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Abstract—The latest message driven (LMD) greedy heaviest
observed sub-tree (GHOST) consensus protocol is a critical
component of proof-of-stake (PoS) Ethereum. In its current form,
the protocol is brittle, as evidenced by recent attacks and patching
attempts. We report on Goldfish, a considerably simplified
candidate under consideration for a future Ethereum protocol
upgrade. We prove that Goldfish satisfies the properties required
of a drop-in replacement for LMD GHOST: Goldfish is secure
in synchronous networks under dynamic participation, assuming
a majority of the nodes (called validators) follows the protocol.
Goldfish is reorg resilient (i.e., honestly produced blocks are
guaranteed inclusion in the ledger) and supports fast confirmation
(i.e., the expected confirmation latency is independent of the
desired security level). We show that subsampling validators
can improve the communication efficiency of Goldfish, and that
Goldfish is composable with finality gadgets and accountability
gadgets, which improves state-of-the-art ebb-and-flow protocols.
Attacks on LMD GHOST exploit lack of coordination among
honest validators, typically provided by a locking mechanism in
classical BFT protocols. However, locking requires votes from a
quorum of all participants and is not compatible with dynamic
availability. Goldfish is powered by a novel coordination mecha-
nism to synchronize the honest validators’ actions under dynamic
participation. Experiments with our implementation of Goldfish
demonstrate the practicality of this mechanism for Ethereum.

I. INTRODUCTION

A. A History of Attacks and Patches for LMD GHOST

The latest message driven (LMD) greedy heaviest observed
sub-tree (GHOST) [1], [2] consensus protocol is a key com-
ponent of the Gasper protocol [3] that powers proof-of-stake
(PoS) Ethereum’s beacon chain since ‘the Merge’ (Fig. 1).
LMD GHOST proceeds in synchronized slots, at the beginning
of which a pseudo-randomly elected leader proposes a block
with new transactions at the tip of the canonical chain. Sub-
sequently, members of a pseudo-randomly elected committee
cast votes for the tip towards block confirmation (Fig. 2). To
determine the tip of the canonical chain, the proposer and
voters of a slot t walk down the tree of blocks starting at the
genesis block and following the LMD GHOST fork-choice
rule [3, Alg. 3.1] (cf. Alg. 2): At each block B, the validator
chooses the child of B whose subtree is heaviest, i.e., received
the largest number of unique latest votes for its blocks. Here,
by the LMD rule, only the latest vote cast by each committee
member of previous slots is considered.

The initial version of LMD GHOST specified by Gasper [3]
is susceptible to the balancing attack, which was first shown
for synchronous and partially synchronous networks with
adversarial message delay [4], [5], and later for networks with
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Fig. 1. Gasper [3] consists of two sub-protocols: LMD GHOST (‘fork choice
rule’) and Casper FFG [13] (‘finality gadget’). The desired properties for
Gasper were formalized by the ebb-and-flow design objective [4], [6], [14],
which consists of security of the full chain under dynamic participation of
validators, and accountable security of a finalized prefix.

non-adversarial, merely random network delay [6]–[8]. In the
attack, the adversary exploits the lack of a coordination mech-
anism for synchronizing the views of honest validators; so
that different committee members vote for conflicting blocks
at each slot. For instance, suppose the adversary controls the
proposer and one voter at some slot t. The adversarial validator
proposes two conflicting blocks (BL and BR) and shows one
block to half of the honest voters and the other to the remaining
half. As a result, the votes cast by the committee of slot t
are split evenly between the two blocks. At slot t + 1, the
honest proposer builds its block BH on BL. However, before
the committee of slot t + 1 can vote, the adversarial voter
of slot t broadcasts a vote for BR to slot t + 1’s committee.
This makes BR heavier in terms of votes than BL and BH,
swaying slot t+1’s committee to vote for BR instead of BH.
By swaying only part of the committee, the adversary can
maintain the split among voters and repeat the attack.

Designing a coordination mechanism for voters is key to
preventing the swaying of honest validators’ votes. For this
purpose, in response to the balancing attack, a patch called
proposer boosting was added to the protocol [9]. Proposer
boosting gives proposals a temporary weight to ensure that
the committees vote for their slot’s now heavier proposals.
However, it was subsequently demonstrated that the LMD
functionality alone can be exploited to conduct a balancing-
type attack despite proposer boosting [10], [11], and that LMD
GHOST without the LMD aspect would suffer from a so called
avalanche attack [10], [12]. Again in response, a patch called
equivocation discounting was added to the protocol. Not least
because of its complexity, the protocol with these patches
has so far defied security analysis—both in terms of giving
a formal security proof as well as further attacks. This leaves
room for an uncomfortable amount of doubt about the security
of Ethereum’s ecosystem worth hundreds of billions of USD.
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B. Requirements for LMD GHOST in the Context of Ethereum

As LMD GHOST’s vulnerability to attacks stems from the
lack of a coordination mechanism, for inspiration towards a
secure Ethereum, we analyze how existing protocols synchro-
nize the views of honest validators. For example, classical
Byzantine fault tolerant (BFT) consensus protocols such as
PBFT [15], Tendermint [16], HotStuff [17] and Streamlet [18]
(hereafter called PBFT-like protocols) require a quorum of
votes from a large fraction of the whole validator set to certify
blocks. These quorums are subsequently used to convince
honest validators to vote for descendants of certified blocks,
thus serving as a coordination mechanism. This is typically
enforced by a locking rule that dictates honest validators to
lock on such certified blocks and vote for them or their descen-
dants thereafter. However, as blocks cannot be certified without
an absolute quorum of votes by a fraction of all validators,
none of the aforementioned protocols satisfies liveness under
dynamic participation.

Dynamic participation was first formalized by the sleepy
model of consensus [19], where the number and identity of
validators actively participating in the protocol can change
over time. Guaranteeing safety and liveness under dynamic
participation is crucial in the semi-permissionless model of
public PoS blockchains, which have little control over the
participants and limited ability to react quickly to unforeseen
dropouts due to regulatory requirements or software/hardware
updates. At the time of writing, approximately 70% of
Ethereum validators1 follow U.S. Office of Foreign Assets
Control (OFAC) regulations, and ignore certain transactions.
It is conceivable that in the future, these 70% of validators
could selectively abstain from voting for certain blocks, thus
behaving like temporary crash faults. Satisfying security under
dynamic participation is indeed one reason behind LMD
GHOST’s fork-choice rule that avoids absolute quorums and
selects blocks with relatively heavier quorums.

Given tolerance to dynamic participation as a requirement,
we next turn to PoS variants of Nakamoto’s longest chain (LC)
protocol (e.g., Ouroboros [20]–[22], Sleepy/SnowWhite [19],
[23]), the first BFT PoS protocols for the dynamic participation
model. In LC protocols, there is no committee of voters.
Instead, each new block fundamentally acts as a vote in favor
of its ancestor blocks. As validators do not rely on votes from a
large committee to confirm blocks, they opt to wait a long time
horizon before confirming blocks; so that the honest validators
can observe all previously proposed blocks in the prefix of
the longest chain (i.e., votes for the LC) and converge on this
prefix. In contrast to LMD GHOST, where the timed release of
adversarial votes sway different validators to vote for different
blocks, the relatively small number of blocks (as opposed to
votes) and the long confirmation latency2 enable the longest
chain to serve as a synchronization mechanism.

1https://www.mevwatch.info/ (Jan. 2023)
2Confirmation latency denotes the time for any transaction sent by an honest

validator to enter the ledgers of all honest validators. It is a random variable
that depends on the sequence of block proposers.
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Fig. 2. LMD GHOST has time slots of two phases of ∆ duration each. Each
time slot has a pseudorandomly elected proposer and a committee of voters.
PROPOSE: At the start of a slot, the proposer runs the LMD GHOST fork-
choice rule [3, Alg. 3.1] (cf. Alg. 2) and proposes a block extending the tip of
the identified chain. VOTE: Midway into a slot, voters run the LMD GHOST
fork-choice rule and vote for the block at the tip of the identified chain.

Security of LC protocols come at the expense of a long
confirmation latency that is linear in the security parameter κ.
However, a desirable property for LMD GHOST was to sup-
port fast confirmations, i.e., having an expected confirmation
latency that does not depend on the security parameter κ. This
enables achieving low failure probability without increasing
latency. Moreover, in LC protocols, an honestly produced
block can be displaced by each adversarial block, e.g., using
the selfish mining attack [24]. In the case of Ethereum,
where blocks contain excessively valuable transactions [25],
validators are incentivized to carry out selfish mining and
similar block reorganization attacks such as undercutting [26],
[27] and time-bandit [28] attacks. For resilience against such
attacks, a protocol for the role of LMD GHOST must satisfy
reorg resilience: whenever an honest validator is selected as
the proposer, its proposal block eventually enters all ledgers
output by honest validators, with the proposal’s prefix deter-
mined at the time of its production.

C. Key Techniques of Goldfish
Failure of LC protocols to satisfy reorg resilience and

fast confirmation due to ‘too few votes spread across too
much time’ suggests to employ a committee of voters that
can create a quorum of votes supporting honest proposals
soon after they are broadcast. However, as absolute quorums
are incompatible with liveness under dynamic participation,
rather than using the absolute number of votes, a dynamically
available protocol must use their relative weights to favor
blocks with stronger support during fork choice. Together,
these observations corroborate some structural elements of
LMD GHOST for the design of our new protocol Goldfish:
a slot structure with a proposer and committee that votes,
using relative weights of quorums. To provide the coordination
mechanism that is lacking in LMD GHOST and thereby satisfy
its desiderata, Goldfish employs additional techniques:
Message buffering3 requires each validator to buffer votes
received from the network and carefully time the inclusion of

3The message buffering technique was publicized under the name view-
merge by an author of this work in a blog post [29] dated Oct. 2021. We
have later observed that a similar technique was used in the Highway protocol
in unpublished work [30] in Jan. 2021.

https://www.mevwatch.info/
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these votes into its local view, with priority given to the votes
relayed by the proposer. As a result, in slots with an honest
proposer, all honest validators adopt the view of the proposer
and vote in favor of the proposed block. This ensures that
honest proposals are guaranteed to remain in the canonical
chain, implying reorg resilience. Going back to the balancing
attack example in Sec. I-A, with message buffering, honest
validators will not immediately consider the adversary’s late
released vote for block BR. They will include the late released
vote into their views only after voting for BH, thus preventing
the adversary from swaying them. Since honest proposals
contain fresh transactions and stabilize their prefix, and long
streaks of adversarial proposals are exponentially unlikely,
safety and liveness of the protocol when every validator votes
in every slot follow readily from message buffering.

Vote expiry means that during each time slot, only votes
from the immediately preceding slot influence the protocol’s
behavior.4 Hence, stale votes of offline validators cannot
support blocks conflicting with proposals of future slots, and
the protocol preserves reorg resilience and security under
dynamic participation. Vote expiry also allows the protocol
to subsample small committees of voters per slot from the
full set of validators (for improved communication efficiency),
keeping the number of votes small that affect actions of honest
validators in the short term. Thus, only few protocol messages
need to be buffered and considered by honest validators at any
point in time. Vote expiry is therefore also a prerequisite for
the feasibility and efficiency of message buffering.

D. Properties Achieved by Goldfish

Goldfish achieves all the requirements for LMD GHOST
identified in Sec. I-B: (a) Goldfish is provably secure, i.e.
safe and live, under dynamic participation assuming honest
majority of validators, and network synchrony with adversarial
network delay, up to a known upper bound ∆. (b) Goldfish is
reorg resilient, i.e., honest proposals enter all ledgers output
by honest validators. (c) Goldfish satisfies optimistic fast con-
firmation: under optimistic conditions, i.e., when participation
is high and 3

4 fraction of validators are honest, it confirms
transactions with constant expected latency independent of κ.

Besides the properties above, Goldfish supports subsam-
pling of validators, to improve communication efficiency and
achieve resilience to adaptive corruption. Goldfish periodi-
cally and pseudo-randomly selects a small group of validators
to run the protocol on behalf of the whole validator set. This
results in a considerably lower communication overhead and
allows for a large validator set. Furthermore, the selected
validators send only a single protocol message. Thus, the
protocol satisfies player-replaceability [31], [32] and is secure
against adaptive adversaries, which can corrupt validators
during protocol execution.

As desired of LMD GHOST (Fig. 1), Goldfish is also
composable with finality and accountability gadgets such as
[4], [6], [13], [14]. The goal of these gadgets is to checkpoint

4Alleged forgetfulness of its animal namesake inspired Goldfish’s name.

blocks within the confirmed blockchain such that these blocks
and their prefixes remain safe under network partitions. The
composite protocol (cf. Fig. 4) can achieve the ebb-and-flow
consensus formulation [4], [6] desired of Ethereum’s beacon
chain, which is to produce an available full ledger that is
secure under dynamic participation, and a prefix ledger that is
accountably secure under network partition.

