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Abstract. Payment channel network (PCN), not only improving the
transaction throughput of blockchain but also realizing cross-chain pay-
ment, is a very promising solution to blockchain scalability problem.
Most existing PCN constructions focus on either atomicity or privacy
properties. Moreover, they are built on specific scripting features of the
underlying blockchain such as HTLC or are tailored to several signature
algorithms like ECDSA and Schnorr. In this work, we devise a Gener-
alized Multi-Hop Locks (GMHL) based on adaptor signature and ran-
domizable puzzle, which supports both atomicity and privacy preserving
(unlinkability). We instantiate GMHL with a concrete design that relies
on a Guillou-Quisquater-based adaptor signature and a novel designed
RSA-based randomizable puzzle. Furthermore, we present a generic PCN
construction based on GMHL, and formally prove its security in the uni-
versal composability framework. This construction only requires the un-
derlying blockchain to perform signature verification, and thus can be
applied to various (non-/Turing-complete) blockchains. Finally, we sim-
ulate the proposed GMHL instance and compare with other protocols.
The results show that our construction is efficient comparable to other
constructions while remaining the good functionalities.

Keywords: Generalized Multi-hop Locks · Payment Channel Network
· Privacy Preserving · Blockchain.

1 Introduction

In recent years, the craze of blockchain has swept the world and people are
increasingly paying attention to it. A great number of applications (e.g., [28],
[31], [10], [3]) based on blockchain have sprung up. Particularly, the appearance
of many blockchain-based cryptocurrencies (e.g., Bitcoin[25], Ethereum[4]) has
made decentralized payments come to reality. Unlike traditional centralized pay-
ment, the confirmation of transactions does not rely on a centralized payment
system (e.g., a bank), but instead a public distributed ledger owned by multiple
parties on the blockchain. This transaction mode has several advantages, such
as high transparency, easy transmission and freedom from inflation.

However, cryptocurrencies are still suffering the scalability problem, which
prevents them from playing a bigger role. The scalability problem includes two
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aspects: on the one hand, the confirmation of a transaction has a high latency,
which limits the transaction throughput of blockchain; on the other hand, it is
difficult for assets or data to interact between different blockchains, which limits
cross-currency payments.

Plenty of research (e.g., [19], [22], [11], [26]) has been conducted to overcome
the scalability issues. Among them, Payment Channel (PC) is a very promising
solution. In simple terms, a payment channel works as following procedures: Al-
ice and Bob first jointly generate an on-chain transaction and pledge a certain
amount of coins as deposits on it to open a channel. Then they can make multiple
local transactions meanwhile updating the balance of the channel with no need
of reporting these records to blockchain. Before the channel expires, they close
the channel by issuing an on-chain transaction to allocate their deposits. PC
significantly alleviates the problem of low throughput and high transaction fees
on blockchain. It has grown into two branches: payment channel hub (PCH) and
payment channel network (PCN). PCH is a connection of two payment channels
that allows for payments between sender and receiver through an intermedi-
ary. And several constructions (e.g., [14], [13], [15], [27]) for PCH are proposed
over the years. Different from PCH, PCN is a connection of multiple payment
channels that allows for payments between sender and receiver through multi-
ple intermediaries, which is the focus of this paper. A fundamental requirement
upon building a PCN is to support atomicity that means all the payments are
either successful or returned back to the participators, which can effectively pre-
vent wormhole attacks. In addition, participators may not want to disclose their
identities or even be linked from different transactions. Finally, each user may
own multiple cryptocurrency accounts and it is desirable to propose a generic
PCN construction that can be applied to various blockchains for cross-chain
payments.

State of the art in PCNs. Poon et al. [26] firstly introduced a PCN pro-
posal, namely Hash Time-Lock Contracts (HTLC) which is based on a special
scripting feature of blockchain. It is the cornerstone of future research, but it
does not consider atomicity (e.g., vulnerable to wormhole attacks). In order to
ensure atomicity, a number of researchers improved the HTLC with new tech-
niques. Miller et al. [23] introduced a PCN called sprites. It ensures atomicity,
reduces the collateral and improves the liveness of PCN with the help of smart
contract. Jourenko et al. [17] proposed a PCN construction, relying on a tech-
nique called payment tree, that provides atomicity and low collateral. Aumayr
et al. [2] obtains atomicity and low collateral by improving the PCN construc-
tion with a punishment mechanism. Nevertheless, the aforementioned protocols
do not consider the privacy-preserving problem, such as the payment path is
exposed directly or the transactions can be linked since they use the same hash
value. To address this issue, Malavolta et al. [20] proposed the first provable
privacy-preserving protocol for PCN, but the high-level security requires rel-
atively expensive cost in terms of computation and communication overhead.
After that, Tripathy et al. [30] put forward an efficient privacy-preserving PCN
relying on Elliptic curve based Time-Lock Contract (ETLC), and Mohanty et al.
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Construction Atomicity Unlinkability Generality Lightweight setup Required functionality
HTLC [26] ◦ ◦ ◦ • HTLC
FC’19 [23] • ◦ ◦ • smart contract
USENIX Sec’21 [2] • ◦ ◦ • UTXO-based
CCS’17 [20] • • ◦ ◦ HTLC
FC’20 [30] • • ◦ • ETLC
NDSS’19 [21] • • ◦ ◦ ECDSA/Schnorr
SP’21 [29] • • • ◦ MPC and signature verification
Our construction • • • • signature verification

Table 1. A comparison of state of the art in PCNs

[24] proposed an efficient and privacy-preserving PCN with an enhanced HTLC
protocol named n-HTLC. Malavolta et al. [21] proposed a privacy-preserving
PCN construction, based on a novel cryptographic primitive named anonymous
multi-hop locks (AMHL) that employs homomorphic one-way functions, zero-
knowledge protocols, and commitment schemes. In this construction, the sender
needs to involve a setup phase with heavy computation, since it needs to compute
locks (i.e., some calculations with homomorphic properties) for all the interme-
diate nodes on the path. Since the previously mentioned protocols are built on
specific scripting features of the underlying blockchain such as HTLC or tailored
to several signature algorithms like ECDSA and Schnorr, they can only be ap-
plied to some specific blockchains. Latter researchers pondered how to propose a
PCN construction that considers atomicity, unlinkability, and generality of PCN
simultaneously. Thyagarajan et al. [29] proposed a generic PCN construction
using lockable signatures and gave an efficient instantiation based on BLS signa-
tures. However, the sender is required to create a 3-party local channel with all
the other participators during setup phase, which may induce heavy computa-
tion. Moreover, they need to post 2 transactions on the blockchain to close the
channel.

In this paper, we propose a Generalized Multi-hop Locks (GMHL) based on
adaptor signature and randomizable puzzle. Different from AMHL, the compu-
tation load in GMHL is amortized by all the participators in the path. Further-
more, we present a generic PCN construction based on GMHL that enjoys all
the benefits of atomicity, privacy preserving, and generality, meanwhile with a
lightweight setup phase. Our construction does not rely on advanced scripts, and
the main additional operation for underlying blockchain is signature verification.
As a consequence, it can be applied to various (including non-/Turing-complete)
blockchains.

Our contributions. The contributions of our work can be summarized as
follows:

– We devise a Generalized Multi-hop Locks, denoted by GMHL, based on
adaptor signature and randomizable puzzle. It supports both atomicity and
privacy preserving (unlinkability). Besides, we show how to instantiate GMHL
by giving a concrete protocol built on a Guillou-Quisquater-based adaptor
signature and a proposed novel RSA-based randomizable puzzle.



