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Abstract. In this paper, we present an AES-based authenticated-encryption
with associated-data scheme called Rocca, with the purpose to reach the
requirements on the speed and security in 6G systems. To achieve ultra-
fast software implementations, the basic design strategy is to take full
advantage of the AES-NI and SIMD instructions as that of the AEGIS
family and Tiaoxin-346. Although Jean and Nikolić have generalized the
way to construct efficient round functions using only one round of AES
(aesenc) and 128-bit XOR operation and have found several efficient can-
didates, there still seems to exist potential to further improve it regarding
speed and state size. In order to minimize the critical path of one round,
we remove the case of applying both aesenc and XOR in a cascade way
for one round. By introducing a cost-free block permutation in the round
function, we are able to search for candidates in a larger space without
sacrificing the performance. Consequently, we obtain more efficient con-
structions with a smaller state size than candidates by Jean and Nikolić.
Based on the newly-discovered round function, we carefully design the
corresponding AEAD scheme with 256-bit security by taking several
reported attacks on the AEGIS family and Tiaxion-346 into account. Our
AEAD scheme can reach 150 Gbps which is almost 5 times faster than the
AEAD scheme of SNOW-V. Rocca is also much faster than other efficient
schemes with 256-bit key length, e.g. AEGIS-256 and AES-256-GCM. As
far as we know, Rocca is the first dedicated cryptographic algorithm
targeting 6G systems, i.e., 256-bit key length and the speed of more than
100 Gbps.
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⋆ This is an updated and extended version from conference version [SLN+21].



1 Introduction

1.1 Background

The fifth-generation mobile communication systems (5G) have been launched
in several countries for commercial services since 2020. Besides, researches for
beyond-5G or 6G have been already started in some research institutes. As the
first white paper of 6G, [LaL19] was published by the 6Genesisi project in 2019,
which is mainly organized by the University of Oulu in Finland. In the white
paper, several requirements for 6G systems are raised. For the data transmission
speed, it says that 6G achieves more than 100 Gbps, which is more than 10 times
faster than that of 5G.

For the 4G system, as underlying cryptographic algorithms to ensure confiden-
tiality and integrity, SNOW 3G [SAG06], AES [Nat01], and ZUC-128 [SAG11] are
employed, which are specified as 128-EEA1 (EIA1), 128-EEA2 (EIA2), 128-EEA3
(EIA3), respectively, and these algorithms are also selected cryptographic algo-
rithms for the 5G system as 128-NEA1 (NIA1), 128-NEA2 (NIA2), 128-NEA3
(NIA3). However, for the 5G system, the 3GPP standardization organization
requires to increase the security level to 256-bit key lengths. In 2018, ZUC-
256 [The18] was proposed as the 256-bit key version of ZUC-128. ZUC-256 was
revised only in the initialization phase and in the MAC generation phase from
ZUC-128. By this revise, ZUC-256 improves the security level against the key-
recovery attack to the 256-bit security from the 128-bit security. On the other
hand, the performance of the encryption/decryption speed is not quite improved
because the key-stream generation phase is the same as ZUC-128, and a structural
weakness was found [YJM20]. In FSE 2020, Ekdahl et al. proposed SNOW-V that
is the 256-bit key version of SNOW 3G, and they showed that SNOW-V achieves
more than 38 Gbps at an AEAD (Authenticated Encryption with Associated
Data) mode on OpenSSL [EJMY19]. The performances of SNOW-V are sufficient
for them to be used in the 5G system.

However, when taking requirements in 6G systems into account, we have
to tackle some challenges. The biggest one is the encryption/decryption speed.
For 6G systems, as the data transmission speed is expected to reach more than
100 Gbps, we have to design a cryptographic algorithm with the encryption/de-
cryption speed of more than 100 Gbps, which is at least three times faster than
SNOW-V. Besides, achieving 256-bit security against key-recovery attacks is
essential as in 5G systems [3GP18]. In addition, due to the increase of data
transmissions in 6G systems, it is necessary to ensure at least 128-bit security
against distinguishing attacks while SNOW-V only claims 64-bit security against
distinguishing attacks. Therefore, there is no doubt that a new cryptographic
algorithm is needed in 6G systems.

For symmetric-key primitives targeting high-performance applications, there
are several interesting cryptographic algorithms. The most tempting ones are
those employing AES-NI [Gue10, Corb], which is a new AES instruction set
equipped on many modern CPUs from Intel and AMD. Some SoCs for mobile
devices are also equipped with an instruction set for AES [arm21], and more



and more SoCs will support the instruction by the time 6G system is realized.
Hence employing AES-NI seems reasonable in designing cryptographic algorithms
for 6G systems. The AEGIS family and Tiaoxin-346 belongs to such a category,
which are two submissions to the CAESAR competition [cae18] and AEGIS-
128 has been selected in the final portfolio for high-performance applications.
The round functions of the AEGIS family and Tiaoxin-346 are quite similar.
Specifically, they are only based on the usage of one AES round and the 128-bit
XOR operation, both of which have been realized with one instruction on SIMD
(Single Instruction, Multiple Data) instructions. As a result, both the AEGIS
family and Tiaoxin-346 are competitive in terms of encryption/decryption speed
in a pure software environment, if compared with many primitives.

Jean and Nikolić generalized the method to design efficient round functions
as that used in AEGIS and Tiaoxin-346 in [JN16]. After a thorough search, they
discovered round functions that can achieve a faster speed than any of the round
functions adopted in the AEGIS family and Tiaoxin-346 and provide the 128-bit
security against forgery attacks. However, they did not propose a concrete AEAD
scheme [JN16].

Obviously, AEGIS-128, AEGIS-128L and Tiaoxin-346 do not meet the security
requirement of the 256-bit key length in 6G systems. In addition, according to our
experiments, AEGIS-256 does not reach more than 100 Gbps (See Sect. 5). How-
ever, those researches leave us the potential of designing the faster cryptographic
algorithm based on AES round functions for 6G.

1.2 Our Design

In this paper, we present an AES-based encryption scheme with a 256-bit key and
128-bit tag called Rocca, which provides both a raw encryption scheme and an
AEAD scheme with a 128-bit tag. The goal of Rocca is to meet the requirement
in 6G systems in terms of both performance and security. For performance, Rocca
achieves an encryption/decryption speed of more than 100 Gbps in both raw
encryption scheme and AEAD scheme. For security, Rocca can provide 256-bit
and 128-bit security against key-recovery attacks and forgery attacks, respectively.

Optimized AES-NI-Friendly Round Function To achieve such a dramatically fast
encryption/decryption speed, Rocca is designed for a pure software environment
that can fully support both the AES-NI and SIMD instructions. The design of
the round function of Rocca is inspired by the work of Jean and Nikolić [JN16].
To further increase its speed and reduce the state size, we explore a new class of
AES-based structures. Specifically, we take the following different approaches.

– To minimize the critical path of the round function, we focus on the structure
where each 128-bit block of the internal state is updated by either one AES
round or XOR while Jean and Nikolić consider the case of applying both
aesenc and XOR in a cascade way for one round, and most efficient structures
in [JN16] are included in this class.



– We introduce a permutation between the 128-bit state words of the internal
state in order to increase the number of possible candidates while keeping
efficiency as executing such a permutation is a cost-free operation in the
target software, which was not taken into account in [JN16].

We search for round functions that can ensure 128-bit security against forgery
attacks in a class of our general constructions as with [JN16]. Consequently, we
succeed in discovering more efficient constructions with a smaller state size than
those in [JN16]. The internal state of Rocca consists of eight 128-bit words and
its round function is composed of 4 aesencs and 4 128-bit XOR operations, which
is significantly faster than those of the AEGIS family, Tiaxion-346 and Jean and
Nikolić’s structure [JN16].

Encryption and Authentication Scheme. To resist against the statistical attack
in [Min14], generating each 128-bit ciphertext block will additionally require one
AES round, while it is generated with simple quadratic boolean functions in the
AEGIS family and Tiaxion-346. However, such a way will have few overhead by
AES-NI (See Sect. 3). Moreover, a study on the initialization phases for both
reduced AEGIS-128 and Tiaoxin-346 has been reported recently [LIMS21]. To
further increase the resistance against the reported attacks, how to place the
nonce and the key at the initial state is carefully chosen in our scheme.

Performance The encryption/decryption speed of Rocca is dramatically improved
compared with other AES-based encryption schemes. Rocca is more than three
and four times faster than SNOW-V and SNOW-V-GCM, respectively, i.e. the
speed reaches 215 and 178 Gbps, respectively. Compared to other schemes with
256-bit key, Rocca is more than five times faster than AEGIS-256 and more
than three times faster than AES-256-GCM in our evaluations (See Sect. 5 and
Appendix. A). Moreover, Rocca is also faster than AEGIS-128, AEGIS-128L, and
Tiaoxin-346 even though Rocca provides a higher security level. To the best of
our knowledge, Rocca is the first dedicated cryptographic algorithm targeting
6G systems and we hope it can inspire future designs.

1.3 Version History

The difference from the conference version [SLN+21] is that key feedforward
is added in initialization and finalization to be secure against cryptanalysis on
the first version of Rocca [HII+22]. Along with this change, we add the security
evaluation against new attack in 4.6 and update software performance. Here, we
would like to enhasize that there is no overhead in any enviroment due to this
change.

The other changes from the conference version [SLN+21] are in the followings:
(1) updated security claims of Rocca by taking consideration into the security
requirements for 6G (See Sect. 2.3) (2) showed the limitation of the message
length and the length of the associated data (See Sect. 2.3). (3) Added software
performance results on Intel’s CPUs and ARM-based SoCs (See Appendix A).
(4) Modified typo in Algorithm 1 regarding the decryption.



1.4 Organization

This paper is organized as follows. We first present the specification of Rocca in
Sect. 2. Then, we describe the design rationale, such as the general construction
based on AES-NI, criteria for performance and security, and how to find efficient
round functions in Sect. 3. In Sect. 4, we provide the details of security evaluations
against possible attacks on Rocca. Sect. 5 shows our software implementation
results. Finally, we conclude this paper in Sect. 6.

2 Preliminaries

In this section, the notations and the specification of our designs will be described.

2.1 Notations

The following notations will be used in the paper. Throughout this paper, a block
means a 16-byte value. For the constants Z0 and Z1, we utilize the same ones as
Tiaoxin-346 [Nik14].

1. S: The state of Rocca, which is composed of 8 blocks, i.e. S = (S[0], S[1], . . . , S[7]),
where S[i] (0 ≤ i ≤ 7) are blocks and S[0] is the first block.

2. Z0: A constant block defined as Z0 = 428a2f98d728ae227137449123ef65cd.
3. Z1: A constant block defined as Z1 = b5c0fbcfec4d3b2fe9b5dba58189dbbc.
4. AES(X, Y ): One AES round applied to the block X, where the round constant

is Y , as defined below:

AES(X, Y ) = (MixColumns ◦ ShiftRows ◦ SubBytes(X))⊕ Y,

where MixColumns, ShiftRows and SubBytes are the same operations as
defined in AES.