Goldfish is intentionally simple, and similar to LMD
GHOST as currently deployed. Moreover, message buffering
and vote expiry can be realized with modest changes to the
vote accounting logic of LMD GHOST. Requiring only modest
implementation changes, Goldfish can thus serve as a drop-
in replacement for LMD GHOST and is a credible candidate
under consideration for a future upgrade of Ethereum consen-
sus. Given the earlier attacks on variants of LMD GHOST,
Goldfish is the first positive result with security proof for
a close variant, strengthening the confidence in this family
of protocols. Simplicity of Goldfish also makes it a good
pedagogical example as a feature-rich consensus protocol for
synchronous networks under dynamic participation.

E. Related Works

For Goldfish, we consider the sleepy model [19] under
synchrony. The first secure consensus protocol for the sleepy
model [19] (dynamic availability) was Nakamoto’s LC proto-
col, first based on proof-of-work (PoW) in Bitcoin [41], [42],
and subsequently on PoS in Ouroboros [20]–[22] and Sleepy
Consensus/Snow White [19], [23] (see Tab. I for a comparison
of Goldfish with related works). Parallel composition of LC
protocol instances was suggested in [33], [34] to overcome
the scaling of LC protocols’ confirmation latency with the
security parameter κ. For the same goal, Thunderella [35]
proposed combining an asynchronous protocol achieving opti-
mistic fast confirmation with a slow LC protocol for when the
adversarial fraction is high. However, as observed in Sec. I-B,
LC protocols and Thunderella that builds on a LC protocol
are not reorg-resilient. Moreover, under optimistic conditions,
Thunderella recovers fast confirmation only after a period of
LC confirmation delay, whereas Goldfish can instantaneously
start fast-confirming blocks under optimistic conditions.

Many classical PBFT-like consensus protocols [15], [17],
[18] have constant (expected) confirmation latency and can
be reorg resilient, but do not tolerate dynamic participation.
Highway [30] enables confirming blocks using different abso-
lute quorum sizes; however it does not support dynamic par-
ticipation. An early ‘classical’ BFT protocol for a model with
unknown (but static) participation is due to Khanchandani and
Wattenhofer [36], [43]. A subsequent protocol by Goyal et al.
[37] supports dynamic participation with confirmation latency
independent of the participation level, but still linear in the
security parameter κ [40]. Confirmation latency independent
of the security parameter is achieved in the permissionless
PoW setting with omission faults by [44].

A recent work by Momose and Ren [40] presents the first
permissioned/PoS protocol that supports dynamic participa-
tion with confirmation latency independent of the security
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TABLE I
COMPARISON OF GOLDFISH WITH RELATED WORKS REGARDING KEY DESIDERATA. OPTIMISTIC (‘opt.’) FAST CONFIRMATION REQUIRES HIGH

PARTICIPATION AND LESS THAN 1
4

ADVERSARIAL FRACTION. DYNAMIC PARTICIPATION ‘✓ (slow)’ INDICATES THE PROTOCOL REMAINS LIVE ONLY
UNDER SLOW FLUCTUATIONS IN PARTICIPATION. A NUMBER NEXT TO ‘✓’ FOR FAST CONFIRMATION DENOTES THE MINIMUM CONFIRMATION LATENCY.

RESPONSIVE (‘resp.’) CONFIRMATION MEANS WITH DELAY OF THE ACTUAL NETWORK DELAY RATHER THAN DELAY BOUND ∆.

LC [22]
[23], [33], [34]

Thunderella
[35]

PBFT-like prot.
[15]–[18]

Highway
[30]

Khanchandani
et al. [36]

Goyal
et al. [37]

Malkhi et al.
[38], [39]

Momose
et al. [40]

Goldfish
(this work)

Dynamic participation ✓ ✓ (slow) ✗ ✗ ✓ (slow) ✓ ✓ ✓ ✓
Reorg resilience ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Adversarial resilience 1/2 1/2 1/3 flexible 1/3 1/2 1/3 1/2 1/2
Fast confirmation ✗ opt. (resp.) ✓ (resp.) ✓ ✓ ✗ ✓ (3∆) ✓ (37∆) opt. (4∆)

parameter and participation level. Whereas [40] ensures fast
confirmation under all validator fluctuations with adversarial
resilience 1

2 , its confirmation latency is 37∆, much larger
than the latency of Goldfish (4∆) under optimistic conditions.
In the contemporary but independent work [38], [39], the
prerequisites for liveness were relaxed and latency was im-
proved to 3∆, at the expense of reduced adversarial resilience
(from 1

2 down to 1
3 ). By using authenticated channels, these

works maintain security with 1
3 resilience under all types of

validator fluctuations, even when the number of adversarial
validators goes down (all prior dynamically available PoS
protocols assume constant or increasing number of adversarial
validators). However, the assumption of authenticated channels
to support ‘un-corruption’ or ‘sleeping adversary nodes’ is not
practical in the semi-permissionless model of Ethereum.

Latest works [45], [46] retain 1
2 resilience while supporting

faster confirmation and participation fluctuation than [40].

F. Follow-Up Works & Adoption

A challenge that Goldfish shares with other reorg-resilient
fast-confirming dynamically-available protocols (e.g., [39],
[40]), is that even short periods of asynchrony can have an
outsize impact on security. In Goldfish, this is due to vote
expiry: if new votes are not received timely to replace expiring
ones, blocks can be reorged (up to the latest checkpoint, if
used with a finality/accountability gadget). A Goldfish variant
in a follow-up work [47] addresses this issue, by trading off
a longer vote expiry period for a less dynamic participation
model. In turn, the current candidate protocol [48] to provide
single-slot finality for Ethereum is based on this protocol.

G. Outline

We recapitulate the model of synchronous networks with
dynamic participation and asynchronous periods in Sec. II,
before describing our basic Goldfish protocol in Sec. III, and
its optimistic fast confirmation rule in Sec. IV. We prove the
security properties in Sec. V. We conclude with a discussion
of implementation aspects and experimental results in Sec. VI.

II. MODEL AND PRELIMINARIES

We review cryptographic primitives, how to model environ-
ment and adversary, and the consensus security desiderata.

A. Preliminaries
1) Security parameters: We denote by λ and κ the security

parameters associated with the cryptographic primitives em-
ployed by Goldfish, and with Goldfish itself, respectively.5

We say that an event happens with probability negligible in a
security parameter µ, denoted by negl(µ), if its probability is
o(1/µd) for all d > 0. Overall, we say that an event happens
with overwhelming probability (w.o.p.) if it happens except
with probability (w.p.) negl(κ) + negl(λ).

2) Digital signatures:

Definition 1 (Informal, cf. [49], [50]). A signature scheme
Sig = (Gen,Sign,Verify) consists of probabilistic poly-time
(PPT) algorithms so that:
• (ssk, spk)← Sig.Gen(1λ) creates a secret/public key pair.
• σ ← Sig.Sign(ssk,m) creates a signature on a message.
• {0, 1} ← Sig.Verify(spk,m, σ) verifies a signature.
• Correctness: With overwhelming probability, for all mes-

sages, Sig.Verify(spk,m,Sig.Sign(ssk,m)) = 1.
• Security (existential unforgeability): An adversary with

access to spk and to a signing oracle Sig.Sign(ssk, .) cannot
produce a valid (m,σ) other than via the oracle.

3) Verifiable random functions: A verifiable random func-
tion (VRF) [51] is used for leader election and subsampling
of the validators within the Goldfish protocol.

Definition 2 (Informal, cf. [21, Sec. 3.2, Fig. 2], [32],
[52]). A verifiable random function (VRF) scheme Vrf =
(Gen,Prove,Verify) consists of PPT algorithms so that:
• (vsk, vpk)← Vrf.Gen(1λ) samples a VRF with associated

secret/public key pair for evaluation/verification.
• (y, π)← Vrf.Eval(vsk, x) obtains the output y of the VRF

at input x, and the evaluation proof π.
• {0, 1} ← Vrf.Verify(vpk, x, (y, π)) verifies an evaluation.
• Correctness: With overwhelming probability, for all inputs,
Vrf.Verify(vpk, x,Vrf.Eval(vsk, x)) = 1.

• Uniqueness: Per input x, there is only one output y: if
Vrf.Verify(vpk, x, (y, π)) = 1 for (y, π) = (y1, π1) and
(y, π) = (y2, π2), then y1 = y2.

• ‘Pseudorandomness’: Conceptually, the VRF behaves like
a random oracle that is unpredictable (i.e., without knowl-
edge of vsk, the VRF output cannot be distinguished from

5The parameter κ with which to control Goldfish’s consensus security
failure probability is its (slow-path) confirmation latency, cf. Alg. 1, l. 29.
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a random string) and verifiable (i.e., given vpk, an alleged
output of the VRF can be verified). For a formal definition,
see [21, Sec. 3.2, Fig. 2].

B. Model

1) Validators: Goldfish is run among n validators, with
identities id ∈ [n] ≜ {1, ..., n}. Each validator id generates a
secret/public key pair (sskid, spkid) and (vskid, vpkid) for the
signature and the VRF scheme, respectively. The public keys
are known to all validators (public-key infrastructure, PKI).

Goldfish is designed to be used in the proof-of-stake setting.
As is customary in the security analysis of PoS protocols [19],
[20], we analyze Goldfish in the static stake setting, where
each validator represents a protocol participant controlling unit
stake6. Once proven secure under static stake, Goldfish can
support dynamic stake via reconfiguration schemes [21], [23].

2) Environment and adversary: Time is divided into dis-
crete rounds and the validators have synchronized clocks.7

Validators receive transactions (txs) from the environment,
and continuously output transaction ledgers to it (chidr for
validator id and round r). The environment allows validators
to broadcast messages to each other. The adversary is a
probabilistic poly-time (PPT) algorithm that can leverage three
aspects of the model (corruption, sleepiness, and network
delay) in its attempt to undermine consensus. We first discuss
these three aspects, and then the limits of the adversary.

3) Corruption: The adversary chooses f validators to cor-
rupt (adaptively, subject to constraints detailed in Sec. II-B6),
hereafter called adversarial validators (non-corrupt validators
are honest). The internal state of corrupted validators is handed
over to the adversary, which can then make them deviate from
the protocol in arbitrary and coordinated fashion (Byzantine
faults) for the remainder of the execution (permanent corrup-
tion). We define the adversarial fraction β ≜ f/n.

4) Sleepiness: The adversary decides for each round and
each honest validator whether it is asleep or not. Asleep
validators do not execute the protocol (temporary crash faults).
Messages delivered to an asleep validator get picked up by it
only once the validator is no longer asleep. When a validator
stops being asleep, it becomes dreamy. During this phase, it
joins the protocol, usually over multiple rounds, using a special
joining procedure specified by the protocol. Upon completion
of this procedure, the honest validator becomes awake and
then follows the ‘standard path’ of the protocol. Adversarial
validators are always awake. The number of awake validators
at any round is bounded below by a constant n0 > 0.

5) Network delay: Messages sent between validators are
delivered with an adversarially determined delay that can differ
for each recipient. Upon picking up messages (once no longer
asleep after delivery), an honest validator re-broadcasts them.

6Participants with large amount of stake manifest as multiple unit-stake
validators controlled by the same entity. Indeed, in Ethereum, each unit stake
of 32 ETH corresponds to one validator [53].

7Bounded clock offsets can be lumped into the subsequently discussed
network delay upper bound ∆.

6) Adversary limits: A partially synchronous network in
the sleepy model [4] has a global stabilization time (GST),
a global awake time (GAT), and a delay upper-bound ∆.
GST and GAT are constants unknown to the honest validators
chosen adaptively by the adversary, i.e., as causal functions of
the execution, whereas ∆ is a constant known to the valida-
tors. Before GST, message delays are arbitrarily adversarial
(asynchronous). After GST, message delays are subject to the
delay upper bound ∆ (synchronous). Similarly, before GAT,
the adversary can set the sleep schedule for honest validators.
After GAT, all honest validators are awake.

Message delays and sleeping schedule are chosen adap-
tively. For corruption, Goldfish supports two assumptions.
Either, we require mildly adaptive corruption, where it takes
3∆ rounds for corruption to take effect, together with the
constraint that for every round r, the number of adversarial
validators at round r must be less than the number of honest
awake validators at round r − 3∆. Or, analogously to earlier
works [21], [22], [32], through the use of key evolving signa-
ture and VRF schemes, we allow for fully adaptive corruption,
together with the constraint that for every round r, the number
of adversarial validators at round r must be less than the
number of honest awake validators at round r. The precise
technical assumptions are stated by Def. 5.

