
DyCAPS: Asynchronous Proactive Secret Sharing for Dynamic Committees

Bin Hu†, Zongyang Zhang†, Han Chen†, You Zhou†, Huazu Jiang‡, Jianwei Liu†
†School of Cyber Science and Technology, Beihang University

‡SHENYUAN Honors College, Beihang University
Email: {hubin0205, zongyangzhang, chenhan1123, youzhou, anjhz, liujianwei}@buaa.edu.cn

Abstract—Dynamic-committee proactive secret sharing (DPSS)
enables the update of secret shares and the alternation of
shareholders, which makes it a promising technology for long-
term key management and committee governance. However,
there is a huge gap in communication costs between the state-
of-the-art asynchronous and non-asynchronous DPSS schemes.
In this paper, we fill this gap and propose the first practical
DPSS scheme, DyCAPS, with a cubic communication cost w.r.t.
the number of shareholders.

DyCAPS can be efficiently integrated into existing asyn-
chronous BFT-based blockchains to support the member
change in BFT committees, without increasing the overall
asymptotic communication cost. The experimental results show
that DyCAPS introduces acceptable latency during the recon-
figuration of the committees.

1. Introduction

Proactive secret sharing (PSS) [1], [2] is an extension of
the well-known Shamir’s secret sharing [3]. In PSS, a user
(also called a dealer) shares a secret among a committee, af-
ter which the shares are updated periodically in a distributed
manner. In recent years, there has been a trend to recon-
sider the design and applications of dynamic-committee PSS
(DPSS) schemes, first proposed by Desmedt and Jajodia [4].
DPSS allows the committee to adjust its member, size, and
threshold over time. This dynamic feature makes DPSS a
promising technology for long-term key management and
committee governance. The design of DPSS schemes has
gained additional significance thanks to the development of
BFT-based blockchains. As recently pointed out by Duan
and Zhang [5], dynamic-committee BFT protocols are in
great demand in real-world applications. DPSS schemes may
effectively solve the problem of committee authentication,
where the member change will not influence the committee’s
public keys.

However, there is a huge gap in communication costs
between DPSS schemes under different network assump-
tions. Researchers have achieved high performance in pure
or partially synchronous networks. In these settings, there
exists a time bound for the message delivery, so that the
misbehaving parties can be identified efficiently. The state-
of-the-art synchronous DPSS scheme, CHURP [6], requires
O(κn2) bits of communication cost under the semi-honest

adversary model, where κ is the security parameter, and n is
the committee size. When faced with a malicious adversary,
CHURP consumes O(κn3) bits of communication, which
is still the asymptotically best among existing schemes. As
for the partially synchronous solutions, COBRA [7] achieves
O(κn3) bits of communication cost in the best case, but the
cost degenerates to O(κn4) in the worst case. However, to
the best of our knowledge, there is little research on DPSS
schemes in asynchronous networks, which only assumes that
the messages will be delivered eventually. Zhou et al. [8]
achieve asynchronous DPSS at the cost of exp(n) bits of
communication, which only has theoretical meaning and is
far from real-world implementation. The lack of efficient
asynchronous DPSS schemes may hinder the asynchronous
BFT-based systems, especially the blockchain systems [9],
[10], from adapting to the dynamic setting.

Migrating the non-asynchronous DPSS schemes to asyn-
chrony is non-trivial, as most of them [6], [7], [11] rely on
a challenge-response mechanism to make progress. Such a
strategy is inapplicable in asynchronous networks, because
an honest party cannot determine whether the absence of
responses is due to the unbounded network latency or ma-
licious behaviors.

In this paper, we propose DyCAPS, an efficient asyn-
chronous DPSS scheme with optimized communication cost.
Contributions. Our contributions are as follows.
• We propose DyCAPS, the first practical asynchronous

DPSS scheme with O(κn3) communication cost, clos-
ing the communication cost gap between asynchronous
and non-asynchronous schemes. In the worst case, our
asymptotic cost beats that of COBRA [7], which works
in a partially synchronous network.

• We give a formal definition of asynchronous DPSS and
prove that our DyCAPS satisfies the required properties.

• We implement DyCAPS and achieve dynamic-committee
asynchronous BFT protocol without increasing the asymp-
totic communication cost. The implementation is open-
source at https://github.com/DyCAPSTeam/DyCAPS.

• We present an experimental evaluation of DyCAPS on
64 Amazon EC2 t2.medium instances distributed from
8 regions. The results show that given a large payload
(several MB), the latency of DyCAPS is comparable with
the static-committee BFT protocol Dumbo2 [10].

Organizations. In the rest of this paper, we give the pre-
liminaries in Section 2. The formal description of DyCAPS

1

https://github.com/DyCAPSTeam/DyCAPS

is shown in Section 3, and the security and performance
analysis is conducted in Section 4. We show the implemen-
tation results in Section 5 and describe the adjustment of
committee size and threshold in Section 6. The discussion
and conclusion are in Section 7 and Section 8, respectively.

2. Preliminaries

Before demonstrating our main protocol, we introduce
the notations, system model, and building blocks in Sec-
tion 2.1, Section 2.2, and Section 2.3, respectively.

2.1. Notations

We use [n] to denote the set {1, ..., n}, where n ∈ N∗.
Arbitrary-length tuples are denoted as 〈·〉. Sets are mostly
denoted with upper-case calligraphic letters, e.g., S. We
refer to the size of S as |S|. Besides, we use small capital
letters to denote the message type, e.g., COM. As for the
operations, we use left arrows to assign values to variables.

Some special representations are used for particular
meanings, as listed in Table 2, Appendix A. We use κ as
the security parameter. The secret value is denoted as s. We
denote the epoch number as e, where e ∈ N∗. The committee
in the e-th epoch is denoted as Ce = {P ei }i∈[ne], where P ei
is the i-th member and ne is the committee size. We use te
as the maximum number of parties the adversary can corrupt
in epoch e. The letter σ denotes digital signatures. Flags are
referred to as FLG, with a subscript denoting its context,
e.g., FLGcom is the commitment flag. We use Cφ to denote
the commitment to the polynomial φ(x), and wφ(i) is the
witness of the evaluation of φ(x) at x = i.

2.2. System Model

The core of a DPSS scheme is the handoff protocol,
where two committees jointly refresh the shares for the
next epoch. After the handoff, we require that honest parties
erase their secret information of the current epoch, which
is a common assumption for PSS schemes [6], [7], [11].
Otherwise, it would be trivial for the adversary to recover
the secret through the information about previous epochs.
Network model. We assume an asynchronous and authenti-
cated peer-to-peer (P2P) network. Asynchrony implies that
the adversary controls the order of the messages, but the
messages will be delivered eventually. The authenticated
channel means that each peer knows the source of a mes-
sage, and the adversary cannot see the contents of the mes-
sages or speak on behalf of an uncorrupted party. Finally, the
P2P network indicates that the connections are private, and
there is no broadcast channel. We further assume that the
P2P channels are forward-secure, as demonstrated in [11],
to prevent the adversary from decrypting old messages upon
new corruptions.
Adversary model. We assume a mobile adversary who
adaptively corrupts at most te parties in committee Ce,
such that te < ne/3. The corrupted parties stay malicious

throughout this epoch, and they can misbehave arbitrar-
ily, including sending invalid messages and withholding
responses. Moreover, the adversary is assumed to be com-
putationally bounded.
Trusted setup. We require a trusted setup to initialize
the polynomial commitment scheme [12] (see Section 2.3),
which is one of the key ingredients in DyCAPS to achieve
cubic communication cost.

2.3. Building Blocks

We use several building blocks in DyCAPS, as described
in the following.
Reliable broadcast (RBC) [13], [14], [15] ensures that
all honest parties consistently receive a message from an
honest sender. Formally, an RBC protocol has the following
properties:
• Agreement. If any two honest parties have outputs, their

outputs are the same.
• Totality. If an honest party outputs, all honest parties will

output.
• Validity. If the sender is honest, all honest parties will

output the sender’s input.
Multi-valued validated asynchronous Byzantine agree-
ment (MVBA) [16], [17], [18] allows each participant to
input a proposal and agree on a validated input w.r.t. an
external predicate PMVBA. Formally, an MVBA protocol
satisfies the following properties:
• Agreement. If any two honest parties have outputs, their

outputs are the same.
• Totality. If n−t honest parties each have a validated input,

all honest parties will output.
• External validity. The output of an honest party is vali-

dated w.r.t. the external predicate PMVBA.
• Quality. If an honest party outputs v, the probability that
v is proposed by the adversary is at most 1/2.

KZG commitment [12] is an efficient polynomial com-
mitment scheme whose output is a single group element.
We mainly use four algorithms: KZG.Setup, KZG.Commit,
KZG.CreateWitness, and KZG.VerifyEval. For simplicity of
expression, we will omit the commitment public key cpk in
these algorithms in our protocol.
• {〈p,G,GT , e, g〉, cpk} ← KZG.Setup(t, 1κ): this algo-

rithm sets up the public parameters for the commitments.
It takes as inputs the degree bound t and the security
parameter κ in unary form. The output is a bilinear group
〈p,G,GT , e, g〉 and a commitment key pair 〈cpk, csk〉.
The commitment secret key csk is then securely erased,
and all subsequent computations are based on the com-
mitment public key cpk.

• Cφ ← KZG.Commit(φ(x), cpk): this algorithm commits
to a polynomial. It takes as inputs a polynomial φ(x) ∈
Zp[x] and the commitment public key cpk. The output is
a commitment Cφ to φ(x).

• 〈φ(i), wφ(i)〉 ← KZG.CreateWitness(φ(x), i, cpk): this
algorithm creates a witness to an evaluation of the poly-
nomial. It takes as inputs a polynomial φ(x), an index

2

i, and the commitment public key cpk. The output is an
evaluation φ(i) and a witness wφ(i).

• 0/1 ← KZG.VerifyEval(Cφ, i, v, wφ(i), cpk): this algo-
rithm verifies an evaluation on the polynomial. It takes
as inputs a commitment Cφ, an index i, an evaluation v,
a witness wφ(i), and the commitment public key cpk. It
outputs 1 iff v = φ(i).

The KZG scheme satisfies the following properties:

• Correctness. Given the same public parameters, the output
of KZG.CreateWitness always passes KZG.VerifyEval.

• Strong correctness. The adversary cannot commit to a t′-
degree polynomial such that t′ > t, where t is the input
to KZG.Setup.

• Evaluation binding. Given the same cpk, the adversary
cannot generate two different witnesses, wφ(i) and w′φ(i),
such that both of them pass KZG.VerifyEval.

• Hiding. Given t evaluation-witness pairs 〈i, φ(i), wφ(i)〉
and the commitment Cφ to a t-degree φ(x), the adversary
cannot determine φ(i′) with non-negligible advantage for
any unqueried i′.

• Homomorphism. Given the same public parameters, the
commitment to φ(x) = φ1(x)+φ2(x) can be calculated as
Cφ = Cφ1

Cφ2
. Similarly, we have wφ(i) = wφ1(i)wφ2(i).

Threshold signature [19], [20] allows a quorum of par-
ties to construct a full signature jointly. A threshold sig-
nature scheme consists of five algorithms: TS.KeyGen,
TS.SigShare, TS.VerifySh, TS.Combine, and TS.Verify. For
simplicity of expression, we will omit the threshold public
key tpk and verification keys vpki in these algorithms in
our protocol.

• {〈tpk, tvki, tski〉i∈[n]} ← TS.KeyGen(t, n, 1κ): this al-
gorithm generates the threshold key pairs. It takes as
inputs the threshold t, the total number of parties n, and
the security parameter κ in unary form. The output is a
threshold public key tpk, a set of threshold verifier keys
{tvki}i∈[n], and a set of threshold secret keys {tski}i∈[n].
Each Pi is assigned with 〈tpk, tvki, tski〉.

