The Scholz conjecture on addition chain is true for v(n) = 4

Amadou TALL¹

Departement de Mathématiques et Informatique Université Cheikh Anta Diop de Dakar amadou7.tall@ucad.edu.sn

Abstract. The aim of this paper is to prove that the Scholz conjecture on addition chain is true for all integers with v(n) = 4, v(n) is the number of "1" in the binary expansion of n.

1 Introduction

Definition 1. An addition chain for a positive integer n is a set of integers

 $\mathcal{C} = \{a_0 = 1, a_1, a_2, \dots, a_r = n\}$

such that

$$\forall k \in [2..r], \exists i, j \in [1..k-1], \quad a_k = a_i + a_j$$

and $a_r = n$.

The integer r is the length of the chain \mathcal{C} and can be denoted $\ell(\mathcal{C})$.

Definition 2. We define l(n) as the smallest r for which there exists an addition chain $\{a_0 = 1, a_1, a_2, \ldots, a_r = n\}$ for n.

There exist several methods to compute an addition chain for any integer n. We can cite the binary method (often called the fast exponentiation method), the m-ary method, the factor method to name a few. However, the problem of finding $\ell(n)$ for a given n is known to be NP-complete.

A first attempt were done based on the binary expansion of integers.

Definition 3. Let n be an integer. The number of "1"s in its binary expansion is called the Hamming weight of n and is denoted v(n).

It has been proven that

Theorem 4.

$$\ell(n) = a + v(n) - 1 \quad \forall v(n) \le 3,$$

meaning that $\ell(2^a) = a$, $\ell(2^a + 2^b) = a + 1$, and $\ell(2^a + 2^b + 2^c) = a + 2$. The case where v(n) = 4 have some particularities as follows

Theorem 5. For all integers n such that $n = 2^a + 2^b + 2^c + 2^d$, we have

$$\ell(n) = a + 3,$$

except for the integers satisfying one of the following conditions, where $\ell(n) = a + 2$

1. a - b = c - d2. a - b = c - d + 13. a - b = 3 and c - d = 14. a - b = 5 and b - c = c - d = 1

More informations can be found in Knuth [1]. They can be proven using the binary method which is based on the Hamming weight. We are now concerned about integers with only "1"s in their binary expansion $(2^n - 1)$. Is the binary method still efficient? The answer is no. Scholz conjectured that we can always find an addition chain for $2^n - 1$ of length $\leq \ell(n) + n - 1$. **Definition 6.** Let n be a positive integer, an addition chain for $2^n - 1$ is called a short addition chain if its length is $\ell(n) + n - 1$.

The most famous conjecture on addition chains is the Scholz's conjecture stating that

$$\ell(2^n - 1) \le \ell(n) + n - 1.$$

Aiello and Subbarao [5] have conjectured that for every integer n, there exist a short addition chain for $2^n - 1$ (an addition chain for $2^n - 1$ of lenght $\ell(n) + n - 1$).

$$\forall n \in \mathbb{N}, \exists$$
 an addition chain for $2^n - 1$ of length $\ell(n) + n - 1$

They have shown that it is true for all $n = 2^k$.

Theorem 7. It's known that

$$\ell(2^{2^k} - 1) = k + 2^k - 1 = \ell(n) + n - 1, n = 2^k.$$

And we know a way of computing such chains.

We can see that a short addition chain is not necessarily a minimal addition chain but, finding a short addition chain for $2^n - 1$ is enought to prove that the Scholz-Brauer conjecture is true for n.

The main result of this paper is the proof that:

$$v(n) \le 4 \Rightarrow \ell(2^n - 1) \le \ell(n) + n - 1.$$

We will conduct a proof by induction on the Hamming weight of integers. It will then be used to get an algorithm for the computation of short addition chains for $2^n - 1$. Our proof will be using the factoring method which can be stated as follows

Our proof will be using the factoring method which can be stated as follows

Definition 8. Let C_{\setminus} and C_{\updownarrow} be respectively two addition chains for n and m. The factor method is a method to obtain an addition chain $C_{\Uparrow\setminus}$ for mn as follows: If

$$\mathcal{C}_{\mathbb{fl}} = \{m_0, m_1, \dots, m_r\}$$

and

 $\mathcal{C}_{\backslash} = \{n_0, n_1, \dots, n_t\}$

then

$$\mathcal{C}_{\text{IV}} = \{a_0, a_1, \dots, a_r, a_{r+1}, a_{r+2}, \dots, a_{r+t}\}$$

with $a_i = m_i \forall i \leq r \text{ and } a_{r+i} = m_r \times n_i$.

