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ABSTRACT

The latest message driven (LMD) greedy heaviest observed sub-tree

(GHOST) consensus protocol is a critical component of proof-of-

stake (PoS) Ethereum. In its current form, the protocol is brittle,

and intricate to reason about, as evidenced by recent attacks and

patching attempts. We report onGoldfish, a considerably simplified

variant of the current protocol, and a candidate under consideration

for a future Ethereum protocol upgrade. We prove that Goldfish
is secure in synchronous networks under dynamic participation,

assuming a majority of the nodes (called validators) follows the

protocol. Goldfish improves over Nakamoto’s longest-chain con-

sensus in that it is reorg resilient (i.e., honestly produced blocks

are guaranteed inclusion in the ledger) and supports fast confirma-

tion (i.e., the expected confirmation latency is independent of the

desired security level). We show that subsampling validators can

improve the communication efficiency of Goldfish, and that Gold-
fish is composable with finality gadgets and accountability gadgets,

which improves state-of-the-art ebb-and-flow protocols. Akin to

traditional propose-and-vote-style consensus protocols, Goldfish is

organized in slots, at the beginning of which a leader proposes a

block containing new transactions, and subsequently members of

a committee take a vote towards block confirmation. But instead

of using quorums, Goldfish is powered by a new mechanism to

carefully synchronize the inclusion and exclusion of blocks and

votes in honest validators’ views.

1 INTRODUCTION

The latest message driven (LMD) greedy heaviest observed sub-tree

(GHOST) [57, 31] consensus protocol is a key component of the

Gasper protocol [9] that powers proof-of-stake (PoS) Ethereum’s

beacon chain since ‘the Merge’. The initial version specified with

Gasper [9] was shown to be broken using the balancing attack,

first in synchronous and partially synchronous networks with

adversarial message delay [47, 43], and later in networks with

non-adversarial but merely random network delay [49, 44, 54]. In

response, a patch called proposer boosting was added to the pro-

tocol [7]. It was subsequently shown that the LMD functionality

alone can be exploited to conduct a balancing-type attack despite

proposer boosting [50, 46], and that Gasper’s LMD GHOST compo-

nent without LMD would suffer from a so called avalanche attack

[50, 45]. Again in response, a patch called equivocation discounting

was added to the protocol. Not least because of its complexity, the

protocol has so far defied security analysis—both in terms of giv-

ing a formal security proof as well as further attacks. This leaves

room for an uncomfortable amount of doubt about the security of

Ethereum’s ecosystem worth hundreds of billions of US dollars.

We present a protocol, nicknamed Goldfish, with the following
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key properties motivated by the application (the importance of

these properties as well as their precise definition is subsequently

detailed): (a) The protocol can be viewed as a small variation of

the currently specified and deployed LMD GHOST protocol of the

PoS Ethereum beacon chain. (b) It is provably secure, assuming

honest majority of validators (i.e., nodes with stake), and network

synchrony (i.e., adversarial network delay, up to a known delay

upper bound Δ). (c) It can tolerate dynamic participation [51], i.e., a

large fraction and fluctuating set of simultaneous temporary crash

faults among validators. (d) It is reorg resilient, i.e., block proposals

by honest validators are guaranteed to make their way into the

output ledger, with a prefix known to the block producer at the

time of block production. (e) It supports subsampling of validators,

to improve communication efficiency and resilience to adaptive

corruption (cf. player-replaceability [22, 14]). (f) It is simple. (g) It is

composable with finality gadgets and accountability gadgets such as

[8, 47, 53, 49]. The composite can achieve the ebb-and-flow consensus

formulation [47] desired of PoS Ethereum’s beacon chain.

As a result, Goldfish can serve the following purposes: (a) The

protocol can serve as a drop-in replacement for LMD GHOST in

the PoS Ethereum beacon chain protocol. Due to its similarity to

LMD GHOST, it is a credible candidate for a future upgrade of PoS

Ethereum consensus, requiring relatively small implementation

changes, and thus presents an option for the Ethereum ecosystem,

should problems with the current protocol aggravate. (b) Unlike

earlier negative results (attacks) on variants of LMD GHOST as is

part of the PoS Ethereum beacon chain, Goldfish is the first positive

result (security proof) for a close variant, slightly strengthening

confidence in this family of protocols. (c) The protocol is a good ped-

agogical example for a simple yet feature-rich consensus protocol

for synchronous networks under dynamic participation.

Akin to traditional propose-and-vote-style consensus protocols,

Goldfish is organized into slots, at the beginning of which a (pseu-

do-randomly elected) leader proposes a block containing new trans-

actions, and subsequently members of a (pseudo-randomly elected)

committee take a vote towards block confirmation. But instead of

using fix-sized quorums, Goldfish is based on two key techniques,

message buffering and vote expiry, to carefully synchronize honest

validators’ views, and which might be of independent interest:

(a) Message buffering (also known as view merge [3]) first appeared

in [27]. In short, buffering of votes received from the network

together with carefully timed inclusion of these votes in each

validator’s local view leads to the property that in periods with

honest leader, all honest validators vote in favor of the leader’s

proposal. This leads to reorg resilience, i.e., honest proposals

are guaranteed to remain in the canonical chain. Since honest

proposals contain fresh transactions and stabilize their prefix,

and long streaks of only adversarial proposals are exponentially
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unlikely, safety and liveness of the protocol follow readily under

high participation and without subsampling.

(b) Vote expiry (also known as ephemeral votes) means that during

each time slot only votes from the immediately preceding time

slot influence the protocol’s behavior.
1
This allows the proto-

col to support dynamic participation, and to subsample small

committees of voters per slot from the full set of validators (for

improved communication efficiency). Furthermore, vote expiry

keeps the set of votes small that might affect short-term future

actions of honest validators. Thus, only few protocol messages

need to be buffered andmerged among honest validators’ views

at any point in time. Vote expiry is thus a prerequisite for the

feasibility and efficiency of message buffering.

Inspired by the application requirements for a drop-in replace-

ment of LMD GHOST in the PoS Ethereum beacon chain, Goldfish
was designed to achieve the following goals:

Secure consensus in synchronous networks under dynamic partic-

ipation [51] and honest majority: The protocol is parametric in a

security parameter 𝜅 and outputs a single ledger at each validator

at any point in time. The ledger is safe (meaning that ledgers output

by two validators at two points in time are one a prefix of the other),

except with probability decaying exponentially in 𝜅. The ledger is

live (meaning that transactions enter the ledgers output by honest

validators ‘soon’ after they were first input to an honest valida-

tor), with a confirmation delay determined by the analysis (a linear

function of 𝜅), except with probability decaying exponentially in 𝜅 .

Safety and liveness constitute security of the consensus protocol.

Guaranteeing security under dynamic participation, i.e., tolerat-

ing a large number of temporary crash faults, is key in the semi-

permissionless model of public PoS blockchains, where it makes

the protocol resilient to unforeseen dropouts due to, for instance,

regulatory requirements or software/hardware updates. At the time

of writing, approximately 70% of Ethereum validators
2
follow U.S.

Office of Foreign Assets Control (OFAC) regulations, and ignore

certain transactions. It is conceivable, that under similar future cir-

cumstances these 70% of validators selectively abstain from voting,

and thus behave like temporary crash faults.

Composability with finality gadgets and accountability gadgets:

Goldfish is composable with finality gadgets and accountability

gadgets such as [8, 47, 53, 49]. The resulting composite protocol (cf.

Fig. 2) can achieve the ebb-and-flow consensus formulation [47, 49]

desired of PoS Ethereum’s beacon chain (cf. Def. 4).

Reorg resilience: As part of the Goldfish protocol, honest valida-

tors every now and then get to be the leader and get to propose

blocks (bundles of transactions) for inclusion. The protocol is re-

silient to reorgs, meaning that whenever there is an honest leader,

its proposal will eventually make it into the protocol’s output ledger,

with a prefix ledger that can be determined at the time of block pro-

duction. This property is broadly important for incentive alignment,

e.g., it reduces the risk of undercutting [34, 11], time-bandit [16], or

selfish mining [19] attacks.

Subsampling: The protocol supports subsampling, meaning that

at each slot the protocol can pseudo-randomly select a small group

of validators to run the protocol on behalf of the total validator

1
From the alleged forgetfulness of its animal namesake stems Goldfish’s name.
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set. The results in a considerably lower communication overhead.

Furthermore, the selected validators send only a single protocol

message. Thus, the protocol satisfies player-replaceability [22, 14] and

is secure against adaptive adversaries (which can corrupt validators

during protocol execution).

Optimistic fast confirmation: Under optimistic conditions when

participation happens to be high and a supermajority of
3

4
fraction

of validators is honest, Goldfish confirms with constant expected

latency independent of 𝜅.

Similarity to LMD GHOST: Goldfish is intentionally simple, and

similar to LMD GHOST as currently deployed, offering a credible

path to adoption of Goldfish in the short to medium term. For the

two key ingredients, vote expiry can be realized entirely with minor

changes to the vote accounting logic. Message buffering becomes

practical due to vote expiry. While message buffering requires slight

changes to the temporal structure and validator behavior of the

current protocol, Goldfish and the current LMD GHOST are similar

‘in spirit’ and share their fundamental structure.

1.1 Related Works

For Goldfish, we build on the sleepy model [51] of a synchronous

network where the number and identity of actively participating

(awake) validators can change over time (dynamic participation).

The first secure consensus protocol for the sleepy model was Naka-

moto’s seminal longest chain (LC) protocol, first for proof-of-work

(PoW) with Bitcoin [39, 21], and subsequently for PoS with pro-

tocols such as Ouroboros [32, 17, 1] and Sleepy Consensus/Snow

White [51, 15]. A drawback of these protocols is that the (expected)

confirmation latency scales linearly with the security parameter 𝜅

(same for Goldfish’s ‘standard’ confirmation rule). Parallel composi-

tion of LC protocol instances was suggested in [2, 20] to overcome

the 𝜅-dependence of the confirmation latency. Goldfish has an op-

timistic fast confirmation rule providing 𝜅-independent latency

under high participation. Unlike Goldfish, LC protocols are not

reorg resilient: with selfish mining [19], every block produced by

the adversary can be used to displace one honestly produced block.

In contrast, many ‘classical’ propose-and-vote-style BFT consen-

sus protocols [12, 58, 13] have constant (expected) confirmation

latency and are (or can be modified to be) reorg resilient, but do

not tolerate dynamic participation. An early consensus protocol of

‘classical’ flavor for a model with unknown (but static rather than

dynamic) participation is due to Khanchandani and Wattenhofer

[30, 29]. A subsequent protocol of the ‘classical’ variety [24] sup-

ports dynamic participation, but with confirmation latency linear

in the security parameter 𝜅. Like Goldfish (and unlike LC), the

latency of this protocol is independent of the participation level.

Probabilistic security is also overcome in the permissionless PoW

setting with omission faults by [52].

A recent work by Momose and Ren [38] presents the first

propose-and-vote-style permissioned/PoS protocol that supports

dynamic participation with confirmation latency independent of

security parameter and level of participation. In the contemporary

but independent work [36, 35], the prerequisites for liveness were

relaxed, at the expense of reduced adversarial resilience (from
1

2

down to
1

3
). Thus, Goldfish improves over [36, 35] in resilience.

A key challenge for ‘classical’ consensus protocols in the sleepy

2
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setting is that quorum certificates are no longer transferable be-

tween awake honest validators. The works of Momose, Ren, and

Malkhi aim to (partially) restore/replace transferability with graded

agreement, but otherwise retain the structure of a ‘classical’ con-

sensus protocol: Multiple stages of voting, with the aim of reaching

quorums to progress towards confirmation. Validators keep indi-

vidual state across the stages using locks, and express discontent

with a proposal by abstaining from the vote. In contrast, Goldfish
is closer in spirit to LC: A simple main loop in which validators

repeatedly express support for the leading tip in their view (by

producing blocks in LC, casting votes in Goldfish). Eventually, hon-
est validators converge on a leading tip, which then accumulates

endorsements quickly from the majority of honest validators, so

that no competing tip will ever be able to supersede it.

As a result, liveness of [38] requires steady participation for a

sustained period, whereas Goldfish supports fast fluctuating par-

ticipation. Unlike the works of Momose, Ren, and Malkhi, Gold-
fish achieves constant expected confirmation latency only under

optimistic conditions of high participation and less than
1

4
frac-

tion adversarial validators (the fraction can be tuned to
1

3
for both

optimistic-fast and ‘standard’ confirmation in Goldfish).
Unlike Goldfish, the aforementioned protocols differ substan-

tially from the LMD GHOST component of the current PoS

Ethereum protocol. Furthermore, they are considerably more

involved (e.g., in number of stages) than LMD GHOST or Goldfish.
Thus, adoption of these protocols for PoS Ethereum would require

substantial design and engineering effort, and is unlikely.

Highway [27] employs some of the techniques also found in

Goldfish and in the PoS Ethereum beacon chain. For instance, mes-

sage buffering first appeared in [27]. Furthermore, Highway aims

to achieve flexible finality on a gradual scale using a monolithic

protocol, and does not consider dynamic participation. In contrast,

we follow the ebb-and-flow formulation [47] of the beacon chain

requirements (and with it adopt the extension of the sleepy model

to allow for periods of asynchrony [47]) with a gradual notion of

(probabilistic) confirmation for the available full ledger (which is

powered by Goldfish with the help of message buffering), and a

binary notion of finality for the accountable final prefix (which is

provided by a separate finality/accountability gadget). In particu-

lar, we adopt the modular approach described in [8, 47, 53, 49] to

designing protocols that satisfy the ebb-and-flow property using

finality gadgets and accountability gadgets (Fig. 2).

1.2 Outline

We recapitulate the model of synchronous networks with dynamic

participation and asynchronous periods in Sec. 2, before describ-

ing our basic Goldfish protocol in Sec. 3, and an optimistic fast

confirmation rule in Sec. 4. We analyze the protocol and prove the

desired security properties in Sec. 5, before concluding in Sec. 6

with a case-study discussing implementation aspects of Goldfish
in the context of Ethereum.

2 MODEL & PRELIMINARIES

We review cryptographic primitives, how to model environment

and adversary, and the consensus security desiderata.

2.1 Preliminaries

2.1.1 Security parameters. We denote by 𝜆 and 𝜅 the security pa-

rameters associated with the cryptographic primitives employed

by the Goldfish protocol, and with the Goldfish protocol itself, re-

spectively. We say that an event happens with probability negligible

in a security parameter 𝜇, denoted by negl(𝜇), if its probability
is 𝑜 (1/𝜇𝑑 ) for all 𝑑 > 0. Overall, we say that an event happens

with overwhelming probability (w.o.p.) if it happens except with

probability (w.p.) negl(𝜅) + negl(𝜆).

2.1.2 Digital signatures.

Definition 1 (Informal, cf. [28, 5]). A signature scheme Sig =

(Gen, Sign,Verify) consists of probabilistic poly-time (PPT) algo-

rithms so that:

• (ssk, spk) ← Sig.Gen(1𝜆) creates a secret/public key pair.

• 𝜎 ← Sig.Sign(ssk,𝑚) creates a signature on a message.

• {0, 1} ← Sig.Verify(spk,𝑚, 𝜎) verifies a signature.
• Correctness: With overwhelming probability, for all messages,

Sig.Verify(spk,𝑚, Sig.Sign(ssk,𝑚)) = 1.
• Security (existential unforgeability): An adversary with access

to spk and to a signing oracle Sig.Sign(ssk, .) cannot produce a
valid (𝑚,𝜎) other than via the oracle.

2.1.3 Verifiable random functions. A verifiable random function

(VRF) [37] is used for leader election and subsampling of the val-

idators within the Goldfish protocol.

Definition 2 (Informal, cf. [17, Sec. 3.2, Fig. 2], [18, 14]). A verifiable

random function (VRF) scheme Vrf = (Gen, Prove,Verify) consists
of PPT algorithms so that:

• (vsk, vpk) ← Vrf.Gen(1𝜆) creates a secret/public key pair.

• (𝑦, 𝜋) ← Vrf .Prove(vsk, 𝑥) obtains the output 𝑦 of the VRF at

input 𝑥 , and the evaluation proof 𝜋 .

• {0, 1} ← Vrf.Verify(vpk, 𝑥, (𝑦, 𝜋)) verifies an evaluation.

• Correctness: With overwhelming probability, for all inputs,

Vrf .Verify(vpk, 𝑥,Vrf.Prove(vsk, 𝑥)) = 1.
• Uniqueness: Per input 𝑥 , there is only one output 𝑦: if

Vrf .Verify(vpk, 𝑥, (𝑦, 𝜋)) = 1 for (𝑦, 𝜋) = (𝑦1, 𝜋1) and (𝑦, 𝜋) =
(𝑦2, 𝜋2), then 𝑦1 = 𝑦2.

• ‘Pseudorandomness’: Conceptually, the VRF behaves like a ran-

dom oracle that is unpredictable (i.e., without knowledge of vsk,
the VRF output cannot be distinguished from a random string)

and verifiable (i.e., given vpk, an alleged output of the VRF can

be verified). For a formal definition, see [17, Sec. 3.2, Fig. 2].