• σ∗i,m ← TS.SigShare(m, tski): this algorithm generates a
signature share. The input is a threshold secret key tski
and a message m, and the output is a signature share σ∗i,m.

• 1/0← TS.VerifySh(m, tvki, σ∗i,m): this algorithm verifies
Pi’s signature share. It takes as inputs a message m, Pi’s
threshold verifier key tvki, and a signature share σ∗i,m.
It outputs 1 iff the share is correctly generated by Pi’s
threshold secret key tski for m.

• σ ← TS.Combine(m, {σ∗i,m}i∈I,|I|>t): this algorithm
generates a full signature with enough signature shares. It
takes as inputs a message m and a set of valid signature
shares {σ∗i,m}i∈I,|I|>t of the message m, where I is the
index set. The output is a full signature σ.

• 0/1← TS.Verify(m, tpk, σ): this algorithm verifies a sig-
nature. It takes as the input the message m, the threshold
public key tpk, and the full signature σ. It outputs 1 iff
the signature is validated by tpk.

A threshold signature scheme satisfies the following
properties:

• Unforgeability. A computationally bounded adversary
cannot forge a valid full signature with only t threshold
secret keys.

• Robustness. All honest parties will obtain a valid full
signature if they have at least t+1 valid signature shares.

• Correctness. A signature share σ∗i,m generated by an hon-
est Pi always passes the share verification TS.VerifySh.
Besides, a full signature generated by an honest Pi always
passes TS.Verify.

3. The DyCAPS Protocol

We first provide a formal definition of a DPSS scheme
and the properties we are aimed to satisfy in Section 3.1.
Then we give an overview of DyCAPS in Section 3.2. The
technical details of DyCAPS are represented in the rest of
this section.

3.1. Definition of DPSS

A typical secret sharing scheme consists of two proto-
cols, sharing and reconstruction, where the secret s is shared
and reconstructed, respectively. To achieve periodic updates
of secret shares and support dynamic committees, we add a
handoff protocol, as shown in Definition 1.

Definition 1 (Dynamic-committee Proactive Secret Shar-
ing, DPSS). A DPSS scheme consists of three protocols:
DPSS.Share, DPSS.Handoff, and DPSS.Recon.
• {〈si, πi〉Pi∈C} ← DPSS.Share(t, n, s, 1κ): this protocol

shares the secret among the participants. It takes as inputs
the threshold t, the total number of parties n, the secret
value s, and the security parameter κ in unary form. Each
Pi in the original committee C will receive a tuple 〈si, πi〉,
where si is the share, and πi is the proof of correctness.

• {〈s′j , π′j〉Pj∈Ce+1} ← DPSS.Handoff({〈si, πi〉Pi∈Ce}):
this protocol allows the old committee Ce to transfer the
secret shares to the new committee Ce+1, during which the
shares are refreshed. The input is the share-proof tuples
〈si, πi〉 held by each old party P ei . Each new party P e+1

j

will receive a new tuple 〈s′j , π′j〉.
• v ← DPSS.Recon({〈si, πi〉i∈I}): this protocol recon-

struct the secret. It takes as inputs at least t + 1 valid
share-proof tuples {〈si, πi〉i∈I,|I|>t}, where I is the index
set. The output is the reconstructed secret v.

Note that the concrete implementations of DPSS.Share
and DPSS.Recon depend on the application scenarios. For
example, if a client uses DPSS to store a long-term secret,
it trivially serves as a trusted dealer to distribute and recon-
struct the secret. In another case where a committee jointly
generates and maintains a secret key, a decentralized version
of DPSS.Share is needed, and DPSS.Recon may become
unnecessary since the secret will never be restored due to
privacy concerns.

A DPSS shceme satisfies the following properties:
• Termination. If any protocol is invoked by at least n − t

honest parties, all honest parties will output.

3

• Correctness. If an honest dealer inputs s to DPSS.Share
and v is the output of DPSS.Recon, we have v = s, where
an arbitrary number of executions of DPSS.Handoff are
allowed before the reconstruction.

• Secrecy. The adversary gains no extra knowledge about
the secret s other than public information.

For a dealer-based DPSS.Share protocol, the termination
only applies when the adversary decides to deliver the shares
to the committee [21], as the dealer may withhold the
messages or send invalid messages to all honest parties. In
this case, we use the liveness and totality properties instead:
• Liveness. If the dealer is honest, all honest parties will

complete DPSS.Share.
• Totality. If an honest party completes DPSS.Share, all

honest parties will complete DPSS.Share.
As DPSS.Handoff involves two committees, its termina-

tion requires at least ne− te and ne+1− te+1 honest parties
in Ce and Ce+1, respectively. In the rest of this section,
we assume the old and new committees are of the same
size for simplicity, i.e., ne = ne+1 = n, te = te+1 = t,
and n = 3t+ 1. The adjustment of the committee size and
threshold is delayed to Section 6.

3.2. DyCAPS Overview

The life cycle of DyCAPS consists of one invocation of
DyCAPS.Share, unlimited executions of DyCAPS.Handoff,
and one call (if any) of DyCAPS.Recon, as depicted in
Figure 1.

In the rest of this section, we focus on DyCAPS.Handoff,
which is invoked constantly. The details of DyCAPS.Share
and DyCAPS.Recon are delayed to Appendix B and Ap-
pendix C, respectively.

To prevent the mobile adversary, we use 〈t, 2t〉-degree
bivariant polynomials and adopt the dimension-switching
technique [6]. Informally, the degree of sharing polynomial
is temporarily raised from t to 2t during DyCAPS.Handoff,
so that the adversary learns no information about the secret
even with 2t corrupted parties. Specifically, the secret s is
shared via a polynomial B(x, y), where B(0, 0) = s. We
refer to B(x, y) as the sharing polynomial. In the normal
stage, t+1 full shares, B(∗, y), are needed to deal with the
inquiries, e.g., generating a signature or decrypting a mes-
sage. In turn, the reduced shares, B(x, ∗), are temporarily
used during the handoff, where 2t + 1 of them are needed
for the inquiries.

Intuitively, the handoff protocol includes three phases:
1) raise the threshold to 2t and produce reduced shares,
2) refresh the reduced shares using a jointly generated
bivariant polynomial, and 3) switch back the threshold to
t and obtain refreshed full shares. These three phases are
referred to as ShareReduce, Proactivize, and ShareDist by
Maram et al. [6]. We adopt their naming but explicitly add a
Prepare phase, leaving space for selecting new committees
and miscellaneous pre-computations. The four phases of
DyCAPS.Handoff are shown in Figure 2.
Prepare. In this phase, a new committee Ce+1 is selected,
and P2P channels are established among all members in Ce

and Ce+1. The public parameters are also delivered to Ce+1

at the same time.
ShareReduce. In this phase, the full shares are converted
to reduced shares to withstand the mobile adversary. In the
beginning, each party P ei holds a 2t-degree polynomial as
its full share. Then, each P ei sends a point on its full share to
P e+1
j . Next, P e+1

j waits for t+1 valid points to interpolate
a t-degree polynomial as its reduced share.
Proactivize. In this phase, the new committee members
jointly generate random shares to refresh the reduced shares.
Specifically, the parties share their local randomness, i.e.,
bivariate polynomials, and agree on a candidate set Q.
Utilizing the building blocks in Section 2.3, we ensure that
every honest party will obtain the deserved random share
from the candidates in Q. Finally, the random shares are
added to the reduced shares, making the refreshed shares
independent of the old ones.
ShareDist. In this phase, the new committee converts the
new reduced shares to the full shares. Specifically, parties
send points on their new reduced shares to each other. Each
party interpolates the refreshed full shares using the received
points. At this time, the new committee enters the normal
state and uses full shares to handle the inquiries.

The specific steps of these four phases are illustrated in
the rest of this section.

3.3. Preparation

In the Prepare phase, the new committee is selected, and
the public parameters are transferred to the new committee.
The new committee might be the same as or disjoint from
the old one. We do not restrict the selection method, but we
do have a limit on the new committee size and threshold
(see Section 6).

After the committee selection, the parties in both com-
mittees establish P2P channels with each other. As the
adversary may corrupt up to t peers in each committee, we
tolerate at most 2t unsuccessful connections. Once a channel
is established, the old party transfers the public parameters
to the new party, including the commitment public key cpk
and commitments of the reduced shares. Each new party
confirms these parameters after it has received t+1 messages
with the same contents.

When an honest party has established at least n− t P2P
connections with each committee, it enters the ShareReduce
phase. The P2P connection requests are still appropriately
handled in the subsequent phases, allowing the slow but
honest parties to connect to the others.

Remarkably, the steps above are taken concurrently
when the old committee Ce is in charge. Therefore, we do
not count this phase into the overall communication cost.

3.4. Share Reduction

In the ShareReduce phase, each new committee member
waits to receive a t-degree polynomial B(x, ∗) as its reduced
share. The specific procedures are depicted in Figure 3.

4

DyCAPS.Share C1 in charge

Prepare ShareReduce Proactivize ShareDist

DyCAPS.Handoff

Inquiry 1 Inquiry 2 Inquiry 3 Inquiry k

C2 in charge ...

DyCAPS.Handoff

Ce in charge

DyCAPS.Recon

Epoch 1 Epoch 2 ... Epoch e

Figure 1. Life cycle of DyCAPS. DyCAPS.Share is invoked at first, and then DyCAPS.Handoff is executed periodically. DyCAPS.Recon may be called
at the end of the life cycle (if necessary). The committee in charge handles the inquiries regardless of the handoff.

P e
1

P e
2

P e
3

...

P e
n

B(1, y)

B(2, y)

B(3, y)

B(n, y)

Connect
to Ce+1

P e
1

P e
2

P e
3

...

P e
n

B(1, y)

B(2, y)

B(3, y)

B(n, y)

P e+1
1

P e+1
2

P e+1
3

...

P e+1
n′

B(1, 1)

B
(1, 2)

B
(1
, 3
)B
(1
,
n ′

)

B(x, 1)

B(x, 2)

B(x, 3)

B(x, n′)

Generation
of Q(x, y)

P e+1
1

P e+1
2

P e+1
3

...

P e+1
n′

B′(x, 1)

B′(x, 2)

B′(x, 3)

B′(x, n′)

+Q(x, 1)

+Q(x, 2)

+Q(x, 3)

+Q(x, n)

P e+1
1

P e+1
2

P e+1
3

...

P e+1
n′

B′(1, 1)

B ′
(2, 1)B

′
(3
, 1
)B
′
(n ′

,
1
)

B′(1, y)

B′(2, y)

B′(3, y)

B′(n′, y)

Prepare ShareReduce Proactivize ShareDist
Epoch e Epoch e+ 1

Figure 2. Overview of DyCAPS.Handoff. The polynomial above each
party refers to the share it currently holds.

ShareReduce

1: Upon invocation by P e
i do . Reduce

2: For each P e+1
j ∈ Ce+1 do

3: Interpolate CB(x,j) from {〈`, CB(x,`)〉}`∈[2t+1]

4: Interpolate wB(i,j) from {〈`, wB(i,`)〉}`∈[2t+1]

5: B(i, j)← B(i, y)|y=j

6: Send 〈Reduce, CB(x,j), B(i, j), wB(i,j)〉 to P e+1
j

7: Erase the memory and go off-line

8: Upon invocation by P e+1
i do . Interpolate

9: Upon receiving t+ 1 valid 〈Reduce, CB(x,i), B(∗, i), wB(∗,i)〉 do
10: Interpolate B(x, i)

11: Enter the Proactivize phase

Figure 3. Procedures of ShareReduce. Each old party P ei ∈ Ce obtains
the set {〈CB(x,`), wB(i,`)〉}`∈[2t+1] from DyCAPS.Share or the prior
DyCAPS.Handoff.

