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Abstract

Group-based cryptography is a relatively young family in post-quantum cryptography. In
this paper we give the first dedicated security analysis of a central problem in group-based
cryptography: the so-called Semidirect Product Key Exchange (SPDKE). We present a subex-
ponential quantum algorithm for solving SPDKE. To do this we reduce SPDKE to the Abelian
Hidden Shift Problem (for which there are known quantum subexponential algorithms). We
stress that this does not per se constitute a break of SPDKE; rather, the purpose of the paper
is to provide a connection to known problems.

1 Introduction

The goal of Post-Quantum Cryptography (PQC) is to design cryptographic cryptosystems which
are secure against classical and quantum adversaries. A topic of fundamental research for decades,
the status of PQC drastically changed with the NIST standardisation process [1].

In July 2022, after five years and three rounds of selection, NIST selected a first set of PQC standards
for Key-Encapsulation Mechanism (KEM) and Digital Signature Scheme DSS based on lattices and
hash functions. The standardization process is still ongoing with a fourth round for KEM and a
new NIST call for post-quantum DSS in 2023. Recent attacks [2, 3, 4] against round-3 multivariate
signature schemes, Rainbow [2] and GeMSS [5], as well as the cryptanalysis of round-4 isogeny
based KEM SIKE [6, 7], emphasise the need to continue the cryptanalysis effort in PQC as well as
the diversity in the potential post-quantum hard problems.

A relatively young family of such problems come from group-based cryptography, see [8]. The
protocol of this type we are interested in is called Semidirect Product Key Exchange (SPDKE), and
was proposed by Habeeb et. al in 2013 [9]. It is a Diffie-Hellman-like, non-interactive key exchange
protocol, which uses the group-theoretic notion of the semidirect product. Roughly speaking1, we
are interested in products of the form ϕx−1(g) · . . . ·ϕ(g) ·g, where g is an element of a (semi)group,
ϕ is an endomorphism and x ∈ N is a positive integer.

Examples of concrete proposals for SPDKE can be found in [9, 10, 11, 12, 13]; respective cryptanal-
ysis can be found in [14, 15, 16, 17, 18, 19]. The authors have a survey paper giving a summary of
the back-and-forth on this topic [20]. Analogously to the Discrete Logarithm Problem, the security
of SPDKE is heavily related to the following task: given a (semi)group element g, an endomorphism

1For more detail see Section 2.2
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ϕ, and for some x ∈ N a product of the form ϕx−1(g) · . . . · ϕ(g) · g, recover the integer x. We
refer to this task as the Semidirect Discrete Logarithm Problem (SDLP); in particular, successfully
carrying it out allows recovery of the private exponents of participants in the key exchange.

The extant body of cryptanalytic work in this area does not address SDLP, instead using linear
algebraic techniques to show that public information leads to key leakage. In fact, the complexity
of SDLP and its relationship to more well-known hardness problems has not been well understood
and was a significant open problem for researchers in this area. Our work in this paper takes the
first steps towards addressing this problem. In particular, we show that there is a reduction of
SDLP to the so-called Abelian Hidden Shift Problem, for which quantum subexponential algorithms
are available.

1.1 Organisation of the Paper and Main Results

In line with [21], the bulk of the work will be the construction of a free, transitive group action,
from which the main results quickly follow. To aid with this construction it will be useful to change
our perspective slightly - towards this goal we introduce some notation, and recall the appropriate
background mathematics.

In Section 2 we start by giving the definitions that allow the paper to be self-contained. We give
a more detailed review of the mechanics of SPDKE, and introduce some new notation, and finish
with a brief discussion of the Abelian Hidden Shift Problem.

The construction of the group action is contained entirely in Section 3. Several technical lemmas
are proved and assembled as Theorem 3.6, in which the required group action is constructed.

In Section 4, we provide a preliminary reduction to the Abelian Hidden Shift Problem in Corol-
lary 4.1. Before providing the full algorithm, we address some context-specific technicality as
Procedure 4.2. The algorithm claimed in the title is finally given as Theorem 4.3.