C. Consensus Security Desiderata

1) Security: We next formalize the notion of security after
a certain time. Security is parameterized by κ, which, in the
context of longest-chain protocols and Goldfish, determines
the confirmation delay for transactions (i.e., these protocols
come with a security-latency trade-off). In our analysis, we
consider a finite time horizon Thor that is polynomial in κ. We
denote a consensus protocol’s output ledger, e.g., the Goldfish
ledger, in the view of a validator i at round r by chir. We write
ch1 ⪯ ch2 to express that the ledger ch1 is a prefix of (or the
same as) ledger ch2.

Definition 3 (Security). Let Tconf be a polynomial function
of the security parameter κ. We say that a state machine
replication protocol that outputs a ledger ch is secure after
time Tsec, and has transaction confirmation time Tconf , iff:

• Safety: For any two rounds r, r′ ≥ Tsec, and any two honest
validators i, j awake at rounds r and r′, respectively, either
chir ⪯ chjr′ or chjr′ ⪯ chir.

• Liveness: If a transaction has been received by some awake
honest validator by some round r ≥ Tsec, then for any round
r′ ≥ r + Tconf and any honest validator i awake at round
r′, the transaction will be included in chir′ .

The protocol satisfies f̄ -safety (f̄ -liveness) if it satisfies
safety (liveness) as long as the number of adversarial validators
f stays below f̄ for all rounds. Similarly, the protocol satisfies
1/2-safety (1/2-liveness) if it satisfies safety (liveness) if the
fraction of adversarial validators β is bounded above away
from 1/2 for all rounds.
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2) Accountable safety: Accountable safety provides a trust-
minimizing strengthening of safety, with the aim to hold
validators accountable for their actions. In case of a safety
violation in a protocol with accountable safety resilience
f̄ > 0, one can, after collecting evidence from sufficiently
many honest validators, generate cryptographic proof that
identifies f̄ adversarial validators as protocol violators [6],
[54]. By definition, the proof does not falsely accuse any
honest validator, except with negligible probability.

3) The ebb-and-flow formulation: As Goldfish outputs a
dynamically available ledger (i.e., live under dynamic par-
ticipation), by the availability-accountability dilemma [6], its
output ledger cannot satisfy accountable safety. Similarly, it
cannot satisfy safety under a partially synchronous network
(i.e., finality), by an analogue of the CAP theorem [55], [56].
However, Goldfish can be composed with an accountability
gadget in order to obtain a separate prefix ledger that at-
tains accountable safety under partial synchrony while staying
consistent with the output of Goldfish [6]. Denoting the
output of Goldfish as the available ledger chava and that
of the accountability gadget as the accountable final prefix
ledger chacc, the desiderata are captured in the ebb-and-flow
formulation [4]:

Definition 4 (Ebb-and-flow formulation [4], [6]).
1) (P1: Accountability and finality) Under a partially syn-

chronous network in the sleepy model, the accountable
final prefix ledger chacc has accountable safety resilience
n/3 at all times, (except w.p. negl(λ)), and there exists
a constant C such that chacc provides n/3-liveness with
confirmation time Tconf after round max(GST,GAT) +
C · κ (w.o.p.).

2) (P2: Dynamic availability) Under a synchronous network
in the sleepy model (i.e., for GST = 0), the available
ledger chava provides 1/2-safety and 1/2-liveness at all
times (w.o.p.).

3) (Prefix) For each honest id and round r, chidacc,r ⪯ chidava,r.

The accountable final prefix ledger chacc can experience
liveness violations before GST or GAT, due to lack of timely
communication among sufficiently many honest validators,
but chacc remains accountably safe throughout. The available
ledger chava can experience safety violations before GST,
but remains live throughout. When conditions improve, chacc
catches up with chava. This ebb-and-flow behavior lends the
formulation its name. Providing the irreconcilable properties in
two separate but consistent ledgers provides a user-dependent
resolution to the CAP theorem [55], [56].

III. PROTOCOL

We first describe the Goldfish protocol that is being
proposed as a drop-in replacement for LMD GHOST in
Ethereum’s beacon chain. We then describe how Goldfish can
be securely integrated with accountability and finality gadgets.

A. The Goldfish Protocol

The protocol (cf. Alg. 1) proceeds in slots of 3∆ rounds.

1) VRF-based lotteries: The VRF PKI enables crypto-
graphic lotteries. A lottery (tag, thr) is defined by a fixed
tag and threshold thr ∈ [0, 1]. Each validator id receives for
each time slot t a lottery ticket (id, t). To open the ticket, id
computes

ϱ ≜ (y, π)← Open
(tag,thr)
id (t) ≜ Vrf.Eval(vskid, tag ∥ t). (1)

An opened ticket with opening ϱis winning for (tag, thr) iff:

IsWinning(tag,thr)((id, t), ϱ)

≜ (ϱ.y ≤ thr 2λ) ∧ Vrf.Verify(vpkid, tag ∥ t, (ϱ.y, ϱ.π)). (2)

Finally, winning opened tickets are totally ordered by increas-
ing precedence, Prio(ϱ) ≜ ϱ.y

2λ
∈ [0, 1].

2) Data structures: Blocks and votes are central to Gold-
fish. A block B ≜ (block, (id, t), ϱ, h, txs, σ) consists of
tag ‘block’, ticket (id, t) and opening ϱ to the (block, thrb)
block production lottery, hash h committing to the new block’s
parent block and transactions txs (as block ‘content’), and
signature σ binding together block production opportunity
and the block’s content. A special genesis block B0 ≜
(block, (⊥, 0),⊥,⊥, ∅,⊥) is known to all validators.

A block B is valid iff:

IsValid(B0) ≜ 1 (3)

IsValid(B) ≜ IsWinning(block,thrb)((B.id, B.t), B.ϱ)

∧ Sig.Verify(spkB.id, block ∥B.h ∥B.txs, B.σ)

∧ IsValid(∗[B.h]) ∧ (B.t > ∗[B.h].t). (4)

Here, ∗[B.h] means the parent block that B.h commits to
(namely, ∗[x] represents the block committed by hash x). The
context within which these references get resolved is detailed
with the different network message types below.

A vote v ≜ (vote, (id, t), ϱ, h, σ) consists of tag ‘vote’,
ticket (id, t) and opening ϱ to the (vote, thrv) voting lottery,
hash h committing to the block voted for (as vote ‘content’),
and signature σ binding together voting opportunity and the
vote’s content. Every vote v is tied to its time slot v.t via the
lottery ticket (id, t). A vote v is valid iff:

IsValid(v) ≜ IsWinning(vote,thrv)((v.id, v.t), v.ϱ)

∧ Sig.Verify(spkv.id, vote ∥ v.h, v.σ)
∧ IsValid(∗[v.h]) ∧ (v.t ≥ ∗[v.h].t). (5)

We call block-vote-set (short bvset) a set of blocks and votes.
Commitments to blocks for the purpose of the references v.h
or B.h are computed using H(.). For a bvset T we denote by
T [h] the block B ∈ T with H(B) = h, and ⊥ if non-existent.

In Goldfish, votes and blocks are encapsulated and ex-
changed in two network message types, pieces and proposals.
A piece M ≜ (piece, x) consists of tag ‘piece’ and for
payload x either a vote or a block, and is valid iff:

IsValid(M) ≜ IsValid(M.x). (6)

Pieces are used to propagate blocks and votes and abstract
Ethereum’s peer-to-peer broadcast object propagation. In de-
termining a piece’s validity, block references ∗[.] are resolved
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Algorithm 1 Goldfish executed by validator id with signa-
ture secret/public key (sskid, spkid), VRF secret/public key
(vskid, vpkid), bvtree T and buffer B. Here, notation ‘at’
means executing the code block at the specified round, chid

denotes the Goldfish chain momentarily confirmed at id. For
GHOST-EPH(T , t), see Alg. 2.

1: (B, T , t)← (∅, ∅, 0) ▷ Initialize buffer B and bvtree T
2: ▷ At all rounds, only valid messages not from later than t are picked up from the

network, re-broadcast, and put into B as specified in Sec. III-A4
3: for t = 1, 2, . . . do ▷ Slots
4: at 3∆t do ▷ PROPOSE phase
5: ϱ← Open

(block,thrb)

id (t) ▷ Check if eligible to propose
6: if IsWinning(block,thrb)((id, t), ϱ) then
7: T ′ ← MERGE(T ,B) ▷ Bvtree to propose
8: B ← GHOST-EPH(T ′, t− 1) ▷ Parent block
9: σ ← Sig.Sign(sskid, block ∥H(B) ∥ txs)

10: B ← (block, (id, t), ϱ,H(B), txs, σ) ▷ New block
11: σ ← Sig.Sign(sskid, propose ∥ T ′ ∥B)
12: Broadcast (propose, T ′, B, σ) ▷ Propose
13: at 3∆t + ∆ do ▷ VOTE phase
14: ▷ Filter for proposals from slot t
15: B′ ← {(T ′, B) | (propose, T ′, B, .) ∈ B ∧ B.t = t}
16: ▷ Identify the leader of slot t and its proposal
17: (T ′∗, B∗)← argmin(T ′,B)∈B′ Prio(B.ϱ)
18: ▷ Merge own buffer and that of the leader into own bvtree
19: T ← MERGE(T , T ′∗ ∪ {B∗})
20: ϱ← Open

(vote,thrv)
id (t) ▷ Check if eligible to vote

21: if IsWinning(vote,thrv)((id, t), ϱ) then
22: B ← GHOST-EPH(T , t− 1) ▷ Target block
23: σ ← Sig.Sign(sskid, vote ∥H(B))
24: v ← (vote, (id, t), ϱ,H(B), σ) ▷ New vote
25: Broadcast (piece, v) ▷ Vote
26: at 3∆t + 2∆ do ▷ CONFIRM phase
27: T ← MERGE(T ,B) ▷ Merge buffer and bvtree
28: B ← GHOST-EPH(T , t) ▷ Canonical GHOST-Eph chain
29: chid ← B⌈κ ▷ Output ledger: B’s κ-deep prefix in terms of slots

with respect to the bvset T each validator maintains as part
of its state, see Sec. III-A3. If a validator does not have any
matching block in T , it cannot currently determine the piece’s
validity. It then keeps the piece ‘in limbo’ for re-examination
until its (in-)validity is established.8

A proposal P ≜ (propose, T , B, σ) consists of tag
‘propose’, bvset T and block B (as proposal content),
and signature σ tying the proposal to the block production
opportunity of B. Thus, a proposal P is valid iff:

IsValid(P ) ≜ IsValid(P.B) ∧ IsConsistent(P.T ∪ {P.B})
∧ Sig.Verify(spkP.B.id, propose ∥P.T ∥P.B, P.σ)

∧ (∀x ∈ P.T : IsValid(x) ∧ (x.t < P.B.t)) (7)

where IsConsistent(T ) is a predicate that is satisfied on a
bvset T iff B0 ∈ T and for every vote and block in T the
referenced target/parent block is also in T . We call a bvset
T with IsConsistent(T ) a block-vote-tree (short bvtree). In
determining the validity of proposal P , block references ∗[.]
are resolved with respect to P.T .

3) Validator state: Each validator keeps track of the current
time slot t. It also maintains a bvtree T based on which it
takes consensus decisions and actions. Finally, each validator
maintains a buffer B of network messages (i.e., pieces and
proposals) that ‘sits between’ network and consensus protocol.

8Vote expiry (Sec. III-A6) and reorg resilience (Thm. 3) enable timely
garbage collection of pieces with missing referenced blocks.

Algorithm 2 GHOST-Eph fork-choice rule.
1: CHILDREN(T , B) ≜ {B′ ∈ T | B′.h = H(B)}
2: VOTES(T , B, t) ≜ |{id′ | (vote, (id′, t), ., h, .) ∈ T ∧ B ⪯ T [h]}|
3: function GHOST-EPH(T , t)
4: B ← B0 ▷ Start fork-choice at genesis block
5: forever do
6: ▷ Choose the heaviest subtree (breaking ties deterministically) rooted at

one of the children blocks B′ of B, by number of validators that have cast a vote
in slot t for B′ or one of its descendants; B′ = ⊥ if CHILDREN(T , B) = ∅

7: B′ ← argmaxB′∈CHILDREN(T ,B) VOTES(T , B′, t)

8: if B′ = ⊥ then return B
9: B ← B′

Rounds

3∆t

Slot tSlot (t−1)

3∆t+1∆ 3∆t+2∆
3∆(t+1)

Slot t+1

∆ ∆ ∆

Awake validators: merge buffer B into
local bvtree T ; output ledger based on it

C
O

N
FI

R
M

Slot t voters: identify slot leader; merge leader’s proposal’s
bvtree T ′ into local bvtree T ; cast vote based on it

V
O

T
E

Slot t proposers: temporarily merge buffer B and bvtree T
to get T ′; propose merged bvtree T ′ and new block based on it

P
R

O
P

O
S

E

Fig. 3. Throughout the execution, validators buffer received proposals and
pieces, and merge the blocks and votes contained therein into their bvtrees only
as explicitly instructed. Goldfish has time slots of three phases of ∆ rounds
each. Each time slot has proposers (one of which will later be recognized as
the slot’s leader) and a committee of voters. PROPOSE: At the start of a slot,
proposers temporarily merge their buffers into their local bvtrees, and propose
their temporary bvtrees and a new block based on it. VOTE: One-thirds into
a slot, voters identify the slot’s leader’s proposal, merge the proposed bvtree
into their local bvtrees, and cast a vote based on their local bvtrees. CONFIRM:
Two-thirds into a slot, all awake validators merge their buffers into their local
bvtrees, and confirm a ledger based on their local bvtrees.

