enormous data complexity, equal to the full codebook. To reduce the
data complexity of the ZC attack, Bogdanov and Wang proposed the multiple
ZC attack at FSE 2012 [8], which utilizes multiple ZC linear approximations.
However, multiple ZC attack relies on the assumption that all involved ZC lin-
ear approximations are independent, which limits its applications. To overcome
the assumption of independent ZC linear approximations, Bogdanov et al. in-
troduced the multidimensional ZC attack at ASIACRYPT 2012 [6]. We briefly
recall the basics of multidimensional ZC attack.

Let Ed represents the reduced round of block cipher E with a block size
of n bits. Assume that the correlation of m independent linear approximations
〈ui, x〉 + 〈wi, Ed(x)〉, and all their nonzero linear combinations are zero, where
ui, wi, x ∈ Fn2 , for i = 0, . . . ,m − 1. We denote by l the number of ZC linear
approximations, i.e., l = 2m. In addition, let we are given N input/output pairs
(x, y = Ed(x)). Then, we can construct a function from Fn2 to Fm2 which maps x
to z(x) = (z0, . . . , zm−1), where zi := 〈ui, x〉+ 〈wi, Ed(x)〉 for all i. The idea of
the multidimensional ZC distinguisher is that the output of this function follows
the multivariate hypergeometric distribution, while the m-tuples of bits drawn at
random from a uniform distribution on Fm2 follows multinomial distribution [6].
For sufficiently large N , we can distinguish Ed from a random permutation as
follows.

We initialize 2m counters V [z] to zero for all z ∈ Fm2 . Then, for each pair
(x, y), we compute zi = 〈ui, x〉+ 〈wi, y〉 for all i = 0, . . . , 2m − 1, and increment
the counter V [z], where z = (z0, . . . , zm−1). We repeat this process for all N
pairs. Finally, we compute the following statistic:

T =
N · 2m

1− 2−m

2m−1∑
z=0

(
V [z]

N
− 1

2m

)2

. (4)

For the pairs (x, y) derived from Ed, i.e., y = Ed(x), the statistic T follows a
χ2-distribution with mean µ0 = (l− 1) 2n−N

2n−1 and variance σ2
0 = 2(l− 1)(2n−N

2n−1)2

However, it follows a χ2-distribution with mean µ1 = (l − 1) and variance σ2
1 =

2(l − 1) for a random permutation [6]. By defining a decision threshold τ =
µ0 + σ0Z1−α = µ1 − σ1Z1−β , the output of test is ’cipher’, i.e., the pairs are
derived from Ed, if T ≤ τ . Otherwise, the output of the test is ’random’.

The above test may wrongfully classify Ed as a random permutation (type-I
error) or may wrongfully accept a random permutation as Ed (type-II error).
Let the probability of the type-I and type-II errors be α and β, respectively.
Then, the number of required pairs N , to successfully distinguish Ed from a
random permutation is [6]:

N =
2n(Z1−α + Z1−β)√

l
2 − Z1−β

, (5)

8

where Z1−α, and Z1−β are respective quantiles of the standard normal distribu-
tion. As can be seen in Equation 5, the data complexity of the multidimensional
ZC attack depends on the number of ZC linear approximations, l = 2m, and the
error probabilities α and β.

To mount a key recovery based on a multidimensional ZC distinguisher for
Ed, we extend Ed by a few rounds at both ends. Let denote by E = Ef ◦Ed ◦Eb

the extended cipher. Suppose that we are given N plaintext/ciphertext pairs
(p, c = E(p)). We can divide the key recovery into two steps:

Step1: guess-and-filter. We guess the value of involved key bits in Eb (Ef)
and partially encrypt (decrypt) the plaintexts (ciphertexts) to derive N pairs
(x, y) for the input and output of Ed, where x = Eb(p), and y = E−1

f (c).
Assuming that wrong keys yield pairs (x, y) randomly chosen from F2n

2 , and
the correct key yields the actual input and output of Ed, we use the statistic
T to discard all keys for which T ≤ τ .
Step2: Exhaustive Search. Finally, we exhaustively search the remaining key
candidates to find the correct key.

The time complexity of the guess-and-filter step depends on the number of
pairs, i.e., N , and the size of involved key bits in Eb and Ef. Given that typically
a subset of internal variables is involved in the partial encryptions/decryptions,
we can take advantage of the partial sum technique [14] to reduce the time
complexity of the guess-and-filter step. Moreover, by adjusting the value of α
and β, we can make a trade-off between the time and data complexities as α and
β affect the data, and β influences the time complexity of the exhaustive search.

2.3 Relation Between the Zero-Correlation and Integral Attacks

Bogdanov et al [6] showed that an integral distinguisher3 always implies a ZC
distinguisher, but its converse is true only if the input and output linear masks of
the ZC distinguisher are independent. Later, Sun et al. [34] proposed Theorem 1
showing that the conditions for deriving an integral distinguisher from a ZC
linear hull in [6] can be removed.

Theorem 1 (Sun et al. [34]). Let F : Fn2 → Fn2 be a vectorial Boolean func-
tion. In addition, suppose that A is a subspace of Fn2 , and β ∈ Fn2 \ {0}, such
that (α, β) is a ZC linear approximation for any α ∈ A. Then, for any λ ∈ Fn2 ,
〈β, F (x+ λ)〉 is balanced over the following set

A⊥ = {x ∈ Fn2 | ∀ α ∈ A : 〈α, x〉 = 0}.

According to Theorem 1, the data complexity of the resulting integral distin-
guisher is 2n−m, where n is the block size and m is the dimension of the linear
space spanned by the input linear masks in the corresponding ZC linear hull.

At ToSC 2019, Ankele et al. [1] considered the effect of tweakey on the ZC
distinguishers of tweakable block ciphers. They showed that taking the tweakey

3 Under the definition that integral property is a balanced vectorial boolean function

9

P

TK1

TK2

...

TKp

C

C0

f

h α1

h α2

h αp

Γ0

C1

f

h α1

h α2

h αp

Γ1

C2

f

h α1

h α2

h αp

Γ2

CR−1

f

h α1

h α2

h αp

ΓR−1

CR

ΓR

Γ0[i] Γ1[h(i)] Γ2[h2(i)] ΓR−1[hR−1(i)] ΓR[hR(i)]

Fig. 2: The STK construction of the tweakey framework.

schedule into account can lead to a longer ZC distinguisher and thus a longer
integral distinguisher. Particularly, they proposed Theorem 2 which provides a
miss-in-the-middle like algorithm to find ZC linear hulls for tweakable block ci-
phers following the super-position tweakey (STK) construction of the tweakey
framework [20] (see Figure 2).

Theorem 2 (Ankele et al. [1]). Suppose that EK(T, P) : Ft×n2 → Fn2 , be a
tweakable block cipher following the STK construction of the tweakey frame-
work. Assume that the tweakey schedule of EK employs p parallel paths and ap-
plies a permutation h on the positions of tweakey cells in each path. Let (Γ0, Γr)
be a pair of linear masks for r rounds of EK , and Γ1, . . . , Γr−1 represents a pos-
sible sequence for the intermediate linear masks (see Figure 2). If there is a cell
position i such that any possible sequence Γ0[i], Γ1[h(i)], Γ2[h2(i)], . . . Γr[h

r(i)]
has at most p linearly active cells, then (Γ0, Γr) yields a ZC linear hull for r
rounds of E.

Ankele et al. used Theorem 2 to manually find ZC linear hulls for several
twekable block ciphers including SKINNY, QARMA [2], and MANTIS [3]. Later,
Hadipour et al. [19] proposed a bit-wise automatic method based on SAT to
search for ZC linear hulls of tweakable block ciphers. This automatic method
was then reused by Niu et al. [28] to revisit the ZC linear hulls of SKINNY-64-
128 and SKINNY-64-192.

The following theorem is a natural generalization of Theorem 1 to the case
of tweakable block ciphers.

Theorem 3. Let EK(T, P) : Ft×n2 → Fn2 , be a tweakable block cipher. Moreover,
suppose that A is a subspace of Ft×n2 , and β ∈ Fn2 \{0}, such that ((α1, α2), β) is
a ZC linear approximation for any (α1, α2) ∈ A. then, for any (λ1, λ2) ∈ Ft×n2 ,
〈β,EK(t+ λ1, x+ λ2)〉 is balanced over the following set:

A⊥ = {(t, x) ∈ Ft×n2 | 〈(α1, α2), (t, x)〉 = 0 for all (α1, α2) ∈ A}.

According to Theorem 3, the data complexity of the resulting integral distin-
guisher is 2n+t−d, where t, and n are the tweak and block sizes, respectively, and
d is the dimension of linear subspace A ⊆ Fn+t

2 .

10

2.4 Constraint Satisfaction and Constraint Optimization Problems

Constraint satisfaction problem (CSP) is a mathematical problem including a
set of constraints over a set of variables that should be satisfied. CSP is formally
defined as follows:

Definition 1. CSP is a triple (X ,D, C), where:

– X = {X0, X1, . . . , Xn−1} is a set of variables.
– D = {D0,D1, . . . ,Dn−1} is the set of domains, such that Xi ∈ Di for all

0 ≤ i ≤ n− 1.
– C = {C0, C1, . . . , Cn−1} is a set of constraints.

Each constraint Cj ∈ C is a tuple (Sj ,Rj), where Sj = {Xi0 , . . . , Xik−1
} ⊆ X

and Rj is a relation on the corresponding domains, i.e., Rj ⊆ Di0 ×· · ·×Dik−1
.

Any value assignments of the variables satisfying all constraints of a CSP
problem is a feasible solution. The constraint optimization problem extends the
CSP problem by including an objective function, a function of variables that
should be minimized (or maximized). The objective function is a function of
variables that should be minimized (or maximized). Searching for the solution
of a CSP or COP problem is usually referred to as constraint programming (CP),
and the solvers performing the search are called CP solvers.

We use MiniZinc [27] to model and solve the CSP and COP problems over
integer and real numbers. MiniZinc allows modeling the CSP and COP problems
in a high-level and solver-independent way. It compiles the model into FlatZinc,
a standard language supported by a wide range of CP solvers. For CSP/COP
problems over integer numbers, we use Or-Tools [29], and for CSP/COP prob-
lems over real numbers, we employ Gurobi [16] as the solver.

2.5 Specification of the SKINNY family of tweakable block ciphers

The SKINNY family of tweakable block ciphers was introduced by Beierle et al. in
CRYPTO 2016 [3]. Let n and t denote the block and tweakey sizes, respectively.
The SKINNY family has six main members. We use SKINNY-n-t to represent a
member of SKINNY family block ciphers with n-bit block size and t-bit tweakey
size. There are two proposed block sizes, n ∈ {64, 128}, and for each block size
there are three tweakey sizes available, t ∈ {n, 2n, 3n}. The internal state of
SKINNY can be viewed as a 4× 4 array of cells. Depending on the tweakey size,
the tweakey state can be viewed as a z 4×4 array of cells, where z = t

n ∈ {1, 2, 3}.
We use TK1, TK2, and TK3 to denote the tweakey arrays. The cell size is 4 (or
8) bits when n = 64 (resp. n = 128).

As illustrated in Figure 3, each round of SKINNY applies five basic opera-
tions to the internal state: SubCells (SC), AddConstants (AC), AddRoundTweakey
(ART), ShiftRows (SR), and MixColumns (MC). The SC operation applies a 4-bit
(or an 8-bit) S-box on each cell. AC combines the round constant with the in-
ternal state using the bitwise exclusive-or (XOR). In ART layer, the cells in the

11

0 1 2 3

4 5 6 7

8 9 a b

c d e f

Xr

SC
AC

Yr STKr Zr

≫1

≫2

≫3

Wr Xr+1

Fig. 3: Round function of SKINNY

first and the second rows of subtweakey are XORed to the corresponding cells
in the internals state. SR applies a permutation P on the position of the state
cells, where P = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]. MC multiplies each
column of the internal state by a non-MDS matrix M . M and its inverse are as
follows:

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 , M−1 =


0 1 0 0
0 1 1 1
0 1 0 1
1 0 0 1

 .

Figure 3 represents the variables we use to denote the internals states of
SKINNY after r rounds. We also use ∆Xr (ΓXr) to represent the difference
(resp. linear mask) of state Xr. To denote the ith cell of state Xr we use Xr[i],
where 0 ≤ i ≤ 15. STKr indicates the subtweakey in after r rounds, and ETKr =
MC ◦ SR(STKr) which is called the equivalent subtweakey in round r.

The tweakey schedule of SKINNY divides the master tweakey into z tweakey
arrays (TK1, . . . ,TKz) of lengths n bits each, where z ∈ {1, 2, 3}. Then, each
tweakey array follows an independent schedule. The subtweakey of the ith round
is generated as follows:

STKr = TK1r if t = n

STKr = TK1r ⊕ TK2r if t = 2n

STKr = TK1r ⊕ TK2r ⊕ TK3r if t = 3n,

(6)

where TK1r, TK2r, TK3r, denote the tweakey arrays in round r and are gen-
erated as follows. First, a permutation h is applied to each tweakey array, such
that TKmr[n]← TKmr−1[h(n)] for all 0 ≤ n ≤ 15, and m ∈ {1, 2, 3}. Next, an
LFSR is applied to each cell of the first and the second rows of TK2r and TK3r.
For more details on the specification of SKINNY we refer the reader to [3].

For any fixed i ∈ {0, . . . , 15}, and R ∈ N, we define the ith lane of tweakey
TK1,TK2, and TK3 as follows:

Lane1[i] = [TK1[hr(i)] : 0 ≤ r ≤ R− 1],

Lane2[i] = [Lr2(TK2[hr(i)]) : 0 ≤ r ≤ R− 1],

Lane3[i] = [Lr3(TK3[hr(i)]) : 0 ≤ r ≤ R− 1],

(7)

where L2 and L3 are the linear transformations corresponding to the LFSRs in
tweakey paths TK2, and TK3, respectively.

12

0 1 2 3

4 5 6 7

0 1 2 3

0 1 2 3

7 4 5 6

0 1 2 3

SR
MC

STKr ETKr

Fig. 4: Relation between the subtweakey and the equivalent subtweakey

2.6 Encoding Deterministic Truncated Trails

Here, we recall the method proposed in [35] to encode deterministic truncated
differential trails. Thanks to the duality relation between differential and linear
analysis, one can adjust this method for deterministic truncated linear trails;
thus, we omit the details for the linear trails. We define two types of variables
to encode the deterministic truncated differential trails. Assume that ∆X =
(∆X[0], . . . ,∆X[m − 1]) represents the difference of the internal state X in an
n-bit block cipher E, where n = m · c, and ∆X[i] ∈ Fc2 for all i = 0, . . . ,m− 1.
We use an integer variable AX[i] to encode the activeness pattern of ∆X[i] which
is defined as follows:

AX[i] =


0, if ∆X[i] = 0

1, if ∆X[i] is nonzero and fixed

2, if ∆X[i] can be any value in {1, . . . , 2c − 1}
3, if ∆X[i] can take any value

We also use an integer variable DX[i] to encode the actual c-bit difference value
of ∆X[i], which is defined as follows:

DX[i] ∈


{0}, if AX[i] = 0

{1, . . . , 2c − 1}, if AX[i] = 1

{−1}, if AX[i] = 2

{−2}, if AX[i] = 3

Then, we include the following constraints to link AX[i] and DX[i] for all i =
0, . . . ,m− 1:

Link(AX[i], DX[i]) :=


if AX[i] = 0 then DX[i] = 0

elseif AX[i] = 1 then DX[i] > 0

elseif AX[i] = 2 then DX[i] = −1

else DX[i] = −2 endif

Note that, MiniZinc supports conditional expression ‘if-then-else-endif ’,
and we have not to convert it to integer inequalities. In what follows, we briefly
explain the propagation rules of deterministic truncated differential trails through
the building blocks of block ciphers.

13

Proposition 1 (Branching). For F : Fc2 → F2c
2 , F (X) = (Y, Z), where Z =

Y = X, the following constraints encode all valid transitions for deterministic
truncated differential trails through F :

Branch(AX, DX, AY, DY, AZ, DZ) := (AZ = AX ∧ DZ = DX ∧ AY = AX ∧ DY = DY)

Proposition 2 (XOR). For F : F2c
2 → Fc2, F (X,Y) = Z, where Z = X ⊕ Y ,

the following constraints encode all valid transitions for deterministic truncated
differential trails through F :

XOR(AX, DX, AY, DY, AZ, DZ) :=



if AX + AY > 2 then AZ = 3 ∧ DZ = −2

elseif AX + AY = 1 then AZ = 1 ∧ DZ = DX + DY

elseif AX = AY = 0 then AZ = 0 ∧ DZ = 0

elseif DX + DY < 0 then AZ = 2 ∧ DZ = −1

elseif DX = DY then AZ = 0 ∧ DZ = 0

else AZ = 1 ∧ DZ = DX⊕ DY endif

Proposition 3 (S-box). Assume that S : Fc2 → Fc2 is an c-bit S-box and Y =
S(X). The following constraints encode all valid transitions for deterministic
truncated differential trails through S:

S-box(AX, AY) :=(AY 6= 1 ∧ AX + AY ∈ {0, 3, 4, 6} ∧ AY ≥ AX ∧ AY− AX ≤ 1)

Proposition 4. For M : Fq·c2 → Fq·c2 , where M is an MDS matrix and Y =
M(X), the following constraints encode all valid transitions for deterministic
truncated differential trails through M :

MDS(AX, DX, AY, DY) :=

if

q−1∑
i=0

AX[i] = 0 then AY[0] = AY[1] = · · · = AY[q − 1] = 0

elseif

q−1∑
i=0

AX[i] = 1 then AY[0] = AY[1] = · · · = AY[q − 1] = 1

elseif

q−1∑
i=0

AX[i] = 2 ∧
m−1∑
i=0

DX[i] < 0 then AY[0] = AY[1] = · · · = AY[q − 1] = 2

else AY[0] = AY[1] = · · · = AY[q − 1] = 3 endif

For non-MDS matrices, such as the matrix employed in SKINNY, as illus-
trated in Section B, we can use the rules of XOR and branching to encode the
propagation.

