
1

DyCAPS: Asynchronous Dynamic-committee
Proactive Secret Sharing

Bin Hu, Zongyang Zhang, Member, IEEE, Han Chen, You Zhou, Huazu Jiang, Jianwei Liu, Senior Member, IEEE

Abstract—Dynamic-committee proactive secret sharing (DPSS)
enables the refresh of secret shares and the alternation of
shareholders without changing the secret. Such a proactivization
functionality makes DPSS a promising technology for long-
term key management and committee governance. In non-
asynchronous networks, CHURP (CCS ’19) and COBRA (S&P
’22) have achieved best-case square and cubic communication
cost, respectively, w.r.t. the number of shareholders. However, the
overhead of asynchronous DPSS remains high. This gap hinders
asynchronous protocols from evolving to the dynamic setting,
such as BFT systems and threshold cryptography services.

In this paper, we fill this gap and propose DyCAPS, an efficient
asynchronous DPSS protocol with a cubic communication cost.
DyCAPS supports the transfer of both low- and high-threshold
secret shares among dynamic committees with the same commu-
nication and computation complexity. Experimental results show
that proactivization between two disjoint committees of 4 (resp.,
64) members takes 1.3 (resp., 51) seconds. Moreover, DyCAPS
is designed to be compatible with asynchronous BFT protocols
without increasing the asymptotic communication cost. Given a
payload of 5–10 MB per node, DyCAPS achieves member change
in Dumbo2 (CCS ’20) at around 10% temporary throughput
degradation, with the committee size varying from 4 to 22.

Index Terms—proactive secret sharing, dynamic committee,
asynchronous, BFT.

I. INTRODUCTION

Proactive secret sharing (PSS) [1], [2], [3] is an extension of
the well-known Shamir’s secret sharing [4]. In PSS, a dealer
shares a secret among a committee, and the secret shares are
refreshed periodically by the committee, without changing or
revealing the original secret. Recently, there has been a trend to
reconsider the design and applications of dynamic-committee
PSS (DPSS) [5], [6]. DPSS further empowers the shareholder
committee to reconfigure its composition over time through
a so-called handoff protocol. This feature makes DPSS a
promising technology for long-term key management and
committee governance, as membership alternation is inevitable
in practice.

Moreover, DPSS gains increased significance, given that
many state-of-the-art Byzantine Fault Tolerant (BFT) consen-
sus protocols [7], [8], [9] rely on threshold signatures [10]
for reduced communication cost. As pointed out by Duan and
Zhang [11], dynamic-committee BFT protocols are in great
demand real-world applications. By enabling the transfer of

Bin Hu, Zongyang Zhang, Han Chen, You Zhou, and Jianwei Liu
are with School of Cyber Science and Technology, Beihang University,
China. Emails: {hubin0205, zongyangzhang, chenhan1123, youzhou, liujian-
wei}@buaa.edu.cn.

Huazu Jiang is with Shen Yuan Honors College, Beihang University, China.
Email: anjhz@buaa.edu.cn.

Zongyang Zhang is the corresponding author.

secret key shares among different committees, DPSS intro-
duces a compelling approach to facilitate the transformation
of these protocols into dynamic settings.

Researchers have achieved high performance in pure or
partially-synchronous networks. In these settings, there is a
time bound for message delivery, so that misbehaving nodes
can be identified efficiently. The state-of-the-art synchronous
DPSS protocol, CHURP [5], consumes O(κn2) bits of com-
munication in the presence of a semi-honest adversary, where
κ denotes the security parameter, and n is the committee size.
When faced with Byzantine faults, CHURP’s communication
cost grows to O(κn3) bits, which is still the asymptotically
best among existing schemes. As for the partially-synchronous
solutions, COBRA [6] achieves O(κn3) and O(κn4) bits of
communication in the best and worst cases, respectively.

However, to the best of our knowledge, there is little related
research in asynchrony, which assumes no time bound of net-
work latency. Cachin et al. [12] propose the first asynchronous
PSS protocol with O(κn4) communication complexity, but it
only supports a static committee. Zhou et al. [13] are the first
to achieve asynchronous DPSS, whereas the communication
cost grows exponentially, far from real-world implementation.
Until recently, Shanrang [14] brings down the communication
complexity of asynchronous DPSS to O(κn3 log n) in an all-
honest scenario, at the expense of non-optimal fault tolerance
t < n/4, where t is the reconstruction threshold. When
misbehaviors are detected, its cost blows up to O(κn4).

In this paper, we are aimed to design an efficient and
BFT-friendly asynchronous DPSS protocol with optimal fault
tolerance t < n/3. Such a protocol may strengthen the robust-
ness of long-lived systems, including BFT protocols [15], [8],
decentralized autonomous organizations [16], and threshold-
cryptography-as-a-service systems [17]. To achieve our goal,
there are several challenges to be tackled.
Challenges. The first challenge is to withstand an adversary
that corrupts at most 2t nodes during a handoff, t in each
of the old and new committees. CHURP [5] addresses this
problem by introducing a bivariate sharing polynomial. During
a handoff, the reconstruction threshold is temporarily raised
from t to 2t to prevent secret leakage. Then, the new com-
mittee collectively generates a common random polynomial to
refresh the temporal shares. Finally, the threshold is switched
back to t. We follow CHURP’s strategy and take a step to
support asynchronous networks.

The second challenge is to accommodate CHURP to asyn-
chrony, while retaining the O(κn3) communication complex-
ity in Byzantine cases. CHURP and other non-asynchronous
DPSS protocols rely on challenge-response mechanisms to

2

make progress. This strategy does not work in asynchronous
networks, because an honest node cannot distinguish whether
the absence of messages is due to unbounded network latency
or malicious behaviors. To adapt to asynchrony, we employ
voting to certify honest behaviors, instead of challenging
the misbehaving nodes. Additionally, we carefully design the
asynchronous randomness generation procedure to maintain
the communication complexity at O(κn3) bits, which is the
same as the Byzantine-case performance of CHURP.

The third challenge is to build a BFT-friendly DPSS pro-
tocol. Most DPSS protocols are proposed as individual tools,
resulting in additional communication and latency costs per
handoff. We design our protocol to fully utilizes the compo-
nents of asynchronous BFT protocols, so that a handoff can be
done simultaneously within a round of Byzantine consensus,
thereby achieving lower extra overhead.
Contributions. Our contributions are as follows.
• We propose DyCAPS, the first efficient asynchronous DPSS

protocol with O(κn3) communication complexity. In the
worst-case scenario, DyCAPS has the same communication
complexity as CHURP [5], and it outperforms COBRA [6]
— both CHURP and COBRA assume non-asynchrony.

• We derive hDyCAPS, a variant that supports the transfer
of high-threshold secret shares among dynamic committees.
This variant has the same complexity as DyCAPS.

• We design DyCAPS to be compatible with existing asyn-
chronous BFT protocols. We implement DyCAPS and inte-
grate it into Dumbo2 [8], supporting dynamic membership
without increasing the asymptotic communication cost. The
implementation is open-source.

• We evaluate DyCAPS on Amazon EC2 t2.medium in-
stances. The handoff between two disjoint committees of
equal size takes 1.3 and 51 seconds, respectively, for n=4
and n=64. Given 4≤n≤22 and a payload of 5–10MB per
node, DyCAPS achieves member change in Dumbo2 at the
cost of around 10% temporary throughput degradation.

Concurrent work. A recent work of Yurek et al. [18],
referred to as LongLive, also supports high-thrshold DPSS and
achieves O(κn3) communication complexity. The distinguish-
ing features between DyCAPS and LongLive are as follows:
• In design goals, LongLive is aimed at batch amortization,

whereas DyCAPS is designed to refresh a single share.
• In technology, LongLive uses the resharing technique [19],

[12], whereas DyCAPS utilizes bivariate polynomials [5] to
accommodate dynamic committees.

• In performance, DyCAPS exhibits stable performance in
handling high- and low-threshold shares, thanks to the
bivariate polynomials, whereas LongLive experiences sig-
nificantly higher latency in the high-threshold case when
compared to the low-threshold case.

II. PRELIMINARIES

A. Notations

We use [n] to denote the ordered set {1, ..., n}, where n ∈
N∗. Arbitrary-length tuples are denoted as ⟨·⟩. Sets are denoted
with upper-case calligraphic letters, e.g., S. We refer to the

TABLE I
NOTATIONS

Notation Description
κ Security parameter
s Secret value
e Epoch number
Ce Shareholder committee in epoch e
P e
i i-th node in committee Ce

ne Size of committee Ce
te Maximum number of corrupted nodes in epoch e

B(x, y), B′(x, y) Old and new bivariate sharing polynomial
Cϕ(x) Polynomial commitment to ϕ(x)
wϕ(i) Witness for the evaluation of ϕ(x) at x = i
σm Digital signature of message m
σ∗
m,i Signature share produced by Pi on message m

FLGcntx Flag, where cntx denotes the context
∅ Empty set

BP

Dealer
s3

s4

s1

s2

Committee 1

s01

s04

s03

s02

Committee 2

Share Proactivize Proactivize

invariant s

Share Proactivize

Dealer

Committee 1 Committee 2

𝑠"

𝑠#

𝑠$

𝑠%

Proactivize

𝑠"&

𝑠#&

𝑠$&

𝑠%&

invariant 𝑠

Fig. 1. System model of DPSS. The secret s stays invariant during proac-
tivization, and the nodes are allowed to join or leave the committee over time.

size of S as |S|. Small capital letters are used to denote the
message type, e.g., COM.

Some special representations are used for particular mean-
ings, as listed in Table I. We use κ as the security parameter,
representing the length of signaturs and hash values. The secret
value is denoted as s. Epoch number is referred to as e, where
e ∈ N∗. The e-th committee is denoted as Ce = {P e

i }i∈[ne],
where P e

i is the i-th node and ne is the committee size. We use
te as the maximum number of nodes an adversary can corrupt
in epoch e. Cϕ(x) denotes the commitment to a polynomial
ϕ(x), and wϕ(i) is the witness for the evaluation of ϕ(x) at
x = i. The letter σm denotes a digital signature of message
m, whereas σ∗

m,i is a signature share produced by Pi. Flags
are represented as FLG, with subscripts denoting the context.
An empty set is denoted as ∅.

B. System Model

Our DPSS protocol involves a dealer and several commit-
tees, as shown in Figure 1. The dealer is responsible for
initializing the secret and distributing shares among the nodes
in the first committee. Afterward, the shares are refreshed
periodically without the help of the dealer. The proactivization
is executed between every two committees, such that the
committee members may vary from overlapped to completely
disjoint, whereas the secret value s stays invariant over time.
Epochs and secure erasure. We follow Schultz-MPSS [20]
and define epochs according to local events. A node is active
in epoch e if it holds the secret share for this epoch. Between
epochs e and e+1, the committees Ce and Ce+1 collaboratively
execute a handoff protocol to transfer and refresh the shares.
To counter with Alexandru et al.’s impossibility result of
asynchronous DPSS [21], we assume a handoff is invoked after
every honest node in Ce has obtained a valid share from the

3

prior handoff or sharing. When an honest node leaves epoch
e, it erases the sensitive information related to epoch e.
Network. We assume asynchrony, where an adversary controls
the order of messages, but the messages will be delivered
eventually. Besides, nodes are fully connected by authenticated
and private channels. We further assume these channels are
forward-secure, as demonstrated in [20].
Adversary. We assume a probabilistic polynomial-time (PPT)
mobile adversary, who adaptively corrupts at most te nodes
in committee Ce, where te < ne/3. The corrupted nodes
stay malicious throughout this epoch, and they can misbehave
arbitrarily. The adversary can release one node and corrupt
another in the next epoch.
Trusted setup. We require a one-time trusted setup to initialize
the public paramters for KZG polynomial commitment [22].
This can be done by a trusted third party or a distributed
ceremony [23], [24], [25].

