The Scholz conjecture on addition chain is true for $v(n)=4$

Amadou TALL ${ }^{1}$
Departement de Mathématiques et Informatique
Université Cheikh Anta Diop de Dakar
amadou7.tall@ucad.edu.sn

Abstract

The aim of this paper is to prove that the Scholz conjecture on addition chain is true for all integers with $v(n)=4, v(n)$ is the number of " $1 "$ in the binary expansion of n.

1 Introduction

Definition 1. An addition chain for a positive integer n is a set of integers

$$
\mathcal{C}=\left\{a_{0}=1, a_{1}, a_{2}, \ldots, a_{r}=n\right\}
$$

such that

$$
\forall k \in[2 . . r], \exists i, j \in[1 . . k-1], \quad a_{k}=a_{i}+a_{j}
$$

and $a_{r}=n$.
The integer r is the length of the chain \mathcal{C} and can be denoted $\ell(\mathcal{C})$.
Definition 2. We define $l(n)$ as the smallest r for which there exists an addition chain $\left\{a_{0}=\right.$ $\left.1, a_{1}, a_{2}, \ldots, a_{r}=n\right\}$ for n.
There exist several methods to compute an addition chain for any integer n. We can cite the binary method (often called the fast exponentiation method), the m-ary method, the factor method to name a few. However, the problem of finding $\ell(n)$ for a given n is known to be NP-complete.

A first attempt were done based on the binary expansion of integers.
Definition 3. Let n be an integer. The number of " 1 "s in its binary expansion is called the Hamming weight of n and is denoted $v(n)$.

It has been proven that

Theorem 4.

$$
\ell(n)=a+v(n)-1 \quad \forall v(n) \leq 3
$$

meaning that $\ell\left(2^{a}\right)=a, \ell\left(2^{a}+2^{b}\right)=a+1$, and $\ell\left(2^{a}+2^{b}+2^{c}\right)=a+2$. The case where $v(n)=4$ have some particularities as follows

Theorem 5. For all integers n such that $n=2^{a}+2^{b}+2^{c}+2^{d}$, we have

$$
\ell(n)=a+3
$$

except for the integers satisfying one of the following conditions, where $\ell(n)=a+2$

1. $a-b=c-d$
2. $a-b=c-d+1$
3. $a-b=3$ and $c-d=1$
4. $a-b=5$ and $b-c=c-d=1$

More informations can be found in Knuth [1]. They can be proven using the binary method which is based on the Hamming weight. We are now concerned about integers with only "1"s in their binary expansion $\left(2^{n}-1\right)$. Is the binary method still efficient? The answer is no. Scholz conjectured that we can always find an addition chain for $2^{n}-1$ of length $\leq \ell(n)+n-1$.

Definition 6. Let n be a positive integer, an addition chain for $2^{n}-1$ is called a short addition chain if its length is $\ell(n)+n-1$.

The most famous conjecture on addition chains is the Scholz's conjecture stating that

$$
\ell\left(2^{n}-1\right) \leq \ell(n)+n-1 .
$$

Aiello and Subbarao [5] have conjectured that for every integer n, there exist a short addition chain for $2^{n}-1$ (an addition chain for $2^{n}-1$ of lenght $\ell(n)+n-1$).

$$
\forall n \in \mathbb{N}, \exists \text { an addition chain for } 2^{n}-1 \text { of length } \ell(n)+n-1
$$

They have shown that it is true for all $n=2^{k}$.
Theorem 7. It's known that

$$
\ell\left(2^{2^{k}}-1\right)=k+2^{k}-1=\ell(n)+n-1, n=2^{k} .
$$

And we know a way of computing such chains.
We can see that a short addition chain is not necessarily a minimal addition chain but, finding a short addition chain for $2^{n}-1$ is enought to prove that the Scholz-Brauer conjecture is true for n.

