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We provide optimized range proofs, called Sharp, in discrete logarithm and hidden
order groups, based on square decomposition. In the former setting, we build on the
paradigm of Couteau et al. (Eurocrypt ’21) and optimize their range proof (from now
on, CKLR) in several ways: (1) We introduce batching via vector commitments and
an adapted Σ-protocol. (2) We introduce a new group switching strategy to reduce
communication. (3) As repetitions are necessary to instantiate CKLR in standard
groups, we provide a novel batch shortness test that allows for cheaper repetitions.
The analysis of our test is nontrivial and forms a core technical contribution of our
work. For example, for λ = 128 bit security and B = 64 bit ranges for N = 1 (resp.
N = 8) proof(s), we reduce the proof size by 34% (resp. 75%) in arbitrary groups,
and by 66% (resp. 88%) in groups of order 256-bit, compared to CKLR.
As Sharp and CKLR proofs satisfy a “relaxed” notion of security, we show how

to enhance their security with one additional hidden order group element. In RSA
groups, this reduces the size of state of the art range proofs (Couteau et al., Eurocrypt
’17) by 77% (λ = 128, B = 64, N = 1).

Finally, we implement our most optimized range proof. Compared to the state of
the art Bulletproofs (Bünz et al., S&P 2018), our benchmarks show a very significant
runtime improvement. Eventually, we sketch some applications of our new range
proofs.

1. Introduction
Zero-Knowledge Proofs and Range Proofs. Zero-knowledge proofs, introduced in the seminal
work of Goldwasser, Micali, and Rackoff [GMR89], allow a prover to convince a verifier of the
truth of a statement while concealing all other information. This makes them an important tool
in theory and practice. Efficient constructions are now known for a variety of NP-languages, and
are routinely used in real-world applications. An example of particular interest is range proofs,
which are zero-knowledge proofs for demonstrating that a secret value (committed or encrypted)
belongs to a public range. Range proofs are a core component in numerous applications, such as

1

mailto:couteau@irif.fr
mailto:dahmun.goudarzi@gmail.com
mailto:michael.klooss@kit.edu
mailto:michael.reichle@ens.fr


anonymous credentials [Cha90], e-voting [Gro05], or e-cash [CHL05], and have been introduced
recently in some popular anonymous cryptocurrencies (see [Zca; Mon; Bün+20]).

Range Proofs. Many range proofs which have been constructed in the past can be categorized
in two main paradigms:

(1) Range proofs based on n-ary decomposition [CCs08; Gro11], where one proves a statement
of the form x ∈ [0, n`) by committing to an n-ary decomposition (x0, . . . , x`−1) of x, and proving
that x = ∑

i xi · ni and each xi belongs to [0, n) (which can be done efficiently when n is small).
The state of the art method in this paradigm is Bulletproofs [Bün+18], which features very
small proof size O(λ · log `) for a security parameter λ (using binary decomposition), and also
enjoys a transparent setup: the only trusted parameter it requires is an unstructured common
random string, which can be easily generated by standard “nothing up my sleeve” methods (in
contrast, protocols requiring a structured common string need to trust the parameter generator,
which is undesirable). Due to its great concrete efficiency and its transparent setup, Bulletproofs
have become the most commonly used solution in real-world applications.
(2) Range proofs based on square decomposition [Bou00; Lip03; Gro05; CPP17], where one

proves a statement of the form x ≥ 0 by using special integer commitment schemes [FO97; DF02]
to commit to x over Z, and by proving the existence of four squares x1, . . . , x4 such that x = ∑

i x
2
i

(such a decomposition always exist by a theorem of Lagrange, and ensures non-negativity). This
generalizes to arbitrary intervals [a, b] by proving non-negativity of (x−a)(b−x). While avoiding
n-ary decomposition is attractive, instantiating integer commitments required until recently the
use of hidden order groups (such as RSA groups), whose elements are too large to be competitive
with Bulletproofs for any reasonable interval size, and which require a trusted setup (to set up
the RSA modulus).

The CKLR Range Proof. In a recent work [Cou+21a], Couteau et al. revived the square
decomposition paradigm, by constructing bounded integer commitment schemes, which can be
instantiated over cryptographic groups with hard DLOG problem. They instantiate (a variant
of) the range proof of [CPP17] with this new commitment scheme, significantly reducing their
size and removing the need for a structured common reference string. The CKLR scheme was
shown to compare favorably with Bulletproofs: for a careful choice of parameters and underlying
group, the proofs are about 15% shorter than Bulletproofs, and require an order of magnitude
less group operations. Therefore, on paper, CKLR seems to offer a competitive alternative to
Bulletproofs.

CKLR versus Bulletproofs. However, this cost estimation ignores several important practical
aspects, and the distinction turns out to be far from clear cut in real-world instantiations. The
main limitation of CKLR is that it requires exotic group sizes – typically, elliptic curves with
elements of size 352 or 416 bits to achieve 128 bits of security for 32- or 64-bit ranges. While in
theory, we can use curves with a wide variety of sizes, and many standard options exist, the vast
majority of cryptographic applications build upon 256-bit elliptic curves, and highly optimized
implementations of some of these curves are available (for example in libsecp256k1 [Wui18] or
ristretto255 [Val+19]). These libraries typically offer runtimes 10 to 20 times faster than the
NIST standardized implementations of other standard curves. Hence, the use of large curves in
CKLR actually negates the efficiency gains of their smaller number of group operations compared
to Bulletproofs. Furthermore, several applications constrain the choice of curve; for example,
the Ethereum cryptocurrency only allows the curve secp256k1.

This is not the only limitation of the CKLR range proof, compared to Bulletproofs. The latter
is especially attractive when performing several range proofs at once, because it allows for very
efficient batching of multiple proofs; no such batching is known for CKLR. This stems from the
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fact that the CKLR range proof revolves around an “extraction lemma” which was formulated
and proven in the setting of a single proof, and operates on top of single-value commitments
(while Bulletproofs operate on generalized Pedersen commitments, which can commit compactly
to vectors of values).

Eventually, CKLR is also more restricted in its range of applications compared to Bulletproofs.
This is because Bulletproofs operate with standard Pedersen commitments, while CKLR is
designed on top of a new (Pedersen-based) construction of bounded integer commitments.
Compared to Pedersen commitments, these new commitments have (1) only limited homomorphic
properties, and (2) a relaxed notion of opening, where a malicious opener is given more freedom
in what is regarded as a valid opening (this is similar in spirit to the property of standard integer
commitment schemes, such as the Damgård-Fujisaki commitment [DF02]). This means that
in some applications, for example when a value opened by a malicious party must be reused
afterwards by an honest prover (this is the case, e.g. in some cryptocurrency applications),
CKLR cannot be used as a drop-in replacement: the use of CKLR is only appropriate when the
new commitment scheme can be used in the application without harming security or correctness.

Summing up, the CKLR paradigm is a promising new approach for constructing range proofs
with strong performance. However, it does not currently compare favorably to Bulletproofs
in practical applications, mostly due to its use of larger curves which lack competitive imple-
mentations, but also due to its lack of batching features. Furthermore, it operates on a new
commitment scheme, which makes it not a priori clear what are the standard applications of
range proofs where it can be safely used.

1.1. Our Contributions
In this work, we thoroughly revisit the CKLR paradigm. We introduce a new family of range
proof schemes, which we call Sharp (for short relaxed range proofs). The name Sharp stems
from a change of perspective with respect to CKLR: in CKLR, a proof is interpreted as a
full-fledged range proof for values committed with a new bounded integer commitment which
they introduce. The latter is essentially a Pedersen commitment where openings are allowed to
be rationals, which are rounded to the nearest integer in the opening phase. We observe that one
can equivalently “push the relaxation from the commitment to the range proof” and see CKLR
as a relaxed range proof operating over standard Pedersen commitments, where relaxed means
that the prover is only bound to a rational inside the target range, instead of an integer.1 While
this change of perspective does not in itself change the construction nor its security properties,
it allows for a more modular treatment of the construction, and simplifies the analysis of how
CKLR (or Sharp) integrates within standard application of range proofs.

Our new constructions build upon numerous optimizations, which are a combination of known
techniques and entirely new approaches. The security analysis of our scheme is subtle and
technically involved; it forms the core technical contribution of our work. Sharp proofs improve
upon CKLR on all possible fronts: they are much shorter, more efficient, allow for a considerably
more flexible choice of the underlying group (and can in particular be efficiently instantiated
over 256-bit curves), and can be batched efficiently. In addition, we also demonstrate how to
overcome the relaxation of soundness, obtaining schemes that operate directly with standard
Pedersen commitments and effectively bind the prover to an integer in the range (instead of a
rational) at the cost of slightly larger proofs (but still with very competitive performance).
To complement the above results, we elaborate on how Sharp can be used to improve the

efficiency of some flagship applications of range proofs, such as anonymous credentials and anony-
mous transactions, clarifying which applications can work with bounded integer commitment

1This is a purely conceptual change of view with respect to CKLR, where the rational opening is afterwards
interpreted as an encoding of the closest integer via rounding.
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schemes, and which require using a scheme with stronger features. We validate our efficiency
claims with implementations and benchmarks of our main schemes. While our implementation is
an unoptimized proof-of-concept implementation, our benchmarks show that it offers a ten-fold
runtime improvement over a heavily optimized implementation of Bulletproofs; we expect that
the efficiency gap would widen further with a more optimized implementation of Sharp. Below,
we elaborate on our contributions.

1.1.1. Improved Range Proof Constructions.

Our new family of range proofs, Sharp, can be instantiated in a variety of settings, leading to
tradeoffs between efficiency and the underlying soundness notion. We build upon the paradigm
introduced in [Cou+21a] and obtain range proofs with improved efficiency and flexibility. In
applications where low communication matters the most, our scheme SharpGS provides the most
competitive performance, but uses curves of sizes other than the standard 256-bit setting. For
runtime-critical applications, or when the application restricts the available curve, we describe
SharpPo

SO, a scheme fully optimized to work over 256-bit groups.
At the heart of our flexibility and efficiency improvements is a modular treatment of the

structure of a range proof. We split the range proof into two conceptual parts: the proof of short
opening (PoSO) and the proof of decomposition (PoDec). The PoSO guarantees that extracted
openings are short and the PoDec ensures that the square decomposition holds over Zp, where p
is the order of the DLOG group. Combining both parts ensures that the committed value is
a rational inside the given range, as the shortness allows us to argue over the integers. This
decoupling allows us to develop tailored optimizations for each part, but also clarifies the exact
soundness guarantees which the proof provides. We stress that one can still equivalently see
Sharp as a standard range proof operating over a relaxed integer commitment scheme, using
the rounding technique of CKLR: our change of perspective improves the conceptual simplicity
of analyzing the use of Sharp within standard applications, but the exact guarantees remain
identical to CKLR.

Optimizing the decomposition proof. We optimize the PoDec via a polynomial-based tech-
nique, similar to the lattice version of [Cou+21a] (with some tweaks that improve efficiency).
Besides improving efficiency of the PoDec, this adaption enables two additional improvements:
(1) The new protocol is suited for vector commitments, such as Pedersen multi-commitments
(MPed). This enables more efficient batch range proofs, in the sense of performing range proofs
for all N values in the vector commitment at once. (2) We introduce a group switching strategy
that enables the use of different groups for the PoSO and PoDec. To our knowledge, this is the
first time group switching is (efficiently) used without leveraging hidden order groups. This
optimization further reduces proof length (and computation), while allowing more flexibility to
instantiate the underlying groups. These changes lead to an optimized range proof: SharpGS.

Optimizing the short opening proof. We further present SharpPo
SO, a range proof with optimized

PoSO (in combination with the changes described above). The analysis of this scheme is delicate
and uses several new ideas. It constitutes the main technical contribution of this work. As range
and challenge space (hence soundness) introduce lower bounds on group size, repetitions are
required to achieve high security levels when the group is fixed. In CKLR, such repetitions were
very expensive, as much of the proof had to be repeated. To reduce their cost, we introduce
a (fractional) shortness test that allows the prover to show that numerator and denominator
of multiple fractions are short by sending a single short integer, per repetition. Integrating
this shortness test in the range proof, a “repetition” requires only two scalars, independent of
the batch size. Thus, the bulk of communication and computation of the range proof is the
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optimized PoDec (without any repetition).
We note that these optimizations also lead to significant improvements in a batch setting,

where multiple range proofs must be executed at once. For example, executing N = 8 range
proofs with 128 bits of security and 64-bit inputs communicates only 2.9 times more than
executing a single range proof. We also observe that a similar batch technique is used in the
context of lattice-based range proofs, in the setting where all challenges are bits. However, the
possibility of using general short challenges instead of bits is precisely what allows our schemes
to remain very compact, and is also what makes the analysis of our shortness test so delicate
(we elaborate on this aspect in the technical overview).

Binding to integers instead of rationals. The bounded integer commitment scheme of [Cou+21a]
is essentially a Pedersen commitment where malicious openers are allowed to reveal a rational
instead of an integer (that is later rounded to encode an integer inside the range). Consequently
SharpGS, like CKLR, provides only a relaxed notion of soundness, in that it only binds the
prover to a rational in the target range. We develop several new approaches to overcome this
limitation, obtaining proofs that operate with standard Pedersen commitments (where openings
are required to be integers). In the interactive setting, where soundness is statistical (and a 2−40

statistical soundness error is a common choice), we show how our batch shortness test allows us
to use challenges in {0, 1} with much more reasonable communication overhead compared to
previous approaches, which gives a competitive three-round range proof with transparent setup
and full-fledged soundness. In the non-interactive setting (where soundness is computational and
128 repetitions would be too expensive), we show how to combine our schemes with a minimal
use of hidden order groups, obtaining two variants: SharpCL (using class groups to instantiate the
hidden order group) and SharpRSA (using RSA groups). These variants retain a strong efficiency,
as only a single element of the hidden order group must be added to the proof. They achieve
stronger soundness notions, namely: (1) SharpRSA achieves standard soundness (allowing our
scheme to be used as a drop-in replacement in essentially any application of range proofs, but at
the cost of loosing the transparent setup), and (2) SharpCL achieves a slightly weaker soundness
where the prover is bound to a dyadic rational, which suffices to overcome some attacks that
arise from the use of a range proof with relaxed soundness in some applications, while retaining
the transparent setup.

We note that many range proofs in RSA groups have been described in the past [Bou00; Lip03;
Gro05; CPP17]. Our RSA-based variant achieves considerable efficiency improvements compared
to all these previous works (both communication and computation-wise), while achieving the
same soundness guarantees.

Concrete efficiency estimations. We compare the communication efficiency of SharpGS, SharpPo
SO,

and SharpRSA to the state-of-the-art in table 1. For performing a single range proof, SharpGS
proofs are almost 50% shorter than Bulletproofs, and about 34% shorter than the CKLR range
proofs. For our computation-optimized range proofs SharpPo

SO, these numbers are about 42% and
29% respectively. When performing a large number of range proofs, Bulletproofs become better
communication-wise, because of their logarithmic cost in the batch size; nevertheless, even for a
batch of N = 8 range proofs, our range proofs are only between 1.1 and 1.3 times larger than
Bulletproofs (in concrete applications, we believe that this should be largely compensated by
our strong computational improvements). Our variant in RSA groups, which achieves standard
soundness, improves by a large margin compared to the previous best-known RSA-based range
proof of [CPP17]: a factor 3 improvement for a single range proof, and up to a factor 14
improvement for N = 8 simultaneous range proofs.
We implemented our computation-optimized range proof SharpPo

SO, using the 256-bit elliptic
curve from the libsecp256k1 library [Wui18]. We stress that this is an unoptimized implementation;
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yet, compared to the optimized reference implementation of Bulletproofs using the same library,
and running the two protocols on the same machine, we observe very significant runtime
improvements. The runtime of our prover is 11 to 17 times faster than Bulletproofs’ (for 32-bit
and 64-bit ranges), while our verifier is two to four times faster; see table 2. For a larger batch
size of N = 8, our verifier runtime remains two to four times faster than Bulletproofs, while the
gap with our prover runtimes increases slightly, ranging from 11 to 21 times faster (all while
maintaining a proof size only 1.1 to 1.3 larger than that of Bulletproofs for N = 8). We expect
these gaps to further increase with a more optimized implementation.

Table 1: Theoretical proof size in Bytes for showing that some x ∈ [0, B] of
CKLR proofs [Cou+21a], Bulletproofs [Bün+18], RSA-based range proofs
[CPP17] and Sharp proofs (SharpGS, SharpPo

SO and SharpRSA) given the
security parameter λ. The groups Gcom and G3sq used for Sharp proofs
have order p and q respectively. π denotes proof size in Bytes, N denotes
the number of proofs in the batch, and log p, log q is the bit-size of p and
q.

CKLR BPs RSA SharpGS SharpPo
SO SharpRSA

(λ, logB) N log p π π π log p log q π log p log q π π

128, 64 1 416 545 672 2424 333 411 360 256 256 389 793
8 416 4360 864 19056 333 411 1070 256 256 1119 1503
16 416 8720 928 38064 333 411 1882 256 256 1928 2315

128, 32 1 352 501 608 2404 301 347 318 256 256 335 751
8 352 4008 800 18896 301 347 916 256 256 932 1349
16 352 8016 864 37744 301 347 1600 256 256 1612 2033

Table 2: Benchmark of our optimized range proofs compared to Bulletproofs, us-
ing the reference Bulletproofs implementation in C of [Bün+18], using
batch sizes N = 1 and N = 8. Both implementations use the library
libsecp256k1 [Wui18], and were run on a MacBook Pro with a 2.3 GHz
Intel core i7 processor. All timings are in milliseconds.

Bulletproofs SharpPo
SO

(λ, logB) N Prover’s work Verifier’s work Prover’s work Verifier’s work

128, 64 1 20.6 2.55 1.17 0.75
8 157 12.1 7.47 3.88

128, 32 1 10.5 1.46 0.97 0.74
8 80.0 6.93 6.74 3.39

1.1.2. Security and Applications.

We analyze the guarantees of range proofs with relaxed soundness (such as CKLR and Sharp) in
standard range proof applications. For this, we show which manipulations of the committed
values can be allowed depending on the setting. Specifically, we discuss the arithmetical behaviour
of the manipulated rationals, the impact of the chosen decomposition on soundness and show
that Sharp proofs provide standard soundness when the committed values are short. Then, we
use these insights to sketch how Sharp can be applied to two important applications of range
proofs: anonymous credentials (AC) and anonymous transactions (AT). While relaxed soundness
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is sufficient in AC, range proofs with relaxed soundness do not suffice as drop-in replacement in
AT (and their usage would lead to concrete attacks). Nevertheless, some (but not all) range
proofs can be replaced with Sharp proofs in AT, and we sketch how Sharp proofs augmented
with both a RSA and class group element improve this situation, even without trusted setup of
the RSA modulus.

1.2. Technical Overview
1.2.1. CKLR Proofs.

Before introducing our technical improvements, we give a short overview of CKLR in the DLOG
setting. Given a group G of order p with generators (G,H), a Pedersen commitment (Ped) to
x ∈ Zp with randomness r is given by xG+ rH. (We use additive notation.)
CKLR opens the commitment to x ∈ [0, B] in a zero-knowledge manner using standard

Σ-protocol techniques. That is, the prover commits to random masks in D = Ped.Commit(x̃, r̃),
where x̃ and r̃ are additive masks for x and r respectively. Then, sendsD to the verifier who in turn
sends a random challenge γ ∈ [0,Γ]. The prover responds with two linear combinations z = γx+x̃,
t = γr + r̃. Finally, the verifier checks the linear combination via D + γC = Ped.Commit(z, t)
and checks z ∈ [0, (BΓ + 1)L], where L is the “masking overhead”. We call such a “proof of
opening with shortness check” a proof of short opening (PoSO).
The basic observation in [Cou+21a] is that the soundness of the above protocol guarantees

the extraction of a value of the form x ≡p y · γ−1, where both (y, γ) are short as well. While
this does not suffice to bind the prover to a small integer, CKLR observes that x ≡p y · γ−1

uniquely defines a small rational number u = y/γ ∈ Q (where y, γ are short and coprime), if
2(BΓ + 1)ΓL ≤ p holds.2 We call u ∈ Q the rational representative of x and write u = [x]Q .

To show that u resides in the range [0, B], CKLR decomposes x(B − x) = ∑
i∈[1,4] y

2
i as the

sum of four squares, commits to yi in separate Ped commitments, performs a PoSO for the yi
and x, and shows that the decomposition holds over Zp using the homomorphic properties of
Ped. We call this part a proof of decomposition (PoDec). The shortness guarantees of the PoSO
imply that u(B − u) ≥ 0 and thus u ∈ [0, B]Q, if 18((BΓ + 1)L)2 ≤ p holds.3

1.2.2. SharpGS: Group Switching and Batching via an Adapted PoDec.

To weaken the requirements on commitment homomorphism, we use a polynomial-based technique.
That is, the prover commits to yi in Ped commitments and performs a PoSO for each yi, as
before. To show that the four square decomposition holds, i.e. x(B − x) = ∑

i∈[1,4] y
2
i , the prover

computes a polynomial f using the (short) masked witnesses z = γx+ x̃ and zi = γyi + ỹi from
the PoSO as follows:

f = z(γB − z)−
4∑
i=1

z2
i = α2γ

2 + α1γ + α0.

A short computation shows that α2 = 0, i.e. the degree of f in γ is 1, iff the decomposition holds.
To show that the degree of f is one, the prover commits to α1 and α0 in C∗ = Ped.Commit(α1; r∗)
and D∗ = Ped.Commit(α0; r̃∗) and sends C∗, D∗ to the verifier. Then, the verifier sends the
challenge γ and the prover replies with t∗ = r̃∗ + γr∗. Note that the verifier can recompute
f from z, {zi}4i=1 and the statement. Now, the verifier can check whether f ≡q α1γ + α0 via

2CKLR interprets (y, γ, r) as a valid opening to u with respect to a modified Pedersen commitment that commits
to rationals u = y/γ as (y · γ−1)G+ rH (or integers with rounding). Instead of relaxing the commitment, we
relax the soundness guarantee of the range proof and keep working over rationals. This is more flexible and
precise.

3For improved efficiency, CKLR and our protocols actually use a three square decomposition which can lead to
problems in applications, see section 6.1.2. For simplicity, we stick with the four square decomposition in the
introduction.
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Ped.Commit(f, t∗) = D∗ + γC∗. As the challenge is not known to the prover at the point of
committing to the coefficients, the Schwartz–Zippel lemma guarantees that the decomposition
holds over Zq with overwhelming probability. Further, the prover reveals nothing about the
values as the commitments are hiding and the openings are masked in t∗.

By construction, the polynomial-based technique allows us to use Pedersen multi-commitments
(MPed), instead of separate Pedersen commitments (as in CKLR). Thus, we can perform N
range proofs at once, with a constant number of group elements and a linear number of short
integers.

The high level structure of this Σ-protocol resembles the lattice-based version of CKLR. But
now, by committing to the entire decomposition yi in a single Pedersen multi-commitment,
which was not possible in the DLOG Σ-protocol of CKLR, the prover needs to communicate
two integers and group elements fewer, compared to CKLR. This improves over the standard
Σ-protocol for the showing the square decomposition in a group setting [CPP17; Cou+21a].

Group Switching. We highlighted in the overview above that the uniqueness of rational
representatives requires (only) that p ≥ 2(BΓ + 1)ΓL. Unfortunately, for the guarantee that the
3-square decomposition holds, this becomes p ≥ 18K2, where K = (BΓ + 1)L, which almost
doubles the minimal possible group size. We observe that a dependency of PoSO and PoDec,
which was present in CKLR, is removed with our improved Σ-protocol. Thus, we can choose
groups with different modulus for the PoSO and PoDec. This gives us flexibility in group choices,
and no compromise between optimal choice for commitment (typically 256-bit groups) or PoDec
(typically larger groups) has to be made.

1.2.3. SharpPo
SO: Cheaper Repetitions via a Novel PoSO

To clarify the requirements for our PoSO, we take a closer look at the security proof of SharpGS.
The PoDec proves (among other equations) the square decomposition of N integers xi:

xi(B − xi) ≡p
4∑
j=1

y2
i,j (1.1)

for each committed value xi. Security of PoDec follows from 3-special soundness, i.e. 3 related
transcripts. To derive that [xi]Q ∈ [0, B]Q, the security proof exploits a guarantee of the (simple)
PoSO: Given two related transcripts (a, γ, ~z) and (a, γ′, ~z′), we can extract xi ≡p zi/d where
zi = z′i − zi and d = γ′ − γ ∈ [−Γ,Γ], and likewise for yi,j ; given a third related transcript,
eq. (1.1) is ensured. Moreover, zi ∈ [−K,K] due to verifier size checks, so [xi]Q = zi

d ∈ QK,Γ, i.e.
a fraction with numerator bounded by K and denominator bounded by Γ. Thus, multiplying
eq. (1.1) by d2, it is a homogeneous quadratic equation in d, B, zi, and zi,j , all of which bounded
by K, so short. Since 18K2 < p, the equation holds over the integers. As a consequence, any
PoSO which ensures that all extracted xi, yi,j are of the form xi = zi/d and yi,j = zi,j/d is
sufficient for this argument. Note that it is important that all fractions xi, yi,j share the same
denominator d for the above argument. Thus, we aim to replace the individual PoSOs by
a “Batch-PoSO”: Given any number of xis (where we do not distinguish between xi and yi,j
anymore), prove that all of them are short fractions (i.e. in QK,Γ) with a shared denominator d.

A straightforward approach is the following: To check shortness of x1, . . . , xN , check shortness
of the random linear combination S = ∑

i γixi for γi ← [0,Γ] (where we ignore masking terms
for zero-knowledge for simplicity). Intuitively, if any xi is not short,4 the term γixi should ensure
that S is not short with high probability. And indeed, it is not hard to see that individually,
every xi is of the form zi/di for short zi and di, where di ∈ [1,Γ]. However, as we explained

4Recall that, e.g. 1/d ∈ Zp, is considered short for d ≤ Γ in our setting.
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above, we require that the common denominator d of all zi/di is also short. Perhaps surprisingly,
this does not follow trivially.
It is clear that, by using binary challenges, i.e. Γ = 1, all di are 1, and thus, the common

denominator d is 1. In fact, all zi/di = zi are small integers. This simple approach is well-known
and used in (lattice-based) cryptography for proving knowledge of short preimages via random
subset sums. While this even ensures standard soundness, it has the huge drawback of a binary
challenge space. Thus, 128 repetitions are required for knowledge error 2−128, which leads to
relatively large proof size, e.g. instead of a 335-byte (relaxed sound) we get a 1877-byte (standard
sound) range proof from SharpPo

SO (for 32-bit range).
To achieve the claimed proof size, we must therefore choose a large challenge space [0,Γ],

so as to minimize repetitions. The crux of the security proof is then to ensure the common
denominator d of all zi/di is still short. Our core lemma (lemma 3.11) asserts, that either
such a short common d exists, or the false acceptance probability at most 8/Γ, This result is
surprisingly non-trivial to prove, and it may be of independent interest.