3 Modeling the Distinguishers

Although the key recovery of ZC and ID attacks are different, the construction of
ZC and ID distinguishers relies on the same approach, which is the miss-in-the-
middle technique. The miss-in-the-middle technique was firstly used by Biham et

14

al. [4,5] to build the ID distinguishers. The idea is to find two differences (linear
masks) that propagate halfway through the cipher forward and backward with
certainty but contradict each other in the middle. The incompatibility between
the halfway deterministic propagations results in an impossible differential (resp.
unbiased linear hull).

Fig. 5: Modeling the miss-in-the-middle technique as a CSP problem

Suppose we are looking for an ID or ZC distinguisher for Ed, which represents
rd rounds of a block cipher E. Moreover, we assume that the block size of E is n
bits, where n = m · c with c being the cell size and m being the number of cells.
We convert the miss-in-the-middle technique to a CSP problem to find the ID
and ZC distinguishers automatically. To do so, as illustrated in Figure 5 we first
divide Ed into two parts: Eu, and El covering ru, and rl rounds, respectively. We
refer to Eu and El as the upper and lower parts of the distinguisher, respectively.
The trails discovered for Eu (El) are referred to as upper (resp. lower) trails,
hereafter. We also use XUr (XLr) to represent the internals state of Eu (El)
after r rounds. The internal state, which is in the intersection of Eu and El, i.e.,
XUru (or XL0), is called the meeting point.

As Figure 5 shows, let AXUr and AXLr indicate the activeness pattern of the
state variables XUr and XLr, respectively. Moreover, let DXUr and DXLr de-
note the actual difference values of state variables in round r of Eu and El,
respectively. We encode the deterministic truncated differential trails propaga-
tion through Eu and El in opposite directions as two independent CSP prob-
lems. To encode the deterministic truncated trails, we use the rules described
in Section 2.6. We also exclude the trivial solutions by adding the constraints∑m−1
i AXU0[i] 6= 0 and

∑m−1
i AXLrl 6= 0, for the upper and lower trails, re-

spectively. Let CSPu(AXU0, DXU0, . . . , AXUru , DXUru) be the model for propagation

15

of deterministic truncated trails over Eu, and CSPl(AXL0, DXL0, . . . , AXLrl , DXLrl)
be the model for propagation of deterministic truncated trails over E−1

l . Thus,
any feasible solutions of CSPu (CSPl) corresponds to a deterministic truncated
differential trail through Eu (resp. E−1

l).

Note that, the last internal state in Eu and the first internal state of El

overlap at the meeting point, i.e., they correspond to the same internals state.
We define some additional constraints to ensure the incompatibility between
the deterministic differential trails of Eu, and El at the position of the meeting
point, as follows:

CSPM (AXUrl , DXUrl , AXL0, DXL0) :=

m−1∨
i=0

(AXUru [i] + AXL0[i] > 0) ∧
(AXUru [i] + AXL0[i] < 3) ∧
AXUru [i] 6= AXL0[i]

 ∨ m−1∨
i=0

AXUru [i] = 1 ∧
AXL0[i] = 1 ∧
DXUru [i] 6= DXL0[i]

 = True
(8)

It can be seen that the constraints included in CSPM guarantee the incom-
patibility between the upper and lower deterministic trails in at least one cell
at the meeting point. Lastly, we define CSPd := CSPu ∧ CSPl ∧ CSPM , which is
the union of all three CSP problems. As a result, any feasible solution of CSPd
corresponds to an impossible differential. We can follow the same approach to
find ZC distinguishers.

Although we encode the deterministic truncated trails in the same way as [35],
our method to search for distinguishers has some important differences. Sun et al.
[35] solves CSPu and CSPl separately through a loop where the activeness pattern
of a cell at the meeting point is fixed in each iteration. The main advantage of our
model is that any solutions of CSPd corresponds to an ID (or ZC) distinguisher.
In addition, we do not constrain the value of our model at the input/output or
at meeting point. These key feature enables us to extend our model for the key
recovery and build a unified COP for finding the nearly optimum ID and ZC
attacks in the next sections.

We showed how to encode and detect the contradiction in the meeting point.
However, the contradiction may occur in other positions, such as in the tweakey
schedule (see Theorem 2). Our method to model the distinguishers is not limited
to the basic miss-in-the-middle technique. One can extend this model to encode
the contradiction beyond the meeting point to find longer distinguishers. In what
follows, we show how to generalize this approach to detect the contradiction in
the tweakey schedule while searching for ZC-Integral distinguishers according to
Theorem 2.

Suppose that the block cipher E follows the STK construction of the tweakey
framework with p parallel independent paths in the tweakey schedule. Moreover,
assume that E applies the permutation h to shuffle the position of cells in each
path of tweakey schedule. Let STKr[i] be the ith cell of subtweakey after r
rounds, where i = 0, . . . ,m − 1. For all i = 0, . . . ,m − 1, we define the inte-
ger variable ASTKr[i] ∈ {0, 1, 2, 3}, to indicate the activeness pattern of STKr[i].
Then we define the following constraints to ensure that there is a contradiction

16

in the tweakey schedule and the condition of Theorem 2 holds:

CSPTK(ASTK0, . . . , ASTKrd−1) :=

m−1∨
i=0




rd−1∑
r=0

bool2int
(
ASTKr[h(r)(i)] 6= 0

)
≤ p

∧
rd−1∨
r=0

(
ASTKr[h(r)(i)] = 1

)
 ∨

(
rd−1∧
r=0

ASTKr[h(r)(i)] = 0

)
= True

(9)

As you can see, Equation 9 guarantees that at least one lane of tweakey schedule
has at most p active cells, or it is totally inactive. Finally, we make the CSP
problem CSPd :=CSPu ∧ CSPl ∧ CSPTK to find the ZC distinguishers of tweakable
block ciphers taking the tweakey schedule into account.

We assume that the round keys are independent. Thus, our method regards
even those differential or linear propagations over multiple rounds that can not
occur due to the global dependency between the round keys as possible propa-
gations. We also consider the S-box a black box and do not exploit its internal
structure. As a result, regardless of the (twea)key schedule and the choice of
S-box, the impossible differentials (ZC linear hulls) discovered by our method
are always valid.

4 Modeling the Key Recovery of Impossible Differential
Attack

In this section we present a generic framework which receives four integer num-
bers (rb, ru, rl, rf), i.e., the lengths of each part in Figure 1, and outputs an
optimized full ID attack for r = rb + ru + rl + rf rounds of the targeted block
cipher. To this end, we extend the CSP model for ID distinguishers in Section 3
to make a unified COP model for finding an optimized full ID attack taking all
critical parameters affecting the final complexity into account.

Before discussing our framework, we first reformulate the complexity analysis
of the ID attack to make it compatible with our COP model. Suppose that
the block size is n bits and the key size is k bits. Let N be the number of
pairs generated in the pair generation phase, and P represents the probability
that a wrong key survives the guess-and-filter step. According to Section 2.1,
P = (1 − 2−(cb+cf))N . Let g be the number of key bits we can retrieve through
the guess-and-filter step, i.e., P = 2−g. Since P < 1

2 , we have 1 < g ≤ |kb ∪ kf|.
Assuming that (1−2−(cb+cf))N ≈ e−N ·2−(cb+cf)

, we have N = 2cb+cf+log2(g)−0.53.
Moreover, suppose that LG(g) = log2(g) − 0.53. Therefore, we can reformulate

17

the complexity analysis of the ID attack as follows:

T0 = max

 min
∆∈{∆b,∆f}

{2
cb+cf+n+1−|∆|+LG(g)

2 },

2cb+cf+n+1−|∆b|−|∆f|+LG(g)

 , T0 < 2n,

T1 = 2cb+cf+LG(g), T2 = 2|kb∪kf|+LG(g), T3 = 2k−g,

Ttot = (T0 + (T1 + T2)CE′ + T3)CE , Ttot < 2k,

Mtot = min
{

2cb+cf+LG(g), 2|kb∪kf|
}
, Mtot < 2k.

(10)

When searching for an optimal full ID attack, we aim to minimize the to-
tal time complexity while keeping the memory and data complexities under the
threshold values. As can be seen in Equation 10, cb, cf, |∆b|, |∆f|, and |kb ∪ kf|,
are the critical parameters which directly affect the final complexity of the ID
attack. To determine (cb, |∆b|) ((cf, |∆f|)), we need to model the propagation of
truncated differential trails through Eb (resp. E−1

f), taking the probability of all
differential cancellations into account. To determine kb (kf), we need to detect
the state cells whose difference or data values are needed through the partial en-
cryption (resp. decryption) over Eb (resp. Ef). Moreover, to determine the actual
size of kb∪kf, we should take the (twea)key schedule and key-bridging technique
into account. For these purposes, we present a genic COP model including the
following main components:

– Model the distinguisher. In this component, we model the distinguisher
part as we described in Section 3. Unlike the previous methods, our model
does not have any constraints for the input/output of the distinguisher.

– Model the difference propagation in outer parts. This component

models the propagation of truncated differential trails ∆b
E−1

b←−−− ∆u, and

∆l
Ef−→ ∆f with probability one. Unlike our model for the distinguisher

part, where we use integer variables with domain {0, . . . , 3}, here, we use
binary variables to only encode active/inactive cells through propagation.
We also model the number of filters, i.e., cb, and cf. To do so, we use some
additional binary variables and new constraints to encode the probability of

∆b
Eb−−→ ∆u and ∆l

E−1
f←−−− ∆f.

– Model the guess-and-determine in outer parts. In this component, we
model the determination relationships over Eb and Ef to detect the state cells
whose difference or data values must be known for verifying the differences
∆u, and ∆l. Moreover, we model the relation between round (twea)keys
and the internal state to detect the (twea)key cells whose values should be
guessed during the determination of data values over Eb, and Ef.

– Model the key bridging. In this component, taking the (twea)key schedule
into account, we model the relations between the sub-(twea)keys to deter-
mine the actual number of involved sub-(twea)keys in the key recovery. For
this component, we can use the general CP-based model for key-bridging
proposed by Hadipour and Eichlseder in [17], or we can use cipher dedicated
models.

18

– Model the complexity formulas. In this component, we model the com-
plexity formulas in Equation 10. To do so, we include the following con-
straints to the model:

D[0] :=min∆∈{∆b,∆f}{
cb + cf + n+ 1− |∆|+ LG(g)

2
},

D[1] :=cb + cf + n+ 1− |∆b| − |∆f|+ LG(g),

T[0] :=max {D[0], D[1]} , T[0] < n,

T[1] :=cb + cf + LG(g), T[2] := |kb ∪ kf|+ LG(g), T[3] :=k − g,
T :=max{T[0], T[1], T[2], T[3]}, T < k.

(11)

Lastly, we set the objective function to Minimize T.

Note that all variables in our model are binary or integer variables with a
limited domain except for D, and T[i] for i ∈ {0, 1, 2, 3}, in Equation 11 which
are real numbers. MiniZinc and many MILP solvers such as Gurobi support max,
and min operators. We also precompute the values of LG(g) with 3 floating point
precision for all g ∈ {2, . . . , k}, and use the table feature of MiniZinc to model
LG(g). As a result, our COP model considers all the critical parameters of the
ID attacks. We recall that the only input of our tool is four integer numbers to
specify the lengths of Eb, Eu, El, and Ef. So, one can try different lengths for
these four parts to find a nearly optimal attack. We can also modify the objective
function of our model to minimize the data or memory complexities where time
or any other parameter is constrained. Although we discussed our model in the
single (twea)key setting, one can extend it for the related (twea)key setting as
will show in Section 4.

Another application of our method, which the previous methods can not
cover, is checking the validity of the ID attack with predefined attack parame-
ters. For instance, one can remove the objective function and limit the attack
parameters, such as the time and data complexities, to a specific bound to check
if there is an ID attack with the given parameters. If the resulting CSP model
becomes infeasible, the claimed ID attack will likely be invalid.

4.1 Application to SKINNY

In the previous section, we provided a high-level view of our method. Here, we
show in more detail how to perform each step. To this end, we build the COP
model for finding related-tweakey full ID attacks on SKINNY. We choose the
largest variant of SKINNY, i.e., SKINNY-n-3n as our example. Thus, one can
model the more minor variants of SKINNY by simplifying this model. In what
follows, given four integer numbers rb, ru, rl, rf, we model the full ID attack on
r = rb + ru + rl + rf rounds of SKINNY, where rd = ru + rl is the length of
the distinguisher and rb, and rf are the lengths of extended parts in backward
and forward directions, respectively. Moreover, we assume that the cell size is
c ∈ {4, 8}.

19

Model the distinguisher We first model the difference propagation through
the tweakey schedule of SKINNY according to algorithm 1. The tweakey path
of TK1 only shuffles the position of tweakey cells in each round. Thus, for
tweakey path TK1, we only define the integer variable DTK1[i] to encode the
c-bit difference in the ith cell of TK1. For tweakey paths TK2, and TK3, we
define the integer variables DTKmr[i] to encode the c-bit difference value in the
ith cell of TKmr, where 0 ≤ i ≤ 15, and m ∈ {2, 3}. We also define the integer
variables ASTKr[i], and DSTKr[i] to encode the activeness pattern as well as the
c-bit difference value in the ith cell of STKr. As you can see in algorithm 1, our
CSP model for the tweakey schedule of SKINNY is a bit-wise model.

Algorithm 1: CSP Model for the Tweakey Schedule of SKINNY

Input: Four integer numbers (rb, ru, rl, rf)
Output: CSPDTK

1 R← rb + ru + rl + rf − 1;
2 Declare an empty CSP model M;
3 M.var← {DTK1[i] ∈ {0, . . . , 2c − 1} : 0 ≤ i ≤ 15};
4 M.var← {DTK2r[i] ∈ {0, . . . , 2c − 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 15};
5 M.var← {DTK3r[i] ∈ {0, . . . , 2c − 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 15};
6 M.var← {ASTKr[i] ∈ {0, 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 7};
7 M.var← {DSTKr[i] ∈ {0, . . . , 2c − 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 7};
8 for r = 0, . . . , R; i = 0, . . . , 7 do
9 M.con← Link(ASTKr[i], DSTKr[i]);

10 for r = 1, . . . , R; i = 0, . . . 15 do
11 if i ≤ 7 then
12 M.con← table([DTK2r−1[h(i)], DTK2r[i]], lfsr2);
13 M.con← table([DTK3r−1[h(i)], DTK3r[i]], lfsr3);

14 else
15 M.con← DTK2r[i] = DTK2r−1[h(i)];
16 M.con← DTK3r[i] = DTK3r−1[h(i)];

17 for r = 0, . . . , R; i = 0, . . . 7 do
18 M.con← DSTKr[i] = DTK1[hr(i)]⊕ DTK2r[i]⊕ DTK3r[i];

19 returnM;

In the data path of SKINNY, SubCells, AddRoundTweakey, and MixColumns
can change the activeness pattern of the state while propagating the determinis-
tic differences. Thus, for the internal state before and after these basic operations,
we define two types of variables to encode the activeness pattern and difference
value in each state cell. Next, as described in algorithm 2, and algorithm 3,
we build the CSPu and CSPl, respectively. We also build the CSPM according to
Equation 8. Lastly, we combine the generated CSP models as follows:

CSPd := CSPu ∧ CSPl ∧ CSPM ∧ CSPDTK .

20

Hence, any feasible solution of CSPd yields a related-tweakey ID distinguisher for
SKINNY-n-3n. By setting DTK30 in algorithm 1 to zero we can find the related-
tweakey ID distinguishers for SKINNY-n-2n. We can also set DTK1, DTK20, DTK30

in algorithm 1 to zero to find the single tweaeky ID distinguishers of SKINNY.

Algorithm 2: CSPu Model for SKINNY

Input: CSPDTK .var and the integer numbers rb, ru
Output: CSPu

1 roff ← rb;
2 Declare an empty CSP model M;
3 M.var← CSPDTK .var;
4 M.var← {AXUr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
5 M.var← {DXUr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
6 M.var← {AYUr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
7 M.var← {DYUr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
8 M.var← {AZUr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
9 M.var← {DZUr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};

10 M.con←
∑16

i=0 AXU0[i] +
∑16

i=0 DTK1[i] +
∑16

i=0 DTK20 +
∑16

i=0 DTK30[i] ≥ 1;
11 for r = 0, . . . , ru − 1, i = 0, . . . , 15 do
12 M.con←Link(AXUr[i],DXUr[i])∧Link(AYUr[i],DYUr[i])∧Link(AZUr[i],DZUr[i]);

13 for r = 0, . . . , ru − 1, i = 0, . . . , 15 do
14 M.con← S-box(AXUr[i], AYUr[i]);

15 for r = 0, . . . , ru − 1, i = 0, . . . , 7 do
16 M.con← XOR(AXUr[i], DXUr[i], ASTKroff+r[i], DSTKroff+r[i], AZUr[i], DZUr[i]);
17 M.con← (AZUr[i+ 8] = AYUr[i+ 8]) ∧ (DZUr[i+ 8] = DYUr[i+ 8]);

18 for r = 0, . . . , ru − 1, i = 0, . . . , 3 do
19 I1 ← [AZUr[P [i]], AZUr[P [i+ 4]], AZUr[P [i+ 8]], AZUr[P [i+ 12]]];
20 I2 ← [DZUr[P [i]], DZUr[P [i+ 4]], DZUr[P [i+ 8]], DZUr[P [i+ 12]]];
21 O1 ← [AXUr+1[i], AXUr+1[i+ 4], AXUr+1[i+ 8], AXUr+1[i+ 12]];
22 O2 ← [DXUr+1[i], DXUr+1[i+ 4], DXUr+1[i+ 8], DXUr+1[i+ 12]];
23 M.con← Mdiff (I1, I2, O1, O2);

24 returnM;

The first operation in the round function of SKINNY is the SubCells. However,
we can consider the first SubCells layer as a part of Eb and start the distinguisher
after it. This way, our model takes advantage of the differential cancellation over
the AddRoundTweakey and MixColumns layers to derive longer distinguishers. It
happens if the input differences in the internal state (or tweakey paths) are fixed
and can cancel out each other through the AddRoundTweakey or MixColumns.
In this case, we should skip the constraints in line 14 of algorithm 2 for the first
round, i.e., r = 0.