The main result of this paper is the proof that:

$$
v(n) \leq 4 \Rightarrow \ell\left(2^{n}-1\right) \leq \ell(n)+n-1 .
$$

We will conduct a proof by induction on the Hamming weight of integers. It will then be used to get an algorithm for the computation of short addition chains for $2^{n}-1$.
Our proof will be using the factoring method which can be stated as follows
Definition 8. Let $\mathcal{C} \backslash$ and \mathcal{C}_{\Uparrow} be respectively two addition chains for n and m. The factor method is a method to obtain an addition chain $\mathcal{C}_{\mathbb{1} \backslash}$ for $m n$ as follows:
If

$$
\mathcal{C}_{\hat{\mathbb{1}}}=\left\{m_{0}, m_{1}, \ldots, m_{r}\right\}
$$

and

$$
\mathcal{C}_{\backslash}=\left\{n_{0}, n_{1}, \ldots, n_{t}\right\}
$$

then

$$
\mathcal{C}_{\mathbb{1} \backslash}=\left\{a_{0}, a_{1}, \ldots, a_{r}, a_{r+1}, a_{r+2}, \ldots, a_{r+t}\right\}
$$

with $a_{i}=m_{i} \forall i \leq r$ and $a_{r+i}=m_{r} \times n_{i}$.
On can clearly see that $\mathcal{C}_{\hat{\mathbb{1}} \mid}$ is an addition chain and $a_{r+t}=m_{r} \times n_{t}=m n$. and we have a clear idea on the lenght of the chain

Theorem 9.

$$
\ell(m n) \leq \ell(m)+\ell(n)
$$

The proof is simple, one can easily construct an addition chain for $m n$ based on the chains for m and n.

2 Main results

Here is the first result of this paper.
Theorem 10. For all integers $n=2^{k}+2^{i}$, with $i<k$, we can find a short chain for $2^{n}-1$. Which implies that

$$
\ell\left(2^{n}-1\right) \leq \ell(n)+n-1 .
$$

Proof. Let

$$
P_{k}=\left\{\text { we have a short addition chain for } 2^{n}-1, \text { where } n=2^{k}+2^{i}, \text { with } i<k\right\} .
$$

Clearly, $P_{1}=\{$ we have a short addition chain for 3$\}$ is true.
We assume that P_{k} is true for all $k<k_{0}$ and let $n=2^{k_{0}}+2^{i}$ for some i.
First case: $i>0$
We have the relation

$$
2^{n}-1=2^{2^{k_{0}}+2^{i}}-1=\left(2^{2^{k_{0}-1}+2^{i-1}}-1\right)\left(2^{2^{k_{0}-1}+2^{i-1}}+1\right)
$$

And we do know that:
(i) A minimal addition chain for $2^{2^{k_{0}-1}+2^{i-1}}+1$ is given by the binary method and has length $2^{k_{0}-1}+2^{i-1}+1$.
(ii) Thanks to $P_{k_{0}-1}$, we have a chain of length $2^{k_{0}-1}+2^{i-1}+k_{0}-1$ for the integer $2^{2^{k_{0}-1}+2^{i-1}}-1$. Using the factor method, we have a chain for $2^{n}-1$ of length:

$$
\left(2^{k_{0}-1}+2^{i-1}+1\right)+\left(2^{k_{0}-1}+2^{i-1}+k_{0}-1\right)=2^{k_{0}}+2^{i}+k_{0}
$$

and the result holds in this case.
Second case: $i=0$
Then

$$
2^{n}-1=2^{2^{k_{0}}+1}-1=2\left(2^{2^{k_{0}}}-1\right)+1
$$

And we do know that:
(i) An addition chain for $2^{2^{k_{0}}}-1$ of length $2^{k_{0}}+k_{0}-1$ is given by [5].
(ii) We need two star steps more to reach $2^{n}-1$, a doubling and a " +1 ".

We deduce that we have a chain of length $2^{k_{0}}+k_{0}+1$ for $2^{n}-1$.
This ends the proof of the result.
Now let us state the second result of this paper.
Theorem 11. For all integers $n=2^{k}+2^{i}+2^{j}$, we have

$$
\ell\left(2^{n}-1\right) \leq \ell(n)+n-1
$$

and we can find short addition chain for $2^{n}-1$.