4 Liu et al.

– We present a generic PCN construction based on GMHL. It only requires
the underlying blockchain to perform signature verification, and thus can be
applied to various blockchains. As shown in Table 1, compared with the gen-
eral construction in SP’21 [29], our PCN construction has a lightweight setup
phase in sense that the puzzles are generated by each of the participators
instead of the sender. We formally prove the security of this construction in
the Universal Composability (UC) framework and show that our construc-
tion satisfies the basic security properties atomicity and unlinkability. Lastly,
since the cost of our PCN is dominated by the calls to GMHL, we simulate
the instance and compare with other protocols about the computation cost.
The results show that our protocol is efficient comparable to other protocols
while remaining the good functionalities.

1.1 Organization

We introduce the background and preliminaries in Section 2 and give out the
security definitions in Section 3. Then, we introduce our solution overview in
Section 4, and describe the PCN construction in Section 5. Next, we analyze
the security of the PCN construction in Section 6 and simulate the proposed
protocol in Section 7. Finally, we conclude the paper in Section 8.

2 Background and Preliminaries

In this section, we describe the background and the preliminaries that will be
used in this paper.

2.1 Payment Channel Network (PCN)

A PCN can be described as a directed graph G = (V,E), where the set V of
vertices represents the user accounts and the set E of weighted edges represents
the payment channels. The non-negative number associated with the vertex U ∈
V denotes the fees it charges for forwarding a payment. The weight of a directed
edge (U1, U2) ∈ E denotes the amount of remaining coins that U1 can pay to U2.
A payment channel network (PCN) is used to perform transactions between two
users without a directly payment channel. Assume that sender S wants to pay
α coins to receiver R through a path S → U1 → ...→ Un → R . Each user Ui on
this path must have a capacity γi ≥ α′i where α′i = α−

∑i−1
k=1 fee(Uk) to ensure

the payment can be successfully completed. Thus S starts the payment with α∗

coins where α∗ = α+
∑n

k=1 fee(Uk) to guarantee that R will receive exactly α
coins. We refer readers to [20] for further details.

2.2 Preliminaries

Notations. We denote by 1λ ∈ N+ the security parameter and x
$←− S the

uniformly sampling of an element from a set S, respectively. We use the notation
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y ← A(x) to denote that inputs x to a probabilistic polynomial time (PPT)
algorithm A and outputs y, and use the notation y := A(x) when the algorithm
A is a deterministic polynomial time (DPT) algorithm.

(Non-)interactive zero-knowledge. We denote by R an NP relation and
L a set of positive instances corresponding to the relation R where L = {x|∃w s.t.
R(x,w) = 1}, respectively. A non-interactive zero-knowledge proof scheme NIZK
consists of two algorithms: a prover algorithm π ← PNIZK(x,w) and a verifier
algorithm {0, 1} := VNIZK(x, π). The NIZK scheme ensures that the prover can
prove to the verifier that he does know x without revealing additional knowledge
to the verifier. We model the security of a NIZK scheme by an ideal functionality
FNIZK in Appendix and refer readers to [5] for the definition of security of zero-
knowledge functionality in the UC framework.

Adaptor signature scheme. An adaptor signature scheme is defined with
respect to a hard relation R and a digital signature scheme Σ. It consists of
four algorithms ΞR,Σ = (PreSig,PreVf,Adapt,Ext). With a statement/witness
pair (Y, y) ∈ R, a secret/public key pair (sk, pk) ← Σ.KGen(1λ) and a message
m ∈ M, we can generate a pre-signature with σ̂ ← PreSig(sk,m, Y ), adapt a
valid signature with σ := Adapt(σ̂, y), verify a pre-signature with PreVf(m,Y, σ̂)
and extract the witness with y := Ext(σ, σ̂, Y ). Adaptor signature was formally
defined in [1]. An adaptor signature is secure if it provides pre-signature correct-
ness, pre-signature adaptability and witness extractability. Briefly, pre-signature
signature correctness ensures that any honestly generated pre-signature σ̂ with
respect to a statement Y must be valid and the adapted signature σ from it is
valid as well. Pre-signature adaptability ensures that any valid pre-signature σ̂
can be adapted into a valid signature σ with the witness y. Witness-extractability
ensures that a corresponding witness y can be extracted from a valid pre-
signature/signature pair (σ̂, σ).

Randomizable puzzle. A randomizable puzzle scheme RP consists of four
algorithms RP = (PSetup,PGen,PSlove,PRand). With a public parameters/-
trapdoor pair (pp, td)← PSetup(1λ), we can generate a puzzle Z ← PGen(pp, ζ),
solve the puzzle with ζ := PSolve(td, Z) and randomize the puzzle to a fresh
puzzle with (Z ′, r) ← PRand(pp, Z) which ϕ(ζ, r) is the solution to the puz-
zle Z ′. Randomizable puzzle was formally defined in [27], where the authors
also claimed that it needs to satisfy correctness, security and privacy properties.
Correctness ensures that the solution to the puzzle can be recovered with the
trapdoor. Security guarantees that with only the puzzle and the public parame-
ters, the adversary cannot obtain the underlying solution. Privacy ensures that
given two correctly formed puzzles, randomizing one of them, it is infeasible for
an adversary to figure out the randomized one even with a trapdoor oracle.

3 Security Definitions

3.1 Security and Privacy Definition

To model security and privacy we resort to universal composability (UC) frame-
work from Canetti [7] and the synchronous version of global UC framework
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(GUC) [8]. The UC framework is suitable for proofs of a concurrent composition
of protocols. Under the UC framework, protocol can run concurrently, which
means that even many instances are executed concurrently, protocol remains
secure. We allow the composition of GMHL with other application-dependent
protocols while remaining security and privacy guarantees.

Attack model. We model the parties as interactive Turing machines (ITMs).
They do not communicate directly but communicate with a trusted functionality
F via secure and authenticated communication channels. We model the attacker
A as a PPT machine with an interface corrput(·), which can be used to detect
the internal state of the corresponding party once inputting the identifier P of a
party. If a party is corrupted, all the incoming and outcoming messages of P are
routed through A. In this work, we consider the static corruption model that are
frequently used in papers [20], [27], [21], namely, the attacker commits ahead of
time the identifiers of the parties it intends to corrupt. Furthermore, we consider
rational attackers which means an attacker must aim to obtain benefits from the
attack.

Communication model. We specify a synchronous communication net-
work whose communication rounds are discrete. As in [12], [18], we denote by
Fclock the notion of round. All parties promise to complete the corresponding
tasks of this round and get ready to the next round before the clock (i.e., Fclock)
ticks. In this work, we treat the ideal functionality Fclock as a global ideal func-
tionality in the GUC model to ensure all parties are aware of the given round.
Then we denote by FGC the formalization of communication channels as in [12].
Consider that parties communicate via authenticated communication channels,
so integrity of messages in each round of communication can be guaranteed, the
attacker can only change the order of the message in the same round but can-
not delay, insert or drop the message. Furthermore, we denote by Fst the secure
transmission functionality, which guarantees the confidentiality of the message
and prevents attacker from knowing or tampering with the content of message
(for a concrete functionality see [7]). Lastly, we denote by Fano [6] the anony-
mous communication channels for users. It is similar to Fst except omitting the
identifier of the sender from the message sent to the receiver.

Payment channels. We denote by FPC the generalized channels, which can
be seen as a generalization of payment channels. It provides the backbone for a
payment channel: Create for opening a payment payment, Update for updating
the balances of the parties on the same payment channel and Close for closing a
payment channel.