Relation to similar lattice-based approaches As noted before, our Batch-PoSO bears close
similarities to some (approximate) batch proofs of (knowledge of) short preimages in the lattice
setting. Indeed, random linear combinations for batch proofs are a standard approach and used
in the lattices setting, e.g. with binary challenges in [Bau+18a]. It is also used with larger
challenges spaces to prove “fractional openings” of commitments, resulting in relaxed soundness
somewhat similar to our setting, e.g. in [Ben+15; Bau+18b]. Namely, by multiplying with
the (small) denominator, an extracted solution grows in size, but if parameters are chosen
accordingly, the lattice problem still remains hard even for such larger solutions. Moreover, in
special settings, e.g. ring-lattices, special challenge sets C where even (γ′ − γ)−1 is small for all
γ, γ′ ∈ C are used [AL21].
However, a crucial difference between our setting and the lattice-setting is that, in all the

lattice-based works we are aware of, the challenge space for proving (approximate or relaxed)
shortness is small and a large number of repetitions are required. Moreover, in these works, there
is no requirement for a short common denominator d, instead, it suffices that individually each di
is small, which is straightforward to show (but insufficient in our case). Since we embrace relaxed
soundness and aim to maximize the challenge space, our approach exhibits such a requirement.
Hence, to prove security, we require an entirely new analysis for the random linear combination
test. Our current proof seems quite different from (advanced) lattice-based techniques, but it is
an interesting question if and how such techniques are applicable to strengthen the lemma or
simplify its proof.
Lastly, we note that lattice-based proof systems have vastly improved; even exact (range)

proofs are now quite small, e.g. [LNS20; LNP22], though still an order of magnitude larger than
group-based proofs, e.g. [LNP22] notes that a proof of opening alone needs 8 kB. We leave it as an
interesting question, whether lattice-based range proofs could benefit from square-decompositions
or our techniques as well.

1.2.4. SharpHO: Augmenting Sharp with Hidden Order Groups.

By using groups of hidden order, we can achieve improved soundness guarantees. On a high
level, we add a single MPed commitment C ′ in a hidden order group to Sharp to restrict the
possible commitment openings to “special” rationals. In contrast, all other range proofs in hidden
order groups perform the entire range proof in the hidden order group [Bou00; Lip03; Gro05;
CPP17; Cou+21a]. As these groups are larger than standard DLOG groups, our approach
heavily improves efficiency.

Our proof of opening for the additional commitment only requires one additional short integer
(for proving knowledge of the randomness of C ′), as we use a synthesized challenge γ′ and response

9



z′i (computed from the actual challenges and responses) to avoid further repetitions (even if the
underlying range proof is repeated). In more detail, when the PoSO is repeated R times with
challenges {γk}Rk=1, the prover and verifier set γ′ = ∑R

k=1 γk(Γ + 1)k−1 and similarly for z′i. So
for completing the proof, only the masked commitment randomness t′x is sent additionally. When
instantiating this augmentation with suitable class groups, the committed xis are restricted to
be dyadic rationals, i.e. of the form m/2`. With RSA groups, the xi must be integers, hence the
proof is standard sound.

2. Preliminaries
2.1. Notation and Basic Functions
We use log for the binary logarithm. We write [a, b] for an interval [a, b] in Z, and we write
[a, b]R for an interval in another space R, e.g. Q,R,Zp. We use Minkowski sum notation for sets,
i.e. A + B = {a + b | a ∈ A, b ∈ B} and write A + b := A + {b} for offsets. We denote by |x|
the absolute value of x ∈ R. Let p be an (odd) (prime) number. Let Zp = Z/pZ be the integers
modulo p, with representatives either Zp = [0, p−1] or Zp = [d−p−1

2 e, d
p−1

2 e]. Generally, we write
≡p for equality mod p and ∈Zp for set membership modulo p, i.e. x ∈Zp S iff ∃s ∈ S : x ≡p s.
For x ∈ Zp, let |x| = min{|k| | k ∈ Z, k ≡p x} ≤ p/2. Recall that d(x, y) = |y − x| for x, y ∈ Zp
defines a metric on Zp.
For a randomized algorithm A with input x, we write y ← A (x; r) for its execution with

explicit randomness r. If the randomness is not explicit, we write y ← A (x) and assume that
r was sampled accordingly. We write s $← S for sampling s uniformly at random from a finite
set S or d $← D to sample d randomly according to a given probability distribution D. Further,
we generally assume that some public parameters, denoted by pp, and the security parameter,
denoted by λ, are implicitly passed as input to algorithms if it is clear by context.

We define the “prime number analogue” of the factorial.
Definition 2.1 (Primorial). We write priml(k) for the product of the first k primes, i.e. priml(k) :=∏k
i=1 pi where pi is the i-th prime number.5 We write primlmin(n) for min{k | priml(k) ≥ n}, i.e.

the smallest k such that priml(k) ≥ n.

2.2. Probability Theory
By UX we denote the uniform distribution on a finite set X.
Definition 2.2. Let µ, ν be two probability measures on a countable set S. We define the
statistical distance as

∆(µ, ν) = sup
A⊆S

µ(A)− ν(A) = 1
2
∑
a∈A
|µ({a})− ν({b})|.

We define the sup-ratio ρ(µ/ν) as

ρ(µ/ν) = sup
A⊆S

µ(A)/ν(A) = sup
s∈supp(µ)

µ(s)/ν(s)

where 0/0 = 1 and x/0 =∞ for x > 0.
Recall an important property of the sup-ratio: Given two random variables X and Y and any

set of outcomes S, we have

Pr[X ∈ S] ≤ ρ(X/Y ) Pr[Y ∈ S].
5The usual definition of primorial is n# =

∏
pi≤n

pi, where pi is the i-th prime. That is, n# is the product of
all primes pi up to n. Thus, priml(k) = pk#.
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We will make ample use of this. Moreover, we use that

ρ((X ′, Y ′)/(X,Y )) ≤ ρ(X ′/X) · ρ(Y ′/Y )

for pair (X ′, Y ′) (resp. (X,Y )) of independent random variables.
Remark 2.3. Let 0 < d ≤ C be integers and let γ $← [0, C − 1] and u′ $← [0, d − 1]. Suppose
u = γ mod d. Then it is easily seen that ρ(u/u′) ≤ 1 + d/C. This follows, e.g., from
ρ(γ/γ′) ≤ 1 + d/C where γ′ ← [0, ddC/de] and noting that u′ = γ′ mod d in distribution.

2.3. Cryptographic Primitives
We define syntax and semantics of cryptographic primitives, and sketch their security properties.
For formal definitions, see appendix A.

2.3.1. Cryptographic Groups.

We work in the DLOG setting with cryptographic groups. We write G, H, etc. for groups and use
capital letters G, H, etc. for group elements. All groups are commutative and we use additive
notation, i.e. we write G+H and x ·G or xG for G,H ∈ G, x ∈ Z. We denote by 〈G〉 the cyclic
subgroup generated by G. The subgroup indistinguishability (SI) assumption in G asserts that
H $← G and H $← 〈G〉 are indistinguishable.

A PPT algorithm GenGrp on input 1λ outputs a (description of a) group G = Gλ. Given the
description, group operations (addition and inverse) and membership tests are efficient, as well
as bounds Ulo ≤ |G| ≤ Uup on the group order are specified. For notational simplicity, we leave
GenGrp implicit in the rest of the work. By A $← G we denote randomly drawn group elements
without trapdoors.6 When we say “G is a group of (prime) order p = pλ”, we mean that p = |G|
is known unless explicitly stated otherwise.

The DLOG assumption in cyclic groups asserts that finding the discrete logarithm of a random
group element H $← G is hard. It translates to groups of hidden order (where 〈G〉 ( G is
possible), by considering H $← 〈G〉. For better efficiency in groups of large (possibly unknown)
order, the DLOG assumption can be strengthened.
Definition 2.4 (DLSE, SEI). The S-bounded DLSE assumption asserts that it is hard to
compute DLOG (w.r.t. G) of zG where z $← [0, S]. The S-bounded SEI assumption asserts
that it is hard to distinguish (G,H) and (G,H ′) where H $← 〈G〉 and H ′ = zG for z $← [0, S]
(and G $← G).

The above assumptions are only of interest if S � ord(G). Throughout this work, we generally
set S = 22λ − 1.7

2.3.2. Hash Functions.

A (keyed) hash function Hash is of the form Hash : K × {0, 1}∗ 7→ {0, 1}`. The key (i.e. the
first input) to Hash is usually implicit, and part of the public parameters. We call Hash a
collision-resistant hash function (CRHF), if it is hard to find a collision, i.e. two inputs m,m′
such that Hash(m) = Hash(m′).

6Transparent setup typically requires trapdoor-free sampling. Otherwise, A could be sampled/encoded via
x ∈ Z, as A = xG, leaking the dlog of A. A stronger form, called invertible sampling is often used in security
reductions to “program” the setup, and possible in most cryptographic groups (including Z×p , elliptic curves,
and RSA groups). However, as noted in [Abr+22], there are no known invertible sampling algorithms for class
groups. In this work, we rely on suitably strengthened hardness assumptions to avoid invertible sampling in
class groups.

7To the best of our knowledge, there are no non-generic attacks on the (short) discrete logarithm assumption
in hidden order groups. The best generic algorithm (without preprocessing) has O(

√
S) runtime, see for

example [CK18, Section 3.2].
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2.3.3. Commitment Schemes.

A (non-interactive) commitment scheme Com allow committing to a message m, obtaining a
commitment c and opening information d. More formally, Com is a 3-tuple of PPT algorithms
(Setup,Commit,Verify) s.t.

• Com.Setup(1λ): outputs a commitment key ck (often left implicit),

• Com.Commitck(x): outputs a pair (c, d) of commitment c (to x) and opening d under
commitment key ck,

• Com.Verifyck(c, x, d): outputs 1 iff it accepts that c opens to x given opening d under
commitment key ck.

We require that Com is (perfectly) correct, i.e. honest commitments always verify. Moreover,
Com should be binding and hiding, i.e. a commitment c can be opened to (at most) one
message x, and it is hard to distinguish whether an (unopened) commitment is to message x0 or
x1.

Instantiation. We consider Pedersen multi-commitments (MPed), a generalization of the Peder-
sen commitment scheme [Ped92], with short openings over a prime or hidden order group G. Let
N,S ∈ N and Ulo ≤ |G| ≤ Uup. Setup samples Gi $← G for i ∈ [0, N ] and outputs commitment
key ck = ({Gi}i∈[0,N ]). Given a message vector {xi}i∈[1,N ], Commit samples r $← [0, S], sets
C = rG0 +∑i∈[1,N ] xiGi, and outputs the pair (C, r). Given commitment C, message {xi}i∈[1,N ]
and opening r, Verify outputs 1 iff C = rG0 +∑

i∈[1,N ] xiGi and xi is in the right message space
for all i. That is, if G has prime order p, then xi ∈ Zp, or else xi ∈ Z unless stated otherwise.
We write Ped for the Pedersen commitment scheme, i.e. MPed for N = 1. The scheme MPed
is hiding under the SI and SEI assumptions and binding under the DLOG assumption. The
strength of the hiding property scales with hiding parameter S.8

2.3.4. Zero-Knowledge Proofs of Knowledge.

A proof system (P,V) for NP-relation R is a two-party protocol, where prover P has input
(x,w) ∈ R and verifier V has input x. The verifier accepts or rejects an interaction (by outputting
1 or 0). The prover has no output. Moreover, we require correctness with error γerr, that is if
(x,w) ∈ R, then in an honest execution, the verifier accepts except with probability γerr.

Our proof systems will be proofs of knowledge (PoK) and non-abort special honest
verifier zero-knowledge (SHVZK). PoK means, that one can extract a witness w for x from
any prover which convinces V with probability higher than the knowledge error κerr. We consider
relaxed soundness, that is, the witness relation RExt for an extracted witness can differ from
the correctness relation R. We share this efficiency trade-off with many lattice-based proof
systems. Non-abort SHVZK means, that transcripts where the prover does not abort can be
simulated efficiently given only x, if the verifier’s challenges are known ahead of time. In our
proof systems, prover aborts happen due to rejection sampling.
We work in the common reference string (CRS) model. Most of our protocols require

only a uniform (common) random string (URS), a.k.a. transparent setup.

8If Gi
$← 〈G0〉 and S is large enough, then MPed is statistically hiding. Under the SI assumption, instead using

Gi
$← G remains (computationally) hiding. Usually, sampling Gi

$← G can be transparent (trapdoor-free), but
Gi

$← 〈G0〉 not necessarily.
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2.3.5. Random Oracle Model (ROM)

In the ROM, all parties have access to a truly random function RO : {0, 1}∗ → {0, 1}2λ. The
Fiat–Shamir transformation converts public coin protocols to non-interactive zero-knowledge
proofs of knowledge (NIZKPoK) by computing the verifier’s challenges as hashes over partial
transcripts and other context information (which includes x). In case of non-zero correctness
error, one retries in case of aborts [Lyu09]. In practice, the ROM is heuristically instantiated by
a strong cryptographic hash function, e.g. SHA-3. Note that a URS can be generated trivially
in the ROM.

2.4. Rational Representatives
Using Z-valued representatives for Z/pZ is a natural choice, obtained from the homomorphism
Z→ Zp, x 7→ xmod p. Another choice is induced by the ring Z(p) = {nd | n ∈ Z, d ∈ N, p - d} ⊆ Q,
and the homomorphism n

d 7→ n · (d−1 mod p) mod p. We call such representatives rational.
Strictly speaking, a set of representatives R ⊆ Z(p) should have a unique representative for each
element in Zp. We work with smaller sets, which do not have representatives for all of Zp, but
existing representatives are unique. The lack of surjectivity will be of no concern since, by
construction, elements of interest will always come with an admissible representative.
Definition 2.5. LetQN,D ⊆ Q be the rationals whose numerator is bounded byN and denominator
bounded by D, that is

QN,D = {n
d
∈ Q | |n| ≤ N, |d| ≤ D} ⊆ Q.

The value x is represented by n
d if x ≡p nd−1 (where d−1 is computed modulo p).

Note that we interpret n
d as a fraction; the tuple (n, d) is not unique. It becomes unique if nd

is reduced and d ≥ 1.

Lemma 2.6 (Criterion for Unique Representative in QN,D). Let N,D so that N · D < p/2.
Then for any x ∈ Zp, if there is a representative in QN,D of x, i.e. some n

d so that nd−1 ≡p x,
then n

d is unique (as a fraction).

Proof. Suppose x ≡ nid
−1
i (p) for i = 1, 2. Then n1d2 ≡ n2d1 (p). Since N · D ≤ p/2 and

ni
di
∈ QN,D, we find that n1d2 = n2d1 over Z. (No wrap-around.) Thus, n1

d1
= n2

d2
as fractions,

and the claim follows.

From now on, we always assume that N ·D < p/2 whenever we use Q-representatives.
Remark 2.7. Let a ∈ Zp and ND < p/2. We define [a]Q ∈ QN,D as the unique irreducible
representatives n

d of a, assuming it exists. (We assume that some maximal bounds N,D are
implicitly fixed in the context.) We note that [a]Q can be efficiently computed (if it exists),
see [FSW03].

2.5. Masking Scheme
We use “additive masking” to hide information with random noise. For readability, we use
an abstraction of this technique formalized below, in a way similar to [ACK21]. A masking
scheme is a tuple (R,mask, V) of efficiently samplable distribution R and a masking algorithm
mask for values in range [0, V].

• r $← R is an integer r ∈ [0, (V + 1)L], i.e. supp(R) ⊆ [0, (V + 1)L]. We call r the mask and
L ≥ 1 the masking overhead.

• mask(v, r) takes as input an integer v ∈ [0, V] and a mask r and outputs v + r or ⊥. For
simplicity, we require mask(v, r) = ⊥ if v + r 6∈ [0, (V + 1)L].
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• p denotes an upper bound on the abort probability, that is, a bound satisfying
supv∈[0,V ] Pr [ mask(v, r) = ⊥ | r $← R ] ≤ p.

• Let Mv denote the distribution defined via: Sample r $← R, then return mask(v, r). Then
εmask = supv,w∈[0,V] ∆(Mv,Mw) is called the masking error.

The range V is sometimes left implicit. Intuitively, z = mask(v, r) reveals almost nothing about
v, since the random mask r ensures that z is distributed (almost) independently from v. The
masking error quantifies this intuition.

Rejection Sampling. (Uniform) Rejection sampling is usually described for values in intervals
[−V, V], i.e. symmetric around 0. We use [0, V] instead, and adapt mask accordingly. Namely,
for given masking overhead L:

• The distribution R is the uniform distribution U[0,(V+1)L].

• mask(v, r) outputs v + r if v + r ∈ [V, (V + 1)L], else ⊥.

• The abort probability is p = V+1
(V+1)L+1 ≤

1
L .9

• The masking error is 0. 10

Drowning in noise. In the above, set L = 2λ. Then abort probability is 2−λ. This is convenient
to use if “size” of r does not matter much.

No aborts. We also use masking schemes to save communication. In these cases, once R grows
beyond Zp, i.e. Zp = [0, p − 1] ⊆ R, we assume that R = Zp and mask(v, r) = v + r mod p
(without abort). We will be explicit about such potential optimizations.

3. Shortness Testing mod p

In this section, we present a result that allows us to test shortness of many fractions at once.
We will apply this result later to efficiently test shortness of committed values in our range
proofs (see section 5). Indeed, it is the basis for constructing a range proof which communicates
a single integer per repetition. For readability, we only present proof sketches and sometimes
simplified claims. The full claims and proofs can proofs are in appendix D. First, we define a
notion of “shortness test” which is tailored to our application.
Definition 3.1 (Fractional Shortness Test). A (fractional) shortness test is an algorithm T
which takes as input ~x ∈ ZNp (where T is implicitly parameterized by p and N) and outputs
T (~x) ∈ {0, 1}. Let K,D ∈ N with KD < p/2. A vector ~x ∈ ZNp is uniformly (K,D)-short, if
∃d ∈ [1, D] : d~x ∈ [−K,K]NZp

. Let φK,D(~x) ∈ {0, 1} be the predicate which is 1 if ~x is uniformly
(K,D)-short. We say that T is a fractionally (K,D)-sound shortness test with error κ, if

∀~x ∈ ZNp : Pr[T (~x) = 1 =⇒ φK,D(~x) = 1] ≥ 1− κ (3.1)

or, equivalently,
∀~x ∈ ZNp : φK,D(~x) = 0 =⇒ Pr[T (~x) = 1] ≤ κ. (3.2)

9For any v ∈ [0, V], there are V + 1 “bad” r (out of (V + 1)L + 1 choices for r).
10The abort probability is independent of v. Conditioned on no abort, the distribution is uniform over [V, (V+1)L].
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The crucial point in fractional (K,D)-soundness is that a vector is rejected with high probability
if there is no single denominator of size at most D such that d ·~x ∈ [−K,K]NZp

, i.e. ‖d ·~x‖∞ ≤ K.
A weaker definition might only require xi ∈ QK,D for all i, but this is not enough for our
applications. Note that we do not define what correctness of a fractional shortness test is; it will
be evident in applications and concrete requirements may vary.
Definition 3.2 (RAST). We define the random affine shortness test RASTN,D,K,µ for shortness
over Zp with dimension or batch-size N , test distribution DN range bound K, and offset µ as
follows: To test ~x ∈ ZNp , pick ~γ $← DN , and output 1 if µ+∑N

i=1 xiγi ∈ [0,K]Zp , else output 0.
The following theorem assures fractional soundness of the RAST. The proof is based on the

core lemma, lemma 3.11, whose proof is technical and lengthy; it is the subject appendix D.

Theorem 3.3. Let RAST be the random affine shortness test with uniform distribution D over
[0, D]N , dimension N , range bound K, and any offset µ ∈ Zp. Let K ′ = (1 + 2β)K where
β = min(N, primlmin(D+1)) and suppose that 2D(K ′+DK+2) < p. Then RAST is fractionally
(K ′, D)-sound with error 8/(D + 1),

content/proof-shortness-test-soundness

3.1. Modulo Arithmetic
In this section, we work with representatives Zp = [0, p − 1] instead of representatives which
are symmetric around 0. Mostly, because we want to use remark 3.4. However, our results
are phrased in a way which is independent of representatives, so they hold for any choice of
representatives for Zp.
First, recall that a (rational) number x splits into an integer part bxc and a decimal part

x− bxc, often denoted frac(x).
Remark 3.4. For m ∈ Z, d ∈ N, we make much use of following simple but important equality:

m

d
=
⌊
m

d

⌋
+ m mod d

d
=
⌈
m

d

⌉
− m mod d

d
. (3.3)

This equality holds for representatives [0, d − 1] of Zd for “x mod p”. For modulo operations
symmetric around 0, “flooring”/“ceiling” would become “rounding”.
Remark 3.5 (Inequalities for floor and ceil). Let x, y ∈ R. The we have bxc ≤ x ≤ dxe and

bxc+ byc ≤ bx+ yc ≤ x+ y ≤ dx+ ye ≤ dxe+ dye (3.4)

Lemma 3.6 (Regular Spacing of Sd). Suppose 1 < d < p and gcd(d, p) = 1 and consider the set

Sd ≡p {
i

d
mod p | i ∈ [0, . . . , d− 1]} ⊆ Zp. (3.5)

Then Sd = {dip/de | i ∈ [0, . . . , d− 1]} and the minimal distance δ = minx 6=y∈Sd
|x− y| satisfies

δ = bpdc.

When interpreting Zp and the set S on the unit circle as regularly spaced points, it is visually
clear that the claim should hold. See fig. 1 for this. Note, d/d ≡p 1, that is, it is an angle of
2π/p away from 0, so the spacing of Sd is not perfectly regular. Indeed, as shown in fig. 1, the
points i/d ∈ Zp are not in sequential order, but permuted by a unit modulo d, so the visual
heuristics can be somewhat misleading. With lemma 3.6 at hand, we can easily derive some
simple consequences.
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Figure 1: Visual heuristics for lemma 3.6. The left figure is the naive intuition. The middle
figure is the visualization of for p = 27. The right figure denotes Sd = {µ0, . . . , µ4}
where µi ≡p d ipd e. In the example, µ1 ≡27 6, µ2 ≡27 11, µ3 ≡27 17, µ4 ≡27 22.

Lemma 3.7. Suppose d ∈ N and gcd(d, p) = 1 and u $← [0, . . . , d−1]. Let µ,K ∈ N be arbitrary.
Then for 1 < d < p we have

Pr
[
u

d
∈Zp [0,K]Zp + µ

]
≤ 1
d

⌈
K + 1
bpdc

⌉
(3.6)

and for d > p, we have
Pr
[
u

d
∈Zp [0,K]Zp + µ

]
≤ 2K + 1

p
(3.7)

where the probability is over u. Combining the conditions gives

Pr
[
u

d
∈Zp [0,K]Zp + µ

]
≤ 1
d

+ 2K + 1
p

(3.8)

Note that in lemma 3.7, we consider membership intervals [0,K] + µ, i.e. arbitrary (shifted)
intervals, not just [0,K], because such intervals appear naturally in our setting.
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Figure 2: Visual heuristics for lemmata 3.7 and 3.8. The left figure is the intuition for lemma 3.7.
The middle figure shows [0,K]Zp +S6 +µ. The right figure shows [0,K]Zp +S6 +µ and
how points of the form ua/3 are distributed. Visibly, until the gray points first escape
the intervals, they all lie within; after they escape, they never re-enter an interval.
Hence at most 3 ·K/a points lie within [0,K]Zp + S6 + µ.

While lemma 3.7 was a good warm-up, it does not cover all of our needs. On the one hand, we
need to deal with more general a/b (instead of just 1/d) and u ∈ [0, D] (instead if u ∈ [0, d− 1]).
On the other hand, we need to deal with unions of disjoint intervals, namely [0,K] + Sd + µ.
Thus, we take a closer look at the specific case of interest. It is sketched in fig. 2.
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Lemma 3.8. Let p, d, a, b, µ,D,K ∈ N and suppose u $← [0, D] is a uniform random variable.
Let Sd ≡p {i/d | i ∈ Zd} ⊆ Zp as usual, and likewise Sb. Suppose that gcd(d, p) = 1, and b | d,
and that

b(K + 1) +Da <

⌊
p

d/b

⌋
. (3.9)

Then we have ∑
s∈Sd

Pr
[
u
a

b
∈Zp [0,K]Zp + µ+ s

]
≤
⌈
b(K + 1)

a

⌉ 1
D + 1 . (3.10)

Again, the claim of lemma 3.8 is visually clear and sketched in fig. 2. (Our lemma is not as
tight as the picture suggests, but good enough for our purposes.)
Remark 3.9. A useful property of Sd is that Sd = 1−Sd (because p−i

d ≡p 1− i
d), hence, lemma 3.8

also applies to [0,K] + µ− Sd ≡p [0,K] + (µ− 1) + Sd. Moreover, lemma 3.8 applies to negative
a as well, where |a| is used in all bounds and estimates. This follows since multiplying the
expression in the probability by (−1) leads to positive n which must lie in [−K, 0]Zp − µ− Sd
which can be rewritten as [0,K]Zp + µ′ + Sd for suitable µ′.

Towards analyzing random linear combinations with the help of lemmata 3.7 and 3.8, we
introduce another lemma.

Lemma 3.10 (Simplified Lemma D.2). Suppose 1 6= d ∈ N and let ui be random variables in
Zd = [0, . . . , d− 1] for i = 1, . . . , N . Fix some arbitrary ai ∈ [0, d− 1] with d = lcm(a1, . . . , aN ).
Then there exist q1, . . . , qN ∈ N, which are pairwise coprime, qi | ordZd

(ai), and
∏N
i=1 qi = d. Let

Z = ∏N
i=1 Zqi ↪→ ZNd (where the injections Zqi ↪→ Zd of the Chinese remainder theorem is used

component-wise). Then ∑N
i=1 ui · ai mod d is uniformly distributed in Zd for (u1, . . . , uN ) $← Z.

Clearly, in lemma 3.10, ∑N
i=1 uiai is uniformly distributed if ui $← Zd for all i. The key point

of lemma 3.10 is, that the sum is uniformly distributed even if the ui are drawn from the possibly
much smaller space Z. This helps in our analysis of the core lemma.

3.2. Shortness Failure of Random Linear Combinations
Now, we turn to the core lemma, lemma 3.11. It should be viewed as a non-trivial generalization
of lemmata 3.7 and 3.8 with certain requirements and restrictions. Implicit in lemma 3.11 is the
RAST from theorem 3.3. That is, we consider the probability of “bad” challenges, which for a
given choice of xi’s of the form mi

di
lead to falsely accepting ∑i γixi as short, even though some

xi exceed the allowed bounds.