2.2 Model

2.2.1 Validators. Goldfish is run among 𝑛 validators, with identi-

ties id ∈ [𝑛] ≜ {1, ..., 𝑛}. Each validator id generates a secret/public

key pair (sskid, spkid) and (vskid, vpkid) for the signature and the

VRF scheme, respectively. The public keys are known to all valida-

tors (public-key infrastructure, PKI).

2.2.2 Environment and adversary. Time is divided into discrete

rounds and the validators have synchronized clocks.
3
Validators

receive transactions (txs) from the environment, and continuously

output transaction ledgers to it (chid𝑟 for validator id and round 𝑟 ).

3
Bounded clock offsets can be lumped into the subsequently discussed network delay.
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The environment allows validators to broadcast messages to each

other. The adversary is a probabilistic poly-time (PPT) algorithm

that can leverage three aspects of the model (corruption, sleepiness,

and network delay) in its attempt to undermine consensus. We first

discuss these three aspects, and then the limits of the adversary.

2.2.3 Corruption. The adversary chooses 𝑓 validators to corrupt,

hereafter called adversarial validators (non-corrupt validators are

honest). The internal state of corrupted validators is handed over to

the adversary, which can subsequently make them deviate from the

protocol in an arbitrary and coordinated fashion (Byzantine faults).

We define the adversarial fraction 𝛽 ≜ 𝑓 /𝑛.

2.2.4 Sleepiness. The adversary decides for each round and each

honest validator whether it is asleep or not. Asleep validators do not

execute the protocol (temporary crash faults). Messages delivered

to an asleep validator get picked up by it only once the validator

is no longer asleep. When a validator stops being asleep, it be-

comes dreamy. During this phase, it joins the protocol, usually over

multiple rounds, using a special joining procedure specified by the

protocol. Upon completion of this procedure, the honest validator

becomes awake and then follows the ‘standard path’ of the protocol.

Adversarial validators are always awake. The number of awake

validators at any round is bounded below by a constant 𝑛0.

2.2.5 Network delay. Messages sent between validators are deliv-

ered with an adversarially determined delay that can differ for each

recipient. Upon picking up a message (i.e., as soon as no longer

asleep after delivery), an honest validator re-broadcasts it.

2.2.6 Adversary limits. A partially synchronous network in the

sleepy model [47] has a global stabilization time (GST), a global

awake time (GAT), and a delay upper-bound Δ. GST and GAT are

constants unknown to the honest validators chosen adaptively by

the adversary, i.e., as causal functions of the execution, whereas Δ is

a constant known to the validators. Before GST, message delays are

arbitrarily adversarial (asynchronous). After GST, message delays

are subject to the delay upper bound Δ (synchronous). Similarly,

before GAT, the adversary can set the sleep schedule for honest

validators. After GAT, all honest validators are awake.
Message delays and sleeping schedule are chosen adaptively. For

corruption, Goldfish supports two assumptions. Either, we require

mildly adaptive corruption, where it takes 3Δ rounds for corruption

to take effect, together with the constraint that for every round

𝑟 , the number of adversarial validators at round 𝑟 must be less

than the number of honest awake validators at round 𝑟 − 3Δ. Or,
analogously to earlier works [17, 1, 14], through the use of key

evolving signature and VRF schemes, we allow for fully adaptive

corruption, together with the constraint that for every round 𝑟 , the

number of adversarial validators at round 𝑟 must be less than the

number of honest awake validators at round 𝑟 .

2.3 Consensus Security Desiderata

2.3.1 Security. We next formalize the notion of security after a

certain time. Security is parameterized by 𝜅, which, in the context

of longest-chain protocols and Goldfish, represents the confirma-

tion delay for transactions. In our analysis, we consider a finite

time horizon 𝑇
hor

that is polynomial in 𝜅. We denote a consensus

protocol’s output ledger, e.g., the Goldfish ledger, in the view of a

validator 𝑖 at round 𝑟 by ch𝑖𝑟 . We write ch1 ⪯ ch2 to express that

the ledger ch1 is a prefix of (or the same as) ledger ch2.

Definition 3 (Security). Let 𝑇
conf

be a polynomial function of

the security parameter 𝜅. We say that a state machine replication

protocol that outputs a ledger ch is secure after time 𝑇sec, and has

transaction confirmation time 𝑇
conf

, iff:

• Safety: For any two rounds 𝑟, 𝑟 ′ ≥ 𝑇sec, and any two honest

validators 𝑖, 𝑗 awake at rounds 𝑟 and 𝑟 ′, respectively, either ch𝑖𝑟 ⪯
ch𝑗

𝑟 ′ or ch
𝑗

𝑟 ′ ⪯ ch𝑖𝑟 .
• Liveness: If a transaction has been received by some awake

honest validator by some round 𝑟 ≥ 𝑇sec, then for any round

𝑟 ′ ≥ 𝑟 +𝑇
conf

and any honest validator 𝑖 awake at round 𝑟 ′, the
transaction will be included in ch𝑖

𝑟 ′ .

The protocol satisfies
¯𝑓 -safety (

¯𝑓 -liveness) if it satisfies safety

(liveness) as long as the number of adversarial validators 𝑓 stays

below
¯𝑓 for all rounds. Similarly, the protocol satisfies 1/2-safety

(1/2-liveness) if it satisfies safety (liveness) if the fraction of adver-

sarial validators 𝛽 is bounded above away from 1/2 for all rounds.

2.3.2 Accountable safety. Accountable safety provides a trust-mini-

mizing strengthening of safety, with the aim to hold validators ac-

countable for their actions. In case of a safety violation in a protocol

with accountable safety resilience
¯𝑓 > 0, one can, after collecting

evidence from sufficiently many honest validators, generate cryp-

tographic proof that identifies
¯𝑓 adversarial validators as protocol

violators [55, 49]. By definition, the proof does not falsely accuse

any honest validator, except with negligible probability.

2.3.3 The ebb-and-flow formulation. AsGoldfish outputs a dynam-

ically available ledger (i.e., live under dynamic participation), by the

availability-accountability dilemma [49], its output ledger cannot

satisfy accountable safety. Similarly, it cannot satisfy safety under a

partially synchronous network (i.e., finality), by an analogue of the

CAP theorem [23, 33]. However, Goldfish can be composed with an

accountability gadget in order to obtain a separate prefix ledger that

attains accountable safety under partial synchrony while staying

consistent with the output of Goldfish [49]. Denoting the output of

Goldfish as the available ledger chava and that of the accountability

gadget as the accountable final prefix ledger chacc, the desiderata

are captured in the ebb-and-flow formulation [47]:

Definition 4 (Ebb-and-flow formulation [47, 49]).

(1) (P1: Accountability and finality) Under a partially synchro-

nous network in the sleepy model, the accountable final prefix

ledger chacc has accountable safety resilience 𝑛/3 at all times,

(except w.p. negl(𝜆)), and there exists a constant C such that

chacc provides 𝑛/3-liveness with confirmation time 𝑇
conf

after

round max(GST,GAT) + C𝜅 (w.o.p.).

(2) (P2: Dynamic availability) Under a synchronous network in

the sleepy model (i.e., for GST = 0), the available ledger chava

provides 1/2-safety and 1/2-liveness at all times (w.o.p.).

(3) (Prefix) For each honest id and round 𝑟 , chid
acc,𝑟 ⪯ chid

ava,𝑟 .

The accountable final prefix ledger chacc can experience liveness

violations before GST or GAT, due to lack of timely communica-

tion among sufficiently many honest validators, but chacc remains

4
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accountably safe throughout. The available ledger chava can expe-

rience safety violations before GST, but remains live throughout.

When conditions improve, chacc catches up with chava. This ebb-

and-flow behavior lends the formulation its name. Providing the

irreconcilable properties in two separate but consistent ledgers pro-

vides a user-dependent resolution to the CAP theorem [23, 33].

3 PROTOCOL

We first describe the Goldfish protocol that is being proposed as a

drop-in replacement for LMD GHOST in PoS Ethereum’s beacon

chain. We then describe how Goldfish can be securely integrated

with accountability and finality gadgets.

3.1 The Goldfish Protocol

The protocol (cf. Alg. 1) proceeds in slots of 3Δ rounds.

3.1.1 VRF-based lotteries. The VRF PKI enables cryptographic lot-
teries. A lottery (tag, thr) is defined by a fixed tag and threshold

thr ∈ [0, 1]. Each validator id receives for each time slot 𝑡 a lottery

ticket (id, 𝑡). To open the ticket, id computes

𝜚 ≜ (𝑦, 𝜋) ← Open
(tag,thr)
id (𝑡) ≜ Vrf .Prove(vskid, tag ∥ 𝑡). (1)

The opened ticket (with opening 𝜚 ) is winning for (tag, thr) iff:
IsWinning

(tag,thr) ((id, 𝑡), 𝜚 )
≜ (𝜚 .𝑦 ≤ thr 2

𝜆) ∧ Vrf.Verify(vpkid, tag ∥ 𝑡, (𝜚 .𝑦, 𝜚 .𝜋)) . (2)

Finally, winning opened tickets are totally ordered by increasing

precedence, Prio(𝜚 ) ≜ 𝜚 .𝑦

2
𝜆 ∈ [0, 1].

3.1.2 Data structures. Blocks and votes are central to Goldfish. A
block 𝐵 ≜ (block, (id, 𝑡), 𝜚, ℎ, txs, 𝜎) consists of tag ‘block’, ticket
(id, 𝑡) and opening 𝜚 to the (block, thr

b
) block production lottery,

hash ℎ committing to the new block’s parent block and transactions

txs (as block ‘content’), and signature 𝜎 binding together block

production opportunity and the block’s content. A special genesis

block 𝐵0 ≜ (block, (⊥, 0),⊥,⊥, ∅,⊥) is known to all validators.

A block 𝐵 is valid iff:

IsValid(𝐵0) ≜ 1 (3)

IsValid(𝐵) ≜ IsWinning
(block,thr

b
) ((𝐵.id, 𝐵.𝑡), 𝐵.𝜚 )

∧ Sig.Verify(spk𝐵.id, block ∥ 𝐵.ℎ ∥ 𝐵.txs, 𝐵.𝜎)
∧ IsValid(∗ [𝐵.ℎ]) ∧ (𝐵.𝑡 > ∗ [𝐵.ℎ] .𝑡). (4)

Here,
∗ [𝐵.ℎ] means the parent block that 𝐵.ℎ commits to. The

context within which these references get resolved is detailed with

the different network message types below.

A vote 𝑣 ≜ (vote, (id, 𝑡), 𝜚, ℎ, 𝜎) consists of tag ‘vote’, ticket
(id, 𝑡) and opening 𝜚 to the (vote, thrv) voting lottery, hash ℎ com-

mitting to the block voted for (as vote ‘content’), and signature 𝜎

binding together voting opportunity and the vote’s content.

A vote 𝑣 is valid iff:

IsValid(𝑣) ≜ IsWinning
(vote,thrv ) ((𝑣 .id, 𝑣 .𝑡), 𝑣 .𝜚 )

∧ Sig.Verify(spk𝑣.id, vote ∥ 𝑣 .ℎ, 𝑣 .𝜎)
∧ IsValid(∗ [𝑣 .ℎ]) ∧ (𝑣 .𝑡 ≥ ∗ [𝑣 .ℎ] .𝑡). (5)

We call block-vote-set (short bvset) a set of blocks and votes.

Commitments to blocks for the purpose of the references 𝑣 .ℎ or

𝐵.ℎ are computed using 𝐻 (.). For a bvset T we denote by T [ℎ] the

block 𝐵 ∈ T with 𝐻 (𝐵) = ℎ, and ⊥ if non-existent.

In Goldfish, votes and blocks are encapsulated and exchanged

in two network message types, pieces and proposals. A piece𝑀 ≜
(piece, 𝑥) consists of tag ‘piece’ and for payload 𝑥 either a vote

or a block, and is valid iff:

IsValid(𝑀) ≜ IsValid(𝑀.𝑥) . (6)

Pieces are used to propagate blocks and votes and abstract

Ethereum’s peer-to-peer broadcast object propagation. In de-

termining a piece’s validity, block references
∗ [.] are resolved with

respect to the bvset T each validator maintains as part of its state,

see Sec. 3.1.3. If a validator does not have any matching block

in T , it cannot currently determine the piece’s validity. It then

keeps the piece ‘in limbo’ for re-examination until its (in-)validity

is established.
4

A proposal 𝑃 ≜ (propose,T , 𝐵, 𝜎) consists of tag ‘propose’,
bvset T and block 𝐵 (as proposal content), and signature 𝜎 tying

the proposal to the block production opportunity of 𝐵.

Thus, a proposal 𝑃 is valid iff:

IsValid(𝑃) ≜ IsValid(𝑃 .𝐵) ∧ IsConsistent(𝑃 .T ∪ {𝑃 .𝐵})
∧ Sig.Verify(spk𝑃.𝐵.id, propose ∥ 𝑃 .T ∥ 𝑃 .𝐵, 𝑃 .𝜎)
∧ (∀𝑥 ∈ 𝑃 .T : IsValid(𝑥) ∧ (𝑥 .𝑡 < 𝑃 .𝐵.𝑡)) (7)

where IsConsistent(T ) is a predicate that is satisfied on a bvset

T iff 𝐵0 ∈ T and for every vote and block in T the refer-

enced target/parent block is also in T . We call a bvset T with

IsConsistent(T ) a block-vote-tree (short bvtree). In determining

the validity of proposal 𝑃 , block references
∗ [.] are resolved with

respect to 𝑃 .T .

3.1.3 Validator state. Each validator keeps track of the current

time slot 𝑡 . It also maintains a bvtree T based on which it takes

consensus decisions and actions. Finally, each validator maintains a

buffer B of network messages (i.e., pieces and proposals) that ‘sits

between’ network and consensus protocol.

3.1.4 Message handling. Recall that messages are delivered to val-

idators irrespective of their sleep status. However, validators pick

up delivered messages only once awake. Invalid messages are dis-

carded. If a piece’s validity cannot be determined due to missing

references, it is held in limbo until its (in-)validity is determined.

Pieces and proposals ‘from the future’ (i.e., in time slot 𝑡 , pieces

𝑀 with 𝑀.𝑥.𝑡 > 𝑡 and proposals 𝑃 with 𝑃 .𝐵.𝑡 > 𝑡 ) are also held

in limbo. Upon picking up a valid non-in-limbo message from the

network, the validator re-broadcasts it, and adds it to B. If the mes-

sage is a proposal 𝑃 , the validator also re-broadcasts the blocks and

votes in 𝑃 .T ∪ {𝑃 .𝐵} as pieces, and adds those pieces to its own B.

3.1.5 Message buffering. The validator unpacks messages from B
and merges them into T in a way that preserves IsConsistent(T ).
For this purpose, Merge(T ,B) outputs the largest bvtree T ′ that
is a subset of the union of T and the pieces in B. Merging of

B into T takes place only at carefully chosen points in time as

explicitly instructed (Alg. 1, ll. 19, 27). This message buffering is a

key ingredient of Goldfish. First, Δ rounds into a slot, each awake

validator identifies a slot leader and merges the bvtree proposed by

4
Vote expiry (Sec. 3.1.6) and reorg resilience (Thm. 3) enable timely garbage collection

of pieces with missing referenced blocks.
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Algorithm 1 Goldfish executed by validator id with signature se-

cret/public key (sskid, spkid), VRF secret/public key (vskid, vpkid),
bvtree T and buffer B. Here, notation ‘at’ means executing the

code block at the specified round, chid denotes the Goldfish chain

momentarily confirmed at id. For GHOST-Eph(T , 𝑡), see Alg. 2.
1: (B, T, 𝑡 ) ← (∅, ∅, 0) ⊲ Initialize buffer B and bvtree T
2: ⊲ At all rounds, only valid messages not from later than 𝑡 are picked up

from the network, re-broadcast, and put into B as specified in Sec. 3.1.4

3: for 𝑡 = 1, 2, . . . do ⊲ Slots

4: at 3Δ𝑡 do ⊲ Propose phase

5: 𝜚 ← Open
(block,thr

b
)

id (𝑡 ) ⊲ Check if eligible to propose

6: if IsWinning
(block,thr

b
) ( (id, 𝑡 ), 𝜚 ) then

7: T′ ← Merge(T, B) ⊲ Bvtree to propose

8: 𝐵 ← GHOST-Eph(T′, 𝑡 − 1) ⊲ Parent block

9: 𝜎 ← Sig.Sign(sskid, block ∥ 𝐻 (𝐵) ∥ txs)
10: 𝐵 ← (block, (id, 𝑡 ), 𝜚, 𝐻 (𝐵), txs, 𝜎 ) ⊲ New block

11: 𝜎 ← Sig.Sign(sskid, propose ∥ T′ ∥ 𝐵)
12: Broadcast (propose, T′, 𝐵, 𝜎 ) ⊲ Propose

13: at 3Δ𝑡 + Δ do ⊲ Vote phase

14: ⊲ Filter for proposals from slot 𝑡

15: B′ ← {(T′, 𝐵) | (propose, T′, 𝐵, .) ∈ B ∧ 𝐵.𝑡 = 𝑡 }
16: ⊲ Identify the leader of slot 𝑡 and its proposal

17: (T′∗, 𝐵∗ ) ← arg min(T′,𝐵) ∈B′ Prio(𝐵.𝜚 )
18: ⊲ Merge own buffer and that of the leader into own bvtree

19: T ← Merge(T, T′∗ ∪ {𝐵∗})
20: 𝜚 ← Open

(vote,thrv )
id (𝑡 ) ⊲ Check if eligible to vote

21: if IsWinning
(vote,thrv ) ( (id, 𝑡 ), 𝜚 ) then

22: 𝐵 ← GHOST-Eph(T, 𝑡 − 1) ⊲ Target block

23: 𝜎 ← Sig.Sign(sskid, vote ∥ 𝐻 (𝐵) )
24: 𝑣 ← (vote, (id, 𝑡 ), 𝜚, 𝐻 (𝐵), 𝜎 ) ⊲ New vote

25: Broadcast (piece, 𝑣) ⊲ Vote

26: at 3Δ𝑡 + 2Δ do ⊲ Confirm phase

27: T ← Merge(T, B) ⊲ Merge buffer and bvtree

28: 𝐵 ← GHOST-Eph(T, 𝑡 ) ⊲ Canonical GHOST-Eph chain

29: chid ← 𝐵 ⌈𝜅 ⊲ Output ledger: 𝐵’s 𝜅-deep prefix in terms of slots

Algorithm 2 GHOST-Eph fork-choice rule.