(Global) Universal composability. We outline the notion of secure real-
ization in the UC framework[7] and GUC framework[8]. In short, if the environ-
ment (i.e., the distinguisher) is unable to distinguish whether interacting with a
protocol or an ideal functionality, we define that a protocol realizes an ideal func-
tionality. Since our FPCN ideal functionality is based on FPC and Fclock, we define
the UC-realization with respect to the aforementioned global functionalities. We
denote by π the protocol access to FPC and Fclock and denote by EXECπ,A,E the
ensemble of the outputs of the environment E when interacting with the attacker
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A and users running protocol π. The UC-realization with respect to the global
ideal functionalities is defined as follows:

Definition 1. (Global Universal Composability) A protocol π UC-realizes an
ideal functionality F with respect to a global channel FPC and a global clock
Fclock if for any PPT adversary A, there exists a simulator S, such that for any
environment E, the ensembles EXECFPC,Fclock

π,A,E and EXECFPC,Fclock
F,S,E are compu-

tationally indistinguishable.

Ideal Functionality. We define an ideal functionality FGMHL in (FGC,Fst,
Fano)-hybrid model for GMHL. Then formalize the notion of PCN relying on
GMHL and define an ideal functionality FPCN in (FGC,Fst,Fano,FGMHL)-hybrid
model. The details can be seen in Section 6.

3.2 Security and Privacy Goals

Here, we introduce the security and privacy goals for a PCN.
Atomicity. A PCN should guarantee that all the payments are either suc-

cessful or returned back to the participators.
Unlinkability. Any user (including an honest but curious user Ui) should

not learn information that allows him to associate sender U0 and receiver Un of a
payment. We define unlinkability in term of an interaction multi-graph as in [15].
An interaction multi-graph is a mapping of payments from a set of senders to a
set of receivers. At epoch e, for each successful completed payment queried by the
sender U i

0, there is an edge labeled with e in the graph, linking from sender U i
0

to some receiver U j
n. An interaction graph is compatible if it explains the view of

the intermediate user, namely, the number of edges labeled with e incident to U j
n

equals to the number of coins received by U j
n. Unlinkability requires that these

graphs are indistinguishable. And the anonymity set depends on the number
of compatible interaction graphs. Lastly, any intermediate users cannot learn
any more information about the set of users in the PCN beyond their direct
neighbours.

4 Solution Overview

The approach we follow to construct our locks is reminiscent of the anonymous
atomic locks adopted in A2L [27], but proceeds another way around and it is
an extension and improvement of the original idea. It has expanded from the
scenario of three-party payment to the scenario of multi-party payment. Cer-
tain changes have been made in the construction in order to provide generality.
Our Generalized Multi-hop Locks (GMHL) consists of three phases: setup phase,
lock phase and release phase. Intuitively, our payment paradigm relies on the fact
that for all payments in a payment channel network, the previous payment can
only be successfully finished if the latter payment is successfully completed.
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Atomicity. Atomicity relies on conditional payment to ensure that either all
payments are completed successfully (i.e., all payment channels are updated) or
none are completed in a PCN.

Our approach : In this work, we use cryptographic puzzle, an encoding of an
instance of a cryptographic hard problem, to realize the conditional payment.
Binding a cryptographic puzzle with the channel update, we can achieve the
following properties: (i) the channel can be updated only after the solution to
the puzzle is found and (ii) the solution to the puzzle can be extracted from a
valid channel update.

Our approach ensures the atomicity of a payment between sender U0 and
receiver Un as follows. During the setup phase, the sender U0 generates a cryp-
tographic puzzle P and sends it to the rest of the users in the path. The receiver
Un additionally obtains the solution to the puzzle. In the lock phase, each in-
termediate user Ui (0 ≤ i ≤ n − 1) updates the channel between Ui and Ui+1

conditioned on Ui+1 solving the puzzle P . In the release phase, Un updates the
channel between Un−1 and Un with the corresponding solution and releases the
coins promised by Un−1 before. Then Un−1 can get the solution and release coins
from Un−2 after Un updated the channel. The operation between the successive
pair of users Ui and Ui+1 is the same as that of Un−1 and Un. Until the sender
U0 receives the update channel, the whole payment is finished.

Unlinkability. The aforementioned approach provides atomicity but does
not guarantees unlinkability. All payments in a PCN use the same puzzle P ,
which means that any user (including an honest but curious intermediate user
Ui) can easily link all participators in a PCN.

Our approach : We use cryptographic randomizable puzzle to overcome this
issue. Compared with cryptographic puzzle, cryptographic randomizable puzzle
has two more features: (i) a certain puzzle P can be randomized to a fresh puzzle
P ′ with a randomness r, and (ii) the solution to puzzle P ′ can be obtained with
the solution to puzzle P and the former added randomness r.

Using this tool, our solution for atomicity and unlinkability is as follows. In
the setup phase, the sender U0 generates a puzzle P and randomizes it with a
series of randomnesses r in parallel to a series of fresh puzzles. The solutions
(i.e., ki and ki+1) to a successive pair of puzzles Pi and Pi+1 have a relation
ki+1 = ϕ(ri+1, ki). Then U0 sends the puzzle tuple (Pi, Pi+1) and the randomness
ri+1 to user Ui through a secure communication channel. Notice that the receiver
Un receives a puzzle Pn and its solution kn. In the lock phase, the intermediate
user Ui (0 ≤ i ≤ n−1) updates the channel between Ui and Ui+1 conditioned on
the puzzle Pi+1. In the release phase, Un−1 can release coins after Un released
coins from Un−1 with solution kn. The solution kn−1 is calculated by removing
the randomness rn from the solution kn obtained from the updated channel
between Un−1 and Un. The rest of the users do the same. The whole payment
is completed after U0 releases his coins.

Lightweight setup. Currently, similar to other protocols, the sender is re-
sponsible for a great amount of computation that is proportional to the number
of intermediate nodes and thus the setup phase is not lightweight.
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Fig. 1. The solution overview

Our approach : In the following, we consider to amortize the computation
load to all the users on the path to obtain a lightweight setup. Our solution for
atomicity, unlinkability and lightweight setup is shown in Figure 1. In the setup
phase, Dave generates (using PGen) a puzzle Pα (i.e., the pink lock) and sends it
to Alice through a secure communication channel. During the lock phase, Alice
pays Bob conditioned on Bob solving the puzzle Pα. Since Bob does not have the
solution to puzzle Pα, he uses PRand to randomize it to a fresh puzzle Pβ (i.e.,
the blue lock) and initiates a payment to Coral conditioned on Pβ . Similarly,
Coral pays Dave conditioned on Pγ (i.e., the green lock). In the release phase,
Dave solves puzzle Pγ (using PSolve), sends the solution (i.e., the green key) to
Coral and releases the coins promised by Coral. Coral gets the solution to Pγ

from update channel and removes the randomness added before (using DeRand)
to release coins. Bob does the same as Coral. Now the release phase is finished,
Alice can pay coins to Dave as expected.

Generality. The aforementioned approach guarantees atomicity, unlinkabil-
ity and lightweight setup, but does not consider more about generality.

Our approach : We here use adaptor signature to overcome this challenge.
Using this tool, we make our solution able to be applied to various (non-/Turing-
complete) blockchains. For short, in the lock phase, Ui generates a pre-signature
with respect to a puzzle and sends to Ui+1. During the release phase, Ui+1 can
convert the pre-signature into a valid signature with the solution to puzzle, send
it to Ui and release coins. Therefore, the online operation of a payment is only
to verify the validity of a signature, which can be applied to various blockchains.