4) Message handling: Recall that messages are delivered to
validators irrespective of their sleep status. However, validators
pick up delivered messages only once awake. Invalid messages
are discarded. If a piece’s validity cannot be determined due
to missing references, it is held in limbo until its (in-)validity
is determined. Pieces and proposals ‘from the future’ (i.e.,
in time slot t, pieces M with M.x.t > t and proposals P
with P.B.t > t) are also held in limbo. Upon picking up a
valid non-in-limbo message from the network, the validator
re-broadcasts it, and adds it to B. If the message is a proposal
P , the validator also re-broadcasts the blocks and votes in
P.T ∪ {P.B} as pieces, and adds those pieces to its own B.

5) Message buffering: The validator unpacks messages
from B and merges them into T in a way that preserves
IsConsistent(T ). For this purpose, MERGE(T ,B) outputs the
largest bvtree T ′ that is a subset of the union of T and the
pieces in B. Merging of B into T takes place only at carefully
chosen points in time as instructed (Alg. 1, ll. 19, 27). This
message buffering is a key ingredient of Goldfish. First, ∆
rounds into a slot, each awake validator identifies a slot leader
and merges the bvtree proposed by the leader into its bvtree
(Alg. 1, l. 19). Second, 2∆ rounds into a slot, each awake
validator merges its buffer into its bvtree (Alg. 1, l. 27).
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6) Vote expiry: To determine the canonical chain, validators
use the GHOST-Eph fork-choice function with ephemeral
votes (Alg. 2). The function takes a bvtree T and slot t as
input, and finds the canonical GHOST-Eph chain determined
by the votes within T that were cast for slot t. More specifi-
cally, starting at the genesis block, the function iterates over a
sequence of blocks from the bvtree, selecting as the next block
the child of the current block with the maximum number of
validators that have cast a slot t vote for a block within the
child’s subtree. This continues until it reaches a leaf of the
bvtree, and outputs a complete chain from leaf to root. The
fork-choice rule ignores votes from other than slot t in its
decision (votes are ephemeral), lending GHOST-Eph its name.

7) The complete Goldfish protocol: The three phases
(PROPOSE, VOTE, CONFIRM) of each slot t are shown in
Fig. 3. We describe them from the perspective of an awake
honest validator id.

PROPOSE: At round 3∆t, id checks if its lottery ticket (id, t)
is winning for (block, thrb) (Alg. 1, l. 6). If so, id temporarily
merges its bvtree with its buffer (Alg. 1, l. 7), identifies the
GHOST-Eph chain tip using only slot t−1 votes (Alg. 1, l. 8),
and proposes its temporary bvtree and a new block based on
it (Alg. 1, l. 12). Note that in a practical implementation, the
proposals need not contain the whole bvtree, but merely the
votes therein (see Sec. VI).

VOTE: At round 3∆t + ∆, id identifies as leader for
slot t any one of the proposals with smallest precedence
(Alg. 1, l. 17). It merges the leading proposal’s bvtree into
its bvtree T (Alg. 1, l. 19). Validator id then checks if its
lottery ticket (id, t) is winning for (vote, thrv) (Alg. 1, l. 21).
If so, id identifies the GHOST-Eph chain tip using only slot
t− 1 votes (Alg. 1, l. 22), and votes for it (Alg. 1, l. 25).

CONFIRM: At round 3∆t+2∆, id merges its buffer B into
its bvtree T (Alg. 1, l. 27). It then identifies the GHOST-Eph
chain tip using only slot t votes (Alg. 1, l. 28), and outputs
as confirmed ledger chid the transactions of those blocks in
the GHOST-Eph chain that are from slots ≤ t − κ (‘κ-deep
in time’, Alg. 1, l. 29). Since the Goldfish ledger in view of
an awake honest validator id is only updated at this point, we
may view the ledger as indexed by time slot t: chidt .

8) Joining procedure: At each round, each honest validator
is either asleep, dreamy or awake (Sec. II-B4). Once an honest
validator is no longer asleep, it remains dreamy until the
round of the next CONFIRM phase.9 While being dreamy, the
validator does not follow Alg. 1, except for relaying messages.
With the CONFIRM phase, the validator returns to being awake
and fully resumes Alg. 1.

9) Key mechanism of Goldfish: Message buffering ensures
that if in slot t the leading proposal is honest, then all honest
voters in t will vote for the proposed block. This is because
in PROPOSE, the leader’s temporary bvtree is a superset of
all honest validators’ bvtrees, and thus in VOTE all honest
validators adopt that leader’s bvtree. Vote expiry (together

9We assume that messages arrive at validators while asleep (Sec. III-A4).
To allow for extra time to download messages missed during sleep, dreaminess
can be extended accordingly, but should always end at a CONFIRM phase.

txs Goldfish AG/FG
Confirmations

Accountable
final ledger

chacc

Checkpoints

Available
ledger

chava

Fig. 4. An accountability/finality gadget (AG/FG; a.k.a. overlay) checkpoints
decisions of the dynamically available protocol Goldfish (a.k.a. underlay).
A feedback loop ensures that Goldfish respects earlier checkpoints. This
construction satisfies the ebb-and-flow design objective of Ethereum, to
produce an available full ledger that is secure under dynamic participation
of validators, and a prefix ledger that is accountably secure under network
partition [4], [6].

Algorithm 3 GHOST-Eph (cf. Alg. 2) modified (green) to
respect the latest checkpoint B. See Alg. 2 for CHILDREN
and VOTES.

1: function GHOST-EPH(T , t, B)
2: ▷ Start fork-choice from latest checkpoint B
3: forever do
4: ▷ Choose the heaviest subtree rooted (breaking ties deterministically) at

one of the children blocks B′ of B, by number of validators that have cast a vote
in slot t into the subtree rooted at B′; B′ = ⊥ if CHILDREN(T , B) = ∅

5: B′ ← argmaxB′∈CHILDREN(T ,B) VOTES(T , B′, t)

6: if B′ = ⊥ then return B
7: B ← B′

with majority honest validators) ensures that if in slot t all
honest voters have voted into the subtree rooted at some block
B, then all honest voters in slot t + 1 will also vote into
the subtree rooted at B. An inductive argument immediately
yields reorg resilience of Goldfish. Furthermore, w.o.p., every
interval of κ slots has at least one honest leading proposer. The
prefix of that proposal stabilizes (by reorg resilience), and the
proposal includes unconfirmed transactions, leading to safety
and liveness of the κ-deep confirmation rule.

10) Validator replaceability: Due to subsampling, once a
validator takes an action in Goldfish, it does not play any
further role, at least for a long time. As a result, Goldfish sup-
ports player replaceability [31], [32], [57] and can withstand a
mildly adaptive adversary (Sec. II-B6). Analogously to earlier
works [21], [22], [32], [58], fully adaptive corruption can be
allowed through the use of key evolving signature and VRF
schemes. In both cases, the adversary cannot corrupt an honest
validator and make it send conflicting protocol messages ‘fast
enough’ to harm the protocol execution.

B. Goldfish with Accountability Gadgets

For the composition of Goldfish with accountability gadgets
and finality gadgets, we follow the construction of [6], [14]
(Fig. 4, Alg. 4). In this construction, a partially synchronous
accountably-safe consensus protocol such as Streamlet, Ten-
dermint, or HotStuff [16]–[18], [59], with accountable safety
resilience of n/3 out of n validators, is used to determine
checkpoints of Goldfish’s output ledger. To ensure that Gold-
fish respects earlier checkpoints, its fork-choice rule is mod-
ified to respect earlier checkpoint decisions (cf. Alg. 3). The
most recent checkpoint forms the accountably-safe finalized
prefix ledger chacc, while Goldfish’s output forms the dynam-
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Algorithm 4 Composition of Goldfish and accountability
gadget (cf. Fig. 4, [6, Alg. 1]), executed by validator id.
Here, Goldfish (cf. Alg. 1) uses a modified GHOST-Eph rule
(Alg. 3), starting the recursion from the latest checkpoint,
i.e., the last block of chidacc. Throughout, Goldfish maintains
the available chain chidava. RUNACCOUNTABILITYGADGET at-
tempts the next iteration of the gadget, where valid checkpoint
candidates are determined using chidava. Iterations may fail (⊥),
e.g., if the gadget invokes a malicious leader.

1: chidacc ← B0 ▷ ‘Zero-th’ checkpoint: Goldfish’s genesis block
2: for c = 1, 2, . . . do ▷ Checkpoint iterations
3: checkpoint← RUNACCOUNTABILITYGADGET(chidava)
4: if checkpoint ̸= ⊥ then
5: chidacc ← checkpoint ▷ Update latest checkpoint
6: Sleep for Tchkpt rounds

ically available full ledger chava (cf. ebb-and-flow, Def. 4). As
Goldfish now respects checkpoints, chacc ⪯ chava holds.

The full protocol proceeds in checkpointing iterations
(cf. Alg. 4). Iterations may fail, e.g., when the consensus
protocol of the gadget invokes a malicious leader, or during
asynchrony before GST, or while many validators are asleep
before GAT. Successful checkpoint iterations are separated by
at least Tchkpt rounds of inactivity of the gadget. In App. F,
we apply the techniques of earlier analyses [6], [14] to the
combination of Goldfish and the accountability gadget, to
show how to tune Tchkpt as a function of the network delay
∆ and the confirmation parameter κ, and to formally prove
that the combination satisfies the ebb-and-flow desiderata.

IV. OPTIMISTIC FAST CONFIRMATIONS

The Goldfish protocol described in Sec. III-A has reorg
resilience as an advantage over protocols which use blocks
as votes (e.g., longest chain [19], [20], [41], GHOST [1]).
On the other hand, Goldfish’s κ-slots deep confirmation rule,
which leads to Θ(κ) latency in both the worst and the expected
case, falls behind many propose-and-vote style protocols that
achieve constant expected latency (e.g., PBFT [15], Tender-
mint [16], HotStuff [17], Streamlet [18]). By introducing a
fast confirmation rule and adding a FAST-CONFIRM phase to
the Goldfish slot structure, we can achieve constant expected
confirmation latency under optimistic conditions, i.e., under
high participation and honest supermajority (Fig. 5, Alg. 5).
In particular, validators can now confirm blocks proposed by
honest leaders immediately, in the FAST-CONFIRM phase of
the slot, under optimistic conditions. The κ-deep confirmation
rule (Alg. 4, l. 29), to which we from now on refer as standard
confirmation rule, still applies and guarantees liveness when
optimistic conditions do not hold.

a) Fast confirmation phase: Slots now consist of 4∆
rounds and four phases (PROPOSE, VOTE, FAST-CONFIRM,
CONFIRM), with the addition of phase FAST-CONFIRM at
round 4∆t+ 2∆ (Fig. 5, Alg. 5).

In FAST-CONFIRM, a validator id first merges its buffer into
its bvtree T (Alg. 5, l. 9). It then marks a block B as fast
confirmed if |VOTES(T , B, t)| ≥ n( 34 + ϵ

2 )thrv for some ϵ >

Algorithm 5 Goldfish executed by validator id, using
both (optimistic) fast confirmation and standard confirmation
(cf. Alg. 1). See Alg. 2 for VOTES.