21

Algorithm 3: CSPl Model for SKINNY

Input: CSPDTK .var and the integer numbers rb, ru, rl
Output: CSPu

1 roff ← rb + ru;
2 Declare an empty CSP model M;
3 M.var← CSPDTK .var;
4 M.var← {AXLr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ rl, 0 ≤ i ≤ 15};
5 M.var← {DXLr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ rl, 0 ≤ i ≤ 15};
6 M.var← {AYLr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ rl, 0 ≤ i ≤ 15};
7 M.var← {DYLr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ rl, 0 ≤ i ≤ 15};
8 M.var← {AZLr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ rl, 0 ≤ i ≤ 15};
9 M.var← {DZLr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ rl, 0 ≤ i ≤ 15};

10 M.con←
∑15

i AXLrl [i] +
∑15

i=0 DTK1[i] +
∑15

i=0 DTK20 +
∑15

i=0 DTK30[i] ≥ 1;
11 for r = 0, . . . , rl − 1, i = 0, . . . , 15 do
12 M.con←Link(AXLr[i],DXLr[i])∧Link(AYLr[i],DYLr[i])∧Link(AZLr[i],DZLr[i]);

13 for r = 0, . . . , rl − 1, i = 0, . . . , 3 do
14 I1 ← [AXLr+1[i], AXLr+1[i+ 4], AXLr+1[i+ 8], AXLr+1[i+ 12]];
15 I2 ← [DXLr+1[i], DXLr+1[i+ 4], DXLr+1[i+ 8], DXLr+1[i+ 12]];
16 O1 ← [AZLr[P [i]], AZLr[P [i+ 4]], AZLr[P [i+ 8]], AZLr[P [i+ 12]]];
17 O2 ← [DZLr[P [i]], DZLr[P [i+ 4]], DZLr[P [i+ 8]], DZLr[P [i+ 12]]];
18 M.con← Minvdiff (I1, I2, O1, O2);

19 for r = 0, . . . , rl − 1, i = 0, . . . , 7 do
20 M.con← XOR(AZLr[i], DZLr[i], ASTKroff+r[i], DSTKroff+r[i], AXLr[i], DXLr[i]);
21 M.con← (AYLr[i+ 8] = AZLr[i+ 8]) ∧ (DYLr[i+ 8] = DZLr[i+ 8]);

22 for r = 0, . . . , rl − 1, i = 0, . . . , 15 do
23 M.con← S-box(AYLr[i], AXLr[i]);

24 returnM;

Model the difference propagation in outer parts To model the determin-

istic difference propagations ∆b
E−1

b←−−− ∆u, and ∆l
Ef−→ ∆f, we define a binary

variable for each state cell to indicate whether its difference value is zero. Since
the SubCells layer does not change the status of state cells in terms of having
zero/nonzero differences, we ignore it in this model.

To model the probability of difference propagations ∆b
Eb−−→∆u, and ∆l

E−1
f←−−−

∆f, we note that there are two types of probabilistic transitions. The first type
is differential cancellation through the XOR operation. The second type is any

differential transition (truncated
S−→ fixed) over the S-boxes. The second type

only happens at the boundary of the distinguisher, i.e., the first S-box layer of
Ef, or the last S-box layer of Eb, where a state cell has a fixed difference value
at the input/output of distinguisher.

Let, Z = X ⊕ Y , where X,Y, Z ∈ Fc2. Moreover, let AX, AY, AZ ∈ {0, 1}
indicate whether the difference of X,Y, Z are zero, respectively. We define the
new constraint XOR1 to model the difference propagation with probability one

22

through the XOR operation as follows:

XOR1(AX, AY, AZ) := (AZ ≥ AX) ∧ (AZ ≥ AY) ∧ (AZ ≤ AX + AY) (12)

We define a binary variable CBr[i] (CFr[i]) for each XOR operation in the rth
round of Eb (resp. Ef) to indicate whether there is a difference cancellation
over the corresponding XOR, where 0 ≤ i ≤ 19. We also define the following
constraint to encode the differntial cancellation for each XOR operation:

XORp(AX, AY, AZ, CB) := if (AX+AY = 2∧AZ = 0) then CB = 1 else CB = 0 (13)

The algorithm 4, and algorithm 5 describes our model for difference propagation
over Eb, and Ef, respectively. We combine CSPdpb and CSP

dp
f into CSPDP := CSP

dp
b ∧

CSP
dp
f to model the difference propagation through the outer parts.

Algorithm 4: CSPdpb Model for SKINNY

Input: CSPDTK .var, CSPu.var and the integer number rb
Output: CSPdpb

1 Declare an empty CSP model M;
2 M.var← CSPDTK .var;
3 M.var← {AXBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
4 M.var← {AZBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
5 M.var← {CBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 19};
6 for i = 0, . . . , 15 do
7 M.con← if AXU0[i] ≥ 1 then AXBrb [i] = 1 else AXBrb [i] = 0;

8 for r = 0, . . . , rb − 1, i = 0, . . . , 3 do

9 M.con← Minvdiff1




AXBr+1[i]
AXBr+1[i+ 4]
AXBr+1[i+ 8]
AXBr+1[i+ 12]

 ,


AZBr[P [i]]

AZBr[P [i+ 4]]
AZBr[P [i+ 8]]
AZBr[P [i+ 12]]


;

10 M.con← XORp(AZBr[P [i+ 4]], AZBr[P [i+ 8]], AXBr+1[i+ 8], CBr[i]);
11 M.con← XORp(AZBr[P [i]], AZBr[P [i+ 8]], AXBr+1[i+ 12], CBr[i+ 4]);
12 M.con← XORp(AXBr+1[i+ 12], AZBr[P [i+ 12]], AXBr+1[i], CBr[i+ 8]);

13 for r = 0, . . . , rb − 1, i = 0, . . . , 7 do
14 M.con← XOR1(AZBr[i], ASTKr[i], AXBr[i]);
15 M.con← XORp(AXBr[i], ASTKr[i], AZBr[i], CBr[i+ 12]);
16 M.con← (AXBr[i+ 8] = AZBr[i+ 8]);

17 returnM;

Model the guess-and-determine in outer parts In this section we show
how to detect the state cells whose difference or data value are needed to verify
the filters in differenece propagations ∆b → ∆u, and ∆l ← ∆f.

23

Algorithm 5: CSPdpf Model for SKINNY

Input: CSPDTK .var, CSPl.var and the integer numbers rb, ru, rb, rf
Output: CSPdpf

1 roff ← rb + ru + rl;
2 Declare an empty CSP model M;
3 M.var← CSPDTK .var;
4 M.var← {AXFr[i] ∈ {0, 1} : 0 ≤ r ≤ rf, 0 ≤ i ≤ 15};
5 M.var← {AZFr[i] ∈ {0, 1} : 0 ≤ r ≤ rf − 1, 0 ≤ i ≤ 15};
6 M.var← {CFr[i] ∈ {0, 1} : 0 ≤ r ≤ rf − 1, 0 ≤ i ≤ 19};
7 for i = 0, . . . , 15 do
8 M.con← if AXLrl [i] ≥ 1 then AXF0[i] = 1 else AXF0[i] = 0;

9 for r = 0, . . . , rf − 1, i = 0, . . . , 7 do
10 M.con← XOR1(AXFr[i], ASTKroff+r[i], AZFr[i]);
11 M.con← XORp(AZFr[i], ASTKroff+r[i], AXFr[i], CFr[i]);
12 M.con← (AZFr[i+ 8] = AXFr[i+ 8]);

13 for r = 0, . . . , rf − 1, i = 0, . . . , 3 do

14 M.con← Mdiff1




AZFr[P [i]]
AZFr[P [i+ 4]]
AZFr[P [i+ 8]]
AZFr[P [i+ 12]]

 ,


AXFr+1[i]

AXFr+1[i+ 4]
AXFr+1[i+ 8]
AXFr+1[i+ 12]


;

15 M.con← XORp(AZFr[P [i+ 8]], AXFr+1[i+ 8], AZFr[P [i+ 4]], CFr[i+ 8]);
16 M.con← XORp(AXFr+1[i+ 4], AXFr+1[i+ 12], AZFr[P [i+ 8]], CFr[i+ 12]);
17 M.con← XORp(AXFr+1[i], AXFr+1[i+ 12], AZFr[P [i+ 12]], CFr[i+ 16]);

18 returnM;

We first discuss detecting the state cells whose difference values are needed.
The difference value in a state cell is needed if the corresponding state cell con-
tributes to a filter, i.e., a differential cancellation. We know that AddRoundTweakey
and MixColumns are the only places where a differential cancellation may occur.
So, we define the binary variables KDXBr[i], and KDZBr[i] to indicate whether
the difference value of Xr[i], and Zr[i] over Eb should be known, respectively.
We recall that the difference cancellation through each XOR over Eb is already
encoded by CBr[i] variables. As a result, if CBr[i] = 1, then the difference value
in the states cells contributing to this diferential cancellation is needed. For in-
stance, if CBr[i] = 1, then KDZBr[P [i + 4]] = 1, and KDZBr[P [i + 4]] = 1, where
0 ≤ i ≤ 3, and 0 ≤ r ≤ ru − 1. Besides detecting the new state cells whose
difference values are needed in each round, we should encode the propagation
of this property from the previous rounds. The lines line 12 to line 15 of algo-
rithm 6 describes how to do this. We also define new constraint according to
line 9 of algorithm 6 to link the beginning of Eu to the end of Eb. For Ef , we
also define new binary variables KDXFr[i], and KDZFr[i] to indicate whether the
difference values of Xr[i], and Zr[i] are needed, respectively. Then, we follow a
similar approach to model the determination of difference values.

24

When modeling the determination of data values, the SubCells comes into
effect. We explain modeling the determination of data values over S-boxes in
Eb. However, a similar model can be used for Ef. Suppose that Yr[i] = S(Xr[i]),
and the value of ∆Xr is known. If we want to determine the value of ∆Yr[i],
e.g., to check a filter, we need to know the value of Xr[i]. Accordingly, we need
the value of Xr[i] either we want to determine Yr[i], or we want to determine
∆Yr[i]. On the other hand, if neither data nor difference values after the S-box
is needed, we do not need to know the data value before the S-box. Therefore,
we define binary variables KXBr[i] and KYBr[i] to indicate whether the values of
Xr[i] and Yr[i] are needed, respectively. Then, we model the determination flow
over the S-boxes as follows:

S-boxgd(KXBr[i], KYBr[i], KDXBr[i]) :=

{
(KYBr[i] ≥ KXBr[i]) ∧ (KYBr[i] ≥ KDXBr[i])∧
(KYBr[i] ≤ KXBr[i] + KDXBr[i])

(14)
We also model the MixColumns according to Equation 18 when encoding the
determination of data values over Eb and Ef .

We now explain how to detect the subtweakey cells that are involved in the
determination of data values. Let IKBr[i] be a binary variable that indicates
whether the ith cell of subtweakey in the rth round of Eb is invloved, where
0 ≤ r ≤ rb − 1, and 0 ≤ i ≤ 15. One can see that IKBr[i] = 1 if and only
if i ≤ 7, and KYBr[i] = 1. Otherwise IKBr[i] = 0. We define binary variables
IKFr[i] to encode the involved subtweakey in Ef similarly. The algorithm 6 and
algorithm 7 describes our CSP models for the guess-and-determine through Eb,
and Ef, respectively. We refer to CSPGD := CSP

gd
b ∧ CSPgdf as our CSP model for

the guess-and-determine through the outer parts.

Model the key bridging In the previous section, we modeled the involved sub-
tweakey cells using the variables IKBr[i], and IKFr[i] for Eb, and Ef, respectively.
Although the subtweakeys used in Eb and Ef are separated by rd rounds, they
may have some relations due to the tweakey schedule. So, guessing the values
of some involved key cells may determine the value of others. Key-bridging uses
the relations between subwteakeys to reduce the number of actual guessed key
variables. We can integrate the generic CSP model for key-bridging introduced
in [17] into our model. The model introduced in [17] is generic and can be used
for nonlinear (twea)key schedules. However, the tweakey schedule of SKINNY is
linear, and we provide a more straightforward method to model the key-bridging
of SKINNY. We explain our model for SKINNY-n-3n, but it can be adapted for
minor variants of SKINNY.

For the ith cell of subtweakey after r rounds, i.e., STKr[i], we have STKr[i] =
TK1r[i] ⊕ TK2r[i] ⊕ TK3r[i]. Moreover, TK1r[i],TK2r[i], and TK3r[i] are in
the ith lane of TK1,TK2, and TK3, respectively. According to Equation 7,
knowing STKr[h

r(i)] in three rounds yields three independent linear equations
in variables TK1[i],TK2[i],TK3[i] which uniquely determine the master tweakey
cells TK1[i],TK2[i], and TK3[i]. Hence, we do not need to guess STKr[h

r(i)] for

25

Algorithm 6: CSPgdb Model for SKINNY

Input: CSPu.var, CSPdpb and the integer number rb
Output: CSPgdb

1 Declare an empty CSP model M;

2 M.var← CSPu.var ∪ CSP
dp
b .var;

3 M.var← {KDXBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
4 M.var← {KDZBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
5 M.var← {KXBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
6 M.var← {KYBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
7 M.var← {IKBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
8 for i = 0, . . . , 15 do
9 M.con← if AXU0[i] = 1 then KDXBrb [i] = 1 else KDXBrb [i] = 0;

10 M.con← if AYU0[i] = 1 then KXBrb [i] = 1 else KXBrb [i] = 0;

11 for r = 0, . . . , rb − 1, i = 0, . . . , 3 do

12 M.con← if KDXBr+1[i] = 1 then

KDZBr[P [i]] = AXBr[P [i]]∧
KDZBr[P [i+ 8]] = AXBr[P [i+ 8]]∧
KDZBr[P [i+ 12]] = AXBr[P [i+ 12]]

;

13 M.con← if KDXBr+1[i+ 4] = 1 then KDZBr[P [i]] = AXBr[P [i]];

14 M.con← if KDZBr[P [i+8]] = 1 then

(
KDZBr[P [i+ 4]] = AXBr[P [i+ 4]]∧
KDZBr[P [i+ 8]] = AXBr[P [i+ 8]]

)
;

15 M.con← if KDZBr[P [i+12]] = 1 then

(
KDZBr[P [i]] = AXBr[P [i]] ∧
KDZBr[P [i+ 8]] = AXBr[P [i+ 8]]

)
;

16 M.con← if CBr[i] = 1 then (KDZBr[P [i+ 4]] = 1 ∧ KDZBr[P [i+ 8]] = 1);
17 M.con← if CBr[i+ 4] = 1 then (KDZBr[P [i]] = 1 ∧ KDZBr[P [i+ 8]] = 1);

18 M.con← if CBr[i+ 8] = 1 then

KDZBr[P [i]] = AXBr[P [i]] ∧
KDZBr[P [i+ 8]] = AXBr[P [i+ 8]] ∧
KDZBr[P [i+ 12]] = 1

;

19 M.con← Minvdata




KXBr+1[i]
KXBr+1[i+ 4]
KXBr+1[i+ 8]
KXBr+1[i+ 12]

 ,


KYBr[P [i]]

KYBr[P [i+ 4]]
KYBr[P [i+ 8]]
KYBr[P [i+ 12]]


;

20 for r = 0, . . . , rb − 1, i = 0, . . . , 7 do
21 M.con← KDXBr[i] ≥ KDZBr[i];
22 M.con← KDXBr[i+ 8] = KDZBr[i+ 8];
23 M.con← if CBr[i+ 12] = 1 then KDXBr[i] = 1;
24 M.con← (IKBr[i] = KYBr[i] ∧ IKBr[i+ 8] = 0);

25 for r = 0, . . . , rb − 1, i = 0, . . . , 15 do
26 M.con← S-boxgd(KYBr[i], KXBr[i], KDXBr[i]);

27 returnM;

more than three different rs. To take this fact into account, we first define new
integer variables IK ∈ {0, . . . , rb + rf− 1}, KE ∈ {0, 1, 2, 3}, and KS ∈ {0, . . . , 48}.
Then, assuming that roff = rb+ru+rl, and z = 3, we use the following constraints

26

Algorithm 7: CSPgdf Model for SKINNY

Input: CSPl.var, CSPdpf and the integer numbers rb, ru, rl, rf
Output: CSPgdf

1 roff ← rb + ru + rl;
2 Declare an empty CSP model M;

3 M.var← CSPl.var ∪ CSP
dp
f .var;

4 M.var← {KDXFr[i] ∈ {0, 1} : 0 ≤ r ≤ rf, 0 ≤ i ≤ 15};
5 M.var← {KDZFr[i] ∈ {0, 1} : 0 ≤ r ≤ rf − 1, 0 ≤ i ≤ 15};
6 M.var← {KXFr[i] ∈ {0, 1} : 0 ≤ r ≤ rf, 0 ≤ i ≤ 15};
7 M.var← {KYFr[i] ∈ {0, 1} : 0 ≤ r ≤ rf − 1, 0 ≤ i ≤ 15};
8 M.var← {IKFr[i] ∈ {0, 1} : 0 ≤ r ≤ rf − 1, 0 ≤ i ≤ 15};
9 for i = 0, . . . , 15 do