5. A(X): The AES round function without the constant addition operation, as
defined below:

A(X) = MixColumns ◦ ShiftRows ◦ SubBytes(X),

6. |X|: The length of X in bits.
7. 0l: A zero string of length l bits.
8. X||Y : The concatenation of X and Y .
9. R(S, X0, X1): The round function used to update the state S.

2.2 The Round Update Function

The input of the round function R(S, X0, X1) of Rocca consists of the state S
and two blocks (X0, X1). If denoting the output by Snew, Snew ← R(S, X0, X1)
can be defined as follows:

Snew[0] = S[7]⊕X0,



Snew[1] = AES(S[0], S[7]),
Snew[2] = S[1]⊕ S[6],
Snew[3] = AES(S[2], S[1]),
Snew[4] = S[3]⊕X1,

Snew[5] = AES(S[4], S[3]),
Snew[6] = AES(S[5], S[4]),
Snew[7] = S[0]⊕ S[6].

The corresponding illustration can be referred to Figure 1.
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Fig. 1: Illustration of the round function

2.3 Specification of Rocca
Rocca is an authenticated-encryption with associated-data scheme composed
of four phases: initialization, processing the associated data, encryption and
finalization. The input consists of a 256-bit key K0||K1 ∈ F128

2 × F128
2 , a 128-

bit nonce N , the associated data AD and the message M . The output is the
corresponding ciphertext C and a 128-bit tag T . Define X = X||0l where l is
the minimal non-negative integer such that |X| is a multiple of 256. In addition,
write X as X = X0||X1|| . . . ||X |X|

256 −1 with |Xi| = 256. Further, Xi is written as
Xi = X0

i ||X1
i with |X0

i | = |X1
i | = 128.

Initialization. First, (N, K0, K1) is loaded into the state S in the following way:

S[0] = K1, S[1] = N, S[2] = Z0, S[3] = Z1,

S[4] = N ⊕K1, S[5] = 0, S[6] = K0, S[7] = 0.

Here, two 128-bit constants Z0 and Z1 are encoded as 16-byte little endian words
and loaded into S[2] and S[3] respectively. Then, 20 iterations of the round
function R(S, Z0, Z1) is applied to the state S. After 20 iterations of the round
function, two 128-bit keys are XORed with the state S in the following way;

S[0] = S[0]⊕K0,

S[4] = S[4]⊕K1.



Processing the associated data. If AD is empty, this phase will be skipped.
Otherwise, AD is padded to AD and the state is updated as follows:

for i = 0 to d− 1
R(S, AD

0
i , AD

1
i ),

end for

where d = |AD|
256 .

Encryption. The encryption phase is similar to the phase to process the associated
data. If M is empty, the encryption phase will be skipped. Otherwise, M is first
padded to M and then M will be absorbed with the round function. During this
procedure, the ciphertext C is generated. If the last block of M is incomplete
and its length is b bits, i.e. 0 < b < 256, the last block of C will be truncated to
the first b bits. A detailed description is shown below:

for i = 0 to m− 1
C0

i = AES(S[1], S[5])⊕M
0
i ,

C1
i = AES(S[0]⊕ S[4], S[2])⊕M

1
i ,

R(S, M
0
i , M

1
i ),

end for

where m = |M |
256 .

Finalization. After the above three phases, two 128-bit keys K0 and K1 are first
XORed with the state S in the following way;

S[0] = S[0]⊕K0,

S[4] = S[4]⊕K1.

Then, the state S will again pass through 20 iterations of the round function
R(S, |AD|, |M |) and then the tag is computed in the following way:

T =
7⊕

i=0
S[i].

The length of associated data and message is encoded as 16-byte little endian
word and stored into |AD| and |M |, respectively.

A formal description of Rocca can be seen in Algorithm 1 and the correspond-
ing illustration is shown in Figure 2.



Algorithm 1 The specification of Rocca
1: procedure RoccaEncrypt(K0, K1, N, AD, M)
2: S ← Initialization(N, K0, K1)
3: if |AD| > 0 then
4: S ← ProcessAD(S, AD)
5: if |M | > 0 then
6: S ← Encryption(S, M, C)
7: Truncate C
8: T ← Finalization(S, |AD|, |M |, K0, K1)
9: return (C, T )

10: procedure RoccaDecrypt(K0, K1, N, AD, C, T )
11: S ← Initialization(N, K0, K1)
12: if |AD| > 0 then
13: S ← ProcessAD(S, AD)
14: if |C| > 0 then
15: S ← Decryption(S, C, M)
16: Truncate M
17: if T = Finalization(S, |AD|, |C|, K0, K1) then
18: return M
19: else
20: return ⊥
21: procedure Initialization(N, K0, K1)
22: (S[0], S[1], S[2], S[3])← (K1, N, Z0, Z1)
23: (S[4], S[5], S[6], S[7])← (N ⊕K1, 0, K0, 0)
24: for i = 0 to 19 do
25: S ← R(S, Z0, Z1)
26: (S[0], S[4])← (S[0]⊕K0, S[4]⊕K1)
27: return S
28: procedure ProcessAD(S, AD)
29: d← |AD|

256
30: for i = 0 to d− 1 do
31: S ← R(S, AD0

i , AD1
i )

32: return S
33: procedure Encryption(S, M, C)
34: m← |M|

256
35: for i = 0 to m− 1 do
36: C0

i ← AES(S[1], S[5])⊕M0
i

37: C1
i ← AES(S[0]⊕ S[4], S[2])⊕M1

i

38: S ← R(S, M0
i , M1

i )
39: return S
40: procedure Decryption(S, M, C)
41: c← |C|

256
42: for i = 0 to c− 1 do
43: M0

i ← AES(S[1], S[5])⊕ C0
i

44: M1
i ← AES(S[0]⊕ S[4], S[2])⊕ C1

i

45: S ← R(S, M0
i , M1

i )
46: return S
47: procedure Finalization(S, |AD|, |M |, K0, K1)
48: (S[0], S[4])← (S[0]⊕K0, S[4]⊕K1)
49: for i = 0 to 19 do
50: S ← R(S, |AD|, |M |)
51: T ← 0
52: for i = 0 to 7 do
53: T ← T ⊕ S[i]
54: return T
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Fig. 2: The procedure of Rocca

A raw encryption scheme. If the phases of processing the associated data and
finalization are removed, a raw encryption scheme is obtained.

Security claims. Rocca provides 256-bit security against key-recovery and 128-
bit security against distinguishing and forgery attacks in the nonce-respecting
setting5. We do not claim its security in the related-key and known-key settings.

The message length for a fixed key is limited to at most 2128 and we also
limit the number of different messages that are produced for a fixed key to be at
most 2128. The length of associated data of a fixed key is up to 264.

3 Design Rationale

3.1 General Construction

SIMD instruction. The prime design goal of Rocca is to meet the requirements
of processing/transmission speed for 6G applications, namely more than 100
Gbps [LaL19]. In order to realize fast encryption/decryption speed (hereafter, we
simply call "speed") on a pure software environment, we take full advantage of
the SIMD instructions and the AES-NI, both of which are equipped on most of
modern CPUs. The SIMD instructions contains some fundamental instructions
such as XOR and AND, and can execute them by 32/64/128-bit units as one
instruction, where the AES-NI is a special set of the SIMD instructions, which is
first rolled out by Intel [Cora] and available on modern processors. The AES-NI
can execute AES about 10 times faster than non-AES-NI in parallelizable modes
5 We updated the claimed security of distinguishing attacks from the ToSC version

[SLN+21] for the following reasons. The most well-known and popular distinguishing
attack on the keystream seems to be the linear attack. Such a distinguishing attack
often requires a large number of plaintexts. If the data complexity exceeds the time
complexity to find the key with Grover’s algorithm, we view such an attack as invalid
in the quantum setting. Therefore, regarding the distinguishing attack, we only claim
128-bit security in the quantum setting and a meaningful distinguishing attack in
the classical setting should have data complexity below 2128.



such as CTR mode. In this paper, we utilize on aesenc, which is one of instruction
sets of AES-NI, and performs one regular (not the last) round of AES on an
input state S with a subkey K:

aesenc(S, K) = (MixColumns ◦ ShifRows ◦ SubBytes(S))⊕K.

The execution speed of these instructions can be evaluated by latency and
throughput, where latency is the number of clock cycles required to execute a
single instruction and throughput is the required number of clock cycles before
the same instruction to be executed. It is important when considering the
parallel execution. Table 1 shows latency and throughput of aesenc [RTL] in each
architecture. Among existing architectures, we focus the latest architecture Intel
Ice-Lake series that has the fastest AES-NI whose latency and throughput of
aesenc are 3 and 0.5, respectively. Figure 3 illustrates an example of the process
in the parallel execution of aesenc for Intel Ice-lake whose latency and throughput
are 3 and 0.56, respectively.

Employing one AES round as an underlying component for future designs
has a great merit for performance compared to employing other cryptographic
primitives. Many software and libraries support AES-NI natively, e.g OpenSSL.
Thus, it seems to be very reasonable that devices connected to 6G services will
still support such instructions. SNOW-V also takes advantage of AES-NI for the
same reason.

Table 1: Latency and throughput of aesenc for some architectures by Intel and
AMD referred by [RTL].

Vendor Architecture Latency Throughput

Intel

Sky-lake 4 1
Kaby-lake 4 1
Coffee-lake 4 1

Cannon-lake 4 0.5
Cascade-lake 4 1
Comet-lake unknown unknown

Ice-lake 3 0.5

AMD Zen + 4 0.5
Zen 2 4 0.5

Permutation-based Structure. As a reference point, we consider a stream
cipher SNOW-V, which is designed for 5G applications. SNOW-V is based on
linear feedback shift register (LFSR) and Finite State Machine(FSM) with AES-
based round functions. As discussed in Section 1, if we follow this design strategy,
we need to accelerate the performance approximately at least three times faster
than SNOW-V to achieve the required performance of 100 Gbps. Thus, we decide
to choose other design strategies based on AES round functions.
6 Throughput 0.5 means that there are two ports for aesenc with throughput 1.
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Fig. 3: The process of aesenc for Intel Ice-lake.

Specifically, we focus on AEGIS family [WP13] and Tiaoxin-346 [Nik14], which
are permutation-based authenticated encryption schemes using AES round func-
tions and submitted to CAESAR competition [cae18]. These allow a full paral-
lelization and can achieve the outstanding speed compared to AES-CTR.

However, as it has been pointed out that there exists a linear bias in the
ciphertext blocks for AEGIS-256 [Min14], it seems insecure to adopt the similar
quadratic boolean function to generate the ciphertexts, especially for the purpose
to reach 256-bit security. This fact motivates us to design different ways to
generate the ciphertext blocks and finally involving 1 AES round function into
generating each ciphertext block is chosen. Such a way is efficient due to the
parallel calls to AES-NI. Moreover, a study on the initialization phases for both
reduced AEGIS-128 and Tiaoxin-346 has been reported recently [LIMS21]. To
further increase the resistance against the reported attacks, how to place the
nonce and the key at the initial state is carefully chosen in our scheme, which is
little discussed in AEGIS and Tiaoxin-346.