We conclude the paper with a Conclusions section, which will reflect on the manner in which the
main results were proved - in particular noting a surprising connection to isogeny-based cryptog-
raphy.

Remark. Shortly before posting this manuscript the authors were made aware of the work in [22].
The landmark result therein suggests that our SDLP is equivalent to the natural contextual analogue
of the Computational Diffie-Hellman problem, which significantly strengthens the claim of security
of SPDKE. We leave the full analysis to subsequent work.

2 Preliminaries

2.1 Background Mathematics

We recall a number of group-theoretic notions used throughout this paper.
A (semi)group is a set G together with a binary operation G×G→ G. Unless otherwise specified,
we will write this operation multiplicatively, and require the following:

1. (x · y) · z = x · (y · z) for all x, y, z ∈ G

2. There is an identity element, written as 1, such that g · 1 = 1 · g = g for all g ∈ G

Stopping here, we have a semigroup2. Suppose for some g ∈ G there exists an element h ∈ G such
that g · h = h · g = 1; such an element is called the inverse of G, and is necessarily unique. If
every g ∈ G has an inverse, the semigroup is instead a group. The constructions that follow are
defined for both groups and semigroups - to reflect this scenario we will use the catch-all notation
(semi)groups.
For our purposes the (semi)groups will be non-abelian; that is, one cannot expect that g ·h = h ·g.
One exception is the group we will write additively; in this case, the operation g + h commutes,

2More precisely, a monoid.
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and we require an inverse for every element. Note also that the identity is written as 0 in this
case.
It will be useful for us to build a new (semi)group from an existing (semi)group. One way of doing
this is via a structure called the holomorph3; let G a (semi)group and End(G) its endomorphism
group. The holomorph is the set G× End(G) equipped with multiplication

(g, ϕ) · (g′, ϕ′) = (ϕ′(g) · g′, ϕ ◦ ϕ′)

where ◦ refers to function composition.
Finally, we recall the notion of a group action. Let G a group and X a set: a group action is
a function ψ : G × X → X. By convention we write ψ(g, x) as g ∗ x, and require the following:
1× x = x for all x ∈ X, and g ∗ (h ∗ x) = (g · h) ∗ x. The action is free if g ∗ x = x forces g = 1,
and transitive if for any pair x, y ∈ X there is a group element g ∈ G such that g ∗ x = y.

2.2 Semidirect Product Key Exchange

We here define in full SPDKE. One verifies by induction that holomorph exponentiation takes the
form

(g, ϕ)x = (ϕx−1(g) · . . . ϕ(g) · g, ϕx)

The central idea of SPDKE is to use products of these form as a generalisation of Diffie-Helman
Key-Exchange. It works as follows:

1. Suppose Alice and Bob agree on a public (semi)group G, as well as a group element g and
endomorphism of G, say ϕ.

2. Alice picks a random secret integer x, and calculates the holomorph exponent (g, ϕ)x =
(A, ϕx). She sends only A to Bob.

3. Bob similarly calculates (B,ϕy) corresponding to random, private integer y, and sends only
B to Alice.

4. With her private automorphism ϕx Alice can now calculate her key as the group element
KA = ϕx(B) ·A; Bob similarly calculates his key KB = ϕy(A) ·B.

We have

ϕx(B) ·A = ϕx(ϕy−1(g) · . . . · g) · (ϕx−1(g) · . . . · g)
= (ϕx+y−1 · . . . · ϕx(g)) · (ϕx−1(g) · . . . · g)
= (ϕx+y−1 · . . . · ϕy(g)) · (ϕy−1(g) · . . . · g)
= ϕy(A) ·B

so K := KA = KB . Note that A · B ̸= K as a consequence of our insistence that the group
operation is non-commutative. It is immediate that the security of this scheme is related to SDLP,
since A = ϕx−1(g) · . . . · g, and A, g, ϕ are all available to an eavesdropper - recovering Alice’s
private exponent is therefore exactly SDLP.
Writing these products in full will quickly become rather cumbersome. We therefore introduce
some non-standard notation, which is useful both for convenience of exposition and the required
shift in perspective we will introduce in this paper.