10 M.con← if AXLrl [i] = 1 then KDXF0[i] = 1 else KDXF0[i] = 0;
11 M.con← if AXLrl [i] = 1 then KXF0[i] = 1 else KXF0[i] = 0;

12 for r = 0, . . . , rf − 1, i = 0, . . . , 15 do
13 M.con← S-boxgd(KXFr[i], KYFr[i], KDXFr[i]);

14 for r = 0, . . . , rf − 1, i = 0, . . . , 7 do
15 M.con← KDZFr[i] ≥ KDXFr[i];
16 M.con← KDZFr[i+ 8] = KDXFr[i+ 8];
17 M.con← if CFr[i] = 1 then KDZFr[i] = 1;
18 M.con← (IKFr[i] = KYFr[i] ∧ IKFr[i] = 0);

19 for r = 0, . . . , rf − 1, i = 0, . . . , 3 do
20 M.con← if KDZFr[P [i]] = 1 then KDXFr+1[i+ 4] = AXFr+1[i+ 4];

21 M.con← if KDZFr[P [i+ 4]] = 1 then

KDXFr+1[i+ 4] = AXFr+1[i+ 4]∧
KDXFr+1[i+ 8] = AXFr+1[i+ 8]∧
KDXFr+1[i+ 12] = AXFr+1[i+ 12]

;

22 M.con← if KDZFr[P [i+ 8]] = 1 then

(
KDXFr+1[i+ 4] = AXFr+1[i+ 4]∧
KDXFr+1[i+ 12] = AXFr+1[i+ 12]

)
;

23 M.con← if KDXFr+1[i+12] = 1 then

(
KDXFr+1[i] = AXFr+1[i] ∧
KDXFr+1[i+ 12] = AXFr+1[i+ 12]

)
;

24 M.con← if CFr[i+ 8] = 1 then

KDXFr+1[i+ 4] = AXFr+1[i+ 4] ∧
KDXFr+1[i+ 12] = AXFr+1[i+ 12] ∧
KDXFr+1[i+ 8] = 1

;

25 M.con← if CFr[i+12] = 1 then (KDXFr+1[i+ 4] = 1∧KDXFr+1[i+ 12] = 1);
26 M.con← if CFr[i+ 16] = 1 then (KDXFr+1[i] = 1 ∧ KDXFr+1[i+ 12] = 1);

27 M.con← Mdata




KYFr[P [i]]
KYFr[P [i+ 4]]
KYFr[P [i+ 8]]
KYFr[P [i+ 12]]

 ,


KXFr+1[i]

KXFr+1[i+ 4]
KXFr+1[i+ 8]
KXFr+1[i+ 12]


;

28 returnM;

to model the key-bridging:

CSPKB :=


IK[i] =

rb−1∑
j=0

IKBr[h
r(i)] +

rf−1∑
k=0

IKFr[h
roff+r(k)] for 0 ≤ i ≤ 15,

if IK[i] ≥ z then KE[i] = z else KE[i] = IK[i] for 0 ≤ i ≤ 15,

KS =

15∑
i=0

KE[i]

(15)

27

We can model the key-bridging for SKINNY-n-2n, and SKINNY-n-n by choos-
ing z = 2, and z = 1 in Equation 15, respectively.

Model the complexity formulas Here, we show how to model the com-
plexity formulas based on the CSP models described in the previous sections.
The variable KS in Equation 15 determines the actual number of involved key
cells. Assuming that the cells size is c, the actual number of involved key bits is
|kb ∪ kf| = s · KS. We can model the other critical parameters of the ID attack
as shown in algorithm 8. Lastly, as illustrated in algorithm 8 we cobmine all
previous CSP problems into a unified model and define an ojective function to
minimize the final time complexity of the ID attack.

Algorithm 8: COP Model for the Full ID Attack on SKINNY

Input: Four integer numbers rb, ru, rl, rf
Output: COP

1 Declare an empty COP model M;
2 M← CSPd ∧ CSPDP ∧ CSPGD ∧ CSPKB;
3 M.var← g ∈ {1, . . . , z · 16 · c} ; /* Corresponding to parameter g */

4 M.var← Cb ∈ {0, . . . , 20 · rb + 16} ; /* Corresponding to cb */

5 M.var← Cf ∈ {0, . . . , 20 · rf + 16} ; /* Corresponding to cf */

6 M.var← Wb ∈ {0, . . . , 16} ; /* Corresponding to |∆b| */
7 M.var← Wf ∈ {0, . . . , 16} ; /* Corresponding to |∆f| */
8 M.var← {D[i] ∈ [0, z · 16 · c] : i ∈ {0, 1, 2, 3}} ; /* For data complexity */

9 M.var← {T[i] ∈ [0, z · 16 · c] : i ∈ {0, 1, 2, 3}} ; /* For time complexity */

10 M.var← Tmax ∈ [0, z · 16 · c];

11 M.var← Cb =
∑rb−1

r=1

∑19
i=0 CBr[i] +

∑15
i=0 KXBrb [i];

12 M.var← Cf =
∑rf−2

r=0

∑19
i=0 CFr[i] +

∑7
i=0 CFrf−1[i] +

∑15
i=0 KXF0[i];

13 M.var← Wb =
∑15

i=0 AXB1[i];

14 M.var← Wf =
∑15

i=0 AXFrf−1[i];
15 M.con← D[0] = 0.5 · (c(Cb + Cf) + n− c · Wb + LG(g) + 2);
16 M.con← D[1] = 0.5 · (c(Cb + Cf) + n− c · Wf + LG(g) + 2);
17 M.con← D[2] = min(D[0], D[1]);
18 M.con← D[3] = c · (Cb + Cf) + n + 1− c · (Wb + Wf) + LG(g);
19 M.con← T[0] = max(D[2], D[3]);
20 M.con← T[1] = c · (Cb + Cf) + LG(g);
21 M.con← T[2] = c · KS ; /* Corresponding to |kb ∪ kf| */
22 M.con← T[3] = k− g;
23 M.con← Tmax = max(T [0], T [1], T [2], T [3]);
24 M.con← (T[0] < n ∧ Tmax < k);
25 M.obj← Minimize Tmax;
26 returnM;

We applied our method to find the full ID attacks on all variants of SKINNY.
Our model includes integer and real variables, so we used Gurobi to solve the

28

resulting COP problems. Table 1 shows our results. The time, data and mem-
ory complexity of our ID attacks are smaller than the best previous ID attack.
Particularly, the time complexity of our 19-round single-tweakey ID attack on
SKINNY-128-256 is smaller by a factor of 222.57 compared to the best previous
one [38]. Our tool can produce all the reported results on a laptop in a few sec-
onds. As a result, besides improving the security evaluation against ID attacks,
our tool can significantly reduce human effort/error in finding ID attacks.

5 Modeling the Key Recovery of ZC and Integral Attacks

We can extend our models for the ZC and ZC-Integral distinguishers to make a
unified model for finding full ZC and ZC-Integral attacks, respectively. One of
the critical parameters in the key recovery of the ZC and ZC-Integral attacks
is the number of involved key cells in the outer parts. Another parameter that
affects the time complexity of these attacks is the hamming weight of internal
states in each round. Thus, we should consider these parameters when modeling
the key recovery of the ZC and ZC-Integral attacks. Moreover, the meet-in-the-
middle and partial sum techniques are essential to reduce the time complexity of
ZC-Integral attacks. Therefore, taking these techniques into account, we provide
a generic model for key recovery of ZC and ZC-Integral attacks as follows:

– Model the distinguisher. We model the distinguisher as described in
Section 3.

– Model the guess-and-determine. In this module, we model the value
paths in the outer part and detect the key cells whose values are needed in
key recovery.

– Model the key bridging. This module aims at modeling the key bridging
in the key recovery.

– Model the meet-in-the-middle technique. For the key recovery of in-
tegral attack, we model the meet-in-the-middle technique. To this end, we
model the path values for each output cell separately, where we define a new
integer variable to capture the number of involved key cells in each path. This
way, we can detect the most critical path determining the time complexity
of the guess-and-filter step. Note that we integrate the meet-in-the-middle
technique into our CSP model and do not consider it a post-processing step.
As a result, the result derived from our model is optimum in terms of the
meet-in-the-middle technique.

– Model the partial sum technique. We also consider the partial sum
technique for the key recovery of ZC and ZC-Integral attacks.

– Set the objective function. The objective of our model is minimizng the
final time complexity. To this aim, we try to minimize the number of involved
key cells keeping the data and memory complexities under the theresholds.

We applied our unified framework for finding full ZC and integral attacks
to all variants of SKINNY, and could significantly improve all previous ZC and
integral attacks on this cipher. Notably, we improved the integral attack on

29

SKINNY-n-3n (SKINNY-n-2n) by 3 (resp. 2) rounds. We also improved the ZC
attack on SKINNY-n-n (SKINNY-n-2n) by 2 (resp. 1) rounds. Our COP mod-
els for ZC and integral attacks use only integer variables. Thus we can take
advantage of all integer programming (IP) solvers. We used Or-Tools in this
application, and running on a regular laptop, our tool can find all the reported
results in a few seconds. As you can see in Figure 13, and Figure 14, the input
of corresponding ZC distinguishers have 4 active cells, and the outputs have 2
active cells. The previous tools which fix the input/output linear masks to vector
with at most one active cell can not find such a distinguisher.

6 Conclusion

In this paper, we presented a unified CP model to find the full ID, ZC, and
integral attacks. Our frameworks are generic and can be applied to word-oriented
block ciphers. To show the effectiveness and usefulness of our approach, we
applied it to an ISO standard block cipher, SKINNY, and improved all of the best
previous ID, ZC, and integral attacks on this cipher in the single key setting. We
also improved the related-tweakey ID attack on SKINNY-n-3n. Our tool can help
the cryptanalysts and the designers of block ciphers to evaluate the security of
block ciphers against three important attacks, i.e., ID, ZC, and integral attacks,
more accurately and efficiently.

References

1. Ankele, R., Dobraunig, C., Guo, J., Lambooij, E., Leander, G., Todo, Y.: Zero-
correlation attacks on tweakable block ciphers with linear tweakey expansion. IACR
Transactions on Symmetric Cryptology 2019(1), 192–235 (Mar 2019). https://
doi.org/10.13154/tosc.v2019.i1.192-235

2. Avanzi, R.: The QARMA block cipher family. almost MDS matrices over rings with
zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-boxes. IACR Trans. Sym-
metric Cryptol. 2017(1), 4–44 (2017). https://doi.org/10.13154/tosc.v2017.
i1.4-44

3. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: CRYPTO 2016. pp. 123–153. Springer (2016). https://doi.
org/10.1007/978-3-662-53008-5_5

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: EUROCRYPT 1999. Lecture Notes in
Computer Science, vol. 1592, pp. 12–23. Springer (1999). https://doi.org/10.
1007/3-540-48910-X_2

5. Biham, E., Biryukov, A., Shamir, A.: Miss in the middle attacks on IDEA and
khufu. In: FSE 1999. Lecture Notes in Computer Science, vol. 1636, pp. 124–138.
Springer (1999)

6. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimensional
linear distinguishers with correlation zero. In: ASIACRYPT 2012. Lecture Notes
in Computer Science, vol. 7658, pp. 244–261. Springer (2012). https://doi.org/
10.1007/978-3-642-34961-4_16

30

https://doi.org/10.13154/tosc.v2019.i1.192-235
https://doi.org/10.13154/tosc.v2019.i1.192-235
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/978-3-642-34961-4_16
https://doi.org/10.1007/978-3-642-34961-4_16

7. Bogdanov, A., Rijmen, V.: Linear hulls with correlation zero and linear crypt-
analysis of block ciphers. Des. Codes Cryptogr. 70(3), 369–383 (2014). https:

//doi.org/10.1007/s10623-012-9697-z
8. Bogdanov, A., Wang, M.: Zero correlation linear cryptanalysis with reduced data

complexity. In: FSE 2012. Lecture Notes in Computer Science, vol. 7549, pp. 29–48.
Springer (2012). https://doi.org/10.1007/978-3-642-34047-5_3

9. Boura, C., Lallemand, V., Naya-Plasencia, M., Suder, V.: Making the impossi-
ble possible. Journal of Cryptology 31(1), 101–133 (2018). https://doi.org/10.
1007/s00145-016-9251-7

10. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossi-
ble differential attacks: applications to clefia, camellia, lblock and simon. In: In-
ternational Conference on the Theory and Application of Cryptology and In-
formation Security. pp. 179–199. Springer (2014). https://doi.org/10.1007/

978-3-662-45611-8_10
11. Cui, T., Chen, S., Jia, K., Fu, K., Wang, M.: New automatic search tool for impos-

sible differentials and zero-correlation linear approximations. Cryptology ePrint
Archive, Paper 2016/689 (2016), https://eprint.iacr.org/2016/689, https:

//eprint.iacr.org/2016/689
12. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher Square. In: FSE

1997. LNCS, vol. 1267, pp. 149–165. Springer (1997). https://doi.org/10.1007/
BFb0052343

13. Derbez, P., Fouque, P.: Automatic search of meet-in-the-middle and impossible dif-
ferential attacks. In: CRYPTO 2016. Lecture Notes in Computer Science, vol. 9815,
pp. 157–184. Springer (2016)

14. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D.A., Whit-
ing, D.: Improved cryptanalysis of rijndael. In: FSE 2000. Lecture Notes in Com-
puter Science, vol. 1978, pp. 213–230. Springer (2000). https://doi.org/10.1007/
3-540-44706-7_15

15. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D.A., Whiting,
D.: Improved cryptanalysis of Rijndael. In: FSE 2000. LNCS, vol. 1978, pp. 213–
230. Springer (2000). https://doi.org/10.1007/3-540-44706-7_15

16. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022), https:
//www.gurobi.com

17. Hadipour, H., Eichlseder, M.: Autoguess: A tool for finding guess-and-determine
attacks and key bridges. In: ACNS 2022. Lecture Notes in Computer Sci-
ence, vol. 13269, pp. 230–250. Springer (2022). https://doi.org/10.1007/

978-3-031-09234-3_12
18. Hadipour, H., Nageler, M., Eichlseder, M.: Throwing boomerangs into feistel struc-

tures: Application to clefia, warp, lblock, lblock-s and twine (2022)
19. Hadipour, H., Sadeghi, S., Niknam, M.M., Song, L., Bagheri, N.: Comprehensive

security analysis of CRAFT. IACR Trans. Symmetric Cryptol. 2019(4), 290–317
(2019). https://doi.org/10.13154/tosc.v2019.i4.290-317

20. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: The TWEAKEY
framework. In: ASIACRYPT 2014. Lecture Notes in Computer Science, vol. 8874,
pp. 274–288. Springer (2014). https://doi.org/10.1007/978-3-662-45608-8_15

21. Knudsen, L.: Deal-a 128-bit block cipher. complexity 258(2), 216 (1998)
22. Lai, X.: Higher order derivatives and differential cryptanalysis pp. 227–233 (1994).

https://doi.org/10.1007/978-1-4615-2694-0_23
23. Liu, G., Ghosh, M., Song, L.: Security analysis of SKINNY under related-tweakey

settings. IACR Trans. Symmetric Cryptol. 2017(3), 37–72 (2017). https://doi.
org/10.13154/tosc.v2017.i3.37-72

31

https://doi.org/10.1007/s10623-012-9697-z
https://doi.org/10.1007/s10623-012-9697-z
https://doi.org/10.1007/978-3-642-34047-5_3
https://doi.org/10.1007/s00145-016-9251-7
https://doi.org/10.1007/s00145-016-9251-7
https://doi.org/10.1007/978-3-662-45611-8_10
https://doi.org/10.1007/978-3-662-45611-8_10
https://eprint.iacr.org/2016/689
https://eprint.iacr.org/2016/689
https://eprint.iacr.org/2016/689
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/3-540-44706-7_15
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/978-3-031-09234-3_12
https://doi.org/10.1007/978-3-031-09234-3_12
https://doi.org/10.13154/tosc.v2019.i4.290-317
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.13154/tosc.v2017.i3.37-72
https://doi.org/10.13154/tosc.v2017.i3.37-72

24. Lu, J., Dunkelman, O., Keller, N., Kim, J.: New impossible differential attacks on
AES. In: INDOCRYPT 2008. Lecture Notes in Computer Science, vol. 5365, pp.
279–293. Springer (2008)

25. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the efficiency of impossi-
ble differential cryptanalysis of reduced camellia and MISTY1. In: CT-RSA 2008.
Lecture Notes in Computer Science, vol. 4964, pp. 370–386. Springer (2008)

26. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanaly-
sis using mixed-integer linear programming. In: Inscrypt. Lecture Notes in Com-
puter Science, vol. 7537, pp. 57–76. Springer (2011). https://doi.org/10.1007/
978-3-642-34704-7_5

27. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Miniz-
inc: Towards a standard CP modelling language. In: CP 2007. Lecture Notes in
Computer Science, vol. 4741, pp. 529–543. Springer (2007)

28. Niu, C., Li, M., Sun, S., Wang, M.: Zero-correlation linear cryptanalysis with equal
treatment for plaintexts and tweakeys. In: CT-RSA 2021. Lecture Notes in Com-
puter Science, vol. 12704, pp. 126–147. Springer (2021). https://doi.org/10.