1: Chldrn(T, 𝐵) ≜ {𝐵′ ∈ T | 𝐵′ .ℎ = 𝐻 (𝐵) }
2: Vts(T, 𝐵, 𝑡 ) ≜ | {id′ | (vote, (id′, 𝑡 ), ., ℎ, .) ∈ T ∧ 𝐵 ⪯ T[ℎ] } |
3: function GHOST-Eph(T, 𝑡 )
4: 𝐵 ← 𝐵0 ⊲ Start fork-choice at genesis block

5: forever do

6: ⊲ Choose the heaviest subtree rooted at one of the children

blocks 𝐵′ of 𝐵, by number of validators that have cast a vote for slot 𝑡

into the subtree rooted at 𝐵; 𝐵′ = ⊥ if Chldrn(T, 𝐵) = ∅
7: 𝐵′ ← arg max𝐵′∈Chldrn(T,𝐵) Vts(T, 𝐵, 𝑡 )
8: if 𝐵′ = ⊥ then return 𝐵

9: 𝐵 ← 𝐵′

the leader into its bvtree (Alg. 1, l. 19). Second, 2Δ rounds into a slot,

each awake validator merges its buffer into its bvtree (Alg. 1, l. 27).

3.1.6 Vote expiry. To determine the canonical chain, validators use

the GHOST-Eph fork-choice function with ephemeral votes (Alg. 2).

The function takes a bvtree T and slot 𝑡 as input, and finds the

canonical GHOST-Eph chain determined by the votes within T that

were cast for slot 𝑡 . More specifically, starting at the genesis block,

the function iterates over a sequence of blocks from the bvtree,

Rounds

3Δ(𝑡 − 1) + 2Δ 3Δ𝑡

Slot 𝑡Slot (𝑡 − 1)

3Δ𝑡 + 1Δ 3Δ𝑡 + 2Δ
3Δ(𝑡 + 1)

Slot 𝑡 + 1

3Δ(𝑡 + 1) + 1Δ

Δ Δ Δ Δ Δ

Slot (𝑡 + 1) voters:
[same as at 3Δ𝑡 + 1Δ]

Slot (𝑡 + 1) proposers:
[same as at 3Δ𝑡 ]

Awake validators: merge buffer B into

local bvtree T ; output ledger based on it

C
o
n
f
i
r
m

Slot 𝑡 voters: identify slot leader; merge leader’s proposal’s

bvtree T′ into local bvtree T ; cast vote based on it

V
o
t
e

Slot 𝑡 proposers: temporarily merge buffer B and bvtree T
to get T′ ; propose merged bvtree T′ and new block based on it

P
r
o
p
o
s
e

Awake validators: [same as at 3Δ𝑡 + 2Δ]

Figure 1: Throughout the execution, validators buffer re-

ceived proposals and pieces, and merge the blocks and votes

contained therein into their bvtrees only as explicitly in-

structed. Goldfish has time slots of three phases of Δ rounds

each. Each time slot has proposers (one of which will later

be recognized as the slot’s leader) and a committee of voters.

Propose: At the start of a slot, proposers temporarily merge

their buffers into their local bvtrees, and propose the merger

and a new block based on it. Vote: One-thirds into a slot,

voters identify the slot’s leader’s proposal, merge the pro-

posed bvtree into their local bvtrees, and cast a vote based

on their local bvtrees. Confirm: Two-thirds into a slot, all
awake validators merge their buffers into their local bvtrees,

and confirm a ledger based on their local bvtrees.

selecting as the next block the child of the current block with the

maximum number of validators that have cast a slot 𝑡 vote for a

block within the child’s subtree. This continues until it reaches a

leaf of the bvtree, and outputs a complete chain from leaf to root.

The fork-choice rule ignores votes from other than slot 𝑡 in its

decision (votes are ephemeral), lending GHOST-Eph its name.

3.1.7 The complete Goldfish protocol. The three phases (Propose,
Vote, Confirm) of each slot 𝑡 are shown in Fig. 1. We describe

them from the perspective of an awake honest validator id.
Propose: At round 3Δ𝑡 , id checks if its lottery ticket (id, 𝑡) is

winning for (block, thr
b
) (Alg. 1, l. 6). If so, id temporarily merges

its bvtree with its buffer (Alg. 1, l. 7), identifies the GHOST-Eph

chain tip using only slot 𝑡 − 1 votes (Alg. 1, l. 8), and proposes its

temporary bvtree and a new block based on it (Alg. 1, l. 12).

Vote: At round 3Δ𝑡+Δ, id identifies as leader for slot 𝑡 any one of
the proposals with smallest precedence (Alg. 1, l. 17). It merges the

leading proposal’s bvtree into its bvtree T (Alg. 1, l. 19). Validator

id then checks if its lottery ticket (id, 𝑡) is winning for (vote, thrv)
(Alg. 1, l. 21). If so, id identifies the GHOST-Eph chain tip using

only slot 𝑡 − 1 votes (Alg. 1, l. 22), and votes for it (Alg. 1, l. 25).

Confirm: At round 3Δ𝑡+2Δ, idmerges its bufferB into its bvtree

T (Alg. 1, l. 27). It then identifies the GHOST-Eph chain tip using

only slot 𝑡 votes (Alg. 1, l. 28), and outputs as confirmed ledger chid

the transactions of those blocks in the GHOST-Eph chain that are

from slots ≤ 𝑡 −𝜅 (‘𝜅-deep in time’, Alg. 1, l. 29). Since the Goldfish
ledger in view of an awake honest validator id is only updated at
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txs Goldfish AG/FG

Confirmations

Accountable

final ledger

chacc

Checkpoints

Available

ledger

chava

Figure 2: An accountability/finality gadget (AG/FG; a.k.a. over-
lay) checkpoints decisions of the dynamically available pro-

tocolGoldfish (a.k.a. underlay). A feedback loop ensures that

Goldfish respects earlier checkpoints. This construction sat-

isfies the ebb-and-flow design objective of PoS Ethereum, to

produce an available full ledger that is live under dynamic

participation of validators, and a prefix ledger that is account-

ably safe under network partition [47, 49].

this point, we may view the ledger as indexed by time slot 𝑡 : chid𝑡 .
Joining procedure: At each round, each honest validator is either

asleep, dreamy or awake (Sec. 2.2.4). Once an honest validator

is no longer asleep, it remains dreamy until the round of the next

Confirm phase.
5
While being dreamy, the validator does not follow

Alg. 1, except for relaying messages. With the Confirm phase, the

validator returns to being awake and fully resumes Alg. 1.

3.1.8 Key mechanism of Goldfish. Message buffering ensures that if

in slot 𝑡 the leading proposal is honest, then all honest voters in 𝑡 will

vote for the proposed block. This is because in Propose, the leader’s

temporary bvtree is a superset of all honest validators’ bvtrees, and

thus in Vote all honest validators adopt that leader’s bvtree. Vote

expiry (together with majority honest validators) ensures that if

in slot 𝑡 all honest voters have voted into the subtree rooted at

some block 𝐵, then all honest voters in slot 𝑡 + 1 will also vote into

the subtree rooted at 𝐵. An inductive argument immediately yields

reorg resilience of Goldfish. Furthermore, w.o.p., every interval of

𝜅 slots has at least one honest leading proposer. The prefix of that

proposal stabilizes (by reorg resilience), and the proposal includes

unconfirmed transactions, leading to safety and liveness of the

𝜅-deep confirmation rule.

3.1.9 Validator replaceability. Due to subsampling, once a valida-

tor takes an action in Goldfish, it does not play any further role, at

least for a long time. As a result, Goldfish supports player replace-

ability [22, 14, 56] and can withstand a mildly adaptive adversary

(Sec. 2.2.6). Analogously to earlier works [17, 1, 14, 25], fully adap-

tive corruption can be allowed through the use of key evolving

signature and VRF schemes. In both cases, the adversary cannot

corrupt an honest validator and make it send conflicting protocol

messages ‘fast enough’ to harm the protocol execution.

3.2 Goldfish with Accountability Gadgets

For the composition of Goldfish with accountability gadgets and fi-

nality gadgets, we follow the construction of [49, 53] (Fig. 2, Alg. 4).

In this construction, a partially synchronous accountably-safe con-

sensus protocol such as Streamlet, Tendermint, or HotStuff [13, 6,

5
We assume that messages arrive at validators while asleep (Sec. 3.1.4). To allow for

extra time to download messages missed during sleep, dreaminess can be extended

accordingly, but should always end at a Confirm phase.

Algorithm 3 GHOST-Eph (cf. Alg. 2) modified (green) to respect

the latest checkpoint 𝐵. See Alg. 2 for Chldrn and Vts.

1: function GHOST-Eph(T, 𝑡, 𝐵)
2: ⊲ Start fork-choice from latest checkpoint 𝐵

3: forever do

4: ⊲ Choose the heaviest subtree rooted at one of the children

blocks 𝐵′ of 𝐵, by number of validators that have cast a vote for slot 𝑡

into the subtree rooted at 𝐵; 𝐵′ = ⊥ if Chldrn(T, 𝐵) = ∅
5: 𝐵′ ← arg max𝐵′∈Chldrn(T,𝐵) Vts(T, 𝐵, 𝑡 )
6: if 𝐵′ = ⊥ then return 𝐵

7: 𝐵 ← 𝐵′

Algorithm 4 Composition of Goldfish and accountability gadget

(cf. Fig. 2, [49, Alg. 1]), executed by validator id. Here, Goldfish
(cf. Alg. 1) uses a modified GHOST-Eph rule (Alg. 3), starting the

recursion from the latest checkpoint, i.e., the last block of chid
acc

.

Throughout, Goldfish maintains the available chain chid
ava

. RunAc-

countabilityGadget attempts the next iteration of the gadget,

where valid checkpoint candidates are determined using chid
ava

. It-

erations may fail (⊥), e.g., if the gadget invokes a malicious leader.

1: chid
acc
← 𝐵0 ⊲ ‘Zero-th’ checkpoint: Goldfish’s genesis block

2: for 𝑐 = 1, 2, . . . do ⊲ Checkpoint iterations

3: checkpoint← RunAccountabilityGadget(chid
ava
)

4: if checkpoint ≠ ⊥ then

5: chid
acc
← checkpoint ⊲ Update latest checkpoint

6: Sleep for𝑇
chkpt

rounds

58, 48], with accountable safety resilience of 𝑛/3 out of 𝑛 validators,

is used to determine checkpoints of Goldfish’s output ledger. To
ensure that Goldfish respects earlier checkpoints, its fork-choice

rule is modified to respect earlier checkpoint decisions (cf. Alg. 3).

The most recent checkpoint forms the accountably-safe finalized

prefix ledger chacc, while Goldfish’s output forms the dynamically

available full ledger chava (cf. ebb-and-flow, Def. 4). Since Goldfish
now respects checkpoints, chacc ⪯ chava, as required.

The full protocol proceeds in checkpointing iterations (cf. Alg. 4).

Iterations may fail, e.g., when the consensus protocol of the gadget

invokes a malicious leader, or during asynchrony before GST, or
while many validators are asleep beforeGAT. Successful checkpoint
iterations are separated by at least𝑇

chkpt
rounds of inactivity of the

gadget. In App. A.2, we apply the techniques of earlier analyses [49,

53] to the combination of Goldfish and the accountability gadget,

to show how to tune 𝑇
chkpt

as a function of the network delay Δ
and the confirmation parameter 𝜅, and to formally prove that the

combination satisfies the ebb-and-flow desiderata.

4 OPTIMISTIC FAST CONFIRMATIONS

The Goldfish protocol described in Sec. 3.1 has reorg resilience as

an advantage over protocols which use blocks as votes (e.g., longest

chain [39, 51, 32], GHOST [57]). On the other hand, Goldfish’s
𝜅-slots deep confirmation rule, which leads to Θ(𝜅) latency in both

the worst and the expected case, falls behind many propose-and-

vote style protocols that achieve constant expected latency (e.g.,

PBFT [12], Tendermint [6], HotStuff [58], Streamlet [13]). By intro-

ducing a fast confirmation rule and adding a Fast-Confirm phase

7
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Algorithm 5 Goldfish executed by validator id, using both (opti-

mistic) fast confirmation and standard confirmation (cf. Alg. 1). See

Alg. 2 for Vts.

1: (B, T, 𝑡 ) ← (∅, ∅, 0) ⊲ Initialize buffer B and bvtree T
2: ⊲ At all rounds, only valid messages not from later than 𝑡 are picked up

from the network, re-broadcast, and put into B as specified in Sec. 3.1.4

3: for 𝑡 = 1, 2, . . . do ⊲ Slots

4: at 4Δ𝑡 do ⊲ Propose phase

5: Same as Propose phase in Alg. 1

6: at 4Δ𝑡 + Δ do ⊲ Vote phase

7: Same as Vote phase in Alg. 1

8: at 4Δ𝑡 + 2Δ do ⊲ Fast-Confirm phase

9: T ← Merge(T, B) ⊲ Merge buffer and bvtree

10: chid
fast
← arg max

𝐵∈T : |Vts(T,𝐵,𝑡 ) |≥𝑛 ( 3

4
+ 𝜖

2
)thrv |𝐵 |

11: at 4Δ𝑡 + 3Δ do ⊲ Confirm phase

12: T ← Merge(T, B) ⊲ Merge buffer and bvtree

13: 𝐵 ← GHOST-Eph(T, 𝑡 ) ⊲ Canonical GHOST-Eph chain

14: chid ← arg maxch∈{chid
fast

,𝐵 ⌈𝜅 } |ch | ⊲ Output Goldfish ledger

Rounds

4Δ𝑡

Slot 𝑡Slot (𝑡 − 1)

4Δ𝑡 + 1Δ 4Δ𝑡 + 2Δ 4Δ𝑡 + 3Δ
4Δ(𝑡 + 1)

Slot 𝑡 + 1

Δ Δ Δ Δ

Awake validators: merge buffer B into

local bvtree T ; output ledger based on it

Awake validators: merge buffer B into local

bvtree T ; run optimistic fast confirmation rule

F
a
s
t
-
C
o
n
f
.

Slot 𝑡 voters: identify slot leader; merge leader’s proposal’s

bvtree T′ into local bvtree T ; cast vote based on it

Slot 𝑡 proposers: temporarily merge buffer B and bvtree T
to get T′ ; propose merged bvtree T′ and new block based on it

Figure 3: To enable optimistic fast confirmations, a Fast-

Confirm phase (blue) of Δ rounds is inserted between Vote

and Confirm phase (cf. Fig. 1). Fast-Confirm: Two-fourth

into a slot, all awake validatorsmerge their buffers into their

local bvtrees, and run the optimistic fast confirmation rule

based on their local bvtrees.

to the Goldfish slot structure, we can achieve constant expected

confirmation latency under optimistic conditions, i.e., under high

participation and honest supermajority (Fig. 3, Alg. 5). In particular,

validators can now confirm blocks proposed by honest leaders im-

mediately, in the Fast-Confirm phase of the slot, under optimistic

conditions. The 𝜅-deep confirmation rule (Alg. 4, l. 29), to which

we from now on refer as standard confirmation rule, still applies

and guarantees liveness when optimistic conditions do not hold.