Proof. Let

$P_{k}=\left\{\exists\right.$ an addition chain for $2^{n}-1$ of length $\ell(n)+n-1$, where $n=2^{k}+2^{i}+2^{j}$, with $\left.k>i>j\right\}$.
We know that P_{3} is true. And we have proved above that P_{2} is also true.
Suppose that P_{k} is true for all $k<k_{0}$. Then, let $n=2^{n_{1}}+2^{n_{2}}+\cdots+2^{n_{k_{0}}}$ be an integer of Hamming weight k_{0}.

First case: $j=0$
We can write

$$
2^{n}-1=2\left(2^{n-1}\right)-1=2\left(2^{n-1}-1\right)+1
$$

We know that $v(n-1)=2$, the previous result shows that we can find an addition chain for $2^{n-1}-1$ of length

$$
\ell(n-1)+(n-1)-1 .
$$

Adding the two last star steps to reach $2^{n}-1$, we obtain-as wanted-a chain of length

$$
\begin{aligned}
(\ell(n-1)+(n-1)-1)+2= & \ell(n-1)+(n-1)+1 \\
= & (k+1)+\left(2^{k}+2^{j}\right)+1 \\
& =2^{k}+2^{j}+k+2
\end{aligned}
$$

Second case $j>0$
In this case

$$
n=2^{k}+2^{i}+2^{j}=2\left(2^{k-1}+2^{i-1}+2^{j-1}\right)
$$

So, we can write

$$
2^{n}-1=\left(2^{\frac{n}{2}}-1\right)\left(2^{\frac{n}{2}}+1\right)
$$

We know that
(i) a minimal addition chain for $2^{\frac{n}{2}}+1$ of length $\frac{n}{2}+1$ is given by the binary method,
(ii) $P_{k_{0}-1}$ is true, thus we have a short addition chain for $2^{\frac{n}{2}}-1$, its length is equal to $\ell\left(\frac{n}{2}\right)+\frac{n}{2}-1$.

Using the factor method, we have an addition chain for $2^{n}-1$ of length

$$
\left(\frac{n}{2}+1\right)+\left(\ell\left(\frac{n}{2}\right)+\frac{n}{2}-1\right)=\ell(n / 2)+n .
$$

By adding one star step to a minimal chain for $\frac{n}{2}$, we obtain a chain for n. Then, we have found a chain for $2^{n}-1$ of length $\ell(n)+n-1$.

Here is the third and most interesting case $(v(n)=4)$. There will be two cases. The first is when $\ell(n)=a+3$ and the proof will be identical to the above ones. And the second case is when $\ell(n)=a+2$ and we know all the four possibilities of n.

Theorem 12. If $n=2^{a}+2^{b}+2^{c}+2^{d}$ and $\ell(n)=a+3$, then we can construct a short addition chain for n.

The proof for the case where $\ell(n)=a+3$ is identical to the above proof, one can easily prove it using the induction way presented above.

Proof. 1. $d=0$
In this case $\ell(n-1)=a+2$, and we have

$$
\ell\left(2^{n-1}-1\right) \leq \ell(n-1)+n-2 .
$$

We also know that

$$
2^{n}-1=2\left(2^{n-1}-1\right)+1
$$

then we can reach n by adding two step to a chain for $2^{n-1}-1$ of lenght $\ell(n-1)+n-1$, so

$$
\ell\left(2^{n}-1\right) \leq \ell(n-1)+n-1+2=\ell(n)+n-1
$$

2. $d>0$
we have

$$
2^{n}-1=\left(2^{\frac{n}{2}}+1\right)\left(2^{\frac{n}{2^{2}}}+1\right) \cdots\left(2^{\frac{n}{2^{d}}}+1\right)\left(2^{\frac{n}{2^{d}}}-1\right),
$$