In the following section, combining with adaptor signature and randomizable
puzzle, we give a formalization of the aforementioned solution to guarantee the
update of a channel can only be completed after the solution to a puzzle is found.
In a nutshell, we first generate a randomizable puzzle and a pre-signature with
respect to it. Only after solving the randomizable puzzle can the pre-signature
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The GMHL protocol Π
1 SetupU0

: SetupUn (1
λ) :

2 (pk, sk)← Gen(1λ)
3 (pp, td) := (pk, sk)

4 r
$←− D

5 (P0, r0)← PGen(pp, r)
6 πα0 ← PNIZK({∃α0|PSolve(td, P0) = α0}, α0)
7 send (P0,πα0

) to U0

8 If VNIZK(πα0
, P0) ̸= 1 then abort

9 return ⊤ return (P0,πα0 )
10 LockU0 (P0) : LockUi (Pi−1) :
11 σ̂0 ← PreSig(skU0 ,m0, P0) If VNIZK(παi−1

, Pi−1) ̸= 1 then abort
12 send (σ̂0, P0, πα0

) to U1 If PreVf(mi−1, Pi−1, σ̂i−1) ̸= 1 then abort
13 return (σ̂0, P0, πα0

) (Pi, ri)← PRand(pp, Pi−1)
14 παi

← PNIZK({∃αi|PSolve(td, Pi) = αi}, αi)
15 σ̂i ← PreSig(skUi ,mi, Pi)
16 send (σ̂i, Pi, παi

) to Ui+1

17 return (σ̂i, Pi, παi
)

18 ReleaseUi (Pi, σ̂i−1, σ̂i, σi) : ReleaseUn (Pn−1, σ̂n−1) :
19 If Vrfy(σi) ̸= 1 then abort wn−1 = PSolve(td, Pn−1)
20 wi = Ext(σ̂i, σi, Pi) σn−1 = Adapt(σ̂n−1, wn−1)

21 wi−1 = wi · r−1
i send σn−1 to Un−1

22 σi−1 = Adapt(σ̂i−1, wi−1) return σn−1

23 send σi−1 to Ui−1

24 return σi−1

Fig. 2. Algorithms and protocols for the generic construction

be converted into a valid signature. After getting the valid signature, we can
combine it with the corresponding pre-signature to get the solution to the puzzle.

5 Our Construction

We here illustrate the proposed GMHL and show how to realize it in PCN.

5.1 The Proposed GMHL

We now present our GMHL and denote by Π. This can be achieved by utilizing a
randomizaable puzzle and an adaptor signature ΞR,Σ=(PreSig,PreVf, Adapt,Ext)
for the signature Σ=(Gen,Sign,Vrfy) used by the underlying ledger and a hard
relation R. We assume that statement/witness pairs of R are public/secret key of
Σ and a constant amount of coins (i.e. p) for each payment so as to avoid others
linking the users in a PCN. The protocol consists of three phases: setup phase,
lock phase and release phase. The algorithms of our protocol are given in Figure 2.
We discuss each phase separately at a high level here.

Setup phase. In the setup phase, user Un first obtains a public/secret key pair
(pk, sk) through the generation algorithm of the signature scheme (line 2 in Fig-
ure 2). Set the public/secret key pair (pk,sk) as the public parameter/trapdoor
pair (pp,td) of the randomizable puzzle. Then Un uniformly samples an element
r from a set D, generates a randomizable puzzle P0 with related to r (i.e., the
secret adaptor), produces a NIZK proof πα0

proving that α0 is the solution to
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puzzle P0 (lines 4-6 in Figure 2) and sends a puzzle/proof pair (P0, πα0
) to U0.

Once U0 is convinced of the validity of such pair, the GMHL is initialized.
Lock phase. In the lock phase, user U0 generates an adaptor signature σ̂0 over

the previously agreed message m0 (e.g., the transaction id) and shares the (pre-
signature, puzzle, proof) tuple to U1 (lines 11-12 in Figure 2). For intermediate
user Ui, if no abortion arises during the verification of such tuple (lines 11-12 in
Figure 2), he randomizes the puzzle Pi−1 to Pi using PRand algorithm, produces
a NIZK proof παi

over puzzle Pi, generates a pre-signature σ̂i over the mutually
agreed information and sends tuple (σ̂i, Pi, παi) to Ui+1 (lines 13-16 in Figure 2).
At this point the lock phase is finalized and we can turn to the release phase.

Release phase. In the release phase, after user Un receives the tuple (σ̂n−1
, Pn−1, παn−1

) and confirms its validity, he solves puzzle Pn−1 for obtaining
wn−1 and converts the pre-signature σ̂n−1 into a valid signature σn−1 (lines 19-
20 in Figure 2). For intermediate user Ui, once he is convinced of the validity of
signature σi, he extracts the witness wi from it using Ext algorithm (lines 19-20
in Figure 2), removes the randomness added before, produces a valid signature
σi−1 with Adapt algorithm (lines 21-22 in Figure 2) and sends it to user Ui−1.

Guillou-Quisquater-based Instance of GMHL. To show how to instanti-
ate GMHL, we present a concrete instance ΠGQ which is based on a Guillou-
Quisquater adaptor signature ΣGQ and a randomizable puzzle. Before describing
the construction of the instance, we first propose a specific RSA-based random-
izable puzzle.

RSA-based randomizable puzzle. We set the encryption scheme Φ to be
RSA-based homomorphic encryption scheme[16], its message space M = ZN

and solution space S = ZN . Our construction is shown in Construction 1. In the
construction, we wrap an integer in a puzzle with PGen and PRand algorithms
and unwrap it with PSolve algorithm.

Construction 1 The randomizable puzzle scheme is constructed as follows:
PSetup(1λ): sample a key pair (pkΦ, skΦ) ← KGen(1λ), set pp := pkΦ and

td := skΦ, and return (pp, td).
PGen(pp,ζ): parse pp as pkΦ, sample r

$←− S, compute c ← Enc(pkΦ, ζ · r),
set Z := c, and return (Z, r).

PSolve(td,Z): parse td as skΦ, compute ζ ′ ← Enc(skΦ, Z), and return ζ ′.
PRand(pp,Z): parse pp as (N, e), sample r′

$←− S, compute c′ = c ·r′e mod N ,
set Z ′ := c′, and return (Z ′, r′).

The security of our construction is shown by the following theorem.

Theorem 1. Let Φ be an encryption scheme, the construction 1 is a correct,
secure and private randomizable puzzle scheme.

Proof. (sketch) Correctness and security follows straightforwardly from the cor-
rectness and security properties of the encryption scheme Φ. For the notion of
privacy, note that for a puzzle Z and its solution rζ and a randomizable puzzle
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Public parameters: (N, e,X), message m
SetupU0

: SetupUn (1
λ) :

1 (N, e, d,X, x)← ΣGQ.KGen(1λ)
2 pk = (N, e, x)
3 sk = (N, d)
4 (pp,td)=(pk,sk)

5 t
$←− Zn

6 (P0, t0)← PGen(pp, t)
7 (P0, πw0

)
←−−−−−−

πw0
← PNIZK({∃w0|Dec(td, P0) = w0}, w0)

8 If VNIZK(P0, πw0
) ̸= 1 then abort

9 return ⊤ return (P0, πw0
)

Fig. 3. The setup phase between user U0 and Un

Public parameters: (N, e,X), message mi

LockUi (skUi , Pi−1) : LockUi+1 (skUi+1 ) :

1 (Pi, ti)← PRand(pp, Pi−1)
2 πwi

← PNIZK({∃wi|Dec(td, Pi) = wi}, wi) (Pi, πwi
)

−−−−−−→
3 If VNIZK(Pi, πwi

) ̸= 1 then abort

4 k2
$←− ZN

5 r2 = ke
2 mod N

6 (r2, π2)←−−−−−
π2 ← PNIZK({∃k2|r2 = ke

2 mod N}, k2)

7 If VNIZK(r2, π2) ̸= 1 then abort

8 k1
$←− ZN

9 r1 = ke
1 mod N

10 π1 ← PNIZK({∃k1|r1 = ke
1 mod N}, k1) (r1, π1)−−−−−→

11 If VNIZK(r1, π1) ̸= 1 then abort
12 R = r1r2Pi R = r1r2Pi

13 αi = H(mi, R) αi = H(mi, R)

14
y2←− y2 = k2skαi

Ui+1
mod N

15 y1 = k1skαi
Ui

mod N
y1−→

16 β̂i = y1y2 β̂i = y1y2

17 return (σ̂i = (αi, β̂i), Pi, πwi
) return (σ̂i = (αi, β̂i), Pi, πwi

)

Fig. 4. The lock phase between user Ui and Ui+1

Z ′ with the solution r′ζ, the space of rζ and r′ζ are the same, they are all in the
field S, which implies that Z and Z ′ are information-theoretically unlinkable.