Definition 2.1. Let G be a finite, non-commutative (semi)group, g ∈ G, and ϕ ∈ End(G). We
define the following function:

s : G× End(G)× N → G

(g, ϕ, x) 7→ ϕx−1(g) · . . . · ϕ(g) · g
3The holomorph is itself a special case of the notion of a semidirect product group, hence the terminology.
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Notice also that when g, ϕ are fixed - as in the case of the key exchange - the function s is
really only taking integer arguments, continuing our analogy with the standard notion of group
exponentiation. Indeed, in this language, SDLP has the following form:

Definition 2.2 (Semidirect Discrete Logarithm Problem). Let G be a finite, non-commutative
(semi)group, g ∈ G, and ϕ ∈ End(G). The Semidirect Discrete Logarithm Problem is the following
task: given g, ϕ and s(g, ϕ, x) for some x ∈ N, recover the integer x.

2.3 Abelian Hidden Shift Problem

Once we have constructed the requisite group action there is a canonical reduction to a known
hardness problem, which will give us our quantum subexponential algorithms. The known hardness
problem is as follows:

Definition 2.3 (Abelian Hidden Shift Problem). Let A be a finite abelian group and X a set.
Suppose there are two injective functions f, g : A → S that differ by a shift: that is, there is a
group element s ∈ A such that g(a) = f(a + s) for each a ∈ A. In this scenario we say that f, g
hide s. Provided with f, g, the Abelian Hidden Shift Problem is to recover the shift value s.

We will make use of the following fact, due to Kuperberg [23, Proposition 6.1]:

Theorem 2.4. Let |A| = N in the above setup. There exists a quantum algorithm of time

complexity 2O(
√
logN) for solving the Abelian Hidden Shift Problem.

3 Structure of the Exponents

In order to define our action we must first examine the structure of the set X = {s(g, ϕ, i) : i ∈ N}.
Certainly this is neither a group nor a semigroup - numerous counterexamples can be found
whereby multiplication of elements in this set are not contained in the set - but we can make
some progress by borrowing from the standard theory of monogenic semigroups; presented, for
example, in [24]. Since X ⊂ G, X is finite - the set {x ∈ N : ∃y s(g, ϕ, x) = s(g, ϕ, y)} must
therefore be non-empty, else it is in bijection with the natural numbers. We may therefore choose
its smallest element, say n. By definition of n the set {x ∈ N : s(g, ϕ, n) = s(g, ϕ, n + x)} must
also be non-empty, so we may again pick its smallest element and call it r.
The structure of X is further restricted by the following result:

Lemma 3.1. Let x, y ∈ N, then

ϕx (s(g, ϕ, y)) · s(g, ϕ, x) = s(g, ϕ, x+ y)

Proof. Note that s(g, ϕ, x+ y) = ϕx+y−1(g) · . . . · g. Since ϕ preserves multiplication, applying ϕx

to s(g, ϕ, y) adds x to the exponent of each term. Multiplication on the right by s(g, ϕ, x) then
completes the remaining terms of s(g, ϕ, x+ y).

Remark. One can entirely symmetrically swap the roles of x and y in the above argument, which
gives two ways of calculating s(g, ϕ, x + y). In essence, therefore, this result gives us a slightly
more elegant proof of the correctness of SPDKE.

As a consequence of Lemma 3.1 and the definitions of n, r we have

s(g, ϕ, n+ 2r) = ϕr(s(g, ϕ, n+ r)) · s(g, ϕ, r)
= ϕr(s(g, ϕ, n)) · s(g, ϕ, r)
= s(g, ϕ, n+ r) = s(g, ϕ, n)

We conclude, by extending this argument in the obvious way, that s(g, ϕ, n + qr) = s(g, ϕ, n) for
each q ∈ N. In fact, we have the following:
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Lemma 3.2. Fix g, ϕ and define n, r as above. One has that

s(g, ϕ, n+ x+ qr) = s(g, ϕ, n+ x)

for all x, q ∈ N.