C. Building Blocks

Reliable broadcast (RBC) [26], [27] allows a node (dealer)
to reliably broadcast a message, ensuring that all honest nodes
deliver the same message, or none delivers any message. An
RBC protocol satisfies the following properties.
• Agreement. If any two honest nodes have outputs, then their

outputs are the same.
• Totality. If an honest node outputs, then all honest nodes

output.
• Validity. If the dealer is honest and inputs v, then all honest

nodes output v.
Multi-valued validated Byzantine agreement (MVBA) [28],
[29], [9] allows a group of nodes to agree on a valid proposal.
An MVBA protocol satisfies the following properties.
• External validity. If an honest node outputs v, then v satisfies

the external predicate PMVBA, i.e., PMVBA(v) = 1.
• Agreement. If two honest nodes have outputs, then their

outputs are the same.
• Termination. If all honest nodes input valid proposals that

satisfy PMVBA, then every honest node outputs.
KZG commitment [22] is polynomial commitment scheme
whose output is a single group element. We mainly use the
following four algorithms.
• pp ← KZG.Setup(t, 1κ): this algorithm sets up the public

parameters. It takes as inputs a degree t and a security
parameter κ in unary form. The output is O(t)-sized public
parameters pp. We sometimes omit pp for simplicity.

• Cϕ ← KZG.Commit(ϕ(x), pp): this algorithm commits to
a polynomial. It takes as inputs a polynomial ϕ(x) ∈ Zp[x]
and public parameters pp. The output is a commitment Cϕ.

• ⟨ϕ(i), wϕ(i)⟩ ← KZG.CreateWitness(ϕ(x), i, pp): this al-
gorithm creates a witness for a polynomial evaluation. It
takes as inputs a polynomial ϕ(x), an index i, and public
parameters pp. The output is an evaluation ϕ(i) and a
witness wϕ(i).

• 0/1 ← KZG.VerifyEval(Cϕ, i, v, wϕ(i), pp): this algorithm
verifies a polynomial evaluation. It takes as inputs a com-
mitment Cϕ, an index i, an evaluation v, a witness wϕ(i),
and public parameters pp. It outputs 1 iff v = ϕ(i).

The KZG scheme satisfies the following properties except with
negligible probability.
• Strong correctness. An adversary cannot commit to a t′-

degree polynomial such that t′ > t, where t is the input to
KZG.Setup.

• Evaluation binding. An adversary cannot generate two wit-
nesses, wϕ(i) and w′

ϕ(i), that both pass KZG.VerifyEval.
• Hiding. Given t evaluation-witness tuples ⟨ϕ(i), wϕ(i)⟩ and

the commitment Cϕ to a t-degree polynomial ϕ(x), an
adversary cannot determine ϕ(i′) for any unqueried i′.

• Homomorphism. The commitment to ϕ(x) = ϕ1(x)+ϕ2(x)
can be computed as Cϕ = Cϕ1

Cϕ2
. Similarly, wϕ(i) =

wϕ1(i)wϕ2(i) holds for ϕ(i) = ϕ1(i) + ϕ2(i).
Threshold signature [10] allows a quorum of nodes to jointly
compose a full signature. It consists of the following five
algorithms.
• ⟨tpk, tvki, tski⟩i∈[n]←TS.KeyGen(t, n, 1κ): this algorithm

generates threshold key pairs. It takes as inputs a threshold t,
a committee size n, and a security parameter κ in unary
form. The output is a threshold public key tpk, a set of
threshold verification keys {tvki}i∈[n], and a set of threshold
secret keys {tski}i∈[n]. Each node Pi is assigned with
⟨tpk, {tvki}i∈[n], tski⟩. We sometimes omit tpk and tvki
for simplicity.

• σ∗
m,i ← TS.SigSharet(m, tski): this algorithm generates a

signature share. The input is a message m and a threshold
secret key tski. The output is a signature share σ∗

m,i.
• 0/1 ← TS.VerifySht(m, tvki, σ

∗
m,i): this algorithm verifies

a signature share. It takes as inputs a message m, a threshold
verifier key tvki, and a signature share σ∗

m,i. It outputs 1 iff
σ∗
m,i is correctly generated via TS.SigSharet(m, tski).

• σm ← TS.Combinet(m, {σ∗
m,i}i∈I): this algorithm gener-

ates a full signature from signature shares. It takes as inputs
a message m and a share set {σ∗

m,i}i∈I , where I ⊂ [n] and
|I| > t. The output is a full signature σm.

• 0/1← TS.Verify(m, tpk, σm): this algorithm verifies a full
signature. It takes as inputs a message m, a threshold public
key tpk, and a signature σm. It outputs 1 iff σm is valid.

We require the following properties of a threshold signature
scheme, which hold with an overwhelming probability.
• Unforgeability. Given t corrupted nodes, an adversary can-

not forge a valid signature of any unqueried message m.
• Robustness. Any t+1 valid signature shares of message m

yield a valid full signature.

III. TECHNICAL OVERVIEW

A. Definition and Design Goal

Definition. A DPSS protocol consists of the following three
sub-protocols: sharing, handoff, and reconstruction.
• ⟨si, πi⟩P 1

i ∈C1 ← DPSS.Share(t, n, s, 1κ): this sub-protocol
shares a secret to the initial committee C1. It takes as inputs
a threshold t, a committee size n, a secret value s, and a
security parameter κ in unary form. Each node P 1

i ∈ C1
output a share-proof tuple ⟨si, πi⟩.

• ⟨s′j , π′
j⟩P e+1

j ∈Ce+1 ← DPSS.Handoff(⟨si, πi⟩P e
i ∈Ce): this

sub-protocol allows the new committee Ce+1 to obtain

4

DyCAPS.Share C1 in charge
Prepare ShareReduce Proactivize ShareDist

DyCAPS.Handoff

C2 in charge ...

DyCAPS.Handoff

Ce in charge
DyCAPS.Recon

Epoch 1 Epoch 2 ... Epoch e

Fig. 2. Life cycle of DyCAPS. DyCAPS.Share is invoked at first, and then
DyCAPS.Handoff is executed repeatedly. DyCAPS.Recon is called at the
end of the life cycle, if necessary.

refreshed shares from the old committee Ce. Each old node
P e
i ∈ Ce inputs a share-proof tuple ⟨si, πi⟩, and each new

node P e+1
j ∈Ce+1 outputs a refreshed tuple ⟨s′j , π′

j⟩.
• v ← DPSS.Recon(t, ⟨si, πi⟩i∈I): this sub-protocol recon-

structs the secret. It takes as inputs a threshold t and a set
of share-proof tuples ⟨si, πi⟩i∈I , where I ⊂ [n] and |I| > t.
The output is a reconstructed secret v.

Design goal. We are aimed to design an efficient asynchronous
DPSS.Handoff protocol that satisfies the following properties
except with negligible probability.

• Termination. If all honest nodes in Ce and Ce+1 invoke the
handoff protocol, then all honest nodes terminate in it.

• Correctness. The secret value s remains invariant across the
executions of the handoff protocol.

• Secrecy. A PPT adversary gains no advantage in extracting
the secret value s than random sampling during the handoff.

B. DyCAPS Overview

Aimed at the above design goals, we propose DyCAPS. The
life cycle of DyCAPS is depicted in Figure 2. Before epoch 1,
DyCAPS.Share is invoked to distribute secret shares among
the initial committee C1, while DyCAPS.Handoff is executed
periodically between adjacent epochs for share transfer. In the
end, DyCAPS.Recon collects shares from the latest committee
and reconstructs the secret (if necessary).

In the rest of this paper, we focus on DyCAPS.Handoff,
the core of DyCAPS that is constantly invoked. The spe-
cific instantiations of DyCAPS.Share and DyCAPS.Recon are
delayed to Appendix VII and Appendix VII-B, respectively.
In the following, we refer the nodes in the old (resp., new)
committee as old (resp., new) nodes. For ease of expression,
we assume ne=ne+1=n, te= te+1= t, and n≥3t+1.

We use bivariate polynomials and adopt the dimension-
switching technique [5] to prevent the mobile adversary. The
reconstruction threshold is temporarily raised from t to 2t
during DyCAPS.Handoff, so that an adversary learns no
information about the secret even with 2t corrupted nodes.
Specifically, the secret s is shared via a ⟨t, 2t⟩-degree sharing
polynomial B(x, y), where B(0, 0) = s. In the normal state,
t+1 full shares, B(∗, y), are needed to deal with the inquiries,
e.g., generating a signature or decrypting a ciphertext. The
reduced shares, B(x, ∗), are temporarily used during the
handoff, where 2t+ 1 of them are needed for the inquiries.

A typical handoff protocol includes three phases:
1) Raise the threshold to 2t and produce reduced shares.
2) Generate a random bivariate zero-polynomial Q(x, y) to

refresh the reduced shares, such that Q(0, 0) = 0.
3) Revert the threshold to t and restore refreshed full shares.

P e
1

P e
2

P e
3

· · ·

P e
n

B(1, y)

B(2, y)

B(3, y)

B(n, y)

Select
Ce+1

P e
1

P e
2

P e
3

· · ·

P e
n

B(1, y)

B(2, y)

B(3, y)

B(n, y)

P e+1
1

P e+1
2

P e+1
3

· · ·

P e+1
n

B(1, 1)

B
(1, 2)B

(1, 3)
B
(1, 4)

B(x, 1)

B(x, 2)

B(x, 3)

B(x, n)

Generate
Q(x, y)

P e+1
1

P e+1
2

P e+1
3

· · ·

P e+1
4

B′(x, 1)

B′(x, 2)

B′(x, 3)

B′(x, n)

+Q(x, 1)

+Q(x, 2)

+Q(x, 3)

+Q(x, n)

P e+1
1

P e+1
2

P e+1
3

· · ·

P e+1
n

B′(1, 1)

B ′
(2, 1)B

′(3, 1)
B
′(4, 1)

B′(1, y)

B′(2, y)

B′(3, y)

B′(n, y)

Prepare ShareReduce Proactivize ShareDist
Epoch e Epoch e+ 1

Fig. 3. Overview of the e-th DyCAPS.Handoff between epoch e and e+1.
The polynomial above each node refers to the share it currently holds.

These phases are referred to as ShareReduce, Proactivize,
and ShareDist in CHURP [5]. We introduce an additional
Prepare phase in DyCAPS.Handoff, leaving space for select-
ing new committees and miscellaneous pre-computations. An
overview of the four phases are shown in Figure 3.
Prepare. In this phase, a new committee Ce+1 is selected,
and private channels are established among all nodes in Ce
and Ce+1. Public parameters are also delivered to Ce+1.
ShareReduce. In this phase, full shares are converted to
reduced shares. Every new node P e+1

i waits for t + 1 valid
messages from distinct old nodes to interpolate a t-degree
polynomial B(x, i) as its reduced share. The old (local) epoch
ends after this phase, when old nodes finish their tasks and new
nodes obtain the reduced shares.
Proactivize. In this phase, the new committee jointly generate
a ⟨t, 2t⟩-degree random bivariate zero-polynomial Q(x, y),
such that Q(0, 0) = 0. Each node P e+1

i obtains a t-degree
polynomial Q(x, i), which is then added to its reduced share
B(x, i), making the new share independent of the old one.
ShareDist. In this phase, reduced shares are converted back to
full shares. Each node P e+1

i in the new committee waits for
2t + 1 valid messages from distinct new nodes to interpolate
the refreshed full share B′(i, y).

IV. BIVARIATE ZERO-POLYNOMIAL GENERATION

Before elaborating the details of the four phases in our
DyCAPS.Handoff, we first propose an efficient bivariate zero-
polynomial generation protocol, GenBivariateZeroPoly, which
is the key component in the Proactivize phase.

This protocol is invoked by a committee C = {Pi}i∈[n].
It takes as inputs a committee size n, a threshold t, and a y-
dimension degree ty , where t ≤ ty ≤ 2t. Each node Pi outputs
a t-degree polynomial Q(x, i) and the commitments to the
others’ polynomials {CQ(x,k)}k∈[n]. The bivariate polynomial
Q(x, y) is ⟨t, ty⟩-degree, such that Q(0, 0) = 0. In the context
of Proactivize described in Section III-B, we use ty = 2t.
Properties. The bivariate zero-polynomial generation protocol
satisfies the following properties:

• Termination. If all honest nodes invoke the protocol, then
every honest node Pi outputs Q(x, i) and {CQ(x,k)}k∈[n].