1007/978-3-030-75539-3_6

29. Perron, L., Furnon, V.: OR-Tools, https://developers.google.com/

optimization/

30. Sadeghi, S., Mohammadi, T., Bagheri, N.: Cryptanalysis of reduced round SKINNY
block cipher. IACR Trans. Symmetric Cryptol. 2018(3), 124–162 (2018). https:
//doi.org/10.13154/tosc.v2018.i3.124-162

31. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and crypt-
analysis aspects. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017. pp. 185–
215. Springer International Publishing, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7_7

32. Sasaki, Y., Wang, L.: Meet-in-the-middle technique for integral attacks against
Feistel ciphers. In: SAC 2012. LNCS, vol. 7707, pp. 234–251. Springer (2012).
https://doi.org/10.1007/978-3-642-35999-6_16

33. Shi, D., Sun, S., Derbez, P., Todo, Y., Sun, B., Hu, L.: Programming the demirci-
selçuk meet-in-the-middle attack with constraints. In: ASIACRYPT 2018. Lecture
Notes in Computer Science, vol. 11273, pp. 3–34. Springer (2018). https://doi.
org/10.1007/978-3-030-03329-3_1

34. Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., AlKhzaimi, H., Li, C.:
Links among impossible differential, integral and zero correlation linear cryptanal-
ysis. In: CRYPTO 2015. Lecture Notes in Computer Science, vol. 9215, pp. 95–115.
Springer (2015). https://doi.org/10.1007/978-3-662-47989-6_5

35. Sun, L., Gerault, D., Wang, W., Wang, M.: On the usage of deterministic (related-
key) truncated differentials and multidimensional linear approximations for spn ci-
phers. IACR Transactions on Symmetric Cryptology 2020(3), 262–287 (Sep 2020).
https://doi.org/10.13154/tosc.v2020.i3.262-287

36. Sun, S., Gerault, D., Lafourcade, P., Yang, Q., Todo, Y., Qiao, K., Hu, L.: Anal-
ysis of aes, skinny, and others with constraint programming. IACR Transactions
on Symmetric Cryptology 2017(1), 281–306 (Mar 2017). https://doi.org/10.

13154/tosc.v2017.i1.281-306

37. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
ASIACRYPT 2016. Lecture Notes in Computer Science, vol. 10031, pp. 648–678
(2016). https://doi.org/10.1007/978-3-662-53887-6_24

32

https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-030-75539-3_6
https://doi.org/10.1007/978-3-030-75539-3_6
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.13154/tosc.v2018.i3.124-162
https://doi.org/10.13154/tosc.v2018.i3.124-162
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-642-35999-6_16
https://doi.org/10.1007/978-3-030-03329-3_1
https://doi.org/10.1007/978-3-030-03329-3_1
https://doi.org/10.1007/978-3-662-47989-6_5
https://doi.org/10.13154/tosc.v2020.i3.262-287
https://doi.org/10.13154/tosc.v2017.i1.281-306
https://doi.org/10.13154/tosc.v2017.i1.281-306
https://doi.org/10.1007/978-3-662-53887-6_24

38. Yang, D., Qi, W., Chen, H.: Impossible differential attacks on the SKINNY family
of block ciphers. IET Inf. Secur. 11(6), 377–385 (2017). https://doi.org/10.

1049/iet-ifs.2016.0488

33

https://doi.org/10.1049/iet-ifs.2016.0488
https://doi.org/10.1049/iet-ifs.2016.0488

A Complexity Analysis of the ID Attack in the Related
(Twea)key Setting

In the related (twea)key ID attack, we have access to two encryption (or decryp-
tion) oracles employing the keys K and K ⊕∆K, with a known difference ∆K.
The goal is to retrieve the secret key K. Assume that the differential transition
(∆K,∆u)→ ∆l is impossible. We can mount a key recovery attack similar to the
single (twea)key setting. However, in the related (twea)key setting, any structure
is encrypted with two different (twea)keys. On the other hand, any plaintext P
in each structure yields two different pairs ((K,P), (K ⊕∆K,P ⊕∆P)), and
((K ⊕∆K,P), (K,P ⊕∆K)). Hence, all formulas in Equation 1 remains un-
changed except for T0 which should be modifed as follows:

T0 = max

{
min

∆∈{∆b,∆f}

{
2
√
N2n+1−|∆|

}
, N2n+1−|∆b|−|∆f|

}
. (16)

We can reformulate the complexity analysis to a CSP-friendly form as follows:

T0 = max

 min
∆∈{∆b,∆f}

{2
cb+cf+n+1−|∆|+LG(g)

2 +1},

2cb+cf+n+1−|∆b|−|∆f|+LG(g)

 , T0 < 2n,

T1 = 2cb+cf+LG(g), T2 = 2|kb∪kf|+LG(g), T3 = 2k−g,

Ttot = (T0 + (T1 + T2)CE′ + T3)CE , Ttot < 2k,

Mtot = min
{

2cb+cf+LG(g), 2|kb∪kf|
}
, Mtot < 2k,

(17)

where LG = log2(g)− 0.53.

B Encoding the Matrix of SKINNY

Suppose that Y = M(X), where X,Y ∈ F4s
2 , and M is the matrix of SKINNY.

Morever, we compactly represent the constraint encoding the XOR operation
Y [k] = X[i]⊕X[j], by XOR(AX[i], DX[i], AX[j], DX[j], AY[k], DY[k]). The following CP
constraints encode the valid transitions for deterministic truncated differential
trails through M :

Mdiff(AX, DX, AY, DY) :=


AY[1] = AX[0] ∧ DY[1] = DX[0] ∧
XOR(AX[1], DX[1], AX[2], DX[2], AY[2], DY[2]) ∧
XOR(AX[0], DX[0], AX[2], DX[2], AY[3], DY[3]) ∧
XOR(AY[3], DY[3], AX[3], DX[3], AY[0], DY[0])

34

Assuming that Y = M−1(X), we use the following constraints to encode the
propagation of deterministic truncated differential trails through M−1:

Minvdiff(AX, DX, AY, DY) :=


AY[0] = AX[1] ∧ DY[0] = DX[1] ∧
XOR(AX[1], DX[1], AX[3], DX[3], AY[2], DY[2]) ∧
XOR(AX[0], DX[0], AX[3], DX[3], AY[3], DY[3]) ∧
XOR(AY[2], DY[2], AX[2], DX[2], AY[1], DY[1])

We also use the following constraints to model the propagation of 0-1 differences
with probability one through M , and M−1:

Mdiff1(AX, AY) :=

{
AY[1] = AX[0] ∧ XOR1(AX[1], AX[2], AY[2]) ∧
XOR1(AX[0], AX[2], AY[3]) ∧ XOR1(AY[3], AX[3], AY[0])

Minvdiff1(AX, AY) :=

{
AY[0] = AX[1] ∧ XOR(AX[1], AX[3], AY[2]) ∧
XOR(AX[0], AX[3], AY[3]) ∧ XOR(AY[2], AX[2], AY[1])

Let LX[i] be the actual c-bit value for the linear mask of state variable
X[i] ∈ Fc2 and, as before, AX[i] denotes the activeness pattern of X[i]. We
also define dummy variables D, and LD, such that D ∈ {0, 1, 2, 3}, and LD ∈
{−2,−1, 0, . . . , 2c − 1}. Then, we use the following constraints to encode the
propagation of deterministic truncated linear trails through M , and M−1:

Mlin(AX, LX, AY, LY) :=



AY[0] = AX[3] ∧ LY[0] = LX[3] ∧
AY[2] = AX[1] ∧ LY[2] = LX[1] ∧
XOR(AX[1], LX[1], AX[2], LX[2], D, LD) ∧
XOR(D, LD, AX[0], LX[0], AY[1], LY[1]) ∧
XOR(D, LD, AX[3], LX[3], AY[3], LY[3])

Minvlin(AX, LX, AY, LY) :=



AY[1] = AX[2] ∧ LY[1] = LX[2] ∧
AY[3] = AX[0] ∧ LY[3] = LX[0] ∧
XOR(AX[0], LX[0], AX[3], LX[3], D, LD) ∧
XOR(D, LD, AX[1], LX[1], AY[0], LY[0]) ∧
XOR(D, LD, AX[2], LX[2], AY[2], LY[2])

Let KX[i], and KY be binary variables to indicate whether the value of X[i], and
Y [i] are needed, respectively. Furthemore, assue that D is a binary variable. We
use the following constraints to model the matrix of SKINNY in the guess-and-
determine module:

Mdata(KX, KY) :=

{
KY[0] = KX[3] ∧ KY[2] = KX[1] ∧ XOR1(KX[1], KX[2], D)∧
XOR1(D, KX[0], KY[1]) ∧ XOR1(D, KX[3], KY[3])

Minvdata(KX, KY):=

{
KY[1]=KX[2] ∧ AY[3]=AX[0] ∧ XOR1(KX[0],KX[3],D)∧
XOR1(D, KX[1], KY[0]) ∧ XOR1(D, KX[2], KY[2])

(18)

35

C Application to SKINNY

C.1 Impossible Differential Attack on SKINNY

As we have previously stated, the part of time complexity formula in Guess-
and-Filter step (Equation 2) is only a lower-bound approximation of the time
complexity; to determine the complexity precisely, one must perform the detailed
attack step by step. As a result, in this paper, we executed the detailed attack
step by step to calculate the time complexity. We use Lemma 1 in our attacks.

Lemma 1. For any given SKINNY S-box, S and any input-output difference
δi, δo 6= 0, the equation S(x ⊕ δi) ⊕ S(x) = δo has one solution x on average
Similar result holds for the inverse S-box.

17-round Impossible Differential Attack on SKINNY-n-n In this section,
we detail a 17-round attack on SKINNY-n-n that takes the 11-round impossible
differential trail shown in Figure 6 and extends it by 3 rounds in both directions.
Since there is no tweakey used before W ′0, the plaintext P can be recovered by
applying MC−1,SR−1,AC−1, and SC−1 layers on W ′0.
Pair Generation. The attacker should build 2x structures at W ′0 and evaluate
all possible values in seven cells W ′0[2, 4, 5, 7, 8, 10, 13] for each structure, while
the other cells assume a fixed value. By using 2x+|∆b| plaintexts, we can have
2x+2|∆b|−1 pairs of plaintexts (P, P). The expected number of the remaining
pairs of ciphertexts (C,C) is approximately N = 2x+2|∆b|−1−(n−|∆f|) pairs. So
N = 2x+5c−1. This step needs a total of 2x+|∆b| = 2x+7c encryption calls.
Guess-and-Filter. For each of the N pairs

a) Satisfying round 17. Calculate ∆X16[11, 15] using the values of the cipher-
text pairs. There is no requirement for any tweaked information to compute
these cells here. We get ∆X16[3] = ∆X16[11] = ∆X16[15] because of the
MC operation on the active cells in the fourth column of W15. Checking
if ∆X17[11] = ∆X17[15] will lead to a c−bit filter. From the knowledge of
∆Y16[3] and ∆X16[3], we can determine Y16[3] by applying Lemma 1. Thus,
we can determine STK16[3] (due to STK16[3] = Z16[3]⊕Y16[3]). Now, we can
calculate ∆X16[13] from ciphertext values. Based on the MC operation on
the active cells in the second column of W15, we have ∆X16[13] = ∆X16[5] =
∆X16[1]. Similarly, the knowledge of this information and Lemma 1 helps us
to derive the tweakey cells STK16[1, 5]. The time complexity of this step is
N , and the number of tests left for the next step is N.2−c.

b) Satisfying round 1. From the knowledge of STK16[1, 3, 5] (from the previous
step), we can uniquely determine ETK[7, 10, 13]. Therefore, we determine
∆Y1[7, 10, 13]. Due to the MC−1 operation on the active cells in the first
column of X2, we have ∆Y1[7] = ∆Y1[10] = ∆Y1[13] that will lead to two
c−bit filters. The time complexity of this step is N.2−c, and the number of
tests left for the next step is N.2−3c.

36

X0

SC
AC

Y0

≫1

≫2

≫3

W0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

Fig. 6: ID attack on 17 rounds of SKINNY-n-n. |kb ∪ kf| = 10, cb = 6, cf = 6,
∆b = 7, ∆f = 7.

c) Satisfying round 17. We guess STK16[0, 7]. Hence, we can compute Z15, and
∆Z15 as shown in Figure 6. The time complexity of this step is N.2−c, and
the number of tests left for the next step is N.2−c.

d) Satisfying rounds 16 and 15. We can calculate ∆X15[9, 13] using the value
of Z15[9, 13], and ∆Z15[9, 13]. We have ∆X15[1] = ∆X15[9] = ∆X15[13]
because of the MC operation on the active cells in the second column of
W14. Checking if ∆X15[9] = ∆X15[13] will lead to a c−bit filter. Given
∆X15[1], we can determine Y15[1] and so STK15[1] by applying Lemma 1.
Hence, we can compute ∆X14 as shown in Figure 6. The time complexity of
this step is N.2−c, and the number of tests left for the next step is N.2−2c.

e) Satisfying round 1. From the knowledge of STK16[1, 7] (from the previ-
ous steps), we can uniquely determine ETK[5, 8]. Therefore, we determine

37

∆Y1[5, 8]. Due to the MC−1 operation on the active cells in the third column
of X2, we have ∆Y1[2] = ∆Y1[5] = ∆Y1[8]. The equality ∆Y1[5] = ∆Y1[8]
will lead to a c−bit filter. From the knowledge of ∆Y1[2] and ∆X1[2], we can
determine X1[2] by applying Lemma 1. Thus, we can derive ETK[2] (duo
to ETK[2] = W ′0[2] ⊕X1[2]). We guess ETK[11], and compute Y1 and ∆Y1

as shown in Figure 6. The time complexity of this step is N.2−c, and the
number of tests left for the next step is N.2−2c.

f) Satisfying round 2. Since we know the value of STK15[1], we can uniquely de-
termine STK1[0]. We guess STK1[4]. Therefore, we can determine ∆Y2[9, 12].
Due to the MC−1 operation on the active cells in the fourth column of X3,
we have ∆Y2[6] = ∆Y2[9] = ∆Y2[12]. The equality ∆Y2[9] = ∆Y2[12] will
lead to a c−bit filter. From the knowledge of ∆Y2[6] and ∆X2[6], we can de-
termine X2[6] by applying Lemma 1. Therefore, we can determine the value
of STK1[2] as X2[6] ⊕ Y1[6]. Hence, we can compute ∆Y2 and thus, ∆X3

as shown in Figure 6. The time complexity of this step is N.2−c, and the
number of tests to verify the impossible distinguisher is N.2−2c.

Complexity analysis. Analyzing N pairs has a time complexity of about
N. 1

17 17-round encryptions (it is dominated by step 1). The attack needs a data

complexity of D = N.2n+1−|∆b|−|∆f| = 214c+1g ln 2 (N = 2cb+cfg ln 2). The total
time complexity is T = D+N. 1

17 +216c−g (216c−g is related to exhaustive search
step). Hence, to optimize the time complexity of the attack, we select g = 5 for
c = 4, and g = 15 for c = 8. Thus, the data, time, and memory complexities
of the attack on SKINNY-64-64 are 258.79, 259.90, and 240,respectively. The data,
time, and memory complexities of the attack on SKINNY-128-128 are 2116.37,
2116.51, ,and 280, respectively.

19-round Impossible Differential Attack on SKINNY-n-2n In this part,
we present the details of our 19-round attack on SKINNY-n-2n. We extend the
11-round impossible differential trail illustrated in Figure 7 by 3 and 5 rounds
in backward and forward directions, respectively.
Pair Generation. We should build 2x structures at W ′0 and evaluate all possi-
ble values in seven cells W ′0[2, 4, 5, 7, 8, 10, 13] for each structure, while the other
cells assume a fixed value. By using 2x+7c plaintexts, we can have 2x+14c−1 pairs
of plaintexts (P, P). The expected number of the remaining pairs of ciphertexts
(C,C) is approximately N = 2x+2|∆b|−1−(n−|∆f|) pairs. In our 19-round attack
n = |∆f|, and so N = 2x+2|∆b|−1 = 2x+14c−1. This step needs a total of 2x+7c

encryption calls.
Guess-and-Filter. For each of the N pairs

a) Satisfying round 19. We can calculate ∆X18[11, 15] using the values of the
ciphertext pairs. We get ∆X18[7] = ∆X18[11]⊕∆X18[15] because of the MC
operation on the active cells in the fourth column of W17. Given ∆X18[7], we
can determine Y18[7] by applying Lemma 1 and the knowledge of ∆Y18[7].
Now, we can determine STK18[7] (due to STK18[7] = Z18[7]⊕Y18[7])). Simi-
larly, due to the MC operation on the active cells in the third and the second

38

X0

SC
AC

Y0

≫1

≫2

≫3

W0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

SC
AC

Y17 STK17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 STK18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19

Fig. 7: ID attack on 19 rounds of SKINNY-n-2n, |kb ∪ kf| = 26, cb = 6, cf = 15,
∆b = 7, ∆f = 16

column of W17, we can also derive tweakey cells STK18[6] and STK18[1, 5], re-
spectively. We guess STK18[0, 2, 3, 4]. Hence, we can calculate Z17 and ∆Z17

as shown in Figure 7. The time complexity of this step is N.24c, and the
number of tests left for the next step is N.24c.

b) Satisfying round 18. We can calculate ∆X17[15] using the value of Z17[15],
and ∆Z17[15]. We have ∆X17[15] = ∆X17[3] = ∆X17[7] because of the MC
operation on the active cells in the fourth column of W16. Given ∆X17[3, 7],
we can determine Y17[3, 7] by applying Lemma 1 and the knowledge of the
∆Y17[3, 7]. Now, we can determine STK17[3, 7] (due to Y17[3] = Z17[3] ⊕

39

STK17[3], and Y17[7] = Z17[7] ⊕ STK17[7]). Similarly, due to the MC oper-
ation on the active cells in the second and the first column of W16, we can
also derive tweakey cells STK17[1, 5], and STK17[4]. We guess STK17[2, 6].
The time complexity of this step is N.26c, and the number of tests left for
the next step is N.26c.

c) Satisfying round 17. Based on the previous steps, we can compute the cells
Z16[11, 15], and ∆Z16[11, 15], and thus, ∆X16[11, 15] (there is no requirement
for any tweaked information of STK16 to compute these cells here). On the
other hand, We have ∆X16[11] = ∆X16[15] due to the MC operation on the
active cells in the fourth column of W15. Checking if ∆X16[11] = ∆X16[15]
will lead to a c−bit filter. The time complexity of this step is N.26c, and the
number of tests left for the next step is N.25c.