1: (B, T , t)← (∅, ∅, 0) ▷ Initialize buffer B and bvtree T
2: ▷ At all rounds, only valid messages not from later than t are picked up from the

network, re-broadcast, and put into B as specified in Sec. III-A4
3: for t = 1, 2, . . . do ▷ Slots
4: at 4∆t do ▷ PROPOSE phase
5: Same as PROPOSE phase in Alg. 1
6: at 4∆t + ∆ do ▷ VOTE phase
7: Same as VOTE phase in Alg. 1
8: at 4∆t + 2∆ do ▷ FAST-CONFIRM phase
9: T ← MERGE(T ,B) ▷ Merge buffer and bvtree

10: chidfast ← argmax
B∈T : |VOTES(T ,B,t)|≥n( 3

4
+ ϵ

2
)thrv
|B|

11: at 4∆t + 3∆ do ▷ CONFIRM phase
12: T ← MERGE(T ,B) ▷ Merge buffer and bvtree
13: B ← GHOST-EPH(T , t) ▷ Canonical GHOST-Eph chain
14: chid ← argmax

ch∈{chid
fast

,B⌈κ} |ch| ▷ Output Goldfish ledger

Rounds

4∆t

Slot t

4∆t+1∆ 4∆t+2∆ 4∆t+3∆
4∆(t+1)

∆ ∆ ∆ ∆

Awake validators: merge buffer B into
local bvtree T ; output ledger based on it

Awake validators: merge buffer B into local
bvtree T ; run optimistic fast confirmation rule

FA
S

T-
C

O
N

F.

Slot t voters: identify slot leader; merge leader’s proposal’s
bvtree T ′ into local bvtree T ; cast vote based on it

Slot t proposers: temporarily merge buffer B and bvtree T
to get T ′; propose merged bvtree T ′ and new block based on it

Fig. 5. To enable optimistic fast confirmations, a FAST-CONFIRM phase (blue)
of ∆ rounds is inserted between VOTE and CONFIRM phase (cf. Fig. 3). FAST-
CONFIRM: Two-fourth into a slot, all awake validators merge their buffers
into their local bvtrees, and run the optimistic fast confirmation rule based on
their local bvtrees.

0,10 and updates chidfast to the highest fast confirmed block
(Alg. 5, l. 10).

The other three phases are unchanged, other than for how
the Goldfish ledger is output in CONFIRM (Alg. 5, l. 14).
Validator id outputs the highest of chidfast and the κ-deep prefix
B⌈κ, where B is the tip of its canonical chain GHOST-Eph
(cf. Alg. 4, l. 29, where B⌈κ is output instead). For simplicity,
we have omitted in Alg. 5 the mechanism to avoid temporary
ledger ‘roll back’ (to ensure ∀id, t′ ≥ t : chidt ⪯ chidt′ ).

The reason for the extra ∆ rounds, as opposed to just
running the fast confirmation rule in the CONFIRM phase, is
to guarantee that, whenever an honest validator fast confirms
a block, all honest awake validators see the votes responsible
for fast confirmation by the time their bvtrees are updated for
the last time in the given slot, at round 4∆t+3∆. This ensures
that the fast confirmed block eventually enters the Goldfish
ledger in the view of all honest awake validators (Thm. 5),
which in turn implies that fast confirmations are safe (Thm. 6).
The security of the protocol with the fast confirmation rule is
proven in Sec. V-C.

b) Joining procedure: The joining protocol is conceptu-
ally unchanged. Once a validator stops being asleep, it remains

10The parameter ϵ > 0 can be made arbitrarily small in the limit n → ∞.
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dreamy until the next CONFIRM phase, at which point it turns
fully awake and resumes protocol execution by merging its
buffer with its bvtrees 3∆ rounds into a slot (phase CONFIRM,
cf. Alg. 5, l. 12).

c) Composition with accountability and finality gadgets:
When composing accountability gadgets and Goldfish with
the fast confirmation rule, we stipulate that the validators input
to the gadget only those blocks confirmed via the standard
confirmation rule (GHOST-EPH(T , t)⌈κ) in their view. This
is necessary to ensure that all honest validators promptly agree
on the confirmation status of the blocks input to the gadget for
checkpointing, which in turn is a prerequisite for the liveness
of the accountable final prefix ledger chacc. Otherwise, it is
possible that a block fast confirmed by one honest validator
might not become confirmed in the view of another honest
validator until after κ slots, stalling the checkpointing process
of the accountability gadget for that block. Thus, the fast
confirmation rule is primarily for reducing the latency of the
available ledger chava, and does not affect the time for a block
to enter the accountable final prefix ledger chacc.

d) Trading-off safety and liveness resiliences: With fast
confirmation, Goldfish has two ‘parallel’ confirmation rules,
‘fast’ and ‘standard’. The overall protocol is safe only when
both rules are safe, and live when one of the rules is live. To
match the 1

2 -safety of standard confirmation, the ‘quorum’ for
fast confirmation was chosen as n( 34 +

ϵ
2 )thrv votes. With this

parameterization, however, Goldfish cannot guarantee any fast
confirmation in the presence of n

4 +
ϵ
2 adversarial validators. It

is possible to vary the quorum to trade-off safety and liveness
of the fast path (and thereby of the overall protocol). With
a quorum of n( 23 + ϵ

2 )thrv for fast confirmation, Goldfish
satisfies safety and liveness with Tconf = Θ(κ) if β < 1

3 −
3
2ϵ,

and liveness with constant expected confirmation time if all
validators are awake.

V. ANALYSIS

A. Goldfish

In the subsequent analysis, a valid proposal P
(cf. Sec. III-A2) is for slot t iff t = P.B.t, and it has
precedence p iff p = Prio(P.B.ρ). A validator id is eligible
to propose at slot t if its ticket (id, t) is winning for the
lottery (block, thrb). Similarly, a validator id is eligible to
vote at slot t if its ticket (id, t) is winning for the lottery
(vote, thrv). Recall that awake honest validators consider
the proposal with lowest precendence received by 3∆t + ∆
the leader of slot t (Alg. 1, l. 16). We hereafter use blocks
and the sequences of blocks they induce via the parent-block
chain relation interchangeably. A block B1 is a descendant
(resp., ancestor) of block B2 iff the underlying chains satisfy
B2 ⪯ B1 (resp., B1 ⪯ B2). Two blocks B1, B2 are conflicting
if B1 is neither an ancestor nor a descendant of B2.

Let Ar and Hr denote the number of adversarial and honest
validators awake at round r, respectively. Our security theo-
rems hold for compliant executions that satisfy the relations
on Ar and Hr laid out in Sec. II-B6:

Definition 5. In the absence of key-evolving cryptographic
primitives (signatures and VRFs), an execution is (γ, τ)-
compliant iff:

• ∀r : Ar

Ar+Hr−τ
≤ β < γ − ϵ.

• The corruption is mildly adaptive: If the adversary decides
to corrupt an honest validator at round r, then the validator
becomes adversarial no earlier than at round r + τ .

With key-evolving primitives, an execution is compliant iff:

• ∀r : Ar

Ar+Hr
≤ β < γ − ϵ.

Moreover, in both cases, Hr > γn0 = Θ(κ) for all rounds r,
and the time horizon Thor of the protocol execution satisfies
Thor = poly(κ).

Intuitively, in compliant executions, honest voters outnum-
ber adversarial voters (as long as votes have not yet expired);
and every long interval of slots contains at least one slot in
which all honest validators recognize the same honest validator
as the slot leader.

Lemma 1. Suppose the Goldfish execution is ( 12 , 3∆)-
compliant. Then, w.o.p., for every slot t, adversarial validators
at round 3∆(t+1)+∆ eligible to vote at slot t are less than
honest validators awake at round 3∆t + ∆ and eligible to
vote at slot t.11 Also w.o.p., all slot intervals of length κ have
at least one slot t where an honest validator is recognized
as the slot t leader by all awake honest validators at round
3∆t+∆.12

Lem. 1’s proof uses correctness, uniqueness and pseudoran-
domness of VRF-based lotteries along with Chernoff bounds.
It is omitted for brevity and can be found in App. E.

The main security results are as follows:

Theorem 1. Suppose a ( 12 , 3∆)-compliant execution of Gold-
fish in the synchronous sleepy network model of Sec. II-B, and
validator id with proposal P ∗ is recognized as the leader of
a slot t by all awake honest validators at round 3∆t + ∆
(Alg. 1, l. 16). Then, w.o.p., P ∗.B ⪯ B for any B identified
in Alg. 1, ll. 8, 22, 28 by any awake honest validator in any
round r ≥ 3∆t+ 2∆.

Theorem 2 (Security). Suppose a ( 12 , 3∆)-compliant execu-
tion of Goldfish in the synchronous sleepy network model.
Then, w.o.p., Goldfish is secure with transaction confirmation
time Tconf = 2κ+ 2 slots.

Theorem 3 (Reorg resilience). Suppose a ( 12 , 3∆)-compliant
execution of Goldfish in the synchronous sleepy network
model, and validator id with proposal P ∗ is recognized as

11For concreteness, the Ethereum validator set has over 400,000 validators
as of 5-Sept-2022. Suppose we subsample with thrb = 1

32
, i.e., with

committee size unchanged in expectation, and that ϵ = 0.05, i.e., that 55%
of validators are assumed to be honest. Then, the probability of an adversarial
majority at a single slot (assuming perfect randomness) is roughly 4 · 10−15.
There are 2628000 slots in a year, so the expected number of years before
seeing an adversarial majority at a slot is 4·1015

2628000
≈ 107 years.

12The proposer-lottery threshold thrb can be tuned following Algorand [31,
Appendix-B.1] so that each slot has at least one eligible proposer.
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the leader of a slot t by all awake honest validators at round
3∆t+∆ (Alg. 1, l. 16). Then, w.o.p.,

∃r′ : ∀r ≥ r′ : ∀id : P ∗.B ⪯ chidr , (8)

where chidr denotes Goldfish’s ledger at validator id and round
r. In particular, r′ = 3∆(t+ κ) + 2∆ satisfies the above.

We first prove Thms. 2 and 3 from Thm. 1 and Lem. 1.
Then, we prove Thm. 1 from Lems. 1, 2 and 3.

Proof of Thm. 2. By Lem. 1, w.o.p., all slot intervals of length
κ have at least one slot t, where an honest validator with
proposal P ∗ is recognized as the slot leader by all awake
honest validators at round 3∆t+∆, and, by Thm. 1, P ∗.B ⪯
B for any B identified in Alg. 1, ll. 8, 22, 28 by any awake
honest validator in any r ≥ 3∆t+ 2∆.

Liveness: A transaction tx is input to an honest validator
at some round r. At most 6∆ rounds (i.e., 2 slots) later the
transaction is propagated to all honest validators and we have
reached the beginning of a slot t0. For the next κ slots all
honest proposers will include tx if they extend a tip whose
chain does not include tx yet. By the earlier argument, one
of these proposals will be an ancestor of any B identified in
Alg. 1, ll. 8, 22, 28 by any awake honest validator in any r′ ≥
3∆(t0+κ)+2∆. From κ slots later onwards, all awake honest
validators include the transaction in their ledger (Alg. 1, l. 29).
Thus, Goldfish is live with Tconf = 2κ+ 2 slots.

Safety: Pick any two honest validators id1 and id2, and two
slots t1 and t2 ≥ t1. By the earlier argument, there exists
a block B′ proposed (by an honest validator) at some slot
t′ ∈ [t1 − κ, t1] such that B′ ⪯ B for any B identified in
Alg. 1, ll. 8, 22, 28 by any awake honest validator in any
r′ ≥ 3∆t′+2∆. As t′ ≥ t1−κ but by Goldfish’s confirmation
rule blocks in chid1t1 are from no later than t1 − κ, chid1t1 ⪯ B.
Similarly, if t′ ≥ t2−κ, then chid2t2 ⪯ B; otherwise, B ⪯ chid2t2 .
In both cases, either chid1t1 ⪯ chid2t2 or chid2t2 ⪯ chid1t1 .

Proof of Thm. 3. By Thm. 1, P ∗.B ⪯ B for any B identified
in Alg. 1, ll. 8, 22, 28 by any awake honest validator in any
r ≥ 3∆t+ 2∆. From κ slots later onwards, all awake honest
validators include the transaction in their ledger (Alg. 1, l. 29).

Proof of Thm. 1 follows from Lems. 1, 2 and 3, and
is provided at the end of this section. The structure of the
argument is inductive: Lem. 2 shows that in a slot t with
honest leader, all honest voters vote for the leader’s proposal.
Lem. 3 shows that if in slot t all honest voters have voted for
a descendant of a certain block, then in slot t + 1 all honest
voters will vote for a descendant of that block.

Lemma 2. Suppose an execution of Goldfish in the syn-
chronous sleepy network model. Suppose validator id∗ with
proposal P ∗ is recognized as the leader of a slot t by all awake
honest validators at round 3∆t+∆ (Alg. 1, l. 16). Then, all
honest validators awake at round 3∆t+∆ and eligible to vote
at slot t, vote for P ∗.B at slot t.

Proof. Let T ′ = P ∗.T , and B∗ and T ∗ denote the buffer and
bvtree of id∗ at round 3∆t. Since id∗ is honest, it must have
broadcast P ∗ at round 3∆t with bvtree T ′ = MERGE(T ∗,B∗)
and a new block P ∗.B with parent GHOST-EPH(T ′, t − 1)
(Alg. 1, ll. 7, 8, 12).