We will frequently invoke Lemma 3.2. Indeed, we immediately get that the set X cannot contain
values other than {g, ..., s(g, ϕ, n), ..., s(g, ϕ, n+r−1)}. If any of the values in {g, ..., s(g, ϕ, n−1) are
equal we contradict the minimaltiy of n, and if any of the values in {s(g, ϕ, n), ..., s(g, ϕ, n+r−1)}
are equal we contradict the minimality of r. We have shown the following:

Theorem 3.3. Fix g ∈ G and ϕ ∈ End(G). The set X = {s(g, ϕ, i) : i ∈ N} has size n + r − 1
for integers n, r dependent on g, ϕ. In particular

X = {g, ..., s(g, ϕ, n), ..., s(g, ϕ, n+ r − 1)}.

We refer to the set {g, ..., s(g, ϕ, n− 1)} as the tail of X, and the set C = {s(g, ϕ, n), ..., s(g, ϕ, n+
r − 1)} as the cycle of X. The values n and r are called the index and period of X.
One can see that unique natural numbers correspond to each element in the tail, but infinitely
many correspond to each element in the cycle. In fact, each element of the cycle corresponds to a
unique residue class modulo r, shifted by the index n. This is a rather intuitive fact, but owing to
its usefulness we will record it formally. In the following we assume the function mod returns
the canonical positive residue.

Theorem 3.4. Let x, y ∈ N. We have

s(g, ϕ, n+ x) = s(g, ϕ, n+ y)

if and only if x mod r = y mod r.

Proof. In the reverse direction, setting x′ = x mod r and y′ = y mod r, we have by Lemma 3.2
that s(g, ϕ, n+ x) = s(g, ϕ, n+ x′) and s(g, ϕ, n+ y) = s(g, ϕ, n+ y′). By assumption x′ = y′, and
0 ≤ x′, y′ < r. The claim follows since we know values in the range {s(g, ϕ, n), ..., s(g, ϕ, n+r−1)}
are distinct by Theorem 3.3.
On the other hand, suppose s(g, ϕ, n + y) = s(g, ϕ, n + x) but x ̸≡ y mod r. Without loss of
generality we can write y = x′ + u+ qr for some q ∈ N, 0 < u < r and x′ = x mod r. By remarks
made in the discussion of theorem 2.2, we must have

s(g, ϕ, n+ x′) = s(g, ϕ, n+ x′ + u).

There are now three cases to consider; we claim each of them gives a contradiction.
First, suppose x′ + u = r, then s(g, ϕ, n+ x′) = s(g, ϕ, n). Since x′ < r we contradict minimality
of r. The case x′ + u < r gives a similar contradiction.
Finally, if x′ + u > r, without loss of generality we can write x′ + u = r + v for some positive
integer v, so we have s(M,ϕ, n+x′) = s(M,ϕ, n+ v). Since x′ ̸= v (else we contradict u < r), and
both values are strictly less than r, we have a contradiction, since distinct integers of this form
give distinct evaluations of s.

We are almost ready to define our group action; first, however, we must specify the group acting on
the cycle. The previous result implies that we are in some sense interested in the action of residue
classes, but in order to use the usual notion of integers mod r, denoted here by Zr, we would
need to be comfortable letting the function s take negative integer inputs. In fact, a well-behaved
notion of the output of s on negative integers can be constructed provided one is willing to let
g, ϕ be invertible. Fortunately, we need not restrict ourselves to this case, and instead consider
the following object:

Definition 3.5. We write Nr = {[i]r : 0 ≤ i < r}, where [i]r = {k ∈ N : k ≡ i mod r}. We define
the operation, written additively, by [i]r + [j]r = [i+ j]r.
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It is easy to see that Nr is a finite abelian group4. We conclude the section by defining its action
on the cycle {s(g, ϕ, n), ..., s(g, ϕ, n+ r − 1)}.

Theorem 3.6. Let C be the cycle as described above with size r. The additive group Nr acts freely
and transitively on C.