d) Satisfying round 18. We guess STK17[0]. Hence, we can calculate Z16 and
∆Z16 as shown in Figure 7. The time complexity of this step is N.26c, and
the number of tests left for the next step is N.26c.

e) Satisfying round 17. We calculate ∆X16[15] using the values of Z16[15], and
∆Z16[15]. We have ∆X16[15] = ∆X16[3] because of the MC operation on the
active cells in the fourth column of W15. Given ∆X16[3], we can determine
Y16[3] by applying Lemma 1 and the knowledge of the ∆Y16[3]. Now, we
can determine STK16[3] (due to Y16[3] = Z16[3]⊕ STK16[3]). Similarly, due
to the MC operation on the active cells in the second column of W15, we
can also derive tweakey cells STK16[1, 5]. The time complexity of this step
is N.26c, and the number of tests left for the next step is N.26c.

f) Satisfying round 1. Since the values of STK18[0, 3, 7], and STK16[1, 3, 5] are
known from the previous steps, we can uniquely determine ETK[7, 10, 13].
Therefore, we can determine ∆Y1[7, 10, 13]. Due to the MC−1 operation on
the active cells in the first column of X2, we have ∆Y1[7] = ∆Y1[10] =
∆Y1[13] and this will lead to two c−bit filters. The time complexity of this
step is N.26c, and the number of tests left for the next step is N.24c.

g) Satisfying round 17. We guess STK16[0, 7]. Hence, we can compute Z15, and
∆Z15 as shown in Figure 7. The time complexity of this step is N.26c, and
the number of tests left for the next step is N.26c.

h) Satisfying rounds 16 and 15. We calculate ∆X15[9, 13] using the values
of Z15[9, 13], and ∆Z15[9, 13]. We have ∆X15[1] = ∆X15[9] = ∆X15[13],
because of the MC operation on the active cells in the second column of
W14. Checking if ∆X15[9] = ∆X15[13] will lead to a c−bit filter. Given
∆X15[1], we can determine Y15[1] by applying Lemma 1 and the knowledge
of the ∆Y15[1]. Now, we can determine STK15[1] (due to Y15[1] = Z15[1] ⊕
STK15[1]). Hence, we can compute ∆X14 as shown in Figure 7. The time
complexity of this step is N.26c, and the number of tests left for the next
step is N.25c.

i) Satisfying round 1. From the knowledge of STK18[0, 1], and STK16[1, 7], we
can uniquely determine ETK[5, 8]. Therefore, we determine ∆Y1[5, 8]. Due
to the MC−1 operation on the active cells in the third column of X2, we
have ∆Y1[2] = ∆Y1[5] = ∆Y1[8]. The equality ∆Y1[5] = ∆Y1[8] will lead
to a c−bit filter. Since we know the values of ∆Y1[2] and ∆X1[2], we can

40

determine X1[2] by applying Lemma 1. Hence, we derive the value of ETK[2].
The time complexity of this step is N.25c, and the number of tests left for
the next step is N.24c.

j) Satisfying round 1. We know the values of ETK[0, 2, 4, 5, 7, 8, 10, 13] from
the previous steps. We guess ETK[11], and computes Y1 and ∆Y1 as shown
in Figure 7. The time complexity of this step is N.25c, and the number of
tests left for the next step is N.25c.

k) Satisfying rounds 2 and 3. We know the values of STK17[0], and STK15[1]
from the previous steps, so we can uniquely determine STK1[0]. We guess
STK1[4]. Therefore, we can determine∆Y2[9, 12]. Due to the MC−1 operation
on the active cells in the fourth column of X3, we have ∆Y2[6] = ∆Y2[9] =
∆Y2[12]. The equality ∆Y2[9] = ∆Y2[12] will lead to a c−bit filter. Since we
know the values of ∆Y2[6] and ∆X2[6], we can determine X2[6] and so Z1[2]
by applying Lemma 1. Therefore, we can determine the value of STK1[2]
as Y1[2] ⊕ Z1[2]. Hence, we can compute ∆X3 as shown in Figure 7. The
time complexity of this step is N.26c, and the number of tests to verify the
impossible distinguisher is N.25c.

Complexity analysis. Analyzing N pairs has a time complexity of about
N.26c. 6

19 19-round encryptions. The attack needs a data complexity of D =

N.2n+1−|∆b|−|∆f| = 215c+1g ln 2 (N = 2cb+cfg ln 2). The total time complexity
is T = D + M.26c. 6

19 + 232c−g. Hence, to optimize the time complexity of the
attack, we select g = 21 for c = 4, and g = 42 for c = 8. Thus, the data, time,
and memory complexities of the attack on SKINNY-64-128 are 260.86, 2110.34,
and 2104,respectively. The data, time, and memory complexities of the attack on
SKINNY-128-256 are 2117.86, 2219.23, and 2208, respectively.

21-round Impossible Differential Attack on SKINNY-n-3n A 11-round
distinguisher is placed between Round 6 to Round 16 to attack 21-round of
SKINNY-n-3n (see Figure 8). In this attack |kb ∪ kf| = 42cc, |∆b| = |∆f| = 16c,
cb = cf = 15c.
Pair Generation. We define a structure, as the set of inputs that can take

values in W ′0. By using 2m plaintexts, we can have 22m−1 pairs of plaintexts
(P, P). The expected number of the remaining pairs of ciphertexts (C,C) is
approximately N = 22m−1. This step needs a total of 2m encryption calls.
Guess-and-Filter. For each of the N pairs

a) Satisfying round 21. We guess STK20[0− 7] and compute W19 as shown in
Figure 8. Here, we have four c−bit filters based on the W19 state. The time
complexity of this step is N.28c, and the number of tests left for the next
step is N.24c.

b) Satisfying round 1. We guess ETK[0− 3, 8− 11] and compute Y1, and ∆Y1

as shown in Figure 8. Due to MC−1 operation on the active cells in the first,
the second, and the third columns of X2, we should have ∆Y1[0] = ∆Y1[7] =
∆Y1[10], ∆Y1[1] = ∆Y1[11], and ∆Y1[2] ⊕ ∆Y1[8] = ∆Y1[15], respectively,
that will lead to four c-bit filters. The time complexity of this step is N.212c,
and the number of tests left for the next step is N.28c.

41

X0

SC
AC

Y0

≫1

≫2

≫3

W0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

SC
AC

Y17 STK17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 STK18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19

SC
AC

Y19 STK19

f b 9 e
8 c a d

Z19

≫1

≫2

≫3

W19 X20

X20

SC
AC

Y20 STK20

7 3 1 6
0 4 2 5

Z20

≫1

≫2

≫3

W20 X21

Fig. 8: ID attack on 21 rounds of SKINNY-n-3n. |kb ∪ kf| = 42, cb = 15, cf = 15,
∆b = 16, ∆f = 16.

42

c) Satisfying round 2. We guess STK1[0, 1, 2, 6] and compute Y2[1, 4, 11, 14],
and so ∆Y2[1, 4, 11, 14]. Due to MC−1 operation on the active cells in the
second column of X3, we have ∆Y2[4] = ∆Y2[11], and ∆Y2[1] = ∆Y2[11] ⊕
∆Y2[14] that will lead to two c-bit filters. The time complexity of this step
is N.212c, and the number of tests left for the next step is N.210c.

d) Satisfying round 2. We guess STK1[3, 4, 5] and compute Y2[0, 3, 6, 9, 10], and
so ∆Y2[0, 3, 6, 9, 10]. Due to MC−1 operation on the active cells in the first
and the fourth columns of X3, we have ∆Y2[0] = ∆Y2[10], and ∆Y2[3] =
∆Y2[6] = ∆Y2[9] that will lead to three c-bit filters. The time complexity of
this step is N.213c, and the number of tests left for the next step is N.210c.

e) Satisfying round 2. We guess STK1[7]. We can compute Y2, and ∆Y2 as
shown in Figure 8. The time complexity of this step is N.211c, and the
number of tests left for the next step is N.211c.

f) Satisfying round 20. We calculate ∆X19[15] using the value of Z19[15], and
∆Z19[15]. We have ∆X19[3] = ∆X19[7] = ∆X19[15] because of the MC oper-
ation on the active cells in the last column of W18. Given ∆X19[3, 7], we can
determine Y19[3, 7] by applying Lemma 1 and the knowledge of the∆Y19[3, 7].
Now, we can determine STK19[3, 7] (due to Y19[3] = Z19[3]⊕ STK19[3], and
Y19[7] = Z19[7]⊕STK19[7]). Similarly, due to the MC operation on the active
cells in the second and the first columns of W18, we can also derive tweakey
cells STK19[1, 5] and STK19[4], respectively. We guess STK19[2]. Now, we
can compute ∆X18[11, 15] that will lead to a c-bit filter (due to MC opera-
tion of the fourth column of W17). The time complexity of this step is N.212c,
and the number of tests left for the next step is N.211c.

g) Satisfying round 20. We guess STK19[0, 6]. Thus, we can compute Z18 and
∆Z18 as shown in Figure 8. The time complexity of this step is N.213c, and
the number of tests left for the next step is N.213c.

h) Satisfying round 20. We calculate ∆X18[15] using the value of Z18[15]. We
have ∆X18[3] = ∆X18[15] because of the MC operation on the active cells
in the fourth column of W17. Given ∆X18[3], we can determine Y18[3] by
applying Lemma 1 and the knowledge of the ∆Y18[3]. Now, we can determine
STK18[3] (due to Y18[3] = Z18[3] ⊕ STK18[3]). Similarly, due to the MC
operation on the active cells in the second column of W17, we can also derive
tweakey cells STK18[1, 5]. The time complexity of this step is N.213c, and
the number of tests left for the next step is N.213c.

i) Satisfying round 3. We know the values of STK20[0, 3, 7], STK18[1, 3, 5], and
STK0[5, 6, 7] from the previous steps. Therefore, we will have STK2[1, 3, 5].
These values help us to compute W2[1, 3, 6, 9, 10] and thus, Y3[7, 10, 13], and
∆Y3[7, 10, 13]. Due to MC−1 operation on the active cells in the first column
of X4, we have ∆Y3[7] = ∆Y3[10] = ∆Y3[13] that will lead to two c-bit filters.
The time complexity of this step is N.213c, and the number of tests left for
the next step is N.211c.

j) Satisfying round 19. We guess STK18[0, 7]. We compute Z17 and ∆Z17 as
shown in Figure 8. The time complexity of this step isN.213c, and the number
of tests left for the next step is N.213c.

43

k) Satisfying rounds 18 and 17. We calculate ∆X17[9, 13] using the values
of Z17[9, 13]. We have ∆X17[9] = ∆X17[13] = ∆X17[1] because of the MC
operation on the active cells in the second column of W16. The equality
∆X17[9] = ∆X17[13] will lead to a c-bit filter. Also, since we know ∆X17[1],
thus, we can determine Y17[1] by applying Lemma 1 and the knowledge of
the ∆Y17[1]. Thus, we can determine STK17[1] (due to Y17[1] = Z17[1] ⊕
STK17[1]). Compute ∆X16 as shown in Figure 8. The time complexity of
this step is N.213c, and the number of tests left for the next step is N.212c.

k) Satisfying round 3. We know the values of STK20[0, 1], STK18[1, 7], and
STK0[3, 7] from the previous steps. Therefore, we will have STK2[1, 7]. We
guess STK2[2]. These values help us to compute W2[1, 2, 4, 8, 10, 14] and thus,
Y3[7, 10, 13], and ∆Y3[2, 5, 8]. Due to MC−1 operation on the active cells in
the third column of X4, we have ∆Y3[2] = ∆Y3[5] = ∆Y3[8] that will lead to
two c-bit filters. The time complexity of this step is N.213c, and the number
of tests left for the next step is N.211c.

l) Satisfying round 3. We can determine the values of STK2[0, 1, 3, 5, 7], from
the knowledge of STK20[0−3, 6, 7], STK18[0, 1, 3, 5, 7], and STK0[1−3, 5−7].
We also know the value of STK2[2] from the previous step. We just guess
STK2[6] and compute Y3, and∆Y3 as shown in Figure 8. The time complexity
of this step is N.212c, and the number of tests left for the next step is N.212c.

m) Satisfying round 4. We guess STK3[4] to determine X4[9], ∆X4[9] and thus,
∆Y4[9]. Due to MC−1 operation on the active cells in the fourth column ofX5,
we have ∆Y4[6] = ∆Y4[9]. From the knowledge of ∆Y4[6], we can determine
X4[6] by applying Lemma 1 and the knowledge of the ∆X4[6]. Thus, we
can determine the value of STK3[2] due to X4[6] = Y3[2] ⊕ STK3[2]. We
also can determine the value of STK3[0], from the knowledge of STK19[0],
STK17[1], and STK1[1]. We compute Y4, and ∆Y4 as shown in Figure 8. Due
to MC−1 operation on the active cells in the fourth column of X5, we have
∆X4[9] = ∆X4[15] that will lead to a c-bit filter. We can compute X5, and
∆X5 as shown in Figure 8. The time complexity of this step is N.213c, and
the number of tests to verify the impossible distinguisher is N.212c.

Complexity analysis. Analyzing N pairs has a time complexity of about
N.213c. 7

21 21-round encryptions. The attack needs a data complexity of D =√
2cb+cf+1.g ln 2. The total time complexity is T = D + M.213c. 7

21 + 248c−g.
Hence, to optimize the time complexity of the attack, we select g = 21 for c = 4,
and g = 40 for c = 8. Thus, the data, time, and memory complexities of the at-
tack on SKINNY-64-192 are 262.43, 2174.42, and 2168,respectively. The data, time,
and memory complexities of the attack on SKINNY-128-384 are 2122.89, 2347.35,
and 2336, respectively.

27-round Related-Tweakey ID Attack on SKINNY-n-3n In this section
we provide a 27-round ID attack on SKINNY-n-3n in the related-tweakey setting.
Figure 9 illustrates the attack discovered by our tool.

44

X0

SC
AC

Y0

≫1

≫2

≫3

W0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

SC
AC

Y17 STK17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 STK18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19

SC
AC

Y19 STK19

f b 9 e
8 c a d

Z19

≫1

≫2

≫3

W19 X20

X20

SC
AC

Y20 STK20

7 3 1 6
0 4 2 5

Z20

≫1

≫2

≫3

W20 X21

SC
AC

Y21 STK21

b d f c
9 a 8 e

Z21

≫1

≫2

≫3

W21 X22

X22

SC
AC

Y22 STK22

3 5 7 4
1 2 0 6

Z22

≫1

≫2

≫3

W22 X23

SC
AC

Y23 STK23

d e b a
f 8 9 c

Z23

≫1

≫2

≫3

W23 X24

X24

SC
AC

Y24 STK24

5 6 3 2
7 0 1 4

Z24

≫1

≫2

≫3

W24 X25

SC
AC

Y25 STK25

e c d 8
b 9 f a

Z25

≫1

≫2

≫3

W25 X26

X26

SC
AC

Y26 STK26

6 4 5 0
3 1 7 2

Z26

≫1

≫2

≫3

W26 X27

Fig. 9: ID attack on 27 rounds of SKINNY-n-3n in the related-tweakey setting.
|kb ∪ kf| = 45, cb = 12, cf = 15, ∆b = 12, ∆f = 16.

45

C.2 Multidimensional Zero-Correlation Linear Cryptanalysis on
SKINNY variant

Throughout this section, we apply the multidimensional zero-correlation linear
attack to reduced-round versions of SKINNY variant.

X0

SC
AC

Y0

≫1

≫2

≫3

W0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

Fig. 10: ZC attack on 16 rounds of SKINNY-n-n. Number of actual involved key
cells: 8

Key-Recovery Attack on SKINNY-n-n If the zero-correlation linear approx-
imation over 9-round SKINNY in Figure 10 cover rounds 4 to 12, we can attack
16-round SKINNY-n-n by adding three round before and four rounds after the
distinguisher, as shown in Figure 10.
Attack procedure

1. Collect N pairs of plaintexts and the corresponding ciphertexts.

46

2. Allocate a 7c-bit counter N0[W ′0, Z15] for all 29c possible value of [W ′0, Z15]
and initialize it to zero. Then, calculate the number of pairs of plaintext-
ciphertext with given values W ′0 and Z15 and increment the corresponding
counter N0[W ′0, Z15]. In this step, about 216c pairs divide into 29c distinct
values of [W ′0, Z15], so the 7c-bit counter is sufficient.

3. Guess 3 cells ETK[3, 5, 8]. Next, allocate a counter N1[X1, Z15] for all 29c

possible values of [X1, Z15] and initialize it to zero. For all 23c possible
values of W ′0, encrypt W ′0 one round to obtain X1 and update the value
N1[X1, Z15] = N1[X1, Z15] +N0[W ′0, Z15] for all 26c values of Z15. The time
complexity of this step is equal to 23c × 23c × 26c = 212c memory access,
because we should guess 3 cells for ETK1, and for 23c values encrypt Y1 one
round and update N1 for 26c times.

4. Guess 2 cells STK1[3, 5]. Next, allocate a counter N2[X2, Z15] for all 28c

possible values of [X2, Z15] and initialize it to zero. For all 23c possible
values of X1, encrypt X1 one round to obtain X2 and update the value
N2[X2, Z15] = N2[X2, Z15] +N1[X1, Z15] for all 26c values of Z15. The time
complexity of this step is equal to 23c+2c × 23c × 26c = 214c memory access.

5. From the knowledge of ETK[3], we can determine the value of STK2[7].
Next, allocate a counter N3[X3, Z15] for all 27c possible value of [X3, Z15] and
initialize it to zero. For all 22c possible values of X2, encrypt X2 one round
to obtain X3 and update the value N3[X3, Z15] = N3[X3, Z15] +N2[X2, Z15]
for all 26c values of Z15. The time complexity of this step is equal to 25c ×
22c × 26c = 213c memory access.