By synchrony, any message that a non-asleep honest valida-
tor id could have added to its bvtree Tid by 3∆(t− 1) + 2∆,
is received by id∗ by 3∆t, and thus in T ′. As awake honest
validators do not update their bvtrees and no honest validators
turn awake in the interval (3∆(t−1)+2∆, 3∆t+∆), for any
honest validator id awake at round 3∆t + ∆, Tid ⊆ T ′ prior
to Alg. 1, l. 19.

Since id∗ is recognized as the leader of slot t by all awake
honest validators at round 3∆t + ∆, at that round, each
awake honest validator id merges its bvtree with T ′∪{P ∗.B}
(Alg. 1, l. 19) and reaches Tid = T ′ ∪{P ∗.B}. Consequently,
each honest validator id awake at round 3∆t+∆ and eligible
to vote at slot t votes for P ∗.B due to the recursive structure
of the GHOST-Eph rule (Alg. 2).

Lemma 3. Suppose a ( 12 , 3∆)-compliant execution of Gold-
fish in the synchronous sleepy network model. Consider a slot
t where all honest validators awake at round 3∆t + ∆ and
eligible to vote at slot t, vote for a descendant of B. Then,
w.o.p., all honest validators awake at round 3∆(t + 1) + ∆
and eligible to vote at slot t+ 1, vote for a descendant of B.

Proof. By Lem. 1, w.o.p., for every slot t, the number of
adversarial validators at round 3∆(t + 1) + ∆ and eligible
to vote at slot t is less than the number of honest validators
awake at round 3∆t+∆ and eligible to vote at slot t.

Let t be a slot such that all honest validators awake at round
3∆t+∆ and eligible to vote at t voted for a descendant of B.
Pick any honest validator id awake at round 3∆(t+1)+∆ and
eligible to vote at slot t+ 1. Since id must have been awake
at least since round 3∆t + 2∆, its bvtree at round 3∆t +
2∆ contains all votes broadcast by honest validators awake at
round 3∆t+∆ and eligible to vote at slot t (Alg. 1, l. 19). The
same is true for its bvtree at round 3∆(t+1)+∆, even after
id merges its bvtree with that of any proposal (Alg. 1, l. 7).
Moreover, the number of honest validators awake at round
3∆t + ∆ and eligible to vote at slot t is greater than the
number of adversarial validators at round 3∆(t+ 1)+∆ that
are eligible to vote at slot t.

Consequently, upon invoking the GHOST-Eph fork-choice
rule at round 3∆(t+ 1) + ∆ (Alg. 1, l. 22), id observes that
at every iteration of the fork choice (Alg. 2, l. 7), blocks
consistent with B have more votes than blocks conflicting
with B. Thus, at round 3∆(t+ 1) +∆, fork choice returns a
descendant of B, and id votes for it.

Proof of Thm. 1. From Lems. 1, 2 and 3, it follows by in-
duction that w.o.p., for all t′ ≥ t, all honest validators awake
at round 3∆t′ + ∆ and eligible to vote at slot t′, vote for a
descendant of P ∗.B.

By synchrony, the honest votes of slot t′ reach all honest
validators awake at 3∆t′+2∆ by then, when they also merge
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the votes into their bvtrees. The number of honest validators
awake at round 3∆t′ + ∆ and eligible to vote at slot t′ is
greater than the number of adversarial validators by round
3∆(t′+1)+∆ that are eligible to vote at slot t′ (by Lem. 1).
Upon invoking the GHOST-Eph rule of Alg. 1, ll. 8, 22, 28 at
3∆t′ + 2∆, 3∆(t′ + 1) and 3∆(t′ + 1) + ∆, respectively, an
awake honest validator id (who must have been awake since
at least 3∆t′ + 2∆, due to the joining procedure) observes
that at every iteration of the fork choice (Alg. 2, l. 7), blocks
consistent with P ∗.B have more votes than blocks conflicting
with P ∗.B. Thus, id’s fork choice reaches a descendant of
P ∗.B.

B. Goldfish with Accountability Gadget

We provide a formal statement for Def. 4:

Theorem 4 (Ebb-and-flow property). Goldfish combined with
accountability gadgets (cf. Sec. III-B) satisfies the ebb-and-
flow property:
1) (P1: Accountability and finality) Under a partially

synchronous network in the sleepy model, the account-
able final prefix ledger chacc has accountable safety
resilience n/3 at all times, (except w.p. negl(λ)), and
there exists a constant C such that if the execution is
( 13 , 3∆)-compliant, chacc provides liveness with trans-
action confirmation time Tconf = Θ(κ2) after round
max(GST,GAT) +Cκ (w.o.p.).

2) (P2: Dynamic availability) Under a synchronous network
in the sleepy model (i.e., for GST = 0), if the execution
is ( 12 , 3∆)-compliant, the available ledger chava is secure
at all times (w.o.p.).

3) (Prefix) For each honest id and round r, chidacc,r ⪯ chidava,r.

A proof sketch for Thm. 4 is provided in App. C, and the
full proof can be found in App. F. Proof of Thm. 4 follows the
same blueprint as the original construction of accountability
gadgets in [6, Appendices B, C].

C. Goldfish with Fast Confirmation

In the following analysis, we consider a synchronous net-
work in the sleepy model as described in Sec. II. Recall that the
total number of validators is n (cf. Sec. II). Since Goldfish
slots consist of 4∆ rounds in the case of fast confirmation,
we hereafter assume that the Goldfish execution is ( 12 , 4∆)-
compliant. We show that Thm. 2 holds for Goldfish with
fast confirmations (w.o.p.) in compliant executions. To do
so, we first prove Thm. 5, an analogue of Thm. 1 for fast
confirmations, showing that fast confirmed blocks are always
in the canonical chain of awake validators at later rounds.

Proposition 1. Suppose Thor = poly(κ). Then, w.o.p., there
can be at most (1 + ϵ)n thrv validators that are eligible to
vote at any given slot. If the Goldfish execution is ( 12 , 4∆)-
compliant, then, w.o.p., for all slots t, the number of adver-
sarial validators at round 4∆(t + 1) + ∆, eligible to vote at
slot t, is less than 1

2n thrv.

Proof follows from a Chernoff bound.

Lemma 4. Suppose the Goldfish execution is ( 12 , 4∆)-
compliant in the synchronous sleepy network model, and an
honest validator id∗ fast confirms a block B at slot t. Then,
w.o.p, all honest validators awake at round 4∆(t + 1) + ∆
and eligible to vote at slot t+ 1, vote for a descendant of B
at slot t+ 1.

Proof is provided in App. D and follows from Props. 1 and 1
and a quorum intersection argument.

Theorem 5. Suppose the Goldfish execution is ( 12 , 4∆)-
compliant in the synchronous sleepy network model, and an
honest validator id∗ fast confirms a block B at slot t. Then,
w.o.p., B ⪯ B for any B identified in Alg. 1, ll. 8, 22, 28 by
any awake honest validator in any round r ≥ 4∆(t+1)+∆.

Proof is provided in App. D and follows from Lems. 1, 4
and 3 and the inductive argument used in the proof of Thm. 1.

Theorem 6. Suppose the Goldfish execution is ( 12 , 4∆)-
compliant. Then, Goldfish with fast confirmations satisfies
safety (w.o.p.).

Proof is provided in App. D and follows from Thm. 2. In
( 12 , 4∆)-compliant executions, we automatically get liveness
of Goldfish with fast confirmations from the liveness of
the standard confirmation rule, since fast confirmation is not
needed for a block to be confirmed. Under optimistic condi-
tions, liveness of fast confirmations holds as well. We prove
that a block within an honest, valid proposal is immediately
fast confirmed within the same slot by the awake honest
validators, if there are over ( 34+

3
2ϵ)n awake, honest validators

at the voting time of the given slot, implying the liveness of
fast confirmations under optimistic conditions.

Theorem 7. Suppose the Goldfish execution is ( 12 , 4∆)-
compliant. Then, Goldfish with fast confirmations satisfies
liveness with Tconf = Θ(κ) (w.o.p.).

Consider a slot t, such that there are ( 34 + 3
2ϵ)n thrv

honest validators eligible to vote at slot t and awake at round
4∆t + ∆. Suppose an honest validator id with proposal P ∗

is recognized as the leader of a slot t by all awake honest
validators at round 4∆t+∆ (Alg. 1, l. 16).

Then all honest validators awake at round 4∆t + 2∆ fast
confirm P ∗.B in Alg. 5, l. 10.

Proof is provided in App. D. Liveness follows from Thm. 2
and fast confirmation from Lem. 2.

VI. IMPLEMENTATION AND EXPERIMENTS

In this section we discuss implementation aspects of Gold-
fish and experimentally study the behavior of Goldfish under
different dynamic participation scenarios. To this end, we have
implemented Goldfish in approx. 2,500 lines of Rust code13,
with BLAKE3 hashes [60] and BLS signatures [61] over the
BLS12-381 curve [62] for signatures and VRFs. A particular
focus of our inquiry is on the communication-efficient imple-
mentation of proposals and the message buffering mechanism,

13Source code: https://github.com/tse-group/goldfish-experiments

https://github.com/tse-group/goldfish-experiments
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and on the interplay between the parameterization of the block
production lottery threshold thrb, the protocol’s communica-
tion load, and its behavior under low participation.

A. Proposal Size and Wire Format

In the Goldfish variant of Sec. III-A, which is stream-
lined for ease of exposition rather than performance, each
proposal includes the proposer’s entire bvtree T ′ (Alg. 1, l. 7).
This raises concerns about the resulting communication load.
Proposal messages would grow over time with the number
of blocks, and could be further inflated by equivocation
spamming (where an adversary uses one winning lottery ticket
to create many equivocating blocks or votes, cf. [63], [64]).

The following implementation details resolve these con-
cerns. It suffices for a proposal to only include votes from
the most recent VOTE phase, as votes from earlier phases
will not carry weight during fork-choice due to vote expiry.
Another tweak is equivocation discounting, i.e., not counting
votes during fork-choice from validators who have sent votes
for two or more different blocks during the latest VOTE phase.
We discuss equivocation discounting at length, and show it to
not compromise security, in App. A. As any two equivocating
votes suffice as evidence for an honest validator to discount all
votes of an equivocating adversary, the above two measures
mean that every proposal needs to include at most two votes
per validator eligible to vote in the previous slot.

Notice also that it suffices in practice for proposals to in-
clude references (hashes) to blocks and votes. In fact, an honest
proposer’s role in the message buffering technique is only to
point validators to messages (which they already have in their
buffer because at least the honest proposer would have relayed
them) that they can safely merge into their bvtree. Finally, only
blocks with nonzero fork-choice weight need to be referenced,
because blocks with zero weight cannot possibly be decisive
in fork-choice regarding the proposer’s block. Observe that
nonzero weight blocks are either referenced by votes, or by
a nonzero weight child block. Thus, it ultimately suffices for
proposals to only reference at most two votes per validator
eligible to vote in the previous slot.

As a concrete example, if Goldfish is used among n =
1,024 validators without voter subsampling, so thrv = 1,
with 32Byte hashes, then even in the worst case a proposal
is only of size 64 kByte plus one block. This example is
representative for a deployment in Ethereum, where votes
get aggregated by 1,024 aggregators per slot, Goldfish’s
fork-choice would operate on aggregates, and at most two
aggregates per aggregator need to be referenced in a proposal.
Comparing 64 kByte to the current block size of 80 kByte14,
message buffering seems feasible in terms of network load.

Garbage collection: Proposal messages are discarded after
their slot’s VOTE phase. Vote expiry allows to discard votes
within two slots. Blocks (including ‘in limbo’) are discarded
once inconsistent with confirmed blocks (i.e., after at most κ
slots) and with the gadget output (if the gadget is used).

14https://etherscan.io/chart/blocksize
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Fig. 6. Ledger growth rate and average broadcast load of Goldfish as a
function of block production lottery threshold, for experiments ( , )
with n = 1000, thrv = 0.1, ∆ = 4 s, under full honest participation. For
the block production lottery, we expect the number of proposals per slot to be
binomially distributed with mean n thrb. The measurements fit the predictions
for the probability of zero proposals in a given slot (1−e−n thrb , ), and
that the communication load is affine (5723 · thrb + 4.472 with coefficients
to four digit accuracy, ) with the constant term accounting for votes.