Lemma 3.11 (Core Lemma). Let D,M ∈ N and suppose 2DM < p. Let xi = mi
di

where
di ∈ [1, D] and mi ∈ [−M,M ] for i = 1, . . . , N . Let γi $← [0, D]. Define

S =
N∑
i=1

γi ·
mi

di
mod p (3.11)

Let I ⊆ [1, N ] denote the set of indices which minimizes d := lcm({di | i ∈ I}) under the constraint
that d > D, or I = [1, N ] if lcm(d1, . . . , dN ) ≤ D. Let K ∈ N, let β = min(|I|, primlmin(D + 1)),
and let K ′ := K + 2βM . Then, for arbitrary µ ∈ Zp, we have

Pr
[
S ∈ [0,K]Zp + µ

]
≤ 4 ·

{1
d if d(K ′ + 1) < p
1
d + 2K′+1

p always
(3.12)

Now, suppose additionally that d ≤ D and D(K ′ + DM + 2) < p. If d
di
|mi| > K ′ for some

i ∈ [1, N ], then
Pr
[
S ∈ [0,K]Zp + µ

]
≤ 8
D + 1 . (3.13)
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This time, we have no “visual heuristic”. However, though the detailed proof of lemma 3.11
is rather technical, its basic idea is relatively simple: First, simplify the situation by reducing
to the case of I = {1, . . . , N} and imposing certain minimality properties on I and d. Then,
rewrite the sum S with lowest common denominator d. That is, let S′ = ∑N

i=1 γi · dmi
di
∈ Z, and

then split S′/d (resp. S) into decimal and integer parts:

S ≡p
1
d
S′ = S′ mod d

d
+
⌊
S′

d

⌋
.

The idea is to exploit this to analyze the two summands separately, after making them almost
stochastically independent. (But this works only to some extent, namely, small garbage terms
will appear.) For this, we change the challenge distribution. For γi, we could change U[0,D] to
U[0,didC+1

di
e], which allows us to write γ′i = ui + divi with ui $← [0, di − 1] and vi $← [0, dC+1

di
e].

Then

S′/d =
N∑
i=1

γ′i
mi

di
=

N∑
i=1

ui
mi

di
+

N∑
i=1

vimi.

On the right hand side, the second sum is an integer sum, and relatively easy to control. The
first sum has the same form as S′, but the ui are uniformly from Zdi

now, which is simpler to
analyze. However, our analysis makes use of lemma D.2 to get a tighter result. Lemma D.2
suggests γ′i ∼ U[0,qidC+1

qi
e] (for suitable qi), and we write

S ≡p
1
d
Su + Sv where Su =

∑
i

ui
mid

di
and Sv =

∑
i

viqi
mi

di
.

The central requirements of this change in distribution are that it is close (in terms of ρ(~γ/~γ′)),
that Su mod d is now uniformly distributed, and that Su and Sv are stochastically independent.
Indeed, a “loss factor” of 4 compared to lemma 3.7 comes precisely from ρ(~γ′/~γ). Moreover,
when rewriting 1

dSu = Su mod d
d + bSu

d c, we can get rid of the garbage term bSu
d c = ∑

i uimi
qi
di

by
increasing the interval from [0,K] to [0,K + 2βM ] (since the garbage term lies in [−βM, βM ]).
After these changes, we have simplified to

Pr
[
S ∈Zp [0,K]Zp + µ

]
≤

ρ(~γ/~γ′) · Pr
[
Su mod d

d
+ Sv ∈Zp [0,K + 2βM ]Zp + µ′

]
where Su and Sv are independent and (Su mod d) is uniform in Zd. Now, lemma 3.11 follows
effectively from lemma 3.7 (which yields eq. (3.12)) and lemma 3.8 (which yields eq. (3.13)).

The core lemma is precise enough for our purposes, but the true bounds and premises may be
much better. On the one hand, the necessity of the size restrictions on D, K, M is uncertain,
as is the role of β. On the other hand, a factor of 4 in the inequalities in lemma 3.11 is a
consequence of switching ~γ to ~γ′ (and relying on lemma D.2 to “shrink” the randomness space)
instead of analyzing the distribution of the sum S more directly.

4. SharpGS: Batching and Group Switching
In this section, we present the optimized Σ-protocol for showing the decomposition in the DLOG
setting, introduce group switching, and show how to perform efficient proofs for batches of
integers.
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4.1. Parameters
Here, we give an overview of all the used parameters in SharpGS. Let N ∈ N be the number of
integers x1, . . . , xN in the ranges [0, Bi]. In the following, we fix B = Bi for simplicity. Let R
be the number of repetitions of the proof and [0,Γ] be the challenge set. Generally, we have
R = dλ/ log(Γ + 1)e unless lower soundness than λ bits is satisfactory. We will need to mask
values x ∈ [0, BΓ] and values r ∈ [0, SΓ] (where S is defined below) with masking algorithm
maskx,maskr, masking randomness distribution Rx, Rr, masking overhead Lx, Lr and masking
abort probability px, pr respectively. Let p ≥ 2(BΓ2 + 1)Lx and q ≥ 18((BΓ + 1)Lx)2. We
use MPed commitments with hiding parameter S in groups Gcom and G3sq, with prime order p
and q respectively. We fix generators G0, Gi, Gi,j

$← Gcom for the commitment key ckGcom and
H0, Hi

$← G3sq for ckG3sq , where i ∈ [1, N ] and j ∈ [1, 3]. Let Hash be a collision resistant hash
function with output size 2λ bits. The CRS is crs = (ckGcom , ckG3sq).

4.2. Scheme Overview
The Σ-protocol SharpGS is described in algorithm 1. The prover receives the witnesses xi ∈ [0, B]
and rx ∈ [0, S], and the statement Cx = rxG0 +∑N

i=1 xiGi and B as input. Prover and verifier
proceed as follows: (1) In the first flow, the prover computes and commits to a decomposition of
xi using MPed in Gcom (lines 1 and 2). Then, for all repetitions k ∈ [1, R], she commits to random
masks of the witnesses and decomposition in MPed over Gcom (line 4 to 7) and the garbage terms
of the decomposition polynomial (lines 8 to 12). Finally, she sends the commitments to the
verifier. (2) In the second flow, the verifier draws a random challenge for each repetition (line 1)
and sends it to the prover. (3) In the third flow, the prover masks the witnesses (multiplied with
the challenges) for each repetition and sends the result to the verifier (lines 13 to 18). (4) Finally,
the verifier checks whether the linear relation between the commitments and the challenge holds,
after recomputing the decomposition polynomial (lines 2 to 8).

Optimizations. We use uniform rejection sampling for the masking (instead of Gaussian
rejection sampling in CKLR). This reduces the masking overhead in our setting. As in CKLR,
the prover can avoid sending the commitments D = (Dk,x, Dk,y, Dk,∗)Rk=1 by replacing the output
D in the first flow with a hash ∆ ← Hash(D). Then, the verifier can recompute D in the
verification and check whether the hash matches. Applying the Fiat-Shamir transformation
yields a non-interactive range proof.

4.3. Security and Correctness
Non-abort probability. With R repetitions, the probability of the honest prover not aborting
(due to masking) is lower-bounded by [(1− pr)3 · (1− px)4N ]R.

Security. SharpGS proofs satisfy correctness, non-abort SHVZK and relaxed soundness. Intu-
itively, the verifier is convinced that the committed value has a unique rational representative in
the range [− 1

4B , B + 1
4B ]Q, formalized in theorem 4.1 below. Note that with the four square

decomposition, we obtain exact range membership in [0, B], in exchange for slightly increasing
proof size (see section 6.1.2).

Theorem 4.1. The scheme SharpGS has correctness error at most 1− [(1− pr)3 · (1− px)N ]R.
It is non-abort SHVZK under the SEI assumption in Gcom and G3sq. If 2(BΓ2 + 1)L < p
and 18K2 < q with K = (BΓ + 1)L, then SharpGS has relaxed soundness under the DLOG
and SEI assumptions in Gcom and G3sq with knowledge error ( 2

Γ+1)R for the relation RExt ={
((xi)Ni=1, rx) : Cx = rxG0 +∑N

i=1 xiGi ∧ [xi]Q ∈ [− 1
4B , B + 1

4B ]QK,Γ

}
. To be precise, we consider
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Algorithm 1 SharpGS
Prover(Cx, B, rx, {xi}Ni=1) Verifier(Cx, B)

1: Compute yi,j s.t. 4xi(B − xi) + 1 = ∑3
j=1 y

2
i,j for i ∈ [1, N ]

2: Set Cy = ryG0 +∑N
i=1

∑3
j=1 yi,jGi,j for ry $← [0, S]

3: for all k ∈ [1, R] do
4: Set r̃k,x, r̃k,y $← Rr . Opening
5: Set x̃k,i, ỹk,i,j $← Rx for i ∈ [1, N ], j ∈ [1, 3]
6: Set Dk,x = r̃k,xG0 +∑N

i=1 x̃k,iGi
7: Set Dk,y = r̃k,yG0 +∑N

i=1
∑3
j=1 ỹk,i,jGi,j

8: Set r∗k $← [0, S] and r̃∗k $← Rr . Decomposition
9: Set α∗1,k,i = 4x̃k,iB − 8xix̃k,i − 2∑j∈[1,3] yi,j ỹk,i,j for i ∈ [1, N ]

10: Set α∗0,k,i = −(4x̃2
k,i +∑

j∈[1,3] ỹ
2
k,i,j) for i ∈ [1, N ]

11: Set Ck,∗ = r∗kH0 +∑N
i=1 α

∗
1,k,iHi

12: Set Dk,∗ = r̃∗kH0 +∑N
i=1 α

∗
0,k,iHi

Cy , {Ck,∗, Dk,x, Dk,y , Dk,∗}R
k=1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

1: γk $← [0,Γ] for k ∈ [1, R] . Challenge

{γk}R
k=1←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13: for all k ∈ [1, R], i ∈ [1, N ], j ∈ [1, 3] do
14: Set zk,i = maskx(γk · xi, x̃k,i), zk,i,j = maskx(γk · yi,j , ỹk,i,j)
15: Set tk,x = maskr(γkrx, r̃k,x), tk,y = maskr(γk · ry, r̃k,y)
16: Set t∗k = maskr(γk · r∗k, r̃∗k)
17: if any zk,i, tk,x or t∗k is ⊥ then
18: abort . Masking failed

{zk,i,j , zk,i, tk,x, tk,y , t
∗
k}k∈[1,R],i∈[1,N ],j∈[1,3]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

2: for all k ∈ [1, R] do
3: Check Dk,x + γkCx = tk,xG0 +∑N

i=1 zk,iGi
4: Check Dk,y + γkCy = tk,yG0 +∑N

i=1
∑3
j=1 zk,i,jGi,j

5: Set f∗k,i = 4zk,i(γkB − zk,i) + γ2
k −

∑3
j=1 z

2
k,i,j

6: Check Dk,∗ + γkCk,∗ = t∗kH0 +∑N
i=1 f

∗
k,iHi

7: Check zk,i, zk,i,j ∈ [0, (BΓ + 1)Lx] for i ∈ [1, N ], j ∈ [1, 3]
8: return 1 iff all checks succeed
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the S-bounded SEI assumption in Gcom and G3sq. Moreover, in RExt all [xi]Q have a common
denominator d ∈ [1,Γ].

Security proof, outline. Here, we only sketch the proof of security and the relaxed soundness
guarantee. We refer to appendix E.1 for details. (The proof is given for the SharpGS with all
optimizations.) Informally, the committed xi are guaranteed to have rational representatives in
[− 1

4B , B + 1
4B ]QK,Γ , where the numerator and denominator is bounded by K = (BΓ + 1)L and Γ

respectively.
Since either mask aborts or the z’s lie within a predetermined range, correctness follows easily.

Also, we can simulate a valid transcript of the proof for statement (Cx, B) by first sampling
the challenge and then computing a transcript starting from the last flow. For this, we replace
each witness w in the masking mask(γw, w̃) with 0 (where w̃ is the used mask) which affects the
distribution only by εmask = 0 (see section 2.5). If any masking aborts, the simulator returns
⊥. Thus, the scheme is non-abort SHVZK under the SEI assumption (for hiding commitments).
For the soundness proof, we show 3-special soundness, i.e. extraction from 3 related transcripts.
First, we extract the commitments (with a standard argument). Second, we verify that the three
square decomposition holds over Zq for the extracted xis and infer that [xi]Q ∈ [− 1

4B , B + 1
4B ]Q

using lemma B.2. The switch between groups requires special care, as the rings Zp and Zq are
“algebraically incompatible”. But the shortness of the extracted values suffices to show that
the three square decomposition over Zq implies non-negativity for the rational representative
committed over Zp.

5. SharpPo
SO: Improved Proof of Short Opening

We present SharpPo
SO, which is based on SharpGS but uses a (batch) shortness test to separate

PoSO and PoDec, and to reduce costs of “internal” repetitions.

5.1. Parameters
The groups Gcom and G3sq, and parameters B, Γ, N , and S, are identical to SharpGS (cf. sec-
tion 4.1). The commitment key ckcom is augmented by additional elements G̃j $← Gcom for
j ∈ [1, R]. For simplicity, we define Γ̂ := (Γ + 1)R − 1 (the size of “large” challenge), and require
that Γ̂ ≤ p.11

More concretely, we consider a small group Gcom of order p and a large group G3sq (which may
be equal) of order q. Let B be a range bound and let Γ be a bound for the challenge sizes. Let
N be the batch size, i.e. the number of committed xi whose range membership is to be proven.
Let R be the number of “internal repetitions” of the Batch-PoSO. Let Γ̂ := (Γ + 1)R − 1 be the
size of “large” challenges, and assume that Γ̂ ≤ p.

Commitment key setup. The commitment key is ck = (ckcom, ck3sq), where
• ckcom = ({Gi}i∈[0,N ], {Gi,j}i∈[1,N ],j∈[1,3], {G̃j}j∈[1,R]), where Gi, Gi,j , G̃j $← Gcom.

• ck3sq = ({Hi}i∈[0,N ]), where Hi
$← G3sq.

The elements G0 and H0 are used for random masking terms of the commitment. The elements
G1, . . . , GN are used to commit to xi, Gi,1, . . . , Gi,3 are used for the 3-square decomposition
yi,1, . . . , yi,3 of 1 + 4xi(B − xi), and G̃1, . . . , G̃R are for Batch-PoSO masks µj . The elements
H1, . . . ,HN are used to commit to the garbage terms for linearization of the square decomposition
proof.
11Since the maximal challenge set for a scalar challenge is [0, p−1] = Zp, increasing the challenge set would require

repetitions in “Phase 2”, which is trivially implemented but completely unnecessary for our instantiations.
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Masking and mask sizes. For simplicity, we fix a single masking overhead L for all masks.
Logically, some masks must be short due to shortness checks, while other masks only hide the
value and shortness is used to reduce communication. The latter may be drawn uniformly from
Zp as well. In SharpGS, Lx was the former, Lr the latter type. In SharpPo

SO, we have following
masking behaviour:

• Rposo = [0, (Vposo + 1)L], where Vposo = 4NBΓ must be short.

• For z ∈ {x, µ, r, r∗}, Rz need only hide the value, so maskz(v,m) is computed modulo p
(resp. q). If Rz = Zp (resp. Zq), maskz never aborts.

• For z ∈ {x, µ, r}, we set Rz = [0,min(p − 1, (Vz + 1)L)], where Vx = BΓ̂, Vr = S, and
Vµ = Rposo · Γ̂Lthat is, Vµ = (Vposo + 1)L · Γ̂L. And we set Rr∗ = [0,min(q− 1, (Vr∗ + 1)L)]
where Vr∗ = S.

• If Gcom = G3sq, then typically Rr = Rr∗ = Rµ = Zp.

5.2. Scheme Overview
The difference between SharpGS and SharpPo

SO is the use of the Batch-PoSO. Again, to simplify
we only consider one range [0, B] for all xi. It will be evident how to generalize to independent
ranges xi ∈ [0, Bi].

The scheme is defined in algorithms 2 and 3. It is a 5-move protocol which effectively consists of
2 phases: In Phase 1, the prover commits to the 3-square decompositions (and masks µk). Then,
k parallel random affine shortness tests are run on committed values. In Phase 2, the prover
proves that it has correctly answered the shortness test, and that the 3-square decomposition
holds modulo q. Thus, Phase 2 is very similar to SharpGS, except, it uses a large challenge space
[0, Γ̂], so no repetitions are required.

5.3. Security and Correctness
Non-abort probability. With R “internal” repetitions, the number of masking operations are
R in Phase 1. In Phase 2, we have 4N for xi and yi,j , again R for µk, and 3 masks for rx, ry, r∗.
Thus, the probability of the honest prover not aborting (due to masking) is lower-bounded by
(1− 1

L )2R+4N+3.

Security. The security guarantee of SharpPo
SO is almost the same as that of SharpGS, except for a

small tightness loss due to the weaker (provable) guarantees of the shortness test (theorem 3.3).

Theorem 5.1. The scheme SharpPo
SO has correctness error at most 1− (1− 1

L )2R+4N+3. It is
non-abort SHVZK under the SEI assumption in Gcom and G3sq. Let K ′ = (1 + 2β)K where
K = (BΓ + 1)L and β = min(4N, primlmin(Γ + 1)). If 18(K ′)2 < q and 2(Γ + 1)2K ′ < p and
(Γ + 1)R − 1 < p, then SharpPo

SO has relaxed soundness under the DLOG and SEI assumptions
in Gcom and G3sq with knowledge error 2+8R

(Γ+1)R for the relation RExt =
{
((xi)Ni=1, rx) : Cx =

rxG0 + ∑N
i=1 xiGi ∧ [xi]Q ∈ [− 1

4B , B + 1
4B ]QK′,Γ

}
. To be precise, we consider the S-bounded

SEI assumption in Gcom and G3sq. Moreover, in RExt all [xi]Q have a common denominator
d ∈ [1,Γ].

Security proof, outline. The proof of correctness and non-abort SHVZK for SharpPo
SO are

completely analogous to the respective proofs for SharpGS.
The ideas behind the soundness proof of theorem 5.1 are quite straightforward. It proceeds by

dealing with the two phases separately. First, observe that Phase 2 is effectively a Σ-protocol
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Algorithm 2 SharpPo
SO– Phase 1

Prover(Cx, B, rx, {xi}Ni=1) Verifier(Cx, B)

1: Compute 4xi(B − xi) + 1 = ∑3
j=1 y

2
i,j for i ∈ [1, N ]

2: Set ry $← [0, S] and µ1, . . . , µR
$← Rposo

3: Set Cy = ryG0 +∑N
i=1

∑3
j=1 yi,jGi,j +∑R

k=1 µkG̃k

Cy−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

1: Sample γ(k)
i,j

$← [0,Γ] for i ∈ [1, N ], j ∈ [0, 3], k ∈ [1, R]

{γ(k)
i,j }i,j,k

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4: Let yi,0 := xi

5: Set ζk := maskposo(
∑N
i=1

∑3
j=0 γ

(k)
i,j yi,j , µk) for k ∈ [1, R]

6: if any ζk is ⊥ then
7: abort . Masking Failed

{ζk}k∈[1,R]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

2: if any ζk 6∈ [0, (4NBΓ + 1)L] then
3: return 0 . PoSO rejected

Run Phase 2: Proof of consistency of ζk and 3-square decomposition (see algorithm 3)

for the statement which was completed in Phase 1, i.e. that Cx resp. Cy are commitments to
the xi’s resp. auxiliary values yi,j and µk, the answers ζk of a random affine shortness test are
correct, and the 3-square decomposition holds. Indeed, Phase 2 is 3-special sound, i.e. given 3
accepting transcripts identical up until the challenge message γ for 3 distinct challenges, one
can extract openings to the commitments which satisfy the relation (or the binding property is
broken). Thus, as a first step, one can replace Phase 2 with an extractor with knowledge error
2/(Γ + 1)R.

Next, one needs to argue that the xi and yi,j are short (from above, we know that they
satisfy the 3-square decomposition). This does not follow from (3 transcripts for) Phase 2 alone.
Intuitively, if the “shortness test” used has soundness error κ, then if any xi, yi,j is not short, the
probability that the verifier accepts is at most κR. More precisely, if there is no d ∈ [1,Γ] such
that dxi, dyi,j ∈ [−K ′,K ′]Zp for all i, j, then the shortness test accepts with probability at most
κ. However, there is a gap: Our commitment is only computationally binding, so, by breaking
the commitment, the adversary might win with probability ε (much) higher than κR. Fortunately,
to win with probability ε > κR, the adversary must break the binding property. Thus, except
with probability κR, one obtains a binding break from such an adversary in expected time (by
rewinding until A succeeds again). Overall, this proves the soundness claim of theorem 5.1.

5.4. Trade-offs and Optimizations
Reducing communication. As with SharpGS, hashing can reduce the communication in Phase 2
of the protocol. Namely, the final verification step in Phase 2 computes Fx, F∗, {fk}k∈[1,R],
and checks if they are equal to Dx, D∗, {dk}k∈[1,R]. This check can be compressed by using a
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Algorithm 3 SharpPo
SO– Phase 2
After Phase 1 (shortness proof, see algorithm 2)

8: Set r̃x, r̃y $← Rr
9: Set x̃i, ỹi,j $← Rx for i ∈ [1, N ], j ∈ [1, 3]

10: Set µ̃k $← Rµ for k ∈ [1, R] . PoSO
11: Set dk = ∑N

i=1
∑3
j=0 ỹi,jγ

(k)
i,j + µ̃k for k = 1, . . . , R . PoSO

12: Set Dx = r̃xG0 +∑N
i=1 x̃iGi

13: Set Dy = r̃yG0 +∑N
i=1

∑3
j=1 ỹi,jGi,j +∑R

k=1 µ̃kG̃k
14: Set r∗ $← [0, S] and r̃∗ $← Rr∗
15: Set α∗1,i = 4x̃iB − 8xix̃i − 2∑j∈[1,3] yi,j ỹi,j for i ∈ [1, N ]
16: Set α∗0,i = −(4x̃2

i +∑
j∈[1,3] ỹ

2
i,j) for i ∈ [1, N ]

17: Set C∗ = r∗H0 +∑N
i=1 α

∗
1,iHi

18: Set D∗ = r̃∗H0 +∑N
i=1 α

∗
0,iHi

C∗, Dx, Dy , D∗, {dk}R
k=1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

4: γ $← [0, (Γ + 1)R − 1) ⊆ Zp . Large challenge
γ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

19: for all i ∈ [1, N ], j ∈ [1, 3], k ∈ [1, R] do
20: Set zi = maskx(γ · xi, x̃i) and zi,j = maskx(γ · yi,j , ỹi,j)
21: Set tx = maskr(γ · rx, r̃x) and ty = maskr(γ · ry, r̃y)
22: Set t∗ = maskr(γ · r∗, r̃∗)
23: Set τk = maskµ(γ · µk, µ̃k) . PoSO
24: if any zi, zi,j , tx, ty t∗, τk is ⊥ then
25: abort . Masking failed

{zi}i∈[1,N ], {zi,j}i∈[1,N ],j∈[1,3], tx, ty , t∗, {τk}k∈[1,R]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

5: Compute Fx = −γCx + txG0 +∑N
i=1 ziGi

6: Compute Fy = −γCy + tyG0 +∑N
i=1

∑3
j=1 zi,jGi,j +∑R

k=1 τkG̃k
7: Let zi,0 := zi

8: Set fk = −γζk +∑N
i=1

∑3
j=0 zi,jγ

(k)
i,j + τk for k ∈ [1, R] . PoSO

9: Compute f∗i = 4zi(γB − zi) + γ2 −
∑3
j=1 z

2
i,j for i ∈ [1, N ]

10: Recompute F∗ = −γC∗ + t∗H0 +∑N
i=1 f

∗
i Hi

11: if Fx = Dx, Fy = Dy, F∗ = D∗, and fk = dk for k ∈ [1, R] then
12: return 1
13: else return 0
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collision resistant hash function H, and having the prover send DH = H(Dx, Dy, D∗, {dk}k∈[1,R])
instead. The verification now checks DH = FH , where FH := H(Fx, F∗, {fk}k∈[1,R]). It is easy to
see that the protocol remains secure if H is collision resistant. Also, since Phase 2 is effectively
independent of Phase 1, it may be exchanged with other suitable (succinct) argument systems.
This is discussed in a later paragraph.

Fiat–Shamir transformation. SharpPo
SO is public-coin and the Fiat–Shamir transformation is

applicable. This yields a non-interactive zero-knowledge argument. If the (hash) function is
modelled as a random oracle, the resulting scheme is provably secure in the ROM, although
there is a security loss (in the number of random oracle queries).

As SharpPo
SO is not a usual Σ-protocol, nor special sound (with sensible parameters), well-known

extraction techniques are not directly applicable. However, the reasoning for the security of the
Fiat–Shamir transformation of multi-round special sound protocols in recent works [AFK21;
Wik21] should be applicable to our setting. After all, the step in Phase 1 is not particularly
involved, and we have a property akin to special soundness there: If a second transcript is
necessary (due to inconsistent witness extracted in Phase 2), then a uniformly random accepting
transcript (with same message) will, with high probability, lead to a non-trivial DLOG relation.

Proving non-negativity. As with CKLR proofs [Cou+21a], it is possible to only prove x ≥ 0
instead of x ∈ [0, B]. Namely, using 1 + 4x = ∑3

i=1 y
2
i shows x ≥ −1/4, and using the four

square decomposition shows x ≥ 0. This is of interest if the upper bound B is “unreachable”
or otherwise not of interest. However, an upper bound B for x is still required (and must not
be too large), as it determines the size of the masks and the verifier’s size checks as before
(since wrap-around must still be prevented). Moreover, B is the maximal value for which
zero-knowledge guarantees hold; the larger x > B becomes, the more zero-knowledge degrades.
This optimization applies to SharpGS and SharpPo

SO.

Standard Soundness and higher knowledge error. It is easy to see that RAST with uniform
distribution over {0, 1}N is fractionally (NBL, 1)-sound with error 1/2. In this case, SharpPo

SO has
standard soundness with knowledge error κerr = 2−R, and R repetitions require approximately
2R · log(NBL) bits communication overhead. This trade-off is especially interesting if high
knowledge error is acceptable. for example, a statistical knowledge error κerr = 2−40 + negl in
interactive settings12 is a common choice, and in application to anonymous credentials may be
considered acceptable.

By using the Fiat–Shamir transformation on Phase 2 (with Γ̂ = 2λ− 1), an interactive 3-move
protocol can be obtained.13 The trade-off is also useful if batch size N is huge (hence amortized
cost to achieve standard soundness is small). In that case, exchanging Phase 2 is also of interest.