Efficient AES-Based Round Function. Round functions of AEGIS fam-
ily [WP13] and Tiaoxin-346 [Nik14] consist of the 128-bit XOR operation and one
AES round that is executed by the processor instruction aesenc. Jean and Nikolić
have generalized the way to construct efficient round functions using only the
one AES round (aesenc) and 128-bit XOR and have found several more efficient
candidates [JN16]. Figure 4 shows the general construction of the round function
considered in [JN16].

To push the limitation further of efficiency of their structures, we explore a
new class of AES-based structures shown in Fig 5. Compared to the structures
considered by Jean and Nikolić results [JN16], our constructions remove the case
of applying both aesenc and XOR to each block in a cascade way for one round
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Fig. 4: The general construction considered of the round function in [JN16].
Dash lines mean that it can be possible to be absent or present in the design.

to minimize the critical path of one round. Specifically, we only consider the
case of applying only either aesenc or 128-bit XOR to each block in one round,
where aesenc takes a state block or message block as input of AddRoundKey and
128-bit XOR takes state block or message block as inputs, respectively as shown
in Figure 5.

Moreover, we apply a block permutation to state blocks, which was not
considered by Jean and Nikolić (See Fig 4). This sufficiently increases the number
of possible candidates. Indeed, as described in later section, it enables us to
find more efficient constructions than Jean and Nikolić’s results, which is not
covered by their target classes. It should be emphasized that executing the block
permutation in register size is a cost-free operation, that is, the permutation only
changes the order of blocks. More strictly, a permutation needs some temporary
registers. However, these registers almost do not affect the speed if the total
number of registers used in process of the scheme is lower than 16, which is
the total number of xmm-registers equipped in almost all modern CPUs. Hence,
applying a block permutation does not affect the speed of the round function.
For a block that will be inputted into aesenc or XOR, we use one-block right
rotation as in [JN16].

3.2 Criteria for Performance and Security

For designing efficient round functions, we need to choose several parameters such
as the number of aesencs, the number of inserted message blocks, and a block
permutation for our structure in Fig. 5. We clarify requirements of performance
and security for target applications to choose these parameters.

Requirements for Performance. To theoretically estimate speed, we utilize a
metric called rate, which is proposed by Jean and Nikolić [JN16].

Definition 1 (Rate [JN16]) The rate p of a design is the number of AES
rounds (calls to aesenc) used to process a 128-bit message.
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Fig. 5: General construction of the round function. Dash lines mean that it can
be possible to be absent or present in the design.

For our general construction of Fig 5, the rate p is estimated as a ratio of (#
of aesencs)/( # of the inserted 128-bit messages) in one round. Since a smaller
rate leads to more efficient design [JN16], we should design the round function
that have as small rate as possible. The rate is the most important parameter for
speed.

The number of aesenc in one round is also important factor to maximize the
efficiency. Jean and Nikolić claim that the number of aesenc in one round should
be close to (latency)/(throughput) ratio [JN16] for the efficient design, e.g. if the
latency and throughput of aesenc are respectively 3 and 0.5, the number of aesenc
should be 6 in one round. The reason is when the number of aesencs is less than
a (latency)/(throughput) ratio, there are empty cycles in process of aesenc. On
the other hand, if the number of aesencs is the same as (latency)/(throughput)
ratio, there is no empty cycles as shown in Figure 3. Since our target architecture
is Ice-lake, the number of aesenc in a round should be 6.

Another important factor related to speed is the number of blocks of round
functions, namely the state size. Smaller state size significantly improves the
efficiency because it can reduce registers used for encryption and makes a whole
process of encryption easier. We experimentally confirmed that reducing the
number of blocks leads to increasing speed when the rate is the same. Table 2
shows our experimental result that compares three types of round functions of
the rate 2 with the number of blocks of 8, 9, and 10, each of which is measured
on Intel(R) Core(TM) i7-1068NG7 CPU @ 2.30GHz with 16 GB RAMs. Details
of these round functions are given in Appendix B. Besides, a smaller state size is
a preferable feature to be deployed in wider classes of devices with keeping the
efficiency. It is because this, that some CPUs, such as ones from AMD, do not
support the large size register like AVX512, and the process requiring the use
of many registers tends to become more complicated on these CPUs. Since the
number of blocks of SNOW-V, which is our reference point, is 7, the state size
should be competitive.



Table 2: Comparison of the performance of the round function having different
number of blocks at the same rate.

# of blocks Speed (in cycle/Byte) rate
8 0.126717 2
9 0.147397 2
10 0.155584 2

Requirements for Security. Since evaluating the resistance to all possible attacks
for all possible candidates is practically infeasible, we focus on the security against
the forgery attack by the internal collision as a criteria of security when finding
candidates, as with [JN16]. Especially, we impose the 128-bit security against
the forgery attack on our design, i.e. our security requirement is that there are
no internal collisions with a probability more than 2−128. Through this paper,
“forgery attacks” is meant to be a universal forgery in the nonce-respecting
setting.

To evaluate the probability of the internal collision, we search the lower
bound for the number of active S-boxes by a Mixed Integer Linear Programming
(MILP) solver [MWGP11]. Since the maximum probability of an S-box is 2−6,
it is sufficient to guarantee the security against internal collisions if there are
22 active S-boxes, as it gives 2(−6×22) < 2−128 as an estimate of differential
probability. For the security against other possible attacks, we evaluate after
designing a whole design, and it will be described in Sect. 4.

Summary of Our Criteria. Requirements for AES-based round function are as
follows.

For speed.
Requirement 1. The lowest rate round function as possible that leads to

faster speed.
Requirement 2. The number of aesencs in one round is close to 6.
Requirement 3. A round function with a smaller number of blocks (around

7).
For security.

Requirement 4. 128-bit security to the forgery attack by internal collision,
i.e. the lower bound of active S-boxes is 22.

For comparison, Table 3 shows parameters of the round function in the
AEGIS [WP13] family, Tiaoxin-346 [Nik14] and structure by Jean and Nikolić [JN16].

3.3 Finding Efficient Structures

We choose several parameters such as the number of aesencs, the number of
inserted message blocks, and a block permutation to meet requirements given



Table 3: Round functions of AEGIS family and Tiaoxin-346
Primitive # of aesenc # of blocks # of inserted message blocks rate
AEGIS-128 5 5 1 5
AEGIS-256 6 6 1 6

AEGIS-128L 8 8 2 4
Tiaoxin-346 6 13 2 3

[JN16] 6 12 3 2

in Sect. 3.2. The number of possible candidates is estimated as s!×
(

s
a

)
×

(
s
m

)
candidates where s, a, and m are # of blocks, # of aesenc, and # of message
blocks, respectively. For example, it reaches 235.00 candidates when s = 10, a = 4,
and m = 2.

Our Approach. According to Table 3, the most efficient design is Jean and
Nikolić’s structure whose rate is 2. However, their state size is quite large for our
requirement. In our experiments, the round functions with a smaller rate require
a larger number of blocks to meet the security requirement. Indeed, we cannot
find any structure of rate 2 and less than 12 internal blocks by Jean and Nikolić’s
constructions (Fig.4) [JN16]. To address it, our approach is as follow.

– To expand possible candidates while keeping efficiency, we introduce a block
permutation to state blocks in the round function, while Jean and Nikolić
did not consider any permutation. It should be emphasized that executing
the block permutation in register size is a cost-free operation.

– To further improve the efficiency, we focus on the structure in which each
block in one round is applied only either aesenc or XOR to minimized the
critical path of the round function.

Search Targets. When the number of inserted message blocks is m, the number
of aesencs in one round should be (6−m) to satisfy requirement 2 as m aesenc
is used for generating ciphertext blocks for our design to the resistance to the
linear bias (details in Section 3.5). Considering requirement 1 (rate = 2), the
only choice of m is 2, thus the number of aesencs is 4. Following requirement 3,
we consider the case where # of blocks are from 6 to 8. Besides, we consider
the case where rate = 1.5 that can not satisfy requirement 2, because the low
rate round function might be possible to more efficient even if it does not meet
requirement 2. Table 4 shows our candidates of the round function.

We evaluate the lower bounds for the number of active S-boxes for Candidate-
1, 2, 3, 4, 5, and 6 by a MILP solver. We can conduct exhaustive searches
for Candidates-1, 2, 4, and 5 while exhaustive searches for Candidates-3 and
6 are infeasible due to too large candidates that reach 226.23 and 225.91 for
Candidates-3 and 6, respectively. Thus, we randomly search 219.93 candidates for
both Candidate-3 and 6.



Table 4: Candidates of round functions which we search.
Round function # of aesenc # of blocks # of message blocks rate # of candidates # of searched candidates

Candidates-1 4 6 2 2 217.30 ALL
Candidates-2 4 7 2 2 221.82 ALL
Candidates-3 4 8 2 2 226.23 219.93

Candidates-4 3 6 2 1.5 217.72 ALL
Candidates-5 3 7 2 1.5 221.82 ALL
Candidates-6 3 8 2 1.5 225.91 219.93

Results. As a result of an exhaustive search over Candidates-1, 2, 4, and 5, there
are no round functions that satisfy the requirement 4. For candidates-6, we could
not find round functions meeting requirement 4 either. For Candidates-3, we
found that 100 out of 219.93 candidates ensure active S-boxes of ≥ 22. We then
evaluate a diffusion property for these 100 candidates. Then we find 22 out of
100 candidates achieve the full diffusion after 7 rounds in nibble-wise while round
functions of AEGIS-128, AEGIS-256, AEGIS-128L, and [JN16] require 7, 8, 10, and
12 rounds for the full diffusion, respectively, and the one of Tiaoxin-346 never
achieve the full diffusion as the state consists of three independent chucks.

We finally choose the round function shown in Fig 1 as the one of Rocca,
which ensures active S-boxes of 24 that is the largest number of active S-boxes
among 22 candidates. This evaluation requires about 23 days on three computers
equipped with 48/64/64 cores and 256/256/256 GB RAMs.

Table 5 compares the speed of round functions of Rocca and other primitives,
where speed is estimated as the average value of the round function executed
1000000 times with 64kB messages on Intel(R) Core(TM) i7-1068NG7 CPU
@ 2.30GHz with 16 GB RAMs. Our round function is the fastest one and the
number of blocks is smaller than ones whose rate is 2 or 3.

It should be mentioned that the comparison of the speed of round functions
does not always reflect directly to the speed of the whole design. This is because
that the overhead of the ciphertext generation depends on the structure of the
round function, especially the empty cycle in process of XOR/aesenc.

Table 5: Speed (in cycles / Byte) of round functions of Rocca, AEGIS-128,
AEGIS-128L, AEGIS-256, Tiaxion-346, and JN16 (not include a generation part
of a ciphertext).