6. From the knowledge of STK1[3], we can determine the value of STK15[5].
Guess 2 cells STK15[2, 7]. Next, allocate a counter N4[X3, Z14] for all 24c

possible value of [X3, Z14] and initialize it to zero. For all 26c possible val-
ues of Z15, decrypt Z15 to obtain Z14 and update the value N4[X3, Z14] =
N4[X3, Z14] + N3[X3, Z15] for all 2c values of X3. The time complexity of
this step is equal to 25c+2c × 26c × 2c = 214c memory access.

7. From the knowledge of ETK[7], we can determine the value of STK14[3].
Guess 1 cell STK14[4]. Next, allocate a counterN5[X3, Z13] for all 23c possible
value of [X3, Z13] and initialize it to zero. For all 23c possible values of Z14,
decrypt Z14 to obtain Z13 and update the value N5[X3, Z13] = N5[X3, Z13]+
N4[X3, Z15] for all 2c values of X3. The time complexity of this step is equal
to 27c+c × 23c × 2c = 212c memory access.

8. From the knowledge of STK15[2], we can determine the value of STK13[0].
Next, allocate a counterN6[X3, X12] for all 22c possible value of [X3, X12] and
initialize it to zero. For all 22c possible values of Z13, decrypt Z13 to obtain
X12 and update the value N6[X3, X12] = N6[X3, X12]+N5[X3, Z13] for all 2c

values of X3. The time complexity of this step is equal to 28c×22c×2c = 211c

memory access.
9. To recover the secret key, we allocate a counter V [z] for 2c-bit z. For 22c

values of [X3, X12], evaluate all 2c basis zero-correlation masks on [X3, X12]
and get z. Update the counter V [z] by V [z] = V [z] +N6[X3, X12]. Calculate
the statistical value T (Equation 4), if T < τ , the guessed key values are
possible right key candidates.

47

The time complexity of this step is equal to 28c × 7c× 22c times of reading
the 7c-bit memory, because for all of guessed 28c keys in previous steps, we
should read 22c values of N6[X3, X12].

10. Do an exhaustive search for all the right candidates. Due to β (the probability
of accepting a wrong key) and the total number of recovered bits being 8c, the
number of the remaining key values is β × 28c. Then we exhaustively search
other 16c−8c = 8c key bits, the time complexity will be β×28c×28c = β×216c

times of 16-round encryptions.

Attack complexity In this attack, for c = 4, we set the type-I error probability
α = 2−2.7 and the type-II error probability β = 2−2, then Z1−α = 1.01, and
Z1−β = 0.67. Thus, based on the Equation 5; N = 261.35. The decision threshold
is τ = µ0 + σ0Z1−α. If we consider one memory accesses as a one round, then
the time complexity of our attack on 16-round SKINNY-64-64 is about 261.35 +
(248 + 256 + · · ·+ 244.80)× 1

16 + 262 = 262.71 16-round encryptions. The required
memory complexity is dominated by step 2, which needs about 237.8 bytes.

For c = 8, our key recovery attack on 16-round SKINNY-128-128 needs 2122.3

known plaintexts, 2122.79 encryptions, and 274.8 bytes memory, if we set α = 2−2.7

and β = 2−7. The success probability of attacks are 1− α = 0.84.

Key-Recovery Attack on SKINNY-n-2n If the zero-correlation linear ap-
proximations over 9-round SKINNY in Figure 11 cover rounds 5 to 13, we can
attack 19-round SKINNY-n-2n by adding four rounds before and six rounds after
the linear approximations, as shown in Figure 11.
Attack procedure

1. Collect N pairs of plaintexts and the corresponding ciphertexts. Guess 13
cells STK18[0 − 7], and STK17[0, 1, 4, 6, 7] , do the partial decryption and
calculate Z16 for each pair. Allocate a 4c-bit counter N0[W ′0, Z16] for all 212c

possible value of [W ′0, Z16] and initialize it to zero. Next, compute the number
of pairs of plaintext-ciphertext with given values W ′0, and Z16 and store it
in N0[W ′0, Z16]. In this step, around 216c pairs are divided into 212c distinct
values of [W ′0, Z16], so 4c-bit counter is sufficient. The time complexity of
this step is equal to N +N × 213c.

2. Guess 3 cells STK16[2, 5, 7]. Next, allocate a counter N1[W ′0, Z15] for all 29c

possible value of [W ′0, Z15] and initialize it to zero. For all 26c possible val-
ues of Z16, do the partial decryption to obtain Z15 and update the value
N1[W ′0, Z15] = N1[W ′0, Z15] +N0[W ′0, Z16] for all 26c values of W ′0. The time
complexity of this step is equal to 2(13c+3c)×26c×26c = 228c memory access.

3. Guess 2 cells STK15[3, 4]. Next, allocate a counter N2[W ′0, Z14] for all 28c

possible value of [W ′0, Z14] and initialize it to zero. For all 23c possible val-
ues of Z15, do the partial decryption to obtain Z14 and update the value
N2[W ′0, Z14] = N2[W ′0, Z14] + N1[W ′0, Z15] for all 26c values of Y0. The time
complexity of this step is equal to 2(16c+2c)×23c×26c = 227c memory access.

4. We know STK18[4] and STK16[2], thus, we can determine the value of STK14[0].
Next, allocate a counter N3[W ′0, Y13] for all 27c possible value of [W ′0, Y13]

48

X0

SC
AC

Y0

≫1

≫2

≫3

W0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

SC
AC

Y17 STK17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 STK18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19

Fig. 11: ZC attack on 19 rounds of SKINNY-n-2n. Number of actual involved key
cells: 24.

and initialize it to zero. For all 22c possible values of Z14, do the partial
decryption to obtain Y13 and update the value N3[W ′0, Y13] = N3[W ′0, Y13] +
N2[W ′0, Z14] for all 26c values of Y0. The time complexity of this step is equal
to 218c × 27c × 26c = 231c memory access.

5. From the knowledge of STK18[4] and STK16[2], we can determine the value
of ETK[2, 6]. Also, from STK18[1] and STK16[7], we determine the value of
ETK[8]. Thus, we just guess 3 cells ETK[0, 9, 15]. Next, allocate a counter
N4[Y1, Y13] for all 24c possible value of [Y1, Y13] and initialize it to zero. For
all 26c possible values of W ′0, do the partial decryption to obtain Y1 and
update the value N4[Y1, Y13] = N4[Y1, Y13] +N3[W ′0, Y13] for all 2c values of
Y13. The time complexity of this step is equal to 2(18c+3c) × 26c × 2c = 228c

memory access.

49

6. From the knowledge of STK17[6] and STK15[4], we determine the value of
STK1[6]. Therefore, we just guess 2 cells STK1[0, 2]. Next, allocate a counter
N5[Y2, Y13] for all 23c possible value of [Y2, Y13] and initialize it to zero. For all
26c possible values of Y1, do the partial decryption to obtain Y2 and update
the value N5[Y2, Y13] = N5[Y2, Y13] +N4[Y1, Y13] for all 2c values of Y13. The
time complexity of this step is equal to 2(21c+2c) × 26c × 2c = 230c memory
access.

7. From the knowledge of STK18[2] and ETK[0], we determine the value of
STK2[2]. Also, we determine the value of STK2[4] from STK18[4] and STK16[2].
Next, allocate a counter N5[Y3, Y13] for all 23c possible value of [Y3, Y13] and
initialize it to zero. For all 23c possible values of Y2, do the partial decryption
to obtain Y3 and update the value N5[Y3, Y13] = N5[Y3, Y13]+N4[Y2, Y13] for
all 2c values of Y13. The time complexity of this step is equal to 223c× 23c×
2c = 227c memory access.

8. Guess 1 cell STK3[6]. Then, allocate a counter N6[X4, Y13] for all 22c possible
value of [X4, Y13] and initialize it to zero. For all 22c possible values of Y3,
do the partial decryption to obtain X4 and update the value N6[X4, Y13] =
N6[X4, Y13]+N5[Y3, Y13] for all 2c values of Y13. The time complexity of this
step is equal to 2(23c+c) × 22c × 2c = 227c memory access.

9. To recover the secret key, allocate a counter V [z] for 2c-bit z. For 22c values
of [X4, Y13], evaluate all 2c basis zero-correlation masks on [X4, Y13] and
get z. Update the counter V [z] by V [z] = V [z] + N6[X4, Y13]. Calculate
the statistical value T (Equation 4), if T < τ , the guessed key values are
possible right key candidates. The time complexity of this step is equal to
224c × 4c× 22c times of reading the 4c-bit memory.

10. Do an exhaustive search for all the right candidates. The time complexity of
this step is equal to β × 232c.

Attack complexity For c = 4, we set α = 2−2.7 and β = 2−9, then Z1−α =
1.01, and Z1−β = 2.88. Thus, based on the Equation 5; N = 262.89. The decision
threshold is τ = µ0 + σ0Z1−α. If we consider one memory accesses as a one
round, then the time complexity of our attack on 19-round SKINNY-64-128 is
about 262.89 + 2114.89 × 1

19 + (2112 + 2108 + · · · + 2108) × 2
19 + 2119 = 2119.15

19-round encryptions. The required memory complexity is dominated by step 1,
which needs about 249 bytes.

For c = 8, by selecting α = 2−2.7 and β = 2−16, our key recovery attack on
19-round SKINNY-128-256 requires 2122.9 known plaintexts, 2240.07 encryptions,
and 298 bytes memory. The success probability of attacks are 1− α = 0.84.

Key-Recovery Attack on SKINNY-n-3n If the zero-correlation linear ap-
proximation over 9-round SKINNY-n-3n in Figure 12 cover rounds 5 to 13, we can
attack 21-round SKINNY-n-3n by adding four rounds before and eight rounds
after the linear approximations, as shown in Figure 12.
Attack procedure

1. Collect N pairs of plaintexts and the corresponding ciphertexts. Guess 29
cells STK20[0−7],STK19[0−7],STK18[0−7], and STK17[0, 1, 4, 6, 7] , do the

50

X0

SC
AC

Y0

≫1

≫2

≫3

W0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

SC
AC

Y17 STK17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 STK18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19

SC
AC

Y19 STK19

f b 9 e
8 c a d

Z19

≫1

≫2

≫3

W19 X20

X20

SC
AC

Y20 STK20

7 3 1 6
0 4 2 5

Z20

≫1

≫2

≫3

W20 X21

Fig. 12: ZC attack on 21 rounds of SKINNY-n-3n. Number of actual involved key
cells: 40

partial decryption and calculate Z16 for each pair. Allocate a 4c-bit counter
N0[W ′0, Z16] for all 212c possible value of [W ′0, Z16] and initialize it to zero.
Next, compute the number of pairs of plaintext-ciphertext with given values
W ′0, and Z16 and store it in N0[W ′0, Z16]. In this step, around 216c pairs are
divided into 212c distinct values of [W ′0, Z16], so 4c-bit counter is sufficient.
The time complexity of this step is equal to N +N × 229c.

2. Guess 5 cells ETK[0, 2, 6, 8, 9, 15] (ETK[6] = ETK[2]). Next, allocate a counter
N1[Y1, Z16] for all 212c possible value of [Y1, Z16] and initialize it to zero. For
all 26c possible values of Y0, do the partial encryption to obtain Y1 and up-

51

date the value N1[Y1, Z16] = N1[Y1, Z16] + N0[W ′0, Z16] for all 26c values of
Z16. The time complexity of this step is equal to 2(29c+5c)×26c×26c = 246c.

3. From the knowledge of STK20[0, 6], STK18[1, 4], and ETK[2, 8], we can deter-
mine the values of STK16[2, 7]. Thus, we guess just 1 cell TK16[5]. Allocate
a counter N2[Y1, Z15] for all 29c possible value of [Y1, Z15] and initialize it to
zero. For all 26c possible values of Z16, do the partial decryption to obtain Z15

and update the value N2[Y1, Z15] = N2[Y1, Z15]+N1[Y1, Z16] for all 26c values
of Y1. The time complexity of this step is equal to 2(34c+c)×26c×26c = 247c.

4. Guess 3 cells STK1[0, 2, 6]. Allocate a counter N3[Y2, Z15] for all 26c possible
value of [Y2, Z15] and initialize it to zero. For all 26c possible values of Y1,
do the partial encryption to obtain Y2 and update the value N3[Y2, Z15] =
N3[Y2, Z15] + N2[Y1, Z15] for all 23c values of Z15. The time complexity of
this step is equal to 2(35c+3c) × 26c × 23c = 247c.

5. We can determine the values of STK15[4] from the knowledge of STK19[5],
STK17[6],and STK1[6]. Therefore, guess just 1 cell STK15[3]. Allocate a
counter N4[Y2, Z14] for all 25c possible value of [Y2, Z14] and initialize it to
zero. For all 23c possible values of Z15, do the partial decryption to obtain Z14

and update the value N4[Y2, Z14] = N4[Y2, Z14]+N3[Y2, Z15] for all 23c values
of Y2. The time complexity of this step is equal to 2(38c+c)×23c×23c = 245c.

6. We determine the values of TK14[0] from the knowledge of STK20[6], STK18[4],
and STK16[2]. Then, allocate a counter N5[Y2, Y13] for all 24c possible val-
ues of [Y2, Y13] and initialize it to zero. For all 22c possible values of Z14,
do the partial decryption to obtain Y13 and update the value N5[Y2, Y13] =
N5[Y2, Y13] +N4[Y2, Z15] for all 23c values of Y2. The time complexity of this
step is equal to 239c × 22c × 23c = 244c.

7. From the knowledge of STK20[4, 6], STK18[2, 4],and ETK[0, 2], we deter-
mine STK2[2, 4]. Then, allocate a counter N6[Y3, Y13] for all 23c possible
values of [Y3, Y13] and initialize it to zero. For all 23c possible values of Y2,
do the partial encryption to obtain Y3 and update the value N6[Y3, Y13] =
N6[Y3, Y13] +N5[Y2, Y13] for all 2c values of Y13. The time complexity of this
step is equal to 239c × 23c × 2c = 243c.

8. Guess 1 cell STK3[6], and then, allocate a counter N7[X4, Y13] for all 22c

possible values of [X4, Y13] and initialize it to zero. For all 22c possible val-
ues of Y3, do the partial encryption to obtain X4 and update the value
N7[X4, Y13] = N7[X4, Y13] + N6[Y3, Y13] for all 2c values of Y13. The time
complexity of this step is equal to 2(39c+c) × 22c × 2c = 243c.

9. To recover the secret key, allocate a counter V [z] for 2c-bit z. For 22c values
of [X4, Y13], evaluate all 2c basis zero-correlation masks on [X4, Y13] and get
z. Update the counter V [z] by V [z] = V [z] + N7[X4, Y13]. Calculate the
statistical value T . If T < τ , the guessed key values are possible right key
candidates. The time complexity of this step is equal to 240c×4c×22c times
of reading the 4c-bit memory.

1. Do an exhaustive search for all the right candidates. The time complexity of
this step is equal to β × 248c.

Attack complexity For c = 4, we set α = 2−2.7 and β = 2−7, then
Z1−α = 1.01, and Z1−β = 2.41. Thus, based on the Equation 5; N = 262.63. The

52

decision threshold is τ = µ0 + σ0Z1−α. If we consider one memory accesses as a
one round, then the time complexity of our attack on 21-round SKINNY-64-192
is about 262.63 +2178.63× 4

21 +(2184 +2188 + · · ·+2172 +2172)× 1
21 +2185 = 2185.83

21-round encryptions. The required memory complexity is dominated by step 1,
which needs about 249 bytes.

For c = 8, by selecting α = 2−2.7 and β = 2−14, our key recovery attack on
19-round SKINNY-128-384 requires 2122.81 known plaintexts, 2372.82 encryptions,
and 298 bytes memory. The success probability of attacks are 1− α = 0.84.

C.3 Integral Attacks based on ZC Distinguishers for SKINNY

In this section, we transform zero-correlation linear hulls into integral distin-
guishers to obtain integral attacks for SKINNY in the related-tweakey setting.

ZC-Integral Key-Recovery Attack on 22-Round SKINNY-n-2n Our tool
finds a zero-correlation distinguisher for 14 rounds (labelled as rounds 1 to 14
in Figure 13), combined with one free initial round (round 0) and a final key
recovery phase over 7 rounds (15 to 21). In this distinguisher, the tweakey cell
8 is only active in at most p = 2 cells (‘any’ in STK7, ‘active’ in STK9). At
the input to the distinguisher, 4 cells are active. Thus, we can convert it to
an integral distinguisher [1] with data complexity 24·(16−4+2) = 256, where the
values in the active input cells and the 2 tweakey cells with index 8 iterate over
all values. The inactive input cells are constant, the other tweakey cells form the
4 · 2 · 15 = 120-bit key. Then, the distinguisher’s outputs in W14[14] sum to zero.
We can trivially prepend 1 round because the addition of the equivalent tweakey
does not change the input structure (key cell 8 is not involved), and all other
operations in the first round are unkeyed.

Key recovery For the key recovery, we separately recover the sums in X15[2]
and X15[14] using the partial-sum technique [15] and merge the results following
the meet-in-the-middle approach [32]. The procedures for both sums are sum-
marized in Table 2. For each sum, we start with Step 0 by storing the obtained
ciphertexts (after unwrapping the last linear layer, i.e., Z21) together with their
corresponding chosen tweakey values. For the tweakey, we either store the re-
quired subtweakey values (i.e., STK21[6]) or, if the index is involved more than
p = 2 times, the input tweakey values from which all subtweakeys can be re-
constructed. In each of the following steps in round r, we guess one column of
involved subtweakey STKr and replace the stored values of this column in Zr by
those (potentially fewer) in Wr−1. If a subtweakey index is involved more than
p = 2 times, we only guess the first p times and derive the remaining values
afterwards. In each round, we reorder the column order if necessary to minimize
the complexity of this round; that is, we first handle columns with fewer key
guesses and a stronger reduction in the MixColumns step.