The description of the instance. The algorithms are given in Figure 3,
Figure 4 and Figure 5. This construction consists of three phases: setup phase,
lock phase and release phase. Next we will discuss each phase separately.

Setup phase. As shown in Figure 3, user Un first runs the Guillou-Quisquater
signature scheme to get a public/secret key pair (pk, sk) where pk = (N, e,X)
and sk = (N, x) and set them as public parameter pp and trapdoor td separately
(line 1-4 in Figure 3). Then he picks a random integer t and generates a puzzle
P0 over it (lines 5-6 in Figure 3). He sends puzzle P0 to U0 along with the
corresponding NIZK proof (lines 7 in Figure 3). Once U0 is convinced of the
validity of such pair, the setup phase is finished.

Lock phase. In the lock phase, for user U0, since puzzle P0 was generated
by Un, he just needs to execute a coin tossing protocol with U1 to come to an
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Public parameters: (N, e,X)
ReleaseUi-1 : ReleaseUi+1 (σ̂i, σi, Pi) :

1 wi−1 = PSolve(td, Pi−1) //for i=n
2 parse σi as (αi, βi) //for i=1,2,...,n-1
3 parse σ̂i as (αi, β̂i)

4 wi = βi/β̂i

5 wi−1 = wi · t−1
i

6 σi−1←−−
σi−1 = (αi−1, β̂i−1wi−1)

7 If Vrfy(σi−1) ̸= 1 then abort
8 return ⊤ return σi−1

Fig. 5. The release phase between user Ui and Ui+1

agreement on a randomness R = (k1k2t0t)
e mod N . It is worth mentioning that

t0t is unknown to U0 and U1 and the use of k1 and k2 here is to blind the puzzle
P0. Due to the homomorphic feature of RSA encryption scheme, randomness
can be continuously multiplied. The randomness R is calculated by exchanging
r1 and r2 with each other and multiplied with puzzle P0, the corresponding
proof of consistency is attached together (lines 4-12 in Figure 4). Then both U0

and U1 calculate a hash α0 with related to the previously agreed message m0

and randomness R (line 13 in Figure 4). Next U0 and U1 execute a coin tossing
protocol again to agree on an "almost valid" signature (α0, β̂0) while the valid
form is (α0, t0tβ̂0) (lines 14-16 in Figure 4). Note that the lacking part of the
"almost valid" signature is the secret of puzzle P0. For intermediate user Ui, he
has one more operation than user U0: randomizing puzzle Pi−1 to a fresh puzzle
Pi and producing the corresponding NIZK proof (lines 1-2 in Figure 4).

Release phase. In the release phase, for user Un, since he has the trapdoor
to the cryptographic function of the puzzle, he can directly use the trapdoor
function (i.e., the algorithm Dec) to get the secret of puzzle Pn−1 (line 1 in
Figure 5). As for intermediate user Ui, he can extract witness wi from a valid
pre-signature/signature pair (σ̂i, σi) because of the witness-extractability feature
of adaptor signature. Then Ui removes the former added ti to get the solution to
puzzle Pi−1 (lines 2-5 in Figure 5). At this point, Ui can adapt the pre-signature
σ̂i−1 to a valid signature σi−1 because of the pre-signature adaptability feature
of adaptor signature (line 6 in Figure 5). Once user Ui−1 is certain about the
validity of signature σi−1 (line 7 in Figure 5), Ui can release the coins.

5.2 Description of Our PCN

GMHL can be generically combined with a blockchain B to construct a fully-
fledged PCN. The construction of our PCN is shown in Figure 6. We denote by
ci the channel identifier between user Ui and Ui+1, and the coins in a payment is
constant (i.e., p). We use ∆ to represent a constant validity period of a signature
and t to represent current time. In our construction, U0 and Un first execute
the setup phase of GMHL protocol to initialize the entire construction. Then
intermediate user Ui runs the lock phase of GMHL protocol to get the input
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Public parameters: validity period ∆ of a lock, current time t, payment cash p
U0(c0) Ui(ci, ci+1), i=1, 2, ..., n− 1 Un(cn−1)

(P0, πα0
)← SetupUn (1

λ)
If (P0, πα0

)=⊥ then abort
(σ̂0, P0, πα0

)← LockU0 (P0) Send (P0, πα0
) to U0

If (σ̂0, P0, πα0
) =⊥ then abort

If c0.cash(U0) < p then abort
Set T1= t+n∆
Send (σ̂0, P0, πα0

) to U1

GMHL(U0, U1, V, p, T1)−−−−−−−−−−−−−−−−−−→
If ci.cash(Ui) < p then abort

(σ̂i, Pi, παi
)← LockUi (Pi−1)

If (σ̂i, Pi, παi
) =⊥ then abort

Send (σ̂i, Pi, παi
) to Ui+1

Set Ti= t + (n− i)∆
GMHL(Ui, Ui+1, V, p, Ti)−−−−−−−−−−−−−−−−−−−→

σn−1 ← ReleaseUn (Pn−1, σ̂n−1)

If σn−1 =⊥ then abort
Send σn−1 to Un−1

If Vrfy(σi )̸=1 then abort
σi−1 ← ReleaseUi (Pi, σ̂i−1, σ̂i, σi)
If σi−1 =⊥ then abort
Send σi−1 to Ui−1

If Vrfy(σ0) ̸=1 then abort

Fig. 6. Our PCN construction

for GMHL contract GMHL(Ui, Ui+1, V , p, Ti), additionally, the algorithm V in
GMHL contract only needs to verify a signature:
• If Ui+1 produces a valid signature σi that Vrfy(σi) = 1 before time Ti

expires, then channel ci is updated with ci.cash(Ui)−= p and ci.cash(Ui+1)+= p
(i.e., Ui pays p coins to Ui+1).
• Else the channel ci remains unchanged. (i.e., Ui takes back p coins that

were locked in the contract).

6 Security Analysis

In this section, we formalize the security of GMHL and our PCN construction
under the UC framework [7] and the GUC framework [8]. We first describe an
ideal functionality FGMHL to capture the honest behaviours and security proper-
ties of the interactions among users U0, U1, ..., Un in the GMHL protocol, aiming
to specify the input and output behaviors of our protocol and capture the ad-
versary’s possible influence in the execution. Next, we discuss that our GMHL
construction in Section 5.1 emulates FGMHL, namely, any possible attacks in
our construction can be simulated in FGMHL. We specify an ideal functionality
FPCN relying on FGMHL to cover the security notions of our PCN construction
in Section 5.2. Furthermore, we will consider the security against some concrete
attacks and give a formal proof in the following.

Ideal functionality FGMHL. We define an ideal functionality FGMHL in
(FGC,Fst,Fano)-hybrid model for GMHL. FGMHL manages a list P (initially set
P := ∅), which is used to store the message about the cryptographic puzzles.
The format of each piece of message in the list is (< pid0, b >, < pid1, b >, ...,
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Ideal Functionality FGMHL
Setup: On input (Setup, Un) from U0, FGMHL proceeds as follows:
- Send (setup-req, U0) to Un and S.
- Receive (setup-res, b) from Un.
- If b=⊥ then abort.