Primitive Speed (in cycles / Byte) # of blocks rate
AEGIS-128 0.384482 5 5
AEGIS-256 0.388125 6 6

AEGIS-128L 0.191072 8 4
Tiaoxin-346 0.192413 13 3

[JN16] 0.140433 12 2
Rocca 0.124609 8 2



3.4 Loading the Nonce and Key

It has been pointed by Liu et al. that there is one useless round in Tiaoxin-
346 by expressing the internal states in terms of the nonce and the key at the
initialization phase [LIMS21]. The main reason is that the nonce and the key are
not well diffused, i.e. after a certain number of rounds, the internal state can
be expressed in terms of A(N) and the key. To avoid it in Rocca, we carefully
investigate how to place the nonce and the key.

In Rocca, the initial state is loaded as follows:

S[0] = K1, S[1] = N, S[2] = Z0, S[3] = Z1,

S[4] = N ⊕K1, S[5] = 0, S[6] = K0, S[7] = 0.

After one-round update, the state (S[0], . . . , S[7]) becomes:

S[0] = Z0, S[1] = A(K1), S[2] = N ⊕K0, S[3] = N ⊕A(Z0),
S[4] = 0, S[5] = A(N ⊕K1)⊕ Z1, S[6] = N ⊕K1, S[7] = K0 ⊕K1.

It can be observed that N is xored with K0 and K1, respectively. Moreover, N is
involved in the expressions of each state block in a very different way, which can
avoid the useless rounds and, at the same time, strengthen the resistance against
the key-recovery attacks applied to round-reduced AEGIS-128 and Tiaoxin-346 as
described in [LIMS21]. Further evidence can be seen from the expressions of the
state blocks after 3 rounds of update, as shown below:

S[0] = N ⊕K1,

S[1] = A(K0 ⊕K1 ⊕ Z0)⊕ Z0 ⊕N ⊕K1,

S[2] = A(Z0)⊕K0 ⊕K1 ⊕A(A(N ⊕K1)⊕ Z1),
S[3] = A(A(K1)⊕N ⊕K1)⊕A(Z0)⊕K0 ⊕K1,

S[4] = A(N ⊕K0)⊕A(K1)⊕ Z1,

S[5] = A(N ⊕A(Z0)⊕ Z1)⊕A(N ⊕K0)⊕A(K1),
S[6] = A(N ⊕A(Z0))⊕N ⊕A(Z0)⊕ Z1,

S[7] = K0 ⊕K1 ⊕ Z0 ⊕A(A(N ⊕K1)⊕ Z1).

3.5 Generating the Ciphertext Blocks

In both AEGIS and Tiaoxin-346, each ciphertext block is computed based on a
simple quadratic boolean function in terms of the several internal state blocks
where the number of AND operations is 1. However, such a way to generate the
output seems to be insecure against the statistical attack proposed by [Min14],
especially for the scheme targeting 256-bit security.

At the initial design phase, we tried many possible combinations to compute
each ciphertext block with a similar quadratic boolean function. However, with
the MILP-based method [ENP19] to automatically evaluate the security against



this statistical attack, the lower bound for the time complexity is always below
2128, which is far smaller than 2256. Therefore, new strategies are essential for
Rocca.

The basic idea is to utilize a complex nonlinear function and finally the AES
round function is chosen as the only nonlinear function. Due to the parallel way
to perform the AES round function, such a way is indeed rather efficient and
can simultaneously strengthen the security of our scheme. To reduce the overall
overheads, computing each ciphertext block only utilizes 1 aesenc.

The basic principle to choose the state blocks to compute the ciphertext is that
the state blocks (S[0], S[2], S[4], S[5]) passing through the AES round function in
the round updated function should be involved, which can increase the number
of active S-boxes in the first round. In addition, we expect that they should be
processed in a different way from that in the round update function. Intuitively,
this can prevent the ciphertext blocks from being related to the updated internal
state blocks.

Moreover, as (S[4], S[5]) passes through the AES round function in the round
update function and the two state blocks are next to each other, considering
the fact that several rounds are needed, it is better to choose additional state
blocks from (S[0], S[1], S[2], S[3], S[4]), which will be shifted to (S[4], S[5]) after
some rounds. A detailed study of the security of our choice can be found in the
following section.

We emphasize that the overhead of executing these two aesencs is few since
we can assign them into empty cycles of aesenc in the round function.

4 Security Evaluation

4.1 Differential Attack

The differential attack is one of the possible attacks on the initialization phase
of Rocca. Specifically, the differences in the nonce (and key) can propagate to
the ciphertext. If there is a differential characteristic with a high probability, it
can be exploited for the differential attack. Hence, we can compute the lower
bound for the number of active S-boxes in the initialization phase to evaluate
the resistance against the differential attack. To compute the lower bound, we
utilize a MILP-aided method proposed by Mouha et al. [MWGP11] and focus on
the byte-wise truncated differences. We evaluate it in both the single-key setting
where differences can only be injected into the nonce and the related-key setting
where differences can be injected into the key and nonce.

Table 6 shows the lower bounds for the number of active S-boxes up to 14
rounds in the single-key setting and up to 11 rounds in the related-key setting in
the initialization phase. Since the maximal differential probability of the S-box
of AES is 2−6, it is sufficient to guarantee the security against differential attacks
if there are 43 active S-boxes, as it gives 2(−6×43) < 2−256 as an estimate of the
differential probability. As shown in Table 6, there are 54 active S-boxes over
6 rounds in the single-key setting and 44 active S-boxes over 7 rounds in the



related-key setting in the initialization phase. It should be emphasized that we
do not claim the security in the related-key setting, although we evaluated the
number of active S-boxes in the related-key setting.

Since there is a large security margin, we expect that Rocca can resist against
differential attacks in the initialization phase.

Table 6: The lower bound for the number of active S-boxes in the initialization
phase where ASsk and ASrk mean an active S-box in the single-key setting and
in the related-key setting, respectively.

Rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14
# of ASsk 1 6 9 30 38 54 62 82 85 93 100 104 111 115
# of ASrk 0 1 2 11 21 36 44 48 68 73 79 - - -

4.2 Forgery Attack

It has been shown in [Nik14] that the forgery attack is a main threat to the
constructions like Tiaoxin-346 and AEGIS as only one-round update is used to
absorb each block of associated data and message. Such a concern has been taken
into account in our design phase, as reported in Sect. 3.

Specifically, in the forgery attack, the aim is to find a differential trail where
the attackers can arbitrarily choose differences at the associated data and expect
that such a choice of difference can lead to a collision in the internal state
after several number of rounds. The resistance against this attack vector can be
efficiently evaluated with an automatic method [MWGP11]. As Rocca is based
on the AES round function, it suffices to prove that the number of active S-boxes
in such a trail is larger than 22 as the length of the tag is 128 bits. With the
MILP-based method, it is found that the lower bound is 24. Consequently, Rocca
can provide 128-bit security against the forgery attack.

4.3 Integral Attack

One of the most efficient attacks on round-reduced AES is integral attacks.
Recently, Liu et al. presented some attacks [LIMS21] on round-reduced AEGIS-
128 and Tiaoxin-346 based on the integral distinguisher on 4-round AES. To
understand the security of our construction, it is necessary to evaluate the
resistance against integral attacks. Similar to [LIMS21], the internal state will be
first expressed in terms of the initial state and then we study the expressions.

For simplicity, denote the state after r iterations of the round function at the
initialization phase by Sr. In addition, when writing the expressions, we omit
the constants and use A(X) to represent that X passes through one AES round,



i.e. A(X) can represent A(X ⊕ ϵ) where ϵ is a 128-bit constant. In this way, the
internal state S4 can be expressed as follows:

S4[0] = A(A(N)), S4[1] = A(N)⊕A(A(N)),
S4[2] = A(N), S4[3] = A(A(A(N)))⊕N,

S4[4] = A(N), S4[5] = A(A(N))⊕A(N),
S4[6] = A(A(N)⊕A(N))⊕A(N), S4[7] = A(N).

As our construction can provide 256-bit security, it is necessary to evaluate
the case when N traverses all the 2128 possible values under the same 256-bit
key. According to [LIMS21], some terms in the expressions can be eliminated
by adding proper conditions and the expressions can be simplified. However,
according to the expression of S4[3], when N takes all the possible values, it is
impossible that S4[3] will also take all the 2128 possible values. In other words,
the multiset of S4[3] tends to be unstructured. Therefore, by considering the
propagation of S4[3] and the way to compute the ciphertext, we believe that 20
rounds are sufficient to resist against integral attacks.

On the other hand, consider the expressions for S6, as shown below:

S6[0] = A(A(N))⊕A(A(N)⊕A(N))⊕A(N),
S6[1] = A(A(N))⊕A(A(N))⊕A(A(N))⊕A(A(N)⊕A(N))⊕A(N),
S6[2] = A(A(A(N)))⊕A(N)⊕A(A(A(N))⊕A(N))⊕A(N),
S6[3] = A(A(N)⊕A(A(N))⊕A(A(N)⊕A(N))⊕A(N))⊕A(N))

⊕A(A(A(N)))⊕A(N),
S6[4] = A(A(N))⊕A(N)⊕A(A(N)),
S6[5] = A(A(A(A(N)))⊕N)⊕A(A(N))⊕A(N)⊕A(A(N)),
S6[6] = A(A(A(N))⊕A(A(A(N)))⊕N)⊕A(A(A(N)))⊕N,

S6[7] = A(N)⊕A(A(A(N))⊕A(N))⊕A(N).

As

S8[0]⊕ S8[4] = S6[0]⊕ S6[6]⊕A(S6[2])⊕ S6[1]⊕ Z0 ⊕ Z1,

S8[1] = A(S6[7]⊕ Z0)⊕ S6[0]⊕ S6[7],

it can be found that in the expressions of A(S8[1]) and A(S8[0]⊕ S8[4]), N will
pass through 5 AES rounds and there seems to be no way to add proper conditions
to prevent N from passing through 5 AES rounds. Moreover, as N passes through
5 AES rounds in very different ways in A(S8[1]) and A(S8[0]⊕ S8[4]), it is also
impossible to prevent it by considering the sum A(S8[1]) ⊕ A(S8[0] ⊕ S8[4]).
Consequently, we further believe that 20 rounds are secure against integral
attacks.

4.4 State-recovery Attack
Different from AEGIS and Tiaoxin-346, the output in our construction only
involves a few state blocks, i.e. the attackers are able to know A(S[1])⊕ S[5] and



A(S[0]⊕ S[4])⊕ S[2]. As the internal state consists of 8 blocks and the output in
each round only leaks 256-bit information, the attackers at least need to consider
4 consecutive rounds in order to recover the whole secret internal state.