Proof. Define the action ψ : Nr × C → C by

ψ([j]r, s(g, ϕ, n+ i)) = ϕ[j]r (s(g, ϕ, n+ i)) · s(g, ϕ, [j]r)

This object is, of course, a set: indeed, it is equal to

{ϕj+kr(s(g, ϕ, n+ i)) · s(g, ϕ, j + kr) : k ∈ N0}

which, by Proposition 3.1, is exactly the set {s(g, ϕ, n + i + j + kr) : k ∈ N}. By Theorem 3.4,
every element of this set is equal to s(g, ϕ, n + i + j), so we will harmlessly abuse notation by
writing

ψ([j]r, s(g, ϕ, n+ i)) = s(g, ϕ, n+ i+ j)

Moreover, the output5 of ψ is indeed in C, since s(g, ϕ, n + i + j) = s(g, ϕ, n + (i + j) mod r),
and 0 ≤ (i+ j) mod r < r. In general, when y > r we are free to dispense with the slightly more
cumbersome modular notation and write s(g, ϕ, n+ y) instead of s(g, ϕ, n+ (y mod r)).
Let us check an action is indeed defined. Certainly [0]r fixes every element of C. Let [j]r, [k]r ∈ Nr;
then, writing ψ([j]r, s(g, ϕ, n+ i)) as [j]r ∗ s(g, ϕ, n+ i) in the conventional fashion, we have

[k]r ∗ ([j]r ∗ s(g, ϕ, n+ i)) = [k]r ∗ s(g, ϕ, n+ i+ j)

= s(g, ϕ, n+ i+ j + k)

= [j + k]r ∗ s(g, ϕ, n+ i)

= ([k]r + [j]r) ∗ s(g, ϕ, n+ i)

where any protests that the sum exceeds r are countered by the well-definedness of modular
addition.
Now let us see that the action is free and transitive. If s(g, ϕ, n+i) is fixed by [j]r then Theorem 3.4
gives that i+j ≡ i mod r, so [j]r = [0]r. Thus the action is free. Fix s(g, ϕ, n+i) and s(g, ϕ, n+j);
then [r − i+ j]r ∈ Nr is such that

[r − i+ j]r ∗ s(g, ϕ, n+ i) = s(g, ϕ, n+ i+ r − i+ j) = s(g, ϕ, n+ j)

as required for transitivity.

4 Hidden Shift Problem

The connection between the Abelian Hidden Shift Problem problem and group actions has been
noticed before, and is given in the context of isogeny-based cryptography in [21]. In what follows,
we use our Theorem 3.6 to update their reduction.

Corollary 4.1. Given s(g, ϕ, n+ i), s(g, ϕ, n+ j), one can recover the value [k]r such that [k]r ∗
s(g, ϕ, n+ i) = s(g, ϕ, n+ j) provided one can solve the Abelian Hidden Shift Problem.

Proof. Set fA, fB : Nr → C as fA([x]r) = [x]r ∗ s(g, ϕ, n + i) and fB([x]r) = [x]r ∗ s(g, ϕ, n + j).
Then

fB([x]r) = [x]r ∗ s(g, ϕ, n+ j)

= [x]r ∗ ([k]r ∗ s(g, ϕ, n+ i))

= ([x]r + [k]r) ∗ s(g, ϕ, n+ i)

= fA([x]r + [k]r)

4For the reader uncomfortable with this unconventional definition, one can think of it as the group< x : xr = 1 >;
in particular, the element x−1 is defined only in terms of positive powers of x.

5Or, more accurately, the content of the singleton set that ψ outputs is an element of C.
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In other words, fA, fB hide [k]r. To complete the setup of a hidden shift problem we require the
functions to be injective, which follows from the action being free and transitive.

Consider again the problem of recovering x given g, ϕ, s(g, ϕ, x). It follows from the above that if
one can somehow find an N with N > n, all that remains is to solve an instance of the Abelian
Hidden Shift Problem. The point is that this latter part of the task is of quantum subexponential
complexity, as discussed in Section 2.3. Before we can prove our main theorem, however, we will
have to deal with some context-specific technicality.

4.1 Non-empty Tails

Notice in the case that the cycle constitutes the whole of the set of exponents (equivalently, when
n = 1) we have described a method of quantum subexponential complexity for recovering x from
g, ϕ, s(g, ϕ, x) for any x ∈ N, since in this case g = s(g, ϕ, 1) is in the cycle. In particular, we have
described a method of carrying out this task provided one has access to a commutative hidden
shift problem oracle, and the best known such oracle is quantum subexponential.
In order to deal with the case that n > 1 and g is in the tail, not the cycle, it is therefore reasonable
to assume access to a commutative hidden shift oracle. We detail below how one gets around this
technicality below; the procedure is adapted from [25, Reduction 2.2, pp. 2–3].