- Sample pid0
$←− {0, 1}λ.

- Store (< pid0,⊥>, ·, ..., ·) into P.
- Send (setuped, pid0) to U0, Un and inform S.

Lock: On input (Lock, Ui+1) from Ui, FGMHL proceeds as follows:
- Send (lock-req, Ui) to Ui+1 and S.
- Receive (lock-res, b) from Ui+1.
- If b=⊥ then abort.

- Sample pidi
$←− {0, 1}λ.

- Update entry to (< pid0,⊥>, < pid1,⊥>, ..., < pidi,⊥>, ·, ·, ..., ·) in P.
- Send (locked, pidi−1, pidi) to Ui, (locked, pidi) to Ui+1 and inform S.

Release: On input (Release, Ui−1, pidi−1) from Ui, FGMHL proceeds as follows:
- If tuple (< pid0,⊥>, ..., < pidi−1,⊥>, ·, ..., ·,)∈ P or b =⊥ in < pidi, b > then abort.
- Send (release-req, Ui) to Ui−1 and S.
- Receive (release-res, b) from Ui−1.
- If b=⊥ then abort.
- Update entry to (< pid0,⊥>, ..., < pidi−2,⊥>, < pidi−1,⊤ >, ..., < pidn−1,⊤ >) in P.
- Send (released, pidi−1, ⊤) to Ui−1, Ui and S.

Fig. 7. Ideal functionality FGMHL

< pidn, b >) where b is used to indicate whether the puzzle has been solved. At
the same time, FGMHL provides three interfaces, the setup interface allows a party
to obtain a puzzle, the lock interface given as input a puzzle to get a randomized
version of it and the release interface allows a party to check the validity of a
puzzle solution and get the solution to another puzzle. The description of the
ideal functionality FGMHL is depicted in Figure 7.

Ideal functionality FPCN. We here formalize the notion of PCN relying on
GMHL and define an ideal functionality FPCN in (FGC,Fst,Fano,FGMHL)-hybrid
model. FPCN manages a list C (initially set C := ∅) which is used to record the
identifier of the opening channels. We assume that two adjacent parties on a
PCN path have a channel, the amount of coins (i.e., p) in each payment on the
channel is constant and is globally available to all parties, the validity period for
a payment is constant (i.e., ∆) and the current time is t. In this model, we do
not take transaction fees into account to ensure the security of the model. FPCN
provides three interfaces, the Open for opening a channel, the Close for closing
a channel and the Pay for the payment operation from sender U0 to receiver
Un via the intermediate users Ui using in FGMHL. The description of the ideal
functionality FPCN is depicted in Figure 8.

6.1 Concrete Attack Scenarios (Informal)

In the section, we consider some attacks against our construction and argue
informally, why security and privacy still holds.

Generate a fake puzzle. Suppose there are three nodes on the path, honest
user A, malicious user B and honest user C. After receiving a puzzle P from user
A, user B generates a fake puzzle P ′ and sends it to user C. User C sends the
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Ideal Functionality FPCN
Open: On input (Open, c, txidP ) from a party P, FPCN proceeds as follows:
- Send (Create, c, txidP ) to S.
- Receive b from S.
- If b=⊥ then abort.
- Add c into C.
- Send (created, c.cid) to c.users.

Close: On input (Close, c) from a party P, FPCN proceeds as follows:
- Send (Close, c.cid) to S.
- Receive b from S.
- If b=⊥ then abort.
- Remove c from C.
- Send (closed, c.cid) to c.users.

Pay: On input (Pay, Un) from U0, FPCN proceeds as follows:
- Retrieve all the ci in C, check whether ci.users={Ui, Ui+1}.
- If ci =⊥ then abort.
- Send (Setup, Un) to S.
- Receive pid0 from S.
- If pid0 =⊥ then abort.
- Set Ti = t + (n− i)∆, propose ci.TLP (δi := (ci.cash(Ui)− = p, ci.cash(Ui+1)+ = p), Ti) to Ui and Ui+1.
- Send (Lock, U1), (Lock, U2), ..., and (Lock, Un) to S.
- Receive a series of pids (i.e., pid1, pid2, ..., and pidn−1) from S.
- If any one of pidi =⊥ then abort.
- Send (Release, Un−1), (Release, Un−2), ..., and (Release, U0) to S.
- Receive a series of b from S.
- If any one of b=⊥ or Ti < t then send ⊥ to Ui.
- Send a series of updates (Update, ci.cid, δi := (ci.cash(Ui)− = p, ci.cash(Ui+1)+ = p)) to S.

Fig. 8. Ideal functionality FPCN

solution S′ to B, but this solution is invalid and C cannot redeem coins form B.
However, after receiving such a solution, B can extract a valid solution S from
it and redeems coins from A. In order to prevent this attack, we force each user
to present a zero-knowledge proof to the next user that the puzzle he sends is a
valid randomized puzzle.

Some users are skipped (wormhole). Suppose there are five intermediate
users on the path, honest user A, attacker B, honest user C, attacker D and
honest user E. Attackers B and D attempt to collude with each other to steal
coins from other honest users. After receiving solution from E, D may want to
send the solution to B so that they can skip the intermediate user C to steal
his fees. But this attack does not work. Since the puzzle of each payment on the
path is bound to a randomness, which is kept by each users. B cannot redeems
coins back from A with the solution sent by D, such a solution is blinded with
a randomness kept by C. Only after C removes his randomness added in this
solution, can the attacker B receive a valid solution and redeem back his coins
from A. Furthermore, once D wants to skip C and refuses to transfers solution
to C, C will abort and the payment is stopped in the channel between C and D.
However, in this case, D will suffer financial losses (E has redeemed coins from
D). Therefore, rational D will not agree to collude with B to launch an attack,
instead honestly sends the solution to C to complete the payment.
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Ideal Functionality FNIZK
On input (prove, sid, x, w) from one party P1 or P2, ignore the input does not related to the
relation R (i.e., (x, w) /∈ R) or proposed former (i.e., the sid has been used), then send (proof, sid,
x) to another party.

Fig. 9. Ideal functionality FNIZK

6.2 Security Analysis of GMHL

Here, we will prove the security of our GMHL by the following theorem. We
prove security according to the UC framework and in the presence of malicious
adversaries with static corruptions.

Theorem 2. Let Σ be EUF-CMA secure signature schemes, R be a hard rela-
tion, ΞR,Σ be a secure adaptor signature scheme and RP be a secure and private
randomizable puzzle scheme, then the construction in Figure 2 UC-realizes the
ideal functionality FGMHL in the (FGC,Fano,Fst)-hybrid model.

Proof. In the following proof, we assume all the adversary’s message are well-
formed and treat the malformed messages as aborts. Then we use a series of
hybrids to gradually modify the initial experiment.

Hybrid H0: This corresponds to the original construction as described in
Figure 2.

Hybrid H1: All calls to the non-interactive zero-knowledge scheme NIZK are
replaced with calls to an ideal functionality FNIZK with respect to a relation R
(described in Figure 9 ).

Hybrid H2: For a corrupted intermediate user Ui (0 < i < n) and other
honest users U0, ..., Ui−1, Ui+1, ..., Un, check whether Ui returns some tuple
(σ̂i,Pi,παi

), before U0 and Un execute the setup phase, and does not cause the
honest user Ui+1 to abort during the lock phase. If the aforementioned happens,
abort the experiment and output ⊥.