Each party in the old committee has at least 2t+1 tuples1

{〈CB(x,`), wB(i,`)〉}`∈[2t+1] from either DyCAPS.Share or
the prior DyCAPS.Handoff. With these tuples, P ei may inter-
polate any other commitments and witnesses. For example,
given B(x, j) =

∑
`∈[2t+1] λ`,jB(x, `), we have CB(x,j) =∏

`∈[2t+1] C
λ`,j

B(x,`) and wB(i,j) =
∏
`∈[2t+1] w

λ`,j

B(i,`) where
{λ`,j}`∈[2t+1] are the Lagrange coefficients. The interpo-
lated tuples are used to validate the upcoming messages in
subsequent steps.

The specific procedures of ShareReduce involve both old
and new committees, as stated in the following.

1. The witness wB(i,k) is corresponding to B(x, k) at x = i, rather
than B(i, y) at y = k. Throughout this paper, we only use commitments
and witnesses of the reduced shares B(x, ∗).

Reduce. Each old committee member P ei sends
〈REDUCE, CB(x,j), B(i, j), wB(i,j)〉 to every new party
P e+1
j , where CB(x,j) and wB(i,j) are interpolated from

2t + 1 available commitment-witness pairs. Afterward, P ei
erases its memory and goes offline.

Interpolate. Each new committee member P e+1
i waits for

t + 1 valid REDUCE messages containing the same com-
mitment CB(x,i). Using the polynomial evaluations in these
messages, P e+1

i interpolates its reduced share B(x, i) and
enters the Proactivize phase.

3.5. Proactivization

In the Proactivize phase, the reduced shares are re-
freshed by a jointly generated random polynomial. To keep
the secret value s = B(0, 0) invariant, we need a 〈t, 2t〉-
degree random polynomial Q(x, y), such that Q(0, 0) = 0.
Each party obtains a random share Q(x, ∗) and adds it to
the reduced share B(x, ∗). From a high level, the sharing
polynomial is refreshed as B′(x, y) = B(x, y) +Q(x, y).

This phase mainly includes two steps, collecting ran-
domness and agreeing on a candidate set Q. The contri-
butions from the members in Q add up to the common
random polynomial Q(x, y). There are four requirements
for the joint generation:
1) The agreement on Q eventually terminates.
2) Every honest party P e+1

i eventually receives all neces-
sary information to compute its random share Q(x, i).

3) At least one honest party is included in Q so that the
adversary cannot manipulate the randomness of Q(x, y).

4) The adversary obtains no extra information about Q(x, i)
for any uncorrupted P e+1

i .
The first two requirements ensure the correctness of the

proactivization. The third and fourth requirements guarantee
the randomness and secrecy of Q(x, y), respectively.

Meeting these requirements is straightforward in non-
asynchronous networks, but it becomes challenging when
faced with asynchrony. We illustrate this observation with
two strawman schemes before putting forward our solution.
The first strawman assumes a non-asynchronous network,
while the second is in the asynchronous model but fails to
meet the four requirements.
Strawman I. We start from a primary scheme in the non-
asynchronous setting. In this setting, there exists a timeout,
so we may decide the candidate set Q through a challenge-
response procedure.

5

Proactivize
1: Upon invocation by P e+1

i with input InitProactivize do
2: Upon receiving InitProactivize from P e+1

i do . Init
3: πi ← ∅
4: FLGcom[1, ..., n]← {0, ..., 0}
5: FLGrec[1, ..., n]← {0, ..., 0}
6: Srec[1, ..., n]← {∅, ..., ∅}
7: Sσ[1, ..., n]← {∅, ..., ∅}
8: Vi[1, ..., n]← {∅, ..., ∅}
9: Generate a 2t-degree polynomial Fi(y), where Fi(0) = 0

10: For each ` ∈ [2t+ 1] do
11: Generate a t-degree polynomial Qi(x, `), where Qi(0, `) = Fi(`)

12: Send Commit to P e+1
i

13: Send Reshare to P e+1
i

14: Upon receiving Commit from P e+1
i do . Commit

15: For each ` ∈ [2t+ 1] do
16: Zi,`(x)← Qi(x, `)− Fi(`)
17: CQi,` ← KZG.Commit(Qi(x, `))
18: CZi,` ← KZG.Commit(Zi,`(x))
19: wZi,`(0) ← KZG.CreateWitness(Zi,`(x), 0)
20: πi ← πi ∪ {`, CQi,` , CZi,` , wZi,`(0), gFi(`)}
21: Call RBC1,i with input 〈Com, πi〉

22: Upon receiving 〈Com, πj〉 from RBC1,j do . Verify
23: Parse πj as {`, CQj,k , CZj,` , wZj,`(0), gFj(`)}`∈[2t+1]

24: If
∏2t+1
m=1(g

Fj(m))λ
2t
m,0 6= 1 then // λ2t

m,0 is the Lagrange coefficient
25: Discard this message and revert
26: For each ` ∈ [2t+ 1] do
27: If KZG.VerifyEval(CZj,` , 0, 0, wZj,`(0)) = 0 ∨ CQj,` 6= CZj,`g

Fj(`) then
28: Discard this message and revert
29: For each P e+1

` ∈ Ce+1 do

30: CQj,` ←
∏2t+1
m=1 C

λ2t
m,`

Qj,m
// λ2t

m,` is the Lagrange coefficient

31: FLGcom[j]← 1

32: Upon receiving Reshare from P e+1
i do . Reshare

33: For each P e+1
j ∈ Ce+1 do

34: For each ` ∈ [2t+ 1] do
35: wQi(j,`) ← KZG.CreateWitness(Qi(x, `), j)
36: Send 〈Reshare, {Qi(j, `), wQi(j,`)}`∈[2t+1]〉 privately to P e+1

j

37: Upon receiving 〈Reshare, {Qj(i, `), wQj(i,`)}`∈[2t+1]〉 from P e+1
j do . Vote

38: Upon FLGcom[j] = 1 then
39: If ∀` ∈ [2t+ 1],KZG.VerifyEval(CQj,` , i, Qj(i, `), wQj(i,`)) = 1 then
40: σ∗j,i ← TS.SigShare(j, tski)
41: For each P e+1

` ∈ Ce+1 do
42: Qj(i, `)←

∑2t+1
m=1 λ

2t
m,`Qj(i,m)

43: wQj(i,`) ←
∏2t+1
m=1 w

λ2t
m,`

Qj(i,m)

44: // λ2t
m,` is the Lagrange coefficient

45: Send 〈Recover, j, Qj(i, `), wQj(i,`), σ
∗
j,i〉 privately to P e+1

`

46: Upon receiving 〈Recover, k,Qk(j, i), wQk(j,i), σ
∗
k,j〉 from P e+1

j do . Recover
47: Upon FLGcom[k] = 1 ∧ TS.VerifySh(k, σ∗k,j) = 1 then
48: If KZG.VerifyEval(CQk,i , j, Qk(j, i), wQk(j,i)) = 1 then
49: Srec[k]← Srec[k] ∪ 〈j,Qk(j, i)〉
50: If |Srec[k]| ≥ t+ 1 then
51: Interpolate t-degree Qk(x, i) from Srec[k]
52: FLGrec[k]← 1

53: Sσ[k]← Sσ[k] ∪ 〈j, σ∗k,j〉
54: If |Sσ[k]| ≥ 2t+ 1 then
55: σk ← TS.Combine(k, {σ∗k,j}(j,σ∗

k,j
)∈Sσ [k])

56: Vi[k]← 〈k, σk〉

57: Upon there are t+ 1 full signatures in Vi do . MVBA
58: Call MVBA with input 〈MVBA.In, Vi〉
59: // PMVBA requires |Ṽ | = t+ 1 ∧ ∀〈`, σ`〉 ∈ Ṽ ,TS.Verify(`, σ`) = 1

60: Upon reiceiving 〈MVBA.Out, Ṽ 〉 from MVBA do . Refresh
61: Q ← {P e+1

j |〈j, σj〉 ∈ Ṽ }
62: Upon FLGrec[j] = 1 for all 〈j, σj〉 ∈ Ṽ do
63: Q(x, i)←∑

P e+1
j
∈QQj(x, i)

64: B′(x, i)← B(x, i) +Q(x, i)

65: For each P e+1
` ∈ Ce+1 do

66: CQ(x,`) ←
∏
P e+1
j
∈Q CQj,`

67: Enter the ShareDist phase

Figure 4. Procedures of Proactivize.

Specifically, we let each party P e+1
i initialize Q as Ce+1

and locally generate a random 〈t, 2t〉-degree polynomial
Qi(x, y), such that Qi(0, 0) = 0. Next, each P e+1

i invokes
an RBC instance to broadcast n encrypted2 polynomials
Encj(Qi(x, j)), where j ∈ [n], along with n commitments
to these polynomials.

Then, each party waits for the output of n RBC instances
and decrypts its corresponding polynomial. An honest party
will raise a challenge if the polynomial is invalid or a
timeout occurs. The challenged party has to respond within
a limited time. The remaining parties verify the challenges
and responses from both parties, either of which will be
identified as malicious and excluded from Q. Finally, each
P e+1
i obtains a random share Q(x, i) =

∑
P e+1

j ∈QQj(x, i).

Analysis. This strawman scheme satisfies the four require-
ments mentioned above:
1) All challenges will arrive in time, so the honest parties

will eventually agree on Q.
2) Due to the binding property of commitments, all mali-

cious parties that fail to provide correct information will

2. The algorithm Encj(m) encrypts a message m using Pj ’s encryption
public key epkj .

be challenged and excluded from Q.
3) All honest parties will stay included in Q even faced

with malicious challenges.
4) The adversary has at most 2t polynomials, which are

insufficient to interpolate Q(x, y).
This strawman scheme is straightforward, but the n RBC

instances consume O(κn4) bits of communication. Mram et
al. [6] reduce the input size of each RBC instance to O(κn)
by dividing the generation of Q(x, y) into two steps, with
2t+1 RBC instances in each step, where the separated two
steps both relies on challenge-response procedures.

The challenge-response procedure is not applicable in
an asynchronous network, as the honest parties may not
raise or receive challenges in time. Therefore, we need other
methods to determine the candidate set Q.
Strawman II. In this strawman scheme, we relax the net-
work assumption and advance to the asynchronous network.
Inspired by asynchronous BFT protocols [9], [10], we use
votes to avoid the challenge-response procedure. The voting
results are decided by an MVBA instance, so that all honest
parties will agree on the candidate set Q.

Similar to Strawman I, we require each party to generate
and share a local bivariate polynomial. However, we no

6

longer need to reliably broadcast the encrypted messages
because there are no challenges and responses to be verified.
Instead, each P e+1

i broadcasts 2t + 1 polynomial commit-
ments CQi,`

= KZG.Commit(Qi(x, `)) via RBC, where
` ∈ [2t+ 1], and the polynomials Qi(x, `) are sent to each
P e+1
` privately. These commitments are sufficient to derive

the remaining commitments to Qi(x, j).
After sending the polynomials and commitments, we let

each party use threshold signatures to vote for the correct
parties. Specifically, each P e+1

i multicasts a signature share
σ∗j,i = TS.SigShare(j, tski), denoting that it has received a
valid polynomial from P e+1

j . Upon receiving 2t+1 signature
shares for the same j, P e+1

i forms a full signature σj . P e+1
i

waits for t+1 full signatures and formulates Vi as the input
to the MVBA instance, which ensures that each party obtains
the same output set Ṽ , where |Ṽ | = t + 1. The candidate
set Q is then denoted as {P e+1

j |〈j, σj〉 ∈ Ṽ }.
Analysis. This strawman scheme satisfies the first and third
requirements, due to the totality of MVBA and |Ṽ | = t+1.