• Correctness. The output of each honest node is a share of
a ⟨t, ty⟩-degree polynomial Q(x, y), where Q(0, 0) = 0.

• Secrecy. A PPT adversary obtains no extra information
about Q(x, i) for any uncorrupted Pi.

5

A. Strawman Protocols

Satisfying the above properties is not hard within a non-
asynchronous network, but it becomes challenging when faced
with asynchrony. We illustrate this observation via two straw-
man schemes. The first strawman assumes a non-asynchronous
network, where a timeout exists. The second is in an asyn-
chronous network but fails to satisfy the termination peroperty.
Strawman I. In this strawman protocol, each node Pi first
generates a random ⟨t, ty⟩-degree zero-polynomial Qi(x, y),
such that Qi(0, 0) = 0. Then, Pi invokes an RBC instance to
broadcast n encrypted polynomials1, {Encj(Qi(x, j))}j∈[n],
and a set of commitments and witnesses certifying the cor-
rectness of Qi(x, y). Each node waits for the outputs of
these RBC instances and decrypts the polynomials. If any
decrypted polynomial is invalid, an honest node raises a
verifiable challenge by revealing its decryption secret key. In
this way, either the challenger or the challenged node will be
identified as malicious. Depending on the verification results,
the new committee decides a candidate set U , such that all
malicious nodes are excluded. Finally, each Pi computes its
random share Q(x, i) =

∑
Pj∈U Qj(x, i).

Analysis. Informally, this strawman protocol satisfies the three
properties mentioned above:

• Termination. The verifiable challenges ensure that all
honest nodes receive valid information from all nodes
in U , which is used to compute the outputs.

• Correctness. The verification of decrypted polynomials
ensures that each node in U proposes a ⟨t, ty⟩-degree
zero-polynomial, so the sum of these polynomials is also
a ⟨t, ty⟩-degree zero-polynomial.

• Secrecy. The t polynomials Q(x, ∗) controlled by a PPT
adversary are insufficient to interpolate Q(x, i) if Pi is
not corrupted, since the y-dimension degree of Q(x, y)
is ty , where ty ≥ t.

However, the challenge mechanism is not applicable in an
asynchronous network—the honest nodes may not raise or
receive challenges in time. Therefore, we need other methods
to determine the candidate set U .
Strawman II. In this strawman protocol, we relax the network
assumption and advance to the asynchronous network. Inspired
by asynchronous BFT consensus protocols [15], [8], we use
voting to replace the challenges.

Similar to Strawman I, each node Pi to first generates
a ⟨t, ty⟩-degree zero-polynomial Qi(x, y). However, we no
longer need to reliably broadcast the encrypted shares. Instead,
each Pi sends Qi(x, j) to every Pj for j ∈ [n], and broadcasts
the commitments {CQi(x,j)}j∈[n] via RBC. If Pi receives a
valid polynomial from Pj , it multicasts a signature share σ∗

j,i

as the vote for Pj , denoting that it has received a valid share
from Pj . Upon receiving n − t votes for the same Pj , Pi

forms a full signature σj and includes ⟨j, σj⟩ in a proposal
set Vi. When there are t + 1 elements in Vi, Pi inputs it to
MVBA, from which all honest nodes output the same set Ṽ .
The candidate set U is then denoted as {Pj |⟨j, σj⟩ ∈ Ṽ }.
Analysis. This protocol fails to satisfy the termination prop-
erty. A malicious node Pm may get included in U , if it obtains

1Encj(m) encrypts a message m using Pj ’s encryption public key.

P1

P2

P3

· · ·
Pn

Q1(x, y)

Q2(x, y)

Q3(x, y)

Qn(x, y)

RBC1

RBC2

RBC3

· · ·
RBCn

π1

π2

π3

πn

Init

Commit

P1

P2

P3

· · ·
Pn

P1

P2

P3

· · ·
Pn

Q2(
1, y

)

Q2(2, y)

Q
2(3, y)

Q
2 (n, y)

Share

Distribute

P1

P2

P3

· · ·
Pn

⟨Q2(n
, 3)

, σ
∗
2,n

⟩

⟨Q
2 (1, 3), σ ∗

2,1 ⟩
⟨Q

2(2, 3), σ ∗
2,2 ⟩

⟨Q2(3, 3), σ
∗
2,3⟩

Vote Recover

MVBA

V1

V2

V3

Vn

P1

P2

P3

· · ·
Pn

Ṽ

Ṽ

Ṽ

Ṽ

MVBA

Q(x, 1)

Q(x, 2)

Q(x, 3)

Q(x, n)

Output

Fig. 4. Workflow of GenBivariateZeroPoly. Each Pi first generates a random
polynomial Qi(x, y) and broadcasts its commitment πi by RBCi. Then, Pi

sends Qi(j, y) to each Pj . When Pj receives a valid Qi(j, y), it sends an
evaluation on Qi(j, y) to the others, along with a vote σ∗

i,j for Pi. Every
Pi composes a proposal Vi containing t + 1 full signatures and inputs it to
MVBA, and computes Q(x, i) according to the output Ṽ of MVBA.

n− t votes. In the worst case, only t+1 honest nodes receive
valid shares from Pm and vote for it, whereas the other honest
nodes receive no information from Pm. That is, an honest node
Pj may not receive Qm(x, j) to compute Q(x, j). Moreover,
the t + 1 shares from the honest nodes who have voted for
Pm are insufficient to restore Qm(x, j), since its y-dimension
degree is ty , where ty ≥ t.

B. Our Bivariate Zero-Polynomial Generation Protocol

In this formal protocol, we enrich the information in each
sharing message, so that t+1 honest nodes can help the others
restore their missing shares, if some nodes in U misbehave.
High-level overview. We let each node Pi share its local
polynomial by sending Qi(j, y) to Pj instead of Qi(x, j). In
this way, every Pj obtains partial information on Qi(x, j) for
i ∈ [n], which ensures all nodes can obtain shares from the
selected nodes. This modification brings in an additional round
of communication to obtain the desired random share Qi(x, j).
The workflows and procedures of GenBivariateZeroPoly are
shown in Figure 4 and Figure 5, respectively.
Init. Upon receiving (n, t, ty) as input, node Pi initializes
several empty sets, including a commitment set πi, two flag
sets FLGcom and FLGrec, two buffers Srec and Sσ∗ , and an
MVBA input set Vi.
Share. Node Pi samples a ty-degree random polynomial Fi(y),
such that Fi(0) = 0. For each ℓ ∈ [ty + 1], Pi reshares Fi(ℓ)
by generating a t-degree random polynomial Qi(x, ℓ), such
that Qi(0, ℓ) = Fi(ℓ). Then, Pi sends to each Pj , j ∈ [n],
a SHARE message, which contains ty + 1 evaluation-witness
tuples ⟨Qi(j, ℓ), wQi(j,ℓ)⟩ℓ∈[ty+1].
Commit. For each ℓ ∈ [ty + 1], node Pi commits to Fi(ℓ),
Qi(x, ℓ), and Zi,ℓ(x) = Qi(x, ℓ)−Fi(ℓ), and creates a witness
for Zi,ℓ(0) = 0. Pi gathers the commitments and witnesses in
πi and broadcast it using a COM message via RBCi.
Verify. Upon outputting πj from RBCj , node Pi extracts
{gFj(ℓ)}ℓ∈[ty+1] from πj and interpolates gFj(0). Pi confirms
Fj(0)=0 by checking gFj(0)=1. Then, for each ℓ ∈ [ty +1],
Pi verifies Zj,ℓ(0) = 0 using ⟨CZj,ℓ

, wZj,ℓ(0)⟩. Finally, Pi

checks CQj,ℓ
= CZj,ℓ

gFj(ℓ), which ensures Qj(0, ℓ) = Fj(ℓ).
If any verification fails, the COM message is discarded. Finally,
Pi interpolates CQj,k

for k ∈ [n] and sets FLGcom[j] = 1.

6

GenBivariateZeroPoly(n, t, ty)

1: upon invocation by Pi do
2: upon receiving (n, t, ty) as input do ▷ Init
3: πi ← ∅
4: FLGcom[1, ..., n]← {0, ..., 0}
5: FLGrec[1, ..., n]← {0, ..., 0}
6: Srec[1, ..., n]← {∅, ..., ∅}
7: Sσ∗ [1, ..., n]← {∅, ..., ∅}
8: Vi[1, ..., n]← {∅, ..., ∅}
9: sample a ty-degree polynomial Fi(y), where Fi(0) = 0 ▷ Share

10: for each ℓ ∈ [ty + 1] do
11: sample a t-degree polynomial Qi(x, ℓ), where Qi(0, ℓ) = Fi(ℓ)

12: for each j ∈ [n] do
13: for each ℓ ∈ [ty + 1] do
14: ⟨Qi(0, ℓ), wQi(j,ℓ)⟩ ← KZG.CreateWitness(Qi(x, ℓ), j)

15: send ⟨Share, ⟨Qi(j, ℓ), wQi(j,ℓ)⟩ℓ∈[ty+1]⟩ to Pj

16: for each ℓ ∈ [ty + 1] do ▷ Commit
17: Zi,ℓ(x)← Qi(x, ℓ)− Fi(ℓ)

18: CQi,ℓ
← KZG.Commit(Qi(x, ℓ))

19: CZi,ℓ
← KZG.Commit(Zi,ℓ(x))

20: ⟨Zi,ℓ(0), wZi,ℓ(0)⟩ ← KZG.CreateWitness(Zi,ℓ(x), 0)

21: πi ← πi ∪ ⟨ℓ, gFi(ℓ), CQi,ℓ
, CZi,ℓ

, wZi,ℓ(0)⟩
22: call RBCi with input ⟨Com, πi⟩

23: upon outputting ⟨Com, πj⟩ from RBCj do ▷ Verify
24: parse πj as ⟨ℓ, gFj(ℓ), CQj,ℓ

, CZj,ℓ
, wZj,ℓ(0)⟩ℓ∈[ty+1]

25: interpolate gFj(0) from {gFj(ℓ)}ℓ∈[ty+1]

26: if gFj(0) ̸= 1 then
27: discard this message
28: for each ℓ ∈ [ty + 1] do
29: if KZG.VerifyEval(CZj,ℓ

, 0, 0, wZj,ℓ(0))=0∨CQj,ℓ
̸=CZj,ℓ

gFj(ℓ) then
30: discard this message
31: interpolate CQj,k

from {CQj,ℓ
}ℓ∈[ty+1] for all k ∈ [n]

32: FLGcom[j]← 1

33: upon receiving ⟨Share, ⟨Qj(i, ℓ), wQj(i,ℓ)⟩ℓ∈[ty+1]⟩ from Pj do ▷ Vote
34: wait until FLGcom[j] = 1 do
35: extract {CQj,ℓ

}ℓ∈[ty+1] from πj

36: if ∀ℓ ∈ [ty + 1],KZG.VerifyEval(CQj,ℓ
, i, Qj(i, ℓ), wQj(i,ℓ)) = 1 then

37: σ∗
j,i ← TS.SigSharen−t(j, tski)

38: for each k ∈ [n] do
39: interpolate Qj(i, k) from {Qj(i, ℓ)}ℓ∈[ty+1]

40: interpolate wQj(i,k) from {wQj(i,ℓ)}ℓ∈[ty+1]

41: send ⟨Recover, j, Qj(i, k), wQj(i,k), σ
∗
j,i⟩ to Pk

42: upon receiving ⟨Recover, k,Qk(j, i), wQk(j,i), σ
∗
k,j⟩ from Pj do ▷ Recover

43: wait until FLGcom[k] = 1 do
44: if TS.VerifyShn−t(k, σ

∗
k,j) = 1 then

45: if KZG.VerifyEval(CQk,i
, j, Qk(j, i), wQk(j,i)) = 1 then

46: Srec[k]← Srec[k] ∪ (j,Qk(j, i))

47: if |Srec[k]| ≥ t+ 1 then
48: interpolate t-degree Qk(x, i) from Srec[k]
49: FLGrec[k]← 1

50: Sσ∗ [k]← Sσ∗ [k] ∪ σ∗
k,j

51: if |Sσ[k]| ≥ n− t then
52: σk ← TS.Combinen−t(k,Sσ∗ [k])

53: Vi[k]← ⟨k, σk⟩
54: wait until there are t+ 1 full signatures in Vi do ▷ MVBA
55: call MVBA with input ⟨MVBA.In, Vi⟩
56: // PMVBA(V): there are t+ 1 valid signatures in V

57: upon outputting ⟨MVBA.Out, Ṽ ⟩ from MVBA do ▷ Output
58: U ← {Pj | ⟨j, σj⟩ ∈ Ṽ }
59: wait until FLGrec[j] = 1 for all Pj ∈ U do
60: Q(x, i)←∑

Pj∈U Qj(x, i)

61: for each k ∈ [n] do
62: CQ(x,k) ←

∏
Pj∈U CQj,k

63: output ⟨Q(x, i), {CQ(x,k)}k∈[n]⟩

Fig. 5. Procedures of GenBivariateZeroPoly(t, n, ty) as Pi. It takes as inputs a threshold t, a committee size n, and a y-dimension degree ty . The output
of Pi is a t-degree polynomial Q(x, i) and a set of commitments {CQ(x,k)}k∈[n]. Q(x, y) is a ⟨t, ty⟩-degree zero-polynomial.