Exchanging phase 2. Since Phase 2 is effectively independent of Phase 1, i.e. the shortness
test, it may be exchanged with other suitable (succinct) argument systems. This is especially
interesting to reduce overall communication. As only knowledge of openings and simple quadratic
equations are proven, generic proof systems which target R1CS over Zp (e.g. Bulletproofs [Boo+16;
Bün+18]) or general quadratic or polynomial equations over Zp (e.g. [HKR19; BG18]) can be
used as drop-ins.
In fact, the ζk could also be committed to and proven to be computed correctly and that

they lie within [0,K]; if done in zero-knowledge, this makes the masking terms µk superfluous,
12In this case, the communication overhead is reasonable and computational efficiency remains excellent. For 128

repetitions, the communication overhead becomes noticeable. See table 4 for concrete size estimates.
13We stress that high knowledge error, e.g. 2−40, only makes sense in interactive settings. Fiat–Shamir transfor-

mations are trivial (and cheap) to break in this regime.
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improving the soundness error of the shortness test. However, a (standard sound) range proof
is needed to check ζk ∈ [0, 4NBΓ], and the proof system must now include adaptively chosen
commitments and statements, which typically is not a problem for commit-and-prove-based
proof systems, but it does slightly increase proof size and round complexity. Considering the
number of variables for adding the necessary constraints for the (bit-decomposition) range proof
for ζk, and using binary challenges in the Batch-PoSO (to obtain standard soundness) with
R = 128 repetitions for security, we obtain a break-even in the number of (auxiliary) variables
at about N = 170 with naive R1CS-type constraints (and N = 160 for quadratic constraints).
Overall, for large enough batches sizes, this approach may be of interest. See example 5.2 for
more details.
Example 5.2 (Using a succinct Phase 2). As discussed in section 5.4, it is possible to adapt
suitable succinct arguments which follow a commit-then-prove strategy which allow multiple
commitment steps and an adaptive choice of the final statement. The upside is, that the 3-square
decomposition requires fewer auxiliary variables (compared to bit-decomposition). The downside
is, that an overhead which is almost independent of the batch size must be paid (namely, the
R repetitions). We discuss and roughly quantify this trade-off, where we use the PoSO with
binary challenges to achieve standard soundness. For concreteness, consider the Bulletproofs
variant [HKR19], which allows proving quadratic equations over committed variables (instead of
the weaker R1CS-type equations). We set B = 264 − 1 and R = 128 (and Γ = 1).
The protocol with exchanged Phase 2 works as follows:

1. (Phase 1) Commit not only to xi, but also to the square decomposition yi,j and masks µk
for k = 1, . . . , R.

2. Receive the PoSO challenges and responds with ζk.

3. (Phase 2) Both prover and verifier adapt the statement by including the linear check
constraints (for k = 1, . . . , R) for the PoSO, similar to Phase 2 of SharpPo

SO.

With this approach, sending {ζk}Rk=1 significantly increases the proof size (namely, by R elements
of log((4NΓB + 1)L) bits each). But only 4 variables per range are used (xi and 3 auxiliary
variables {yi,j}j), whereas 64 variables are required per bit-decomposition.

A more complex approach enables smaller proofs, but requires an adaptive commitment and
statement:

1. Commit not only to xi, but also to the square decomposition yi,j .

2. Receive the PoSO challenges and commit to ζk for k ∈ [1, R].

3. Both prover and verifier adapt the statement by including the linear check constraint (for
k = 1, . . . , R) for the PoSO, and a (bit-decompostion) range proof for ζk ∈ [0, 4NΓB].

An advantage is, that no masks are necessary, but we now require an adaptive commitment
to ζk which still slightly increases proof size. For the normal bit-decomposition of all xi,
one needs N log(B + 1) variables and quadratic constraints. With this approach, one needs
4N +R · log(4NΓB + 1) variables and quadratic constraint (plus a suitable commit-and-prove
system). For R = λ = 128 and B = 264 − 1 the break-even point in terms of variables and
constraints is at about N = 160, and at N = 2048 we observe an over 7-fold reduction in terms
of variables and constraints, which tends to 16 as N grows. For R1CS-type constraints (now
using 8 instead of 4 variables), we observe break-even at about N = 170 and an almost 5-fold
reduction at N = 2048 which tends to 8 as N grows.
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6. Soundness Guarantees and Hidden Order Augmentation
We provide some insights into the consequences of relaxed soundness and the use of hidden
order groups in that context. Further discussions can be found in appendix B and appendix C
respectively.

6.1. Remarks on Relaxed Soundness
The relaxed soundness of CKLR-type proofs only ensures that a committed value x is a fraction
x ≡p m/d with short numerator and denominator, say x ∈ QM,D. As we will see, this can be
sufficient in important applications, such as anonymous credentials. However, this guarantee
is, in general, too weak to allow unchecked homomorphic operations on commitments, e.g. the
sum ∑N

i=1
mi
di

of short fractions mi/di need not be short. The main problem is the growth of the
common denominator as d = lcm(d1, . . . , dN ), and the numerator grows similarly. Thus, after a
few operations, all guarantees on shortness are lost.

6.1.1. Cheating with Small Denominators.

The use of relaxed soundness is not a proof artefact: For small d and m, find ∑3
j=1 a

2
j =

d2 + 4(m − d)m and let x ≡p m/d and yj ≡p aj/d. This decomposition has a chance of 1/d
(per repetition, and 1/dR overall) to fool the verifier. In particular, after the Fiat–Shamir
transformation, generating proofs for x is efficiently possible if d is not too large.

6.1.2. Three Square Decomposition.

Our range proofs use the 3-square decomposition and prove membership in [− 1
4B , B + 1

4B ]QK′,Γ .
To obtain membership in [0, B]QK′,Γ one can either use the 4-square decomposition, or use
Γ < 4B (perhaps, increasing repetitions), as this ensures that denominators d ≥ 4B violate
soundness, hence [0, B]QK′,Γ = [− 1

4B , B + 1
4B ]Q ∩QK′,Γ = [− 1

4B , B + 1
4B ]QK′,Γ .

6.2. Using Groups of Hidden Order
The problem of denominator growth can be mitigated by resorting to a group H of hidden order.
For SharpGS and SharpPo

SO, the approach works as follows: Add a single additional commitment
C ′x to all values xi in H (using a MPed commitment). Moreover, include a proof of knowledge of
opening of C ′x (to the same value as in Cx). This small change, allows us to reduce to properties
of H to control the denominator. Using reasonable assumptions, it can be shown that the
denominators di are of the form di = eki for ki ∈ N0.

6.2.1. Instantiating the Hidden Order Group.

When instantiating H with suitable class groups of hidden order for which a plausible strengthened
2-fROOT assumption holds, the prover will be bound to dyadic rationals, i.e. xi of the form
xi = mi/2ki . This improves the applicability of the range proof significantly, since, even in
homomorphic computations, the common denominator d is of the form 2k with k ≤ log(Γ). This
restriction already enables the use of homomorphic computations.
When using RSA groups (with trusted setup), the proof provides standard soundness, since

the prover is bound to an integer under the 1-fROOT assumption (a.k.a. strong RSA assumption).
Interestingly, even without trusted setup, e.g. in cases with a “designated verifier”, we sketch
how RSA groups enable the use of Sharp proofs (cf. section 7.3).
We refer to appendix C for a more detailed overview of these “augmented” schemes with an

efficiency and security analysis.
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6.3. Non-Relaxed Soundness from Prior Knowledge
Prior knowledge on the shortness of committed values can “upgrade” the soundness from relaxed
to non-relaxed. Namely, suppose for some reason, that you have prior knowledge or the guarantee
that the committed value x ∈ Zp is short, i.e. x ∈ [−M,M ]. Then its representative in QM,D is an
integer (namely, x1 ). Thus, the range proof then directly implies that x = [x]Q ∈ Z is in the desired
range [0, B]Q. More formally, we use that [− 1

4B , B + 1
4B ]Q ∩QM,D ∩ Z = [0, B]Q ∩ Z = [0, B]Z.

Note that this reasoning also works for the range proofs from CKLR [Cou+21a].

7. Applications
In this section, we show how range proofs with relaxed soundness, such as Sharp (or CKLR), can
be used in certain applications, namely as anonymous credentials and anonymous transactions.

7.1. Anonymous Credentials
Anonymous credential schemes [Cha90; CL01; Bra00] allow users to obtain credentials from
issuing authorities. Later, the user can present this credential to a verifier, without revealing his
identity, which is fixed (but hidden via a commitment) in the credential. These credentials can
also have attributes, for example a birthdate or a validity date. When showing the credential,
the user might need to show that he is older than 18 or that the credential is still valid in a
privacy-preserving manner.
Constructions of anonymous credentials typically rely on very efficient special-purpose zero-

knowledge proofs. Concretely, most rely on so-called “CL-type” (algebraic) signature schemes,
which come with very efficient proofs of knowledge of a signature on committed messages [CL03].
These are used to sign the identity and attributes of a user. To prove that attributes lie in some
range, e.g. for age restrictions or a validity date of the credential, range proofs are employed.
Thus, range proofs often constitute a significant, if not dominant, part in computation (and
communication) in these settings.

Sharp proofs can often be used as an almost drop-in replacement in such settings. Consider
the DLOG setting in a group of prime order p.

• When issuing the credential, all attribute values are known to the issuer. Assuming
suitably small ranges [0, B] ⊆ [−K,K] for valid attributes, the verifier’s validity check of
attribute values ensures shortness. If K < p/(4Γ), then a rational representative m/d of
an attribute x must be of the form m/1, i.e. x is a short integer. Thus, our range proof
will be standard sound for x (see section 6.3).

• In case of blind issuance (where identity and attributes remain (partially) hidden), the
relaxed soundness of DLOG-based Sharp may not suffice (see section 6.1.1). Here, we can
use SharpRSA which provides standard soundness, using a trusted public RSA-based setup
of the issuer.

• For showing the credential, our range proofs can be used if the (blind) issuing phase
ensured that the attributes lie within valid ranges, as in that case, our range proof is
standard sound (see section 6.3).

The same reasoning applies to so-called keyed-verification anonymous credentials [CMZ14],
where the issuer and verifiers have a shared secret key, which allows for more efficient protocols
(but restricts the use-cases).

Anonymous credentials and their constructions come in many flavours [RVH17; CR19; BL13],
and not all rely on prime order groups alone. Some use pairing groups and some use hidden order
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groups. Nevertheless, it is very likely that in all these settings, our range proofs offer favourable
trade-offs when compared to those in use. For example, while hidden order groups allow for
three-square decomposition based range proofs, working in prime order groups is typically
more efficient in terms of computation and communication. In the pairing-based settings, the
approach of [CCs08] allows quite efficient digit-based decompositions. However, operations in
pairing-groups are slower, elements are bigger, and for efficiency, [CCs08] needs relatively large
(non-transparent) public parameters.

7.2. Updatable Anonymous Credentials and BBAs
A line of works [JR16; Har+17; Blö+19; Hof+20; Bob+20] uses techniques from anonymous
credentials in a “non-static” manner to construct updateable anoymous credentials or black-
box accumulation (BBA) schemes, which can be used for electronic payments, ticket systems,
incentive systems and more. Most of the schemes feature range proofs as a core component, as
these are required to prevent users from spending more than they have. The (blind) issuing
process is mostly unchanged in comparison to anonymous credentials. The show protocol is
replaced by (one or more) update protocol(s), which modify the user’s attributes (e.g. the user’s
current balance).

Most applications work in the “public balance update” setting, where the user interacts with
an operator, and the operator knows the amount ∆ by which a user’s (hidden) balance v is
changed. That is, after the transaction, the balance should be v+ ∆, and for security, v+ ∆ ≥ 0
must be ensured. In this “public balance update” setting, our range proofs are again almost
drop-in replacements. Namely, if the security proof ensures that the balance v is “small” (i.e.
has rational representative v/1), then our proof has standard soundness for v+ ∆ ∈ [0, B]. Since
the security proofs typically prove inductively that, after each operation, the (new) balance v
has certain properties (e.g. lies in the range [0, B]), the requirement for our proof to be standard
sound is easily seen to be satisfied.

Range proofs are so expensive that early works [JR16; Har+17] consider weakened (security)
requirements to achieve practical efficiency. Even in later works [Blö+19; Hof+20; Bob+20],
they amount to a large part of (or even dominate) the runtime. Our optimized range proofs
greatly improve efficiency.

7.3. Anonymous Transactions
Range proofs are often used in privacy-preserving blockchain-based smart contract platforms in
order to ensure that the fixed (but hidden) balance of users is non-negative after performing a
transfer [Zca; Mon; Bün+20]. This ensures that no user can spend more coins than he owns
while preserving privacy. Thus, this is a “secret balance update” setting. We use the framework
Zether [Bün+20] as a running example. In the following, we first give a short (and simplified)
overview of Zether. Then, we showcase how problems of relaxed soundness from appendix B
surface here and show where and how we can still apply Sharp in order to improve efficiency and
communication. Lastly, we argue that augmented Sharp proofs (appendix C) suffice as drop-in
replacement, either via a RSA commitment with trusted setup or both a RSA commitment and
class group commitment without trusted setup. Interestingly, we can leverage the properties of
RSA groups, even without trusted setup.

Overview of Zether. Let B = 232− 1. We refer to the cryptocurrency ZTH as coins which can
be stored and transferred by users of the system (identified by a public key) [ElG84; CGS97].
The balance of the user is encrypted using (additively homomorphic) exponential ElGamal
encryption. An encryption of balance b ∈ [0, B] has the form (C,R) = (bG + rY, rG), where
Y = xG is the public key, x ∈ Z×p is the private key, r ∈ Z×p is some randomness and G ∈ G
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for some group G with prime order p. For decryption, the user has to brute-force the discrete
logarithm of bG to retrieve b.
After setup, a user has access to some methods in order to interact with a smart contract

(that maintains the state st). User methods of interest are:

• ReadBalance(x, st): Given secret key x and state st, return the current balance (by de-
crypting the ElGamal ciphertext).

• CreateFundTx(Y, a): Given public key Y and amount a, creates a transaction tx that funds
the user corresponding to Y with a coins. When the smart contract handles the transaction
tx, it adds a ≥ 0 to the balance (C,R) of user Y by setting C ← C + aG. Note that in the
transaction, the amount a is public and thus no range proof is needed. The smart contract
ensures that at most B coins are in the system when funding accounts, so overflows when
funding are not possible.

• CreateTransferTx(x, Y ′, a, st): Takes as input secret key x of user with public key Y with
balance (C,R), a public key Y ′ of a user with balance (C ′, R′), an amount a and the
state st. Creates a transaction tx that transfers a coins from user Y to user Y ′ in a
privacy-preserving manner.
The transaction does not reveal the transferred amount a, since it contains encryptions
of the balance a in (D,S) and (D′, S′) under public key Y and Y ′ respectively. The
transaction further contains a zero-knowledge proof that both ciphertexts (D,S) and
(D′, S′) encrypt the same value a, knowledge of the balance b in ciphertext (C,R), and two
range proofs showing that b−a and a are in the range [0, B] (using Bulletproofs [Bün+18]).
This ensures that the user cannot spend more coins than he owns.

• CreateBurnTx(x, st): Takes the state st as input and proves that the balance of user with
secret key x is equal to amount a and removes a coins from the balance. This method
withdraws all coins from an account.

There are also user methods to create an user address, and to lock and unlock an account. We
focus on the methods listed above as they allow managing the balance of a user (for which
range proofs are necessary). Further, there are several additional security mechanisms. For
example signatures on transactions to prevent replay attacks, account locks and a pending
transfer mechanism that ensures consistency. We refer to [Bün+20] for more details.

Problems with a Naïve Application of SharpGS. Additions of rational representatives QN,D

without overflows can only be guaranteed if the number of additions is restricted (see appendix B).
Further, correctness is only guaranteed for integers QN,D ∩ Z. Thus, we cannot replace all range
proofs in Zether with SharpGS. We elaborate:

• Money creation I: Using the three square decomposition, the committed rational represen-
tative is guaranteed to be in [− 1

4B , B + 1
4B ]Q (see appendix B.2). So transferring −1/(4B)

is not (provably) prevented, though negative transfers are forbidden.

• Money creation II: With the four square decomposition, performing a range proof for
a negative value has negligible probability of success. A user with balance b could
still potentially create coins by creating n other accounts and transferring himself the
amounts ai = mi/pi from account i ∈ [1, n], where {pi}ni=1 are distinct primes (see also
section 6.1.1). After these transactions were applied, the users balance will be equal to
[b′]Q with b′ ≡p b+∑n

i=1mi/pi. If
∏
pi > Γ, the denominator overflows and the resulting

balance is inconsistent (see appendix B.1). Indeed, ∑n
i=1mi/pi may be huge but within

bounds.
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• Denial of service: A malicious user can transfer an amount a = 1
p to a user with balance b.

After the transaction, the receiving user’s balance is b′ = pb+1
p 6∈ [0, B]Z ⊆ Z. This breaks

correctness for honest users.

Applications of Sharp in Zether. Despite the problems sketched above, we can use Sharp proofs
in Zether. For SharpGS, we ensure a shortness guarantee for the balances of users by combining
it with homomorphic range proofs with standard soundness guarantees (such as Bulletproofs).
In this case, SharpGS satisfies standard soundness. We give three concrete application examples:

• We can replace the range proof showing that b− a ∈ [0, B] (generated in CreateTransferTx)
with a SharpGS proof. Initially, the balance is 0. A funding transaction keeps the balance
short (as the total number of coins are limited in Zether and the funded amount is
public) and non-negative. Further, a range proof with non-relaxed soundness (for example
Bulletproofs) ensures that the transfer amount a ∈ [0, B] which implies that b−a ∈ [−B,B],
as the balance is non-negative. Thus, SharpGS guarantees that b−a ∈ [0, B]. So by induction,
the transfer transaction retains the invariant of a non-negative balance. As Bulletproofs
allow batch proofs with tiny size overhead, the total size would increase to (at most) double.
However, the verification cost of Bulletproofs scales linearly, so we expect the verification
time to decrease significantly.

• Zether restricts coin withdrawal quite heavily as only the entire balance of an account
can be withdrawn (see CreateBurnTx). When adding the functionality of partial burns
to Zether, SharpGS can be applied. A partial burn removes an amount a (specified by
the user) from the user’s balance b encrypted in (C,R). Now, the user has to prove that
b− a ∈ [0, B] (after subtracting a from the encrypted balance homomorphically). Zether
ensures that b ∈ [0, B] and as a is public, the smart contract can verify whether a ∈ [0, B].
Thus, b− a ∈ [−B,B] is short and SharpGS shows that b− a ∈ [0, B] as desired. In this
setting, our range proofs are more efficient than Bulletproofs.

• Zether does only allow private transfers (where the amount a is hidden). For some
transactions, a user might want to reveal the amount a in exchange for a more efficient
transfer. In this case, the user still needs to show that his balance b remains non-negative
after the transfer, i.e. b− a ∈ [0, B]. Again, since the balance before the transfer is short
and the transfer amount is public, SharpGS guarantees soundness and is more efficient than
using Bulletproofs.

Note that calculation of gas cost for cryptographic operation is very coarse, e.g. there is no
difference between full-size or small exponentiations [Bün+20]. Unfortunately, Sharp proofs
derive efficiency by computing with short exponents.

Leveraging RSA Without Trusted Setup. In transaction systems with trusted setup, e.g.
Zcash [Zca], we can replace all range proofs in Zether with SharpRSA. Without trusted setup, we
can use class groups and the four square decomposition. Now, SharpCL guarantees membership
in [0, B] (for rational representatives) and we can perform an arbitrary number of additions as a
bound B on the total sum of each balance is known (cf. appendix B). Unfortunately, dishonest
users can still introduce fractions in the balance of other users (cf. section 7.3, denial of service).
So we need to restrict dishonest users such that they cannot transfer fractional amounts. Note
that for security, it is sufficient to restrict fractional transfers to honest users, as fractional
transfers between dishonest parties cannot create coins and the system correctness is not harmed
(for honest users).

We sketch how to leverage the properties of RSA groups without trusted setup to resolve
this problem. First, we identify each user by a RSA modulus n that is privately generated,
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in addition to the ElGamal public key Y . 14 Then, the users perform each range proof with
SharpCL, i.e. Sharp augmented with a class group element (see appendix C). In addition, the
proof that a ≥ 0 is further augmented with an RSA group element with modulus n, where n is
the public key of the receiver. The latter enforces the opening of a to be an integer, if n was
setup honestly. (Note that one class group element is sufficient for augmenting both range proofs
via MPed.) We have to distinguish two cases to analyze the security of a transfer:

• If n is a RSA modulus and the receiver’s factorization is not known to the prover, the
RSA group element guarantees that a ≥ 0 is an integer and in the bounds [0, B], as the
square decomposition holds. Though the sender’s balance might be fractional, b− a ≥ 0 is
guaranteed to be non-negative by the other range proof.

• If the receiver’s factorization is known to the prover (or n is not a RSA modulus), the
RSA group element provides no additional security guarantees. But as we augment the
range proof also with a class group element, the transaction cannot generate coins, only
introduce factions in the receiver’s balance.

Thus, honest users profit from all standard security guarantees, whereas dishonest users can
only interact with honest users while their balance is non-fractional. Note that if n and the
MPed parameters in the RSA group are setup maliciously, the RSA commitment could leak
information about a, but this only impacts transactions to dishonest users.

For 128 bits of security, class groups require a discriminant of size 1827 bits and RSA groups a
modulus size of 3072 bits [BJS10; Thy+21]. Further, the representation of class group elements
can be compressed to 3/4 the size of the discriminant [DGS21]. Thus, each transaction requires
555 Bytes of communication for both the additional RSA and class group element, in addition
to the bare SharpPo

SO range proof in a 256-bit group.
Unfortunately, this induces a slight communication overhead. Thus, we do not expect this

approach to improve efficiency. Nevertheless, it shows that the square decomposition approach
can be applied in a wide range of applications and that the properties of RSA groups can be
leveraged, without trusted setup.
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A. Preliminaries Continued
We formalize the sketches from section 2.3. Some definitions are adapted from [Cou+21a].

A.1. Hash Functions
Definition A.1 (CRHF). Let Hash : K × {0, 1}∗ 7→ {0, 1}` be a hash function. We call Hash a
collision-resistant hash function (CRHF), if for all PPT adversaries A there exists a negligible
function negl such that

Pr
[

k $← K; (m0,m1)← A (1λ, k) :
m0 6= m1 ∧ Hash(k,m0) = Hash(k,m1)

]
≤ negl(λ).

Recall that, due to generic birthday attacks, we need at least l = 2λ output size for λ bits
of security. Moreover, keyed hash functions are required to achieve collision-resistance against
non-uniform adversaries, otherwise advice could contain collisions.

A.2. Commitments
A (non-interactive) commitment scheme Com allow committing to a message m ∈Mcom
obtaining a commitment c ∈ Ccom and opening information r ∈ Rcom, where Mcom, Ccom,
Rcom are message, commitment and opening (or randomness) space of Com, respectively. We
now define the security properties formally.
Definition A.2 (Correctness of a Commitment Scheme). A commitment scheme Com is correct,
if there exists a negligible function negl such that for any ck $← Com.Setup(1λ), any message
m ∈Mcom and for (c, d)← Com.Commitck(m), it holds that Com.Verifyck(c, d,m) = 1−negl(λ).
Definition A.3 (Hiding Property of a Commitment Scheme). The advantage of an adversary A
against a the hiding property of a commitment scheme Com is

Advhide
A (λ) = Pr


ck $← Com.Setup(1λ); b $← {0, 1};

(m0,m1)← A (ck);
(c, d)← Com.Commitck(mb);

b′ ← A (c) : b′ = b


A commitment scheme Com is hiding if for any stateful PPT adversary A , there exists a
negligible function negl such that Advhide

A (λ) ≤ 1
2 + negl(λ).

Definition A.4 (Binding Property of a Commitment Scheme). The advantage of an adversary A
against a the binding property of a commitment scheme Com is

Advhide
A (λ) = Pr


ck $← Com.Setup(1λ);

(c, d0, d1,m0,m1)← A (ck) :
Com.Verifyck(c, d,m0) = 1

∧ Com.Verifyck(c, d,m1) = 1 ∧m0 6= m1


A commitment scheme Com is binding if for any PPT adversaries A , there exists a negligible
function negl such that Advbind

A (λ) ≤ negl(λ).

A.3. Cryptographic Groups
Definition A.5 (S-Bounded DLSE and SEI). Consider a group G. The S-bounded discrete
logarithm with short exponents (DLSE) assumption holds if for all PPT A there is a
negligible function negl such that

Pr
[
G $← G; z $← [0, S], z′ ← A (G, zG) : z = z′

]
≤ negl(λ)
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This probability defines the advantage Advdlse
A of A against DLSE.

The S-bounded short exponent indistinguishability (SEI) assumption holds if for all PPT
A there is a negligible negl function such that

Pr [G $← G; z $← [0, S] : A (G, zG) = 1]

−Pr
[
G $← G; z $← Zord(G) : A (G, zG) = 1

]
≤negl(λ)

This probability defines the advantage Advsei
A (λ) of A against SEI.

For groups of known order p, SEI holds unconditionally for S = p − 1. More generally, an
unbounded adversary against SEI for S = LUup has advantage at most 1/L in groups of unknown
order (remark A.7), but relying on the SEI assumption for S > Uup is of little interest.
Note that SEI is a (long-standing) highly plausible assumption. Further, the DLSE and SEI

assumption are known to be essentially equivalent in groups of known prime order with random
generators [KK04], but a security loss is incurred in the reduction.
Remark A.6 (On SEI and DLSE). The study of the DLSE problem is essentially as old as that
of the discrete logarithm problem itself: early works, when studying the discrete logarithm
problem, typically considered the setting of bounded size exponents as well. See for example
the seminal 1978 paper of Pollard [Pol78] and the “catching kangaroos” algorithm. It was also
studied independently of the general DLOG problem, e.g. by van Oorschot and Wiener [vW96]
(in 1996).

The SEI problem was first shown to be equivalent to the DLSE problem by Koshiba and
Kurosawa [KK04] (in 2004). However, the roots of this equivalence are much older: the problem
of distinguishing {gx | x $← Zp} from {gx | x $← short} is, in essence, the problem of predicting
the most significant bits of x (e.g. if we define “short” as “smaller than p/2”, then answering “is
x short” is exactly answering “does the MSB of x equal 1”). The difficulty of extracting the
individual bits of x (and its MSBs in particular) has been the subject of a long line of work,
starting with Peralta [Per86] in 1985, and followed by Long and Wigderson [LW88] in 1988,
Håstad and Näslund [HN04] in 1996, Schnorr [Sch98] in 1998, and many more.
The security loss between DLSE and SEI is t, where t is the bitlength of the short exponent

(e.g. if the short exponents are 256 bits long, the reduction ‘loses’ 8 bits of security). However,
no better attack is known on SEI compared to the DLSE, and it enjoys the same hardness in the
generic group model. Hence, it is typically believed to achieve the same security level, without
accounting for the reduction loss.

Groups of hidden order Following assumptions are relevant in groups of hidden order. Note
that we still use additive notation, even if multiplicative notation is more common for RSA
groups.
Remark A.7. In a cyclic group 〈G〉 of unknown order, a random group element be approximated
via xG for x $← [0, . . . , LUup − 1] and xG has statistical distance at most 1/L from a random
group element. Indeed, at most 1/4L (due to [CL15]).
The ORD assumption ensures, that it is hard to find (a multiple of) the order of non-trivial

elements.
Definition A.8 (ORD). The order (ORD) assumption holds for a given group G if for any
PPT adversary A , there is a negligible function negl, such that

Pr
[
(W,α)← A (G);W ∈ G \ {0};

0 6= |α| < 2poly(λ) : αW = 0

]
≤ negl(λ)

This probability defines the advantage AdvORD
A (λ) of A against ORD.
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We use the adaption of ORD to the class group setting of [BFS20] with corrections from [Cou+21a].
It is believed to hold in suitable class groups of imaginary quadratic orders and the subgroup
of quadratic residues QRn in RSA groups. For 128 bits of security, class groups require a
discriminant of size 1827 bits and RSA groups a modulus size of 3072 bits [BJS10; Thy+21].
Further, the representation of class group elements can be compressed to 3/4 the size of the
discriminant [DGS21].
Definition A.9 (e-fROOT). The e-fractional root (e-fROOT) assumption holds for group G
if for any PPT adversary A , there is a negligible function negl, such that

Pr

 G $← G; (α, β, U)← A (G, G);U ∈ G;
0 6= |α| < 2poly(λ) ∈ Z; |β| < 2poly(λ) ∈ Z :
βU = αG ∧ β

gcd(α,β) 6= ek for k ∈ N

 ≤ negl(λ)

This probability defines the advantage Adve-fROOT
A (λ) of A against e-fROOT.