Fast confirmation phase. Slots now consist of 4Δ rounds and

four phases (Propose, Vote, Fast-Confirm, Confirm), with the

addition of phase Fast-Confirm at round 4Δ𝑡 + 2Δ (Fig. 3, Alg. 5).

In Fast-Confirm, a validator id first merges its buffer into its

bvtree T (Alg. 5, l. 9). It then marks a block 𝐵 as fast confirmed if

|Vts(T , 𝐵, 𝑡) | ≥ 𝑛( 3
4
+ 𝜖

2
)thrv for some 𝜖 > 0,

6
and updates chid

fast

to the highest fast confirmed block (Alg. 5, l. 10). The other three

phases are unchanged, other than for how the Goldfish ledger is

6
The parameter 𝜖 > 0 can be made arbitrarily small in the limit 𝑛 →∞.

output in Confirm (Alg. 5, l. 14). Validator id outputs the highest of

chid
fast

and the 𝜅-deep prefix 𝐵 ⌈𝜅 , where 𝐵 is the tip of its canonical

chain GHOST-Eph (cf. Alg. 4, l. 29, where 𝐵 ⌈𝜅 is output instead).

For simplicity, we have omitted in Alg. 5 the mechanism to avoid

temporary ledger ‘roll back’ (to ensure ∀id, 𝑡 ′ ≥ 𝑡 : chid𝑡 ⪯ chid
𝑡 ′ ).

The reason for the extra Δ rounds, as opposed to just running

the fast confirmation rule in the Confirm phase, is to guarantee

that, whenever an honest validator fast confirms a block, all honest

awake validators see the votes responsible for fast confirmation

by the time their bvtrees are updated for the last time in the given

slot, at round 4Δ𝑡 + 3Δ. This ensures that the fast confirmed block

eventually enters theGoldfish ledger in the view of all honest awake

validators (Thm. 5), which in turn implies that fast confirmations are

safe (Thm. 6). The security of the protocol with the fast confirmation

rule is proven in Sec. 5.3.

Joining procedure. The joining protocol is conceptually un-

changed. Once a validator stops being asleep, it remains dreamy

until the next Confirm phase, at which point it turns fully awake

and resumes protocol execution by merging its buffer with its

bvtrees 3Δ rounds into a slot (phase Confirm, cf. Alg. 5, l. 12).

Composition with accountability and finality gadgets. When com-

posing accountability gadgets and Goldfish with the fast confir-

mation rule, we stipulate that the validators input to the gadget

only those blocks confirmed via the standard confirmation rule

(GHOST-Eph(T , 𝑡) ⌈𝜅 ) in their view. This is necessary to ensure

that all honest validators promptly agree on the confirmation sta-

tus of the blocks input to the gadget for checkpointing, which in

turn is a prerequisite for the liveness of the accountable final prefix

ledger chacc. Otherwise, it is possible that a block fast confirmed

by one honest validator might not become confirmed in the view

of another honest validator until after 𝜅 slots, stalling the check-

pointing process of the accountability gadget for that block. Thus,

the fast confirmation rule is primarily for reducing the latency of

the available ledger chava, and does not affect the time for a block

to enter the accountable final prefix ledger chacc.

Trading-off safety and liveness resiliences. With fast confirmation,

Goldfish has two ‘parallel’ confirmation rules, ‘fast’ and ‘standard’.

The overall protocol is safe only when both rules are safe, and live

when one of the rules is live. To match the
1

2
-safety of standard

confirmation, fast confirmation’s ‘quorum’ was chosen as 𝑛( 3
4
+

𝜖
2
)thrv votes. With this parameterization, however,Goldfish cannot

guarantee any fast confirmation in the presence of
𝑛
4
+ 𝜖

2
adversarial

validators. It is possible to vary the quorum to trade-off safety and

liveness of the fast path (and thereby of the overall protocol). With

a quorum of 𝑛( 2
3
+ 𝜖

2
)thrv for fast confirmation, Goldfish satisfies

safety and liveness with 𝑇
conf

= Θ(𝜅) if 𝛽 < 1

3
− 3

2
𝜖 , and liveness

with constant expected confirmation time if all validators are awake.

5 ANALYSIS

5.1 Goldfish
In the subsequent analysis, a valid proposal 𝑃 (cf. Sec. 3.1.2) is for slot

𝑡 iff 𝑡 = 𝑃 .𝐵.𝑡 , and it has precedence 𝑝 iff 𝑝 = Prio(𝑃 .𝐵.𝜌). A validator

id is eligible to propose at slot 𝑡 if its ticket (id, 𝑡) is winning for the

lottery (block, thr
b
). Similarly, a validator id is eligible to vote at

8
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slot 𝑡 if its ticket (id, 𝑡) is winning for the lottery (vote, thrv). Recall
that awake honest validators consider the proposal with lowest

precendence received by 3Δ𝑡 + Δ the leader of slot 𝑡 (Alg. 1, l. 16).

We hereafter use blocks and the sequences of blocks they induce

via the parent-block chain relation interchangeably. A block 𝐵1 is

a descendant (resp., ancestor) of block 𝐵2 iff the underlying chains

satisfy 𝐵2 ⪯ 𝐵1 (resp., 𝐵1 ⪯ 𝐵2). Two blocks 𝐵1, 𝐵2 are conflicting

if 𝐵1 is neither an ancestor nor a descendant of 𝐵2.

Let 𝐴𝑟 and 𝐻𝑟 denote the number of adversarial and honest

validators awake at round 𝑟 , respectively. Our security theorems

hold for compliant executions that satisfy the relations on 𝐴𝑟 and

𝐻𝑟 laid out in Sec. 2.2.6:

Definition 5. In the absence of key-evolving cryptographic primi-

tives (signatures and VRFs), an execution is (𝛾, 𝜏)-compliant iff:

• ∀𝑟 :
𝐴𝑟

𝐴𝑟+𝐻𝑟−𝜏
≤ 𝛽 < 𝛾 − 𝜖 .

• The corruption is mildly adaptive: If the adversary decides to cor-

rupt an honest validator at round 𝑟 , then the validator becomes

adversarial no earlier than at round 𝑟 + 𝜏 .
With key-evolving primitives, an execution is compliant iff:

• ∀𝑟 :
𝐴𝑟

𝐴𝑟+𝐻𝑟
≤ 𝛽 < 𝛾 − 𝜖 .

Moreover, in both cases, 𝐻𝑟 > 𝛾𝑛0 = Θ(𝜅) for all rounds 𝑟 , and the

time horizon𝑇
hor

of the protocol execution satisfies𝑇
hor

= poly(𝜅).

Intuitively, in compliant executions, honest voters outnumber

adversarial voters (as long as votes have not yet expired); and every

long interval of slots contains at least one slot in which all honest

validators recognize the same honest validator as the slot leader.

Lemma 1. Suppose the Goldfish execution is ( 1
2
, 3Δ)-compliant.

Then, w.o.p., for every slot 𝑡 , adversarial validators at round 3Δ(𝑡 +
1) + Δ eligible to vote at slot 𝑡 are less than honest validators awake

at round 3Δ𝑡 + Δ and eligible to vote at slot 𝑡 .7

Also w.o.p., all slot intervals of length 𝜅 have at least one slot 𝑡

where an honest validator is recognized as the slot 𝑡 leader by all

awake honest validators at round 3Δ𝑡 + Δ.

Lem. 1’s proof uses correctness, uniqueness and pseudorandom-

ness of VRF-based lotteries, and is given in App. A.1.

The main security results are as follows:

Theorem 1. Suppose a ( 1
2
, 3Δ)-compliant execution of Goldfish in

the synchronous sleepy network model of Sec. 2.2, and validator id
with proposal 𝑃∗ is recognized as the leader of a slot 𝑡 by all awake
honest validators at round 3Δ𝑡 + Δ (Alg. 1, l. 16).

Then, w.o.p., 𝑃∗ .𝐵 ⪯ 𝐵 for any 𝐵 identified in Alg. 1, ll. 8, 22, 28 by

any awake honest validator in any round 𝑟 ≥ 3Δ𝑡 + 2Δ.

Theorem 2 (Security). Suppose a ( 1
2
, 3Δ)-compliant execution of

Goldfish in the synchronous sleepy network model. Then, w.o.p., Gold-
fish is secure with transaction confirmation time 𝑇

conf
= 2𝜅 + 2 slots.

Theorem 3 (Reorg resilience). Suppose a ( 1
2
, 3Δ)-compliant ex-

ecution of Goldfish in the synchronous sleepy network model, and

7
For concreteness, the Ethereum validator set has over 400, 000 validators as of 5-Sept-

2022. Suppose we subsample with thr
b
= 1

32
, i.e., with committee size unchanged in

expectation, and that 𝜖 = 0.05, i.e., that 55% of validators are assumed to be honest.

Then, the probability of an adversarial majority at a single slot (assuming perfect

randomness) is roughly 4 · 10
−15

. There are 2628000 slots in a year, so the expected

number of years before seeing an adversarial majority at a slot is
4·10

15

2628000
≈ 10

7
years.

validator id with proposal 𝑃∗ is recognized as the leader of a slot 𝑡 by
all awake honest validators at round 3Δ𝑡 + Δ (Alg. 1, l. 16).

Then, w.o.p.,

∃𝑟 ′ : ∀𝑟 ≥ 𝑟 ′ : ∀id : 𝑃∗ .𝐵 ⪯ chid𝑟 , (8)

where chid𝑟 denotes Goldfish’s ledger at validator id and round 𝑟 . In

particular, 𝑟 ′ = 3Δ(𝑡 + 𝜅) + 2Δ satisfies the above.

We first prove Thms. 2 and 3 from Thm. 1 and Lem. 1. Then, we

prove Thm. 1 from Lems. 1, 2 and 3 in the remainder of the section.

Proof of Thm. 2. By Lem. 1, w.o.p., all slot intervals of length

𝜅 have at least one slot 𝑡 , where an honest validator with proposal

𝑃∗ is recognized as the slot leader by all awake honest validators

at round 3Δ𝑡 + Δ, and, by Thm. 1, 𝑃∗ .𝐵 ⪯ 𝐵 for any 𝐵 identified in

Alg. 1, ll. 8, 22, 28 by any awake honest validator in any 𝑟 ≥ 3Δ𝑡+2Δ.
Liveness: A transaction tx is input to an honest validator at some

round 𝑟 . At most 6Δ rounds (i.e., 2 slots) later the transaction is

propagated to all honest validators and we have reached the be-

ginning of a slot 𝑡0. For the next 𝜅 slots all honest proposers will

include tx if they extend a tip whose chain does not include tx yet.
By the earlier argument, one of these proposals will be an ances-

tor of any 𝐵 identified in Alg. 1, ll. 8, 22, 28 by any awake honest

validator in any 𝑟 ′ ≥ 3Δ(𝑡0 + 𝜅) + 2Δ. From 𝜅 slots later onwards,

all awake honest validators include the transaction in their ledger

(Alg. 1, l. 29). Thus, Goldfish is live with 𝑇
conf

= 2𝜅 + 2 slots.

Safety: Pick any two honest validators id1 and id2, and two slots

𝑡1 and 𝑡2 ≥ 𝑡1. By the earlier argument, there exists a block 𝐵′

proposed (by an honest validator) at some slot 𝑡 ′ ∈ [𝑡1 − 𝜅, 𝑡1]
such that 𝐵′ ⪯ 𝐵 for any 𝐵 identified in Alg. 1, ll. 8, 22, 28 by any

awake honest validator in any 𝑟 ′ ≥ 3Δ𝑡 ′ + 2Δ. As 𝑡 ′ ≥ 𝑡1 −𝜅 but by

Goldfish’s confirmation rule blocks in chid1

𝑡1

are from no later than

𝑡1 −𝜅 , chid1

𝑡1

⪯ 𝐵. Similarly, if 𝑡 ′ ≥ 𝑡2 −𝜅 , then chid2

𝑡2

⪯ 𝐵; otherwise,

𝐵 ⪯ chid2

𝑡2

. In both cases, either chid1

𝑡1

⪯ chid2

𝑡2

or chid2

𝑡2

⪯ chid1

𝑡1

. □

Proof of Thm. 3. By Thm. 1, 𝑃∗ .𝐵 ⪯ 𝐵 for any 𝐵 identified in

Alg. 1, ll. 8, 22, 28 by any awake honest validator in any 𝑟 ≥ 3Δ𝑡+2Δ.
From 𝜅 slots later onwards, all awake honest validators include the

transaction in their ledger (Alg. 1, l. 29). □

Proof of Thm. 1 follows from Lems. 1, 2 and 3, and is provided at

the end of this section. The structure of the argument is inductive:

Lem. 2 shows that in a slot 𝑡 with honest leader, all honest voters

vote for the leader’s proposal. Lem. 3 shows that if in slot 𝑡 all

honest voters have voted for a descendant of a certain block, then

in slot 𝑡 +1 all honest voters will vote for a descendant of that block.

Lemma 2. Suppose an execution of Goldfish in the synchronous

sleepy network model. Suppose validator id∗ with proposal 𝑃∗ is rec-
ognized as the leader of a slot 𝑡 by all awake honest validators at

round 3Δ𝑡 + Δ (Alg. 1, l. 16). Then, all honest validators awake at

round 3Δ𝑡 + Δ and eligible to vote at slot 𝑡 , vote for 𝑃∗ .𝐵 at slot 𝑡 .

Proof. Let T ′ = 𝑃∗ .T , and B∗ and T ∗ denote the buffer and
bvtree of id∗ at round 3Δ𝑡 . Since id∗ is honest, it must have broadcast

𝑃∗ at round 3Δ𝑡 with bvtree T ′ = Merge(T ∗,B∗) and a new block

𝑃∗ .𝐵 with parent GHOST-Eph(T ′, 𝑡 − 1) (Alg. 1, ll. 7, 8, 12).
By synchrony, any message that a non-asleep honest validator

id could have added to its bvtree Tid by 3Δ(𝑡 − 1) + 2Δ, is received

9
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by id∗ by 3Δ𝑡 , and thus in T ′. As awake honest validators do not

update their bvtrees and no honest validators turn awake in the

interval (3Δ(𝑡 −1) +2Δ, 3Δ𝑡 +Δ), for any honest validator id awake

at round 3Δ𝑡 + Δ, Tid ⊆ T ′ prior to Alg. 1, l. 19.

Since id∗ is recognized as the leader of slot 𝑡 by all awake honest
validators at round 3Δ𝑡 + Δ, at that round, each awake honest

validator id merges its bvtree with T ′ ∪ {𝑃∗ .𝐵} (Alg. 1, l. 19) and
reaches Tid = T ′ ∪ {𝑃∗ .𝐵}. Consequently, each honest validator id
awake at round 3Δ𝑡 + Δ and eligible to vote at slot 𝑡 votes for 𝑃∗ .𝐵
due to the recursive structure of the GHOST-Eph rule (Alg. 2). □

Lemma 3. Suppose a ( 1
2
, 3Δ)-compliant execution of Goldfish in

the synchronous sleepy network model. Consider a slot 𝑡 where all

honest validators awake at round 3Δ𝑡 + Δ and eligible to vote at slot

𝑡 , vote for a descendant of 𝐵. Then, w.o.p., all honest validators awake

at round 3Δ(𝑡 + 1) + Δ and eligible to vote at slot 𝑡 + 1, vote for a

descendant of 𝐵.

Proof. By Lem. 1, w.o.p., for every slot 𝑡 , the number of adver-

sarial validators at round 3Δ(𝑡 + 1) + Δ and eligible to vote at slot 𝑡

is less than the number of honest validators awake at round 3Δ𝑡 +Δ
and eligible to vote at slot 𝑡 .

Let 𝑡 be a slot such that all honest validators awake at round

3Δ𝑡 + Δ and eligible to vote at 𝑡 voted for a descendant of 𝐵. Pick

any honest validator id awake at round 3Δ(𝑡 + 1) + Δ and eligible

to vote at slot 𝑡 + 1. Since id must have been awake at least since

round 3Δ𝑡 + 2Δ, its bvtree at round 3Δ𝑡 + 2Δ contains all votes

broadcast by honest validators awake at round 3Δ𝑡 + Δ and eligible

to vote at slot 𝑡 (Alg. 1, l. 19). The same is true for its bvtree at

round 3Δ(𝑡 + 1) +Δ, even after idmerges its bvtree with that of any

proposal (Alg. 1, l. 7). Moreover, the number of honest validators

awake at round 3Δ𝑡 + Δ and eligible to vote at slot 𝑡 is greater than

the number of adversarial validators at round 3Δ(𝑡 + 1) +Δ that are

eligible to vote at slot 𝑡 .