HybridH3: For a corrupted intermediate user Ui (0 < i < n) and other honest
users U0, ..., Ui−1, Ui+1, ..., Un and a pre-signature σ̂i−1 between Ui−1 and Ui,
check whether Ui returns a valid signature σi−1 such that Verify(σi−1) = 1, before
a valid signature σi is output from an execution of the release phase which can
extract the witness wi−1 such that satisfied Verify(Adapt(σ̂i−1, wi−1)) = 1, then
the experiment aborts.

Hybrid H4: For the honest users Ui and Ui+1 with a witness wi extracted in
the release phase, if the parties does not abort and Verify(Adapt(σ̂i−1, wi ·r−1i ) ̸=
1, then the experiment aborts.

Simulator S: The simulator S simulates the honest parties as in the previous
hybrid. Assume that the actions of S are determined by the ideal functionality
FGMHL and described in Figure 10, Figure 11 and Figure 12.

In the following, we prove the indistinguishability of the neighboring experi-
ments for the environment E .

Lemma 1. For all PPT distinguishers E it holds that
EXECH0,A,E ≈ EXECH1,A,E .
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Simulator for setup phase
Case U0 is honest and Un is corrupted

Upon U0 sending (Setup, U0) to FGMHL, proceed as follows:

– Send (setup-req, U0) to Un.
– Upon (setuped, P0, πα0 ) from A (on behalf of Un), check if VNIZK(P0, πα0 ) ̸= 1. If this is

the case, then simulate U0 aborting.

Case U0 is corrupted and Un is honest
Upon U0 sending (setup-req, U0) to Un, proceed as follows:

– If Un sends (setup-res, ⊤) to FGMHL, then sample a random number r
$←− D, generate a puzzle

(P0, r0) ← (pp, r), prove the knowledge of the puzzle πα0
← PNIZK({∃α0|PSolve(td, P0) =

α0}, α0) and send (setuped, P0, πα0
) to U0. Else stop.

Fig. 10. Simulator for setup phase

Simulator for lock phase
Case Ui is honest and Ui+1 is corrupted

Upon Ui sending (Lock, Ui+1) to FGMHL, proceed as follows:

– Send (lock-req, Ui) to Ui+1.
– Upon (lock-res, b) from A (on behalf of Ui+1), check if b=⊥. If this is the case, then simulate

Ui aborting. Otherwise, then randomize the puzzle (Pi, ri)← PRand(pp, Pi−1) (if i=0, ignore
the first operation, U0 does not need to randomize the puzzle), generate a pre-signature σ̂i ←
(skUi ,mi, Pi) along with the corresponding NIZK proof παi

← PNIZK({∃αi|PSolve(td, Pi) =
αi}, αi) and send (locked, σ̂i,Pi,παi

) to Ui+1.

Case Ui is corrupted and Ui+1 is honest
Upon Ui sending (lock-req, Ui) to Ui+1, proceed as follows:

– Upon (locked, σ̂i, Pi, παi
) from A (on behalf of Ui), check if PreVf(mi, Pi, σ̂i) ̸= 1 or

VNIZK(Pi, παi
) ̸= 1. If this is the case, then simulate Ui+1 aborting.

Fig. 11. Simulator for lock phase

Simulator for release phase
Case Ui is honest and Ui+1 is corrupted

Upon Ui+1 sending (release-req, Ui+1) to Ui, proceed as follows:

– Upon (released, σi) from A (on behalf of Ui+1), check if Verify(σi) ̸= 1. If this is the case,
then simulate Ui aborting.

Case Ui is corrupted and Ui+1 is honest
Upon Ui+1 sending (Release, Ui+1) to FGMHL, proceed as follows:

– Send (release-req, Ui+1) to Ui.
– Upon (release-res, b) from A (on behalf of Ui), check if b=⊥. If this is the case, simulate Ui+1

aborting. Otherwise, calculate the secret adaptor wi+1 (for Un, wn−1 = PSolve(td, Pn−1);
for Ui+1, wi+1 = Ext(σ̂i+1, σi+1, Pi+1), wi = wi+1 · r−1

i+1), generate the valid signature
σi = Adapt(σ̂i, wi) and send (released, σi) to Ui.

Fig. 12. Simulator for release phase

Proof. The proof follows directly from the security of the non-interactive zero-
knowledge scheme NIZK.
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Lemma 2. For all PPT distinguishers E it holds that
EXECH1,A,E ≈ EXECH2,A,E .

Proof. It is worth mentioning that the difference of the two hybrids is whether
the experiment outputs ⊥, hence we bound the probability of such an event
occurs in the following. Consider that the event ⊥ happens in the case that an
honest user Ui does not abort during the lock phase with a puzzle not obtained
from the setup phase. Here we bound such probability by a reduction against
the existential unforgeability of the signature scheme Σ. Assume a contradiction
Pr[⊥ |H1]≥ 1

poly(1λ)
and we construct the following reduction. The reduction

receives a public key pk as input and samples an index k ∈ [1, q], where q ∈
poly(1λ) is the bound of the total number of interactions. We redirect the calls
to the signing algorithm to the signing oracle and also specify that the reduction
aborts once the setup phase is called. At the same time, the reduction returns
the corresponding (σ̂′i,P ′i ,π′αi

) if the event ⊥ happens, or aborts.
The reduction is clearly efficient whenever k is guessed correctly and the

reduction does not abort. If the lock phase is executed without calling the setup
phase, the event ⊥ happens. The lock phase takes P ′i−1 as input and furthermore
we have that VNIZK(π

′
αi
, P ′i ) = 1 and PreVf(mi, P

′
i , σ̂
′
i) = 1, which implies that

Ui+1 does not abort the execution of the lock phase and (σ̂′i,P ′i ,π′αi
) is a valid

forgery. By assumption this happens with probability at least 1
q·poly(1λ) , which

is a contradiction and proves that Pr[⊥ |H1]≤ negl(1λ).

Lemma 3. For all PPT distinguishers E it holds that
EXECH2,A,E ≈ EXECH3,A,E .

Proof. In this part we let the event ⊥ that triggered in H3 but not in H2. We
continue to show that the probability of such event occurs can be bounded by
a negligible function in the security parameter, and a bound on the probability
can be reduced to the security of the RP scheme, hardness of the relation R and
unforgeability of the adaptor signature scheme ΞR,Σ . Assume a contradiction
Pr[⊥ |H2]≥ 1

poly(1λ)
and we construct the following reduction. We are convinced

that the probability of an adversary breaking the RP scheme is negligible and
furthermore, the security of the RP scheme and the unforgeability of the adaptor
signature also imply the hardness of the relation R. Hence, the remaining is to
show that the bound of the probability ⊥ occurs in H2 can be reduced to the
unforgeability of the adaptor signature scheme ΞR,Σ . The reduction receives a
public key pk, a pre-signature σ̂ and a statement P as input and samples an index
k ∈ [1, q], where q ∈ poly(1λ) is a bound of the total number of interactions. The
reduction replaces σ̂i−1 with σ̂ and Pi−1 with P in the lock phase, and set the
public key pkUi-1

generated in the k-th interaction to pk. We redirect the calls
to the pre-signing and signing algorithms to the pre-signing and signing oracles
respectively. At the same time, the reduction returns the corresponding σ′i−1 if
the event ⊥ happens, or aborts.

The reduction is clearly efficient whenever k is guessed correctly and the re-
duction does not abort. Please note that once the event ⊥ happens, we have that
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Verify(σ′i−1) = 1 and the release phase is not executed. This implies that Ui−1
does not abort in the execution of release phase and σ′i−1 is a valid forgery. By
assumption this happens with probability at least 1

q·poly(1λ) , which is a contra-
diction and proves that Pr[⊥ |H2]≤ negl(1λ).