Procedure 4.2. Pick some positive integer N . This integer N must be, in a sense detailed below,
sufficiently large, but at the outset we have no way of verifying if N has such a property. We
therefore need to perform a ‘sanity check’ at the end of the procedure; if this is failed, we know
our initial choice of N was not sufficiently large, so we return to the outset replacing N with 2N .
Choose some random k ∈ {⌈N/2⌉, ..., N} and calculate s(g, ϕ, k). We assume N is sufficiently large
to guarantee s(g, ϕ, k) is in the cycle; that is, we assume ⌈N/2⌉ ≥ n. Choose another random
k′ ∈ {1, ..., N}, set h = s(g, ϕ, k), and calculate h′ = ϕk

′
(h) · s(g, ϕ, k′). We now have two cycle

elements; we know by our work above that with access to a hidden shift oracle we can recover the
positive residue class [l]r that acts on h to give h′. In particular this gives us r, and therefore our
sanity check: we should have that ϕr(h) · s(g, ϕ, r) = h. If not, N was not sufficiently large, and
we return to the outset as described.
With access to r it is a simple matter to recover n, since by definition of n, r, if s(g, ϕ,m + r) ̸=
s(g, ϕ,m) then m < n. On the other hand, if s(g, ϕ,m+ r) = s(g, ϕ,m) we must have m ≥ n. We
can therefore carry out binary search to find the smallest m such that s(g, ϕ,m) = s(g, ϕ,m+ r);
by definition, this smallest m is exactly n.

Since the requirement of N to be sufficiently large is that N ≥ n, we expect to have to make
O(log n) oracle calls. By Theorem 2.4, each oracle call has quantum time complexity 2O(

√
logr). We

conclude after appropriate manipulation that the time complexity of finding r is 2O(log logn+
√
log r).

The final binary search procedure is againO(log n)-time, so the overall complexity is 2O(log logn+
√
log r).

4.2 Solving SDLP

It remains to assemble the procedure given in Section 4.1 and Corollary 4.1. Indeed, doing so will
gives the claim of the title, which we restate for completeness:

Theorem 4.3. There exists an algorithm which solves SDLP in quantum subexponential time.

Proof. First, as described in Procedure 4.2, one uses the oracle to recover the index n, with
complexity 2O(log logn+

√
log r). With knowledge of the index we can use the oracle again to find

the positive residue class [k]r such that [k]r ∗ s(g, ϕ, n) = s(g, ϕ, x). Without loss of generality
let k the smallest integer representative of this residue class; it follows that x = n + k. Again
by Theorem 2.4, the quantum time complexity of recovering this residue class is 2O(

√
logr), from

which the claim follows.
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5 Conclusion

We have provided the first dedicated analysis of SDLP, showing a reduction to a well-studied prob-
lem. Perhaps the most surprising aspect of the work is the progress made by a simple rephrasing;
we made quite significant progress through rather elementary methods, and we suspect much more
can be made within this framework.
The reader may notice that we have shown that SPDKE is an example of a commutative action-
based key exchange, and that breaking all such protocols can be reduced to the Abelian Hidden
Shift Problem. Indeed, this work shows the algebraic machinery of SPDKE is a candidate for what
Couveignes calls a hard homogenous space6 [27], which was not known until now. In line with
the naming conventions in this area we propose a renaming of SPDKE to SPDH, which stands for
‘Semidirect Product Diffie Hellman’, and should be pronounced spud.
We would also like to reiterate the sentiment expressed in the abstract. The purpose of this paper
is not to claim a general purpose break of SPDKE (or, indeed, SPDH) - the algorithm presented is
subexponential in complexity, which has been treated as tolerable in classical contexts. Instead,
the point is to show a connection between SDLP and a known hardness problem, thereby providing
insight on a problem about which little was known.
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