Vote. Upon receiving a SHARE message from Pj , node Pi ver-
ifies it w.r.t. the commitment set πj delivered from RBCj . If all
verifications pass, it generates σ∗

j,i = TS.SigSharen−t(j, tski)
as a vote for Pj . Afterward, for each k ∈ [n], Pi computes
an evaluation-witness tuple ⟨Qj(i, k), wQj(i,k)⟩ and sends it
to Pk within a RECOVER message, along with the vote σ∗

j,i.
Recover. Upon receiving t+1 valid RECOVER messages from
distinct Pj with the same index k, node Pi recovers a t-degree
polynomial Qk(x, i) by interpolation. Pi also waits for n− t
valid votes to compose a full signature σk and stores it in the
MVBA input set Vi.
MVBA. When there are t+1 elements in Vi, node Pi inputs Vi

into MVBA. The external predicate PMVBA(V) requires that
there are t+ 1 valid full signatures in V .
Output. Upon outputting Ṽ from MVBA, node Pi denotes
the candidate set U as {Pj | ⟨j, σj⟩∈ Ṽ }. Then, Pi outputs its
random share Q(x, i)=

∑
Pj∈U Qj(x, i) and the commitments

CQ(x,k)=
∏

Pj∈U CQj,k
for every k∈ [n].

Remark. We use the share-recover technique in this protocol,
which is widely used in asynchronous complete secret sharing
(ACSS) protocols [30], [31], [32]. However, unlike the men-
tioned ACSS protocols that interleave the sharing messages
into Bracha-style RBC [26], we separate the RBC and sharing
messages to allow more efficient RBC implementations (e.g.,
the work of Das et al. [27]). As a trade-off, we have to add
threshold signatures in the sharing procedures. That is, only
an honest node obtaining a full signature, rather than a share,
guarantees that all honest nodes will obtain valid shares.

Performance. We employ the RBC and MVBA protocols by
Das et al. [27] and Guo et al. [9], respectively. Each node
first sends out n O(κn)-bit SHARE messages. Then, n RBC
instances are invoked, each consuming O(n|m|+κn2) bits,
with an input size |m|=O(κn). Next, each node generates n2

O(κ)-sized RECOVER messages. Finally, the MVBA instance
consumes O(n2|V | + κn2) bits, where the proposal size
|V | = O(κn). Overall, the communication complesxity of this
protocol is O(κn3). Besides, as the RBC and MVBA protocols
both have O(1) expected rounds, the round complexity of our
GenBivariateZeroPoly protocol is also O(1).

C. Security Analysis

We sketch the proof that the GenBivariateZeroPoly protocol
satisfies the termination, correctness, and secrecy properties by
Theorem 1, 2, and 3, respectively. Without loss of generality,
we denote the malicious nodes as {Pm}m∈[t].

Theorem 1. If all honest nodes invoke GenBivariateZeroPoly,
then every honest node Pi output Q(x, i) and {CQ(x,k)}k∈[n].

Proof. In the following, we first prove that an honest node Pi

will proceed to the end of MVBA, and then Pi obtains the
random polynomials Qj(x, i) generated by every Pj ∈ U .

The worst situation for Pi is that the corrupted nodes do
not send any messages to it. In this case, Pi only receives n
COM messages from RBC (line 23, Figure 5, same below) and
n− t SHARE messages from the honest nodes (line 33). Then,
all honest nodes will send RECOVER messages to each other

7

(line 41). These RECOVER messages are sufficient for Pi to
interpolate the t-degree polynomial Qh(x, i) and compose σh

for every h∈ [n]\[t] (lines 46–51). Therefore, Pi is guaranteed
to form a valid proposal Vi as the input to MVBA, even without
any private message from the corrupted nodes.

Similarly, every honest node has a valid input for MVBA.
Due to the termination of MVBA, each honest node obtains
a common output Ṽ and a candidate set U (line 57). Next,
we use two cases to prove that every honest node Pi outputs
Q(x, i) and {CQ(x,k)}k∈[n] after MVBA.

Case 1: The nodes in U are all honest. Then, as mentioned
above, Pi obtains Qh(x, i) for all h∈ [n]\[t], so it can compute
Q(x, i) =

∑
Ph∈U Qh(x, i). Pi also computes {CQ(x,k)}k∈[n]

using the commitments that are derived from the COM mes-
sages (line 31).

Case 2: Some malicious nodes get included in U . In the
worst case, an honest Pi receives no private message from each
malicious node Pm∈U . However, Pm∈U means that there is
a valid signature σm in Ṽ , corresponding to n − t signature
shares (line 50). Hence, at least t+1 honest nodes have voted
for Pm. These nodes have received valid COM and RESHARE
messages from RBCm and Pm, respectively. The totality of
RBC ensures that Pi receive the same COM message, which is
used to derive the commitments {CQ(x,k)}k∈[n] (line 61). The
t+1 honest nodes receiving valid SHARE messages from Pm

will distribute the evaluations on Qm(∗, y) by the RECOVER
messages (line 41). Consequently, Pi receives t+1 points to
interpolate Qm(x, i), which is then used to compute Q(x, i).

In either case, every Pi outputs a random share Q(x, i) and
the commitments {CQ(x,k)}k∈[n].

Theorem 2. The output of each honest node is a share of a
⟨t, ty⟩-degree polynomial Q(x, y), where Q(0, 0) = 0.

Proof. We first prove Q(x, y) is a ⟨t,y ⟩-degree polynomial.
Since Q(x, y)=

∑
Pj∈U Qj(x, y), and every honest node Ph ∈

U generates a ⟨t, ty⟩-degree polynomial, we only need to prove
that the polynomial Qm(x, y) generated by any malicious node
Pm ∈ U is also ⟨t, ty⟩-degree.

In the Commit procedure, Pm broadcasts ty + 1 commit-
ments to {Qm(x, ℓ)}ℓ∈[ty+1]. Due to the strong correctness of
KZG commitments, the degree of each Qm(x, ℓ) is bounded
by t. On the other hand, these ty + 1 commitments bound
the y-dimension degree of Qm(x, y) by ty . If an evaluation
Qm(i, j) in a RECOVER message is validated by a commit-
ment CQm,j

, which is interpolated from {CQm,ℓ
}ℓ∈[ty+1], then

the polynomial Qm(i, y) is of ty degree. Altogether, the degree
of Qm(x, y) is ⟨t, ty⟩.

On the other hand, the ty+1 commitments {gFm(ℓ)}ℓ∈[ty+1]

in each COM message ensure Qm(0, 0) = Fm(0) = 0 for each
Pm ∈ U (line 26), so we also have Q(0, 0) = 0.

Theorem 3. A PPT adversary obtains no extra information
about Q(x, i) for any uncorrupted Pi.

Proof. Firstly, if the adversary wants to compute Pi’s share
Q(x, i) by

∑
Pj∈U Qj(x, i), it needs to obtain Qj(x, i) for all

Pj ∈U . Since |U|= |Ṽ |= t+1 (line 55), the candidate set U
contains at least one honest node. For any honest node Ph ∈ U ,

ShareReduce
1: upon invocation by P e

i do
2: upon first entering this phase do ▷ Reduce
3: for each j ∈ [n] do
4: interpolate wB(i,j) from {wB(i,ℓ)}ℓ∈[2t+1]

5: B(i, j)← B(i, y)|y=j

6: send ⟨Reduce, B(i, j), wB(i,j)⟩ to P e+1
j

7: erase all sensitive information and go off-line

8: upon invocation by P e+1
i do

9: upon receiving t+ 1 valid Reduce messages do ▷ Interpolate
10: interpolate a t-degree polynomial B(x, i)

11: enter the Proactivize phase

Fig. 6. Procedures of ShareReduce as P e
i or P e+1

i .

the adversary cannot recover the t-degree polynomial Qh(x, i)
with t points on it. Hence, the adversary only has access to t
polynomials {Q(x,m)}m∈[t].

Secondly, since the y-dimension degree of Q(x, y) is ty
(Theorem 2), where ty ≥ t, the t shares {Q(x,m)}m∈[t] also
reveal no information about Q(x, i).

Hence, if a PPT adversary does not corrupt Pi, it obtains
no extra information about Q(x, i).

V. THE HANDOFF PROTOCOL IN DYCAPS

Now we are ready to elaborate on the four phases of our
DyCAPS.Handoff protocol, which is executed between two
committees Ce and Ce+1 for e ∈ N∗. We continue to assume
ne =ne+1 =n, te = te+1 = t, and n≥ 3t+1. The adjustment
of n and t is introduced in Section IX.

A. Preparation Phase

In the Prepare phase, a new committee is selected, and
public parameters are transferred to each new node. We do not
restrict the relationship between the new and old committees,
but we do have a limit on the size and threshold of the new
committee (see Section IX).

After the committee selection, the nodes in both old and
new committees establish private channels with each other.
Once a channel is established, each old node transfers the
public parameters to new nodes, including the KZG parameters
(also called the powers of tau) and the commitments to the
reduced shares {CB(x,j)}j∈[n]. The new nodes confirm these
parameters if there are t+ 1 consistent messages. Afterward,
the nodes enter the Proactivize phase.

B. Share Reduction Phase

In the ShareReduce phase, each new node P e+1
i obtains a

t-degree polynomial B(x, i) as its reduced share. The specific
procedures are depicted in Figure 6.

Before detailed descriptions, we remark that every old node
P e
i has obtained 2t + 1 witnesses2 {wB(i,ℓ)}ℓ∈[2t+1] from

either the initial secret sharing DyCAPS.Share (e = 1) or
the prior handoff DyCAPS.Handoff (e > 1). Hence, P e

i may
interpolate other witnesses from these elements, thanks to the
homomorphism of KZG scheme.
Reduce. For all j ∈ [n], every old node P e

i sends a REDUCE
message to P e+1

j , containing an evaluation B(i, j) and a

2The witness wB(i,ℓ) is for the evaluation of B(x, ℓ) at x = i.