However, a malicious party P e+1
m may get included in

Q if it obtains 2t + 1 votes. In the worst case, there are
only t + 1 honest parties that have voted for P e+1

m and
hold Qm(x, ∗). These t+ 1 polynomials are insufficient to
recover the other Qm(x, j), whose y-dimension is 2t-degree.
Therefore, not all honest parties will receive the final share
of Q(x, y). Namely, this strawman scheme fails to meet the
second requirement.
Our scheme. In this formal scheme, we enrich the informa-
tion contained in each sharing message, so that the honest
parties can help the others restore their shares.

Specifically, we make a dimension switch and let each
P e+1
i send a y-dimension polynomial Qi(∗, y) instead of
Qi(x, ∗). In this way, every party obtains partial information
on every random share Qi(x, ∗). This modification brings
in additional overhead to switch back the dimension.

We do not directly commit to Qi(∗, y), as we need the
commitments CQi(x,∗) at the end of DyCAPS.Handoff. Each
Qi(∗, y) is represented by 2t+1 points and witnesses, which
are verifiable w.r.t. CQi(x,∗). The procedures of Proactivize
are described in Figure 4. For ease of understanding, we
also present the message flows of this phase in Figure 5.

Init. Each P e+1
i initializes several empty sets, including

a proof set πi, two flag sets FLGcom and FLGrec, two
buffers Srec and Sσ, and an MVBA input set Vi. Then,
P e+1
i generates a 2t-degree random polynomial Fi(y),

where Fi(0) = 0. Next, P e+1
i reshares 2t + 1 points on

Fi(y) via t-degree random polynomials Qi(x, `), such that
Qi(0, `) = Fi(`), ` ∈ [2t+ 1].

Commit. Each P e+1
i generates a correctness proof πi =

{`, CQi,`
, CZi,`

, wZi,`(0), g
Fi(`)}`∈[2t+1], where CQi,`

and
CZi,`

are the commitments to Qi(x, `) and Zi,`(x) =
Qi(x, `) − Fi(`), respectively, wZi,`(0) is the witness of
Zi,`(0) = 0, and gFi(`) is the commitment to Fi(`). Finally,
P e+1
i broadcasts 〈COM, πi〉 via RBC1,i.

Verify. Upon receiving 〈COM, πj〉 from RBC1,j , P e+1
i ver-

ifies that the committed resharing polynomials Qj(x, `)
are formulated correctly, where ` ∈ [2t + 1]. Specifi-
cally, P e+1

i first verifies that Fj(0) = 0 by checking∏2t+1
m=1(g

Fj(m))λ
2t
m,0 = 1, where {λ2tm,0} are Lagrange co-

efficients. Then, P e+1
i checks Qj(0, `) = Fj(`) through

KZG.VerifyEval(CZj,`
, 0, 0, wZj,`(0)) = 1 and CRj,`

=

CZj,`
gFj(`). If any verification fails, the COM message

will be discarded, and the changes related to this message
will be reverted. Finally, P e+1

i interpolates CQj,`
for each

P e+1
` ∈ Ce+1, and sets FLGcom[j] = 1.

Reshare. P e+1
i sends 〈RESHARE, {Qi(j, `), wQi(j,`)}`∈[2t+1]〉

to each P e+1
j ∈ Ce+1, where wQi(j,`) is the witness. This

step is executed concurrently with the Commit procedure.

Vote. Upon receiving a RESHARE message from P e+1
j ,

P e+1
i first verifies it w.r.t. the proof πj , which is the out-

put from RBC1,j . Then, it formulates a signature share
σ∗j,i = TS.SigShare(j, tski) as the vote for P e+1

j . Af-
terward, the contents in the RESHARE message are split
and relayed to the others. Specifically, P e+1

i calculates an
evaluation-witness tuple 〈Qj(i, `), wQj(i,`)〉 and sends it to
each P e+1

` ∈ Ce+1 within a RECOVER message. The vote
σ∗j,i is also included in this message.

Recover. Upon receiving t + 1 valid RECOVER messages
with the same index k, where TS.VerifySh(k, σ∗k,j) = 1

and KZG.VerifyEval(CQk,i
, ∗, Qk(∗, i), wQk(∗,i)) = 1, P e+1

i
recovers the k-th shares by interpolating a t-degree polyno-
mial Qk(x, i). P e+1

i also waits for 2t + 1 valid votes and
composes a full signature σk = TS.Combine(k, {σ∗k,j}k∈I),
where I contains the indexes of the collected votes. The full
signatures are stored in the MVBA input set Vi.

MVBA. Upon filling the input set Vi with t+1 full signatures,
P e+1
i inputs Vi into MVBA. The external predicate PMVBA

requires the output size |Ṽ | = t+ 1 and the full signatures
within Ṽ are all valid. The candidate set is then referred to
as Q = {P e+1

j |〈j, σj〉 ∈ Ṽ }.

Refresh. Upon receiving Ṽ from MVBA, P e+1
i calculates its

random share Q(x, i) =
∑

P e+1
j ∈QQj(x, i). The reduced

share is thus refreshed as B′(x, i) = B(x, i) + Q(x, i).
Finally, P e+1

i calculates the commitments CQ(x,`) =∏
P e+1

j ∈Q CQj,`
for all P` ∈ Ce+1 and enters the next phase.

3.6. Share Distribution

In the ShareDist phase, the reduced shares are converted
to full shares. The procedures are shown in Figure 6.

Init. P e+1
i initializes two empty buffers Scom and SB′ . Next,

P e+1
i sends the COMMITNEW and DISTRIBUTE instructions

to itself.

Commit. Upon receiving the COMMITNEW instruction,
P e+1
i commits to the new reduced share B′(x, i) and broad-

casts 〈NEWCOM, CB′(x,i)〉 via RBC2,i.

7

P e+1
1

P e+1
2

P e+1
3

...

P e+1
n

RBC1,1

RBC1,2

RBC1,3

...

RBC1,n

〈Com, π1〉

〈Com, π2〉

〈Com, π3〉

〈Com, πn〉

Init

Commit Verify

P e+1
1

P e+1
2

P e+1
3

...

P e+1
n

P e+1
1

P e+1
2

P e+1
3

...

P e+1
n

〈Resha
re, {Q2(1

, `)}`∈[2t
+1]

〉

〈Reshare, {Q2(2, `)}`∈[2t+1]〉
〈Reshare, {Q

2(3, `)}`∈[2t+1]〉

〈Reshare, {Q
2 (n, `)}̀

∈[2t+
1] 〉

Reshare

Distribute

P e+1
1

P e+1
2

P e+1
3

...

P e+1
n

〈Reco
ver

, 2,
Q2(n

, 3)
, σ
∗
2,n

〉

〈Recover, 2, Q
2 (1, 3), σ ∗

2,1 〉

〈Recover, 2, Q
2(2, 3), σ ∗

2,2 〉
〈Recover, 2, Q2(3, 3), σ

∗
2,3〉

Vote Recover

MVBA

〈MVBA.In, V1〉

〈MVBA.In, V2〉

〈MVBA.In, V3〉

〈MVBA.In, Vn〉

P e+1
1

P e+1
2

P e+1
3

...

P e+1
n

〈MVBA.Out, V 〉

〈MVBA.Out, V 〉

〈MVBA.Out, V 〉

〈MVBA.Out, V 〉

MVBA Refresh

Figure 5. Message flow of Proactivize within epoch e+1. All parties are assumed to be honest here. In the Vote stage, the emphasized RECOVER messages
received by P e+1

3 refer to the responses to P e+1
2 ’s RESHARE messages. The witnesses in these messages are ommitted for clearity of expression.

Distribute. Upon receiving the DISTRIBUTE instruction,
P e+1
i sends 〈SHAREDIST, B′(j, i), wB′(j,i)〉 to each P e+1

j ,
where wB′(j,i) is the witness of B′(j, i).

Verify. Upon receiving the NEWCOM message from RBC2,j ,
P e+1
i verifies that the sender P e+1

j uses the common random
polynomial Q(x, y) to fresh its share. Specifically, P e+1

i
checks CB′(x,j) = CB(x,j)CQ(x,j), which indicates that
B′(x, j) = B(x, j) + Q(x, j). If the verification fails, this
NEWCOM message will be ignored.

Interpolate. P e+1
i waits for 2t+ 1 valid SHAREDIST mes-

sages to interpolate the full share B′(i, y). Next, P e+1
i

multicasts a SUCCESS message to notify the other parties.

Success. Upon having sent the SUCCESS message, P e+1
i

waits for another 2t SUCCESS messages and then enters the
normal state.

4. Security and Performance Analysis

Due to limited space, we only analyze the security
and performance of DyCAPS.Handoff here. The analysis
of DyCAPS.Share and DyCAPS.Recon are delayed to Ap-
pendix B and Appendix C, respectively.

4.1. Security Analysis

For simplicity of expression, we continue to assume
ne = ne+1 = n and te = te+1 = t. Moreover, without
loss of generality, we denote the malicious members in Ce
and Ce+1 as {P em}m∈[t] and {P e+1

m }m∈[t], respectively.

Termination. The termination of DyCAPS.Handoff relies
on the following four lemmas. Lemma 1 states that the old
committee will terminate in the first two phases. Lemma 2,
Lemma 3, and Lemma 4 show that the new committee will
terminate in the four phases.

Lemma 1. The honest parties in Ce will terminate within the
e-th execution of DyCAPS.Handoff, given that at least n− t
honest parties from Ce and Ce+1 are active, respectively.

ShareDist

1: Upon invocation by P e+1
i with input InitDist do

2: Upon receiving InitDist from P e+1
i do . Init

3: Scom ← ∅
4: SB′ ← ∅
5: Send CommitNew to P e+1

i

6: Send Distribute to P e+1
i

7: Upon receiving CommitNew from P e+1
i do . Commit

8: CB′(x,i) ← KZG.Commit(B′(x, i))
9: Call RBC2,i with input 〈NewCom, CB′(x,i)〉

10: Upon receiving Distribute from P e+1
i do . Distribute

11: For each P e+1
j ∈ Ce+1 do

12: 〈B′(j, i), wB′(j,i)〉 ← KZG.CreateWitness(B′(x, i), j)
13: Send 〈ShareDist, B′(j, i), wB′(j,i)〉 privately to P e+1

j

14: Upon receiving 〈NewCom, CB′(x,j)〉 from RBC2,j do . Verify
15: If CB′(x,j) = CB(x,j)CQ(x,j) then
16: Scom ← Scom ∪ 〈j, CB′(x,j)〉

17: Upon receiving 〈ShareDist, B′(i, j), wB′(i,j)〉 from P e+1
j do . Interpolate

18: Upon 〈j, CB′(x,j)〉 ∈ Scom then
19: If KZG.VerifyEval(CB′(x,j), i, B

′(i, j), wB′(i,j)) = 1 then
20: SB′ ← SB′ ∪ 〈j, CB′(x,j), B

′(i, j), wB′(i,j)〉
21: If |SB′ | ≥ 2t+ 1 then
22: Interpolate 2t-dgree B′(i, y) from SB′

23: Multicast Success

24: Upon having sent Success and receiving 2t+1 Success do . Success
25: Enter the normal state

Figure 6. Procedures of ShareDist.

Proof. Within the e-th DyCAPS.Handoff, the old committee
Ce is only active during Prepare and ShareReduce. In the
Prepare phase, all honest old parties will connect to at least
2(n−t) parties, after which they send the public parameters
and enter the ShareReduce phase. In the ShareReduce phase,
the honest old parties only need to send messages to the new
committee. The 2t + 1 commitment-witness pairs required
to generate such messages come from the last execution of
DyCAPS.Handoff (e ≥ 2) or DyCAPS.Share (e = 1, see
Appendix B), both of which are guaranteed to terminate.
Therefore, the honest old parties will always send the re-
quired messages and terminate.