Consequently, upon invoking the GHOST-Eph fork-choice rule

at round 3Δ(𝑡+1)+Δ (Alg. 1, l. 22), id observes that at every iteration
of the fork choice (Alg. 2, l. 7), blocks consistent with 𝐵 have more

votes than blocks conflicting with 𝐵. Thus, at round 3Δ(𝑡 + 1) + Δ,
fork choice returns a descendant of 𝐵, and id votes for it. □

Proof of Thm. 1. From Lems. 1, 2 and 3, it follows by induction

that w.o.p., for all 𝑡 ′ ≥ 𝑡 , all honest validators awake at round

3Δ𝑡 ′ +Δ and eligible to vote at slot 𝑡 ′, vote for a descendant of 𝑃∗ .𝐵.
By synchrony, the honest votes of slot 𝑡 ′ reach all honest valida-

tors awake at 3Δ𝑡 ′ + 2Δ by then, when they also merge the votes

into their bvtrees. The number of honest validators awake at round

3Δ𝑡 ′ + Δ and eligible to vote at slot 𝑡 ′ is greater than the number

of adversarial validators by round 3Δ(𝑡 ′ + 1) + Δ that are eligible

to vote at slot 𝑡 ′ (by Lem. 1). Upon invoking the GHOST-Eph rule

of Alg. 1, ll. 8, 22, 28 at 3Δ𝑡 ′ + 2Δ, 3Δ(𝑡 ′ + 1) and 3Δ(𝑡 ′ + 1) + Δ,
respectively, an awake honest validator id (who must have been

awake since at least 3Δ𝑡 ′ + 2Δ, due to the joining procedure) ob-

serves that at every iteration of the fork choice (Alg. 2, l. 7), blocks

consistent with 𝑃∗ .𝐵 have more votes than blocks conflicting with

𝑃∗ .𝐵. Thus, id’s fork choice reaches a descendant of 𝑃∗ .𝐵. □

5.2 Goldfish with Accountability Gadget

We next provide a formal statement and proof sketch for Def. 4:

Theorem 4 (Ebb-and-flow property). Goldfish combined with ac-

countability gadgets (cf. Sec. 3.2) satisfies the ebb-and-flow property:

(1) (P1: Accountability and finality) Under a partially synchro-

nous network in the sleepy model, the accountable final prefix

ledger chacc has accountable safety resilience 𝑛/3 at all times,

(except w.p. negl(𝜆)), and there exists a constant C such that

if the execution is ( 1
3
, 3Δ)-compliant, chacc provides liveness

with transaction confirmation time 𝑇
conf

= Θ(𝜅2) after round
max(GST,GAT) + C𝜅 (w.o.p.).

(2) (P2: Dynamic availability) Under a synchronous network in
the sleepy model ( i.e., for GST = 0), if the execution is ( 1

2
, 3Δ)-

compliant, the available ledger chava is secure at all times (w.o.p.).

(3) (Prefix) For each honest id and round 𝑟 , chid
acc,𝑟 ⪯ chid

ava,𝑟 .

In Goldfish with accountability gadgets, a partially synchro-

nous accountably-safe consensus protocol is used to determine

checkpoints. Security of this protocol ensures the safety and ac-

countability of the prefix ledger chacc in the partially synchronous

sleepy network model. To ensure the prefix property, the fork-choice

rule of Goldfish is modified to respect earlier checkpoint decisions

(Alg. 3). This modification requires adjustments of the analysis of

Goldfish, because it opens up the possibility that for a proposal

𝑃∗ by an honest leader, 𝑃∗ .𝐵 ⪯ 𝐵 no longer holds for all blocks 𝐵

identified in Alg. 1, ll. 8, 22, 28 by awake honest validators at future

rounds, due to a new checkpoint conflicting with 𝑃∗ .𝐵.
To prevent checkpoints from undermining the security in this

manner, and rigorously argue security of the combination despite

the modified fork-choice rule, the framework of accountability

gadgets [49, 53] relies on two principles:

• Gap Property: After a (successful) checkpointing iteration with

a new checkpoint, honest validators wait for 𝑇
chkpt

= Θ(𝜅)
rounds before participating in the next iteration.

• Recency Property: For checkpointing, honest validators sug-

gest and approve only the blocks that were recently confirmed

as part of chava.

We prove that once the network heals and honest validators become

awake at round max(GST,GAT), chava regains its security with the

help of these properties. Key is the following healing property.

Lemma 4 (Healing property (sketch)). Suppose the number of ad-

versarial validators is less than 𝑛/3 at all rounds.

Then, under partial synchrony in the sleepy model, the available

ledger chava is secure with transaction confirmation time Θ(𝑇
chkpt
)

after round max(GAT,GST) + Θ(𝜅).

Formal statements for Lem. 4, its proof, and the full proof for P1

are given in App. A.2.

Proof sketch for Lem. 4. Since the number of adversarial val-

idators is less than𝑛/3 at all rounds, by the security of the consensus
protocol used by the accountability gadgets, all checkpoints are

consistent with each other. After round max(GAT,GST), all awake
honest validators agree on the rounds they enter and complete sub-

sequent checkpoint iterations (up to a difference of Δ rounds). By

the gap property, honest validators wait for 𝑇
chkpt

= Θ(𝜅) rounds
before participating in the next checkpointing iteration after a suc-

cessful one. This ensures that no new checkpoints appear for𝑇
chkpt
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rounds, during which the honest validators can treat the last check-

point as the ‘new’ genesis block. Then, via the security analysis

in Sec. 5.1, there exists a slot with an honest leader such that for

𝑃∗ proposed by the leader, 𝑃∗ .𝐵 ⪯ 𝐵 for all blocks 𝐵 identified in

Alg. 1, ll. 8, 22, 28 by awake honest validators during future rounds,

until a new checkpoint is determined. By the recency property,

for checkpointing, honest validators suggest and approve only the

blocks that were recently confirmed as part of chava. Since 𝑃
∗ .𝐵 ⪯ 𝐵

for all recently confirmed blocks 𝐵 at the start of the next check-

pointing iteration, if a new checkpoint appears in the next iteration,

the above prefix relation continues to hold for all future slots after

the iteration. Thus, it is possible to state an analogue of Thm. 1

for honest leaders during 𝑇
chkpt

rounds following successful check-

point iterations and prove security with transaction confirmation

time 𝑇
conf

= Θ(𝑇
chkpt
) via a similar reasoning to Sec. 5.1. □

Liveness of chava together with the liveness of the accountabil-

ity gadget’s consensus protocol imply the liveness of chacc in the

partially synchronous sleepy network model.

In the synchronous sleepy network model, Sec. 5.1 implies that

chava remains secure until the first checkpoint is determined. How-

ever, checkpoints cannot undermine its security since only con-

firmed blocks in chava are approved for checkpointing by honest

validators. Proof of P2 is given in App. A.2.

5.3 Goldfish with Fast Confirmation

In the following analysis, we consider a synchronous network in

the sleepy model as described in Sec. 2. Recall that the total number

of validators is 𝑛 (cf. Sec. 2). Since Goldfish slots consist of 4Δ
rounds in the case of fast confirmation, we hereafter assume that

the Goldfish execution is ( 1
2
, 4Δ)-compliant. Similarly, we state an

analogue of Lem. 1, namely Lem. 6, to match the new slot structure

in App. A.1. We show that Thm. 2 holds for Goldfish with fast

confirmations (w.o.p.) in compliant executions. To do so, we first

prove Thm. 5, an analogue of Thm. 1 for fast confirmations, showing

that fast confirmed blocks are always in the canonical chain of

awake validators at later rounds.

Proposition 1. Suppose𝑇
hor

= poly(𝜅). Then, w.o.p., there can be

at most (1+𝜖)𝑛 thrv validators that are eligible to vote at any given

slot. If the Goldfish execution is ( 1
2
, 4Δ)-compliant, then, w.o.p., for

all slots 𝑡 , the number of adversarial validators at round 4Δ(𝑡+1)+Δ,
eligible to vote at slot 𝑡 , is less than 1

2
𝑛 thrv.

Proof follows from a Chernoff bound.

Lemma 5. Suppose the Goldfish execution is ( 1
2
, 4Δ)-compliant in

the synchronous sleepy network model, and an honest validator id∗

fast confirms a block 𝐵 at slot 𝑡 . Then, w.o.p, all honest validators

awake at round 4Δ(𝑡 + 1) + Δ and eligible to vote at slot 𝑡 + 1, vote

for a descendant of 𝐵 at slot 𝑡 + 1.

Proof. By Prop. 1, w.o.p., the number of adversarial validators

at round 4Δ(𝑡 + 1) + Δ, eligible to vote at slot 𝑡 , is less than 1

2
𝑛 thrv.

An eligible awake honest validator sends a single slot 𝑡 vote at round

4Δ𝑡 +Δ, implying that over ( 3
4
+ 𝜖

2
)𝑛 thrv − 1

2
𝑛 thrv = ( 1

4
+ 𝜖

2
)𝑛 thrv

validators broadcast a single slot 𝑡 vote by round 4Δ(𝑡 + 1) + Δ, and
that is for a descendant of 𝐵. By Prop. 1, w.o.p., for all slots 𝑡 , there

can be at most (1 + 𝜖)𝑛 thrv validators that are eligible to vote at

𝑡 . Hence, the number of valid slot 𝑡 votes for the descendants of

any block 𝐵′ conflicting with 𝐵 must be less than (1 + 𝜖)𝑛 thrv −
( 1

4
+ 𝜖

2
)𝑛 thrv = ( 3

4
+ 𝜖

2
)𝑛 thrv at any given round. The validator id∗

broadcasts 𝐵 and over ( 3
4
+ 𝜖

2
)𝑛 thrv valid votes for it (in pieces) at

round 4Δ𝑡 +2Δ. Each honest validator, awake at round 4Δ(𝑡 +1) +Δ
and eligible to vote at slot 𝑡 + 1, observes these votes in its bvtree

at the round of voting (Alg. 5, l. 12). Upon invoking the GHOST-

Eph fork-choice rule at any of the rounds 4Δ𝑡 + 3Δ, 4Δ(𝑡 + 1) or
4Δ(𝑡 + 1) + Δ (Alg. 1, ll. 8, 22, 28), for any awake honest validator

id with bvtree T ′, Vts(T ′, 𝐵, 𝑡) > Vts(T ′, 𝐵′, 𝑡) for any block 𝐵′

conflicting with 𝐵. This implies that all honest validators, awake at

round 4Δ(𝑡 + 1) + Δ and eligible to vote at slot 𝑡 + 1 all vote for 𝐵

or one of its descendants at slot 𝑡 + 1. □

Theorem 5. Suppose the Goldfish execution is ( 1
2
, 4Δ)-compliant

in the synchronous sleepy network model, and an honest validator

id∗ fast confirms a block 𝐵 at slot 𝑡 . Then, w.o.p., 𝐵 ⪯ 𝐵 for any 𝐵

identified in Alg. 1, ll. 8, 22, 28 by any awake honest validator in any

round 𝑟 ≥ 4Δ(𝑡 + 1) + Δ.

Proof. Follows by Lems. 6, 5 and 3, by the same inductive ar-

gument used in the proof of Thm. 1, in that case following from

Lems. 1, 2 and 3. Here, Lem. 6 is the analogue of Lem. 1 with the

new slot structure, and Lem. 5 provides the base case, substituting

Lem. 2. □

Theorem 6. Suppose the Goldfish execution is ( 1
2
, 4Δ)-compliant.

Then, Goldfish with fast confirmations satisfies safety (w.o.p.).

Proof. If an honest validator fast confirms a block 𝐵 at slot 𝑡 ,

then 𝐵 is in the canonical GHOST-Eph chain of every awake honest

validator at all slots larger than 𝑡 by Thm. 5. Therefore, 𝐵 is in the

𝜅-slots-deep prefix of the canonical GHOST-Eph chains of all awake

honest validators at slot 𝑡 +𝜅 , and thus confirmed by them with the

standard confirmation rule. Therefore, Thm. 2 implies the safety of

the protocol. □

In ( 1
2
, 4Δ)-compliant executions, we automatically get liveness

of Goldfish with fast confirmations from the liveness of the stan-

dard confirmation rule, since fast confirmation is not needed for a

block to be confirmed. Under optimistic conditions, liveness of fast

confirmations holds as well. We prove that a block within an honest,

valid proposal is immediately fast confirmed within the same slot

by the awake honest validators, if there are over ( 3
4
+ 3

2
𝜖)𝑛 awake,

honest validators at the voting time of the given slot, implying the

liveness of fast confirmations under optimistic conditions.

Theorem 7. Suppose the Goldfish execution is ( 1
2
, 4Δ)-compliant.

Then, Goldfish with fast confirmations satisfies liveness with 𝑇
conf

=

Θ(𝜅) (w.o.p.).
Consider a slot 𝑡 , such that there are ( 3

4
+ 3

2
𝜖)𝑛 thrv honest valida-

tors eligible to vote at slot 𝑡 and awake at round 4Δ𝑡 + Δ. Suppose an
honest validator id with proposal 𝑃∗ is recognized as the leader of a
slot 𝑡 by all awake honest validators at round 4Δ𝑡 + Δ (Alg. 1, l. 16).

Then all honest validators awake at round 4Δ𝑡 + 2Δ fast confirm

𝑃∗ .𝐵 in Alg. 5, l. 10.

Proof. Proof of liveness follows from Thm. 2.

For the second part of the proof, by Lem. 2, all of eligible and

awake honest validators vote for 𝑃∗ .𝐵 at slot 𝑡 . Then, the buffer
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of any honest validator awake at round 4Δ𝑡 + 2Δ contains at least

( 3
4
+ 𝜖

2
)𝑛 thrv votes (by Chernoff bound) for the block 𝑃∗ .𝐵, implying

that all honest validators awake at rounds 4Δ𝑡 + 2Δ fast confirm

𝑃∗ .𝐵 at the respective slots. □

6 PRACTICAL CONSIDERATIONS

Goldfish is designed to be a provably secure alternative to the

Gasper [9] protocol used in Ethereum, but due to its qualities, it is

more broadly practically applicable to decentralized, permissionless

blockchains, as we illustrate using Ethereum as a case study.

Comparison of security properties with current PoS Ethereum. In

its standalone form without an accountability gadget, Goldfish is

reorg resilient and dynamically available, while still supporting

subsampling of validators per slot. Reorg resilience is a broadly

desirable property in real world blockchain systems, because ratio-

nality considerations in practice complement honesty assumptions,

and thus incentive compatibility is paramount. Subsampling of val-

idators allows for a large validator set, as is the case in Ethereum,

without requiring a large load on validators, altogether facilitating

the decentralization of the system. Finally, dynamic availability is a

robust notion of security, which allows for unforeseeable disrup-

tions to the set of consensus participants, such as node software

updates. It is therefore well suited for a permissionless system, in

which there is little control over the participants, and limited ability

to react to system-wide disruptions in real time.

On the contrary, Gasper’s LMD GHOST satisfies none of these

properties, as we extensively discuss in App. C. In the original

protocol, ex-ante reorgs and balancing attacks [43, 44, 54] prevent

security even in the full participation setting and without subsam-

pling. The proposer boost technique [7] mitigates these issues, but

is itself not compatible with dynamic participation, and it entails

a lower adversarial tolerance (
1

3
) than what is obtained with mes-

sage buffering (
1

2
). Moreover, ex-ante reorgs [54] are still possible

with subsampling, compromising reorg resilience, and the latest

message rule (LMD) itself is not compatible with dynamic partici-

pation, both issues which Goldfish solves through vote expiry. In

its combination with accountability gadgets, Goldfish satisfies the

Ebb-and-flow properties [47], which formalize the requirements

of a solution to the availability-accountability dilemma [49]. On

the other hand, the interaction of LMD GHOST and Casper FFG

in Gasper is known to be susceptible to bouncing attacks [10, 40,

41], which exploit the checkpointing process to jeopardize secu-

rity of the available ledger, and consequently also liveness of the

accountable ledger.

Wire format, message size, and spamming vectors. Another prac-

tical consideration in designing a consensus protocol for a decen-

tralized blockchain are resource constraints. A challenge which is

specific to PoS protocols is dealing with equivocations, which are

for instance not possible in PoW. Care has to be taken in order to

prevent spamming of equivocations being a relatively cheap Denial-

of-Service (DoS) vector, while preserving security properties [42].

In fact, multiple attacks related to the handling of equivocations

were discovered for LMD GHOST [46, 45]. We address this issue

by introducing equivocation discounting, i.e., not counting votes in

fork-choice from validators who have equivocated. We discuss this

at length, and show to not compromise security, in App. B.

Together with vote expiry, equivocation discounting alleviates

related concerns about the practical feasibility of themessage buffer-

ing technique, in particular concerning the size of proposal mes-

sages. Due to vote expiry, the only votes which have to be included

in the proposed bvtree are those from the previous slot, and equivo-

cation discounting ensures that at most two votes per validator are

sufficient, even in the presence of multiple equivocations. Notice

also that, while we have for ease of exposition talked about pro-

posal messages as including a bvset, it is in practice not necessary to

fully include any messages in a proposal, as references (hashes) are

sufficient. The proposer’s role in the message buffering technique is

in fact only to point validators to messages which they already have

in their buffer, notifying them that they can safely be merged into

their bvtree. For the same reason, only leaf blocks with nonzero

weight need to be at all referenced, because each leaf block is a ref-

erence to its entire chain, and ones without weight cannot possibly

favorably influence the fork choice towards the proposer’s block.