On can clearly see that C_{l} is an addition chain and $a_{r+t} = m_r \times n_t = mn$. and we have a clear idea on the lenght of the chain

Theorem 9.

$$\ell(mn) \le \ell(m) + \ell(n)$$

The proof is simple, one can easily construct an addition chain for mn based on the chains for m and n.

2 Main results

Here is the first result of this paper.

Theorem 10. For all integers $n = 2^k + 2^i$, with i < k, we can find a short chain for $2^n - 1$. Which implies that

$$\ell(2^n - 1) \le \ell(n) + n - 1.$$

Proof. Let

 $P_k = \{ \text{we have a short addition chain for } 2^n - 1, \text{ where } n = 2^k + 2^i, \text{ with } i < k \}.$

Clearly, $P_1 = \{$ we have a short addition chain for 3 $\}$ is true. We assume that P_k is true for all $k < k_0$ and let $n = 2^{k_0} + 2^i$ for some *i*.

First case: i > 0

We have the relation

$$2^{n} - 1 = 2^{2^{k_0} + 2^{i}} - 1 = (2^{2^{k_0 - 1} + 2^{i-1}} - 1)(2^{2^{k_0 - 1} + 2^{i-1}} + 1).$$

And we do know that:

- (i) A minimal addition chain for $2^{2^{k_0-1}+2^{i-1}}+1$ is given by the binary method and has length $2^{k_0-1}+2^{i-1}+1$.
- (ii) Thanks to P_{k_0-1} , we have a chain of length $2^{k_0-1} + 2^{i-1} + k_0 1$ for the integer $2^{2^{k_0-1}+2^{i-1}} 1$.

Using the factor method, we have a chain for $2^n - 1$ of length:

$$(2^{k_0-1}+2^{i-1}+1) + (2^{k_0-1}+2^{i-1}+k_0-1) = 2^{k_0}+2^i+k_0,$$

and the result holds in this case.

Second case: i = 0

Then

$$2^{n} - 1 = 2^{2^{k_0} + 1} - 1 = 2(2^{2^{k_0}} - 1) + 1.$$

And we do know that:

(i) An addition chain for $2^{2^{k_0}} - 1$ of length $2^{k_0} + k_0 - 1$ is given by [5].

(ii) We need two star steps more to reach $2^n - 1$, a doubling and a "+1".

We deduce that we have a chain of length $2^{k_0} + k_0 + 1$ for $2^n - 1$. This ends the proof of the result.

Now let us state the second result of this paper.

Theorem 11. For all integers $n = 2^k + 2^i + 2^j$, we have

$$\ell(2^n - 1) \le \ell(n) + n - 1$$

and we can find short addition chain for $2^n - 1$.

Proof. Let

 $P_k = \{ \exists \text{ an addition chain for } 2^n - 1 \text{ of length } \ell(n) + n - 1, \text{ where } n = 2^k + 2^i + 2^j, \text{ with } k > i > j \}.$

We know that P_3 is true. And we have proved above that P_2 is also true.

Suppose that P_k is true for all $k < k_0$. Then, let $n = 2^{n_1} + 2^{n_2} + \cdots + 2^{n_{k_0}}$ be an integer of Hamming weight k_0 .

First case: j = 0

We can write

$$2^{n} - 1 = 2(2^{n-1}) - 1 = 2(2^{n-1} - 1) + 1$$

We know that v(n-1) = 2, the previous result shows that we can find an addition chain for $2^{n-1} - 1$ of length

$$\ell(n-1) + (n-1) - 1$$

Adding the two last star steps to reach $2^n - 1$, we obtain—as wanted—a chain of length

$$(\ell(n-1) + (n-1) - 1) + 2 = \ell(n-1) + (n-1) + 1,$$

= $(k+1) + (2^k + 2^j) + 1,$
= $2^k + 2^j + k + 2.$

4 Amadou TALL

Second case j > 0In this case

$$n = 2^{k} + 2^{i} + 2^{j} = 2(2^{k-1} + 2^{i-1} + 2^{j-1}).$$

So, we can write

$$2^n - 1 = (2^{\frac{n}{2}} - 1)(2^{\frac{n}{2}} + 1)$$

We know that

(i) a minimal addition chain for $2^{\frac{n}{2}} + 1$ of length $\frac{n}{2} + 1$ is given by the binary method,

(ii) P_{k_0-1} is true, thus we have a short addition chain for $2^{\frac{n}{2}} - 1$, its length is equal to $\ell(\frac{n}{2}) + \frac{n}{2} - 1$.