53

Complexity The complexity of each step is determined by the number of guessed
key cells so far and the number of new stored cells (for memory) or previously
stored cells (for time). We use the number of S-box lookups as unit for the time
complexity, as customary in previous attacks (although in reality, the memory
accesses would likely be more expensive). Overall, we obtain a mapping from
values of the sum in X15[2] to corresponding 292 key candidates with complexity
2106.7, and for the sum in X15[14] for 296 candidates with complexity 2102.8.
These can be merged to obtain 2120−4 = 2116 key candidates that produce zero-
sums. This remaining keyspace can either be brute-forced (complexity 2116), or
the attack can be repeated 3 times (complexity 3 · 2106.7 = 2108.3 plus merging
plus 2120−3·4 = 2108). As merging can be done efficiently, the total complexity is
less than 2110 encryptions equivalents for 22-round SKINNY-64-128 with 120-bit
keys. The same approach yields a complexity of 3 · 2216−5.3 + 2240−3·8 = 2216 for
22-round SKINNY-128-256 with 240-bit keys.

ZC-Integral Key-Recovery Attack on 26-Round SKINNY-n-3n We fol-
low the same approach as above with 4 active input cells, where tweakey cell
index e is only active p = 3 times (‘any’ in STK7,STK9, ‘active’ in STK11) in
the 16 distinguisher rounds labelled 1 to 16 plus the free initial round 0. We
append 9 rounds for key recovery for a total of 26 rounds. The distinguisher
and key recovery are illustrated in Figure 14, with key-recovery details given in
Table 3.

Complexity The combined complexity of recovering X17[1] and X17[13] from
24·(16−4+3) = 260 data is 2172−4.8 + 2172−4.9 = 2168.2. We repeat the attack 2
times and then brute-force the remaining keyspace of 2180−2·4 = 2172 candidates,
which dominates the complexity for 26-round SKINNY-64-192 with 180-bit key.
For 26-round SKINNY-128-384 with 360-bit key, the complexity is 22·172−4.8 +
22·172−4.9 = 2340.2 per repetition; with 2 repetitions, the brute-force complexity
of 2360−2·8 = 2344 encryptions dominates.

54

X0

SC
AC

Y0

≫1

≫2

≫3

W0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17X17

SC
AC

Y17 STK17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 STK18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19X19

SC
AC

Y19 STK19

f b 9 e
8 c a d

Z19

≫1

≫2

≫3

W19 X20

X20

SC
AC

Y20 STK20

7 3 1 6
0 4 2 5

Z20

≫1

≫2

≫3

W20 X21X21

SC
AC

Y21 STK21

b d f c
9 a 8 e

Z21

≫1

≫2

≫3

W21 X22

Fig. 13: ZC-based integral attack on 22 rounds of SKINNY-n-2n.

55

Table 2: Complexity of partial-sum key-recovery for 22 rounds of SKINNY-n-2n.

(a) Recovery of X15[2] (in Figure 13) with total complexity 2112−5.3 = 2106.7.

Step Guessed Keys× Data = Mem Time · Unit Stored Texts

0 – 20 × 256 = 256 256 · 20.0 Z21[0–15]; STK21[6]

1–4 STK21[0–5, 7] 228 × 256 = 284 284 · 2−6.5 W20[0–7, 9, 12–15]

5 STK20[0, 4] 236 × 256 = 292 292 · 2−6.9 Z20[1–3, 5–7, 10, 11, 13–15]; W19[0, 8, 12]

6 STK20[1, 5] 244 × 252 = 296 2100 · 2−6.9 Z20[2, 3, 6, 7, 10, 11, 14, 15]; W19[0, 8, 12, 1, 13]

7 STK20[2, 6] 252 × 244 = 296 2104 · 2−6.5 Z20[3, 7, 11, 15]; W19[0, 8, 12, 1, 13, 6, 14]

8 STK20[3, 7] 260 × 244 = 2104 2104 · 2−6.5 W19[0, 8, 12, 1, 13, 6, 14, 3, 7, 11, 15]

9 STK19[0] 264 × 240 = 2104 2108 · 2−7.5 Z19[1, 3, 5, 6, 9, 10, 13, 14, 15]; W18[12]

10 STK19[1, 5] 272 × 232 = 2104 2112 · 2−6.5 Z19[3, 6, 10, 14, 15]; W18[12, 5, 13]

11 STK19[6] 276 × 232 = 2108 2108 · 2−6.9 Z19[3, 15]; W18[12, 5, 13, 2, 6, 10]

12 STK19[3] 280 × 228 = 2108 2112 · 2−7.5 W18[12, 5, 13, 2, 6, 10, 15]

13 STK18[4] 284 × 220 = 2104 2112 · 2−6.9 Z18[2, 5, 13, 14]; W17[4]

14 STK18[5] 288 × 216 = 2104 2108 · 2−7.5 Z18[2, 14]; W17[4, 9]

15 STK18[2] 292 × 212 = 2104 2108 · 2−7.5 W17[4, 9, 14]

16 – 292 × 24 = 296 2104 · 2−6.9 W16[7]

17 – 292 × 24 = 296 296 · 2−8.5 W15[2]

18 – 292 × 24 = 296 296 · 2−8.5 X14[2]

(b) Recovery of X15[14] (in Figure 13) with total complexity 2108−5.2 = 2−102.8.

Step Guessed Keys× Data = Mem Time · Unit Stored Texts

0 – 20 × 256 = 256 256 · 20.0 Z21[0–15]; STK19[4],STK21[6]

1–4 STK21[0–5, 7] 228 × 256 = 284 284 · 2−6.5 STK19[4]; W20[0–8, 10–15]

5 STK20[0, 4] 236 × 256 = 292 292 · 2−6.5 Z20[1–3, 5–7, 9, 10, 13–15]; STK19[4]; W19[4, 12]

6 STK20[2, 6] 244 × 252 = 296 2100 · 2−6.5 Z20[1, 3, 5, 7, 9, 13, 15]; STK19[4]; W19[4, 12, 2, 6, 14]

7 STK20[3, 7] 252 × 248 = 2100 2104 · 2−6.9 Z20[1, 5, 9, 13]; STK19[4]; W19[4, 12, 2, 6, 14, 11, 15]

8 STK20[1, 5] 260 × 248 = 2108 2108 · 2−6.5 STK19[4]; W19[4, 12, 2, 6, 14, 11, 15, 1, 5, 9, 13]

9 – 260 × 240 = 2100 2108 · 2−7.5 Z19[1, 2, 5, 7, 9, 11, 13, 14, 15]; W18[8]

10 STK19[1, 5] 268 × 232 = 2100 2108 · 2−6.5 Z19[2, 7, 11, 14, 15]; W18[8, 5, 13]

11 STK19[2] 272 × 228 = 2100 2104 · 2−7.5 Z19[7, 11, 15]; W18[8, 5, 13, 14]

12 STK19[7] 276 × 224 = 2100 2104 · 2−6.9 W18[8, 5, 13, 14, 3, 7]

13 STK18[6] 280 × 216 = 296 2104 · 2−6.9 Z18[3, 4, 15]; W17[6]

14 STK18[4] 284 × 216 = 2100 2100 · 2−8.5 Z18[3, 15]; W17[6, 0]

15 STK18[3] 288 × 212 = 2100 2104 · 2−7.5 W17[6, 0, 15]

16 – 288 × 28 = 296 2100 · 2−7.5 Z17[5]; W16[12]

17 STK17[5] 292 × 28 = 2100 2100 · 2−8.5 W16[12, 1]

18 STK16[1] 296 × 24 = 2100 2104 · 2−7.5 W15[13]

19 – 296 × 24 = 2100 2100 · 2−8.5 X14[14]

56

X0

SC
AC

Y0

≫1

≫2

≫3

W0 ETK0

0 1 2 3
0 1 2 3
7 4 5 6
0 1 2 3

X1

SC
AC

Y1 STK1

9 f 8 d
a e c b

Z1

≫1

≫2

≫3

W1 X2

X2

SC
AC

Y2 STK2

1 7 0 5
2 6 4 3

Z2

≫1

≫2

≫3

W2 X3

SC
AC

Y3 STK3

f b 9 e
8 c a d

Z3

≫1

≫2

≫3

W3 X4

X4

SC
AC

Y4 STK4

7 3 1 6
0 4 2 5

Z4

≫1

≫2

≫3

W4 X5

SC
AC

Y5 STK5

b d f c
9 a 8 e

Z5

≫1

≫2

≫3

W5 X6

X6

SC
AC

Y6 STK6

3 5 7 4
1 2 0 6

Z6

≫1

≫2

≫3

W6 X7

SC
AC

Y7 STK7

d e b a
f 8 9 c

Z7

≫1

≫2

≫3

W7 X8

X8

SC
AC

Y8 STK8

5 6 3 2
7 0 1 4

Z8

≫1

≫2

≫3

W8 X9

SC
AC

Y9 STK9

e c d 8
b 9 f a

Z9

≫1

≫2

≫3

W9 X10

X10

SC
AC

Y10 STK10

6 4 5 0
3 1 7 2

Z10

≫1

≫2

≫3

W10 X11

SC
AC

Y11 STK11

c a e 9
d f b 8

Z11

≫1

≫2

≫3

W11 X12

X12

SC
AC

Y12 STK12

4 2 6 1
5 7 3 0

Z12

≫1

≫2

≫3

W12 X13

SC
AC

Y13 STK13

a 8 c f
e b d 9

Z13

≫1

≫2

≫3

W13 X14

X14

SC
AC

Y14 STK14

2 0 4 7
6 3 5 1

Z14

≫1

≫2

≫3

W14 X15

SC
AC

Y15 STK15

8 9 a b
c d e f

Z15

≫1

≫2

≫3

W15 X16

X16

SC
AC

Y16 STK16

0 1 2 3
4 5 6 7

Z16

≫1

≫2

≫3

W16 X17

SC
AC

Y17 STK17

9 f 8 d
a e c b

Z17

≫1

≫2

≫3

W17 X18

X18

SC
AC

Y18 STK18

1 7 0 5
2 6 4 3

Z18

≫1

≫2

≫3

W18 X19X19

SC
AC

Y19 STK19

f b 9 e
8 c a d

Z19

≫1

≫2

≫3

W19 X20

X20

SC
AC

Y20 STK20

7 3 1 6
0 4 2 5

Z20

≫1

≫2

≫3

W20 X21X21

SC
AC

Y21 STK21

b d f c
9 a 8 e

Z21

≫1

≫2

≫3

W21 X22

X22

SC
AC

Y22 STK22

3 5 7 4
1 2 0 6

Z22

≫1

≫2

≫3

W22 X23X23

SC
AC

Y23 STK23

d e b a
f 8 9 c

Z23

≫1

≫2

≫3

W23 X24

X24

SC
AC

Y24 STK24

5 6 3 2
7 0 1 4

Z24

≫1

≫2

≫3

W24 X25X25

SC
AC

Y25 STK25

e c d 8
b 9 f a

Z25

≫1

≫2

≫3

W25 X26

Fig. 14: ZC-based integral attack on 26 rounds of SKINNY-n-3n.

57

Table 3: Complexity of partial-sum key-recovery for 26 rounds of SKINNY-n-3n.

(a) Recovery of X17[1] (in Figure 14) with total complexity 2167.2.

Step Guessed Keys× Data = Mem Time · Unit Stored Texts

0 – 20 × 260 = 260 260 · 20.0 Z25[0–15]; STK23[1],STK25[0]

1–4 STK25[3, 7] 228 × 260 = 288 288 · 2−6.7 STK23[1]; W24[0–15]

5–8 STK24[3, 7] 260 × 260 = 2120 2120 · 2−6.7 STK23[1]; W23[0–15]

9 STK23[0, 4] 268 × 260 = 2128 2128 · 2−6.7 Z23[1–3, 5–7, 9–11, 13–15]; STK23[1]; W22[0, 4, 8, 12]

10 STK23[5] 272 × 260 = 2132 2132 · 2−6.7 Z23[2, 3, 6, 7, 10, 11, 14, 15]; W22[0, 4, 8, 12, 1, 5, 13]

11 STK23[2, 6] 280 × 256 = 2136 2140 · 2−6.7 Z23[3, 7, 11, 15]; W22[0, 4, 8, 12, 1, 5, 13, 2, 6, 14]

12 STK23[3, 7] 288 × 256 = 2144 2144 · 2−6.7 W22[0, 4, 8, 12, 1, 5, 13, 2, 6, 14, 3, 7, 11, 15]

13 STK22[0, 4] 296 × 252 = 2148 2152 · 2−7.1 Z22[1, 2, 3, 5, 6, 7, 9, 10, 13, 14, 15]; W21[0, 12]

14 STK22[1, 5] 2104 × 244 = 2148 2156 · 2−6.7 Z22[2, 3, 6, 7, 10, 14, 15]; W21[0, 12, 5, 13]

15 STK22[2, 6] 2112 × 244 = 2156 2156 · 2−6.7 Z22[3, 7, 15]; W21[0, 12, 5, 13, 2, 6, 10, 14]

16 STK22[3, 7] 2120 × 244 = 2164 2164 · 2−7.1 W21[0, 12, 5, 13, 2, 6, 10, 14, 3, 11, 15]

17 STK21[0, 4] 2128 × 236 = 2164 2172 · 2−6.7 Z21[2, 3, 5, 9, 13, 14, 15]; W20[4, 12]

18 STK21[5] 2132 × 236 = 2168 2168 · 2−7.1 Z21[2, 3, 14, 15]; W20[4, 12, 1, 5, 9]

19 STK21[2] 2136 × 232 = 2168 2172 · 2−7.7 Z21[3, 15]; W20[4, 12, 1, 5, 9, 14]

20 STK21[3] 2140 × 228 = 2168 2172 · 2−7.7 W20[4, 12, 1, 5, 9, 14, 15]

21 STK20[4] 2144 × 224 = 2168 2172 · 2−7.7 Z20[1, 7, 11, 13, 15]; W19[8]

22 STK20[1] 2148 × 220 = 2168 2172 · 2−7.7 Z20[7, 11, 15]; W19[8, 13]

23 STK20[7] 2152 × 212 = 2164 2172 · 2−7.1 W19[8, 13, 7]

24 – 2152 × 24 = 2156 2164 · 2−7.1 W18[6]

25 STK18[5] 2156 × 24 = 2160 2160 · 2−8.7 W17[1]

26 – 2156 × 24 = 2160 2160 · 2−8.7 X16[1]

(b) Recovery of X17[13] (in Figure 14) with total complexity 2167.1.

Step Guessed Keys× Data = Mem Time · Unit Stored Texts

0 – 20 × 260 = 260 260 · 20.0 Z25[0–15]; STK19[3],STK21[7],STK23[1]

1–4 STK25[3, 7] 228 × 260 = 288 288 · 2−6.7 STK19[3],STK21[7],STK23[1]; W24[0–15]

5–8 STK24[3, 7] 260 × 260 = 2120 2120 · 2−6.7 STK19[3],STK21[7],STK23[1]; W23[0–15]

9–12 STK23[0, 2–7] 288 × 260 = 2148 2148 · 2−6.7 STK19[3],STK21[7]; W22[0–7, 9–15]

13 STK22[1, 5] 296 × 260 = 2156 2156 · 2−6.7 Z22[0, 2–4, 6–8, 11, 12, 14, 15]; STK19[3],STK21[7]; W21[1, 5, 13]

14 STK22[2, 6] 2104 × 260 = 2164 2164 · 2−7.1 Z22[0, 3, 4, 7, 8, 11, 12, 15]; STK19[3],STK21[7]; W21[1, 5, 13, 10, 14]

15 STK22[3, 7] 2112 × 252 = 2164 2172 · 2−6.7 Z22[0, 4, 8, 12]; STK19[3],STK21[7]; W21[1, 5, 13, 10, 14, 7, 15]

16 STK22[0, 4] 2120 × 252 = 2172 2172 · 2−6.7 STK19[3],STK21[7]; W21[1, 5, 13, 10, 14, 7, 15, 0, 4, 8, 12]

17 – 2120 × 244 = 2164 2172 · 2−7.7 Z21[0, 1, 4, 6, 8, 10, 12, 13, 14]; STK19[3]; W20[11]

18 STK21[0, 4] 2128 × 236 = 2164 2172 · 2−6.7 Z21[1, 6, 10, 13, 14]; STK19[3]; W20[11, 4, 12]

19 STK21[1] 2132 × 232 = 2164 2168 · 2−7.7 Z21[6, 10, 14]; STK19[3]; W20[11, 4, 12, 13]

20 STK21[6] 2136 × 228 = 2164 2168 · 2−7.1 STK19[3]; W20[11, 4, 12, 13, 2, 6]

21 STK20[5] 2140 × 220 = 2160 2168 · 2−7.1 Z20[2, 7, 14]; STK19[3]; W19[5]

22 STK20[2] 2144 × 216 = 2160 2164 · 2−7.7 Z20[7]; STK19[3]; W19[5, 14]

23 STK20[7] 2148 × 216 = 2164 2164 · 2−8.7 STK19[3]; W19[5, 14, 3]

24 – 2148 × 216 = 2164 2164 · 2−8.7 Z19[3, 15]; STK19[3]; W18[0]

25 – 2148 × 28 = 2156 2164 · 2−7.7 W18[0, 15]

26 – 2148 × 24 = 2152 2156 · 2−7.7 W17[12]

27 – 2148 × 24 = 2152 2152 · 2−8.7 X16[13]

58

	Finding the Impossible: Automated Search for Full Impossible Differential, Zero-Correlation, and Integral Attacks