8

Proactivize
1: upon invocation by P e+1

i do
2: upon first entering this phase do ▷ Refresh
3: Scom ← ∅
4: ⟨Q(x, i), {CQ(x,k)}k∈[n]⟩ ← GenBivariateZeroPoly(n, t, 2t)

5: B′(x, i)← B(x, i) +Q(x, i)

6: CB′(x,i) ← KZG.Commit(B′(x, i))
7: for each k ∈ [n]

8: CB′(x,k) ← CB(x,k)CQ(x,k)

9: Scom ← Scom ∪ CB′(x,k)

10: enter the ShareDist phase

Fig. 7. Procedures of Proactivize as P e+1
i .

witness wB(i,j). Afterward, P e
i erases its memory and goes

offline, denoting the end of epoch e.
Interpolate. Each new node P e+1

i waits for t+1 valid REDUCE
messages and interpolates its reduced share B(x, i). This
denotes the start of epoch e + 1. Afterward, P e+1

i enters the
Proactivize phase.

C. Proactivization Phase
In the Proactivize phase, the reduced shares are refreshed by

a common bivariate zero-polynomial Q(x, y). The procedures
are shown in Figure 7.
Refresh. Node P e+1

i invokes the GenBivariateZeroPoly pro-
tocol with input (n, t, 2t) and waits to output a random
share Q(x, i) and a set of commitments {CQ(x,k)}k∈[n]. The
reduced share is refreshed as B′(x, i) = B(x, i) + Q(x, i).
Then, for each k ∈ [n], P e+1

i computes the new commit-
ment CB′(x,k) = CB(x,k)CQ(x,k), where the old commitment
CB(x,k) is obtained in the Prepare phase. Afterward, it enters
the ShareDist phase.
Remark. The reduced shares {B(x, i)}i∈[n] obtained in the
ShareReduce phase can be used as threshold secret keys to
generate threshold signatures in the Vote and MVBA procedures
in GenBivariateZeroPoly (Figure 5). In this way, only a one-
time trusted setup or distributed key generation (DKG) is
needed to initialize the signing keys for the first committee.
That is, we avoid trusted setup or DKG for each subsequent
new committee. We refer to this property as “no-extra-DKG.”

D. Share Distribution Phase
In ShareDist, reduced shares are converted to full shares.

The procedures are shown in Figure 8.
Distribute. For each j ∈ [n], node P e+1

i generates an
evaluation-witness tuple ⟨B′(j, i), wB′(j,i)⟩ and sends it to
P e+1
j within a DIST message.

Interpolate. Node P e+1
i waits for 2t+1 valid DIST messages

to interpolate the refreshed full share B′(i, y) and 2t + 1
commitment-witness tuples ⟨CB′(x,ℓ), wB′(i,ℓ)⟩ℓ∈[2t+1]. Next,
P e+1
i multicasts a SUCCESS message to notify the other nodes.

Success. Upon receiving 2t+1 SUCCESS messages, node P e+1
i

outputs B′(i, y) and ⟨CB′(x,ℓ), wB′(i,ℓ)⟩ℓ∈[2t+1]. Afterward, it
enters the normal state.

VI. PERFORMANCE AND SECURITY ANALYSIS

A. Performance Analysis
In Prepare, each old node sends the public parameters to

the new committee. The O(κn)-sized KZG parameters and

ShareDist
1: upon invocation by P e+1

i do
2: upon first entering this phase do ▷ Distribute
3: SB′ ← ∅
4: for each j ∈ [n] do
5: ⟨B′(j, i), wB′(j,i)⟩ ← KZG.CreateWitness(B′(x, i), j)
6: send ⟨Dist, B′(j, i), wB′(j,i)⟩ to P e+1

j

7: upon receiving ⟨Dist, B′(i, j), wB′(i,j)⟩ from P e+1
j do ▷ Interpolate

8: retrieve CB′(x,j) from Scom in Proactivize

9: if KZG.VerifyEval(CB′(x,j), i, B
′(i, j), wB′(i,j)) = 1 then

10: SB′ ← SB′ ∪ ⟨j, CB′(x,j), B
′(i, j), wB′(i,j)⟩

11: if |SB′ | ≥ 2t+ 1 then
12: interpolate B′(i, y) and ⟨CB′(x,ℓ), wB′(i,ℓ)⟩ℓ∈[2t+1] from SB′

13: multicast Success

14: upon receiving 2t+ 1 Success do ▷ Success
15: output ⟨B′(i, y), ⟨CB′(x,ℓ), wB′(i,ℓ)⟩ℓ∈[2t+1]⟩

Fig. 8. Procedures of ShareDist as P e+1
i .

the n commitments to the reduced shares lead to a commu-
nication complexity of O(κn3) bits. In ShareReduce, every
old node spreads n REDUCE messages, each containing two
constant-sized elements. Therefore, the communication cost
of the ShareReduce phase is O(κn2) bits. In Proactivize, the
communication only occurs in the the GenBivariateZeroPoly
protocol, which consumes O(κn3) bits of communication. In
ShareDist, each node multicasts two constant-sized messages,
DIST and SUCCESS, leading to an overall communication
cost of O(κn2) bits. Altogether, DyCAPS.Handoff achieves
a communication complexity of O(κn3) bits.

Besides, since the GenBivariateZeroPoly protocol has O(1)
expected rounds, and all other message transferring procedures
in the four phases of DyCAPS.Handoff consume constant
rounds, the overall round complexity is also O(1).

B. Security Analysis

We give proof sketches of the security of DyCAPS.Handoff,
which involves termination, correctness, and secrecy. Without
loss of generality, we denote the malicious nodes in commit-
tees Ce and Ce+1 as {P e

m}m∈[t] and {P e+1
m }m∈[t], respectively.

Lemma 4. If all honest nodes in Ce and Ce+1 invoke
DyCAPS.Handoff, then all honest old nodes in Ce terminate
DyCAPS.Handoff.

Proof. The old committee Ce is only active in the Prepare and
ShareReduce phases. So, we prove that honest nodes terminate
in these two phases.

In Prepare, all honest nodes will connect to at least 2(n−t)
nodes, after which they send public parameters to the new
committee and enter the ShareReduce phase.

In ShareReduce, the old committee only needs to send out
REDUCE messages and has no expected output. Hence, we
prove that every honest node in Ce has enough information to
generate the REDUCE messages (lines 3–4, Figure 6).

As we mentioned in Section II-B, the e-th DyCAPS.Handoff
is called after the completion of DyCAPS.Share (e = 1)
or the prior DyCAPS.Handoff (e > 1), from which every
honest node P e

i outputs 2t + 1 commitment-witness pairs
⟨CB(x,ℓ), wB(i,ℓ)⟩ℓ∈[2t+1]. Hence, every honest node P e

i can
interpolate all required witnesses to compose the REDUCE
messages, thus terminating the e-th DyCAPS.Handoff.

9

Lemma 5. If all honest nodes in Ce and Ce+1 invoke
DyCAPS.Handoff, then all honest new nodes in Ce+1 termi-
nate DyCAPS.Handoff.

Proof. We prove that every honest new node P e+1
i terminates

in all phases in the e-th DyCAPS.Handoff.
In Prepare, each P e+1

i is guaranteed to connect to at least
n − t nodes in both old and new committees and obtain the
public parameters from any t+1 honest old nodes. Afterward,
it enters the ShareReduce phase.

In ShareReduce, each P e+1
i receives at least 2t + 1 valid

REDUCE messages from the honest old nodes (by Lemma 4).
These messages are sufficient for P e+1

i to interpolate its
reduced share B(x, i) and enters the Proactivize phase.

In Proactivize, each P e+1
i is guaranteed to output a random

polynomial Q(x, i) and a commitment set {CQ(x,k)}k∈[n]

from GenBivariateZeroPoly (by Theorem 1). Hence, P e+1
i can

refresh its reduced share and generate {CB′(x,j)}j∈[n] from the
old commitments {CB(x,j)}j∈[n] and {CQ(x,k)}k∈[n]. After
that, P e+1

i enters the ShareDist phase.
In ShareDist, each P e+1

i can generate the DIST messages
using the refreshed share B′(x, i) obtained in Proactivize.
P e+1
i is guaranteed to receive at least 2t + 1 DIST mes-

sages from the honest nodes, which are used to interpolate
the full share B′(i, y) and the commitment-witness pairs
⟨CB′(x,ℓ), wB′(i,ℓ)⟩ℓ∈[2t+1]. Then, every honest node multi-
casts a SUCCESS message. Hence, P e+1

i is ensured to receive
at least 2t+ 1 SUCCESS messages and terminate ShareDist.

In summary, every honest new node P e+1
i terminates

DyCAPS.Handoff.

Theorem 6 (Termination). If all honest nodes in Ce and Ce+1

invoke DyCAPS.Handoff, then all honest nodes in Ce and
Ce+1 terminate DyCAPS.Handoff.

Proof. Combining Lemma 4 and Lemma 5, we conclude that
the honest nodes in both old and new committees terminate
DyCAPS.Handoff.

Theorem 7 (Correctness). The secret s stays invariant during
DyCAPS.Handoff.

Proof. As the Prepare phase does not involve the secret s, we
only need to prove that the secret stays invariant within the
other three phases.

In ShareReduce, an honest new node P e+1
i accepts a

REDUCE message from P e
j iff the evaluation B(j, i) passes the

KZG verification (line 9, Figure 6). The commitment CB(x,i)

used to verify B(j, i) is transferred in the Prepare phase, and
it is endorsed by t+1 nodes. Hence, t corrupted nodes cannot
convince an honest node with a different commitment. Due
to the binding property of KZG commitment, the interpolated
share B(x, i) is bound with the commitment CB(x,i).

In Proactivize, a reduced share is refreshed as B′(x, i) =
B(x, i) + Q(x, i), where i ∈ [n]. By Theorem 1 and Theo-
rem 2, each honest node P e+1

i outputs a random share Q(x, i),
such that Q(0, 0) = 0 and Q(x, y) is a ⟨t, 2t⟩-degree polyno-
mial. Hence, the secret s = B′(0, 0) = B(0, 0)+Q(0, 0) stays
invariant, and every honest node P e+1

i obtains a new reduced
share B′(x, i), where B′(x, y) is ⟨t, 2t⟩-degree. Every node

P e
i P e

i P e+1
j P e+1

j P e+1
j

ShareDist

B(x, i) B(i, y)

ShareReduce

B(x, j)

Proactivize

+Q(x, j)

B′(x, j)

ShareDist

B′(j, y)
· · · Epoch e Epoch e+ 1

Fig. 9. Shares held by node P e
i and P e+1

j in adjacent epochs.

also computes the commitments to the new reduced shares
{CB′(x,j)}j∈[n].

In ShareDist, if 2t + 1 points within the DIST messages
pass the KZG verification, then by the binding property of
KZG commitments, the interpolated B′(i, y) is ensured to be
a full share of B′(x, y). Namely, each node obtains a share
of s = B′(0, 0), which further implies that the secret s is not
changed up to the end of ShareDist.

Theorem 8 (Secrecy). A PPT adversary gains no advantage
in extracting the secret s than random sampling during
DyCAPS.Handoff.

Proof. The shares held by P e
i and P e+1

j are depicted in
Figure 9. At the end of epoch e+1, each P e

i holds B(x, i) and
B(i, y), and each P e+1

j has B(x, j), B′(x, j), and B′(j, y).
By Theorem 3, a PPT adversary cannot obtain the common

random polynomial Q(x, y). Since the refreshed polynomial
is computed as B′(x, y) = B(x, y)+Q(x, y), the polynomials
B′(x, y) and B(x, y) are independent in the adversary’s view.

Without loss of generality, we focus on polynomial B(x, y).
As denotd in Figure 9, the adversary has access to 2t reduced
shares and t full shares. These shares correspond to 2t2 +
3t independent evaluations. Since the polynomial B(x, y) has
(t + 1)(2t + 1) unknown coefficients, these evaluations are
insufficient to determine the coefficient s = B(0, 0).

VII. SHARING AND RECONSTRUCTION PROTOCOL

We present an asynchronous complete secret sharing
(ACSS) protocol DyCAPS.Share and a reconstruction pro-
tocol DyCAPS.Recon compatible with our handoff protocol.
Our DyCAPS.Share is derived from eAVSS-SC [30]. Due to
limited space, the security analysis is omitted, which can be
derived from the proofs in [30].