Since leaf blocks with nonzero weight correspond to a subset of

votes, only votes need to be referenced. As a concrete example, were

Goldfish to be applied to Ethereum today, the maximum number

of votes which would need to be referenced is roughly 2000, in the

worst case in which all attestation aggregators (validators which

aggregate votes) equivocate at a slot, for a total of 64 KBs if only

hashes are included in the proposed bvtree (missing objects can be

exchanged by reference to the hash). Moreover, the 𝜅-deep confir-

mation rule allows for garbage collection of blocks ‘stuck in limbo’

(i.e., with dangling references preventing assessment of validity)

that are 𝜅 slots old (then they cannot enter the chain permanently

anymore), and vote expiry allows to garbage collect votes within 2

slots (then they have no more effect on fork-choice).

From LMD GHOST to Goldfish. For Goldfish to be used as a

drop-in replacement for LMD GHOST in Ethereum, only a few

adjustments are required. The proposer selection mechanism, RAN-

DAO, would have to be replaced with the VRF lottery, in order

to preserve adaptive security and a confirmation time which is

independent of participation. The former can also be preserved by

using a single secret leader election [4], which has already been

researched for use in Ethereum [26]. Moreover, vote expiry and

message buffering would have to be introduced, with the latter re-

placing proposer boost. Finally, in order to benefit from the security

guarantees of Goldfish in its combination with an accountability

gadget, the interaction with Casper FFG would have to be modified

to fit the construction from [49], which we have also employed

in this work. Casper FFG is itself not a fully specified consensus

protocol, as it lacks specification of a proposal mechanism and slot

structure, but it is very similar to streamlined, accountably safe

consensus protocols like Streamlet [13] or Chained Hotstuff [58],

which are all feasible for use in combination with Goldfish.
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A ANALYSIS

A.1 Proof of Lem. 1

Proof of Lem. 1. By the pseudorandomness property of the VRF-

based lottery (Secs. 2.1.3 and 3.1.1), for any given slot 𝑡 and valida-

tors id1 and id2, id1 ≠ id2,
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[
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id1
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]
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(block,thr
b
)

id1

(𝑡)) < Prio(Open
(block,thr

b
)

id2

(𝑡))
]
=

1

2

, (11)

and Open
(vote,thrv )
id1

(𝑡), Open
(block,thr

b
)

id1

(𝑡), Open
(block,thr

b
)

id2

(𝑡),
and Open

(vote,thrv )
id2

(𝑡) are independent random variables.

We first consider the protocol without key-evolving primitives.

By the uniqueness property of the lottery (Sec. 2), w.o.p., for all

validators id and slots 𝑡 , the ticket (id, 𝑡) can be opened at most

one unique opening (Alg. 1, l. 20). Let 𝐻̃𝑡 denote the number of

honest validators awake at round 3Δ𝑡 + Δ and eligible to vote at

slot 𝑡 . Let 𝐴̃𝑡 denote the number of adversarial validators at round

3Δ(𝑡 + 1) + Δ that are eligible to vote at slot 𝑡 . Recall that 𝐴𝑟 and

𝐻𝑟 denote the number of adversarial and honest validators awake

at round 𝑟 respectively (note that the honest validators have been

awake since the closest round 3Δ𝑡 + 2Δ same as or preceding 𝑟 ). Let

𝑛𝑡 = 𝐻3Δ𝑡+Δ +𝐴3Δ(𝑡+1)+Δ ≥ 𝑛0 = Θ(𝜅).
By the pseudorandomness property, the adversary cannot predict

in advance which honest validators will become eligible to vote

or propose at a given slot. Moreover, if the adversary decides to

corrupt the honest validators eligible to vote at a slot 𝑡 after learning

their identities at round 3Δ𝑡 + Δ, it takes over 3Δ rounds for the

corruption to take effect, implying that these validators cannot be

counted as part of 𝐴̃𝑡 . Hence, as
𝐴𝑟

𝐴𝑟+𝐻𝑟−3Δ
≤ 𝛽 < 1

2
− 𝜖 for all

rounds 𝑟 , w.o.p.,

E[𝐻̃𝑡 ] = 𝐻3Δ𝑡+Δthrv ≥ (
1

2

+ 𝜖)𝑛𝑡 thrv

E[𝐴̃𝑡 ] = 𝐴
3Δ(𝑡+1)+Δthrv ≤ (

1

2

− 𝜖)𝑛𝑡 thrv
By a Chernoff bound,

Pr

[
𝐻̃𝑡 <

1

2

𝑛𝑡 thrv

]
≤ 𝑒−

𝜖2

1+2𝜖 𝑛𝑡 thrv

Pr

[
𝐴̃𝑡 >

1

2

𝑛𝑡 thrv

]
≤ 𝑒−

𝜖2

1+3𝜖 𝑛𝑡 thrv .

Thus, at any given slot 𝑡 , 𝐻̃𝑡 > 𝐴̃𝑡 , except with probability

2 exp (− 𝜖2

1 + 3𝜖
𝑛0thrv) .

By a union bound, every slot 𝑡 has more honest validators awake

at round 3Δ𝑡 + Δ and eligible to vote at slot 𝑡 than adversarial

validators at round 3Δ(𝑡 + 1) +Δ, eligible to vote at slot 𝑡 (and more

than
1

2
𝑛0thrv such honest validators), except with probability

2𝑇
hor

exp

(
− 𝜖2

1 + 3𝜖
𝑛0thrv

)
+ negl(𝜆) = negl(𝜅) + negl(𝜆),

since 𝑛0 = Θ(𝜅) and 𝑇
hor

= Θ(𝜅). By the same reasoning, w.o.p.,

every slot 𝑡 has more honest validators awake and eligible to pro-

pose for slot 𝑡 at round 3Δ𝑡 than adversarial validators at round

3Δ𝑡 + Δ, eligible to propose for slot 𝑡 .

Finally, for any given slot 𝑡 , each valid slot 𝑡 proposal broadcast

within rounds [3Δ𝑡, 3Δ𝑡 + Δ] has the same probability of achieving

the minimum precedence up to terms negligible in 𝜆8. Now, at

a slot 𝑡 , if an honest validator’s proposal achieves the minimum

precedence among the valid slot 𝑡 proposals broadcast by Δ rounds

into the slot, then that validator is identified as the slot leader by

all honest validators awake at round 3Δ𝑡 + Δ. Taking a fixed 𝑡 ≥ 𝜅 ,

the probability that no awake honest validator’s proposal has the

minimum precedence among the valid slot 𝑠 proposals broadcast

by Δ rounds into the slot, during the slots 𝑠 ∈ [𝑡 − 𝜅, 𝑡], is upper
bounded by 2

−𝜅 + negl(𝜅) + negl(𝜆). Union bounding over all 𝑇
hor

many such intervals, we find that w.o.p., all slot intervals of length

𝜅 have at least one slot 𝑡 , where an honest validator is identified as

the slot leader by all awake honest validators at round 3Δ𝑡 + Δ.
Now with key-evolving primitives, we define 𝐻̃𝑡 = 𝐻3Δ𝑡+Δ and

𝐴̃𝑡 = 𝐴3Δ𝑡+Δ. Similarly, we define 𝑛𝑡 = 𝐻3Δ𝑡+Δ + 𝐴3Δ𝑡+Δ ≥ 𝑛0 =

Θ(𝜅). In this case,
𝐴𝑟

𝐴𝑟+𝐻𝑟
≤ 𝛽 < 1

2
− 𝜖 for all rounds 𝑟 . Note that

the adversary cannot predict in advance which honest validators

will become eligible to vote or propose at a given slot due to the

pseudorandomness property of the lottery. Moreover, if the adver-

sary corrupts the honest validators eligible to vote at a slot 𝑡 after

learning their identities at round 3Δ𝑡 + Δ, it cannot make these

validators broadcast new valid votes for slot 𝑡 since the keys for

slot 𝑡 would have been evolved prior to adversarial corrruption

(i.e., these corrupted validators cannot be counted as part of 𝐴̃𝑡 ).

Hence, the number of valid slot 𝑡 votes adversarial validators can

broadcast by round 3Δ(𝑡 + 1) + Δ is upper bounded by the number

of adversarial validators at round 3Δ𝑡 + Δ that are eligible to vote

at slot 𝑡 . Finally, by the same calculations as above, every slot 𝑡 has

more honest validators eligible to vote and awake at round 3Δ𝑡 + Δ
than the adversarial validators at round 3Δ(𝑡 +1) +Δ eligible to vote

at slot 𝑡 (and more than
1

2
𝑛0thrv such honest validators), except

with probability

2𝑇
hor

exp

(
− 𝜖2

1 + 3𝜖
𝑛0thrv

)
+ negl(𝜆) = negl(𝜅) + negl(𝜆) .

Similarly, w.o.p., every slot 𝑡 has more honest validators awake and

eligible to propose for slot 𝑡 at round 3Δ𝑡 than adversarial validators
at round 3Δ𝑡 + Δ eligible to propose for slot 𝑡 . Thus, via the same

8
We assume that poly(𝜅 ) negl(𝜆) = negl(𝜆) .
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argument, w.o.p., all slot intervals of length 𝜅 have at least one slot

𝑡 , where an honest validator is identified as the slot leader by all

awake honest validators at round 3Δ𝑡 + Δ. □

Since Goldfish slots consist of 4Δ rounds in the case of fast

confirmation, we state an analogue of Lem. 1 to match the new slot

structure:

Lemma 6. Suppose the Goldfish execution is ( 1
2
, 4Δ)-compliant.

Then, w.o.p., for every slot 𝑡 , the number of adversarial validators

at round 4Δ(𝑡 +1) +Δ, eligible to vote at slot 𝑡 , is less than the number

of honest validators, awake at round 4Δ𝑡 + Δ and eligible to vote at

slot 𝑡 .

Also w.o.p., all slot intervals of length 𝜅 have at least one slot 𝑡 ,

where an honest validator is identified as the slot leader by all awake

honest validators at round 4Δ𝑡 + Δ.

Proof of Lem. 6 is very similar to the proof of Lem. 1, and follows

from the same arguments using ( 1
2
, 4Δ)-compliant executions.

A.2 Goldfish with Accountability Gadgets

We now prove the ebb-and-flow property for Goldfish combined

with accountability gadgets (Fig. 2). The following analysis exten-

sively refers to the details of the accountability gadgets described in

[49, Section 4]. These gadgets can be instantiated with any BFT pro-

tocol that satisfies accountable safety (e.g., PBFT [12], HotStuff [58]).

To distinguish the votes cast by validators as part of the account-

ability gadget iterations from those broadcast within Goldfish, we
will refer to the former as gadget votes. Similarly, to distinguish

the leaders of accountability gadget iterations from the leaders of

Goldfish slots, we will refer to the former as the iteration leaders.

We refer the reader to [49] for the accountability gadget specific def-

initions of the timeout parameter𝑇tmout and the confirmation delay

𝑇bft of the BFT protocol. We highlight that honest iteration leaders

propose only the blocks 𝐵∗ that are confirmed in their view of chava,

i.e., 𝐵∗ ⪯ 𝐵 ⌈𝜅 for 𝐵 identified in Alg. 1, ll. 8, 22, 28 run using chava.

Similarly, honest validators send accepting gadget votes only for the

checkpointing proposals that are confirmed in their view of chava.

We set𝑇
chkpt

, the time gap between the accountability gadget itera-

tions, to be at least 6Δ(𝜅+1)+𝑇tmout+𝑇bft (this is necessary for prov-

ing the ebb-and-flow property as will be evident in the following

proofs). This makes the upper bound𝑇upper on the total duration of

an iteration𝑇
chkpt
+𝑇tmout+𝑇bft = 6Δ(𝜅+1)+2(𝑇tmout+𝑇bft) = Θ(𝜅).

We first show that chava remains secure under synchrony in the

sleepy network model, despite the added gadget.

Proposition 2. Suppose a ( 1
2
, 3Δ)-compliant execution of Goldfish

in the synchronous sleepy network model of Sec. 2.2. If a block 𝐵

is observed to be checkpointed by an honest validator for the first

time at some round 𝑟 , then 𝐵 is in the common prefix of the chains

identified in Alg. 1, ll. 8, 22, 28 right before round 𝑟 by all awake

honest validators.

Proof. Since the execution is ( 1
2
, 3Δ)-compliant, for a block to

become checkpointed, at least one honest validator must have sent

an accepting gadget vote for that block. Let 𝐵𝑖 denote the sequence

of checkpointed blocks listed in the order of the rounds 𝑟𝑖 at which,

an awake honest validator observed 𝐵𝑖 to be checkpointed for the

first time. Proof is by induction on the indices of these blocks.

InductionHypothesis: 𝐵𝑖 is in the common prefix of the chains

identified in Alg. 1, ll. 8, 22, 28 right before round 𝑟𝑖 by all awake

honest validators, and stays so until at least round 𝑟𝑖+1.
Base Case: Since an honest validator sends an accepting gadget

vote only for a confirmed block (i.e., 𝜅 slots deep), 𝐵1 must have

been confirmed by an honest validator at some slot 𝑡1 before round

𝑟1. As all honest validators start the fork-choice at the genesis block

prior to 𝑟1 and 𝐵1 is confirmed in an honest view, it is in the prefix of

a block proposed by an honest leader by Lem. 1 and Thm. 1. Hence,

𝐵1 is in the common prefix of the chains identified in Alg. 1, ll. 8,

22, 28 right before round 𝑟1 by all awake honest validators. It also

stays in the common prefix until at least round 𝑟2.

Inductive Step: By the induction hypothesis, checkpointing

of the blocks 𝐵1, . . . , 𝐵𝑖−1 does not alter the fork-choice rule at

Alg. 3, l. 2 for any awake honest validator. Hence, by the same

reasoning above, 𝐵𝑖 is in the common prefix of the chains identified

in Alg. 1, ll. 8, 22, 28 right before round 𝑟𝑖 by all awake honest

validators, and stays so until at least round 𝑟𝑖+2. □

Lemma 7 (Safety and liveness of chava under synchrony). Suppose

a ( 1
2
, 3Δ)-compliant execution of Goldfish in the synchronous sleepy

network model of Sec. 2.2. Then, w.o.p., the available ledger chava

satisfies 1/2-safety and 1/2-liveness (at all times).

Proof. By Prop. 2, checkpointing of blocks does not alter the

fork-choice rule at Alg. 3, l. 2 for any awake honest validator. Con-

cretely, if the honest validators started the fork-choice rule from

the genesis block at all rounds instead of the latest checkpoint in

view, then they would end up with the same execution. Thus, the

security of chava follows from Thm. 2. □

We next demonstrate the liveness of chacc after max(GST,GAT).
In the subsequent analysis, the total number of validators is denoted

by 𝑛 (cf. Sec. 2). The accountability gadget is instantiated with a

BFT protocol that has an accountable safety resilience of 𝑛/3.

Proposition 3 (Prop. 2 of [49]). The BFT protocol satisfies 𝑛/3-
liveness after max(GST,GAT) with transaction confirmation time

𝑇bft < ∞.

Proposition 4 (Prop. 3 of [49]). Consider a ( 1
3
, 3Δ)-compliant

execution of Goldfish in the partially synchronous sleepy network

model of Sec. 2.2. Suppose a block from iteration 𝑐 was checkpointed

in the view of an honest validator at round 𝑟 . Then, every honest

validator enters iteration 𝑐 + 1 by round max(GST,GAT, 𝑟 ) + Δ.
Let 𝑐′ be the largest iteration such that a block 𝐵 was check-

pointed in the view of some honest validator beforemax(GAT,GST).
(Let 𝑐′ = 0 and 𝐵 be the genesis block if there does not exist such

an iteration.) If an honest validator enters an iteration 𝑐′′ > 𝑐′ at
some round 𝑟 ≥ max(GAT,GST)+Δ+𝑇

chkpt
, every honest validator

enters iteration 𝑐′′ by round 𝑟 + Δ.

Proof. Suppose a block 𝐵 from iteration 𝑐 was checkpointed in

the view of an honest validator id at round 𝑟 . Then, there are over

2𝑛/3 accepting gadget votes for 𝐵 from iteration 𝑐 on LOG𝑟
bft,id, the

output ledger of the BFT protocol in id’s view at round 𝑟 . All gadget

votes and BFT protocol messages observed by id by round 𝑟 are

delivered to all other honest validators by roundmax(GST,GAT, 𝑟 )+
Δ. Hence, by the safety of the BFT protocol when 𝑓 < 𝑛/3, for any
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honest validator id′, the ledger LOG𝑟
bft,id is the same as or a prefix of

the ledger observed by id′ at round max(GST,GAT, 𝑟 ) +Δ. Thus, for
any honest validator id′, there are over 2𝑛/3 accepting gadget votes
for 𝐵 from iteration 𝑐 on LOG

bft
at round max(GST,GAT, 𝑟 ) + Δ.