B. Block Production Lottery Threshold

From Sec. V it is clear how to tune the vote lottery threshold
thrv such that, w.o.p., all voter committees over a given
execution horizon have an honest majority. Given a number
of validators n and a threshold thrv, the size of a proposal
and the communication load resulting from votes are constant
in expectation. The block production lottery threshold thrb is
the remaining parameter affecting the overall broadcast load
through the expected number of proposals per slot n thrb
(Fig. 6). For low thrb < 1/n, communication load is low
but ledger growth is impaired because many slots have no
proposal. For high thrb > 1/n, most slots have more than one
proposal, leading to communication overhead but also close-
to-optimal ledger growth. For a reasonable tradeoff of ledger
growth and communication load in the non-degraded common
case of near-full participation, we tune thrb = 3/n.

C. Behavior under Dynamic Participation

Based on Fig. 6, we expect a confirmation performance
degradation under low participation if thrb = 3/n. (If good
performance is to be ensured even under very low participation
n0 ≪ n, tune thrb to n0 rather than to n.) To study the impact
of dynamic participation on Goldfish with thrb = 3/n, we run
it (Fig. 7) in four different dynamic participation environments
inspired by [40]: a Stable participation: Starting from 50%
participation, randomly increase or decrease participation by
3% per Goldfish phase of length ∆ (unless this would exceed
[10%, 90%]). b Unstable participation: Select a participation
level uniformly at random in [10%, 90%] per ∆. c High
participation: Reset participation to 80%, randomly increase
or decrease participation by 3% per ∆ (staying in [70%, 90%]).
d Low participation: Reset participation to 20%, randomly

increase or decrease participation by 3% per ∆ (staying in
[10%, 30%]). Once the participation level was drawn according
to this schedule, from instant to instant the environment selects
a random set of asleep (awake) validators to wake up (put to
sleep), respectively, to meet the participation levels.

We see in Fig. 7 that when participation is above the fast-
confirmation threshold ( ), transactions are fast-confirmed
swiftly ( ) ( a , c ). When participation is volatile ( b ),

https://etherscan.io/chart/blocksize
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Fig. 7. Ledger length and age of the most recently confirmed block under fast
( ) and slow ( ) confirmation, and resulting broadcast load ( ),
for Goldfish with n = 1000, thrv = 0.1, ∆ = 4 s, thrb = 3/n, κ = 10,
block size 80 kByte, under different environments of dynamic participation
( , see Sec. VI-C). When participation is above the fast-confirmation
threshold of approx. 3n/4 ( ), transactions are confirmed swiftly (4∆,

), otherwise fast confirmation stalls. When participation is volatile (cf.
600 s to 950 s), many honest validators are dreamy ( , cf. Sec. III-A8).
Then, or when participation is steady but at a low level (cf. 1400 s to 1700 s),
effective participation (by honest validators who are neither asleep nor dreamy)
is low. Slow confirmation (4∆κ base latency, ) takes place throughout,
but since thrb = 3/n, slow confirmation degrades (cf. Fig. 6) when effective
participation is low (cf. slots with no proposal around 650 s or 1600 s, ,
lead to latency spikes, ).

many honest validators are dreamy ( , cf. Sec. III-A8).
Then, or when participation is steady but at a low level ( d ),
effective participation (by validators neither asleep nor dreamy)
is low. Slow confirmation ( ) takes place throughout, but
degrades (cf. Fig. 6) when effective participation is low (cf.
slots with no proposal around 650 s or 1600 s, , lead to
latency spikes, ). Communication load is modest ( ).
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APPENDIX A
EQUIVOCATION DISCOUNTING TO MITIGATE SPAMMING

For ease of exposition, we have presented a version of
Goldfish which deals with equivocating votes simply by
accepting all of them, but counting at most one per subtree
(Alg. 2, l. 7). This approach is vulnerable to spamming attacks,
because it requires validators to accept all the votes they
receive. Even a single adversarially controlled validator can
be used to create an arbitrarily large number of equivocating
votes at a slot, with the goal of creating network congestion
and making it impossible for honest validators to download
all of the other votes in time, which can result in a loss of
safety.

Equivocations are attributable faults, punishable by slashing
a posteriori, but this does not prevent the attack vector a priori,
given that only one validator is required for it. To mitigate it,
we introduce equivocation discounting. This general technique
is already present in the current implementation of Ethereum,
but the ephemerality of votes in Goldfish allows for a simpler
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for honest views to converge. This is particularly important
in order to have guarantees about the functioning of the vote
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buffering technique, and in turn about the security of the whole
protocol, which relies on reorg resilience. We formalize the
simple equivocation discounting rule here, as a combination
of a modification to the GHOST-Eph fork-choice, a download
rule, and a validity condition for proposals.

a) Equivocation discounting:
(a) Fork-choice discounting: When running the GHOST-Eph

fork-choice rule at slot t,, only count the valid slot t− 1
votes from those validators for which your bvtree contains
a single valid slot t − 1 vote, i.e., those which are not
viewed to have equivocated at slot t− 1.

(b) Download rule: Only download (or forward as part of the
peer-to-peer gossip layer) votes from the current and prior
slots, and at most two votes per eligible validator (i.e., the
opened ticket (id, t) for the validator id is winning for the
tag (vote, thrv), cf. Sec. V).

(c) Validity condition for proposals: A proposal whose bvtree
contains more than two valid votes for the same slot from
some validator is invalid, and so is one which contains
any invalid vote.

The download rule and validity condition ensure that a val-
idator only ever needs to download at most two votes per
subsampled validator of the current and previous slot. Setting
the subsampling parameters so that this is manageable, we
can ensure that equivocations cannot succeed at creating net-
work congestion sufficient to prevent the functioning of vote
buffering. Previously, this meant guaranteeing that an honest
proposer’s bvtree be a superset of honest validators’ bvtrees.
Instead, the success of vote buffering now only requires that a
leader’s view of votes from voters which have not equivocated
in the last slot is a superset of the validators’ views of such
votes, and so is its view of the list of equivocators from
the previous slot. Agreement on these two is sufficient for
agreement on the fork-choice output, i.e., Lem. 2 still holds.
Note that the leader still only needs to include its bvtree in
the proposal message, because following the download rule
guarantees that it will contain exactly all valid votes from
validators which have not equivocated in the previous slot,
together with a pair of votes, i.e., equivocation evidence, for
validators which have.

The security analysis for Goldfish with equivocation dis-
counting is then the same as that for vanilla Goldfish. Vote
buffering implies that all honest validators vote together when
the proposal with the minimum precedence is honest, as in
Lem. 2, and all honest validators voting together implies that
the proposal is never reorged, as in Lem. 3. The latter is not
affected by equivocation discounting, because it relies on the
valid votes of honest validators, which do not equivocate. From
these two properties, we obtain reorg resilience as in Thm. 3,
and from reorg resilience, we eventually obtain safety and
liveness.

Optimistic fast confirmations are also compatible with
equivocation discounting, without any loss of resilience. Live-
ness and fast confirmation of honest proposals follow from
Thm. 7, since equivocation discounting plays no role in it.
For safety, the key ingredient is Lem. 4, from which Thm. 6

follows unchanged. We thus prove Lem. 4 here for Goldfish
with equivocation discounting, by making a very small mod-
ification to the argument:

Proof of Lem. 4 with equivocation discounting. By Prop. 1,
w.o.p., the number of adversarial validators at round 4∆(t +
1) + ∆, eligible to vote at slot t, is less than 1

2n thrv. An
eligible awake honest validator sends a single slot t vote at
round 4∆t+∆, implying that over ( 34 +

ϵ
2 )n thrv− 1

2n thrv =
( 14+

ϵ
2 )n thrv validators broadcast a single slot t vote by round

4∆(t+1)+∆, and that is for a descendant of B. By Prop. 1,
w.o.p., for all slots t, there can be at most (1 + ϵ)n thrv
validators that are eligible to vote at t. Hence, the number
of valid slot t votes for the descendants of any block B′

conflicting with B, and which are from validators which have
not also cast one of the ( 34+

ϵ
2 )n thrv votes for B, must be less

than (1+ϵ)n thrv−( 34+
ϵ
2 )n thrv = ( 14+

ϵ
2 )n thrv at any given

round. The validator id∗ broadcasts B and over ( 34 +
ϵ
2 )n thrv

valid votes for it (in pieces) at round 4∆t+ 2∆. Each honest
validator, awake at round 4∆(t+ 1) +∆ and eligible to vote
at slot t+1, observes these votes in its bvtree at the round of
voting (Alg. 5, l. 12). Upon invoking the GHOST-Eph fork-
choice rule at any of the rounds 4∆t + 3∆, 4∆(t + 1) or
4∆(t + 1) + ∆, using only the votes from validators which
are not seen to be equivocating at slot t − 1, the votes for
the descendants of any block B′ conflicting with B are then
less than ( 14 + ϵ

2 )n thrv, and the votes for descendants of B
are over ( 14 +

ϵ
2 )n thrv. This implies that all honest validators,

awake at round 4∆(t+1)+∆ and eligible to vote at slot t+1,
all vote for B or one of its descendants at slot t+ 1.

APPENDIX B
FROM LMD GHOST TO GOLDFISH

In this section, we outline the shortcomings of LMD
GHOST in comparison to Goldfish, then discuss how Gold-
fish could replace it in the Ethereum protocol.

A. Limitations of Gasper

In the first iteration of Gasper’s LMD GHOST, ex-ante
reorgs and balancing attacks [5], [7], [8] prevent security
even in the full participation setting and without subsampling.
The proposer boost technique [9] mitigates these issues, but
is itself not compatible with dynamic participation, and it
entails a lower adversarial tolerance ( 14 ) than what is obtained
with message buffering ( 12 ). Moreover, ex-ante reorgs [8] are
still possible with subsampling, compromising reorg resilience,
and the latest message rule (LMD) itself is not compatible
with dynamic participation. Both of these issues are due to
considering votes from older slots, and Goldfish solves them
through vote expiry. In the following, we give a more detailed
account of all of these limitations.

a) Interaction of LMD GHOST and Casper FFG: The
combination of Goldfish with the accountability gadget in
Sec. III follows the generic construction of [6], which is
proven to be secure for any appropriately secure dynamically
available protocol and accountable BFT protocol. On the other
hand, the combination of LMD GHOST and Casper FFG in
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HLMD GHOST, the hybrid fork-choice rule of [3], is ad-hoc
and complicated to reason about. Firstly, it is known to be
susceptible to a bouncing attack [65]. Instead of LMD GHOST
starting its fork-choice iteration from the last block finalized
by Casper FFG, it starts from the last justified block, in
the terminology of Casper FFG, i.e., the last block that has
been the target of FFG votes by a supermajority of all n
validators. This is sufficient to ensure accountable safety of
the finalized checkpoints; however, it hinders safety of the
available ledger chava (after max(GST,GAT)) under partial
synchrony in the sleepy model, in particular negating the
healing property (Lem. 10) of chava, preventing us from
proving the ebb-and-flow property. The current mitigation
for the bouncing attack causes other problems such as the
splitting attack [66], akin to the balancing attacks [4]. Another
problematic interaction stems from the fact that the FFG votes
at any Ethereum epoch point at the epoch boundary block
of that epoch, regardless of its confirmation status by the
underlying LMD GHOST rule. (In fact, there is no confir-
mation rule specified for LMD GHOST.) The accountability
gadget can then in principle interfere with the available chain,
jeopardizing its standalone security properties. Finally, the
FFG voting schedule is staggered throughout an epoch, as FFG
votes are cast together with LMD GHOST votes, so it is not
clear how to ensure that the views of honest validators when
casting FFG votes are consistent, which would at least ensure
liveness of the accountable chain.

b) Stale votes in LMD GHOST: Without vote expiry,
the votes of honest asleep validators can be weaponized by
an adversary controlling a small fraction of the validator set
to execute an arbitrarily long reorg. This implies that the
protocol is not dynamically available with any confirmation
rule with finite confirmation time Tconf . Consider for example
a validator set of size n = 2m + 1, and a partition of the
validator set into three sets, V1, V2, V3, with |V1| = |V2| = m
and |V3| = 1. The validators in V1, V2 are all honest, while the
one in V3 is adversarial. Suppose that the adversarial validator
in V3 is the leader of slots t, and that it broadcasts two
proposals, with conflicting blocks B1 and B2. It does so in
such a way that validators in V1 see only B1 before voting,
and validators in V2 only B2. Validators in V1 then vote for
B1, and so does the adversarial validator, while validators in
V2 vote for B2. B1 becomes canonical, since it has received
m + 1 votes. The adversary then puts all validators in V2 to
sleep, and they do not become awake for the remainder of
the protocol. The adversarial validator does not cast any more
votes for a while. Meanwhile, validators in V1, keep voting
for descendants of B1. After waiting for > Tconf slots, the
adversarial validator votes for B2. Since the m latest votes
of the validators in V2 are still for B2, it now has m + 1
votes and becomes canonical, resulting in all awake honest
validators experiencing a reorg of all blocks confirmed after
slot t. If there are no such blocks, liveness is violated, and
otherwise safety is violated.

c) Proposer boost: Proposer boost is not compatible
with dynamic availability, because the artificial fork-choice

weight it temporarily provides to proposals is independent of
participation: the lower the participation, the more powerful
the boost is relative to the weight of real attestations from
awake validators, and thus the more it can be exploited by
the adversary. When the weight of awake honest validators is
less than the boost, the adversary has complete control of the
fork-choice during the slots in which it is elected as the leader.

d) Reorg resilience: Even in the setting of full partici-
pation, where the adversary cannot take advantage of votes of
asleep validators, LMD GHOST lacks reorg resilience. This
is firstly due to subsampling without vote expiry, because
it allows the adversary to accumulate fork-choice weight by
withholding blocks and attestations, i.e., to execute ex ante
reorgs [8]. Without subsampling, LMD GHOST is indeed
reorg resilient in the full participation setting, if proposer boost
is replaced by vote buffering. In fact, Thm. 3 obtains reorg
resilience as a consequence of two properties, Lems. 2 and 3,
respectively the property that all honest awake validators
vote for an honest proposal, and the property that all honest
validators voting together guarantee the inclusion of honest
blocks in the canonical GHOST-Eph chain, both of which also
hold for LMD GHOST with vote buffering.