A. Details of Our Sharing Protocol

In DyCAPS.Share, a dealer Pd shares a secret s among a
committee C = {Pi}i∈[n]. As the dealer may simply withhold
the messages to block the sharing, we require that if any honest
node outputs a valid share from DPSS.Share, then all honest
nodes output valid shares at the end of DyCAPS.Share. This
is referred to as the completeness property [33].

Before DyCAPS.Share, a trusted setup is required to ini-
tialize the powers of tau for KZG commitment scheme [22].
Upon termination of DyCAPS.Share, each node Pi outputs a
full share B(i, y) and a set of commitments and witnesses
{CB(x,k), wB(i,k)}k∈[n], where B(x, y) is a ⟨t, 2t⟩-degree bi-
variate sharing polynomial. The procedures for the dealer Pd
and the node Pi ∈ C are shown in Figure 10 and Figure 11,
respectively.

10

DyCAPS.Share (as dealer Pd)
1: upon receiving s as input do ▷ Init
2: π ← gs

3: sample a 2t-degree polynomial F (y), where F (0) = s

4: for each ℓ ∈ [2t+ 1] do
5: sample a t-degree polynomial B(x, ℓ), where B(0, ℓ) = F (ℓ)

6: Zℓ(x)← B(x, ℓ)− F (ℓ) ▷ Commit
7: CB(x,ℓ) ← KZG.Commit(B(x, ℓ))

8: CZℓ
← KZG.Commit(Zℓ(x))

9: wZℓ(0) ← KZG.CreateWitness(Zℓ(x), 0)

10: π ← π ∪ ⟨ℓ, gF (ℓ), CB(x,ℓ), CZℓ
, wZℓ(0)⟩

11: for each i ∈ [n] do ▷ Send
12: for each ℓ ∈ [2t+ 1] do
13: wB(i,ℓ) ← KZG.CreateWitness(B(x, ℓ), i)

14: send ⟨Send, π, {B(i, ℓ), wB(i,ℓ)}ℓ∈[2t+1]⟩ to Pi

Fig. 10. Procedures of DyCAPS.Share as dealer Pd.

DyCAPS.Share (as node Pi ∈ C)
1: upon invocation by Pi ∈ C
2: Sfull ← ∅ ▷ Init
3: FLGready ← 0

4: upon receiving ⟨Send, π′, {B(i, ℓ), wB(i,ℓ)}ℓ∈[2t+1]⟩ from Pd do ▷ Echo
5: verify π′ as lines 24–28 in Proactivize
6: verify {B(i, ℓ), wB(i,ℓ)}ℓ∈[2t+1] w.r.t. π′

7: if all above verifications return true then
8: π ← π′

9: interpolate a 2t-degree polynomial B∗(i, y) from {B(i, ℓ)}ℓ∈[2t+1]

10: interpolate {wB∗(i,j)}j∈[n] from {wB(i,ℓ)}ℓ∈[2t+1]

11: multicast ⟨Echo, π⟩
12: upon receiving n− t ⟨Echo, π′⟩ or t+ 1 ⟨Ready, π′, ∗⟩ do ▷ Ready
13: if FLGready = 0 then
14: if π′ = π then
15: send ⟨Ready, π′, share, B∗(i, j), wB∗(i,j)⟩ to each Pj ∈ C
16: else
17: π ← π′

18: discard B∗(i, y) and {wB∗(i,ℓ)}ℓ∈[n] obtained in lines 9–10
19: multicast ⟨Ready, π′, noShare⟩
20: FLGready ← 1

21: upon receiving n− t ⟨Ready, π′, ∗⟩ do ▷ Distribute
22: wait until there are t+ 1 valid Ready messages with share tag do
23: interpolate a t-degree polynomial B(x, i)

24: send ⟨Distribute, B(j, i), wB(j,i)⟩ to each Pj ∈ C
25: upon reiceiving ⟨Distribute, B(i, j), wB(i,j)⟩ from Pj do ▷ Recover
26: wait until FLGready = 1 do
27: interpolate {CB(x,k)}k∈[n] from π

28: if KZG.VerifyEval(CB(x,j), B(i, j), wB(i,j)) = 1 then
29: Sfull ← Sfull ∪ ⟨j, B(i, j), wB(i,j)⟩
30: if |Sfull| ≥ 2t+ 1 then
31: interpolate a 2t-degree polynomial B(i, y) and {wB(i,k)}k∈[n]

32: output ⟨B(i, y), {CB(x,k), wB(i,k)}k∈[n]⟩

Fig. 11. Procedures of DyCAPS.Share as node Pi ∈ C.

Dealer’s operation. Given an input s, the dealer Pd first
initializes a proof set π, which originally contains only gs.
Then, Pd samples a 2t-degree random polynomial F (y),
where F (0) = s. This F (y) is extended to 2t + 1 random
polynomials B(x, ℓ) of degree t, where B(0, ℓ) = F (ℓ) for
every ℓ ∈ [2t+ 1].

To prove the correctness of the sharing polynomial, Pd
generates ⟨gF (ℓ), CB(x,ℓ), CZℓ

, wZℓ(0)⟩ for ℓ ∈ [2t+1], where
gF (ℓ), CB(x,ℓ), and CZℓ

are the commitments to F (ℓ), B(x, ℓ),
and Zℓ(x) = B(x, ℓ) − F (ℓ), respectively, and wZℓ(0) is the
witness for Zℓ(0) = 0. All these elements are included in π.

Finally, Pd sends ⟨SEND, π, {B(i, ℓ), wB(i,ℓ)}ℓ∈[2t+1]⟩ to
each Pi ∈ C. At this point, the dealer Pd has finished all
the tasks, and the remaining procedures are conducted by the
committee members {Pi}i∈[n].

Node’s operation. The operation for each node Pi ∈ C are
divided into several procedures, as described in the following.
Init. Each node Pi initializes an empty buffer Sfull and a flag
FLGready = 0.
Echo. Upon receiving the SEND message from the dealer Pd,
node Pi verifies the commitments in π following similar steps
as in Proactivize. Pi also verifies the evaluation-witness pairs.
If all verifications return true, Pi sets π as π′. Then, Pi inter-
polates a 2t-degree polynomial B∗(i, y) and the corresponding
witnesses {wB∗(i,j)}j∈[n]. Finally, Pi multicasts ⟨ECHO, π⟩.
Ready. Upon receiving n− t ECHO messages or t+1 READY
messages with the same π′, node Pi checks whether π = π′.
If so, Pi sends ⟨READY, π′, share, B∗(i, ℓ), wB∗(i,j)⟩ to each
Pj ∈ C. Otherwise, Pi resets π as π′, discards the temporary
share B∗(i, y) and witnesses {wB∗(i,ℓ)}Pℓ∈C obtained in lines
9–10, and multicasts ⟨READY, π′, noShare⟩.
Distribute. Node Pi collects n − t READY messages, among
which least t+1 contain valid shares. Then, Pi interpolates a
t-degree polynomial B(x, i) and sends an evaluation-witness
tuple ⟨B(j, i), wB(j,i)⟩ to every Pj ∈ C within a DISTRIBUTE
message.
Recover. Node Pi first waits for the finalization of π, from
wihch it computes the commitment set {CB(x,k)}k∈[n]. Pi

waits for the DISTRIBUTE messages and verifies them against
the commitments. When Pi have collected 2t + 1 valid
DISTRIBUTE messages, it interpolates a 2t-degree polynomial
B(i, y) as its full share. Pi also interpolates the witness set
{wB(i,k)}k∈[n] from these messages. The output of Pi is
⟨B(i, y), {CB(x,k), wB(i,k)}k∈[n]⟩.
Performance. The procedures above consumes O(κn2) bits
of communication and terminates in O(1) expected rounds.

B. Details of Our Reconstruction Protocol

A dealer-based DyCAPS.Recon protocol only involves one
round of communication between the dealer (or a client) and
committee members. When a dealer invokes DyCAPS.Recon,
every node Pi in the current committee sends an evaluation
B(i, 0) to the dealer. The dealer collects at least 2t+1 evalu-
ations and runs an online error-correcting (OEC) algorithm to
reconstruct the secret s = B(0, 0).

In case there is no dealer, the nodes may milticast their
shares, and each of them waits for sufficient evaluations to
reconstruct the secret via OEC.
Performance. In either case, the communication complexity
of DyCAPS.Recon does not exceed O(κn2), and the round
complexity is O(1).

VIII. IMPLEMENTATION AND EVALUATION

A. Implementation

We implement3 DyCAPS using Golang v1.18, partially
adopted from CHURP’s implementation [34]. We use KZG
commitments and BLS threshold signatures [10] implemented
by go-KZG [35] and drand/kyber [36]. We also implement
Das et al.’s RBC [27] and Guo et al.’s sMVBA [9], which is
built upon the Reed-Solomon library by Klaus Post [37].

3Open-sourced at https://github.com/DyCAPSTeam/DyCAPS

https://github.com/DyCAPSTeam/DyCAPS

11

0 50 100 150 200 250 300 350 400

10−1

101

103

105

107

n=337

Committee size n

C
om

m
un

ic
at

io
n

co
st

(M
B

)

LongLive-one
LongLive-Ped (amortized)
DyCAPS
LongLive-KZG (amortized)

Fig. 12. Per secret communication cost of DyCAPS and LongLive [18] in
log scale. The batch size is n− 2t (if applicable).

0 10 20 30 40 50 60

4

16

28

40

52

64 51.32

35.42

18.00

9.99

4.29

1.34

Latency (s)

C
om

m
it

te
e

si
ze

n

Prepare (Old) ShareReduce (Old)
Prepare (New) ShareReduce (New)
Proactivize ShareDist

Fig. 13. Latency of DyCAPS for each handoff. The latencies of the old and
new committees are accumulated here for simplicity.

We use the pairing-friendly bls12-381 curve [38]. The full
and reduced shares are defined over a polynomial ring Fp[x]
with a 256-bit prime p. Besides, we use SHA256 for hashing.

B. Evaluation
We deploy DyCAPS on Amazon EC2 t2.medium instances

from 8 regions, each with 2 vCPUs and 4GB memory. Every
instance serves as a node. Experiments, each repeated 5 times,
are conducted between two honest committees of equal size.
When there is no ambiguity, we use DyCAPS and LongLive
to denote the handoff process.
Communication cost. We first compare the concrete commu-
nication cost of DyCAPS with LongLive [18], a concurrent
work that also achieves O(κn3) communication complexity.
LongLive includes three variants: LongLive-one, LongLive-
Ped, and LongLive-KZG, where the first two employ Pedersen
commitments and the third uses KZG commitments. Besides,
the latter two variants support batching. Figure 12 shows the
per secret cost of DyCAPS and LongLive for each handoff,
where the batch size is n − 2t. The results demonstrate that
the concrete cost of DyCAPS is around 2% of LongLive-
one. This is because LongLive-one uses heavy zero-knowledge
proofs of Paillier encryptions (10KB per proof [18]). Given a
batch size B = n− 2t, the amortized overhead of LongLive-
Ped beats DyCAPS when n ≥ 337. Although the amortized
LongLive-KZG outperforms DyCAPS for O(n)-sized batch
sizes, DyCAPS incurs a smaller communication cost when the
batch size B = 1 (approximately 77% of LongLive-KZG).
Namely, in terms of communication cost, DyCAPS is more
efficient when the handoff involves only a single secret.
Latency. The latency of DyCAPS refers to the average time
between the initiation of handoff by the old nodes and the

0 2 4 6 8 10 12 14 16
0

10

20

30

40

Payload size (MB)

La
te

nc
y

(s
)

DyCAPS (n = 4) Dumbo2 (n = 4)
DyCAPS (n = 10) Dumbo2 (n = 10)
DyCAPS (n = 16) Dumbo2 (n = 16)
DyCAPS (n = 22) Dumbo2 (n = 22)

Fig. 14. Latency of DyCAPS and Dumbo2 with different payload sizes.