8

Lemma 2. The honest parties in Ce+1 will terminate in the
Prepare and ShareReduce phases within the e-th execution
of DyCAPS.Handoff, given that at least n−t honest parties
from Ce and Ce+1 are active, respectively.

Proof. In the Prepare phase, each new committee member
is guaranteed to connect to at least 2(n − t) parties and
receive the public parameters from the honest old parties.
Afterward, it will enter the ShareReduce phase.

In the ShareReduce phase, each honest new party will
receive at least n − t valid SHAREREDUCE messages, in-
cluding the one P e+1

i sends to itself. These messages are
sufficient for P e+1

i to interpolate the reduced share B(x, i)
and enter the next phase.

Lemma 3. The honest parties in Ce+1 will terminate
in the Proactivize phase within the e-th execution of
DyCAPS.Handoff, given that at least n − t honest parties
from Ce and Ce+1 are active, respectively.

Proof. For an honest party P e+1
i to terminate in Proactivize,

it has to obtain enough points to interpolate the random
polynomials Qj(x, i) for each P e+1

j ∈ Q. In the following,
we first prove that an honest P e+1

i will always proceed to
the end of the MVBA instance, and then we prove that each
P e+1
i will obtain the random share Q(x, i) after MVBA.

The worst situation for P e+1
i is that the corrupted parties

will not send any private message to it. In this case, the n−t
honest parties will each receive n− t COM and RESHARE
messages from the other peers. Then, they will vote for
each other by the RECOVER messages. These RECOVER
messages are sufficient for an honest P e+1

i to interpolate
n − t polynomials Qj(x, i). Therefore, an honest P e+1

i is
guaranteed to collect t+ 1 full signatures and form a valid
proposal Vi as the input to the MVBA instance. Due to the
totality of MVBA, each honest party will obtain the output
Ṽ and thus formulate the candidate set Q.

After the termination of MVBA, each honest party
will eventually calculate the random share Q(x, ∗) =∑

P e+1
j ∈QQj(x, ∗). We prove this statement in two cases.

Case 1: If the members inQ are all honest, P e+1
i will re-

ceive at least n−t RECOVER messages for each P e+1
j ∈ Q,

which are sufficient to interpolate Qj(x, i). Consequently,
P e+1
i will compute Q(x, i) =

∑
P e+1

j ∈QQj(x, i), refresh
the reduced shares, and terminate.

Case 2: If any malicious P e+1
m is included in Q, in the

worst case, P e+1
i will not receive any private message from

P e+1
m . On the other hand, P e+1

m ∈ Q means 〈m,σm〉 ∈ Ṽ ,
where σm corresponds to 2t + 1 signature shares. Hence,
there are at least t + 1 honest parties voting for P e+1

m .
These parties only vote for P e+1

m when they receive valid
COM and RESHARE messages from RBC1,m and P e+1

m ,
respectively. Due to the totality of RBC, P e+1

i will also
receive the COM message from RBC1,m. Besides, if at least
t + 1 honest parties receive the RESHARE messages from
P e+1
m , they will distribute the points on Qm through the

RECOVER messages. P e+1
i will receive these t + 1 shares

to interpolate Qm(x, i). Therefore, P e+1
i is able to compute

Q(x, i), refresh the reduced shares, and terminate.
In conclusion, P e+1

i will terminate in either case without
directly receiving messages from the corrupted peers.

Lemma 4. The honest parties in Ce+1 will terminate
in the ShareDist phase within the e-th execution of
DyCAPS.Handoff, given that at least n − t honest parties
from Ce and Ce+1 are active, respectively.

Proof. In the final ShareDist phase, since all honest parties
have refreshed their reduced shares in the Proactivize phase,
an honest P e+1

i will receive at least n−t valid SHAREDIST
messages to interpolate its full share. Similarly, each P e+1

i
will obtain at least n−t SUCCESS, after which it terminates
and enters the normal state.

Theorem 5 (Termination of DyCAPS.Handoff). All hon-
est parties will terminate in the e-th execution of
DyCAPS.Handoff, given that at least n − t honest parties
from Ce and Ce+1 are active, respectively.

Proof. By Lemma 1, the honest parties from the old com-
mittee Ce will terminate. By Lemma 2, Lemma 3, and
Lemma 4, the honest parties from the new committee Ce+1

will terminate. Combining these lemmas, we conclude that
all honest parties will terminate in the e-th execution of
DyCAPS.Handoff.

Correctness. As the Prepare phase does not involve the
secret s, we only need to prove that the secret stays invariant
within the other three phases, as shown by Lemma 6,
Lemma 7, and Lemma 8, respectively.

Lemma 6. The secret s stays invariant during the e-th exe-
cution of ShareReduce, given the conditions in Theorem 9.

Proof. In this phase, the new committee members wait for
enough SHAREREDUCE messages from the old committee
and interpolate the reduced shares. These messages are
verified against the commitment-witness pairs. An honest
P e+1
i will accept the tuple 〈j, CB(x, j), B(∗, j), wB(∗,j)〉

iff it has received at least t + 1 messages containing the
same commitment CB(x, j) and the evaluations all pass the
verification. Therefore, the t corrupted parties in Ce cannot
convince the honest parties with a different commitment C ′
to any other polynomial.

As shown by Lemma 2, each honest P e+1
i will inter-

polate B(x, i), whose commitment is attested by t + 1
SHAREREDUCE messages. Due to the binding property of
the commitment, the polynomial stays invariant in the Share-
Reduce phase, and so does the secret value s = B(0, 0).

Lemma 7. The secret s stays invariant during the e-th
execution of Proactivize, given the conditions in Theorem 9.

Proof. In this phase, the reduced shares are refreshed as
B′(x, ∗) = B(x, ∗)+Q(x, ∗). In Lemma 3, we have proved
that each party will receive a random share Q(x, ∗). In this
part, we prove that the shares Q(x, ∗) are consistent with the

9

same Q(x, y), where Q(0, 0) = 0 and Q(x, y) is a 〈t, 2t〉-
degree polynomial for x, y ∈ [n].

Firstly, the consistency of the candidate set Q is guar-
anteed by the agreement of MVBA. Therefore, to prove the
consistency of Q(x, ∗) = ∑

Pj∈QQj(x, ∗), we only need to
show that the local shares Qm(x, ∗) generated by malicious
parties P e+1

m ∈ Q are consistently interpolated by the honest
parties.

Considering a malicious party P e+1
m ∈ Q that proposes

an illegal Q∗m(x, y), whose y-dimension degree is greater
than 2t, it is only allowed to broadcast 2t + 1 commit-
ments via RBC1,m. The remaining commitments are inter-
polated by the receivers. Due to the binding property, these
2t+1 commitments fix a 〈t, 2t〉-degree shadow polynomial
Q̂m(x, y) in the view of honest parties. If P e+1

m sends an
invalid point w.r.t. the commitments to Q̂m(x, y), the re-
ceivers will not accept it. Therefore, the guaranteed outputs
in Lemma 3 are actually the shares of the 〈t, 2t〉-degree
shadow polynomial Q̂m(x, y). Namely, the honest parties
will receive consistent random shares from P e+1

m ∈ Q, and
the common random polynomial Q(x, y) is also guaranteed
to be 〈t, 2t〉-degree.

Besides, within each COM message, the 2t+1 commit-
ments {gFi(`)}`∈[2t+1] ensure Qi(0, 0) = Fi(0) = 0, so we
have Q(0, 0) =

∑
P e+1

i ∈QQi(0, 0) = 0.
In summary, the secret s = B′(0, 0) = B(0, 0)+Q(0, 0)

stays invariant, and each honest party will receive a consis-
tent new full share B′(∗, y).

Lemma 8. The secret s stays invariant during the e-th
execution of ShareDist, given the conditions in Theorem 9.

Proof. In this phase, each party broadcasts the commitment
to its new reduced share via an RBC instance. Each new
commitment CB′(x,j) is verified w.r.t. the old commitment
CB(x,j) and the random polynomial’s commitment CQ(x,j).
If 2t + 1 points within the SHAREDIST messages pass
the evaluation verification w.r.t. CB′(x,j), the interpolated
B′(i, y) is indeed a full share of B′(x, y). Hence, this phase
also does not change the secret s = B′(0, 0).

Theorem 9 (Correctness of DyCAPS.Handoff). The se-
cret s stays invariant throughout the e-th execution of
DyCAPS.Handoff, at the presence of a mobile adversary
corrupting at most t parties in Ce and Ce+1, respectively.

Proof. By Lemma 6, Lemma 7, and Lemma 8, the secret
s stays invariant in all four phases. Therefore, we conclude
that the correctness of DyCAPS.Handoff holds throughout
the e-th execution of DyCAPS.Handoff for any e ≥ 1.

Secrecy. To prove the secrecy of DyCAPS.Handoff, we
first prove by Lemma 10 that the refreshed shares are
independent of the old ones.

Lemma 10. The mobile adversary cannot obtain extra
information about the new share B′(x, i) from any t+1 old
shares B(x, j), where j 6= i, if it does not corrupt P e+1

i .

P e
i P e

i P e+1
j P e+1

j P e+1
j

ShareDist

B(x, i) B(i, y)

ShareReduce

B(x, j)

Proactivize

+Q(x, j)

B′(x, j)

ShareDist

B′(j, y)

· · · Epoch e Epoch e + 1

Figure 7. Shares held by P ei and P e+1
j in adjacent handoff.

B(t, y)

· · ·

B(2, y)

B(1, y)

B(x, 1)B(x, 2) · · · · · · · · · · · · B(x, 2t)

B(t, 0)

B(2, 0)

B(1, 0)

B(0, 1)B(0, 2) B(0, 2t)

Figure 8. The adversary holds 2t2 + 3t evaluations on B(x, y).

Proof. The refreshed share B′(x, i) for P e+1
i is derived

from the old share B(x, i) by adding a random polynomial
Q(x, i). To compute Q(x, i) =

∑
P e+1

j ∈QQj(x, i), the

adversary needs to obtain Qj(x, i) for all P e+1
j ∈ Q. As

|Q| = t + 1, at least one honest party is included in Q.
Given an honest party P e+1

h ∈ Q, the adversary obtains at
most t points on the t-degree polynomial Qh(x, i), revealing
no information about Qh(x, i).

On the other hand, the adversary obtains t polynomi-
als Q(x,m), where {P e+1

m }m∈[t] are the corrupted parties.
Since Q(x, y) is of degree 〈t, 2t〉 (see Lemma 7), these t
polynomials reveal no information about Q(x, i) for any
uncorrupted P e+1

i .
In conclusion, if the adversary does not corrupt P e+1

i ,
it obtains no information about the polynomial Q(x, i), so
B′(x, i) is independent of B(x, i).

Theorem 11 (Secrecy of DyCAPS.Handoff). The adversary
gains no extra knowledge about the secret s other than
the public information during the repeated executions of
DyCAPS.Handoff.

Proof. The shares held by P ei and P e+1
j are depicted in

Figure 7. Specifically, at the end of epoch e + 1, each P ei
holds B(x, i) and B(i, y), and each P e+1

j holds B(x, j),
B′(x, j), and B′(j, y).

By Lemma 10, we have that the bivariant polynomials
in different epochs are independent. Hence, without loss
of generality, we focus on polynomial B(x, y). The ad-
versary has access to 2t reduced shares B(x, ∗) and t full
shares B(∗, y). These polynomials correspond to 2t2 + 3t
independent evaluations (see Figure 8). Since B(x, y) has
(t+1)(2t+1) coefficients, these evaluations are insufficient
to interpolate s = B(0, 0). Therefore, the adversary gains
no extra information about the secret s.