The e-strong RSA assumption is defined as e-fROOT but where α = 1 must hold. [BFS20] define
this and show that e-strong RSA and ORD imply e-fROOT. The e-fROOT assumption clearly
implies e-strong RSA and almost implies ORD, except for elements W with ekW = 0.

The 1-fROOT assumption is equivalent to the (usual) strong RSA assumption and believed to
hold in QRn. The 2-fROOT assumption is believed to hold in suitable class groups of imaginary
quadratic orders.
Remark A.10. Let G be a group, let G ∈ G, and let (α, β,W ) with αG = βW . Then:

1. The e-fROOT experiment is won with (α, β,W ) iff α
β /∈ Z[1/e].

2. The ORD experiment is won if d = gcd(α, β) (or more generally any divisor d of α and β),
we have α

dG 6=
β
dW .

The SI assumption ensures that random elements in the subgroup 〈G〉 are indistinguishable
from random elements in G.
Definition A.11 (SI). The subgroup indistinguishability (SI) assumption holds for group
G if for any PPT adversary A , there is a negligible function negl, such that

Pr

 G,H0
$← G, H1

$← 〈G〉 ;
b $← {0, 1}, b′ ← A (G, G,Hb) :

b = b′

 ≤ 1
2 + negl(λ)

The left hand side defines the advantage Advsi
A (λ) of A against SI.

Again, we use the adaption from [BFS20] of the SI assumption introduced in [BG10]. It is
believed to hold in QRn or suitable class groups of imaginary quadratic orders.
Definition A.12 ((D, e,N)-relaxed DLOG-relation). Let G be a group, D, e,N ∈ N, and ~G =
(G0, . . . , GN ) ∈ GN+1. Define the (D, e,N)-relaxed DLOG relation w.r.t. ~G as

RD,e,N (~G) =
{

(C, d, {mi}Ni=1)
∣∣∣∣∣ dC = ∑N

i=0miGi ∧ ∃i : mi
d 6∈ Z[1/e]

∧ d ∈ [0, D] ∧ mi ∈ Z

}

The advantage Advrel-dlog
G,(D,e,N),A (λ) of A against the hardness of the (D, e,N)-relaxed DLOG-

relation with subgroup setup (and without public coins), is defined as the following probability:

Pr

G← GenGrp(1λ);G0
$← G;G1, . . . , GN

$← 〈G0〉
(C, d,m0, . . . ,mN )← A (G, G0, . . . , GN ) :

(C, d,m0, . . . ,mN ) ∈ RD,e,N (~G)

 .
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We say that finding (D, e,N)-relaxed DLOG-relations with subgroup setup is hard in G, if
for every PPT adversary, there exists a negligible function negl such that Advrel-dlog

G,(D,e,N),A (λ) ≤
negl(λ).

We define hardness with random setup analogously, except that Gi $← G for all i (instead
of Gi $← 〈G0〉).
We abbreviate (D, e, 1)-relaxed by (D, e)-relaxed.
Viewing C as a commitment and (G0, . . . , GN ) as a commitment key in definition A.12 (which

is exactly how we use it), (D, e,N)-relaxed DLog-relation hardness roughly holds if it is not
possibly to open C to anything but an element in Z[1/e] (where we neglect the condition that
d ≤ D). The choice N = 1 is the most important one for (D, e,N)-relaxed DLOG-relations, as
it is required for our applications and (as we will see) is equivalent N > 1. The (D, e, 0)-relaxed
DLOG-relation is a (presumably) slightly weaker assumption, but is implied under additional
restrictions (or assumptions).

Lemma A.13. Let G be a group and let A be an algorithm. Then for hardness with subgroup
setup, we have following implications.

1. The (D, e,N)-relaxed DLOG-relation tightly implies the (D, e, n)-relaxed DLOG-relation
for any n ≤ N .

2. The (D, e, 1)-relaxed DLOG-relation tightly implies the (D, e,N)-relaxed DLOG-relation
for N ∈ N0.

3. The e-fROOT assumption tightly implies hardness of (D, e, 0)-relaxed DLOG-relation. If
D =∞, the assumptions are equivalent.

4. If the order |G| has no prime factors smaller than or equal to D, then (D, e, 0)-relaxed
DLOG-relation tightly implies the (D, e, 1)-relaxed DLOG-relation.

Under the SI assumption in G, the claims also hold for hardness with random setup.

Item 4 is the general formulation to be used with C(λ)-rough groups [DF02], i.e. groups
which have no subgroups of order smaller than C(λ). The proof of item 4 uses the argument
from [Cou+21a] which is an adaption of [DF02]. For item 2, a standard randomization technique
is used (which is also used to show the tight equivalence of DLOG and DLOG-relations). Items 1
and 3 are immediate and included for completeness.

Proof. To item 1: This is immediate: If A outputs (C, d,m0, . . . ,mn), output (C, d,m0,
. . . ,mn, 0, . . . , 0) to break (D, e,N)-relaxed DLOG-relation hardness with exactly the same
success.
To item 2: For N ≤ 1 this follows from the previous point. For N ≥ 2, this follows with

by borrowing randomization techniques from known prime order groups. Concretely, pick
~r0, ~r1

$← [0, 2N2λUup]N and define the matrix

R =
(

1 0
~r0 ~r1

)
∈ Z(N+1)×2

Let (G′0, . . . , G′N )> = R(G0, G1)>. The reduction hands (G′0, . . . , G′N ) to A , which outputs
(d,C,m0, . . . ,mN ). The reduction then returns (d,C, (m0, . . . ,mN )R).

The success analysis will be information-theoretic. Let K = ord(G0) be the order of the
generated subgroup. Observe that information-theoretically (~r0, ~r1) mod K is almost uniform,
namely the statistical distance to ZNK is at most 2−λ to. Let g1 be the DLOG of G1 to G0, i.e.
g1G0 = G1. For simplicity, we now argue using the DLOGs, i.e. we argue over ZK (mapping
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G0 to 1 and G1 to g1), and we argue as though ~r0 and ~r1 are uniform modulo K. Observe that
R(1, g1)> and (R+ ~v(−g1, 1))(1, g1)> have the same distribution for any ~v ∈ ZN+1

K , that is

R(1, g1)> ∼ (R+ ~v(−g1, 1))(1, g1)> (A.1)

In particular, this holds for uniformly random ~v $← ZN+1
K . Now consider A ’s output

(d,C,m0, . . . ,mN ). Let c = dlogG0(C), i.e c · G = C, and let ~m> = (m0, . . . ,m1). Then
dC = ∑m

i=0miGi = ~m>R(G0, G1)> becomes dc = ~m>~g′ = ~m>R(1, g1). Let d′ = d/ gcd(ed, d),
i.e. let d′ | d be the maximal factor of d which is coprime to e.
If A wins, then for some i we have mi/d /∈ Z[1/e]. Moreover, following conditions are

equivalent:
mi/d /∈ Z[1/e] ⇐⇒ mi/d

′ /∈ Z[1/e]
⇐⇒ d′ - mi

⇐⇒ mi 6≡d′ 0

Whenever ~m>R 6≡d′ 0 holds, then (d,C, ~m>R) is a (D, e, 1)-relaxed DLOG-relation. Hence, we
have to show that ~m>R 6≡d′ 0 holds with high probability. From the equivalence of distributions
in eq. (A.1), we have

Pr[~m>R ≡d′ ~0]
= Pr[~m>(R+ ~v(−g1, 1)) ≡d′ ~0]
≤ max

~m 6≡d′0
Pr[~m>~v(−g1, 1) ≡d′ ~µ]

where the initial probabilities go over R, m, v, and we used for the inequality that we can
maximize over ~m and R and let ~µ = −~m>R. Looking only at the second component of the
equation ~m>~v(−g1, 1) ≡d′ ~µ, namely, ~m>~v ≡d′ µ2, where ~µ = (µ1, µ2)>, suffices to upper-bound
the probability.
Note that if d′ = 1, the adversary loses, so w.l.o.g. d′ 6= 1. Let pk | d′ be a prime power

dividing d′ such that k ∈ N is minimal with:

• for all i = 0, . . . , N : mi 6≡pk 0,

• for some i = 0, . . . , N : mi ≡pk−1 0.

If no such p exists, then mi ≡d′ 0 for all mi, and again, A loses (because mi/d ∈ Z[1/e] for all
i). Thus, assume w.l.o.g. that such a prime p exists.
Now, we show

Pr[~m>~v ≡pk µ2] ≤ 1/p.

For this, intuitively, we consider the p-adic digits and concentrate on the k-th digit, and show
that ~m>~v has almost uniformly random k-th digit. To do so, first note that (by assumption)
all mi lie in pk−1Z, and for some i∗, we have mi /∈ pkZ. In other words, we can divide all mi

by pk−1, and then one element, namely mi∗/p
k−1, is not divisible by p anymore. Thus, after

dividing and taking the equations modulo p, we see that mi∗/p
k−1 is invertible in Zp. (Note

that mi/p
k−1 mod p is exactly the k-th digit in basis p.) For the k-th digit of ~m>~v, it is not

hard to see that it is a uniformly linear combination of all the mi/p
k−1 mod p, since ~v mod p is

uniform in ZN+1
p . But it is well-known that for ~u $← ZN+1

p we have

Pr[~m>~u ≡pk µ2] = 1/p

and easy to check that Pr[~a>~u ≡p z] = 1/p if ~u $← ZN+1
p , ~0 6= ~a ∈ ZN+1

p , and z ∈ Zp.
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Putting things together and accounting for the statistical distance of 2−λ of the ~r0 and ~r1
from uniform over ZK , we have shown: If A does not lose, then we get

Pr[~m>~v 6= µ2] ≥ 1− 1/p− 2−λ

that is, with probability at least 1− 1/p− negl(λ) we find a non-trivial (D, e, 1)-relaxed relation.
Thus, the claim follows.

To item 3: Observe that for N = 0, the (D, e, 1)-relaxed DLOG-relation specializes to hardness
of finding (C, d,m) such that dC = mG0 and m/d 6∈ Z[1/e], and d ≤ D. Applying remark A.10
with C = W , d = β and m = α, and noting that m = α = 0 breaks neither assumption, we
immediately obtain the claimed equivalence if D =∞, and a one-sided implication otherwise.

To item 4: Since it makes no difference in the proof, we directly show that (D, e,N)-relaxed
implies (D, e, 0)-relaxed DLOG-relation hardness, if |G| has no prime factor smaller or equal to
D. We setup Gi = ρiG0 for ρi $← [0, N2λU2

up − 1], where Uup is an upper bound on the group
order of G. By remark A.7, Gi is 1/N · 2−λU−1

up close to a uniform element in 〈G0〉. By a
union bound, (G1, . . . , GN ) is 2−λU−1

up close to uniform in G. Let n ≤ Uup be any number with
gcd(n, ord(G0)) = 1. Since Gi information-theoretically only reveals ρi mod ord(G0), we see that
(ρ1, . . . , ρN ) mod n is 2−λ-close to uniform in Zn (since n ≤ Uup). We apply this to n = pk/d
later.
As in item 2, let (w.l.o.g.) 1 6= d′ | d be the maximal factor of d coprime to e, and let p

be a prime and k ∈ N be minimal such that mi ≡pk−1 0 for all i, but mi∗ 6≡pk 0 for some
i∗ ∈ {0, . . . , N}. Such p and i∗ exist since d′ 6= 1.
Using the setup, we have dC = m0G0 + ∑N

i=1miGi = (m0 + ∑N
i=1 ρimi)G0. Let m :=

m0 +∑N
i=1 ρimi. Observe that if m 6≡pk 0, then we have dC = mG0 and m 6≡d′ 0, and hence

m/d 6∈ Z[1/e] because d is not a power of e. Thus, we break e-fROOT. Now, we show that this
happens with high probability.

Since we assumed that mi∗ 6≡pk 0, but mi ≡pk−1 0, we can argue almost as in item 2 that the
linear combination (∑N

i=0 ρimi)/pk−1 mod p is zero with probability at most 1/p+ negl. The
only difference is that ρ0 = 1. But it is easy to see that z0 +∑N

i=1 uizi mod p for arbitrary zi ∈ Z
and uniform ui

$← Zp is 0 with probability at most 1/p, unless zi mod p = 0 for all i.
Since m := m0 +∑N

i=1 ρimi, we find that m mod pk 6= 0 with probability at least 1−1/p−negl,
and hence, whenever A wins, the reduction wins with probability at least 1/3. Thus, the claim
follows.

A.3.1. Transparent setup and assumptions without invertible sampling

The above assumptions for cryptographic groups can not be directly used for transparent setup,
because the adversary does not learn the random coins used to generate the group elements in
the experiment. However, if the sampling procedure for uniform group elements is “invertible”,
one can find suitable coins given the resulting group elements, and thus, the assumptions are
applicable also for transparent setup. In the following, we explain invertible sampling, and also
generalize our assumptions to the setting where no invertible sampling is available.
Let Sample be an algorithm which given the group (or more generally some parameter)

as input, samples an element, i.e. G ← Sample(1λ,G; r). A (overly restrictive, but suffi-
cient) definition for invertible sampling is, that there exists an algorithm I, that given
an element G ∈ supp(Sample(1λ,G)) samples random coins r, such that Sample(1λ,G; r) and
Sample(1λ,G; I(1λ,G,Sample(1λ,G; r), ρ)) are statistically close. In other words, I can be used
to “explain” any element G as being sampled via G, by producing the correct coins (with the
correct distribution), at least if the distribution of G is as in Sample. Often, invertible sampling
is perfect, i.e. for any possible output G, I produces a uniform r with G = Sample(1λ,G; r).
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If invertible sampling is available, one can exploit it to “program” a setup: Let Sample be the
(transparent) algorithm used to sample (uniform) group elements. Instead of choosing uniform
elements Gi $← G, i.e. Gi ← Sample(1λ,G; ri), one can choose G0

$← G and Gi = siG0, and then
use invertible sampling to “explain” Gi as an honest choice Gi ← Sample(1λ,G, ri), simply by
using the invertible sampler for Sample to produce ri ← I(1λ,G, Gi).

Invertible sampling is known for many groups. Indeed, whenever group elements have unique
bit-representations of (fixed) length ` and 2`/|G| is noticeable, invertible sampling is automatically
possible. Say 2`/|G| ≥ 1/100, then Sample simply tries to interpret r $← {0, 1}` as a group
element, and retries with fresh r until it succeeds (and if 100λ tries failed, Sample outputs ⊥).
Invertible sampling is clear: I(1λ,G, G) first samples the try which is successful (by simulating
Sample), and then outputs G in that try. From this naive procedure, we obtain invertible sampling
in many cases of interest. For example, for Z×n with typical n (e.g. n prime, or a product of few
primes), it works as follows: Simply pick a random bitstring in x $← [0, 2dlog(n)e] = {0, 1}dlog(n)e,
if x ≥ n retry, else if gcd(x, n) 6= 1 retry, else output x. For this Sample procedure, the invertible
sampler I works as follows: I(1λ,G, G) runs Sample(1λ,G, G; r) and interprets r = (ri)i where
i is the randomness of the i-th trial. If the k-th trial accepts, I replaces rk with the bitstring
representing G and outputs this modified randomness.
All in all, invertible sampling is known for many groups. Unfortunately, invertible sampling

is not known to be possible in class groups (at the time of writing). This was first pointed
out by [Abr+22] w.r.t. CKLR proofs [Cou+21b], but also affects our setting. CKLR resolved
the problem by relying on ElGamal commitments and the DXDH assumption [Abr+22] which
sacrifices efficiency. We rely on novel assumptions which take this into account by providing the
adversary with sampling randomness. We stress that, while these assumptions are stronger than
their counterparts, like DXDH they are all very plausible.

In the following, we denote by Sample the sampling algorithm and write (G, ρ) $← Sample(1λ,G),
i.e. we consider the random coins ρ as an output, partially adopting the notation of [Abr+22].
This is more convenient and more flexible as it allows us to model leakage other than the
random coins as well. We modify our assumptions to account for leakage of ρ to the adversary.
The modifications are straightforward, but we provide them for completeness. Changes are
highlighted in red.
Definition A.14 (S-Bounded DLSE and SEI w.r.t. Sample). Consider a group G. The S-bounded
discrete logarithm with short exponents (DLSE) assumption w.r.t. Sample holds if for all
PPT A there is a negligible function negl such that

Pr
[

(G, ρ)← Sample(1λ,G);
z $← [0, S]; z′ ← A (G, ρ, zG) : z = z′

]
≤ negl(λ)

The S-bounded short exponent indistinguishability (SEI) assumption w.r.t. Sample holds
if for all PPT A there is a negligible negl function such that

Pr
[
(G, ρ)← Sample(1λ,G); z $← [0, S] : A (G, ρ, zG) = 1

]
−Pr

[
(G, ρ)← Sample(1λ,G); z $← Zord(G) : A (G, ρ, zG) = 1

]
≤negl(λ)

Definition A.15 (e-fROOT w.r.t. Sample). The e-fractional root (e-fROOT) assumption
w.r.t. Sample holds for group G if for any PPT adversary A , there is a negligible function negl,
such that

Pr

(G, ρ)← Sample(1λ,G);(α, β, U)← A (G, G, ρ);
U ∈ G; 0 6= |α| < 2poly(λ) ∈ Z; |β| < 2poly(λ) ∈ Z :

βU = αG ∧ β
gcd(α,β) 6= ek for k ∈ N

 ≤ negl(λ)
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Definition A.16 (SI w.r.t. Sample). The subgroup indistinguishability (SI) assumption
w.r.t. Sample holds for group G if for any PPT adversary A , there is a negligible function negl,
such that

Pr

(G, ρ)← Sample(1λ,G);H0
$← G, H1

$← 〈G〉 ;
b $← {0, 1}, b′ ← A (G, G, ρ,Hb) :

b = b′

 ≤ 1
2 + negl(λ)

Definition A.17 (Hard (D, e,N)-relaxed DLOG-relation (w.r.t. Sample)). Let G be a group,
D, e,N ∈ N, and ~G = (G0, . . . , GN ) ∈ GN . The advantage Advrel-dlog

G,(D,e,N),A (λ) of A in the
advantage against hardness of (D, e,N)-relaxed DLOG-relation w.r.t. Sample, is defined as the
following probability:

Pr

 ∀i = 1, . . . , N : (Gi, ρi)← Sample(1λ,G)
(C, d,m0, . . . ,mN )← A (G, G0, ρ0, . . . , GN , ρN ) :

(C, d,m0, . . . ,mN ) ∈ RD,e,N (~G)

 .
We say that finding (D, e,N)-relaxed DLOG-relations w.r.t. Sample is hard, if for every PPT
adversary, there exists a negligible function negl such that Advrel-dlog

G,(D,e,N),A (λ) ≤ negl(λ).
(Note: We do not define hardness with subgroup setup, as this case does not occur.)

A.4. Zero-Knowledge Proofs of Knowledge
We define zero-knowledge with setup GenCRS, which generates a common reference string
(CRS) crs← GenCRS(pp). In this work, we only require an unstructured CRS, a.k.a. uniformly
(common) random string (URS), which in practice is easier to come by than a structured
reference string (SRS). Let R be a NP-relation over a set X defining a (pp-dependent) NP-
language L = {x ∈ X | ∃w : R(pp, x;w) = 1}. For simplicity, we suppress the dependency on
pp when it is clear. A proof system for L is a protocol between a prover P and verifier V. We
write tr ← 〈P(s),V(t)〉 for the transcript of an interaction where P (resp. V) has input s (resp.
t) and implicit inputs 1λ, pp, crs. We write b = 〈P(s),V(t)〉 for the verifier’s output b. A proof
system is public coin if the verifier’s messages are uniformly random and independent of the
prover’s messages, and the verifier outputs b = Verify(x, tr) for a PPT algorithm Verify.
Due to rejection sampling, our schemes have non-negligible correctness error.

Definition A.18 (Correctness). A proof system (GenCRS,P,V) for L has correctness error
γerr if for every adversary A

Pr

pp← GenPP(1λ); crs← GenCRS(pp);
(x,w)← A (pp, crs) :

〈P(pp, crs, x, w),V(pp, crs, x)〉 = 1

 ≥ 1− γerr(λ)

We call (GenCRS,P,V) correct if γerr = negl.
To separate (statistical) simulation and knowledge errors from hardness assumptions as

much as possible, we define zero-knowledge and knowledge extraction by means of adversary
advantages.
Definition A.19 ((Non-Abort) (S)HVZK). A simulator Sim for a public coin proof system
(GenCRS,P,V) for L is a PPT algorithm with input a statement x for which (pp, x, w) ∈ R and
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implicit inputs 1λ, pp, crs, and output a transcript tr . Let A be a stateful algorithm and let

RealA (λ) = Pr


pp← GenPP(1λ); crs← GenCRS(pp);

(x,w)← A (pp, crs);
tr ← 〈P(pp, crs, x, w),V(pp, crs, x)〉;
b← A (tr) : b ∧ R(pp, x;w) = 1


IdealA (λ) = Pr

 pp← GenPP(1λ); crs← GenCRS(pp);
(x,w)← A (pp, crs); tr ← Sim(pp, crs, x);

b← A (tr) : b ∧ R(pp, x;w) = 1


Define the advantage of A by Advhvzk

A ,P,V(λ) = RealA (λ)− IdealA (λ). Then Sim (and by extension
(GenCRS,P,V)) is honest verifier zero-knowledge with simulation error σerr = σerr(λ), if
for all PPT A there exists a negligible function negl such that Advhvzk

A ,P,V ≤ σerr + negl.
If Sim first samples all verifier challenges and then proceeds with the simulation, i.e. if Sim

could take the challenges as additional input, it is a special honest verifier zero-knowledge
(SHVZK) simulator.

The simulator is non-abort (S)HVZK, if it satisfies the weaker requirement, that simulated
transcripts and real non-aborting transcripts are indistinguishable. Formally, using the modified
RealA , where the transcript tr is replaced by ⊥ if the honest prover aborts, to define the
advantage Advna-hvzk

A ,P,V .
Remark A.20. Our protocols are only non-abort SHVZK. If “standard” (S)HVZK is needed,
it can be obtained via well-known transformations. For example, via committing to those
messages which, in case of failed masking, the simulator could not compute backwards. If
these messages have enough entropy, suitable hashing (which is collision resistant and hides
high-entropy preimages) suffices.
Definition A.21 (Knowledge Error). Let (GenCRS,P,V) be a public coin proof system for L .
Let Ext be an expected polynomial time oracle algorithm (with oracle steps counted as one step)
with implicit inputs 1λ, pp, crs. Let A be a probabilistic algorithm and P∗ be a deterministic
algorithm.

RealA (λ) = Pr

 pp← GenPP(1λ); crs← GenCRS(pp);
(x, s)← A (pp, crs);

tr ← 〈P∗(x, s),V(x)〉 : Verify(x, tr) = 1


IdealA (λ) = Pr

 pp← GenPP(1λ); crs← GenCRS(pp);
(x, s)← A (pp, crs); (tr , w)← ExtP∗(x,s) :

Verify(x, tr) = 1 ∧ R(pp, x;w) = 1


W.l.o.g. Ext sets w = ⊥ if Verify(x, tr) 6= 1. The advantage of (A ,P∗) is Advke

A ,P∗,V(λ) =
RealA (λ)− IdealA (λ). A proof system has knowledge error κerr, if for any PPT pair (A , P∗),
there exists a negligible function negl such that Advke

A ,P∗,V ≤ κerr + negl.
In practice, one wants not only knowledge soundness, but also the ability to continue the

simulation, which is called witness-extended emulation [Lin03; GI08]. Since all of our extractors
are black-box and obtain an initial transcript by emulating an honest verifier, they trivially have
perfect emulation by outputting that transcript (whether or not the extraction succeeds is a
different question, and must be separated if one wants to work with non-negligible knowledge
error).

The crucial components of our proof systems are either k-special sound, or similar techniques
are applied. That is, given k “related transcripts”, one can reconstruct a witness. The proof
systems are not always k-special sound in a strict sense. Indeed, SharpPo

SO is a 5-move protocol
(which does not satisfy the tree-of-transcripts generalization of special soundness either).
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Remark A.22 (Getting Related Transcripts). We can w.l.o.g. consider deterministic adversaries
for knowledge extraction (due to linearity of expectation). For these, it is well known how to
obtain related transcripts, in expected polynomial time. It is obvious for 3-move protocols: Just
rewind and try fresh challenges. In expected constant rewinds, a second accepting challenge
γ will be found. The probability that γ was not encountered before is at least 1/k (or 1 if
sampling without replacement). Since k = poly, k (distinct) transcript are found in expected
polynomial time. Thus, we can assume w.l.o.g. that we have k transcripts. For more moves,
similar arguments work, see e.g. [Boo+16; ACK21].

B. Further Remarks on Sharp’s Soundness
The Sharp family satisfies correctness for short integers x in Zp, while it guarantees relaxed
soundness, namely range membership of the rational representative [x]Q . Here, we discuss the
behaviour of rational representatives and the soundness guarantees of (the variants of) Sharp
from the perspective of possible use-cases.

B.1. Arithmetic Behaviour of QM,D

Let xi, c ∈ Zp for i ∈ [1, `]. The usual integer representatives xi behave very simply. Namely
additions x1 + x2 and multiplications with constant c · x1 (and general multiplications x1 · x2)
work on representatives as long as it is ensured that no wraparound happens, i.e. the result is
within [−p−1

2 , p−1
2 ]. For example, for ` additions

Z 3
∑̀
i=1

xi = (
∑̀
i=1

xi) mod p (B.1)

if `M < p/2 and each xi is bound by M , everything works well. Similar claims hold for
multiplications (with a constant c ∈ Z). If there is a bound B on the total sum of values xi,
eq. (B.1) holds if B < p/2 and independently of the total number of additions `.

B.1.1. Overflow Conditions for QM,D.

For rational representatives, overflows behaviour effectively boils down to computations with
fractions. Let xi ∈ Zp and let [xi]QM,D

= ni/di ∈ QM,D be the rational representative of xi
for i ∈ [1, `]. The sum x1 + x2 has rational representative (n1d2 + n2d1)/(d1d1) ∈ Q2MD,D2

and similarly for multiplications (with constants). Note that QM,D is “two-dimensional” in the
sense that M and D are independent (but must satisfy MD < p/2), If QM,D ⊆ QM ′,D′ then
representatives will coincide, but in general (e.g. if M < M ′ but D > D′) QM,D and QM ′,D′

representatives have no obvious relation. In analogy to the summation example (eq. (B.1)), we
can require xi ∈ QM,D for `MD2`−1 < p/2 in order for

∑̀
i=1

[xi]QM,D
= [(

∑̀
i=1

xi) mod p]QM′,D′ (B.2)

to hold in QM ′,D′ , where M ′ ≤ `MD`−1, D′ ≤ D`. Similar claims hold for multiplication.
Addition and multiplication of small integers c ∈ Z with |c| < C behaves well: c · x1 ∈ QCM,D.
Remark B.1. The potentially rapid growth of numerator and denominator under additions is
one of the main sources of trouble when using rational representatives and relaxed soundness
guarantees. Hence, they are less “friendly” in homomorphic operations on commitments.
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B.1.2. Overflow Conditions in Hidden Order Groups.