using the factor method, we have an addition chain for $2^{n}-1$ of lenght

$$
\begin{array}{r}
\left(\frac{n}{2}+1\right)+\left(\frac{n}{2^{2}}+1\right)+\cdots+\left(\frac{n}{2^{d}}+1\right)+\ell\left(\frac{n}{2^{d}}\right)+\frac{n}{2^{d}}-1 \\
=\left(\frac{n}{2}+\frac{n}{2^{2}}+\cdots+\frac{n}{2^{d}}+\frac{n}{2^{d}}\right)+d+\ell\left(\frac{n}{2^{d}}\right)-1 \\
=\ell(n)+n-1 . \tag{1}
\end{array}
$$

and this gives us the result

$$
\ell\left(2^{n}-1\right) \leq \ell(n)+n-1,
$$

thanks to the fact that $2^{\frac{n}{2^{d}}}-1$ satisfies the case 1 .
The remaining case is:
Theorem 13. If $n=2^{a}+2^{b}+2^{c}+1$ and $\ell(n)=a+2$, then we can construct a short addition chain for n.

Proof. Let $n=2^{a}+2^{b}+2^{c}+1$ and $\ell(n)=a+2$ then n is in one of these four cases,

1. $n=2^{a}+2^{b}+2^{c}+1$ with $a-b=c$, we can write

$$
n=2^{b}\left(2^{a-b}+1\right)+2^{c}+1=\left(2^{b}+1\right)\left(2^{c}+1\right) .
$$

and that give us a simple way of reaching $2^{n}-1$

$$
\begin{gathered}
2^{n}-1=2^{\left(2^{b}+1\right)\left(2^{c}+1\right)}-1 \\
=2^{2^{c}+1}\left(2^{\left(2^{c}+1\right) \cdot 2^{b}}-1\right)+2^{2^{c}+1}-1
\end{gathered}
$$

and we can also write $2^{n}-1$ this way,

$$
2^{2^{c}+1}\left\{\left(2^{2^{c}+1}-1\right)\left(2^{\left(2^{c}+1\right)}+1\right)\left(2^{\left(2^{c}+1\right) \cdot 2}+1\right)\left(2^{\left(2^{c}+1\right) \cdot 2^{2}}+1\right) \cdots\left(2^{\left(2^{c}+1\right) \cdot 2^{b-1}}+1\right)\right\}+2^{2^{c}+1}+1
$$

using the factor method, we can now have an addition chain for $2^{n}-1$ of lenght

$$
\ell\left(2^{c}-1\right)+2^{c}+1-1+2^{c}+1+1+b+\left(2^{c}+1\right)\left(1+2+2^{2}+\cdots+2^{b-1}\right)
$$

after some rearrangements, we can see that the above value is

$$
\left(2^{b}+1\right)\left(2^{c}+1\right)+b+c+1=\ell(n)+n-1 .
$$

2. $n=2^{a}+2^{b}+2^{c}+1$ with $a-b=c+1$,

We have

$$
n=2^{a}+2^{b}+2^{c}+1=2^{b}\left(2^{c+1}+1\right)+\left(2^{c}+1\right)
$$

which allows to write

$$
2^{n}-1=2^{2^{b}\left(2^{c+1}+1\right)+\left(2^{c}+1\right)}-1=2^{2^{c}+1}\left(2^{2^{b}\left(2^{c+1}+1\right)}-1\right)+\left(2^{2^{c}+1}-1\right)
$$

which gives

$$
2^{n}-1=2^{2^{c}+1}\left(\left(2^{2^{c+1}+1}-1\right)\left(2^{2^{c+1}+1}+1\right)\left(2^{2\left(2^{c+1}+1\right)}+1\right)\left(2^{2^{2}\left(2^{c+1}+1\right)}+1\right) \ldots\left(2^{2^{b-1}\left(2^{c+1}+1\right)}+1\right)\right)+\left(2^{2^{c}+1}-1\right)
$$