10

4.2. Performance Analysis

We evaluate the performance of DyCAPS by the com-
munication complexity, which is measured in bits. Due to a
similar reason in Section 4.1, we focus on the performance
of DyCAPS.Handoff here. As we have remarked in Sec-
tion 3.3, the communication cost in the Prepare phase is
not counted, so we start with the ShareReduce phase.

In the ShareReduce phase, messages are only transferred
from the old committee to the new committee. Specifi-
cally, an old member spreads n SHAREREDUCE messages,
each containing three constant-sized elements. Therefore,
the communication cost of this phase is O(κn2) bits.

In the Proactivize phase, communication only takes
place within the new committee. In the beginning, each
P e+1
i sends n O(κn)-sized RESHARE messages to the other

peers. Then, each party invokes an RBC instance with an
O(κn)-sized input. Each RBC instance costs O(κn2) bits
due to the latest scheme of Das et al. [15], which achieves
O(n|m| + κn2) bits of communication complexity, where
|m| is the input size. Next, each party sends out n2 O(κ)-
sized RECOVER messages. Finally, using sMVBA [18],
which realizes O(n2|m|+κn2) communication complexity,
the MVBA instance takes O(κn3) bits of communication3.
To summarize, the Proactivize phase consumes O(κn3) bits
of communication.

In the ShareDist phase, each party invokes an RBC
instance with an O(κ)-sized input. Besides, two constant-
sized messages, SHAREDIST and SUCCESS, are sent to
each other. Overall, this phase consumes O(κn3) bits of
communication.

Altogether, DyCAPS.Handoff achieves O(κn3) bits of
communication complexity.

5. Implementation and Evaluation

We implement DyCAPS and deploy it on Amazon AWS
for evaluation. The initial shares are generated through
DyCAPS.Share (see Appendix B). The evaluations are fo-
cused on DyCAPS.Handoff, which is our main contribution.

5.1. Implementation

We implement DyCAPS using Golang v1.18 in around
5,500 lines of codes, part of which are adopted from the
CHURP implementation [23]. Our implementation is built
upon the GMP [24] and PBC [25] libraries. We use KZG
commitments [12] and BLS threshold signatures [26] as
black blocks. The P2P communication is realized through
TCP sockets. Moreover, we implement Das et al.’s RBC [15]
and sMVBA [18], which are of independent interest. The
source code of DyCAPS is available at https://github.com/
DyCAPSTeam/DyCAPS.

The commitments and signatures are on the same elliptic
curve, y2 = x3 + x over Fq, where q is of 512 bits. The

3. If we apply Dumbo-MVBA [22] framework to sMVBA, the commu-
nication cost will be reduced to O(n|m|+κn2), but this modification will
not influence the overall asymptotic complexity of DyCAPS.

4 16 28 40 52 64

0

50

100

150

200

250

300

Committee size

L
a
te
n
cy

(s
) DyCAPSs

DyCAPS

Figure 9. Latency evaluation of DyCAPS.Handoff. DyCAPSs refers to the
simplified version, where KZG verifications are omitted.

bivariant polynomials are defined over the polynomial ring
Fp[x] for a 256-bit prime p.

5.2. Evaluation

We deploy DyCAPS on 64 Amazon EC2 t2.medium
instances from 8 regions. Every instance serves as a com-
mittee member. For ease of measuring, our experiments are
conducted within an honest and static committee.
Latency. The latency of DyCAPS.Handoff is defined as the
time for each party to obtain the refreshed full shares. Ob-
serve that one of the main bottlenecks of DyCAPS.Handoff
is the O(n2) verifications of the incoming RECOVER mes-
sages. To separate the computational costs and network
latency, we further evaluate a simplified version, DyCAPSs,
where the KZG verifications are omitted.

The results are shown in Figure 9. For the smallest
committee (n = 4), the latency of DyCAPS.Handoff is
around 1.36 seconds. The latency grows to around 300
seconds when the committee is scaled to 64 members. Such
latency is induced by both asynchronous communication and
local computation. By comparing DyCAPS and DyCAPSs,
we conclude that the local computation accounts for 30-50%
of the total latency.
Dynamic BFT. Observe that the message flow of
DyCAPS.Handoff includes all procedures of Dumbo2 [10],
including RBC, threshold signatures, and MVBA. Therefore,
DyCAPS.Handoff may serve as a dynamic BFT protocol,
where the transaction payloads are sent along with the com-
mitments. We evaluate the latency of DyCAPS.Handoff and
Dumbo2 with different payload sizes. Remarkably, the per-
formance of Dumbo2 is better than reported in [10], because
we use more efficient RBC and MVBA schemes. Besides,
Golang has better runtime performance than Python [27].

As shown in Figure 10, DyCAPS.Handoff requires sev-
eral seconds even when there is no payload, but as the
payload size grows, the overall latency of Dumbo2 catches
up with DyCAPS.Handoff. Given a payload size of 20
MB and a committee size n = 22, the latency overhead
of DyCAPS.Handoff is less than 15% when compared to
Dumbo2 latency. When n is small, this overhead is even
smaller, i.e., 9% at n = 10 and 6% at n = 4. In conclu-
sion, our implementation equips Dumbo2 with the ability
of proactivization, and Dumbo2’s overall latency is only
slightly influenced.

11

https://github.com/DyCAPSTeam/DyCAPS
https://github.com/DyCAPSTeam/DyCAPS

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

Payload size (MB)

L
a
te
n
cy

(s
)

DyCAPS (n = 4)

DyCAPS (n = 10)

DyCAPS (n = 16)

DyCAPS (n = 22)

Dumbo2 (n = 4)

Dumbo2 (n = 10)

Dumbo2 (n = 16)

Dumbo2 (n = 22)

Figure 10. Latency of DyCAPS.Handoff and Dumbo2 [10] with different
payload sizes.

6. Change of Size and Threshold

The change of the committee size and threshold is a
common demand for long-term systems, for both security
and flexibility considerations. To support such changes, we
introduce several modifications to the scheme in Section 3.

6.1. Change of Size

Given a fixed threshold, the change of committee size
is already taken into consideration and supported by the
scheme in Section 3. However, we do have a limit on the
committee size when n′ < n. That is, we require n′ > 3t to
ensure the security properties. If the old size n has reached
the lower bound, i.e., n = 3t+1, a reduction of t is needed
before decreasing n to n′, as shown in Section 6.2.

6.2. Change of Threshold

The increase and decrease of the threshold require dif-
ferent techniques, as described in the following.
Increasing threshold. To increase the threshold from t to
t′, where t′ > t, we require that the refreshed polynomial
B′(x, y) is of degree 〈t′, 2t′〉. An intuitive solution is di-
rectly generating a 〈t′, 2t′〉-degree Q(x, y) and adding it
to B(x, y). However, this method enables the adversary to
recover the secret s = B(0, 0) with t + t′ > 2t reduced
shares B(x, ∗). To fix this problem, we let the old committee
locally perform an additional round of DyCAPS.Handoff,
raising the y-dimension degree to 2t′.

In this additional round, the sharing polynomial B(x, y)
held by Ce is refreshed to Btmp(x, y), which is of 〈t, 2t′〉-
degree. This round only involves the old committee, who al-
ready has the reduced share B(x, ∗) from the last handoff (or
the initial sharing), so the Prepare and ShareReduce phases

are omitted. In Proactivize, each P ei generates 2t′+1 random
polynomials Qi(x, `) of degree t, where ` ∈ [2t′ + 1]. The
remaining operations are the same as in Section 3.5 and
Section 3.6. By Lemma 3 and Lemma 4, each P ei will obtain
a t-degree reduced share Btmp(x, i) and a 2t′-degree full
share Btmp(i, y). Afterward, the old committee starts the
regular DyCAPS.Handoff and hands over the reduced shares
to the new committee, which subsequently generates Q(x, y)
of degree 〈t′, 2t′〉 and refresh Btmp(x, y) to B′(x, y). In this
way, the adversary, who obtains t+ t′ < 2t′ reduced shares,
cannot recover the secret.

The additional round of DyCAPS.Handoff within the old
committee implicitly requires that n > 3t′. If this is not the
case, one might increase the old committee’s size n before
increasing the threshold.
Decreasing threshold. Reducing the sharing polynomial’s
degree is non-trivial. We follow prior schemes [6], [11] and
introduce virtual parties. Specifically, given a new threshold
t′ = t − d, where t > d > 0, we set d virtual parties,
whose full shares are exposed to all members. In this way,
the degree of B′(x, y) remains 〈t, 2t〉, while t+ 1− d full
shares from non-virtual parties are needed to perform the
threshold operations.

In this case, the Prepare phase remains the same. In
the ShareReduce phase, each old party additionally sends d
points on its full share, so that every new party obtains the
reduced shares of d virtual parties. This will not influence
the secrecy, because the adversary only has access to t +
t′ + d = 2t reduced shares. In the Proactivize phase, all
honest parties (including the virtual ones) will vote for the
virtual parties, whose contributions are Qv(x, y) = 0. In this
way, the MVBA instance will terminate even if the corrupted
parties withhold the inputs, as shown in Lemma 3. Finally,
in the ShareDist phase, the messages towards the virtual
parties are multicasted so that every party can interpolate
the full shares of the virtual parties.

7. Discussion

Here, we first list the related works in Section 7.1.
Then we discuss the application scenarios of DyCAPS in
Section 7.2.

7.1. Related Work

Table 1 concludes the performance and properties of
several related DPSS schemes.
Non-asynchronous DPSS. Desmedt and Jajodia [4] are the
first to consider dynamic committees in PSS. However, their
work assumes a semi-honest adversary. Wong et al. [30]
extend [4] to withstand a malicious adversary, but they intro-
duce another impractical assumption that the new members
are all honest.

Schultz-MPSS [11] achieves DPSS with a communica-
tion cost of O(κn4) bits. Although Schultz-MPSS claims to
support asynchrony, its underlying PBFT [31] protocol has
been identified as partially synchronous in recent works [9].

12

TABLE 1. RELATED DPSS SCHEMES. THE COMMUNICATION COST IS CALCULATED IN BITS1 .

Reference Async. Adversary Threshold Best-case2
comm. cost

worst-case
comm. cost

Trusted
setup3

PKE
required

Schultz-MPSS [11] × Mobile t < n/3 O(κn4) O(κn5) ×
√

Opt-CHURP [6] × Mobile &
semi-honest t < n/2 O(κn2) N/A

√
×

Exp-CHURP-A [6] × Mobile t < n/2 N/A O(κn3)
√ √

COBRA [7] × Mobile t < n/3 O(κn3) O(κn4)
√ √

APSS [8]
√

Mobile t < n/3 exp(n) – × ×
Shanrang [28]

√
Mobile t < n/4 O(κn3 logn) N/A

√ √

Yurek et al. [29]
√

Mobile t < n/3 O(κn3) – ×4 √

DyCAPS (this work)
√

Mobile t < n/3 O(κn3) –
√

×
1 n: comittee size, t: number of corrupted parties, κ: security parameter, N/A: not applicable, –: same as the best case.
2 In the best case, all parties behave honestly. In the worst case, there are t corrupted parties behaving maliciously.
3 The trusted setup does not include the initial share distribution, which is replaceable by distributed key generation.
4 Given no trusted setup, the NIZK proofs of correct PKE in [29] may introduce a large constant factor.