Using the factor method, we have an addition chain for $2^n - 1$ of length

$$\left(\frac{n}{2}+1\right) + \left(\ell(\frac{n}{2}) + \frac{n}{2} - 1\right) = \ell(n/2) + n.$$

By adding one star step to a minimal chain for $\frac{n}{2}$, we obtain a chain for n. Then, we have found a chain for $2^n - 1$ of length $\ell(n) + n - 1$.

Here is the third and most interesting case (v(n) = 4). There will be two cases. The first is when $\ell(n) = a+3$ and the proof will be identical to the above ones. And the second case is when $\ell(n) = a+2$ and we know all the four possibilities of n.

Theorem 12. If $n = 2^a + 2^b + 2^c + 2^d$ and $\ell(n) = a + 3$, then we can construct a short addition chain for n.

The proof for the case where $\ell(n) = a + 3$ is identical to the above proof, one can easily prove it using the induction way presented above.

Proof. 1. d = 0

In this case $\ell(n-1) = a+2$, and we have

$$\ell(2^{n-1} - 1) \le \ell(n-1) + n - 2.$$

We also know that

$$2^n - 1 = 2(2^{n-1} - 1) + 1,$$

then we can reach n by adding two step to a chain for $2^{n-1} - 1$ of lenght $\ell(n-1) + n - 1$, so

$$\ell(2^n - 1) \le \ell(n - 1) + n - 1 + 2 = \ell(n) + n - 1.$$

2. d > 0

we have

$$2^{n} - 1 = (2^{\frac{n}{2}} + 1)(2^{\frac{n}{2^{2}}} + 1)\cdots(2^{\frac{n}{2^{d}}} + 1)(2^{\frac{n}{2^{d}}} - 1)$$

using the factor method, we have an addition chain for $2^n - 1$ of lenght

$$(\frac{n}{2}+1) + (\frac{n}{2^2}+1) + \dots + (\frac{n}{2^d}+1) + \ell(\frac{n}{2^d}) + \frac{n}{2^d} - 1,$$

= $(\frac{n}{2} + \frac{n}{2^2} + \dots + \frac{n}{2^d} + \frac{n}{2^d}) + d + \ell(\frac{n}{2^d}) - 1,$
= $\ell(n) + n - 1.$

(1)

and this gives us the result

$$\ell(2^n - 1) \le \ell(n) + n - 1$$

thanks to the fact that $2^{\frac{n}{2^d}} - 1$ satisfies the case 1.

The remaining case is:

Theorem 13. If $n = 2^a + 2^b + 2^c + 1$ and $\ell(n) = a + 2$, then we can construct a short addition chain for n.

Proof. Let $n = 2^a + 2^b + 2^c + 1$ and $\ell(n) = a + 2$ then n is in one of these four cases,

1. $n = 2^{a} + 2^{b} + 2^{c} + 1$ with a - b = c, we can write

$$n = 2^{b}(2^{a-b} + 1) + 2^{c} + 1 = (2^{b} + 1)(2^{c} + 1).$$

and that give us a simple way of reaching $2^n - 1$

$$2^{n} - 1 = 2^{(2^{b}+1)(2^{c}+1)} - 1$$
$$= 2^{2^{c}+1}(2^{(2^{c}+1)\cdot 2^{b}} - 1) + 2^{2^{c}+1} - 1$$

and we can also write $2^n - 1$ this way,

$$2^{2^{c}+1}\{(2^{2^{c}+1}-1)(2^{(2^{c}+1)}+1)(2^{(2^{c}+1)\cdot 2}+1)(2^{(2^{c}+1)\cdot 2^{2}}+1)\cdots(2^{(2^{c}+1)\cdot 2^{b-1}}+1)\}+2^{2^{c}+1}+1$$

using the factor method, we can now have an addition chain for $2^n - 1$ of lenght

$$\ell(2^{c}-1) + 2^{c} + 1 - 1 + 2^{c} + 1 + 1 + b + (2^{c}+1)(1+2+2^{2}+\dots+2^{b-1})$$

after some rearrangements, we can see that the above value is

$$(2b + 1)(2c + 1) + b + c + 1 = \ell(n) + n - 1.$$

2. $n = 2^a + 2^b + 2^c + 1$ with a - b = c + 1,

We have

$$n = 2^{a} + 2^{b} + 2^{c} + 1 = 2^{b}(2^{c+1} + 1) + (2^{c} + 1)$$

which allows to write

$$2^{n} - 1 = 2^{2^{b}(2^{c+1}+1) + (2^{c}+1)} - 1 = 2^{2^{c}+1}(2^{2^{b}(2^{c+1}+1)} - 1) + (2^{2^{c}+1} - 1)$$

which gives

$$2^{n}-1 = 2^{2^{c}+1}((2^{2^{c+1}+1}-1)(2^{2^{c+1}+1}+1)(2^{2(2^{c+1}+1)}+1)(2^{2^{2}(2^{c+1}+1)}+1)\dots(2^{2^{b-1}(2^{c+1}+1)}+1)) + (2^{2^{c}+1}-1)(2^{2^{b$$