It leads to an addition chain of length

$$
\ell()+\left(2^{c}+1\right)+\left(2^{c+1}+1+1\right)+\left(2\left(2^{c+1}+1\right)+1\right)+\ldots+\left(2^{b-1}\left(2^{c+1}+1\right)+1\right)+2^{c}+1+1
$$

after regrouping, we get that the lenght is

$$
\ell\left(2^{c}+1\right)+2^{c}+1-1+2^{c}+1+b+\left(2^{c+1}+1\right)\left(1+2+\cdots+2^{b-1}\right)+2^{c}+1+1=
$$

$=c+1+2^{c}+2^{c}+1+b+\left(2^{c+1}+1\right)\left(2^{b}-1\right)+2^{c}+2=2^{b+c+1}+2^{b}+2^{c}+b+c+3=\ell(n)+n-1$.
3. $n=2^{a}+2^{b}+2^{c}+1$ with $a-b=3$ and $c=1$, we can see that

$$
n=3+2^{b}\left(1+2^{3}\right)=3+9 \cdot 2^{b}
$$

and we can get now $2^{n}-1$ this way

$$
2^{n}-1=2^{3+9 \cdot 2^{b}}-1=2^{3}\left(2^{9 \cdot 2^{b}}-1\right)+2^{3}-1
$$

Knowing that a short addition chain for $2^{9 \cdot 2^{b}}-1$ that contains $2^{3}-1$ is obtained by the way describe above, we can again use the factor method to get an addition chain for $2^{n}-1$ of length

$$
\ell\left(2^{9 \cdot 2^{b}}-1\right)+3+1=\ell\left(9 \cdot 2^{b}\right)+9 \cdot 2^{b}-1+3+1=n+\ell(n)-1 .
$$

4. $n=2^{a}+2^{b}+2^{c}+1$ with $a-b=5, b-c=c=1$, then

$$
n=2^{7}+2^{2}+^{2}+1=135
$$

and we already know that the conjecture is true for this one. We already have a short addition chain for $2^{135}-1$.

Theorem 14. If $n=2^{a}+2^{b}+2^{c}+2^{d}$ with $d>0$ and $\ell(n)=a+2$, then we can construct a short addition chain for n.

Proof.

$$
n=2^{a}+2^{b}+2^{c}+2^{d}=2^{d} \cdot\left(2^{a-d}+2^{b-d}+2^{c-d}+1\right)
$$

by the first case, we can have a short addition chain for $2^{\alpha}-1=2^{2^{a-d}+2^{b-d}+2^{c-d}+1}-1$ of length $\alpha+a-d+1$.
Since $n=2^{d} \cdot \alpha$, then

$$
2^{n}-1=2^{2^{d} \cdot \alpha}-1=\left(2^{\alpha}-1\right)\left(2^{\alpha}+1\right)\left(2^{\alpha \cdot 2}+1\right) \cdots\left(2^{\alpha \cdot 2^{d-1}}+1\right)
$$

and using the factor method again, we have a chain for $2^{n}-1$ of length

$$
\alpha+a-d+1+\alpha\left(1+2+2^{2}+\cdots+2^{d-1}\right)+d=2^{d} \alpha+a-1=\ell(n)+n-1 .
$$

Acknowledgments

The author acknowledge the support of IMU throught the Simons foundation. The work was started during a visit at the University of British Columbia. The last part were done during a visit at IHES.

References

1. D.E. Knuth, The Art ef Computer Programming, Vol. 2 (Addison-Wesley, Read. Mass., 1969) 398-422.
2. Maurice Mignotte, Amadou Tall, A note on addition chains. International Journal of Algebra, xxx
3. Thurber, Edward G., The Scholz-Brauer problem on addition chains, Pacific Journal of Mathematics, V. 49 No.1, 1973 p.229-242
4. Schönhage, A. A Lower Bound for the Length of Addition Chains, Theoretical Computer Science, V. 1 1975 p. 1-12.
5. A. A. Gioia, M. V. Subbarao, and M. Sugunamma, The Scholz-Brauer problem in addition chains, Duke Math. J. 29 (1962), 481-487.