This implies every honest validator enters iteration 𝑐 + 1 by round

max(GST,GAT, 𝑟 ) + Δ.
Finally, by the reasoning above, all honest validators enter itera-

tion 𝑐′ + 1 by round max(GAT,GST) +Δ. Thus, entrance time of the

honest validators to subsequent iterations have become synchro-

nized by round max(GAT,GST) + Δ +𝑇
chkpt

: If an honest validator

enters an iteration 𝑐′′ > 𝑐′ at some round 𝑟 ≥ max(GAT,GST) +Δ+
𝑇

chkpt
, every honest validator enters iteration 𝑐′′ by round 𝑟+Δ. Sim-

ilarly, if a block from iteration 𝑐′′ is first checkpointed in the view of

an honest validator at some round after max(GAT,GST)+Δ+𝑇
chkpt

,

then it is checkpointed in the view of all honest validators within

Δ rounds. □

Lemma 8 (Liveness of chacc, analogue of Thm. 4 of [49]). Consider a

( 1
3
, 3Δ)-compliant execution of Goldfish in the partially synchronous

sleepy network model of Sec. 2.2. Suppose chava is secure (safe and

live) after some round 𝑇heal ≥ max(GST,GAT) + Δ + 𝑇
chkpt

. Then,

w.o.p., chacc satisfies 𝑛/3-liveness after round 𝑇heal with transaction

confirmation time 𝑇
conf

= Θ(𝜅2).

Proof. By Prop. 3, LOG
bft

is live with transaction confirmation

time 𝑇bft after max(GST,GAT), a fact we will use subsequently.
Let 𝑐′ be the largest iteration such that a block 𝐵 was check-

pointed in the view of some honest validator beforemax(GAT,GST)
(Let 𝑐′ = 0 and 𝐵 be the genesis block if there does not exist such

an iteration). Then, by Prop. 4, entrance times of the honest val-

idators to subsequent iterations become synchronized by round

max(GAT,GST) + Δ +𝑇
chkpt

: If an honest validator enters an itera-

tion 𝑐 > 𝑐′ at some round 𝑟 ≥ max(GAT,GST) + Δ +𝑇
chkpt

, every

honest validator enters iteration 𝑐 by round 𝑟 + Δ.
Suppose an iteration 𝑐 > 𝑐′ has an honest iteration leader L

(𝑐 )
,

which sends a checkpoint proposal, denoted by
ˆ𝑏𝑐 , at some round

𝑟 > 𝑇heal + 𝑇chkpt
. The proposal

ˆ𝑏𝑐 is received by every honest

validator by round 𝑟 + Δ. Since the entrance times of the validators

are synchronized by 𝑇heal ≥ max(GST,GAT) + Δ + 𝑇
chkpt

, every

honest validator sends a gadget vote by round 𝑟+Δ. By Lem. 10,
ˆ𝑏𝑐 ⪯

𝐵 ⌈𝜅 for any 𝐵 identified in Alg. 1, ll. 8, 22, 28 by any awake honest

validator after 𝑟 . Moreover,
ˆ𝑏𝑐 is a descendant all of the checkpoints

seen by the honest validators until then. Consequently, at iteration

𝑐 , every honest validator sends a gadget vote accepting ˆ𝑏𝑐 by round

𝑟 +Δ, all of which appear within LOG
bft

in the view of every honest

validator by round 𝑟 + Δ +𝑇bft. Thus, ˆ𝑏𝑐 becomes checkpointed in

the view of every honest validator by round 𝑟 + Δ +𝑇bft. (Here, we
assume that 𝑇tmout was chosen large enough for 𝑇tmout > Δ +𝑇bft
to hold.)

Since 𝑟 > 𝑇heal + 𝑇chkpt
, by Lem. 10,

ˆ𝑏𝑐 contains at least one

honest block since an earlier checkpointed block in its prefix from

before iteration 𝑐 . This implies that the prefix of
ˆ𝑏𝑐 contains at least

one fresh honest block that enters chacc by round 𝑟 + Δ +𝑇bft.
Next, we show that an adversarial leader cannot make an itera-

tion last longer than Δ +𝑇tmout +𝑇bft for any honest validator after

the initial 𝑇
chkpt

period elapsed. Indeed, if an honest validator id

enters an iteration 𝑐 at round 𝑟 −𝑇
chkpt

, by round 𝑟 +𝑇tmout, either

it sees a block (potentially ⊥) become checkpointed for iteration

𝑐 , or it sends a reject vote for iteration 𝑐 . In the first case, every

honest validator sees a block checkpointed for iteration 𝑐 by round

at most 𝑟 +𝑇tmout + Δ. In the second case, rejecting gadget votes

from over 2𝑛/3 > 𝑛/3 validators appear in LOG
bft

in the view of

every honest validator by round at most 𝑟 +𝑇tmout +Δ+𝑇bft. Hence,
a new checkpoint, potentially ⊥, is output in the view of every

honest validator by round 𝑟 +𝑇tmout + Δ +𝑇bft.
Finally, we observe that except with probability (1/3)𝜅 , there

exists a checkpoint iteration with an honest leader within 𝜅 consec-

utive iterations. Since an iteration lasts at most max(Δ +𝑇tmout +
𝑇bft,Δ + 𝑇chkpt

+ 𝑇bft) ≤ Δ + 𝑇
chkpt

+ 𝑇tmout + 𝑇bft = Θ(𝜅) rounds,
and a new checkpoint containing a fresh honest block in its prefix

appears when an iteration has an honest leader (Lem. 10), w.o.p.,

any transaction received by an honest validator at round 𝑡 appears

within chacc in the view of every honest validator by round at most

𝑡 + 𝜅 (Δ +𝑇tmout +𝑇bft +𝑇chkpt
). Hence, via a union bound over the

total number of iterations (which is a polynomial in 𝜅), we observe

that if chava satisfies security after some round 𝑇heal, then w.o.p.,

chacc satisfies liveness after 𝑇heal with a transaction confirmation

time 𝑇
conf

= Θ(𝜅2). □

The latency expression𝑇
conf

= Θ(𝜅2) stated in Lem. 8 is a worst-

case latency to guarantee that an honest block enters the account-

able, final prefix ledger chacc with overwhelming probability. In the

expression, the first 𝜅 term comes from the requirement to have

𝑇
chkpt

= Θ(𝜅) slots in between the accountability gadget iterations,

and the second 𝜅 term comes from the fact that it takes Θ(𝜅) it-
erations for the accountability gadget to have an honest iteration

leader except with probability negl(𝜅). The accountability gadget

protocol asks honest validators to wait for 𝑇
chkpt

= Θ(𝜅) slots in
between iterations to ensure the security of the protocol, reasons

for which will be evident in the proof of Lem. 10.

Unlike the worst-case latency, the expected latency for an hon-

est block to enter chacc after chava regains its security would be

Θ(𝜅) as each checkpointing iteration has an honest leader with

probability at least 2/3. In this context, the latency ofΘ(𝜅) is purely
due to the requirement to have 𝑇

chkpt
= Θ(𝜅) slots in between the

accountability gadget iterations. Here, waiting for 𝑇
chkpt

slots in

between iterations guarantees the inclusion of a new honest block

in chava, which in turn appears in the prefix of the next checkpoint,

implying a liveness event whenever there is an honest iteration

leader.

Lem. 8 requires the available ledger chava to eventually regain

security under partial synchrony when there are less than 𝑛/3
adversarial validators. Towards this goal, we first analyze the gap

and recency properties, the core properties that must be satisfied

by the accountability gadget for recovery of security of chava. The

gap property states that the blocks are checkpointed sufficiently

apart in time, controlled by the parameter 𝑇
chkpt

:

Proposition 5 (Gap property, analogue of Prop. 4 of [49]). Consider

a ( 1
3
, 3Δ)-compliant execution of Goldfish in the partially synchro-

nous sleepy network model of Sec. 2.2. Given any round interval of

size 𝑇
chkpt

, no more than a single block can be checkpointed in the

interval in the view of any honest validator.
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Proof of Prop. 5 follows from the fact that upon observing a new

checkpoint that is not ⊥ for an iteration, honest validators wait

for 𝑇
chkpt

rounds before sending gadget votes for the checkpoint

proposal of the next iteration, and there cannot be two conflict-

ing checkpoints for the same iteration in the view of any honest

validator.

As in [49] and [53], we state that a block 𝐵∗ checkpointed at

iteration 𝑐 and round 𝑟 > max(GST,GAT) in the view of an honest

validator id is𝑇rcnt-recent if 𝐵
∗ ⪯ 𝐵 ⌈𝜅 for 𝐵 identified in Alg. 1, l. 28

by id′ at some round within [𝑟 −𝑇rcnt, 𝑟 ]. Then, we can express the

recency property as follows:

Lemma 9 (Recency property, analogue of Lem. 1 of [49]). Consider

a ( 1
3
, 3Δ)-compliant execution of Goldfish in the partially synchro-

nous sleepy network model of Sec. 2.2. Every checkpointed block pro-

posed after max(GST,GAT) is𝑇rcnt-recent for𝑇rcnt = Δ+𝑇tmout+𝑇bft.

Proof. By the proof of Lem. 8, if a block 𝐵 proposed after

max(GST,GAT) is checkpointed in the view of an honest valida-

tor at some round 𝑟 , it should have been proposed after round

𝑟−(Δ+𝑇tmout+𝑇bft). Moreover, over 2𝑛/3 validators must have sent

accepting gadget votes for 𝐵 by round 𝑟 . Let id denote such an hon-

est validator. It would vote for𝐵 only after it sees the checkpoint pro-

posal for iteration 𝑐 , i.e., after round 𝑟 −𝑇rcnt = 𝑟 − (Δ+𝑇tmout+𝑇bft),
and only if the proposal is confirmed in its view. Hence, 𝐵 must

be 𝜅 slots deep in the chain returned at Alg. 1, l. 28 by validator

id at some round within [𝑟 − 𝑇rcnt, 𝑟 ]. This concludes the proof

that every checkpointed block proposed after max(GST,GAT) is
𝑇rcnt-recent. □

Lemma 10 (Healing property, analogue of Thm. 5 of [49]). Consider

a ( 1
3
, 3Δ)-compliant execution of Goldfish in the partially synchro-

nous sleepy network model of Sec. 2.2. Then, chava is secure with

transaction confirmation time 𝑇
chkpt

+ 𝑇tmout + 𝑇bft = Θ(𝜅) after
round max(GAT,GST) + Δ + 2𝑇

chkpt
.

Moreover, for the iteration proposal
ˆ𝑏𝑐 of an honest iteration leader

broadcast at round 𝑟 , it holds that ˆ𝑏𝑐 ⪯ 𝐵 ⌈𝜅 for any 𝐵 identified

in Alg. 1, ll. 8, 22, 28 by any awake honest validator after 𝑟 , and ˆ𝑏𝑐
contains a fresh honest block that is not in the prefix of any checkpoint

from before iteration 𝑐 .

Proof. By [49, Thm. 3], chacc provides accountable safety with

resilience 𝑛/3 except with probability negl(𝜆) in the partially

synchronous sleepy network model. As the execution is ( 1
3
, 3Δ)-

compliant, w.o.p., no two checkpoints observed by awake honest

validators conflict.

Let 𝑐 be the largest iteration such that a block𝐵 was checkpointed

in the view of some honest validator before max(GAT,GST). (Let
𝑐 = 0 and 𝐵 be the genesis block if there does not exist such an

iteration.) Then, by Prop. 4, if an honest validator enters an iteration

𝑐′ > 𝑐 at some round 𝑟 ≥ max(GAT,GST) + Δ + 𝑇
chkpt

, every

honest validator enters iteration 𝑐 by round 𝑟 +Δ. Let 𝑐′ be the first
iteration such that the first honest validator to enter 𝑐′ enters it after
round max(GAT,GST) + Δ +𝑇

chkpt
(e.g., at some round 𝑟 such that

max(GAT,GST) + Δ +𝑇
chkpt

< 𝑟 < max(GAT,GST) + Δ + 2𝑇
chkpt

).

Then, all honest validators enter iteration 𝑐′ and agree on the last

checkpointed block within Δ rounds. Subsequently, the honest

validators wait for𝑇
chkpt

rounds before casting any gadget vote for

a checkpoint proposal of iteration 𝑐′, during which no block can be

checkpointed (Prop. 5, gap property).

By Lem. 1, w.o.p., the slot interval of length 𝜅 starting after

round 𝑟 +Δ contains a slot 𝑡 with an honest leader and proposal 𝑃∗.
After round 𝑟 ≥ GST, all messages broadcast by honest validators

are received by all honest validators within Δ rounds. As honest

validators agree on the last checkpointed block during the interval

[𝑟 + Δ, 𝑟 +𝑇
chkpt
], by the absence of new checkpoints, the GHOST-

Eph fork-choice rule starts at the same last checkpointed block

for all honest validators during the interval (Alg. 2, l. 2). Then, by

Lem. 1, w.o.p., 𝑃∗ .𝐵 ⪯ 𝐵 for any 𝐵 identified in Alg. 1, ll. 8, 22, 28

by any awake honest validator in any round after 3Δ𝑡 + 2Δ, until at
least a new block is checkpointed in the view of an honest validator.

By Lem. 9 (recency property), the next block checkpointed in

the view of an honest validator (which happens earliest at some

iteration 𝑐′′ ≥ 𝑐′ and round 𝑟 ′ ≥ 𝑟 + 𝑇
chkpt

by Prop. 5, the gap

property) must have been confirmed by some honest validator id at

some round within [𝑟 ′ −𝑇rcnt, 𝑟
′], where 𝑟 ′ −𝑇rcnt ≥ 𝑟 + 6Δ𝜅 + 4Δ.

Hence, the new checkpointed block is 𝜅 slots deep in the chains

identified in Alg. 1, ll. 8, 22, 28 by id, and is a descendant of 𝑃∗ .𝐵.
This implies 𝑃∗ .𝐵 ⪯ 𝐵 for any 𝐵 identified in Alg. 1, ll. 8, 22, 28 by

any awake honest validator in any round after 3Δ𝑡 + 2Δ indefinitely.

Note that if the iteration leader was honest, for its proposal

ˆ𝑏𝑐 broadcast at some round 𝑟 ′′, it holds that ˆ𝑏𝑐 ⪯ 𝐵 ⌈𝜅 for any 𝐵

identified in Alg. 1, ll. 8, 22, 28 by any awake honest validator after

round 𝑟 . Moreover, 𝑃∗ .𝐵 ⪯ ˆ𝑏𝑐 , implying that honest checkpoint

proposals contain fresh honest blocks in their prefixes.

Finally, we extend the above argument to future checkpoints

by induction. Let 𝐵𝑛 denote the sequence of checkpointed blocks,

ordered by their iteration numbers 𝑐𝑛 ≥ 𝑐′, 𝑐1 = 𝑐′′. The rounds
𝑟𝑛 , at which the blocks 𝐵𝑛 are first checkpointed in the view of

an honest validator satisfy the relation 𝑟𝑛+1 ≥ 𝑟𝑛 + 𝑇chkpt
and

𝑟1 = 𝑟 ′′. Via the inductive assumption and the reasoning above,

w.o.p., in each interval [𝑟𝑛 + Δ, 𝑟𝑛+1 − 𝑇rcnt], there exists a slot

𝑡𝑛 with an honest leader and proposal 𝑃𝑛 such that 𝑃𝑛 .𝐵 ⪯ 𝐵

for any 𝐵 identified in Alg. 1, ll. 8, 22, 28 by any awake honest

validator in any round after 3Δ𝑡𝑛 + 2Δ indefinitely. Hence, for a suf-

ficiently large confirmation time exceeding the maximum possible

length of an iteration (i.e.,𝑇
conf
≥ 𝑇

chkpt
+𝑇tmout +𝑇bft), these hon-

est blocks imply the security of the Goldfish protocol after round

max(GAT,GST) + Δ + 2𝑇
chkpt

. □

Note that Thm. 1 holds for the honest blocks proposed during

the intervals [𝑟𝑛 + Δ, 𝑟𝑛+1 −𝑇rcnt] as all honest validators agree on
the latest checkpoint during these intervals.

Proof of Thm. 4. We first show the property P1, namely, the ac-

countable safety and liveness of the accountable, final prefix ledger

chacc under partial synchrony in the sleepy model. By [49, Thm. 3],

chacc provides accountable safety with resilience 𝑛/3 except with

probability negl(𝜆) under partial synchrony in the sleepy model.