It leads to an addition chain of length

$$\ell() + (2^{c} + 1) + (2^{c+1} + 1 + 1) + (2(2^{c+1} + 1) + 1) + \dots + (2^{b-1}(2^{c+1} + 1) + 1) + 2^{c} + 1 + 1)$$

after regrouping, we get that the lenght is

$$\ell(2^{c}+1) + 2^{c}+1 - 1 + 2^{c}+1 + b + (2^{c+1}+1)(1+2+\dots+2^{b-1}) + 2^{c}+1 + 1 = 0$$

$$= c + 1 + 2^{c} + 2^{c} + 1 + b + (2^{c+1} + 1)(2^{b} - 1) + 2^{c} + 2 = 2^{b+c+1} + 2^{b} + 2^{c} + b + c + 3 = \ell(n) + n - 1$$

3. $n = 2^a + 2^b + 2^c + 1$ with a - b = 3 and c = 1, we can see that

$$n = 3 + 2^{b}(1 + 2^{3}) = 3 + 9 \cdot 2^{b},$$

and we can get now $2^n - 1$ this way

$$2^{n} - 1 = 2^{3+9 \cdot 2^{b}} - 1 = 2^{3}(2^{9 \cdot 2^{b}} - 1) + 2^{3} - 1.$$

Knowing that a short addition chain for $2^{9 \cdot 2^b} - 1$ that contains $2^3 - 1$ is obtained by the way describe above, we can again use the factor method to get an addition chain for $2^n - 1$ of length

$$\ell(2^{9 \cdot 2^b} - 1) + 3 + 1 = \ell(9 \cdot 2^b) + 9 \cdot 2^b - 1 + 3 + 1 = n + \ell(n) - 1.$$

4. $n = 2^a + 2^b + 2^c + 1$ with a - b = 5, b - c = c = 1, then

$$n = 2^7 + 2^2 + 2^2 + 1 = 135,$$

and we already know that the conjecture is true for this one. We already have a short addition chain for $2^{135} - 1$.

Theorem 14. If $n = 2^a + 2^b + 2^c + 2^d$ with d > 0 and $\ell(n) = a + 2$, then we can construct a short addition chain for n.

Proof.

$$n = 2^{a} + 2^{b} + 2^{c} + 2^{d} = 2^{d} \cdot (2^{a-d} + 2^{b-d} + 2^{c-d} + 1)$$

by the first case, we can have a short addition chain for $2^{\alpha} - 1 = 2^{2^{a-d} + 2^{b-d} + 2^{c-d} + 1} - 1$ of length $\alpha + a - d + 1$.

Since $n = 2^d \cdot \alpha$, then

$$2^{n} - 1 = 2^{2^{d} \cdot \alpha} - 1 = (2^{\alpha} - 1)(2^{\alpha} + 1)(2^{\alpha \cdot 2} + 1) \cdots (2^{\alpha \cdot 2^{d-1}} + 1)$$

and using the factor method again, we have a chain for $2^n - 1$ of length

$$\alpha + a - d + 1 + \alpha(1 + 2 + 2^{2} + \dots + 2^{d-1}) + d = 2^{d}\alpha + a - 1 = \ell(n) + n - 1.$$

Acknowledgments

The author acknowledge the support of IMU throught the Simons foundation. The work was started during a visit at the University of British Columbia. The last part were done during a visit at IHES.

References

- 1. D.E. Knuth, The Art of Computer Programming, Vol. 2 (Addison-Wesley, Read. Mass., 1969) 398-422.
- 2. Maurice Mignotte, Amadou Tall, A note on addition chains. International Journal of Algebra, xxx
- Thurber, Edward G., The Scholz-Brauer problem on addition chains, Pacific Journal of Mathematics, V.49 No.1, 1973 p.229-242
- 4. Schönhage, A. A Lower Bound for the Length of Addition Chains, Theoretical Computer Science, V. 1 1975 p. 1-12.
- A. A. Gioia, M. V. Subbarao, and M. Sugunamma, The Scholz-Brauer problem in addition chains, Duke Math. J. 29 (1962), 481-487.