CHURP [6] and COBRA [7] are two state-of-the-art
DPSS schemes in synchronous and partially synchronous
networks, respectively. CHURP achieves a communication
cost of O(κn2) bits in the optimistic case. However, if any
party misbehaves, CHURP falls to the pessimistic path and
requires O(κn3) bits of communication4. COBRA achieves
an overhead of O(κn3) bits, but its worst-case commu-
nication grows to O(κn4) when faced with t continuous
malicious leaders.
Asynchronous DPSS. Zhou et al. [8] propose the first asyn-
chronous dynamic-committee PSS. They use the XOR-based
secret sharing, which results in exponential communication
costs. We reduce the communication cost to O(κn3) bits,
making asynchronous DPSS more practical.

We have noticed two concurrent works by Yan et al. [28]
and Yurek et al. [29]. Yan et al. [28] propose Shanrang,
which uses two rounds of Honeybadger [9] to deal with
the asynchronous network, with a communication cost of
O(κn3 log n). Besides, Shanrang only tolerates t < n/4 cor-
rupted parties. Yurek et al. [29] achieve the same asymptotic
overhead as ours, and they focus on the amortized cost of
multiple secrets. Their scheme uses public-key encryptions
(PKE) and relies on non-interactive zero-knowledge (NIZK)
proofs to guarantee the correctness of PKE. Although there
are constant-sized NIZK proofs [32], [33], they are much
larger than KZG commitments (approximately 1 KB vs. 256
bits). Moreover, the prover and verifier time may dominate
the computational cost of each party. Therefore, our scheme
will be more efficient in some scenarios where only several
secrets are shared, e.g., permissioned blockchains. On the
other hand, when the secret batch becomes large, Yurek et
al.’s work [29] will be more practical.
Asynchronous verifiable secret sharing (AVSS). The
reshare-recover procedures within our Proactivize phase are
similar to Backes et al.’s eAVSS-SC [34]. The main differ-
ence is that we separate the RBC and resharing messages,
so that we may choose more efficient RBC schemes for
implementation. As a trade-off, these procedures cannot be
extracted as a standalone DPSS.Share scheme because the

4. We replace the broadcast channel (referred to as bulletin board) with
Das et al.’s RBC [15] to calculate CHURP’s communication overhead.

separation of messages will influence the totality property
(see Definition 1).
Asynchronous distributed key generation (ADKG). The
core of asynchronous PSS schemes is an ADKG protocol,
where common randomness is jointly generated and added
to the original shares. DyCAPS has the same asymptotic
efficiency as the state-of-the-art ADKG scheme [35], but
each participant will obtain a random polynomial instead of
a random element.

7.2. Applications of DyCAPS

As DyCAPS supports a more flexible committee, it may
promote the applications of several long-term systems, such
as committee-based blockchains and decentralized identity.
Flexible committees for blockchains. Most committee-
based blockchains use BFT protocols [9], [10], [36] to order
the transactions, where the BFT committee is usually fixed.
Using DyCAPS, the committee management will be more
flexible. Adjusting committee members, size, and threshold
may strengthen the system’s long-term security against a
mobile adversary. DyCAPS is also suitable for proof-of-
stake (PoS) blockchains, where the committee is selected
according to the users’ stakes and changes over time. With
DyCAPS, the PoS committee may use the same key pairs
to sign the blocks. In this way, the blockchain users will be
relieved of the burden of recording historical public keys to
verify the blocks.
Decentralized identity (DID). The blossom of decentral-
ized applications (DApps) on blockchains [37] has triggered
the public’s interest in DID [38], [39], [40], which refers to
the on-chain assets and credentials. To manage a DID, a
user may refer to DyCAPS to lower the risk of losing or
exposing the secret key.

8. Conclusion

In this paper, we propose DyCAPS, an efficient asyn-
chronous DPSS scheme with O(κn3) bits of communication
cost. DyCAPS ensures its termination and correctness in
asynchrony and guarantees the privacy of the secret shares.
Due to its robustness in asynchrony, DyCAPS is suitable

13

for long-term key management and committee governance.
DyCAPS may facilitate committee-based systems to evolve
to the dynamic setting, especially for decentralized au-
tonomous organizations and blockchains.

Acknowledgments

The authors thank Ren Zhang, Yanpei Guo, Qitong Liu,
and Bingyu Yan for their helpful suggestions.

References

[1] R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks
(extended abstract),” in PODC 1991. ACM, pp. 51–59.

[2] V. Nikov and S. Nikova, “On proactive secret sharing schemes,” in
SAC 2004, ser. LNCS, vol. 3357. Springer, pp. 308–325.

[3] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[4] Y. Desmedt and S. Jajodia, “Redistributing secret shares to
new access structures and its applications,” 1997. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
55.2968&rep=rep1&type=pdf

[5] S. Duan and H. Zhang, “Foundations of dynamic BFT,” in SP 2022.
IEEE, 2022, pp. 1317–1334.

[6] S. K. D. Maram, F. Zhang, L. Wang, A. Low, Y. Zhang, A. Juels, and
D. Song, “CHURP: dynamic-committee proactive secret sharing,” in
CCS 2019. ACM, pp. 2369–2386.

[7] R. Vassantlal, E. Alchieri, B. Ferreira, and A. Bessani, “Cobra:
Dynamic proactive secret sharing for confidential bft services,” in
SP 2022. IEEE Computer Society, 2022, pp. 1528–1528.

[8] L. Zhou, F. B. Schneider, and R. van Renesse, “APSS: proactive secret
sharing in asynchronous systems,” ACM Trans. Inf. Syst. Secur., vol. 8,
no. 3, pp. 259–286, 2005.

[9] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey
badger of BFT protocols,” in CCS 2016. ACM, pp. 31–42.

[10] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous BFT protocols,” in CCS 2020. ACM, pp. 803–818.

[11] D. A. Schultz, B. Liskov, and M. D. Liskov, “MPSS: mobile proactive
secret sharing,” ACM Trans. Inf. Syst. Secur., vol. 13, no. 4, pp. 34:1–
34:32, 2010.

[12] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commit-
ments to polynomials and their applications,” in ASIACRYPT 2010,
ser. LNCS, vol. 6477. Springer, pp. 177–194.

[13] G. Bracha, “Asynchronous byzantine agreement protocols,” Inf. Com-
put., vol. 75, no. 2, pp. 130–143, 1987.

[14] K. Nayak, L. Ren, E. Shi, N. H. Vaidya, and Z. Xiang, “Improved
extension protocols for byzantine broadcast and agreement,” in DISC
2020, ser. LIPIcs, vol. 179. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020, pp. 28:1–28:17.

[15] S. Das, Z. Xiang, and L. Ren, “Asynchronous data dissemination and
its applications,” in CCS 2021. ACM, pp. 2705–2721.

[16] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and
efficient asynchronous broadcast protocols,” in CRYPTO 2001, ser.
LNCS, vol. 2139. Springer, pp. 524–541.

[17] I. Abraham, D. Malkhi, and A. Spiegelman, “Asymptotically optimal
validated asynchronous byzantine agreement,” in PODC 2019. ACM,
pp. 337–346.

[18] B. Guo, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Speeding
dumbo: Pushing asynchronous BFT closer to practice,” in NDSS 2022,
pp. 1–18.

[19] A. Boldyreva, “Threshold signatures, multisignatures and blind sig-
natures based on the gap-diffie-hellman-group signature scheme,” in
PKC 2003, ser. LNCS, vol. 2567. Springer, pp. 31–46.

[20] A. Tomescu, R. Chen, Y. Zheng, I. Abraham, B. Pinkas, G. Golan-
Gueta, and S. Devadas, “Towards scalable threshold cryptosystems,”
in SP 2020. IEEE, pp. 877–893.

[21] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl, “Asyn-
chronous verifiable secret sharing and proactive cryptosystems,” in
CCS 2002. ACM, pp. 88–97.

[22] Y. Lu, Z. Lu, Q. Tang, and G. Wang, “Dumbo-mvba: Optimal multi-
valued validated asynchronous byzantine agreement, revisited,” in
PODC 2020. ACM, pp. 129–138.

[23] CHURPTeam, “Churp,” 2019. [Online]. Available: https://github.
com/CHURPTeam/CHURP

[24] “The GNU multiple precision (GMP) arithmetic library,” 2021.
[Online]. Available: https://gmplib.org/

[25] “Go wrapper for the pairing based cryptography (PBC) library,”
2018. [Online]. Available: https://github.com/Nik-U/pbc

[26] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” J. Cryptol., vol. 17, no. 4, pp. 297–319, 2004.

[27] D. Lion, A. Chiu, M. Stumm, and D. Yuan, “Investigating managed
language runtime performance,” in USENIX ATC 2022, pp. 835–852.

[28] Y. Yan, Y. Xia, and S. Devadas, “Shanrang: Fully asynchronous
proactive secret sharing with dynamic committees,” 2022. [Online].
Available: https://eprint.iacr.org/2022/164

[29] T. Yurek, Z. Xiang, Y. Xia, and A. Miller, “Long live the
honey badger: Robust asynchronous dpss and its applications,”
Cryptology ePrint Archive, Paper 2022/971, 2022. [Online].
Available: https://eprint.iacr.org/2022/971

[30] T. M. Wong, C. Wang, and J. M. Wing, “Verifiable secret redistri-
bution for archive systems,” in First International IEEE Security in
Storage Workshop, 2002. Proceedings. IEEE, pp. 94–105.

[31] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
OSDI 1999. USENIX Association, pp. 173–186.

[32] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,”
in SP 2018. IEEE Computer Society, pp. 315–334.

[33] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable,
transparent, and post-quantum secure computational integrity,”
Cryptology ePrint Archive, Paper 2018/046, 2018. [Online].
Available: https://eprint.iacr.org/2018/046

[34] M. Backes, A. Datta, and A. Kate, “Asynchronous computational
VSS with reduced communication complexity,” in CT-RSA 2013, ser.
LNCS, vol. 7779. Springer, pp. 259–276.

[35] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser,
I. Khoffi, M. J. Fischer, and B. Ford, “Scalable bias-resistant dis-
tributed randomness,” in SP 2017. IEEE Computer Society, pp.
444–460.

[36] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. D. Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolic, S. W. Cocco, and
J. Yellick, “Hyperledger fabric: a distributed operating system for
permissioned blockchains,” in EuroSys 2018. ACM, 2018, pp. 30:1–
30:15.

[37] B. Hu, Z. Zhang, J. Liu, Y. Liu, J. Yin, R. Lu, and X. Lin, “A
comprehensive survey on smart contract construction and execution:
paradigms, tools, and systems,” Patterns, vol. 2, no. 2, p. 100179,
2021.

[38] D. Maram, H. Malvai, F. Zhang, N. Jean-Louis, A. Frolov, T. Kell,
T. Lobban, C. Moy, A. Juels, and A. Miller, “Candid: Can-do de-
centralized identity with legacy compatibility, sybil-resistance, and
accountability,” in SP 2021. IEEE, pp. 1348–1366.

14

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.2968&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.2968&rep=rep1&type=pdf
https://github.com/CHURPTeam/CHURP
https://github.com/CHURPTeam/CHURP
https://gmplib.org/
https://github.com/Nik-U/pbc
https://eprint.iacr.org/2022/164
https://eprint.iacr.org/2022/971
https://eprint.iacr.org/2018/046

[39] .bit, “Your decentralized identity for web3.0 life,” 2022. [Online].
Available: https://www.did.id/

[40] ConsenSys, “Serto: trust with control,” 2022. [Online]. Available:
https://www.serto.id/

Appendix A.
Notations

TABLE 2. FREQUENTLY USED NOTATIONS IN THIS PAPER

Notation Description
κ Security parameter
s Secret value
e Epoch number
Ce The committee in epoch e
P ei The i-th party in Ce
ne Size of Ce
te Maximum number of corrupted parties in Ce
Cφ Commitment to some polynomial φ(x)
wφ(i) Witness to the evaluation of φ(x) at x = i
σ∗i , σ Signature share from Pi and full signature, respectively
∅ Empty set

Appendix B.
DyCAPS.Share

In this section, we present a leader-based instantiation
of DyCAPS.Share. The existence of a dealer is necessary
for some applications. For example, a dealer may delegate
its secret key to a group of people to do threshold cryp-
tographic operations. We leave the dealer-free version for
future research.