With groups of hidden order, we show that the denominator is of the form di = ek ≤ D, cf.
see appendix C. In particular, a sum x1 + x2 now lies in Q2MD,D, i.e. the maximal possible
denominator D is unchanged — we prevented the growth of D. The requirement for eq. (B.2)
to hold improves to `MD2. When we further know a bound B on the sum of all numerators,
the requirement becomes BD2 and is independent of `.

B.2. Remark on the Square Decomposition
We recall that the three square decomposition only shows relaxed range membership for fractions
(unless one rounds to integers [Cou+21a] or has prior knowledge (section 6.3)).

Lemma B.2 (Three Squares for Fractions). Let B ≥ 1, x ∈ Q and {xi}3i=1 ∈ Q such that
1 + 4x(B − x) = ∑3

i=1 x
2
i . It holds that x ∈ [− 1

4B , B + 1
4B ]Q.

To show exact range membership for fractions, we can use the four square decomposition.

Lemma B.3 (Four Squares for Fractions). Let B ≥ 1, x ∈ Q and {xi}i=1..4 ∈ Q and B ∈ N.
Further, let x(B − x) = ∑4

i=1 x
2. Then it holds that x ∈ [0, B]Q.

Both decompositions can be calculated efficiently [RS86; PS19]. As the four square decom-
position increases the communication (since we have to open an additional committed integer
x4), we present our range proofs using the three square decomposition. Replacing it with the
four square decomposition leads to range proofs that guarantee exact range membership for
the rational representative. Alternatively, if Γ < 4B is ensured (e.g. by, if necessary, trading
challenge size for repetitions), our soundness claims ensure that denominators d ≥ 4B violate
soundness, i.e. [0, B]QK′,Γ = [− 1

4B , B + 1
B ]Q ∩QK′,Γ.

C. Augmented Soundness
We show how to “augment” a range proof with one hidden order group element in order to
improve the soundness guarantee. The hidden order group can be instantiated with: (1) a class
group for better additive homomorphic guarantees (cf. appendix B.1.2) or (2) a RSA group for
standard soundness with trusted setup.

C.1. Proof of Short Opening
Both the simple PoSO used in SharpGS and the Batch-PoSO used in SharpPo

SO only ensure that
the (committed) values are short as fractions, i.e. lie in QM,D for suitable M and D. It is easy to
see, that these PoSOs also work over (commitments in) hidden order groups, as they are ignorant
of the group order. Importantly, hidden order groups allow to mitigate the problems with
homomorphic computations of fractions to some extent. Thus, we can achieve better soundness
guarantees. Namely, under the hardness of (Γ, e)-relaxed DLOG relations, denominators d of
an extracted witness x = m/d must be of the form d = ek, for k ∈ N0, i.e. the opening lies in
Z[1/e] instead of Q. In RSA groups, the hardness assumption is implied (with e = 1) by strong
RSA, assuming safe primes are used, and therefore x = m, i.e. x is an integer representative.
For class groups, the hardness assumption (with e = 2) is novel,15 and see that x = m/2k, i.e. a
dyadic integer.
15More precisely, we require a family of assumptions, which collapses to two assumptions when one assumes

invertible sampling. Moreover, we show the assumptions are closely related to the better understood 2-fROOT
and ORD assumptions. (See lemma A.13) Unfortunately, our reductions do not apply for groups without
invertible sampling. Thus, they cannot be used to provably justify security when using transparent setup.
However, it is still a heuristic justification of their hardness.
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We leverage this in our range proof by adding an additional commitment to x in the hidden
order group H, and proving consistency and small opening. For RSA groups, we get x ∈ Z and
hence standard soundness. For class groups, we get x = m

2k . Despite allowing a denominator,
this is a huge improvement over arbitrary rational representative, as homomorphic computation
now pose a much smaller threat, since the committed values are forced to lie in 1

2log(Γ)Z, which
is closed under addition (unlike Q∞,D for general D).

C.2. Augmented Range Proof
The modification to our schemes is surprisingly lightweight. It reuses the challenges of the
standard scheme and does not require repetitions. The only additional communication is the
commitment to x and the masked randomness required for the proof of short opening.
As additional setup, a Pedersen commitment key ckH = (G′i, ρi)Ni=0, where (G′i, ρi) ←

Sample(1λ,H), with hiding parameter S is required. (We explicitly include the public coins ρi in
the commitment key due to the lack of invertible sampling in class groups, cf. appendix A.3.1.
Note that the correspondence of G′i and ρi must be checked by the parties (once).) We mask
values in [0, S(Γ + 1)R] with masking algorithm mask′r, masking randomness distribution R′r,
masking overhead L′r and abort probability pr

′. As stated above, the main difference is, that
an additional MPed commitment C ′x to all xi using ckH is made (and sent by the prover), and
knowledge of opening of C ′x is proven. We first describe the more complex case of SharpGS.

C.2.1. Necessary Modifications to SharpGS.

We describe only the modifications of algorithm 1 (SharpGS) below, using the same variable
names as in SharpGS.

• The prover’s first flow (e.g. after line 12) is changed as follows: Additionally commit the
xi in H.
1. C ′x = r′xG

′
0 +∑N

i=1 xiG
′
i, where r′x $← [0, S].

Now, compute the first message of the proof of short opening in H.
2. Set r̃′x $← R′r and let x̃k,i be as in SharpGS.
3. Let x̃′i = ∑R

k=1(Γ + 1)k−1x̃k,i

4. Set D′x = r̃′xG
′
0 +∑N

i=1 x̃
′
iG
′
i

Modify the sent message as follows:
1. Add C ′x to the message.
2. With the hash optimization, add D′x to the list of hashed messages. (Without it, add
D′x to the message.)

• The verifier’s challenge is unmodified. Recall that γk ∈ [0,Γ] for k ∈ [1, R] are the
challenges.

• The provers’s response (e.g. after line 18) is changed as follows: Compute the “synthesized
challenge” γ′.
1. Set γ′ = ∑R

k=1 γk(Γ + 1)k−1 ∈ [0, (Γ + 1)R − 1].
Compute the masked opening randomness.
2. Set t′x = mask′r(γ′ · r′x, r̃′x).

Abort if any masking failed. Modify the sent message as follows: Add t′ to the message.
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• The verifier’s check (e.g. after line 8) is changed as follows. Let the “synthesized” challenge
and responses be:
1. γ′ = ∑R

k=1 γk(Γ + 1)k−1 ∈ [0, (Γ + 1)R − 1]
2. z′i = ∑R

k=1(Γ + 1)k−1 · zk,i
Add the following computations and checks:
3. Compute the “synthesized” γ′ and z′i for i ∈ [1, N ].
4. Compute F ′x = −γ′C ′x + t′x ·G′0 +∑N

i=1 z
′
i ·G′i

5. With the hash optimization, modify the check of ∆ by including F ′x in the list of
messages. (Without it, check F ′x = Dx.)

C.2.2. Necessary modifications to SharpPo
SO.

For SharpPo
SO, the analogous changes of SharpGS are applied to Phase 2. Since there are no

repetitions in Phase 2, no “synthesized” γ′ needed, hence γ′ = γ and [0, Γ̂] is used as challenge
space. We stress, that maskings which are shared with H (concretely, zi = maskx(γxi, x̃i))
must now be computed over Z (and not modulo p, since the group orders of H and Gcom are
“incompatible”).

C.2.3. Efficiency.

We consider the schemes with hash optimization applied. Then, compared to SharpGS (resp.
SharpPo

SO), the additional communication is a single element in H (namely C ′x), and the integer
t′x ∈ R′r. Additional computation for the prover’s is computing C ′x and D′x. For the verifier, it is
the computation of F ′x. Other changes are negligible.

C.2.4. Security.

Sharp+HO
GS is correct, non-abort SHVZK and provides a strengthened relaxed soundness guarantee.

Informally, the committed xi are guaranteed to have rational representatives in [− 1
4B , B + 1

4B ]Q,
where due to hardness of (Γ, e,N)-relaxed DLOG-relations in H, xi is of the form m/e` for
m ∈ [−2(BΓ + 1)L, 2(BΓ + 1)L], ` ≤ log(Γ). To deal with the lack of invertible sampling in
the class group setting, we consider an explicit sampling algorithm Sample for uniform group
elements, and hardness of assumptions w.r.t. Sample.

Theorem C.1. Let Sample be a sampling algorithm for G. The scheme Sharp+HO
GS has correctness

error at most 1−(1−pr
′)N [(1−pr)3·(1−px)N ]R. It is non-abort SHVZK under the SEI assumptions

on G and the SEI and the SI assumptions on H. Is has relaxed soundness for the relation

RExt =
{
(x1, . . . , xN , r) : Cx = rxG0 +

N∑
i=1

xiGi

∧ ∃mi ∈ Z, k ∈ N0 : − 1
4B ≤

mi

ek
≤ B + 1

4B
∧ xi ≡q

mi

ek
∧ |mi| ≤ (BΓ + 1)Lx ∧ 1 ≤ ek ≤ Γ

}
.

under the DLOG, SEI assumptions on G, and the DLOG, SEI, SI, assumption and hardness of
(Γ, e)-relaxed DLOG-relations in H, where all asumptions are all w.r.t. to Sample. The knowledge
error is ( 2

Γ+1)R. Concretely, with the hash-optimization, we have following reductions:

• For every adversary A against non-abort SHVZK, there are adversaries BG,SEI, BH,SEI,
BH,SI whose run-time is roughly that of A and so that Advna-hvzk

A ≤ Advsei
H,BGcom,SEI

+
Advsei

H,BH,SEI
+ Advsi

H,BH,SI
.
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• For every adversary A against knowledge which runs at most T steps, there are adver-
saries BCR, BG,DLOG, BH,DLOG, BH,SI, BH,relDLOG, whose expected run-time is roughly
3 · R · T , and so that Advke

A ≤ ( 2
Γ+1)R + Advcrhf

Hash,BCR
+ Advdlog

G,BG,DLOG
+ Advdlog

H,BH,DLOG
+

Advrel-dlog
H,(Γ,e,N),BH,relDLOG

.

To be precise, we consider the S-bounded SEI assumption in G and the S-bounded SEI assumption
in H.

The analogous adaption of theorem E.1 holds for Sharp+HO
PoSO, where the same additional terms

for reductions in H appear.

Correctness follows by inspection. The soundness follows essentially as for the unmodified
SharpGS (theorem E.1), except that hardness of (Γ, e)-relaxed DLOG-relations is used to ad-
ditionally argue that xi ∈ Z[1/e] as sketched in appendix C.1. Zero-knowledge follows almost
exactly as for SharpGS. The full proof is in appendix E.3.

D. Proofs for Shortness Testing
D.1. Proof of lemma 3.6
Proof. Define si := d ipd e for i = 0, . . . , d− 1. Observe that, by eq. (3.3),

si =
⌈
ip

d

⌉
= ip

d
+ ip mod d

d

and after multiplication by d,
dsi = ip+ (ip mod d).

This equality holds over Z. Modulo p, we find dsi ≡p (ip mod d). Since gcd(d, p) = 1, all
ip mod d are distinct, hence [0, d− 1] = Zd = {ip mod d | i ∈ [0, d− 1]}. Dividing by d (over
Zp), we find that

{s0, . . . , sd−1} ≡p {j/d ∈ Zp | j ∈ [0, d− 1]}

Thus, we have shown that the set Sd indeed consists of the si = d ipd e. The closest elements
to si are s(i+1 mod d) or s(i−1 mod d), and (since the space is “circular”) it suffices to consider the
distances s(i+1 mod d)− s(imod d) to lower-bound the minimal distance δ in Sd. For i = 0, . . . , d− 2,
we find ⌊

p

d

⌋
≤
⌈(i+ 1)p

d

⌉
−
⌈
ip

d

⌉
= si+1 − si ≤

⌈
p

d

⌉
as claimed. For i = d− 1, we find s0 − sd−1 ≡p p− sd−1, and since p =

⌈
dp
d

⌉
, the claim follows

as above. In fact, p− d (d−1)p
d e = bpdc, since d

(d−1)p
d e+ dpde = p+ 1 (since d - p).

D.2. Proof of lemma 3.7
Proof. First we show eq. (3.6). By lemma 3.6, the distance between points in Sd = { id mod p |
i ∈ [0, . . . , d−1]} is at least δ = bp/dc. Consequently, at most

⌈
K+1
δ

⌉
points can lie in an interval

with K + 1 elements, e.g. [0,K]Zp + µ, by a simple counting argument.
The next claim, eq. (3.7) follows by a simple direct analysis. Namely, u mod p is distributed

almost uniformly over [0, p− 1], in particular ρ(u/UZp) ≤ 2. Moreover, multiplication with 1/d
is a bijection modulo p since gcd(d, p) = 1, so UZp/d mod p is distributed as UZp . Consequently,
Pr[u/d ∈Zp [0,K]Zp ] ≤ ρ(u/UZp) · Pr[UZp ∈Zp [0,K]Zp ] ≤ 2K+1

p .
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Finally, eq. (3.8) follows by case distinction. Let K̂ := K+1. For d > p, it follows immediately
from eq. (3.7). For d < p/2, we get⌊

K̂

δ

⌋
=
⌊
K̂

bpdc

⌋
≤ K̂

bpdc
≤ K̂

p/d− 1 ≤ d ·
K̂

p− d
≤ d · 2(K + 1)

p

since p/d − 1 = (p − d)/d and p − d ≥ p/2. Using dK̂/δe ≤ 1 + bK̂/δc it follows that
1
ddK̂/δe ≤

1
d(1 + 2dK+1

p ). For p/2 < d < p, we have δ = bp/dc = 1 and 1/d < 2/p, hence
1
ddK̂/δe = K̂

d ≤ 2K+1
p .

D.3. Proof of lemma 3.8
Proof. Consider

Pr
[
u
a

b
∈Zp [0,K]Zp + µ+ Sd

]
≤Pr

[
ua ∈Zp [0, bK]Zp + µ′ + b · Sd

]
≤Pr

[
ua ∈Zp [0, bK]Zp + µ′ + Sd/b + [0, b− 1]

]
≤Pr

[
ua ∈Zp [0, b(K + 1)− 1]Zp + µ′ + Sd/b

]
where we used that µ′ = bµ, b · [0,K] ⊆ [0, bK], and b · Sd ⊆ Sd/b + [0, b− 1]. (The latter follows
since b · i/d = i/d′ where d′ = d/b, and i < d, so i/d′ = (i mod d′)/d′ + bi/d′c ∈ Sd/b + [0, b− 1].)
For brevity, define K ′ = b(K + 1)− 1.

Claim D.1. If u′a ∈Zp [0,K ′]Zp + µ′ + s′ for some choice u′ ∈ [0, D] and s′ ∈ Sd/b, then s′

is unique, i.e. there exists no other choice u′′ ∈ [0, D], s′′ ∈ Sd/b with s′ 6= s′′ and u′′a ∈Zp

[0,K ′]Zp + µ′ + s′′.

Proof. Suppose otherwise. Observe that ua ∈ [0, Da]. Hence the distance of u′′a and u′a is at
most Da, Considering the “slack” of [0,K ′], the points s′, s′′ ∈ Sd/b can therefore be as most
K ′+Da far apart. The minimal distance in Sd/b is bp/(d/b)c. However, by assumption (eq. (3.9))
K ′ +Da < bp/(d/b)c. Thus, s′ 6= s′′ must be too far from each other, which is a contradiction.

We have just shown that there is a at most one s′ ∈ Sd/b for which u′a ∈Zp [0,K ′]Zp + µ′ + s′

can happen. Thus, we find

Pr
[
ua ∈Zp [0,K ′]Zp + µ′ + Sd/b

]
≤ Pr

[
ua ∈Zp [0,K ′]Zp + µ′′

]
where µ′′ = µ′ + s′. But it is clear that at most d(K ′ + 1)/ae choices of u can lie in an the
interval with K ′ + 1 elements (since Da < p). With K ′ + 1 = b(K + 1), it follows that

Pr
[
ua ∈Zp [0,K ′]Zp + µ′′

]
≤
⌈
b(K + 1)

a

⌉ 1
D + 1 .

D.4. Proof of lemma 3.10
Lemma D.2. Suppose 1 6= d ∈ N and let ui be random variables in Zd = [0, . . . , d − 1] for
i = 1, . . . , N . Fix some arbitrary ai ∈ [0, d− 1] with lcm(a1, . . . , aN ) = d. Define

F : Zd → Zd, F (u1, . . . , uN ) =
N∑
i=1

ui · ai mod d (D.1)

There exist q1, . . . , qN ∈ N such that
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1. All qi are coprime.

2. qi | ordZd
(ai).

3. ∏N
i=1 qi = d.

Define Z = ∏N
i=1 Zqi and following homomorphisms:

• The projections πi : Zd → Zqi and the CRT map π : Zd → Z with π(x) = (π1(x), . . . , πN (x)).

• The injections ιi : Zqi → Zd defined by x 7→ αi ·xmod d, where αi := d
qi
·(( dqi

)−1 mod qi) ∈ Z,
and the combined injections ι : Z → ZNd as ι((x1, . . . xN )) = (ι1(x1), . . . , ιN (xN )).

• The CRT map φ : Z → Zd, φ((x1, . . . , xN )) = ∑N
i=1 ιi(xi) = ∑N

i=1 αixi.

Recall that π and φ are the bijections of the Chinese remainder theorem (CRT).
With this, we have:

4. Restricted to ι(Z), the map f : ι(Z)→ Zd, f = F |ι(Z) is an isomorphism.

5. For uniform (v1, . . . , vN ) $← Z, we find that

F (ι(v1, . . . , vN )) = f(v1, . . . , vN ) =
N∑
i=1

ιi(vi) · ai mod d

is uniform in Zd. Consequently, for uniform (u1, . . . , uN ) $← ι(Z) ≤ ZNd , also F (u1, . . . , uN )
is uniform in Zd.

The lemma is essentially an application of the Chinese remainder theorem (CRT) and some
standard computations. We provide a small example: Suppose N = 2 and d = 300 = 22 · 3 · 52,
a1 = 15 and a2 = 4. Then ordZd

(a1) = 300/15 = 22 · 5 and ordZd
(a2) = 300/20 = 3 · 52. Thus, let

q1 = 22 and q2 = 3 · 52 (i.e. gather the largest prime powers in the qi’s). Clearly, Z300 ∼= Z4×Z75
by the CRT. It’s easy to check the claims as well; they are almost directly implied by the CRT.

Proof. First, we show the existence of qi’s as claimed and some resulting properties. For this,
let hi = ordZd

(ai). Let hi = p
ei,1
1 · . . . pei,r

r for distinct primes pj and exponents ei,j ∈ N0. Define
q1 as the product of those pe1,j

j where e1,j is the maximal exponent (over all j = 1, . . . r). The
other qi are defined analogously. If for fixed fixed j, there are multiple i such that hi has the
maximal exponent ei,j for pj , then p

ei,j

j is part of (only!) the qi with the smallest index i. By
construction, q1, . . . , qN satisfy the required properties.
Conversely, the required properties enforce this structure, up to choices where for fixed j,

multiple indices i have the maximal prime power pei,j

i . This essentially follows from qis being
coprime, hence each prime (power) appears in at most one qi, and

∏d
i qi = d, hence each prime

(power) appears in at least one qi.
Lastly, note that from the abstract properties, we get (ai mod qi) ∈ Z×qi

. This can be seen
via the CRT: We have Zd = Zd/qi

× Zqi via the CRT, since gcd(qi, d/qi) = 1 by definition of qi.
Moreover, projecting ai to Zqi , ai is must be generator of Zqi (or qi - ordZd

(ai), a contradiction).
Now we turn to Item 4. By the CRT, we have Z = ∏N

i=1 Zqi
∼= Z∏

i
qi

= Zd, and the
isomorphism connecting Z and Zd are π and φ. Moreover,

F (ι(v1, . . . , vN )) =
N∑
i=1

ιi(vi) · ai =
N∑
i=1

αivi · ai =
N∑
i=1

vi ·
d

qi
a′i

where a′i = ai(( dqi
)−1 mod qi) by definition of αi. The order of d

qi
a′i = αiai in Zd is exactly qi

(since αi is invertible modulo qi). As Zd is cyclic, each subgroup is uniquely identified by its
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order, and we conclude that the image F (ι(0, . . . ,Zqi , 0, . . .)) is the subgroup of order qi in Zd.
Since ∏N

i=1 qi = d, these subgroups span Zd (again, by the CRT) and therefore f is surjective
(and hence, bijective since |Z| = |Zd|).

Lastly, item 5 follows immediately from f : Z → Zd being an isomorphism, so in particular a
bijection.

D.5. Proof of lemma 3.11
Proof. We assume w.l.o.g. that D ≥ 2, K ≥ 1, d > 1 and N > 1; the excluded cases are
straightforward. As a first step, we impose conditions on I, N and d.

Claim D.3. We can w.l.o.g. assume that I = {1, . . . , N} and that for any subset I ′ of I,
lcm(di′ | i′ ∈ I) < lcm(di | i ∈ I), that is, I is a minimal subset w.r.t. the least common multiple
d = lcm(di | i ∈ I).

Proof. First of all, we show that w.l.o.g. I = {1, . . . , N}. For this, note that
N∑
i=1

γi
mi

di
∈Zp [0,K]Zp + µ ⇐⇒

∑
i∈I

γi
mi

di
∈Zp [0,K]Zp + (µ−

∑
i 6∈I

γi
mi

di
)

︸ ︷︷ ︸
µ′

.

Thus, if the lemma holds only for the “partial-sum” I ⊆ {1, . . . , N}, it follows for the “complete
sum” over {1, . . . , N}, by conditional probability and using that the bounds in eq. (3.12) must
hold for arbitrary µ, in particular µ′ (by induction over the instance size N). Thus, w.l.o.g.
I = {1, . . . , N}.
Now, suppose removing some di, w.l.o.g. dN , does not affect the least common multiple, i.e.

lcm(di′ | i′ ∈ I \ {N}) = d. Then instead of I we could use I ′ = I \ {N}. By the above,
w.l.o.g. we can assume I ′ = {1, . . . , N} again. Overall, we can assume “minimality” of I and
N = |I|.

Since w.l.o.g. I = {1, . . . , N}, from now on we will mostly ignore the index set I.
Before diving into the proof, recall that

a

b
= a mod b

b
+
⌊
a

b

⌋
. (D.2)

Let d = lcm({di | i ∈ I}) as in the claim. To motivate our approach, we first rewrite eq. (3.11)
with common denominator d and apply eq. (D.2) to find

Pr
[
S ∈ [0,K]Zp + µ

]
= Pr

[
N∑
i=1

γi ·
mi

di
∈Zp [0,K]Zp + µ

]

= Pr
[

1
d

(
N∑
i=1

γi ·mi
d

di

)
∈Zp [0,K]Zp + µ

]

= Pr
[

1
d

((
N∑
i=1

γi ·mi
d

di

)
mod d

)
+
⌊
N∑
i=1

γimi
1
di

⌋
∈Zp [0,K]Zp + µ

]
Observe that we now have a sum modulo d and are almost in the situation of lemma D.2, which
in turn would allow us to apply lemma 3.7. But ∑N

i=1 γi ·mi
d
di

mod d need not be uniform
modulo d, and b∑N

i=1 γimi
1
di
c is a stochastically dependent “error term”. Thus, we will change

the distribution of the γi in a suitable manner to obtain two independent sums.
For better tightness, we use the distribution suggested by lemma D.2. Let qi be as in lemma D.2.

Together with claim D.3, we get the following properties.
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Claim D.4. We have that all qi are coprime, qi > 1 for all i, ∏N
i=1 qi = d, qi | ordZd

(mid/di) |
di | d, and N ≤ primlmin(D + 1).

Proof. Directly from lemma D.2, we see that all qi are coprime, qi | ordZd
(mid/di), and

∏N
i=1 qi =

d. The divisibility chain is completed via ordZd
(mid/di) | ordZd

(d/di) = di | d. To see qi > 1,
suppose to the contrary that some qj = 1. Then ∏i 6=j qi = d = lcm({di}i 6=j). But this contradicts
the minimality of the index set I (and N) which we established w.l.o.g. in claim D.3.
To see N ≤ primlmin(D + 1), observe that each qi contributes different prime factors, and

therefore priml(k) = ∏k
i=1 pi ≤

∏k
i=1 qi = d, where pi denotes the i-th prime number. Hence, if

priml(k) ≥ D + 1, then d > D, and therefore k ≤ primlmin(D + 1).

Claim D.4 explains why β = min(|I|, primlmin(D + 1)) is used in lemma 3.11, because in
lemma 3.11 no assumptions on “minimality” of I (and N) were made (in particular N >
primlmin(D + 1) is possible).
Now, we change the distribution which we consider from γi

$← [0, D] to γ′i $← [0, qid(D +
1)/qie − 1]. (Observe that qid(D + 1)/qie ≥ D + 1 is the smallest multiple of qi which is larger
or equal to D + 1, and γ′i mod qi is uniformly distributed.)

To simplify notation, let D̂ := D + 1, i.e. D̂ is the cardinality of [0, D]. One quickly computes

ρ(γi/γ′i) = 1
D̂
·
(

1
qidD̂/qie

)−1

= qidD̂/qie
D̂

≤ 1 + qi − 1
D̂

where we use that
0 ≤ qidD̂/qie − D̂ = (D̂ mod qi) ≤ qi − 1.

Observe that we can sample and write γ′i $← [0, qid(D + 1)/qie − 1] as

γ′ = ui + qivi where ui
$← [0, qi − 1], vi

$← [0, dD̂/qie − 1].

For future reference, we record the following definitions and facts.

Claim D.5. Let ui $← [0, qi − 1], vi $← [0, dD̂/qie − 1] with qi as above. Define

Su :=
N∑
i=1

uimi
d

di
and Sv :=

N∑
i=1

vimi
qi
di

(D.3)

Then Su mod d is uniform in Zd.

Proof. The claim is immediate by lemma D.2 (and definition of qi, ui).

Now, let

ρ := ρ((γ1, . . . , γN )/(γ′1, . . . , γ′N )) ≤
N∏
i=1

(1 + qi − 1
D̂

) (D.4)

Claim D.6. It holds that ρ ≤ 4.

Proof. As claim D.6 follows from unrelated technical computations, we prove this separately
in lemma D.10, which only needs the following constraints, already observed in (the proof of)
claim D.4,

• 1 < qi ≤ D for all i = 1, . . . , N .

• ∏N
i=1 qi < D2 and for all subset products over I ′ ( {1, . . . , N} it holds that ∏i∈I′ qi ≤ D.
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Now that notation and setup are in place, we turn to the following central claim.