By Lem. 10, under the same model, the available ledger chava is

secure after round max(GAT,GST) + Δ + 2𝑇
chkpt

. Using this fact

and Lem. 8, we can state that, w.o.p., chacc satisfies liveness after

round max(GAT,GST) + Δ + 2𝑇
chkpt

with transaction confirmation

time 𝑇
conf

= Θ(𝜅2).
Finally, the property P2 follows from Lem. 7, and Prefix follows
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by construction of the ledgers chacc and chava. This concludes the

proof of the ebb-and-flow property. □

B EQUIVOCATION DISCOUNTING TO

MITIGATE SPAMMING

Goldfish deals with equivocating votes simply by accepting all

of them, but counting at most one per subtree (Alg. 2, l. 7). This

does not give any additional fork-choice power to an equivocating

validator, and it does not allow for irreconcilable splits of honest

validators’ views, whichwould be the case with a naive first-seen (or

last-seen) approach. Instead, it guarantees that honest validators can

always end up with the same view, in particular through the vote

bufferingmechanism, and that their fork-choice outputs agreewhen

they do. Nonetheless, this approach is vulnerable to spamming

attacks, because it requires validators to accept all the votes they

receive. Even a single adversarially controlled validator can be used

to create an arbitrarily large number of equivocating votes at a

slot, with the goal of creating network congestion and making it

impossible for honest validators to download all of the other votes

in time.

Equivocations are attributable faults, punishable by slashing

a posteriori, but this does not prevent the attack vector a priori

given that only one validator is required for it, and that there is

no immediate recovery, because the same validator can continue

producing equivocating attestations in subsequent slots as well. It is

perhaps possible to mitigate this attack vector without breaking the

strong properties of vote buffering with approaches similar to those

of [42], i.e., by introducing more refined rules for downloading and

forwarding consensus messages. The approach we take is instead

to introduce equivocation discounting. This general technique is

already present in the current implementation of PoS Ethereum,

but the ephemerality of votes in Goldfish allows for a simpler rule,

with clear bounds on the number of messages required for honest

views to converge. This is particularly important in order to have

guarantees about the functioning of the vote buffering technique,

and in turn about the security of the whole protocol, which heavily

relies on reorg resilience. We formalize the simple equivocation

discounting rule here, as a combination of a modification to the

GHOST-Eph fork-choice, a download rule, and a validity condition

for proposals.

Equivocation discounting.

(a) Fork-choice discounting: When running the GHOST-Eph fork-

choice rule at slot 𝑡„ only count the valid slot 𝑡 − 1 votes from

those validators for which your bvtree contains a single valid

slot 𝑡 − 1 vote, i.e., those which are not viewed to have equivo-

cated at slot 𝑡 − 1.

(b) Download rule: Only download (or forward as part of the peer-

to-peer gossip layer) votes from the current and prior slots, and

at most two votes per eligible validator (i.e., the opened ticket

(id, 𝑡) for the validator id is winning for the tag (vote, thrv),
cf. Sec. 5).

(c) Validity condition for proposals: A proposal whose bvtree con-

tains more than two valid votes for the same slot from some

validator is invalid, and so is one which contains any invalid

vote.

Discounting equivocations from the fork-choice preserves the prop-

erty that there cannot be irreconcilable splits of validator views,

because all that is needed for convergence is agreement on the list

of equivocators from the previous slot, which in turn only needs

all views to have compatible equivocation evidence, i.e., pairs of

equivocating votes for the same list of equivocating validators. The

download rule and validity condition ensure that a validator only

ever needs to download at most two votes per subsampled validator

of the current and previous slot. Setting the subsampling parame-

ters so that this is manageable, we can ensure that equivocations

cannot succeed at creating network congestion sufficient to prevent

the functioning of vote buffering. Previously, this meant guaran-

teeing that an honest proposer’s bvtree be a superset of honest

validators’ bvtrees. Instead, the success of vote buffering now only

requires that a leader’s view of votes from voters which have not

equivocated in the last slot is a superset of the validators’ views

of such votes, and so is its view of the list of equivocators from the

previous slot. Agreement on these two is sufficient for agreement on

the fork-choice output, i.e., Lem. 2 still holds. Note that the leader

still only needs to include its bvtree in the proposal message, be-

cause following the download rule guarantees that it will contain

exactly all valid votes from validators which have not equivocated

in the previous slot, together with a pair of votes, i.e., equivocation

evidence, for validators which have.

The security analysis forGoldfishwith equivocation discounting

is then the same as that for vanilla Goldfish. Vote buffering implies

that all honest validators vote together when the proposal with

the minimum precedence is honest, as in Lem. 2, and all honest

validators voting together implies that the proposal is never re-

orged, as in Lem. 3. No The latter is not affected by equivocation

discounting, because it relies on the valid votes of honest validators,

which do not equivocate. From these two properties, we obtain re-

org resilience as in Thm. 3, and from reorg resilience, we eventually

obtain safety and liveness.

Optimistic fast confirmations are also compatible with equiv-

ocation discounting, without any loss of resilience. Liveness and

fast confirmation of honest proposals follow from Thm. 7, since

equivocation discounting plays no role in it. For safety, the key

ingredient is Lem. 5, from which Thm. 6 follows unchanged. We

thus prove Lem. 5 here for Goldfish with equivocation discounting,

by making a very small modification to the argument:

Proof of Lem. 5 with eqivocation discounting. By Prop. 1,

w.o.p., the number of adversarial validators at round 4Δ(𝑡 + 1) + Δ,
eligible to vote at slot 𝑡 , is less than 1

2
𝑛 thrv. An eligible awake

honest validator sends a single slot 𝑡 vote at round 4Δ𝑡 + Δ, imply-

ing that over ( 3
4
+ 𝜖

2
)𝑛 thrv − 1

2
𝑛 thrv = ( 1

4
+ 𝜖

2
)𝑛 thrv validators

broadcast a single slot 𝑡 vote by round 4Δ(𝑡 + 1) + Δ, and that is for
a descendant of 𝐵. By Prop. 1, w.o.p., for all slots 𝑡 , there can be at

most (1 + 𝜖)𝑛 thrv validators that are eligible to vote at 𝑡 . Hence,

the number of valid slot 𝑡 votes for the descendants of any block

𝐵′ conflicting with 𝐵, and which are from validators which have

not also cast one of the ( 3
4
+ 𝜖

2
)𝑛 thrv votes for 𝐵, must be less than

(1 + 𝜖)𝑛 thrv − ( 3
4
+ 𝜖

2
)𝑛 thrv = ( 1

4
+ 𝜖

2
)𝑛 thrv at any given round.

The validator id∗ broadcasts 𝐵 and over ( 3
4
+ 𝜖

2
)𝑛 thrv valid votes

for it (in pieces) at round 4Δ𝑡 + 2Δ. Each honest validator, awake

at round 4Δ(𝑡 + 1) + Δ and eligible to vote at slot 𝑡 + 1, observes
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these votes in its bvtree at the round of voting (Alg. 5, l. 12). Upon

invoking the GHOST-Eph fork-choice rule at any of the rounds

4Δ𝑡 + 3Δ, 4Δ(𝑡 + 1) or 4Δ(𝑡 + 1) + Δ, using only the votes from

validators which are not seen to be equivocating at slot 𝑡 − 1, the

votes for the descendants of any block 𝐵′ conflicting with 𝐵 are

then less than ( 1
4
+ 𝜖

2
)𝑛 thrv, and the votes for descendants of 𝐵 are

over ( 1
4
+ 𝜖

2
)𝑛 thrv. This implies that all honest validators, awake

at round 4Δ(𝑡 + 1) + Δ and eligible to vote at slot 𝑡 + 1, all vote for

𝐵 or one of its descendants at slot 𝑡 + 1. □

Invalid proposals and pieces are not merged into the bvtrees

by the honest validators. Proposals and pieces whose validity is in

limbo can be purged from the buffer in certain cases. A slot 𝑡 block

in limbo can purged after slot 𝑡 +𝑇
conf

since if the block has not

been validated and included as part of the canonical GHOST-Eph

chain by that slot, it will never appear as part of the confirmed

Goldfish chain. A slot 𝑡 vote in limbo can be purged at slot 𝑡 + 2

since it will not have any effect on the fork-choice rule slot 𝑡 + 2

onwards due to vote expiry. Purging proposals and pieces in limbo

further reduces the storage requirement expected of the Goldfish
validators.

C COMPARISONWITH CURRENT POS

ETHEREUM

Goldfish is a simple, provably secure, dynamically available

and reorg resilient protocol which minimally differs from the

LMD GHOST component of the current implementation of the

Gasper protocol, responsible for the consensus of Ethereum’s bea-

con chain. Gasper has so far defied formal security analysis even

in the simpler, full participation setting, not least because of its

complexity. Moreover, it is not reorg resilient even in that setting,

and it is not dynamically available. We first analyze these short-

comings and their origins in various components of the protocol,

then discuss incorporating Goldfish into Gasper.

C.1 Limitations of Gasper

Interaction of LMD GHOST and Casper FFG. The combination of

Goldfishwith the accountability gadget in Sec. 3 follows the generic
construction of [49], which is proven to be secure for any appropri-

ately secure dynamically available protocol and accountable BFT

protocol. On the other hand, the combination of LMD GHOST and

Casper FFG in HLMD GHOST, the hybrid fork-choice rule of [9],

is ad-hoc and complicated to reason about. Firstly, it is known to

be susceptible to a bouncing attack [40]. Instead of LMD GHOST

starting its fork-choice iteration from the last block finalized by

Casper FFG, it starts from the last justified block in the terminology

of Casper FFG, i.e., the last block that has been the target of FFG

votes by a supermajority of all 𝑛 validators. This is sufficient to

ensure accountable safety of the finalized checkpoints; however, it

hinders safety of the available ledger chava (after max(GST,GAT))
under partial synchrony in the sleepy model, in particular negating

the healing property (Lem. 10) of chava, preventing us from proving

the ebb-and-flow property. The current mitigation for the bounc-

ing attack causes other problems such as the splitting attack [41],

akin to the balancing attacks [47]. It is perhaps possible to resolve

these through the use of techniques akin to vote buffering, to avoid

the adversary being able to consistently split honest views. Even

then, it is not at all clear that the bouncing attack cannot still be

executed by exploiting other aspects of the complex interaction of

LMD GHOST and Casper FFG. One such aspect is the fact that the

FFG votes at any Ethereum epoch point at the last epoch boundary

block of that epoch, regardless of its confirmation status by the

underlying LMD GHOST rule. (In fact, there is no confirmation

rule specified for LMD GHOST.) Another one is that the FFG voting

schedule is staggered throughout an epoch, as FFG votes are cast

together with LMD GHOST votes, so it is not clear how to ensure

that the views of honest validators when casting FFG votes are

consistent.

On-chain inclusion of consensus messages. Another peculiarity of

Gasper is that the inclusion of consensus messages (FFG votes) into

blocks is crucial to the consensus process itself. In particular, its

hybrid fork-choice rule filters out all branches whose state (at the

tip) has not justified the latest justified checkpoint, meaning that

either not enough FFG votes have been included, or that a state

transition processing them has not yet occurred. This rule makes

the protocol even harder to reason about and formally analyze, and

also introduces attack vectors similar to those already mentioned

for the bouncing attack, i.e., related to the adversary obtaining

private justifications. Future work is required to carefully analyze

its role in the protocol, and whether it can be removed from it.

Stale votes in LMD GHOST. Without vote expiry, the votes of hon-

est asleep validators can be weaponized by an adversary controlling

a small fraction of the validator set to execute an arbitrarily long re-

org. This implies that the protocol is not dynamically available with

any confirmation rule with finite confirmation time𝑇
conf

. Consider

for example a validator set of size 𝑛 = 2𝑚 + 1, and a partition of

the validator set into three sets, 𝑉1, 𝑉2, 𝑉3, with |𝑉1 | = |𝑉2 | = 𝑚

and |𝑉3 | = 1. The validators in 𝑉1, 𝑉2 are all honest, while the one

in 𝑉3 is adversarial. Suppose that the adversarial validator in 𝑉3

is the leader of slots 𝑡 , and that it broadcasts two proposals, with

conflicting blocks 𝐵1 and 𝐵2. It does so in such a way that validators

in 𝑉1 see only 𝐵1 before voting, and validators in 𝑉2 only 𝐵2. Val-

idators in 𝑉1 then vote for 𝐵1, and so does the adversarial validator,

while validators in 𝑉2 vote for 𝐵2. 𝐵1 becomes canonical, since it

has received𝑚 + 1 votes. The adversary then puts all validators in

𝑉2 to sleep, and they do not become awake for the remainder of the

protocol. The adversarial validator does not cast any more votes for

a while. Meanwhile, validators in 𝑉1, keep voting for descendants

of 𝐵1. After waiting for > 𝑇
conf

slots, the adversarial validator votes

for 𝐵2. Since the𝑚 latest votes of the validators in𝑉2 are still for 𝐵2,

it now has𝑚+1 votes and becomes canonical, resulting in all awake

honest validators experiencing a reorg of all blocks confirmed after

slot 𝑡 . If there are no such blocks, liveness is violated, and otherwise

safety is violated.

Proposer boost. Proposer boost is not compatible with dynamic

availability, because the artificial fork-choice weight it temporarily

provides to proposals is independent of participation: the lower

the participation, the more powerful the boost is relative to the

weight of real attestations from awake validators, and thus the more

it can be exploited by the adversary. When the weight of awake

honest validators is less than the boost, the adversary has complete
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control of the fork-choice during the slots in which it is elected as

the leader.

Reorg resilience. Even in the setting of full participation, where

the adversary cannot take advantage of votes of asleep validators,

LMD GHOST lacks reorg resilience. This is firstly due to subsam-

pling without vote expiry, because it allows the adversary to ac-

cumulate fork-choice weight by withholding blocks and attesta-

tions, i.e., to execute ex ante reorgs [54]. Without subsampling,

LMD GHOST is indeed reorg resilient in the full participation set-

ting, if proposer boost is replaced by vote buffering. In fact, Thm. 3

obtains reorg resilience as a consequence of two properties, Lems. 2

and 3, respectively the property that all honest awake validators

vote for an honest proposal, and the property that all honest val-

idators voting together guarantee the inclusion of honest blocks

in the canonical GHOST-Eph chain, both of which also hold for

LMD GHOST with vote buffering.

With proposer boost, LMD GHOST is not reorg resilient for 𝛽 ≥
1

3
, even in the full participation setting and without subsampling,

because those two properties are in conflict for such 𝛽 , for any

boost value𝑊𝑝 . The first property only holds if𝑊𝑝 > 𝛽 , i.e., the

amount of adversarial votes which might be withheld in an ex ante

reorg attempt. On the other hand, the second property only holds

if𝑊𝑝 + 𝛽 < 1 − 𝛽 , because otherwise an adversarial proposer can

make use of boost to conclude an ex post reorg. Therefore, we can

only have reorg resilience for 𝛽 < 1

3
, by setting𝑊𝑝 = 1

3
.

C.2 Bringing Goldfish to Gasper

Replacing LMD GHOST with Goldfish. LMD GHOST could be re-

placed by Goldfish in Gasper [9], with only minor changes needed.

Firstly, multiple potential leaders are elected through VRFs instead

of a single leader through RANDAO. This results in additional band-

width consumption due to multiple proposals being propagated, but

helps maintain the confirmation time as a constant as participation

drops. Moreover, the election process via VRFs is not biasable by

the participants, which is not the case with RANDAO [26], and

it automatically provides privacy to the leader before they reveal

themselves, protecting them from targeted denial-of-service (DoS)

attacks. It is not clear whether VRFs can also be utilized for subsam-

pling, because the functioning of the beacon chain heavily relies on

the aggregation of signatures, in order to support a large validator

set. Augmenting the votes with VRF proofs is not compatible with

aggregation, since the latter requires all messages to be the same

(compatibility would require an aggregation scheme for VRF out-

puts). Nonetheless, RANDAO could still be used for subsampling,

though its biasability would affect the tolerable adversarial fraction

of validators. Some care has to also be taken to make attestation

aggregation compatible with vote buffering.

Combination of Goldfish and FFG. The protocol resulting from

replacing LMD GHOST with Goldfish in Gasper still does not sat-

isfy all the properties we want, and which we have proved for the

combination of Goldfish with an accountability gadget, when fol-

lowing the construction of [49]. In particular, it does not escape the

negative result from App. C.1, due to the bouncing attack under

low participation. Since Casper FFG is not a complete protocol, as

it lacks a message schedule for proposals and votes, more work is

needed to understand if it is possible to use it as the BFT protocol

in the aforementioned construction.

An alternative approach, and perhaps easier to integrate in the

protocol if successful, is to try to achieve security by adapting the

construction to the protocol, rather than trying to use its black

box approach. A simple modification is to stipulate that the honest

validators cast their FFG votes only for the blocks that are confirmed

by Goldfish, i.e., the blocks that are part of their available ledgers
chava. As already mentioned, this is different from the current PoS

Ethereum specification for Casper FFG, where the FFG votes at any

Ethereum epoch point at the last epoch boundary block of that epoch,

regardless of its confirmation status by the underlying LMDGHOST

rule. Unfortunately, this is not sufficient to guarantee the security

of the accountable, final prefix ledger chacc outputted as the prefix

of the finalized Casper FFG checkpoints, again due to the bouncing

attack. To avoid the latter, and inspired by the aforementioned

construction, a second modification is to start the iteration of the

hybrid fork-choice from the latest finalized checkpoint, rather than

the latest justified. The question of whether this is sufficient to

ensure security is left for future work.
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