Guess-and-determine attack. The guess-and-determine attack is a common tool
to achieve state recovery. Consider four consecutive rounds at the encryption
phase and denote the 4 internal states used to generate the ciphertexts by St,
St+1, St+2 and St+3, respectively. In this case, the attackers can compute

A(Si[1])⊕ Si[5], A(Si[0]⊕ Si[4])⊕ Si[2],

where t ≤ i ≤ t + 3.
Assuming the message blocks are all zero, we thus have

A(St+1[1]) = A(A(St[0])⊕ St[7]),
St+1[5] = A(St[4])⊕ St[3],

A(St+1[0]⊕ St+1[4]) = A(St[7]⊕ St[3]),
St+1[2] = St[1]⊕ St[6],

A(St+2[1]) = A(A(St+1[0])⊕ St+1[7])
= A(A(St[7])⊕ St[0]⊕ St[6]),

St+2[5] = A(St+1[4])⊕ St+1[3]
= A(St[3])⊕A(St[2])⊕ St[1],

A(St+2[0]⊕ St+2[4]) = A(St+1[7]⊕ St+1[3])
= A(St[0]⊕ St[6]⊕A(St[2])⊕ St[1]),

St+2[2] = St+1[1]⊕ St+1[6]
= A(St[0])⊕ St[7]⊕A(St[5])⊕ St[4],

A(St+3[1]) = A(A(St+1[7])⊕ St+1[0]⊕ St+1[6])
= A(A(St[0]⊕ St[6])⊕ St[7]⊕A(St[5])⊕ St[4]),

St+3[5] = A(St+1[3])⊕A(St+1[2])⊕ St+1[1],
= A(A(St[2])⊕ St[1])⊕A(St[1]⊕ St[6])⊕A(St[0])⊕ St[7],

A(St+3[0]⊕ St+3[4]) = A(St+1[0]⊕ St+1[6]⊕A(St+1[2])⊕ St+1[1]),
= A(A(St[5])⊕ St[4]⊕ St[1]⊕ St[6]⊕A(St[0])),

St+3[2] = A(St+1[0])⊕ St+1[7]⊕A(St+1[5])⊕ St+1[4],
= A(St[7])⊕ St[0]⊕ St[6]⊕A(A(St[4])⊕ St[3])⊕ St[3].

Therefore, the attackers at least need to consider the following 1024 nonlinear
boolean equations in terms of 1024 boolean variables (St[0], . . . , St[7]) in order
to recover the secret state:

α0 = A(St[1])⊕ St[5],



α1 = A(St[0]⊕ St[4])⊕ St[2],
α2 = A(A(St[0])⊕ St[7])⊕A(St[4])⊕ St[3],
α3 = A(St[7]⊕ St[3])⊕ St[1]⊕ St[6],
α4 = A(A(St[7])⊕ St[0]⊕ St[6])⊕A(St[3])⊕A(St[2])⊕ St[1],
α5 = A(St[0]⊕ St[6]⊕A(St[2])⊕ St[1])⊕A(St[0])⊕ St[7]⊕A(St[5])⊕ St[4],
α6 = A(A(St[0]⊕ St[6])⊕ St[7]⊕A(St[5])⊕ St[4])

⊕A(A(St[2])⊕ St[1])⊕A(St[1]⊕ St[6])⊕A(St[0])⊕ St[7],
α7 = A(A(St[5])⊕ St[4]⊕ St[1]⊕ St[6]⊕A(St[0]))

⊕A(St[7])⊕ St[0]⊕ St[6]⊕A(A(St[4])⊕ St[3])⊕ St[3],

where αi ∈ F128
2 (0 ≤ i ≤ 7) are known constants. It is obvious that the attackers

should not completely guess 2 state blocks as the time complexity of guess will be
2256. A clever way is to guess a column and a diagonal of the state blocks, which
fits well with the form of the outputs. Such a strategy will allow attackers to
guess at most 8 columns and diagonals. However, only in the conditions imposed
by (α0, α1, α3), one AES round is involved, i.e. the clever way is only applicable
to these conditions. For the remaining conditions, two AES rounds are involved,
which implies that the attackers at least need to guess a complete 128-bit block
due to the full diffusion. For such reasons, we believe the time complexity of the
guess-and-determine attack cannot be lower than 2256.

Algebraic attack. It is well-known that the S-box of AES can be expressed as
a set of quadratic boolean equations if the input zero is discarded. Therefore,
the above equation system can be described as quadratic boolean equations by
introducing extra intermediate variables to represent the outputs of the S-box for
each AES round function. Notice that for different ciphertext blocks (α0, ..., α7),
the attackers have to introduce different variables due to the big difference
between the equations. Although the system of equations is overdefined, the
number of equations is only slightly larger than the number of variables and the
number of variables is much larger than 256. As far as we know, such a system
of equations can not be solved with time complexity 2256.

4.5 The Linear Bias

Exploiting the fact that the output (keystream) of AEGIS is quadratic in terms of
several state blocks and only one-round update is used to process each message
block, Minaud proposed a statistical attack [Min14] on the keystream of AEGIS-
256. Such an attack was improved in [ENP19] with an automatic search method
based on [SSS+19]. Specifically, the authors first utilized a simple truncated model
and evaluated the minimal number of active S-boxes. It is found that for AEGIS-
128, AEGIS-128L and AEGIS-256, all the results obtained in the simple truncated
model suggest they are insecure against such a statistical attack. However, when
searching for compatible linear trails in the bit level, almost all of them are



incompatible. In addition, the results obtained in the refined model is far larger
than that obtained in the simple truncated model.

To evaluate the resistance of our construction against such a statistical
attack, we also adopted the simple truncated model as in [ENP19]. According to
our results, the best case is to consider 4 consecutive rounds and the minimal
number of active S-boxes is 38, which suggests that the time complexity of the
distinguishing attack is at least 2228. Achieving 42 active S-boxes is ambitious
without affecting the performance and we believe 38 is enough to resist against
such an attack considering the big gap between the truncated model and bitwise
model as reported in [ENP19]. To further verify whether there is a compatible
linear trail to the best solution obtained with the truncated model, we also
implemented the bitwise model where there is no additional constraint on the
input mask and output mask of the S-box except the trivial infeasible pairs caused
by the zero input mask or zero output mask. When searching for a compatible
linear trail based on the truncated pattern, it is soon shown to be infeasible.
One main reason is that compared with the attack on AEGIS-256 requiring
2 consecutive rounds, this statistical attack on Rocca requires 4 consecutive
rounds, which makes the contradictions in the solutions obtained with the simple
truncated model occur more easily if verified with the bitwise model. Taking this
fact into account, we further believe Rocca is secure against this attack vector.

4.6 The State-recovery Attack Using the Decryption Oracle

In a recent work [HII+22], by using a trivial decryption oracle, it is possible to
recover the full internal state after the initialization phase with time complexity
2128. Indeed, such a state-recovery attack has been observed by the designers
of AEGIS-256 and it is inavoidable if the tag size is small. However, what we
need to care is to prevent the further key-recovery attacks after the internal
state is recovered in such a way. In AEGIS-256, this is ensured by using a keyed
permutation for the initialization phase. In this revised version, we simply use a
key feed-foward operation to prevent the further key-recobery attack because the
attackers cannot invert the initialization phase without knowing the key even
if the state after this phase is fully known. Moreover, although the finalization
phase of AEGIS-256 does not involve the key, i.e. it is a public permutation, as
suggested by [HII+22], we feel it is reasonable to involve the key addition at the
very beginning of this phase to prevent further forgery attacks.

4.7 Other Attacks

While there are many attack vectors for block ciphers, their application to Rocca
is restrictive as the attackers can only know partial information of the internal
state from the ciphertext blocks. In other words, reversing the round update
function is impossible in Rocca without guessing many secret state blocks. For
this reason, only the above potential attacks vectors are taken into account. In
addition, due to the usage of the constant (Z0, Z1) at the initialization phase,



the attack based on the similarity in the four columns of the AES state is also
excluded.

4.8 No Claims

We do not claim the security of our scheme in the nonce-misuse setting and it
seems trivial to achieve the state recovery in this setting as the output is computed
with only one-round update function at the encryption phase. In addition, we do
not claim the security of our scheme in the related-key and known-key setting,
which is far from meaningful in real-world applications. For the attacks on the
initialization phase, we emphasize that the attackers can only derive information
from the restricted outputs and cannot know the full secret internal state.

5 Software Implementation

According to [ITU17], target peak data rates for 5G communication are 10
Gbps for uplink and 20 Gbps for downlink. SNOW-V [EJMY19] is a new version
of SNOW-family designed for 5G communication with 256-bit key support and
achieves 58.25 Gbps on Intel(R) Core(TM) i7 8650U CPU @1.90GHz in encryption
only mode. In the next generation (i.e. 6G), the target peak data rate is further
increased to 100 Gbps to 1 Tbps [LaL19]. In order to realize this high peak data
rate, a new encryption algorithm is required.

We evaluate the performance of Rocca and show that Rocca can achieve
160 Gbps when encrypting data of large size. Modern CPUs are equipped with
a dedicated instructions set for AES called AES New Instructions (AES-NI).
As Rocca has the AES round function as its component, we can optimize the
implementation by utilizing AES-NI. Specifically, we use _mm_aesenc_si128() for
AES’s round function. For XORing two 128-bit values, we use _mm_xor_si128().
We also compare the performance with existing algorithms and demonstrate
Rocca’s advantage in terms of the performance. All evaluations were performed
on a PC with Intel(R) Core(TM) i7-1068NG7 CPU @ 2.30GHz with 32GB
RAM. For the fair comparison, we included Rocca as well as SNOW-V, Tiaoxin
and AEGIS to Openssl (3.1.0-dev) and measured their performances. We used
SNOW-V reference implementation with SIMD, which was given in [EJMY19].
For Tiaoxin-346 and AEGIS, we used implementations available at https://
github.com/floodyberry/supercop. The results are given in Table 7, and all
performance results are given in Gbps. In TLS, data will be divided into chunks
of 214 = 16384 bytes or less before it is encrypted, the values in Table 7 are close
to what we expect in practice. As shown, Rocca is 4.16 times faster than SNOW-V,
and 3.10 times faster than AES-256-CTR in processing 16384 bytes message. It
also outperforms both 128-bit algorithms which we tested. In encryption only
mode, the initialization is performed once and only the encryption is iterated.
While in AEAD mode, the initialization, associated data addition, encryption,
tag generation and finalization are iterated. Here, the size of associated data is
fixed to 13 bytes. In case of Rocca, the round function is iterated 20 times in

https://github.com/floodyberry/supercop
https://github.com/floodyberry/supercop


the initialization and finalization, respectively, which is equivalent to processing
1280 bytes of input. As a result, we expect 1280/16384 ≈ 8% overhead to the
encryption mode for 16384 bytes input. Additional overhead will be incurred
by calling functions for the initialization, tag generation and finalization. The
performance results on other CPUs are given in Appendix A, and Rocca achieves
the best performance in other CPUs as well.