Claim D.7. It holds that

Pr
[
S ∈ [0,K]Zp + µ

]
≤ ρ · Pr

[1
d

(Su mod d) + Sv ∈Zp [0,K ′]Zp + µ′
]

where
K ′ = K + 2βM and µ′ = µ− βM, (D.5)

for β = min(N, primlmin(D + 1)).

Proof. From our definition of γ′i and eq. (D.4), we get

Pr
[
S ∈ [0,K]Zp + µ

]
= Pr

[
N∑
i=1

γi ·
mi

di
∈Zp [0,K]Zp + µ

]

≤ ρ · Pr
[
N∑
i=1

γ′i ·
mi

di
∈Zp [0,K]Zp + µ

]

= ρ · Pr
[
N∑
i=1

(ui + qivi) ·
mi

di
∈Zp [0,K]Zp + µ

]

= ρ · Pr
[1
d
Su + Sv ∈Zp [0,K]Zp + µ

]
(D.6)

where we first use the properties of ρ(·/·) to replace γi by γ′i, then we use γ′i = ui + qivi and
rewrite the sum. As usual (by eq. (D.2)), we have

1
d
Su = 1

d
(Su mod d) +

⌊
Su
d

⌋

= 1
d

(
N∑
i=1

ui ·mi
d

di
mod d

)
+
⌊
N∑
i=1

ui ·mi
1
di

⌋
.

We first derive a bound for
⌊
Su
d

⌋
. Note that

⌊
N∑
i=1

ui ·mi
1
di

⌋
≤
⌊
N∑
i=1

mi
qi − 1
di

⌋
≤
⌊
M ·

N∑
i=1

qi − 1
di

⌋
≤
⌈
N∑
i=1

qi − 1
di

⌉
·M

where α = d∑N
i=1

qi−1
di
e ≤ N , since (qi − 1)/di < 1 by choice of qi (namely, qi | di). Analogously,

⌊
N∑
i=1

ui ·mi
1
di

⌋
≥
⌊
−M ·

N∑
i=1

qi − 1
di

⌋
≥ −

⌈
N∑
i=1

qi − 1
di

⌉
·M

hence −αM is a lower bound. Thus, we find
⌊
Su
d

⌋
=
⌊
N∑
i=1

ui ·mi
1
di

⌋
∈ [−αM,αM ]. (D.7)

That is, the possible values of the sum lie in the interval [−αM,αM ] = [0, 2αM ] − αM .
Note that, by claim D.4 and our simplifying assumptions on N and I in claim D.3, α ≤
min(N, primlmin(D + 1)) = β holds.
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Now, we can continue eq. (D.6) with

ρ · Pr
[1
d
Su + Sv ∈Zp [0,K]Zp + µ

]
= ρ · Pr

[1
d

(Su mod d) +
⌊
Su
d

⌋
+ Sv ∈Zp [0,K]Zp + µ

]
≤ ρ · Pr

[1
d

(Su mod d) + Sv ∈Zp [0,K ′]Zp + µ′
]

where we first used eq. (D.2) as usual, and then eq. (D.7), as well as the definition K ′ = K+2βM
and µ′ = µ− βM . This proves claim D.7.

We are now in a position to prove lemma 3.11. We first show eq. (3.12) of lemma 3.11.

Claim D.8. It holds that

Pr
[
S ∈ [0,K]Zp + µ

]
≤ ρ ·

{1
d if d(K ′ + 1) < p
1
d + 2K′+1

p always

From claim D.8 the first claim of the core lemma, eq. (3.12), follows using ρ ≤ 4 from claim D.6.

Proof. Using claim D.7, it suffices to prove that

ε := Pr
[1
d

(Su mod d) + Sv ∈Zp [0,K ′]Zp + µ′
]
≤ 1
d

+ 2K
′ + 1
p

and ε ≤ 1/d if d(K ′ + 1) < p.
Since by construction, ui and vi are stochastically independent, we find

ε ≤
∑
t∈Zp

Pr
[1
d

(Su mod d) ∈Zp [0,K ′]Zp + µ′ − t
]
· Pr[Sv ≡p t].

Now, recall that Su mod d is uniformly distributed in Zd (cf. claim D.5), indeed, this was the
reason for switching from γi to γ′i. Thus,

Pr
[1
d
Su ∈Zp [0,K ′]Zp + z′

]
= Pr

[1
d
· UZd

∈Zp [0,K ′]Zp + z′
]
≤ 1
d

+ 2K
′ + 1
p

where z′ = µ′ − t and the inequality follows from lemma 3.7. Hence,

ε ≤
∑
t∈Zp

1
d
· Pr[Sv ≡p t] = 1

d
+ 2K

′ + 1
p

and this part of the claim follows. Moreover, by eq. (3.6) of lemma 3.7, if d(K ′ + 1)/bp/dce ≤ 1,
then ε ≤ 1/d (by the same argument). Since bxc ≤ x, we can simplify to d(K ′ + 1)/bp/dce ≤
dd(K ′ + 1)/pe ≤ 1, and thus, d(K ′ + 1)/p ≤ 1, as claimed.

Finally, we turn to proving eq. (3.13) of lemma 3.11.

Claim D.9. Suppose d ≤ D and there is some i∗ such that dmi∗/di∗ > K ′ = K + 2βM . Then

Pr
[
S ∈Zp [0,K]Zp + µ

]
≤ 8
D + 1 .
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Proof. Again, we continue from claim D.7 and use independence of the uis and vis to find

Pr
[1
d

(Su mod d) + Sv ∈Zp [0,K ′]Zp + µ′
]

=
∑
t∈Sd

Pr
[1
d

(Su mod d) = t

]
· Pr

[
Sv ∈Zp [0,K ′]Zp + µ′ − t

]
= 1
d

∑
t∈Sd

Pr
[
Sv ∈Zp [0,K ′]Zp + µ′ − t

]
where Sd = {i/d mod p | i ∈ [0, d− 1]} ⊆ Zp. In the last equality, we use again that Su mod d is
uniform in Zd by claim D.5. Using the independence of the vi’s we further condition on all but
i∗, and find

1
d

∑
t∈Sd

Pr
[
Sv ∈ [0,K ′]Zp + µ′ − t

]
= 1
d

∑
t∈Sd

Pr
[
N∑
i=1

vi ·mi
qi
di
∈ [0,K ′]Zp + µ′ − t

]

=
∑
y∈Zp

(
Pr
[∑
i 6=i∗

vi ·mi
qi
di

= y

]
·

1
d

∑
t∈Sd

Pr
[
vi∗ ·mi∗

qi∗

di∗
∈ [0,K ′] + µ′ − t− y

]
︸ ︷︷ ︸

(?)

)
(D.8)

To improve readability, we abbreviate terms with index i∗ as v∗, m∗, etc. Now, we want to apply
lemma 3.8 to (?), where a =̂ q∗ · |m∗| and b =̂ d∗, and D =̂ d(D + 1)/q∗e − 1, and K =̂ K ′ and
µ =̂ µ′ − y. First, observe that the requirement

(K + 1) +D
a

b
<

1
b
·
⌊
p

d/b

⌋
of lemma 3.8 is satisfied when the corresponding variables are inserted (by our premise on
K,N,D, p). Namely, since 1

b · b
p
d/bc ≤

p
d −

1
b and 1

b ≤ 1, it suffices to see 2 +K +D a
b ≤

p
d . With

d ≤ D, ab ≤ M we arrive at D(K ′ +DM + 2) < p, which holds by assumption. Thus, by the
conclusion of lemma 3.8, we find

1
d
·
∑
t∈Sd

Pr
[
v∗ ·m∗ q

∗

d∗
∈ [0,K ′] + µ′ − t− y

]

≤1
d
·
⌈
d∗(K ′ + 1)
m∗q∗

⌉ 1
d(D + 1)/q∗e .

Since, by assumption dm∗/d∗ < K ′, one can check that16

1
d

⌈
d∗(K ′ + 1)
m∗q∗

⌉ 1
d(D + 1)/q∗e ≤

q∗

d + d∗(K′+1)
dm∗

D + 1 ≤ 2
D + 1 .

16Let A = 1
d
d d∗(K′+1)

m∗q∗ e. Let B = 1/d(D + 1)/q∗e. We have to show A/B ≤ 2/(D + 1). First, note that
B ≤ q∗/(D + 1) since 1/dxe ≤ 1/x. Using dxe ≤ x + 1 in A, we find A/B ≤ 1

D+1 ( d∗(K′+1)
dm∗ + q∗

d
). Using

q∗ | d∗ | d and d∗ 6= d (since N > 1), we know q∗

d
≤ d∗

d
≤ 1

2 . Moreover, since dm∗/d∗ < K′, i.e.
dm∗/d∗ ≤ K′ + 1, holds by assumption, we find dm∗ ≤ d∗(K′ + 1) and hence d∗(K′+1)

dm∗ ≤ 1. All in all,
A/B ≤ (1 + 1

2 )/(D + 1) ≤ 2/(D + 1).
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Plugging that bound back into eq. (D.8), we obtain

1
d

∑
t∈Sd

Pr
[
Sv ∈ [0,K ′]Zp + µ′ − t

]
≤ 2
D + 1

and the claim follows since

Pr
[
S ∈ [µ, µ+K]Zp

]
≤ ρ · 1

d

∑
t∈Sd

Pr[Sv = t] ≤ 8
D + 1 .

This finishes the proof of claim D.9, and hence of the lemma 3.11.

Lemma D.10. Let D,N ∈ N and qi ∈ N with 2 ≤ qi ≤ D for i = 1, . . . , N . Suppose that∏N
i=1 qi < D2, that q1 ≥ . . . ≥ qN , and that any subset product is at most D. Then

N∏
i=1

(1 + qi − 1
D + 1) ≤

N∏
i=1

(1 + qi
D

) ≤ 4

Unfortunately, we cannot provide much intuition for lemma D.10 besides a proof overview:
Namely, either N = 2, in which case the claim holds since 1 + qi/D ≤ 2. Or N > 2. In that
case, ∏N

i=2 qi ≤ D and q2 ≤
√
D (since q1 ≥ q2), by the “subset product premise”. From this, it

is easy to show that ∏N
i=2(1 + qi

D ) ≤ 2 holds for “big enough” D (namely D > 4). The remaining
cases (namely D ≤ 4) are checked exhaustively.

Proof. We start with a simpler claim.

Claim D.11. Let a ≥ b ≥ 1 and τ = ab. Let a′ ≥ b′ ≥ 1 with a′ > a and a′b′ = τ . Then

(1 + a/D)(1 + b/D) ≤ (1 + a′/D)(1 + b′/D). (D.9)

Proof. This follows by multiplying out both sides, subtracting the common term 1 + τ/D2 on
both sides, and multiplying with D to obtain the equivalent condition a + b ≤ a′ + b′. Using
ab = a′b′ = τ , this becomes

a+ τ/a ≤ a′ + τ/a′

and for f(x) = x+ τ/x it is readily seen that f is monotonely increasing on domain [
√
τ ,∞).

Thus, the claim follows from a′ > a and a ≥
√
τ (which holds since ab = τ and a ≥ b).

The claim extends to products ∏N
i=1(1 + ai

D ) in the following manner: Consider (a1, . . . , aN )
with a1 ≥ . . . ≥ aN ≥ 1 and ∏N

i=1 ai = τ and (a′1, . . . , a′N ) with analogous constraints. Suppose
that (ai)i and (a′i)i differ only in components j1 and j2 with j1 < j2, and that aj1 < a′j1 . Then∏N
i=1(1 + ai/D) < ∏N

i=1(1 + a′i
D ) by claim D.11.

As a simple consequence, to maximize a product of the form ∏N
i=1(1 + ai/D) with constraints

ai ∈ [2,M ]R and ∏N
i=1 ai = τ , one must use a (permutation of) (M, . . . , τ/(2N−`−1M `), 2, . . . , 2),

where ` is maximal.
Now, we return to prove the lemma. Let τ = ∏N

i=1 qi and note that the product ∏N
i=1(1 + qi

D )
is maximized by maximizing q1 and q2 (due to qi ≤ D and q1q2 ≤ τ < D2).

It is useful to deal with following special case first:

Claim D.12. Suppose that D ≥ 5, q1 ≤
√
D and ∏N

i=1 qi ≤ D. Then ∏N
i=1(1 + qi

D ) ≤ 2.
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Proof. The claim evidently holds for N = 1. It also holds for N = 2. Indeed, for N = 2 and any
(fixed) q1 ≥ q2, settingD = q1q2 is the worst case. For this, one obtains (1+ q1

D )(1+ q2
D ) = q1+1

q1
q2+1
q2

,
and for D ≥ 5, this is at most 2.17 The claim also holds for arbitrary N if 5 ≤ D ≤ 15.18 Thus,
suppose D ≥ 16 and N ≥ 3. By the discussion after claim D.11, we find

N∏
i=1

(1 + qi
D

) ≤
(

1 +
√
D

D

)
·
(

1 +
√
D/2N−2

D

)
·
(

1 + 2
D

)N−2

≤
(

1 + 3/2
√
D + 1
D

)
·
(

1 + 2
D

)N−2

where we maximized q1 and q2 (over R) under the constraints that qi ≥ 2 and ∏N
i=1 qi ≤ D and

q1 ≤
√
D for all i. From (1 + x/k)k ≤ ex for x ≥ 0, k ∈ N, we find

(
1 + 2

D

)N−2
=
((

1 + 2
D

)D)(N−2)/D

≤ e2(N−2)/D.

From, D ≥ ∏N
i=1 qi ≥ 2N , we get N ≤ log(D), and thus 2(N − 2)/D ≤ 2(log(D) − 2)/D.

Moreover, f(x) = 2(log(x)− 2)/x is maximized at x = 4e ≤ 11, with f(4e) / 0.2654 we find

e2(N−2)/D ≤ e2(log(D)−2)/D ≤ e0.2654 ≤ 4/3.

Furthermore (1 + 3/2
√
D+1
D ) is monotonely decreasing, hence (1 + 3/2

√
D+1
D ) ≤ 1 + 7

16 for D ≥ 16.
Thus, for D ≥ 16, we find

N∏
i=1

(1 + qi
D

) ≤
(

1 + 7
16

)
· 4/3 < 2

This proves claim D.12.

Now, we prove the lemma by case distinction. First, note that it is easily verified for D ≤ 4,
so we can make use of claim D.12 in the following. Since (1 + q1/D) ≤ 2 for any q1, we only need
to show that ρ′ = ∏N

i=2(1 + qi/D) ≤ 2. Moreover, we know, by the premise on subset products,
that ∏N

i=2 qi ≤ D.

• Case: q2 ≤
√
D. Then claim D.12 applies to q2, . . . , qN and yields ρ′ ≤ 2.

• Case: q2 >
√
D. Then q1q2 > D, so N = 2, and ρ′ ≤ (1 + q2/D) ≤ 2.

This completes the proof.

D.6. Proof of theorem 3.3
Proof. Let ~x ∈ ZNp and µ ∈ Zp. We have to show that if ~x is not uniformly (K ′, D)-short, i.e.
if there is no d ∈ [1, D] with d~x ∈ [−K ′,K ′]NZp

, then Pr
[
µ+∑N

i=1 xiγi ∈ [0,K]Zp

]
≤ 8/(D + 1).

Since this must hold for all µ, in particular −µ, it is equivalent to show

Pr
[ N∑
i=1

xiγi ∈ [0,K]Zp + µ
]
≤ 8/(D + 1).

17The claim does not hold for D = 4, as (1 + 2/4)2 = 9/4. Since D = 5 is prime, only q1 = 5, q2 = 1 is
possible, but this violates q2 ≥ 2, so there is nothing to check. For D = 6, choosing q1 = 3, q2 = 2 yields
(1 + q1

D
)(1 + q2

D
) = 2. Moreover, q1+1

q1
q2+1

q2
only decreases for larger q1 or q2, so the claim holds for q1q2 > 6

(with q1, q2 ≥ 2) as well.
18Cases with 2 terms were already covered. Cases with more terms, i.e., N = 3, still work and are most easily

checked programmatically. Cases with 4 or more terms are irrelevant since 24 = 16 already exceeds 15.
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We derive this inequality from the core lemma (lemma 3.11). But in order to apply lemma 3.11,
we need that all xi are of the form xi ≡p mi

di
with |mi| ≤ M for suitable M . We choose

M = K, so we have to show xi ∈ QK,D. Thus, we make a case distinction, based on following
observation: Consider any fixed choice of x1, . . . xN ∈ Zp. Suppose there are two distinct
challenges (γ1, . . . , γN ), (γ′1, . . . , γ′N ) which are accepting and differ only in the i-th component, i.e.
γj = γ′j except for j = i∗, and w.l.o.g. γi∗ > γ′i∗ . Let ζ ≡p

∑N
i=1 xiγi and ζ ′ ≡p

∑N
i=1 xiγ

′
i. Then

ζ − ζ ′ ≡p
∑
i=1 xi(γi − γ′i) ≡p xi(γi∗ − γ′i∗). Thus xi∗ ≡p

ζ−ζ′
γi∗−γ′i∗

∈ QK,D, since ζ − ζ ′ ∈ [−K,K]
and γi∗ − γ′i∗ ∈ [0, D]. Now, we distinguish two cases.
Case 1: For every i∗ there exist two accepting (γj)j 6= (γ′j)j which differ only in the i∗-th

component. In that case, we argued above that xi ∈ QK,D for every i. Thus, lemma 3.11 is
applicable with M =̂ K and D. Moreover, we use that D(K ′+DM + 2) = D(K ′+DK+ 2) < p,
which is a premise of theorem 3.3 (and also implies D · (K + 2βM) = D · (1 + 2β)K < p).
The claim then follows from lemma 3.11. (By choice of the index set I in lemma 3.11, either
the common denominator d of the xis satisfies D < d < D2, in which case eq. (3.12) and
D2(K ′+ 1) < p implies an error of at most 4/(D+ 1), or d ≤ D, in which case eq. (3.13) implies
an error of at most 8/(D + 1).)
Case 2: The opposite of Case 1, i.e. there exists some i∗ for which no two accepting

(γj)j 6= (γ′j)j which differ only in the i∗-th component exist. Then Pr[∑i 6=i∗ cixi + γi∗xi∗ ∈
[0,K] + µ] ≤ 1/(D + 1) for any choice ci ∈ [0, D] for i 6= i∗. Thus, we get

Pr
[∑
i 6=i∗

γixi + γi∗xi∗ ∈ [0,K] + µ
]

=
∑

ci∈[0,D],i 6=i∗
Pr[∀i 6= i∗ : γi = ci] · Pr

[∑
i 6=i∗

cixi + γi∗xi∗ ∈ [0,K] + µ
]

≤
∑

ci∈[0,D],i 6=i∗

( 1
D + 1

)N−1
· 1
D + 1

= 1
D + 1

Thus, the probability ε that the test (falsely) accepts satisfies ε ≤ 1/(D + 1). The claim
follows.

Remark D.13 (Compressing the challenge). The verifier’s challenge in RAST is relatively large,
but it can be compressed. A direct reduction shows that replacing the challenge ~γ $← [0, D]N
by ~γ = PRG(s) for s $← {0, 1}λ, where PRG is a pseudo-random generator, ensures that the
soundness error increases only by a negligible amount (assuming PRG is secure). And now, the
verifier could send s instead, as a compressed version of ~γ = PRG(s). As the security of RAST is
a combinatorial property, it is an interesting question to find small (structured) challenge spaces
which are unconditionally secure.

E. Security Reductions
E.1. Security Proof of SharpGS

In the following theorem, we show that SharpGS is secure.

Theorem E.1. The scheme SharpGS has correctness error at most 1− [(1− pr)3 · (1− px)4N ]R.
It is non-abort SHVZK under the SEI assumption. Suppose now that 2(BΓ2 + 1)L < p and
18K2 < q with K = (BΓ + 1)L. Then it has relaxed soundness under the DLOG and SEI
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assumptions in Gcom and G3sq with knowledge error ( 2
Γ+1)R for the relation

RExt =
{
(x1, . . . , xN , r) : Cx = rxG0 +

N∑
i=1

xiGi

∧ ∃mi, d ∈ Z : xi ≡q
mi

d
∧ − 1

4B ≤
mi

d
≤ B + 1

4B
∧ |mi| ≤ (BΓ + 1)Lx ∧ 1 ≤ d ≤ Γ

}
.

Concretely, with the hash-optimization, we have following reductions:

• For every adversary A against non-abort SHVZK, there are adversaries BGcom , BG3sq whose
run-time is roughly that of A and so that Advna-hvzk

A ≤ Advsei
Gcom,BGcom

+R · Advsei
G3sq,BG3sq

.

• For every adversary A against knowledge which runs at most T steps, there are adversaries
BCR, BGcom, BG3sq whose expected run-time is bounded roughly by 3 ·R · T , and so that
Advke

A ≤ ( 2
Γ+1)R + Advcrhf

Hash,BCR
+ Advdlog

Gcom,BGcom
+ Advdlog

G3sq,BG3sq
.

• For witness relation RExt ∨ RGcom
Bind ∨ RG3sq

Bind ∨ RColl, where RGBind is a binding-break relation in
group G (i.e. a non-trivial DLOG relation), and RColl is a non-trivial collision for Hash,
the knowledge error is ( 2

Γ+1)R.

To be precise, we consider the S-bounded SEI assumption in Gcom and G3sq.

Proof. Throughout this proof, we have i ∈ [1, N ], j ∈ [1, 3], k ∈ [1, R].

Correctness. As xi, yi,j ∈ [0, B] and γk ∈ [1,Γ], we have zk,i, zk,i,j ∈ [0, (BΓ + 1)Lx] (see
section 2.5), unless masking aborts. The second check of the verifier succeeds due to the
homomorphic properties of MPed and the fact that fk,i = γk · x∗k,i +m∗k,i by construction.

Honest-verifier zero-knowledge. We define a simulator for valid transcripts as follows. On
input of the public parameters and the statement (Cx, B), the simulator Sim proceeds as follows:

• Sample γk $← [0,Γ]

• Set Cy := ryG0 for ry $← [0, S]

• Set Ck,∗ := r∗kH0 for r∗k $← [0, S]

• Set zk,i = maskx(0, x̃k,i) and zk,i,j = maskx(0, ỹk,i,j) for x̃k,i, ỹk,i,j $← Rx

• Set tk,x = maskr(0, r̃k,x), tk,y = maskr(0, r̃k,y) and t∗k = maskr(0, r̃∗k) for r̃k,x, r̃k,y, r̃∗k $← Rr

• If any masking failed, then abort, i.e. output ⊥.

• ComputeDk,x = −γkCx+tk,xG0+∑N
i=1 zk,iGi andDk,y = −γkCy+tk,yG0+∑N

i=1
∑3
j=1 zk,i,jGi,j

• Compute f∗k,i = 4zk,i(γkB − zk,i) + γ2
k −

∑3
j=1 z

2
k,i,j

• Compute Dk,∗ = −γkC∗,k + t∗kH0 +∑N
i=1 f

∗
k,iHi

• Set ∆ = Hash({Dk,x, Dk,y, Dk,∗}Rk=1)

• Output ∆, Cy, Ck,∗, γk, zk,i, zk,i,j , tk,x, tk,y, tk,∗
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It is easy to check that the output of Sim is indistinguishable from non-aborting real transcripts.
We do so in game hops.

Game 1: Output a transcript tr from an interaction of an honest verifier and prover from the
definition of SharpGS. If the transcript is aborting, output ⊥ instead.

Game 2: Act as in game 1 but instead of computing Dk,x, Dk,y and Dk,∗ as in the real protocol,
compute them as Sim. A quick computation shows that game 1 and game 2 are perfectly
indistinguishable.
Game 3: Act as in game 2 but instead of sampling zk,i, zk,i,j , tk,x, tk,y, tk,∗ as in the real

protocol, sample them as Sim, i.e. via mask(0, ·). The games game 2 and game 3 are statistically
indistinguishable. Namely, their statistical distance is bounded by RN(1 + 3)εx +Rεr, where the
masking errors εx and εr correspond to the masking schemes maskx and maskr (see section 2.5).
Due to uniform rejection sampling, εx = εr = 0. (Note that, if, say zk,i = ⊥ we cannot define
the corresponding Dk,x. This is not a problem, since we consider non-abort SHVZK, hence a
transcript where zk,i = ⊥ is replaced by ⊥, both in game 2 and 3.)

Game 4: Instead of computing the commitments Cy, Ck,∗ as in the real protocol, compute them
as Sim. Game 3 and game 4 are indistinguishable under the hiding property of the commitment
scheme. More precisely, the we need 1 reduction to the SEI assumption in Gcom for Cy, and R
in G3sq for Ck,∗.
As the output of game 4 is equal to the output of Sim, SharpGS is non-abort SHVZK.

Soundness. We assume that we are given a number of accepting related transcripts, and first
show the statement for a single repetition, i.e. R = 1. After that, we discuss how repetitions
change the security proofs and how to obtain the transcripts. For readability, we omit k
(denoting the current repetition) in the following as index from the transcripts. Assume
that a PPT adversary can interactively produce three valid transcripts tr , tr ′, tr ′′ with fixed
first message ∆, Cy, C∗, and distinct challenges γ, γ′, γ′′ and masked terms [zi, zi,j , tx, ty, t∗],
[z′i, z′i,j , t′x, t′y, t′∗] and [z′′i , z′′i,j , t′′x, t′′y, t′′∗]. We define Fx, F ′x, F ′′x as in the verification, similarly
for Fy, F∗, f∗i . We denote by X and X the differences X ′ − X and X ′′ − X respectively
for X ∈ [γk, zi, zi,j , tx, ty, t∗, Fx, Fy, F∗, fi]. Without loss of generality, γ, γ > 0. Note that
p = ord(Gcom) and q = ord(G3sq).
Step 1 – Opening the Commitments: First, we extract openings of Cx, Cy, C∗. By collision

resistance of Hash, we have Dx := Fx = F ′x = F ′′x . Further, the check of the verifier guarantees:

Dx = −γCx + txG0 +
∑

i∈[1,N ]
ziGi

= −γ′Cx + t′xG0 +
∑

i∈[1,N ]
z′iGi

Rearranging this equation leads to the following equality:

γCx = txG0 +
∑

i∈[1,N ]
ziGi

=⇒ Cx = tx/γG0 +
∑

i∈[1,N ]
zi/γGi.

Thus, Cx commits to values xi ≡p zi/γ ∈ Zp. With the same calculation, we can show that
xi ≡p zi/γ. Note that xi is well defined as MPed is binding. (We reduce to DLOG in Gcom and
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G3sq for binding.19) Similarly, we find openings for the remaining commitments

Cy = ty/γG0 +
∑

i∈[1,N ],j∈[1,3]
zi,j/γGi,j and

C∗ = t∗/γH0 +
∑

i∈[1,N ]
f∗i /γHi.