Lemma 4. For all PPT distinguishers E it holds that
EXECH3,A,E ≈ EXECH4,A,E .

Proof. Here we let ⊥ be the event triggered in H4 but not in H3. It is worth
mentioned that such event can be occurred in two scenarios. First, a corrupted
user Ui−1 presents a pre-signature σ̂′i−1 which successfully completes the pre-
verification under the key pkUi-1

during the lock phase while cannot adapt to
a valid signature in the release phase. Second, a corrupted user Ui+2 produces
a valid signature σi+1 during the release phase while cannot extract a valid
witness from it latter. Note that if the former happens, then the adversary has
the ability to against the pre-signature adaptability, and if the latter happens,
the adversary has the ability to against the witness extractability of the adaptor
signature ΞR,Σ . Assume a contradiction Pr[⊥ |H4]≥ 1

poly(1λ)
and reflect on the

following hybrid:
• Hybrid H′3: The pre-signature in the lock phase is set to σ̂′i−1

$←− {0, 1}
which successfully completes the pre-verification under the public key pkUi-1

.
Because of the pre-signature adaptability property of the adaptor signature

scheme ΞR,Σ , we have that Pr[⊥ |H′3]=Pr[⊥ |H3].
The remaining is to show that the bound of the probability the event ⊥ occurs

in H′3 can be reduced to the against of witness extractability of the adaptor
signature scheme ΞR,Σ . Assume a contradiction Pr[⊥ |H′3]≥ 1

poly(1λ)
and we

construct the following reduction. The reduction takes a public key pk′Ui-1
and a

pre-signature σ̂′i−1 as input and samples an index k ∈ [1, q], where q ∈ poly(1λ) is
the bound of the total number of interactions. Here it replaces the pre-signature
σ̂i−1 with σ̂′i−1 in the release phase and sets the public key pkUi-1

generated in
the k-th interaction to pk′Ui-1

. We redirect the calls to signing an pre-signing
algorithms to signing and pre-signing oracles respectively. The reduction returns
the signature σi−1 of Ui−1 once the event ⊥ happens, or aborts.

The reduction is clearly efficient whenever k is guessed correctly and the
reduction does not abort. Please note that the event ⊥ happens when we have
Verify(σi−1) ̸= 1 without any parties aborting. Please note that Ui is honest so
we are convinced that the signature σi is valid, therefore, it remains to show
that the computed σ′i−1 is invalid. Because of the pre-signature adaptability
property of the adaptor signature scheme ΞR,Σ , the Adapt algorithm works as
expected. The only way forH′3 generating an invalid signature σ′i−1 is to compute
a wrong witness wi−1 from puzzle Pi−1. Consider that wi−1 = wi+1 · r−1i+1 · r

−1
i

and both users Ui and Ui+1 are honest, which implies that the extracted witness
wi+1 is invalid. It means that with a valid signature σi+1, we cannot extract
a valid witness wi+1 from it and the adversary has the ability to against the
witness extractability of the adaptor signature. By assumption this happens
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Phase NDSS’19[21] SP’21[29] Our Protocol
Setup 4.04n 15.80n 12.08
Lock 13.42n 7.02n 1.01n

Release 4.57n 1.21n 0.27n
Total 22.03n 24.03n 12.08+1.28n

Table 2. A comparison of the computational time across PCN protocols, with a path
length of n. Times are reported in milliseconds(ms).

with probability at least 1
q·poly(1λ) , which is a contradiction and proves that

Pr[⊥ |H′3]≤ negl(1λ).

Lemma 5. For all PPT distinguishers E it holds that
EXECH4,A,E ≈ EXECFGMHL,A,E .

Proof. The differences of the two experiment are only conceptual. Hence, indis-
tinguishability follows.

This concludes the proof of Theorem 2.

6.3 Security analysis of PCN

In this section we present the security notion of our PCN construction and the
proof of the following theorem.

Theorem 3. The protocol in Figure 6 UC-realizes FPCN in the (FGC, FPC,
Fclock, FGMHL)-hybrid model.

Proof. Observe that the ideal functionality FGMHL enforces atomicity and un-
linkability properties of a PCN as proving above. The remaining information
outside FGMHL are the changeable accounts and timeouts, and we set constant
accounts and synchronized phases to preserve unlinkability. Furthermore, it is
also trivial for simulator S to interactive with FGMHL and FPC on behalf of FPCN.

7 Performance Analysis

In this section we implemented our Guillou-Quisquater-based (GQ-based) PCN
construction, then compared its performance against the Schnorr-based PCN
construction from [21] and the BLS-based PCN construction from [29].

We consider an n-party payment path for a PCN, and the PCN protocols
of [21] and [29] have the similar structure. Because the cost of the PCN pro-
tocols is dominated by the calls to locks, we simulate the instance of GMHL
presented before and compare it with other locks about the timing cost of the
operations perform in all phases. We measure the cost on a personal computer
with 2.30GHz Intel(R) Core(TM) i7-10875H processor and 32GB memory. We
use python library pypbc-0.2 for the arithmetic operations in class groups, the



22 Liu et al.

(a) computation time in the
setup phase

(b) computation time in the
lock phase

(c) computation time in the
release phase

(d) time to complete pay-
ments

(e) the gas required to im-
plement the schemes in Rop-
sten

(f) the number of transac-
tions that need to be up-
loaded on chain

Fig. 13. The comparison between two general PCN protocols.

library rsa-4.8 for operations in RSA algorithm and the library numpy-1.22.1
for the cryptographic operations, and zero-knowledge protocols here have been
implemented using Σ protocols [9]. We operate 1K times and calculate their
average time, which are reported in Table 2. We do not consider the network
latency in our measurements, since this does not constitute the efficiency bot-
tleneck of our approach. From Table 2, we can see that the setup phase in our
protocol outperforms other protocols in sense that the computation cost does not
grow with the number of participators n while other protocols require a linear
growth. Compared with the work in NDSS’19 [21], a similar work on construct-
ing a PCN protocol, our GQ-based construction performs significantly better
in the lock and release phase. Compared with another generalized construction
in SP’21 [29], our construction not only remains good functionalities but also
performs better in all phases.

We also compare with another general construction [29] in more details, which
is shown in Figure 13. We measure the running time for each phase of the
PCN protocol and the whole time to complete the entire payment. As can be
seen from sub-figure (a), our protocol takes a constant time during the setup
phase, while the other protocol takes time proportional to the length of the
path. Besides, although the time required by our protocol in the lock and release
phases also grows with the path length, it does not grow as fast as the other
protocol [29]. Therefore, the time required for our protocol to complete the entire
payment is much lower than that of [29]. When the path length is 100, our scheme
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takes only 140.08 ms, which is much lower than the 2408 ms required by [29].
Furthermore, we measure the computation cost in terms of the gas required by
a smart contract implementing the protocols in Ropeten. We notice that setting
up the corresponding contract of our protocol requires 39075 unit of gas per
hop, while [29] needs 182390 unit of gas. Finally, we also compare the number
of transactions that need to be uploaded when the payment channel network is
expired. Parties involved in the PCN protocol [29] need to post 2 transactions
on the chain to close their channels, instead of 1 as ours. In summary, we can
find that our construction has better advantages in various comparisons.

8 Conclusion

In this work we devised a Generalized Multi-Hop Locks(GMHL) which supports
both atomicity and unlinkability. We then presented a general PCN construction
based on GMHL to reach all the benefits of atomocity, unlinkability and general-
ity. Furthermore, We proposed a Guillou-Quisquater-based GMHL instance and
compared with other constructions, showing that our proposal has a lightweight
setup and is efficient comparable to other constructions. As GMHL dominates
the performances of PCN, the proposed GMHL can be regarded as a promising
tool to realize efficient PCNs.
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