Table 7: Performance Evaluation
Algorithms Key length Size of input (bytes)

16384 8192 1024 256 64
Encryption only

AEGIS-128
128-bit

64.60 Gbps 63.43 Gbps 57.53 Gbps 43.44 Gbps 28.94 Gbps
AEGIS-128L 104.91 Gbps 102.71 Gbps 66.28 Gbps 31.30 Gbps 14.10 Gbps
Tiaoxin-346 v2 127.55 Gbps 126.73 Gbps 81.27 Gbps 33.78 Gbps 13.61 Gbps
AEGIS-256

256-bit

66.02 Gbps 64.39 Gbps 59.09 Gbps 40.59 Gbps 26.28 Gbps
AES-256-CBC 9.35 Gbps 9.34 Gbps 9.51 Gbps 9.23 Gbps 9.26 Gbps
AES-256-CTR 58.19 Gbps 56.83 Gbps 48.77 Gbps 38.90 Gbps 19.54 Gbps
ChaCha20 11.49 Gbps 11.38 Gbps 11.40 Gbps 10.63 Gbps 4.8 Gbps
SNOW-V 43.39 Gbps 41.47 Gbps 41.59 Gbps 36.29 Gbps 25.78 Gbps
Rocca 180.55 Gbps 177.71 Gbps 151.22 Gbps 98.30 Gbps 33.74 Gbps

AEAD
AEGIS-128

128-bit
60.03 Gbps 55.16 Gbps 30.13 Gbps 11.88 Gbps 3.62 Gbps

AEGIS-128L 97.55 Gbps 85.41 Gbps 31.14 Gbps 9.96 Gbps 2.95 Gbps
Tiaoxin-346 v2 114.61 Gbps 97.52 Gbps 31.67 Gbps 9.16 Gbps 2.54 Gbps
AEGIS-256

256-bit

61.16 Gbps 57.51 Gbps 30.43 Gbps 11.26 Gbps 3.37 Gbps
AES-256-GCM 29.08 Gbps 27.90 Gbps 18.78 Gbps 8.41 Gbps 2.57 Gbps
ChaCha20-Poly1305 7.60 Gbps 7.32 Gbps 5.98 Gbps 3.61 Gbps 1.24 Gbps
SNOW-V-GCM 30.20 Gbps 29.31 Gbps 19.14 Gbps 8.84 Gbps 2.73 Gbps
Rocca 150.95 Gbps 131.41 Gbps 42.39 Gbps 12.75 Gbps 3.29 Gbps

The performance can be further improved by using new instructions set
and/or optimizing the implementation. The new instructions set AVX512 con-
tains _mm512_aesenc_epi128(), which runs four 128-bit AES round functions
in parallel. As Rocca uses four AES round functions in one state update, us-
ing _mm512_aesenc_epi128() instead of four _mm_aesenc_epi128()s can be
improved by up-to 4 times.

6 Conclusions

To fulfill the basic requirements on the speed and security in 6G systems, i.e.
100 Gbps and 256-bit security, we are motivated to further study the generalized
method to construct round functions based on the parallel calls to the AES round
function, which was first studied by Jean and Nikolić in FSE 2016. As a result, an
efficient AES-based AEAD scheme called Rocca is proposed, whose construction is
only based on the AES round function and the 128-bit XOR operation supported
by the SIMD instructions on model CPUs. In addition, we have performed a
thorough study to understand the security of Rocca. According to the software
implementation, Rocca can reach 150 Gbps in the AEAD mode, which is more
than four times faster than SNOW-V designed for 5G systems. To the best of our



knowledge, Rocca is the first dedicated scheme targeting 6G systems and it also
shows the potential to reach the basic requirements in such systems.

As future work, a parallelizable mode of Rocca would be interesting and
beneficial for both environments equipped with multiple cores and not supported
AES-NI.
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A Software Implementation Results on Other CPUs

We show software implementation results on other CPUs in Tables 8 to 10. The
evaluations were performed on Windows 10 Pro 21H1 for Table 8, Windows 10
Pro 21H2 for Table 9 and macOS Big Sur 11.4 for Tables 10. The difference
of the environments affects the performance of some algorithms(e.g. AESGIS-
256, AES-256-CTR and ChaCha20), Rocca shows competitive performance on all
environments.

Table 8: Performance on Intel(R) Core(TM) i9-12900K CPU with 64 GB RAMs.
Algorithms Key length Size of input (bytes)

16384 8192 1024 256 64
Encryption only

AEGIS-128
128-bit

101.50 Gbps 99.13 Gbps 84.44 Gbps 63.66 Gbps 23.46 Gbps
AEGIS-128L 143.87 Gbps 142.70 Gbps 126.06 Gbps 77.85 Gbps 20.08 Gbps
Tiaoxin-346 v2 192.64 Gbps 189.01 Gbps 148.12 Gbps 78.02 Gbps 21.05 Gbps
AEGIS-256

256-bit

47.27 Gbps 46.65 Gbps 45.82 Gbps 43.09 Gbps 26.55 Gbps
AES-256-CBC 13.62 Gbps 13.69 Gbps 13.65 Gbps 13.68 Gbps 13.44 Gbps
AES-256-CTR 77.82 Gbps 77.49 Gbps 68.58 Gbps 51.40 Gbps 22.04 Gbps
ChaCha20 32.98 Gbps 32.99 Gbps 31.19 Gbps 15.58 Gbps 7.67 Gbps
SNOW-V 62.00 Gbps 62.06 Gbps 56.88 Gbps 54.66 Gbps 27.09 Gbps
Rocca 235.45 Gbps 232.81 Gbps 218.54 Gbps 160.92 Gbps 54.65 Gbps

AEAD
AEGIS-128

128-bit
92.66 Gbps 84.70 Gbps 38.52 Gbps 13.77 Gbps 3.68 Gbps

AEGIS-128L 125.42 Gbps 110.38 Gbps 41.49 Gbps 12.74 Gbps 3.21 Gbps
Tiaoxin-346 v2 163.23 Gbps 138.51 Gbps 46.23 Gbps 13.65 Gbps 3.55 Gbps
AEGIS-256

256-bit

44.82 Gbps 42.46 Gbps 27.98 Gbps 12.53 Gbps 3.64 Gbps
AES-256-GCM 57.87 Gbps 54.47 Gbps 29.12 Gbps 11.45 Gbps 3.13 Gbps
ChaCha20-Poly1305 21.99 Gbps 21.33 Gbps 13.99 Gbps 5.38 Gbps 1.81 Gbps
SNOW-V-GCM 36.10 Gbps 34.81 Gbps 23.63 Gbps 11.26 Gbps 3.54 Gbps
Rocca 210.67 Gbps 185.90 Gbps 70.40 Gbps 22.59 Gbps 6.07 Gbps

Table 9: Performance on Intel(R) Core(TM) i9-11900 CPU@2.50GHz with 64
GB RAMs.

Algorithms Key length Size of input (bytes)
16384 8192 1024 256 64

Encryption only
AEGIS-128

128-bit
97.67 Gbps 95.76 Gbps 79.37 Gbps 53.05 Gbps 23.53 Gbps

AEGIS-128L 142.44 Gbps 140.26 Gbps 112.17 Gbps 62.09 Gbps 17.07 Gbps
Tiaoxin-346 v2 178.69 Gbps 173.88 Gbps 120.69 Gbps 60.13 Gbps 18.79 Gbps
AEGIS-256

256-bit

34.90 Gbps 34.53 Gbps 33.09 Gbps 28.61 Gbps 18.83 Gbps
AES-256-CBC 13.71 Gbps 13.71 Gbps 13.68 Gbps 13.59 Gbps 13.26 Gbps
AES-256-CTR 84.30 Gbps 83.28 Gbps 71.92 Gbps 48.46 Gbps 21.28 Gbps
ChaCha20 62.07 Gbps 61.41 Gbps 57.25 Gbps 29.95 Gbps 7.96 Gbps
SNOW-V 63.67 Gbps 63.44 Gbps 57.21 Gbps 48.58 Gbps 25.76 Gbps
Rocca 207.07 Gbps 203.49 Gbps 156.64 Gbps 80.02 Gbps 24.61 Gbps

AEAD
AEGIS-128

128-bit
88.96 Gbps 81.84 Gbps 37.80 Gbps 13.69 Gbps 3.82 Gbps

AEGIS-128L 122.92 Gbps 105.54 Gbps 36.04 Gbps 11.40 Gbps 2.99 Gbps
Tiaoxin-346 v2 148.90 Gbps 125.89 Gbps 38.13 Gbps 11.28 Gbps 3.01 Gbps
AEGIS-256

256-bit

33.86 Gbps 32.56 Gbps 22.45 Gbps 10.82 Gbps 3.49 Gbps
AES-256-GCM 117.60 Gbps 103.47 Gbps 38.44 Gbps 15.57 Gbps 4.51 Gbps
ChaCha20-Poly1305 39.26 Gbps 37.36 Gbps 17.51 Gbps 5.76 Gbps 1.60 Gbps
SNOW-V-GCM 35.43 Gbps 33.91 Gbps 21.54 Gbps 9.51 Gbps 2.93 Gbps
Rocca 175.12 Gbps 148.95 Gbps 46.22 Gbps 13.81 Gbps 3.68 Gbps



Table 10: Performance on Intel(R) Core(TM) i9-10910 CPU@3.60GHz with 64
GB RAMs.

Algorithms Key length Size of input (bytes)
16384 8192 1024 256 64

Encryption only
AEGIS-128

128-bit
73.43 Gbps 73.84 Gbps 71.21 Gbps 66.15 Gbps 29.23 Gbps

AEGIS-128L 137.50 Gbps 138.47 Gbps 97.32 Gbps 50.41 Gbps 17.45 Gbps
Tiaoxin-346 v2 163.10 Gbps 159.46 Gbps 107.99 Gbps 47.57 Gbps 14.61 Gbps
AEGIS-256

256-bit

89.14 Gbps 88.71 Gbps 82.87 Gbps 67.46 Gbps 29.06 Gbps
AES-256-CBC 10.01 Gbps 10.01 Gbps 9.98 Gbps 9.79 Gbps 9.51 Gbps
AES-256-CTR 41.39 Gbps 40.88 Gbps 39.25 Gbps 33.84 Gbps 20.15 Gbps
ChaCha20 15.89 Gbps 15.85 Gbps 15.35 Gbps 14.42 Gbps 6.86 Gbps
SNOW-V 55.44 Gbps 57.58 Gbps 55.54 Gbps 49.77 Gbps 33.90 Gbps
Rocca 186.22 Gbps 186.02 Gbps 159.62 Gbps 89.59 Gbps 29.53 Gbps

AEAD
AEGIS-128

128-bit
70.04 Gbps 66.94 Gbps 38.53 Gbps 15.33 Gbps 4.18 Gbps

AEGIS-128L 122.96 Gbps 108.75 Gbps 41.34 Gbps 13.24 Gbps 3.45 Gbps
Tiaoxin-346 v2 136.70 Gbps 117.28 Gbps 33.48 Gbps 10.67 Gbps 2.94 Gbps
AEGIS-256

256-bit

79.60 Gbps 76.58 Gbps 38.85 Gbps 14.06 Gbps 3.91 Gbps
AES-256-GCM 26.32 Gbps 25.70 Gbps 17.94 Gbps 8.79 Gbps 2.85 Gbps
ChaCha20-Poly1305 9.95 Gbps 10.02 Gbps 8.00 Gbps 4.69 Gbps 1.59 Gbps
SNOW-V-GCM 31.56 Gbps 30.55 Gbps 19.66 Gbps 8.97 Gbps 2.83 Gbps
Rocca 156.15 Gbps 132.09 Gbps 41.99 Gbps 12.60 Gbps 3.30 Gbps

We also evaluate the performance on Android and iOS, implemented with
ARM NEON intrinsics. The results are shown in the Tables 11 to 13. Note that
the implementation of SNOW-V is not optimized and the shown results can be
further improved by optimizing the implementation. In the original paper, Ekdahl
et al. [EJMY19] showed SNOW-V can achieve 23.59 Gbps on Apple A11 SoC.
Rocca achieves very competitive performance on recent mobile platforms. The
performance is improved on the newer platforms (i.e. Snapdragon 888 and A15
Bionic) and further improvement is expected in the future.