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2
·104

Payload size (MB)

T
hr

ou
gh

pu
t

(t
xs

/s
)

DyCAPS (n = 4) Dumbo2 (n = 4)
DyCAPS (n = 10) Dumbo2 (n = 10)
DyCAPS (n = 16) Dumbo2 (n = 16)
DyCAPS (n = 22) Dumbo2 (n = 22)

Fig. 15. Throughput of DyCAPS and Dumbo2. The transaction size is 250
bytes. For n = 10, the latency of DyCAPS is slightly smaller than Dumbo2,
we attribute this to network fluctuation and ignore this biased point.

moment the new nodes output refreshed full shares. The
results are shown in Figure 13. Remarkably, there is an
overlap between the latencies of the old and new committees,
which are accumulated in this figure for simplicity. A handoff
between two smallest committees (n = 4) takes 1.34 seconds.
When the committee scales to 64 nodes, the latency grows to
51.32 seconds. We observe that the latency is dominated by
the Proactivize phase, i.e., the GenBivariateZeroPoly protocol.

To further identify the bottleneck, we measure the step-
by-step latency of Proactivize by executing the procedures
sequentially. The results show that the growth of latency is
mainly caused by the O(n2) KZG verifications (pairings) in
the Verify, Vote, and Recover procedures, accounting for 18%,
18%, and 39% of the latency of Proactivize, respectively, when
the committee size n = 64.
Throughput. Observe that the GenBivariateZeroPoly protocol
in DyCAPS.Handoff includes all gadgets of Dumbo2 [8],
including RBC, threshold signatures, and MVBA. Hence,
DyCAPS may serve as a dynamic BFT consensus protocol,
where the transaction payloads and polynomial commitments
are sent within the same RBC instances, so that the mem-
bership adjustment is achieved concurrently during the BFT
consensus. We evaluate DyCAPS and Dumbo2 with different
payload sizes, employing the same building blocks. In both
protocols, we set the output size |Ṽ | = t + 1. Besides, we
use 2t + 1 as the threshold of the signatures in Dumbo2.
The latency and throughput are depicted in Figure 14 and
Figure 15, respectively.

As the payload size grows, the performance of DyCAPS
become comparable with Dumbo2. Given a payload of 15MB
per node, the extra latency of DyCAPS is about 6% (n= 4)

12

and 15% (n=16) when compared to Dumbo2. In general, a
5–10MB payload is sufficient for Dumbo2 to enjoy dynamic
membership, at the cost of around 10% temporary throughput
degradation introduced by DyCAPS. Such a payload size is
typical in state-of-the-art BFT protocols (e.g., Dumbo2 and
sDumbo [9]) to achieve peak throughput.

IX. CHANGE OF COMMITTEE SIZE AND THRESHOLD

Changing the committee size and threshold is a common
demand for long-lived systems, for both security and flexibility
considerations. In the following, we consider the scenarios
where the committee size and threshold are updated indepen-
dently. We denote ne=n, ne+1=n′, te= t, and te+1= t′.
Changing committee size. Given a fixed threshold t, we
only need to replace the variable n with n′ in the descrip-
tion of DyCAPS.Handoff when referring to the size of new
committee. Besides, when the new size n′ is too small, i.e.,
n′ < 3t + 1, a reduction of threshold (see below) is needed
before decreasing the committee size.
Increasing threshold. Given a fixed committee size n, to
lift the threshold from t to t′, where t′ > t, we need to
raise the degree of sharing polynomial from ⟨t, 2t⟩ to ⟨t′, 2t′⟩.
An intuitive solution is generating a ⟨t′, 2t′⟩-degree zero-
polynomial Q(x, y) and adding it to B(x, y). However, this
solution enables an adversary to obtain t + t′ > 2t reduced
shares of B(x, y) during the handoff (see Figure 9), leading to
the leakage of the secret s = B(0, 0). To fix this problem, we
let the old committee perform an additional round of handoff
towards itself, raising the y-dimension degree of the sharing
polynomial to 2t′.

In this additional round, the old nodes invoke the
GenBivariateZeroPoly protocol with input (n, t, 2t′), and the
other operations remain the same4. In this way, each old node
P e
i obtains a t-degree reduced share Btmp(x, i) and a 2t′-

degree full share Btmp(i, y) at the end. Afterward, the old
committee starts the regular DyCAPS.Handoff, in which the
old nodes hand over the reduced shares to the new committee,
and the new nodes generate a ⟨t′, 2t′⟩-degree zero-polynomial
Q(x, y) and refresh Btmp(x, y) to B′(x, y). An adversary with
t + t′ < 2t′ reduced shares of Btmp(x, y) cannot reconstruct
the secret s = Btmp(0, 0).

The additional handoff within the old committee implicitly
requires n > 3t′. If this is not the case, one might increase
the committee size n before increasing the threshold.
Decreasing threshold. To reduce the threshold from t to t′ =
t−d, where 0 < d < t, we follow prior schemes [20], [5] and
introduce d virtual nodes, whose full shares are exposed to
all nodes. In this way, the degree of B′(x, y) remains ⟨t, 2t⟩,
while t′ + 1 extra full shares are needed to perform threshold
operations or reconstruct the secret.

The modifications are as follows. In ShareReduce, each old
node additionally sends d points on its full share to the new
nodes, so that every new node obtains the reduced shares of d
virtual nodes. This will not influence the secrecy, because the

4Generating a ⟨t, 2t′⟩-degree polynomial Q(x, y) requires higher-degree
KZG public parameters. We adopt the extended KZG scheme by Maram et
al. [5] to address this problem.

adversary only has access to t+ t′+d = 2t reduced shares. In
Proactivize, all honest nodes (including the virtual ones) vote
for the virtual nodes, whose contributions are Qv(x, y) = 0. In
this way, the MVBA instance terminates even if the corrupted
nodes withhold the inputs. Finally in ShareDist, the messages
towards the virtual nodes are multicasted so that every node
can interpolate the full shares of the virtual nodes.

X. HIGH-THRESHOLD DYCAPS

In cryptographic applications, there are demands on high-
threshold secret sharing, where 2t shares are needed to recon-
struct the secret. For example, high-threshold signatures are
widely used in MVBA [39], [29], [40], [9] and BFT consensus
protocols [15], [8], [7]. In the following, we introduce a high-
threshold variant of DyCAPS (referred to as hDyCAPS).

Observe that the reduced shares are already high-threshold.
We may treat these reduced shares as regular shares and
find a way to transfer them among dynamic committees. In
hDyCAPS, we reorder the four phases of DyCAPS.Handoff,
letting the ShareDist phase to occur before ShareReduce.

Specifically, each old node Pie initially holds a reduced
share B(x, i). To transfer the shares to a new committee, the
old committee first performs ShareDist to obtain temporary
full shares {B(i, y)}i∈[n]. Then, both committees proceed with
the ShareReduce and Proactivize phases to transfer and refresh
the reduced shares. At the end of hDyCAPS.Handoff, each
new node obtains a refreshed share from the Proactivize phase.

When a threshold 2t − d is needed, where 0 < d < t, we
may follow the strategy of threshold decrease in Section IX.
Namely, we may introduce d virtual nodes in hDyCAPS, such
that the reduced shares of virtual nodes are publicly known.
Remark. The reordering of phases does not influence the com-
munication and computation complexities. Namely, hDyCAPS
and DyCAPS have similar performance.

XI. DISCUSSION

A. Related Work

Table II shows the performance of related DPSS protocols.
Non-asynchronous DPSS. Schultz-MPSS [20] realizes DPSS
with O(κn4) bits of communication complexity. Although it
claims to support asynchrony, its underlying network model
has recently been classified to be partially synchronous [15].

CHURP [5] and COBRA [6] are two state-of-the-art DPSS
protocols in non-asynchronous networks. CHURP works in
synchrony and has a communication cost of O(κn2) bits in an
all-honest setting. If any node misbehaves, CHURP falls into a
pessimistic path that consumes O(κn3) bits of communication.
Goyal et al. [41] propose a DPSS protocol that supports
batching, and it has the same asymptotic communication
complexity as CHURP in the single-secret setting. COBRA
achieves O(κn3) communication complexity in a partially
synchronous network, but its worst-case complexity grows to
O(κn4) due to continuous view-changes.
Asynchronous DPSS. APSS [13] is the first asynchronous
DPSS. However, it has only theoretical value due to its
exponential communication.

13

TABLE II
RELATED DPSS PROTOCOLS.

Reference Async. Fault
tolerance

High-
threshold

Best-case1
comm. cost

Worst-case
comm. cost

No trusted
setup

No extra3
DKG

Schultz-MPSS [20] × t < n/3 × O(κn4) O(κn5)
√ √

CHURP [5] × t < n/2
√

O(κn2) O(κn3) × √
Goyal et a. [41] × t < n/2

√
O(κn2) O(κn3) × √

COBRA [6] × t < n/3 × O(κn3) O(κn4) × √

APSS [13]
√

t < n/3 × exp(n) exp(n)
√ √

Shanrang [14]
√

t < n/4 × O(κn3 log n) O(κn4) × √

LongLive-Ped [18]
√

t < n/3
√

O(κn3) O(κn3)
√2 ×

LongLive-KZG [18]
√

t < n/3 × O(κn3) O(κn3) × ×
DyCAPS (this work)

√
t < n/3

√
O(κn3) O(κn3) × √

1 In the best case, all nodes behave honestly. In the worst case, there are t corrupted nodes behaving maliciously.
2 Without a trusted setup, the zero-knowledge proofs in LongLive-Ped [18] introduce a large constant factor.
3 For every new committee, LongLive requires an DKG setup to prepare the threshold signing keys for the common
coin in MVBA. The other protocols either use bivariate polynomials (Shanrang [14] and DyCAPS) or do not rely
on threshold signatures (APSS [13] and all non-asynchronous protocols [20], [5], [41], [6]), so only a one-time
execution of DKG for the initial committee is needed.

Research on asynchronous DPSS has been revived recently.
Shanrang [14] uses the well-known asynchronous BFT proto-
col Honeybadger [15] to deal with asynchrony, but it comes
with a communication cost of O(κn3 log n) bits and tolerates
t < n/4 corrupted nodes, which is sub-optimal. LongLive [18]
follows the reshare-then-agree paradigm proposed in the static
PSS protocol by Cachin et al. [12]. LongLive achieves the
same O(κn3) communication complexity as ours, but it fo-
cuses on the amortized cost of refreshing multiple secrets.
Besides, both LongLive and hDyCAPS support high-threshold
DPSS, but LongLive relies on expensive zero-knowledge
proofs of encryptions, whereas our hDyCAPS uses the di-
mension switching technique, thus achieving a much lower
concrete communication cost. Additionally, LongLive requires
distributed key generation (DKG) for each new committee to
participate in the MVBA procedure, whereas our DyCAPS
only require a one-time DKG for the initial committee, and
the reduced shares can serve as the threshold signing keys for
the subsequent committees.

B. Applications of DyCAPS

Flexible committees for BFT protocols. In state-of-the-art
BFT protocols [15], [8], [7], the committee is usually fixed,
and the change of committee members may require a temporal
halt of the protocol. As DyCAPS has a similar workflow to the
BFT protocols, it may facilitate the membership adjustment
of BFT systems without halting the service. That is, the
transactions and inquiries are handled simultaneously during
the handoff. Moreover, DyCAPS allows the BFT system
to maintain a consistent key pair for signing transactions,
regardless of the change of committees. In this way, external
verifiers will be relieved of the burden of recording historical
public keys. Namely, they can use a single public key to verify
the transactions signed by any committee that is in charge at
a certain epoch.
Decentralized identity (DID). The blossom of decentralized
applications (DApps) on blockchains [42] has drawn public
attention to DID [43], [44], [45], which manages personal
assets and credentials on the blockchain. With DyCAPS, users

may share the secret keys of DIDs among personal devices
or cloud services. The shares are refreshed periodically, and
users may replace any devices or service providers without
compromising the security of their DIDs.
Threshold cryptography as a service. As recently pionted
out by Benhamouda et al. [17], threshold cryptographic ser-
vices are attractive in many fields, including private cloud
storage [46], [6], document certification, random beacons [47],
[48], and cross-chain bridges [49]. Most scenarios above might
encounter the demand of dynamic committee and the challenge
of asynchrony in practice. DyCAPS takes a step to takle the
dynamic problems and may promote these services.