DyCAPS.Share requires a trusted setup to initialize the
KZG commitments. We further assume the commitment
public key cpk and the public parameters are available for
all members. We slightly modify Backes et al.’s eAVSS-SC
scheme [34] to support a 〈t, 2t〉-degree bivariate polynomial.
The procedures are shown in Figure 11.

Init. The initialization for the dealer Pd and the peers Pi
is different. Specifically, Pd initializes a proof set π, which
originally contains only gs. Then, Pd generates a 2t-degree
random polynomial F (y), where F (0) = s. F (y) is further
extended to 2t+1 random polynomials B(x, `) of degree t,
such that B(0, `) = F (`) for each ` ∈ [2t + 1]. As for the
peers, each of them only needs to initialize an empty buffer
Sfull and a flag FLGready = 0.

Commit. To prove the correctness of Init, Pd sets π =
{gs, {`, CB`

, CZ`
, wZ`(0), g

F (`)}`∈[2t+1]}, where CB`
and

CZ`
are the commitments to B(x, `) and Z`(x) = B(x, `)−

F (`), respectively, and wZ`(0) is the witness of Z`(0) = 0.
The main difference from Proactivize in Section 3.5 is that
we include gs in π.

Send. Pd sends 〈SEND, π, {B(i, `), wB(i,`)}`∈[2t+1]〉 to each
Pi ∈ C. At this point, the dealer Pd has finished all the tasks,
and the remaining procedures are conducted by the peers.

Echo. Upon receiving the SEND message from the dealer,
Pi verifies that the polynomials B(x, `) are correctly for-
mulated, where ` ∈ [2t + 1], following similar verification
steps as in Proactivize. Pi also verifies that the evaluation-
witness pairs w.r.t. the commitments in π′. If all verifications
return true, Pi sets π as π′. Then, Pi interpolates a 2t-degree
polynomial B∗(i, y). The witnesses {wB∗(i,j)}Pj∈C are also
interpolated from π′. Finally, Pi multicasts 〈ECHO, π′〉.
Ready. Upon receiving n−t ECHO messages or t+1 READY
messages with the same π′, Pi checks whether π = π′ holds.
If so, Pi sends 〈READY, π′, SHARE, B∗(i, `), wB∗(i,`)〉 to
each P` ∈ C. Otherwise, Pi resets π as π′ and discards the
interpolated {wB∗(i,`)}P`∈C and B∗(i, y). In the latter case,
Pi multicasts 〈READY, π′, NOSHARE〉.
Distribute. Pi collects n−t READY messages, among which
least t + 1 contain valid shares. Then, Pi interpolates a t-
degree polynomial B(x, i) and sends one point on this poly-
nomial to every P` ∈ C via 〈DISTRIBUTE, B(`, i), wB(`,i)〉.
Recover. Pi collects 2t+1 valid DISTRIBUTE messages and
interpolates a 2t-degree polynomial B(i, y), which is the full
share of s.

Analysis. Following Backes et al.’s scheme [34], we may
easily conclude that the liveness, totality, and secrecy prop-
erties hold until the Ready stage. We prove that the ad-
ditional steps in Distribute and Recover do not influence
these properties. The proof of correctness is delayed to
Appendix C, as it involves DyCAPS.Recon.

Theorem 12 (Liveness of DyCAPS.Share). If the dealer is
honest, all honest parties will complete DyCAPS.Share in
the presence of t corrupted parties.

Proof. Following the proof of liveness in [34], we may
conclude that all honest parties will interpolate a t-degree
polynomial B(x, i) in the Distribute stage. Then, every
honest party Pi will send a DISTRIBUTE message to the
others, and Pi will receive at least n − t such messages,
which are sufficient to interpolate B(i, y).

Theorem 13 (Totality of DyCAPS.Share). If an honest party
completes DyCAPS.Share, all honest parties will complete
DyCAPS.Share.

Proof. If an honest party completes DyCAPS.Share, it has
received 2t+1 valid DISTRIBUTE messages, where t+1 of
them are from honest parties. In turn, an honest party Pi only
sends the DISTRIBUTE messages when it has interpolated
B(x, i). Following the proof of totality in [34] (referred to as
agreement in this work), if an honest party Pi interpolates
B(x, i), all honest parties will obtain the reduced shares
and send the DISTRIBUTE messages. As a result, all honest
parties will receive at least n− t valid messages, which are
sufficient to interpolate the full shares B(∗, y).

Theorem 14 (Secrecy of DyCAPS.Share). The adversary
gains no extra knowledge about the secret s other than the
public information during DyCAPS.Share.

15

https://www.did.id/
https://www.serto.id/

DyCAPS.Share
1: Upon invocation by Pd with input 〈InitShare, s〉 do
2: Upon receiving 〈InitShare, s〉 from Pd do . Init
3: π ← gs

4: Generate a 2t-degree polynomial F (y), where F (0) = s

5: For each ` ∈ [2t+ 1] do
6: Generate a t-degree polynomial B(x, `), where B(0, `) = F (`)

7: Send Commit to Pd

8: Upon receiving Commit from Pd do . Commit
9: For each ` ∈ [2t+ 1] do

10: Z`(x)← B(x, `)− F (`)
11: CB`

← KZG.Commit(B(x, `))

12: CZ`
← KZG.Commit(Z`(x))

13: wZ`(0) ← KZG.CreateWitness(Z`(x), 0)

14: π ← π ∪ {j, CB`
, CZ`

, wZ`(0), g
F (`)}

15: Send Send to Pd

16: Upon receiving Send from Pd do . Send
17: For each Pi ∈ C do
18: For each ` ∈ [2t+ 1] do
19: wB(i,`) ← KZG.CreateWitness(B(x, `), i)

20: Send 〈Send, π, {B(i, `), wB(i,`)}`∈[2t+1]〉 privately to Pi

21: Upon invocation by Pi ∈ C with input InitShare do
22: Upon receiving InitShare from Pi do . Init
23: Sfull ← ∅
24: FLGready ← 0

25: Upon receiving 〈Send, π′, {B(i, `), wB(i,`)}`∈[2t+1]〉 from Pd do . Echo
26: Verify π′ as line 24-28 in Proactivize // {gF (`)}`∈[2t+1] are verified w.r.t. gs

27: Verify {B(i, `), wB(i,`)}`∈[2t+1] w.r.t. π
28: π ← π′

29: Interpolate a 2t-degree polynomial B∗(i, y) from {〈`, B(i, `)〉}`∈[2t+1]

30: Interpolate {wB∗(i,j)}Pj∈C from {wB(i,`)}`∈[2t+1]

31: Multicast 〈Echo, π′〉

32: Upon receiving n− t 〈Echo, π′〉 or t+1 〈Ready, π′, ∗〉 do . Ready
33: If FLGready = 0 then
34: If π′ = π then
35: Send 〈Ready, π′,Share, B∗(i, `), wB∗(i,`)〉 to each P` ∈ C
36: Else
37: π ← π′

38: Discard {wB∗(i,`)}P`∈C and B∗(i, y)
39: Multicast 〈Ready, π′,noShare〉
40: FLGready ← 1

41: Upon receiving 〈Ready, π′, ∗〉 from n− t parties do . Distribute
42: Upon there are t+ 1 valid Ready-Share messages do
43: Interpolate B(x, i)

44: Send 〈Distribute, B(`, i), wB(`,i)〉 to each P` ∈ C

45: Upon reiceiving 〈Distribute, B(i, j), wB(i,j)〉 from Pj do . Recover
46: Upon FLGready = 1 do
47: Interpolate CBj

from π

48: If KZG.VerifyEval(CBj
, B(i, j), wB(i,j)) = 1 then

49: Sfull ← Sfull ∪ (j, B(i, j))

50: If |Sfull| ≥ 2t+ 1 then
51: Interpolate a 2t-degree polynomial B(i, y) from Sfull

Figure 11. Procedures of dealer-based DyCAPS.Share. The dealer Pd is responsible to distribute the shares of the secret s among C = {Pi}i∈[n].

Proof. The secrecy is only meaningful when the dealer is
honest. In this case, the adversary obtains t SEND messages,
n ECHO messages, t×n READY messages, and t×n DIS-
TRIBUTE messages. Besides, the final polynomial B(∗, y)
is the same as B∗(∗, y), which is interpolated from the
SEND message. We refer to both B(∗, y) and B∗(∗, y) as
full shares in the following.

Without loss of generality, we denote the corrupted par-
ties as {Pm}m∈[t]. The t SEND messages held by the adver-
sary correspond to t full shares B∗(m, y), which are insuf-
ficient to interpolate s = B∗(0, 0). The n ECHO messages
only contain public information, revealing no information
about s. In the subsequent steps, each Pm obtains n READY
and DISTRIBUTE messages, respectively. Any t+1 READY
messages result in the reduced share B(x,m), and any
2t+1 DISTRIBUTE messages lead to the full share B(m, y).
Therefore, the adversary will have t reduced shares and t
full shares. As B(x, y) is of degree 〈t, 2t〉, the adversary
obtains no information about the secret s = B(0, 0) with
these shares. Remarkably, the adversary will obtain another
t reduced shares during the first handoff, but 2t reduced
shares are still insufficient to recover the secret, as proved
in Lemma 11.

Appendix C.
DyCAPS.Recon

When a dealer invokes DyCAPS.Recon, the peers send
their full shares B(∗, y) to the dealer, along with a set of
commitments {CB(`,y)}P`∈C , where C is the current com-
mittee. The dealer collects t+1 valid shares and interpolates
B(x, y). The reconstructed secret is thus s = B(0, 0).

In case there is no dealer, the peers may broadcast their
shares via RBC, and each of them will receive enough shares
to recover the secret.

Analysis. In the following, we prove the termination of
DyCAPS.Recon and the correctness of DyCAPS. The proof
of secrecy is omitted, as the secret is exposed to every party
in the dealer-free case.

Theorem 15 (Termination of DyCAPS.Recon). In either
dealer-based or dealer-free cases, if there are at least n− t
honest parties during the execution of DyCAPS.Recon, the
dealer and the honest parties will receive s, respectively.

Proof. By Theorem 5, all honest parties will receive a full
share B(∗, y) after the last execution of DyCAPS.Handoff,
where B(x, y) is of degree 〈t, 2t〉. Therefore, in both dealer-
based and dealer-free cases, there will be at least n− t valid
full shares, so the invoker(s) of DyCAPS.Recon will recover
the secret s using any t+ 1 full shares.

16

Theorem 16 (Correctness of DyCAPS). If the dealer is
honest, the output v of DyCAPS.Recon is the same as the
original secret s.

Proof. By Theorem 9, DyCAPS.Handoff keeps the secret s
invariant. Due to the binding property of the commitments,
the reconstruction does not change the polynomials and the
corresponding secret value.

17

	Introduction
	Preliminaries
	Notations
	System Model
	Building Blocks

	The DyCAPS Protocol
	Definition of DPSS
	DyCAPS Overview
	Preparation
	Share Reduction
	Proactivization
	Share Distribution

	Security and Performance Analysis
	Security Analysis
	Performance Analysis

	Implementation and Evaluation
	Implementation
	Evaluation

	Change of Size and Threshold
	Change of Size
	Change of Threshold

	Discussion
	Related Work
	Applications of DyCAPS

	Conclusion
	References
	Appendix A: Notations
	Appendix B: DyCAPS.Share
	Appendix C: DyCAPS.Recon