Table 11: Performance on Apple M1
Algorithms Key length Size of input (bytes)

16384 8192 1024 256 64
Encryption only

AEGIS-128
128-bit

41.24 Gbps 41.20 Gbps 40.50 Gbps 36.81 Gbps 26.73 Gbps
AEGIS-128L 67.58 Gbps 67.19 Gbps 61.01 Gbps 46.42 Gbps 23.39 Gbps
Tiaoxin-346 v2 90.45 Gbps 89.23 Gbps 75.47 Gbps 49.47 Gbps 21.33 Gbps
AEGIS-256

256-bit

39.95 Gbps 39.77 Gbps 39.00 Gbps 36.12 Gbps 26.29 Gbps
AES-256-CBC 8.44 Gbps 8.46 Gbps 8.40 Gbps 8.30 Gbps 7.91 Gbps
AES-256-CTR 69.11 Gbps 68.94 Gbps 63.77 Gbps 42.12 Gbps 26.79 Gbps
ChaCha20 18.77 Gbps 18.75 Gbps 18.68 Gbps 10.43 Gbps 5.10 Gbps
SNOW-V 29.43 Gbps 29.52 Gbps 29.15 Gbps 28.28 Gbps 25.22 Gbps
Rocca 96.54 Gbps 96.58 Gbps 91.03 Gbps 71.48 Gbps 35.66 Gbps

AEAD
AEGIS-128

128-bit
40.22 Gbps 39.21 Gbps 28.98 Gbps 15.14 Gbps 5.18 Gbps

AEGIS-128L 64.35 Gbps 61.33 Gbps 35.69 Gbps 14.55 Gbps 4.30 Gbps
Tiaoxin-346 v2 85.43 Gbps 78.75 Gbps 37.26 Gbps 13.38 Gbps 3.74 Gbps
AEGIS-256

256-bit

38.68 Gbps 37.7 Gbps 26.53 Gbps 13.23 Gbps 4.45 Gbps
AES-256-GCM 41.71 Gbps 40.18 Gbps 27.37 Gbps 15.18 Gbps 5.44 Gbps
ChaCha20-Poly1305 13.36 Gbps 13.12 Gbps 9.77 Gbps 4.41 Gbps 1.73 Gbps
SNOW-V-GCM 8.01 Gbps 7.92 Gbps 6.82 Gbps 4.59 Gbps 1.99 Gbps
Rocca 90.02 Gbps 82.12 Gbps 37.30 Gbps 12.94 Gbps 3.56 Gbps



Table 12: Performance on Apple A15 Bionic
Algorithms Key length Size of input (bytes)

16384 8192 1024 256 64
Encryption only

AEGIS-128
128-bit

43.28 Gbps 43.34 Gbps 42.04 Gbps 36.50 Gbps 23.33 Gbps
AEGIS-128L 69.25 Gbps 68.09 Gbps 60.87 Gbps 44.61 Gbps 20.18 Gbps
Tiaoxin-346 v2 87.48 Gbps 86.26 Gbps 71.58 Gbps 43.91 Gbps 17.34 Gbps
AEGIS-256

256-bit

39.21 Gbps 39.35 Gbps 38.21 Gbps 34.76 Gbps 22.29 Gbps
AES-256-CBC 8.74 Gbps 8.77 Gbps 9.07 Gbps 8.99 Gbps 8.40 Gbps
AES-256-CTR 69.39 Gbps 69.06 Gbps 62.95 Gbps 46.76 Gbps 25.34 Gbps
ChaCha20 17.21 Gbps 17.04 Gbps 16.68 Gbps 10.00 Gbps 5.07 Gbps
SNOW-V 29.75 Gbps 29.78 Gbps 28.92 Gbps 27.24 Gbps 22.46 Gbps
Rocca 103.09 Gbps 102.45 Gbps 91.23 Gbps 70.86 Gbps 32.85 Gbps

AEAD
AEGIS-128

128-bit
40.61 Gbps 39.27 Gbps 27.39 Gbps 13.25 Gbps 4.39 Gbps

AEGIS-128L 63.10 Gbps 59.38 Gbps 32.32 Gbps 12.58 Gbps 3.68 Gbps
Tiaoxin-346 v2 81.25 Gbps 74.24 Gbps 33.29 Gbps 11.51 Gbps 3.20 Gbps
AEGIS-256

256-bit

39.00 Gbps 37.54 Gbps 25.27 Gbps 11.98 Gbps 3.74 Gbps
AES-256-GCM 43.87 Gbps 42.42 Gbps 28.26 Gbps 14.30 Gbps 4.82 Gbps
ChaCha20-Poly1305 12.30 Gbps 12.07 Gbps 9.18 Gbps 4.45 Gbps 1.76 Gbps
SNOW-V-GCM 7.73 Gbps 7.66 Gbps 6.47 Gbps 4.14 Gbps 1.73 Gbps
Rocca 82.20 Gbps 76.59 Gbps 33.40 Gbps 11.28 Gbps 3.05 Gbps

Table 13: Performance on Qualcomm Snapdragon 888
Algorithms Key length Size of input (bytes)

16384 8192 1024 256 64
Encryption only

AEGIS-128
128-bit

31.33 Gbps 30.92 Gbps 30.03 Gbps 27.44 Gbps 19.96 Gbps
AEGIS-128L 53.35 Gbps 53.06 Gbps 47.44 Gbps 34.37 Gbps 16.61 Gbps
Tiaoxin-346 v2 63.41 Gbps 62.57 Gbps 52.50 Gbps 34.25 Gbps 13.84 Gbps
AEGIS-256

256-bit

34.26 Gbps 34.38 Gbps 32.75 Gbps 28.54 Gbps 19.54 Gbps
AES-256-CBC 11.76 Gbps 11.82 Gbps 11.65 Gbps 11.46 Gbps 10.61 Gbps
AES-256-CTR 37.70 Gbps 37.45 Gbps 35.18 Gbps 27.44 Gbps 17.37 Gbps
ChaCha20 13.44 Gbps 13.40 Gbps 13.04 Gbps 8.22 Gbps 4.23 Gbps
SNOW-V 23.94 Gbps 23.85 Gbps 23.59 Gbps 22.12 Gbps 18.44 Gbps
Rocca 78.11 Gbps 77.51 Gbps 70.08 Gbps 51.55 Gbps 24.07 Gbps

AEAD
AEGIS-128

128-bit
30.63 Gbps 30.24 Gbps 20.68 Gbps 9.98 Gbps 3.26 Gbps

AEGIS-128L 50.63 Gbps 47.35 Gbps 24.34 Gbps 9.16 Gbps 2.65 Gbps
Tiaoxin-346 v2 58.45 Gbps 53.39 Gbps 24.26 Gbps 8.35 Gbps 1.20 Gbps
AEGIS-256

256-bit

32.74 Gbps 31.37 Gbps 20.00 Gbps 8.97 Gbps 2.76 Gbps
AES-256-GCM 25.44 Gbps 24.38 Gbps 17.02 Gbps 8.29 Gbps 2.88 Gbps
ChaCha20-Poly1305 9.21 Gbps 8.94 Gbps 6.29 Gbps 3.13 Gbps 1.21 Gbps
SNOW-V-GCM 7.25 Gbps 7.15 Gbps 5.78 Gbps 3.50 Gbps 1.36 Gbps
Rocca 71.23 Gbps 64.00 Gbps 26.55 Gbps 8.80 Gbps 2.38 Gbps



B Round functions in Table 2

Fig 6, 7, and 8 show round functions whose # of blocks are 8, 9, and 10 in
Table 2, respectively. The round function whose # of blocks is 8 is the same as
the one of Rocca. Other 2 round functions whose # of blocks is 9 and 10 are the
simple extended version of that.

Block
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Block Block Block Block Block Block Block

BlockBlockBlockBlockBlockBlockBlockBlock

Fig. 6: The round function whose # of blocks is 8.
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Fig. 7: The round function whose # of blocks is 9.
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Fig. 8: The round function whose # of blocks is 10.



C Reference Implementation with SIMD

# include <memory .h>
# include <immintrin .h>
# include <stdlib .h>
# include <stdint .h>

# define ROCCA_KEY_SIZE (32)
# define ROCCA_IV_SIZE (16)
# define ROCCA_MSG_BLOCK_SIZE (32)
# define ROCCA_TAG_SIZE (16)
# define ROCCA_STATE_NUM ( 8)

typedef struct ROCCA_CTX {
uint8_t key[ ROCCA_KEY_SIZE /16][16];
uint8_t state[ ROCCA_STATE_NUM ][16];
size_t size_ad ;
size_t size_m ;

} rocca_context ;

# define load(m) _mm_loadu_si128 (( const __m128i *)(m))
# define store(m,a) _mm_storeu_si128 (( __m128i *)(m),a)
# define xor(a,b) _mm_xor_si128 (a,b)
# define and(a,b) _mm_and_si128 (a,b)
# define enc(a,k) _mm_aesenc_si128 (a,k)
# define setzero () _mm_setzero_si128 ()

# define ENCODE_IN_LITTLE_ENDIAN (bytes , v) \
bytes[ 0] = (( uint64_t )(v) << ( 3)); \
bytes[ 1] = (( uint64_t )(v) >> (1*8 -3)); \
bytes[ 2] = (( uint64_t )(v) >> (2*8 -3)); \
bytes[ 3] = (( uint64_t )(v) >> (3*8 -3)); \
bytes[ 4] = (( uint64_t )(v) >> (4*8 -3)); \
bytes[ 5] = (( uint64_t )(v) >> (5*8 -3)); \
bytes[ 6] = (( uint64_t )(v) >> (6*8 -3)); \
bytes[ 7] = (( uint64_t )(v) >> (7*8 -3)); \
bytes[ 8] = (( uint64_t )(v) >> (8*8 -3)); \
bytes[ 9] = 0; \
bytes [10] = 0; \
bytes [11] = 0; \
bytes [12] = 0; \
bytes [13] = 0; \
bytes [14] = 0; \
bytes [15] = 0;