XII. CONCLUSION

In this paper, we propose DyCAPS, an efficient asyn-
chronous DPSS protocol with a communication complexity
of O(κn3) bits. DyCAPS supports high-threshold DPSS and
can be integrated into existing BFT protocols. Due to its
robustness in asynchrony, DyCAPS is suitable for long-term
key management and committee governance. DyCAPS may
facilitate the evolution of committee-based systems into a
dynamic setting. DyCAPS has potential applications in sys-
tems, decentralized autonomous organizations, and threshold
cryptographic services, as well as personal use for managing
secret keys and decentralized identities.

ACKNOWLEDGMENTS

The authors thank Ren Zhang, Yanpei Guo, Qitong Liu, and
Bingyu Yan for their helpful suggestions.

REFERENCES

[1] R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks
(extended abstract),” in PODC 1991. ACM, 1991, pp. 51–59.

[2] C. U. Günther, S. Das, and L. Kokoris-Kogias, “Practical asynchronous
proactive secret sharing and key refresh,” IACR Cryptol. ePrint Arch.,
p. 1586, 2022. [Online]. Available: https://eprint.iacr.org/2022/1586

[3] B. H. Falk, D. Noble, and T. Rabin, “Proactive secret sharing with
constant communication,” in TCC 2023, ser. LNCS. Springer, 2023.

[4] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

https://eprint.iacr.org/2022/1586

14

[5] S. K. D. Maram, F. Zhang, L. Wang, A. Low, Y. Zhang, A. Juels, and
D. Song, “CHURP: dynamic-committee proactive secret sharing,” in
CCS 2019. ACM, 2019, pp. 2369–2386.

[6] R. Vassantlal, E. Alchieri, B. Ferreira, and A. Bessani, “Cobra: Dynamic
proactive secret sharing for confidential bft services,” in SP 2022. IEEE
Computer Society, 2022, pp. 1528–1528.

[7] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and I. Abraham,
“Hotstuff: BFT consensus with linearity and responsiveness,” in PODC
2019. ACM, 2019, pp. 347–356.

[8] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous BFT protocols,” in CCS 2020. ACM, 2020, pp. 803–
818.

[9] B. Guo, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Speeding dumbo:
Pushing asynchronous BFT closer to practice,” in NDSS 2022, 2022, pp.
1–18.

[10] A. Boldyreva, “Threshold signatures, multisignatures and blind signa-
tures based on the gap-diffie-hellman-group signature scheme,” in PKC
2003, ser. LNCS, vol. 2567. Springer, 2003, pp. 31–46.

[11] S. Duan and H. Zhang, “Foundations of dynamic BFT,” in SP 2022.
IEEE, 2022, pp. 1317–1334.

[12] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl, “Asynchronous
verifiable secret sharing and proactive cryptosystems,” in CCS 2002.
ACM, 2002, pp. 88–97.

[13] L. Zhou, F. B. Schneider, and R. van Renesse, “APSS: proactive secret
sharing in asynchronous systems,” ACM Trans. Inf. Syst. Secur., vol. 8,
no. 3, pp. 259–286, 2005.

[14] Y. Yan, Y. Xia, and S. Devadas, “Shanrang: Fully asynchronous
proactive secret sharing with dynamic committees,” 2022. [Online].
Available: https://eprint.iacr.org/2022/164

[15] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of BFT protocols,” in CCS 2016. ACM, 2016, pp. 31–42.

[16] S. Wang, W. Ding, J. Li, Y. Yuan, L. Ouyang, and F. Wang, “Decen-
tralized autonomous organizations: Concept, model, and applications,”
IEEE Trans. Comput. Soc. Syst., vol. 6, no. 5, pp. 870–878, 2019.

[17] F. Benhamouda, S. Halevi, H. Krawczyk, A. Miao, and T. Rabin,
“Threshold cryptography as a service (in the multiserver and YOSO
models),” in CCS 2022. ACM, 2022, pp. 323–336.

[18] T. Yurek, Z. Xiang, Y. Xia, and A. Miller, “Long live the honey badger:
Robust asynchronous DPSS and its applications,” 2023.

[19] Y. Desmedt and S. Jajodia, “Redistributing secret shares to
new access structures and its applications,” 1997. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.
2968&rep=rep1&type=pdf

[20] D. A. Schultz, B. Liskov, and M. D. Liskov, “MPSS: mobile proactive
secret sharing,” ACM Trans. Inf. Syst. Secur., vol. 13, no. 4, pp. 34:1–
34:32, 2010.

[21] A. B. Alexandru, E. Blum, J. Katz, and J. Loss, “State machine
replication under changing network conditions,” in ASIACRYPT 2022,
ser. LNCS, vol. 13791. Springer, 2022, pp. 681–710.

[22] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commitments
to polynomials and their applications,” in ASIACRYPT 2010, ser. LNCS,
vol. 6477. Springer, 2010, pp. 177–194.

[23] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza, “Secure
sampling of public parameters for succinct zero knowledge proofs,” in
SP 2015. IEEE Computer Society, 2015, pp. 287–304.

[24] V. Nikolaenko, S. Ragsdale, J. Bonneau, and D. Boneh, “Powers-of-tau
to the people: Decentralizing setup ceremonies,” IACR Cryptol. ePrint
Arch., 2022. [Online]. Available: https://eprint.iacr.org/2022/1592

[25] S. Das, Z. Xiang, and L. Ren, “Powers of tau in asynchrony,” 2022.
[Online]. Available: https://eprint.iacr.org/2022/1683

[26] G. Bracha, “Asynchronous byzantine agreement protocols,” Inf. Com-
put., vol. 75, no. 2, pp. 130–143, 1987.

[27] S. Das, Z. Xiang, and L. Ren, “Asynchronous data dissemination and
its applications,” in CCS 2021. ACM, 2021, pp. 2705–2721.

[28] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient
asynchronous broadcast protocols,” in CRYPTO 2001, ser. LNCS, vol.
2139. Springer, 2001, pp. 524–541.

[29] I. Abraham, D. Malkhi, and A. Spiegelman, “Asymptotically optimal
validated asynchronous byzantine agreement,” in PODC 2019. ACM,
2019, pp. 337–346.

[30] M. Backes, A. Datta, and A. Kate, “Asynchronous computational VSS
with reduced communication complexity,” in CT-RSA 2013, ser. LNCS,
vol. 7779. Springer, 2013, pp. 259–276.

[31] E. Kokoris-Kogias, D. Malkhi, and A. Spiegelman, “Asynchronous
distributed key generation for computationally-secure randomness, con-
sensus, and threshold signatures,” in CCS 2020. ACM, 2020, pp. 1751–
1767.

[32] N. Alhaddad, M. Varia, and H. Zhang, “High-threshold AVSS with
optimal communication complexity,” in FC 2021, ser. LNCS, vol. 12675.
Springer, 2021, pp. 479–498.

[33] A. Patra, A. Choudhary, and C. P. Rangan, “Efficient statistical asyn-
chronous verifiable secret sharing with optimal resilience,” in ICITS
2009, ser. LNCS, vol. 5973. Springer, 2009, pp. 74–92.

[34] CHURPTeam, “Churp,” 2019. [Online]. Available: https://github.com/
CHURPTeam/CHURP

[35] protolambda, “go-KZG library,” 2023. [Online]. Available: https:
//github.com/protolambda/go-kzg

[36] Drand, “Drand/kyber library,” 2023. [Online]. Available: https:
//github.com/drand/kyber

[37] K. Post, “Reed-solomon library,” 2023. [Online]. Available: https:
//github.com/klauspost/reedsolomon

[38] kilic, “bls12-381 library,” 2023. [Online]. Available: https://github.com/
kilic/bls12-381

[39] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in constantino-
ple: Practical asynchronous byzantine agreement using cryptography,”
J. Cryptol., vol. 18, no. 3, pp. 219–246, 2005.

[40] Y. Lu, Z. Lu, Q. Tang, and G. Wang, “Dumbo-mvba: Optimal
multi-valued validated asynchronous byzantine agreement, revisited,” in
PODC 2020. ACM, 2020, pp. 129–138.

[41] V. Goyal, A. Kothapalli, E. Masserova, B. Parno, and Y. Song, “Storing
and retrieving secrets on a blockchain,” in PKC 2022, ser. LNCS, vol.
13177. Springer, 2022, pp. 252–282.

[42] B. Hu, Z. Zhang, J. Liu, Y. Liu, J. Yin, R. Lu, and X. Lin, “A
comprehensive survey on smart contract construction and execution:
paradigms, tools, and systems,” Patterns, vol. 2, no. 2, p. 100179, 2021.

[43] D. Maram, H. Malvai, F. Zhang, N. Jean-Louis, A. Frolov, T. Kell,
T. Lobban, C. Moy, A. Juels, and A. Miller, “Candid: Can-do decen-
tralized identity with legacy compatibility, sybil-resistance, and account-
ability,” in SP 2021. IEEE, 2021, pp. 1348–1366.

[44] dotbit, “Your decentralized identity for web3.0 life,” 2022. [Online].
Available: https://www.did.id/

[45] ConsenSys, “Serto: trust with control,” 2022. [Online]. Available:
https://www.serto.id/

[46] A. N. Bessani, E. A. P. Alchieri, M. Correia, and J. da Silva Fraga,
“Depspace: a byzantine fault-tolerant coordination service,” in EuroSys
2008. ACM, 2008, pp. 163–176.

[47] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser, I. Khoffi,
M. J. Fischer, and B. Ford, “Scalable bias-resistant distributed random-
ness,” in SP 2017. IEEE Computer Society, 2017, pp. 444–460.

[48] S. Das, V. Krishnan, I. M. Isaac, and L. Ren, “Spurt: Scalable distributed
randomness beacon with transparent setup,” in SP 2022. IEEE, 2022,
pp. 2502–2517.

[49] Y. Li, J. Weng, M. Li, W. Wu, J. Weng, J. Liu, and S. Hu, “Zerocross:
A sidechain-based privacy-preserving cross-chain solution for monero,”
J. Parallel Distributed Comput., vol. 169, pp. 301–316, 2022.

https://eprint.iacr.org/2022/164
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.2968&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.2968&rep=rep1&type=pdf
https://eprint.iacr.org/2022/1592
https://eprint.iacr.org/2022/1683
https://github.com/CHURPTeam/CHURP
https://github.com/CHURPTeam/CHURP
https://github.com/protolambda/go-kzg
https://github.com/protolambda/go-kzg
https://github.com/drand/kyber
https://github.com/drand/kyber
https://github.com/klauspost/reedsolomon
https://github.com/klauspost/reedsolomon
https://github.com/kilic/bls12-381
https://github.com/kilic/bls12-381
https://www.did.id/
https://www.serto.id/

	Introduction
	Preliminaries
	Notations
	System Model
	Building Blocks

	Technical Overview
	Definition and Design Goal
	DyCAPS Overview

	Bivariate Zero-Polynomial Generation
	Strawman Protocols
	Our Bivariate Zero-Polynomial Generation Protocol
	Security Analysis

	The Handoff Protocol in DyCAPS
	Preparation Phase
	Share Reduction Phase
	Proactivization Phase
	Share Distribution Phase

	Performance and Security Analysis
	Performance Analysis
	Security Analysis

	Sharing and Reconstruction Protocol
	Details of Our Sharing Protocol
	Details of Our Reconstruction Protocol

	Implementation and Evaluation
	Implementation
	Evaluation

	Change of Committee Size and Threshold
	High-threshold DyCAPS
	Discussion
	Related Work
	Applications of DyCAPS

	Conclusion
	References