So Cy commits to values yi,j ≡p zi,j/γ ≡p zi,j/γ ∈ Zp and C∗ to x∗ ≡q f∗i /γ ≡q f∗i /γ ∈ Zq.
Step 2 – Decomposition: We now show that the three-square decomposition holds and that [xi]Q

is indeed in the range [− 1
4B , B+ 1

4B ]Q. We proceed similarly to [Cou+21a] but our proof is more
subtle, as we argue over two different groups with incompatible (prime) modulus. Nonetheless,
we can conclude [xi]Q ∈ [− 1

4B , B + 1
4B ]Q since the rational representative is unique in both

groups.
First, we define x̂i ≡q zi/γ ≡q zi/γ. Note that x̂i is well-defined as all values are short and

thus

zi/γ ≡p zi/γ =⇒ ziγ ≡p ziγ =⇒ ziγ = ziγ over Z
=⇒ ziγ ≡q ziγ =⇒ zi/γ ≡q zi/γ.

Now, we set mi ≡q zi − γx̂i. Using the definition of x̂i, we have

mi ≡q zi − γx̂i ≡q zi + z′i − z′i − γx̂i ≡q −zi + z′i − γx̂i
≡q γx̂i + z′i − γx̂i ≡q (γ′ − γ)x̂i + z′i − γx̂i ≡q z′i − γ′x̂i.

Also, mi ≡q z′′i − γ′′x̂i follows accordingly. We similarly set x̂i,j ≡q zi,j/γ and mi,j ≡q zi,j −
γx̂i,j ≡q z′i,j−γ′x̂i,j = z′′i,j−γ′′x̂i,j , where the equalities follow as above. Inserting these equalities
and interpreting f∗i (similarly (f∗i )′, (f∗i )′′) as a polynomial with variable γ, we obtain:

f∗i ≡q γ2[4x̂i(B − x̂i) + 1−
∑
j∈[1,3]

x̂i,j
2] + γα1 + α0,

(f∗i )′ ≡q (γ′)2[4x̂i(B − x̂i) + 1−
∑
j∈[1,3]

x̂i,j
2] + γ′α1 + α0

(f∗i )′′ ≡q (γ′′)2[4x̂i(B − x̂i) + 1−
∑
j∈[1,3]

x̂i,j
2] + γ′′α1 + α0

for some appropriate α1, α0. We can subtract the first from the second (third) equation and
then divide the resulting equation by γ (γ) respectively. This leads to:

f∗i /γ ≡q (γ′ + γ)[4x̂i(B − x̂i) + 1−
∑
j∈[1,3]

x̂i,j
2] + α1,

f∗i /γ ≡q (γ′′ + γ)[4x̂i(B − x̂i) + 1−
∑
j∈[1,3]

x̂i,j
2] + α1.

As x∗ ≡q f∗i /γ ≡q f∗i /γ (see first step), we obtain:

(γ′′ − γ′)[4x̂i(B − x̂i) + 1−
∑
j∈[1,3]

x̂i,j
2] ≡q 0

=⇒ 4x̂i(B − x̂i) + 1 ≡q
∑
j∈[1,3]

x̂i,j
2

=⇒ 4zi(γB − zi) + γ2 ≡q
∑
j∈[1,3]

zi,j
2

19Note that due to random self-reducibility of DLOG, we need not incur a loss of N in the reduction.
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Setting K = (BΓ+1)Lx and noting |zi| ≤ K, we find |4zi(γB−zi)+γ2| ≤ 4K2 +4K2 +K2 < q/2
and ∑j∈[1,3] zi,j

2 ≤ 3K2 < q/2. Thus, the equation holds over the integers and as a result, it
holds that 4zi(γB − zi) + γ2 ≥ 0. Dividing by γ yields 4 zi

γ i(B −
zi
γ ) + 1 ≥ 0. Now, lemma B.2

implies that zi
γ ∈ [− 1

4B , B + 1
4B ]Q.

Step 3 – Repetitions: Consider a setting with repetitions. Suppose we are given three related
transcripts such that in repetition k, the challenges γk, γ′k, γ′′k are pairwise distinct. Then the
previous steps apply, and we conclude the same soundness guarantees. Note that it suffices to
have such related transcripts for any of the k repetitions. Further, since the same commitment
Cx is used in all iterations, extractions xk,i (of xi) for differing k must coincide, or the binding
property and hence DLOG is broken in Gcom.
Step 4 – Obtaing the transcripts: It is well-known how to obtain related transcripts, but we

give a brief sketch for the sake of completeness. First, run the (malicious) prover with a random
challenge. If the honest verifer rejects, the extractor has nothing to do; it just outputs this view.
So assume otherwise. If R = 1, rewind the (malicious) prover and try (fresh) random challenges
(without repetition) until 3 transcripts are found or all challenges exhausted. For R > 1, a
very naive strategy exploits that the protocol is (2R + 1)-special sound, but this degrades the
knowledge error. A less wasteful approach works with about 3R expected rewinds. The basic
idea is to not pick all challenges γk fresh, but keep all but one fixated, and do that for all
k = 1, . . . , R in parallel. See [Bau+18a; ACK21] for concrete examples.

E.2. Proof of SharpPo
SO

In this section, we prove the security of SharpPo
SO. As usual, we consider the optimized variant

which uses a CRHF.

Theorem E.2. The scheme SharpPo
SO has correctness error at most 1− (1− 1/L)3+2R+4N . It is

non-abort SHVZK under the SEI assumption. Let K ′ = (1 + 2β)K where K = (BΓ + 1)L and
β = min(4N, primlmin(Γ + 1)). Suppose 9(K ′)2 < q/2 and (Γ + 1)R − 1 < p. Then SharpPo

SO has
relaxed soundness under the DLOG and SEI in Gcom and G3sq with knowledge error 2+8R

(Γ+1)R for
relation

RExt =
{
(x1, . . . , xN , r) : Cx = rxG0 +

N∑
i=1

xiGi

∧ ∃mi, d ∈ Z : xi ≡q
mi

d
∧ − 1

4B ≤
mi

d
≤ B + 1

4B
∧ |mi| ≤ K ′ ∧ 1 ≤ d ≤ Γ

}
.

Concretely, with the hash-optimization, we have following reductions:

• For every adversary A against non-abort SHVZK, there are adversaries BGcom , BG3sq whose
run-time is roughly that of A and so that Advna-hvzk

A ≤ Advsei
Gcom,BGcom

+R · Advsei
G3sq,BG3sq

.

• For every adversary A against knowledge which runs at most T steps, there are adversaries
BCR, BGcom, BG3sq whose expected run-time is bounded roughly by 6 ·R · T , and so that
Advke

A ≤ 2+8R

(Γ+1)R + Advcrhf
Hash,BCR

+ Advdlog
Gcom,BGcom

+ Advdlog
G3sq,BG3sq

.

• For witness relation RExt ∨ RGcom
Bind ∨ RG3sq

Bind ∨ RColl, where RGDL-rel is a non-trivial DLOG
relation in group G, and RColl is a non-trivial collision for Hash, the knowledge error is

2+8R

(Γ+1)R .

The rest of this section consists of a proof of theorem E.2.
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Correctness. Correctness follows by a straightforward check. Whenever an honest prover does
not abort (due to masking), the honest verifier will accept.

Non-abort SHVZK This follows almost as for SharpGS in theorem E.1. Namely, Phase 2 can
be argued identically (except, that there are no repetitions now). Once Phase 2 is replaced by a
simulation, Phase 1 can be simulated by using xi = 0 instead of the real witness. Since ζk are
masked terms, this incurs k masking errors, which however are 0 for uniform rejection sampling.

Soundness. The rest of this section is dedicated to proving the soundness error.

E.2.1. Step 1: Extracting Phase 2.

We begin as described in the outline. Let G0 be the knowledge soundness game from defini-
tion A.21. As the first step, define G1 which only differs from G0 by replacing the malicious
prover with an extractor in Phase 2. More concretely, note that Phase 2 is a 3-special sound
Σ-protocol for the relation (where yi,0 := xi)

RExt =
{
(Cx, Cy, {ζ}k∈[1,R]; {xi}i∈[1,N ], {yi,j}i∈[1,N ],j∈[0,3],

rx, ry, {µk}k∈[1,R]) :

Cx = rxG0 +
N∑
i=1

xiGi

∧ ∀ k ∈ [1, R] :
N∑
i=1

3∑
j=0

yi,jγi,j + µk = ζk

∧ Cy = ryG0 +
N∑
i=1

3∑
j=1

yi,jGi,j +
R∑
k=1

µkG̃k

∧ ∀i ∈ [1, N ] : 1 + 4xi(B − xi) ≡q
∑
j∈[1,3]

y2
i,j

}
.

or a hash-collision or DLOG relation, i.e. RExt ∨ RGcom
Bind ∨ RG3sq

Bind ∨ RColl. This follows analogously
to theorem E.1 for SharpGS, up to standard changes. Thus, as in theorem E.1, we find that, the
run-time changes from strict run-time t0 to expected time t1 ≈ 3t0 and the knowledge error is
2/(Γ + 1)R. In game G1, we return 1 iff the extraction succeeded as well. Overall, it follows that

Pr[G0 = 1] ≤ Pr[G1 = 1] + 2/(Γ + 1)R and t1 ≈ 3t0.

E.2.2. Step 2: Extracting Phase 1.

Recall that Phase 2 of the protocol is actually a proof of knowledge for RExt with statement
(Cx, Cy, {ζk}k). In game G1, we always try to extract Phase 2, so now, we are almost in the
setting of (random affine) shortness testing. The main difference is, that in the latter setting,
the choice of ({xi}, {yi,j}) would be fixed beforehand, whereas in our case, it is only committed
to. Thus, we need to account for the case of a binding break.

Looking ahead, the completed extractor works as follows:

1. Pick a uniform challenge γ(k)
i,j

$← [0,Γ] (i ∈ [1, N ], j ∈ [0, 3], k ∈ [1, R]) for Phase 1 and run
the extractor for Phase 2.

2. If extraction (of Phase 2) fails, also output failure, i.e. ⊥ext.

3. If the verifier did not accept the run, output the generated view. (There is nothing to do.)
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4. If the extracted witness (yi,j)i,j (where yi,0 = xi) is of the form yi,j = mi,j

d for d ∈ [1,Γ]
and mi ∈ [0,K ′] with K ′ = (1 + 2βK), output (xi)i.20 In this case, xi = mi

d ∈ [0, B] as
claimed.

5. Else, the extracted (xi)i are “invalid”. Try to obtain a DLOG relation as follows:
• Rewind before sending the challenge (in Phase 1) and pick fresh uniform challenges
γ̃

(k)
i,j

$← [0,Γ] (with repetition) for Phase 1 and run the extractor for Phase 2. Repeat
until again a witness (y′i,j)i,j is output.

• If (yi,j)i,j 6= (y′i,j)i,j , return the non-trivial DLOG relation corresponding to (yi,j −
y′i,j)i,j .

• Otherwise, output failure, i.e. ⊥ext.

Let us now analyze this extraction and the soundness of the protocol. Extraction failure
(item 2) and verifier rejection (item 3) are trivial to account for. So let us assume that a
witness ({xi}, {yi,j}) was extracted from Phase 2. Each test ∑N

i=1
∑3
j=0 γ

(k)
i yi,j + µk ∈ [0,K]

(where yi,0 = xi) is a random affine shortness test (definition 3.2), where µk plays the role of
the constant offset µ and 4N elements are checked at once. The parameters of this test are
dimension N =̂ 4N , and range bound K, test distribution U[0,Γ]4N and offset µk. As shown in
theorem 3.3, the test is fractional (K ′,Γ)-sound with error κ ≤ 8/(Γ + 1), where K ′ = (1 + 2β)K
and β = min(4N, primlmin(Γ + 1)). The probability to cheat (in all of them) is therefore
κR ≤ ( 8

Γ+1)R. Now there are two cases:
Case 1 (item 4): There exists some d ∈ [1,Γ] such that dyi,j ∈ [−K ′,K ′] for all i ∈ [1, N ],

j ∈ [0, 3], where yi,0 := xi. For this case, consider the quadratic relations in Phase 2, which are
known to hold over Zq (for all i):

1 + 4xi(B − xi) ≡q
∑
j∈[1,3]

y2
i,j

⇐⇒ d2 + 4dxi(dB − dxi) ≡q
∑
j∈[1,3]

(dyi,j)2

Since and dyi,j ∈ [−K ′,K ′] (where yi,0 = xi), the left-hand side has absolute value at most
Γ2 + 4K ′(BΓ +K ′) ≤ 9(K ′)2 < q/2. The right-hand-side is at most 3(K ′)2 < q/2. Thus, the
right equality holds over the integers, and the left equality holds over the rationals. Consequently,
we find xi ∈ [−1

4B,B + 1
4B]Q (by lemma B.2). Since additionally dxi ∈ [−K ′,K ′] for all i, we

have found a witness for RExt, which completes this case.
Case 2 (item 5): There is no d ∈ [1,Γ] such that dyi,j ∈ [−K ′,K ′] for all i, j, but the

shortness tests failed to catch this. In this case, the extractor rewinds and retries Phase 1 (with
fresh challenges and still running the extractor for Phase 2) until a second extracted run is
found; denote the extracted witness by (y′i,j)i,j . Let ε1 = Pr[G1 = 1]. It is easy to check that
the expected number of retries is 1 and that, overall, the expected time t2 for the extractor
is roughly bounded by 2t1 ≤ 6t0. Since the soundness error of the repeated shortness test is
κR, with probability at least (ε1 − κR)/ε1, it happens that (yi,j)i,j 6= (y′i,j)i,j or µk 6= µ′k for the
second accepting transcipt. In that case, a non-trivial DLOG relation can be derived from the
binding break, i.e. the two different witnesses.21

Define G2 as a run of the complete extractor, and let it output 1 if and only if the verifier was
convinced in the initial run and a valid witness is outputted. Note that G0 resp. G2 now correspond

20Note that we need an efficient algorithm to check this. But as noted in remark 2.7, for any choice of M,D ∈ N
with MD < p/2 we can efficiently [FSW03] compute (m, d) for x ≡p

m
d

if x ∈ QM,D. In our setting, M = K′

and D = Γ satisfies ΓK′ < q/2 by assumption.
21The complete extracted witnesses ~w, ~w′ also contain components rx, ry.
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to the real resp. ideal executions in the definition of knowledge soundness (definition A.21). We
see that, except with probability at most ε1 · κ

R

ε1
= κR, where ε1 = Pr[G1 = 1], game G2 succeeds

in producing a valid witness RExt ∨ RGcom
Bind ∨ RG3sq

Bind ∨ RColl. Thus, overall we find

Pr[G2 = 1] ≤ Pr[G1 = 1] + κR ≤ Pr[G0 = 1] + 2/(Γ + 1)R + κR

If the extractor does not fail, it returns a witness for RExt ∨ RGcom
Bind ∨ RG3sq

Bind ∨ RColl, where
RGBind = RGDL-rel is a binding break, i.e. a non-trivial DLOG relation in G ∈ {Gcom,G3sq},
and RColl is a non-trivial collision for Hash. The knowledge error for this witness relation is
2/(Γ+1)R+κR ≤ (2+8R)/(Γ+1)R, as claimed in last item of theorem E.2. Witnesses for RGcom

DLog,
RG3sq

DLog and RColl can instead be viewed as adversaries against DLOG and collision resistance,
showing the second item. This completes the proof of knowledge soundness.

E.3. Security Proof of SharpHO

Here, we prove the security of theorem C.1.

Proof. Here, we demonstrate correctness, soundness and zero-knowledge of Sharp+HO
GS in more

detail. We note that all assumptions are w.r.t. to Sample, in particular, we assume the adversary
has access to the random coins ρi used to generate the hidden order group elements in the CRS.
(This is not the case for elements of Gcom and G3sq. There, we still assume invertible sampling.)

Correctness. The rejection probability is increased by a factor of (1− pr
′) ≤ (1− 1/L) due to

the additional masking of t′x. It is straightforward to see that all “old” checks will pass, as the
computations and checks for zi, Fi are unmodified. The modified computation of the hash of ∆
will pass, if D′x = F ′x holds. Hence, it remains to show that D′x = F ′x, i.e.

D′x = r̃′xG
′
0 +

N∑
i=1

(Γ + 1)k−1x̃′iG
′
i

!= −γ′C ′x + t′x ·G′0 +
∑

i∈[1,N ]
z′i ·G′i

= F ′x

holds, where γ′ = ∑R
k=1 γk(Γ + 1)k−1 ∈ [0, (Γ + 1)R − 1], and x̃′i = ∑R

k=1(Γ + 1)k−1x̃k,i and
z′i = ∑R

k=1(Γ + 1)k−1 · zk,i. We have

F ′x = −γ′C ′x + t′x ·G′0 +
∑

i∈[1,N ]
z′i ·G′i

= −γ′C ′x + (γ′r′x + r̃′x) ·G′0 +
∑

i∈[1,N ]
z′i ·G′i

= r̃′x ·G′0 + (−γ′C ′x + γ′r′x +
∑

i∈[1,N ]
z′i ·G′i)
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Plugging in γ′ = ∑R
k=1(Γ + 1)k−1 · γk, we find that

− γ′C ′x + γ′r′x +
∑

i∈[1,N ]
z′i ·G′i

=
R∑
k=1

(Γ + 1)k−1

−γkC ′x + γkr
′
x ·G′0 +

∑
i∈[1,N ]

zk,i ·G′i


=

R∑
k=1

(Γ + 1)k−1
N∑
i=1

(−γkxi + zk,i)G′i

=
R∑
k=1

(Γ + 1)k−1
N∑
i=1

x̃k,iG
′
i

since by construction C ′x = r′xG0 +∑N
i=1 xiG

′
i and zk,i = γkxi + x̃k,i. Thus,

F ′x = r̃′xG
′
0 +

R∑
k=1

N∑
i=1

(Γ + 1)k−1x̃k,iG
′
i = D′x.

Soundness. The argument for soundness of Sharp+HO
GS is basically the same as for SharpGS

in theorem E.1, except, that the properties of the MPed commitment in H must be exploited
additionally.
Let Γ̂ = (Γ + 1)k − 1. Observe that, by construction, the synthetic challenge γ′ is uniform

in [0, Γ̂]. Moreover, the synthesized proof of short opening is almost the same of the simple
PoSO22, and our soundness argument as well, with the only difference being the choice of
masking. Namely, the distributions of the mask x̃′i is not the usual one. However, for soundness,
the distribution of the mask does not matter at all (it may be adversarially chosen anyway).
Consequently, the argument for the PoSO in theorem E.1 applies without change. That is,
either two23 accepting transcripts tr and t̂r with same first message but different challenges yield
witnesses x′i = z′i−ẑ

′
i

γ′−γ̂′
of the form x′i = ai/2ei for ei ≥ 0, ai ∈ Z or a (Γ, e)-relaxed DLOG relation

in H was found. By assumption, finding a (Γ, e,N)-relaxed DLOG relation w.r.t. Sample is hard.
(Note we use a hat ·̂ to distinguish the transcripts, since primes ·′ are already used to indicate
elements of our augmentation.)
Recall that we argued in particular, that in each iteration,
• either γk = γ̂k and zk,i = ẑk,i, i.e. this repetition “does not extract”, or

• we extract xk,i and xi = xk,i is unique for all “extracted” repetitions k.
or a non-trivial DLOG relation was found. Now, we have to show that x′i = xi, i.e. the extracted
witness of the synthesized hidden order proof of small opening coincides with the other extractions.
For this, note that

x′i = z′i − ẑ′i
γ′ − γ̂′

=
∑R
k=1(Γ + 1)k−1(zk,i − ẑk,i)∑R
k=1(Γ + 1)k−1(γk − γ̂k)

=
∑R
k=1(Γ + 1)k−1(xk,i(γk − γ̂k))∑R

k=1(Γ + 1)k−1(γk − γ̂k)

= xi ·
∑R
k=1(Γ + 1)k−1(γk − γ̂k)∑R
k=1(Γ + 1)k−1(γk − γ̂k)

= xi

22That is, usual the Σ-protocol for opening with short challenge and shortness check, as used in SharpGS for
example.

23To show that xi is of the form x′ = a/2e, two transcripts suffice. The soundness of the full argument still needs
three transcripts.
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where we used that xk,i = xi for all k.24 Thus, x′i = xi and the extracted witnesses of all
repetitions coincide. This finishes the proof.
For Sharp+HO

PoSO, an analogous reasoning applies, though simpler since “synthesized” variables
are not needed.

Non-abort SHVZK The simulator works as the simulator in theorem E.1 (resp. theorem E.2),
with following additional steps:

1. Compute γ′ = ∑R
k=1 γi(Γ + 1)k−1.

2. Set C ′x $← H.

3. Let z′i = ∑R
k=1(Γ + 1)k−1 · zk,i (using the simulated zk,i).

4. Set t′x = maskr′(0, r̃′).

5. If masking fails, then abort, i.e. output ⊥.

6. Compute D′x = −γ′C ′x + t′xG
′
0 +∑N

i=1 z
′
iG
′
i.

7. Adapt the output to include the additional messages.

It is easy to check that the output is indistinguishable from non-aborting real transcripts. The
justification is almost identical to the one in theorem E.1. Namely, starting from the honest
computation, first compute D′x is in step 6 above (with otherwise honest values). This change is
only conceptual. Then, compute t′x as in step 4 above. Finally, an additional step is required
to justify the switch from computing C ′x = r′xG

′
0 +∑N

i=1 xiG
′
i to C ′x $← H. Since r′x is not used

anymore, we can reduce this to SI and SEI assumptions (w.r.t. Sample). By SEI we can replace
the term A = r′xG

′
0 by A $← 〈G′0〉. Then, by SI we can replace A $← 〈G′0〉 by A $← H. Now, C ′x is

uniform distributed in H. So we can sample C ′x $← H instead. This is done by the simulator in
step 2, and indeed, this game is the simulation, completing the proof.

F. Additional Tables
Here, we provide some tables with an overview of the parameters and proof sizes of SharpGS in
table 3 and SharpPo

SO in table 4.

24Strictly speaking, if γk = γ̂k, then xk,i is not defined. By our assumption, we may assume it exists and equals
xi. This is a mere simplification, as the contribution of repetition k to the sum is 0 anyway, since (again by
assumption) zk,i − ẑk,i = 0.
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Table 3: Overview of parameters (where S = 2256 − 1 always) and proof sizes of variants of SharpGS in Bytes with
correctness error 1−psucc. We give the proof size with the 3-square decomposition (π), the amortized proof
size (πamor), the proof size with the 4-square decomposition (π4sqr), the proof size for the augmentation
with an additional RSA group element (πRSA) and the proof size for the augmentation with an additional
class group element (πCL).

λ κerr B Γ L N p q R psucc π πamor π4sqr πRSA πCL

128 40 32 41 10 1 256 256 1 0.993 234 234 244 667 455
128 40 32 41 10 4 256 256 1 0.982 358 90 400 792 579
128 40 32 41 10 8 256 256 1 0.966 524 66 607 958 745
128 40 32 41 10 16 256 256 1 0.937 856 54 1022 1290 1077
128 40 64 41 10 1 256 256 1 0.993 250 250 264 683 471
128 40 64 41 10 4 256 256 1 0.982 422 106 480 856 643
128 40 64 41 10 8 256 256 1 0.966 652 82 767 1086 873
128 40 64 41 10 16 256 256 1 0.937 1112 70 1342 1546 1333
128 80 32 81 10 1 256 256 1 0.993 254 254 269 687 475
128 80 32 81 10 4 256 256 1 0.982 438 110 500 872 659
128 80 32 81 10 8 256 256 1 0.966 684 86 807 1118 905
128 80 32 81 10 16 256 256 1 0.937 1176 74 1422 1610 1397
128 80 64 81 10 1 256 315 1 0.993 285 285 304 718 505
128 80 64 81 10 4 256 315 1 0.982 517 130 595 950 738
128 80 64 81 10 8 256 315 1 0.966 827 104 982 1260 1048
128 80 64 81 10 16 256 315 1 0.937 1447 91 1757 1880 1668
128 128 32 129 10 1 301 347 1 0.993 318 318 339 751 538
128 128 32 129 10 4 301 347 1 0.982 574 144 660 1007 795
128 128 32 129 10 8 301 347 1 0.966 916 115 1087 1349 1137
128 128 32 129 10 16 301 347 1 0.937 1600 100 1942 2033 1821
128 128 64 129 10 1 333 411 1 0.993 360 360 385 793 580
128 128 64 129 10 4 333 411 1 0.982 664 166 766 1097 885
128 128 64 129 10 8 333 411 1 0.966 1070 134 1273 1503 1291
128 128 64 129 10 16 333 411 1 0.937 1882 118 2288 2315 2103
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Table 4: Overview of parameters (where S = 2256 − 1 always) and proof sizes of variants of
SharpPo

SO in Bytes with correctness error 1− psucc. We give the proof size with the 3-square
decomposition (π), the amortized proof size (πamor), the proof size with the 4-square
decomposition (π4sqr), the proof size for the augmentation with an additional RSA group
element (πRSA) and the proof size for the augmentation with an additional class group
element (πCL).

λ κerr B Γ L N p R psucc π πamor πRSA πCL

128 40 32 43 10 1 256 1 0.991 300 300 734 521
128 40 32 43 10 4 256 1 0.980 556 139 989 777
128 40 32 43 10 8 256 1 0.964 896 112 1329 1117
128 40 32 43 10 16 256 1 0.935 1576 99 2010 1797
128 40 64 43 10 1 256 1 0.991 324 324 758 545
128 40 64 43 10 4 256 1 0.980 628 157 1061 849
128 40 64 43 10 8 256 1 0.964 1032 129 1465 1253
128 40 64 43 10 16 256 1 0.935 1840 115 2274 2061
128 80 32 43 10 1 256 2 0.989 323 323 757 544
128 80 32 43 10 4 256 2 0.978 579 145 1013 800
128 80 32 43 10 8 256 2 0.963 920 115 1353 1141
128 80 32 43 10 16 256 2 0.933 1600 100 2034 1821
128 80 64 43 10 1 256 2 0.989 355 355 789 576
128 80 64 43 10 4 256 2 0.978 659 165 1093 880
128 80 64 43 10 8 256 2 0.963 1064 133 1497 1285
128 80 64 43 10 16 256 2 0.933 1872 117 2306 2093
128 128 32 67 10 1 256 2 0.989 335 335 769 556
128 128 32 67 10 4 256 2 0.978 591 148 1025 812
128 128 32 67 10 8 256 2 0.963 932 117 1365 1153
128 128 32 67 10 16 256 2 0.933 1612 101 2046 1833
128 129 64 46 10 1 256 3 0.987 389 389 822 609
128 128 64 35 10 4 256 4 0.974 714 179 1148 935
128 128 64 35 10 8 256 4 0.959 1119 140 1553 1340
128 128 64 35 10 16 256 4 0.929 1928 121 2362 2149
128 40 32 1 10 1 256 40 0.919 777 777 – –
128 40 32 1 10 16 256 40 0.866 2092 131 – –
128 40 64 1 10 1 256 40 0.919 1113 1113 – –
128 40 64 1 10 16 256 40 0.866 2668 167 – –
128 128 32 1 10 1 256 128 0.773 1877 1877 – –
128 128 32 1 10 16 256 128 0.729 3280 205 – –
128 128 64 1 10 1 256 128 0.773 2917 2917 – –
128 128 64 1 10 16 256 128 0.729 4560 285 – –
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