# define FLOORTO (a,b) ((a) / (b) * (b))

# define S_NUM ROCCA_STATE_NUM
# define M_NUM ( 2)



# define INIT_LOOP (20)
# define TAG_LOOP (20)

# define VARS4UPDATE \
__m128i k[2], state[S_NUM], stateNew [S_NUM], M[M_NUM ];

# define VARS4ENCRYPT \
VARS4UPDATE \
__m128i Z[M_NUM], C[M_NUM ];

# define COPY_TO_LOCAL (ctx) \
for( size_t i = 0; i < S_NUM; ++i) \
{ state[i] = load (&(( ctx)->state[i ][0])); }

# define COPY_FROM_LOCAL (ctx) \
for( size_t i = 0; i < S_NUM; ++i) \
{ store (&(( ctx)->state[i][0]) , state[i]); }

# define COPY_TO_LOCAL_IN_TAG (ctx) \
COPY_TO_LOCAL (ctx) for( size_t i = 0; i < 2; ++i) \
{ k[i] = load (&(( ctx)->key[i ][0])); }

# define COPY_FROM_LOCAL_IN_INIT (ctx) \
COPY_FROM_LOCAL (ctx) for( size_t i = 0; i < 2; ++i) \
{ store (&(( ctx)->key[i][0]) , k[i]); }

# define UPDATE_STATE (X) \
stateNew [0] = xor(state [7], X[0]); \
stateNew [1] = enc(state [0], state [7]); \
stateNew [2] = xor(state [1], state [6]); \
stateNew [3] = enc(state [2], state [1]); \
stateNew [4] = xor(state [3], X[1]); \
stateNew [5] = enc(state [4], state [3]); \
stateNew [6] = enc(state [5], state [4]); \
stateNew [7] = xor(state [6], state [0]); \
for( size_t i = 0; i < S_NUM; ++i) {state[i] = stateNew [i];}

# define INIT_STATE (key , iv) \
k[0] = load (( key) + 16*0); \
k[1] = load (( key) + 16*1); \
state [0] = k[1]; \
state [1] = load(iv); \
state [2] = load(Z0); \
state [3] = load(Z1); \
state [4] = xor(state [1], state [0]); \
state [5] = setzero (); \
state [6] = k[0]; \
state [7] = setzero (); \
M[0] = state [2]; \



M[1] = state [3]; \
for( size_t i = 0; i < INIT_LOOP ; ++i) { \

UPDATE_STATE (M) \
} \
state [0] = xor(state [0], k[0]); \
state [4] = xor(state [4], k[1]);

# define MAKE_STRM \
Z[0] = enc( state [1] , state [5]); \
Z[1] = enc(xor(state [0], state [4]) , state [2]);

# define MSG_LOAD (mem , reg) \
reg [0] = load (( mem) + 0); \
reg [1] = load (( mem) + 16);

# define MSG_STORE (mem , reg) \
store (( mem) + 0, reg [0]); \
store (( mem) + 16, reg [1]);

# define XOR_BLOCK (dst , src1 , src2) \
dst [0] = xor(src1 [0], src2 [0]); \
dst [1] = xor(src1 [1], src2 [1]);

# define MASKXOR_BLOCK (dst , src1 , src2 , mask) \
dst [0] = and(xor(src1 [0], src2 [0]) , mask [0]); \
dst [1] = and(xor(src1 [1], src2 [1]) , mask [1]);

# define ADD_AD (input) \
MSG_LOAD (input , M) \
UPDATE_STATE (M)

# define ADD_AD_LAST_BLOCK (input , size) \
uint8_t tmpblk [ ROCCA_MSG_BLOCK_SIZE ] = {0}; \
memcpy (tmpblk , input , size ); \
MSG_LOAD (tmpblk , M) \
UPDATE_STATE (M)

# define ENCRYPT (output , input) \
MSG_LOAD (input , M) \
MAKE_STRM \
XOR_BLOCK (C, M, Z) \
MSG_STORE (output , C) \
UPDATE_STATE (M)

# define ENCRYPT_LAST_BLOCK (output , input , size) \
uint8_t tmpblk [ ROCCA_MSG_BLOCK_SIZE ] = {0}; \
memcpy (tmpblk , input , size ); \
MSG_LOAD (tmpblk , M) \
MAKE_STRM \
XOR_BLOCK (C, M, Z) \



MSG_STORE (tmpblk , C) \
memcpy (output , tmpblk , size ); \
UPDATE_STATE (M)

# define DECRYPT (output , input) \
MSG_LOAD (input , C) \
MAKE_STRM \
XOR_BLOCK (M, C, Z) \
MSG_STORE (output , M) \
UPDATE_STATE (M)

# define DECRYPT_LAST_BLOCK (output , input , size) \
uint8_t tmpblk [ ROCCA_MSG_BLOCK_SIZE ] = {0}; \
uint8_t tmpmsk [ ROCCA_MSG_BLOCK_SIZE ] = {0}; \
__m128i mask[M_NUM ]; \
memcpy (tmpblk , input , size ); \
memset (tmpmsk , 0xFF , size ); \
MSG_LOAD (tmpblk , C ) \
MSG_LOAD (tmpmsk , mask) \
MAKE_STRM \
MASKXOR_BLOCK (M, C, Z, mask) \
MSG_STORE (tmpblk , M) \
memcpy (output , tmpblk , size ); \
UPDATE_STATE (M)

# define SET_AD_BITLEN_MSG_BITLEN (sizeAD , sizeM) \
uint8_t bitlenAD [16]; \
uint8_t bitlenM [16]; \
ENCODE_IN_LITTLE_ENDIAN (bitlenAD , sizeAD ); \
ENCODE_IN_LITTLE_ENDIAN ( bitlenM , sizeM ); \
M[0] = load( bitlenAD ); \
M[1] = load( bitlenM );

# define MAKE_TAG (sizeAD , sizeM , tag) \
SET_AD_BITLEN_MSG_BITLEN (sizeAD , sizeM) \
state [0] = xor(state [0], k[0]); \
state [4] = xor(state [4], k[1]); \
for( size_t i = 0; i < TAG_LOOP ; ++i) { \

UPDATE_STATE (M) \
} \
__m128i tag128 = setzero (); \
for( size_t i = 0; i < S_NUM; ++i) { \

tag128 = xor(tag128 , state[i]); \
} \
store(tag , tag128 );

static const uint8_t Z0[] = {0xcd ,0x65 ,0xef ,0x23 ,0x91 ,\
0x44 ,0x37 ,0x71 ,0x22 ,0xae ,0x28 ,0xd7 ,0x98 ,0x2f ,0x8a ,0 x42 };

static const uint8_t Z1[] = {0xbc ,0xdb ,0x89 ,0x81 ,0xa5 ,\
0xdb ,0xb5 ,0xe9 ,0x2f ,0x3b ,0x4d ,0xec ,0xcf ,0xfb ,0xc0 ,0 xb5 };



void rocca_init ( rocca_context * ctx , const uint8_t * key , \
const uint8_t * iv) {

VARS4UPDATE
INIT_STATE (key , iv);
COPY_FROM_LOCAL_IN_INIT (ctx );
ctx -> size_ad = 0;
ctx -> size_m = 0;

}

void rocca_add_ad ( rocca_context * ctx , const uint8_t * in , \
size_t size) {

VARS4UPDATE
COPY_TO_LOCAL (ctx );
size_t i = 0;
for( size_t size2 = FLOORTO (size , ROCCA_MSG_BLOCK_SIZE ); \
i < size2; i += ROCCA_MSG_BLOCK_SIZE ) {

ADD_AD (in + i);
}
if(i < size) {

ADD_AD_LAST_BLOCK (in + i, size - i);
}
COPY_FROM_LOCAL (ctx );
ctx -> size_ad += size;

}

void rocca_encrypt ( rocca_context * ctx , uint8_t * out , \
const uint8_t * in , size_t size) {

VARS4ENCRYPT
COPY_TO_LOCAL (ctx );
size_t i = 0;
for( size_t size2 = FLOORTO (size , ROCCA_MSG_BLOCK_SIZE ); \
i < size2; i += ROCCA_MSG_BLOCK_SIZE ) {

ENCRYPT (out + i, in + i);
}
if(i < size) {

ENCRYPT_LAST_BLOCK (out + i, in + i, size - i);
}
COPY_FROM_LOCAL (ctx );
ctx -> size_m += size;

}

void rocca_decrypt ( rocca_context * ctx , uint8_t * out , \
const uint8_t * in , size_t size) {

VARS4ENCRYPT
COPY_TO_LOCAL (ctx );
size_t i = 0;
for( size_t size2 = FLOORTO (size , ROCCA_MSG_BLOCK_SIZE ); \
i < size2; i += ROCCA_MSG_BLOCK_SIZE ) {

DECRYPT (out + i, in + i);



}
if(i < size) {

DECRYPT_LAST_BLOCK (out + i, in + i, size - i);
}
COPY_FROM_LOCAL (ctx );
ctx -> size_m += size;

}

void rocca_tag ( rocca_context * ctx , uint8_t *tag) {
VARS4UPDATE
COPY_TO_LOCAL_IN_TAG (ctx );
MAKE_TAG (ctx ->size_ad , ctx ->size_m , tag );

}



D Test Vectors

This section gives three test vectors of Rocca. The least significant byte of the
vector is shown on the left and the first 128-bit value is shown on the first line.

=== test vector #1===
key =
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

nonce =
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

associated data =
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

plaintext =
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

ciphertext =
15 89 2f 85 55 ad 2d b4 74 9b 90 92 65 71 c4 b8
c2 8b 43 4f 27 77 93 c5 38 33 cb 6e 41 a8 55 29
17 84 a2 c7 fe 37 4b 34 d8 75 fd cb e8 4f 5b 88
bf 3f 38 6f 22 18 f0 46 a8 43 18 56 50 26 d7 55

tag =
cc 72 8c 8b ae dd 36 f1 4c f8 93 8e 9e 07 19 bf

=== test vector #2===
key =
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01

nonce =
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01

associated data =
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01

plaintext =
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00



ciphertext =
60 9b 60 18 7e ae 09 ee 0d df 95 af 40 86 e7 66
32 5c 17 03 26 c2 9d 91 b2 4d 71 4f ec f3 85 fd
09 87 f8 20 cb f7 ca bb 11 52 43 2c 6d 60 5a 8e
c5 7e af 08 2b b4 e7 2b 9e 54 5e 5c 59 01 3d af

tag =
74 0e 79 c5 e5 9b d2 91 5f da 57 9d 51 7a c4 1d

=== test vector #3===
key =
01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef
01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef

nonce =
01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef

associated data =
01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef
01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef

plaintext =
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

ciphertext =
44 c7 46 1b 6c 13 08 79 da 05 de 5e f8 8e da 35
91 a2 a7 ae ff 91 ef d3 ac 60 3b 28 e0 57 61 09
5d d8 a1 87 bf 57 8b 5f a6 04 ed 5e 61 f0 3c 0b
81 91 05 c3 6f 6a b7 97 59 7b 67 e3 80 3b 6a 04

tag =
1e 5e fe fa 86 df b6 e5 5a d5 bb 9d bd a6 98 e5
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