With proposer boost, LMD GHOST is not reorg resilient
for β ≥ 1

4 , even in the full participation setting and without
subsampling, because those two properties are in conflict for
such β, for any boost value Wp. The first property only
holds if Wp > 2β, because the adversary can otherwise still
conclude an ex ante reorg by revealing later votes, which
move all adversarial weight β from the proposer’s branch to a
conflicting one, and outweigh the proposer boost Wp. On the
other hand, the second property only holds if Wp+β < 1−β,
because otherwise an adversarial proposer can make use of
boost to conclude an ex post reorg. Therefore, we can only
have reorg resilience when 3β < Wp + β < 1 − β, i.e., for
β < 1

4 , by setting Wp = 1
2 .

B. Replacing LMD GHOST with Goldfish in Gasper

For Goldfish to be used as a drop-in replacement for
LMD GHOST in Ethereum, only a few adjustments are
required. Most importantly, vote expiry and message buffering
would have to be introduced, with the latter replacing pro-
poser boost. In principle, the proposer selection mechanism
does not need to be overhauled, as Goldfish can operate
with RANDAO, the proposer selection mechanism of LMD
GHOST. RANDAO always selects a unique proposer, which
reduces the communication load, when compared to a VRF
lottery. On the other hand, it is not compatible with adaptive
security, because the selected proposer is publicly known
in advance, and moreover the selection is biasable. A VRF
lottery also enables the confirmation time to be independent
of participation.

Finally, in order to benefit from the security guarantees of
Goldfish in its combination with an accountability gadget, the
interaction with Casper FFG would have to be modified to fit
the construction from [6], which we have also employed in
this work.
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APPENDIX C
PROOF SKETCH FOR GOLDFISH WITH ACCOUNTABILITY

GADGET

In Goldfish with accountability gadgets, a partially syn-
chronous accountably-safe consensus protocol is used to de-
termine checkpoints. Security of this protocol ensures the
safety and accountability of the prefix ledger chacc in the
partially synchronous sleepy network model. To ensure the
prefix property, the fork-choice rule of Goldfish is modified to
respect earlier checkpoint decisions (Alg. 3). This modification
requires adjustments of the analysis of Goldfish, because it
opens up the possibility that for a proposal P ∗ by an honest
leader, P ∗.B ⪯ B no longer holds for all blocks B identified
in Alg. 1, ll. 8, 22, 28 by awake honest validators at future
rounds, due to a new checkpoint conflicting with P ∗.B.

To prevent checkpoints from undermining the security in
this manner, and rigorously argue security of the combina-
tion despite the modified fork-choice rule, the framework of
accountability gadgets [6], [14] relies on two principles:
• Gap Property: After a (successful) checkpointing iteration

with a new checkpoint, honest validators wait for Tchkpt =
Θ(κ) rounds before participating in the next iteration.

• Recency Property: For checkpointing, honest validators
suggest and approve only the blocks that were recently
confirmed as part of chava.

We prove that once the network heals and honest validators
become awake at round max(GST,GAT), chava regains its
security with the help of these properties. Key is the following
healing property.

Lemma 5 (Healing property (sketch)). Suppose the number
of adversarial validators is less than n/3 at all rounds.

Then, under partial synchrony in the sleepy model, the
available ledger chava is secure with transaction confirmation
time Θ(Tchkpt) after round max(GAT,GST) + Θ(κ).

Formal statements for Lem. 5, its proof, and the full proof
for P1 are given in App. F.

Proof sketch for Lem. 5. Since the number of adversarial val-
idators is less than n/3 at all rounds, by the security of
the consensus protocol used by the accountability gadgets,
all checkpoints are consistent with each other. After round
max(GAT,GST), all awake honest validators agree on the
rounds they enter and complete subsequent checkpoint iter-
ations (up to a difference of ∆ rounds). By the gap property,
honest validators wait for Tchkpt = Θ(κ) rounds before par-
ticipating in the next checkpointing iteration after a successful
one. This ensures that no new checkpoints appear for Tchkpt

rounds, during which the honest validators can treat the last
checkpoint as the ‘new’ genesis block. Then, via the security
analysis in Sec. V-A, there exists a slot with an honest leader
such that for P ∗ proposed by the leader, P ∗.B ⪯ B for
all blocks B identified in Alg. 1, ll. 8, 22, 28 by awake
honest validators during future rounds, until a new checkpoint
is determined. By the recency property, for checkpointing,
honest validators suggest and approve only the blocks that

were recently confirmed as part of chava. Since P ∗.B ⪯ B
for all recently confirmed blocks B at the start of the next
checkpointing iteration, if a new checkpoint appears in the
next iteration, the above prefix relation continues to hold for
all future slots after the iteration. Thus, it is possible to state
an analogue of Thm. 1 for honest leaders during Tchkpt rounds
following successful checkpoint iterations and prove security
with transaction confirmation time Tconf = Θ(Tchkpt) via a
similar reasoning to Sec. V-A.

Liveness of chava together with the liveness of the account-
ability gadget’s consensus protocol imply the liveness of chacc
in the partially synchronous sleepy network model.

In the synchronous sleepy network model, Sec. V-A im-
plies that chava remains secure until the first checkpoint
is determined. However, checkpoints cannot undermine its
security since only confirmed blocks in chava are approved
for checkpointing by honest validators. Proof of P2 is given
in App. F.

APPENDIX D
PROOFS FOR GOLDFISH WITH FAST CONFIRMATION

We state an analogue of Lem. 1, namely Lem. 6, to match
the new slot structure in App. E.

Proof of Lem. 4. By Prop. 1, w.o.p., the number of adversarial
validators at round 4∆(t + 1) + ∆, eligible to vote at slot t,
is less than 1

2n thrv. An eligible awake honest validator sends
a single slot t vote at round 4∆t + ∆, implying that over
( 34 +

ϵ
2 )n thrv− 1

2n thrv = ( 14 +
ϵ
2 )n thrv validators broadcast

a single slot t vote by round 4∆(t + 1) + ∆, and that is for
a descendant of B. By Prop. 1, w.o.p., for all slots t, there
can be at most (1 + ϵ)n thrv validators that are eligible to
vote at t. Hence, the number of valid slot t votes for the
descendants of any block B′ conflicting with B must be less
than (1+ϵ)n thrv−( 14+

ϵ
2 )n thrv = ( 34+

ϵ
2 )n thrv at any given

round. The validator id∗ broadcasts B and over ( 34 +
ϵ
2 )n thrv

valid votes for it (in pieces) at round 4∆t+ 2∆. Each honest
validator, awake at round 4∆(t+ 1) +∆ and eligible to vote
at slot t+1, observes these votes in its bvtree at the round of
voting (Alg. 5, l. 12). Upon invoking the GHOST-Eph fork-
choice rule at any of the rounds 4∆t+3∆, 4∆(t+1) or 4∆(t+
1) +∆ (Alg. 1, ll. 8, 22, 28), for any awake honest validator
id with bvtree T ′, VOTES(T ′, B, t) > VOTES(T ′, B′, t) for
any block B′ conflicting with B. This implies that all honest
validators, awake at round 4∆(t+1)+∆ and eligible to vote
at slot t + 1 all vote for B or one of its descendants at slot
t+ 1.

Proof of Thm. 5. Follows by Lems. 6, 4 and 3, by the same
inductive argument used in the proof of Thm. 1, in that case
following from Lems. 1, 2 and 3. Here, Lem. 6 is the analogue
of Lem. 1 with the new slot structure, and Lem. 4 provides
the base case, substituting Lem. 2.

Proof of Thm. 6. If an honest validator fast confirms a block
B at slot t, then B is in the canonical GHOST-Eph chain
of every awake honest validator at all slots larger than t by
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Thm. 5. Therefore, B is in the κ-slots-deep prefix of the
canonical GHOST-Eph chains of all awake honest validators
at slot t + κ, and thus confirmed by them with the standard
confirmation rule. Therefore, Thm. 2 implies the safety of the
protocol.

Proof of Thm. 7. Proof of liveness follows from Thm. 2.
For the second part of the proof, by Lem. 2, all of eligible

and awake honest validators vote for P ∗.B at slot t. Then,
the buffer of any honest validator awake at round 4∆t + 2∆
contains at least ( 34 +

ϵ
2 )n thrv votes (by Chernoff bound) for

the block P ∗.B, implying that all honest validators awake at
rounds 4∆t+2∆ fast confirm P ∗.B at the respective slots.

APPENDIX E
PROOF OF LEM. 1

Proof of Lem. 1. By the pseudorandomness property of the
VRF-based lottery (Secs. II-A3 and III-A1), for any given slot
t and validators id1 and id2, id1 ̸= id2,

Pr
[
IsWinninglv ((id, t),Openlvid1(t))

]
= thrv (9)

Pr
[
IsWinninglb((id, t),Openlbid1(t))

]
= thrb (10)

Pr
[
Prio(Openlbid1(t)) < Prio(Openlbid2(t))

]
=

1

2
, (11)

where lv = (vote, thrv) and lb = (block, thrb) are the lotter-
ies, and Openlvid1(t), Openlbid1(t), Openlbid2(t), and Open

lv)
id2

(t)
are independent random variables.

We first consider the protocol without key-evolving prim-
itives. By the uniqueness property of the lottery (Sec. II),
w.o.p., for all validators id and slots t, the ticket (id, t) can
be opened at most one unique opening (Alg. 1, l. 20). Let
H̃t denote the number of honest validators awake at round
3∆t + ∆ and eligible to vote at slot t. Let Ãt denote the
number of adversarial validators at round 3∆(t+ 1)+∆ that
are eligible to vote at slot t. Recall that Ar and Hr denote the
number of adversarial and honest validators awake at round r
respectively (note that the honest validators have been awake
since the closest round 3∆t + 2∆ same as or preceding r).
Let nt = H3∆t+∆ +A3∆(t+1)+∆ ≥ n0 = Θ(κ).

By the pseudorandomness property, the adversary cannot
predict in advance which honest validators will become el-
igible to vote or propose at a given slot. Moreover, if the
adversary decides to corrupt the honest validators eligible to
vote at a slot t after learning their identities at round 3∆t+∆,
it takes over 3∆ rounds for the corruption to take effect,
implying that these validators cannot be counted as part of
Ãt. Hence, as Ar

Ar+Hr−3∆
≤ β < 1

2 − ϵ for all rounds r,
w.o.p.,

E[H̃t] = H3∆t+∆thrv ≥ (
1

2
+ ϵ)ntthrv

E[Ãt] = A3∆(t+1)+∆thrv ≤ (
1

2
− ϵ)ntthrv

By a Chernoff bound,

Pr

[
H̃t <

1

2
ntthrv

]
≤ e−

ϵ2

1+2ϵntthrv

Pr

[
Ãt >

1

2
ntthrv

]
≤ e−

ϵ2

1+3ϵntthrv .

Thus, at any given slot t, H̃t > Ãt, except with probability

2 exp (− ϵ2

1 + 3ϵ
n0thrv).

By a union bound, every slot t has more honest validators
awake at round 3∆t + ∆ and eligible to vote at slot t than
adversarial validators at round 3∆(t+1)+∆, eligible to vote at
slot t (and more than 1

2n0thrv such honest validators), except
with probability

2Thor exp

(
− ϵ2

1 + 3ϵ
n0thrv

)
+ negl(λ) = negl(κ) + negl(λ),

since n0 = Θ(κ) and Thor = Θ(κ). By the same reasoning,
w.o.p., every slot t has more honest validators awake and
eligible to propose for slot t at round 3∆t than adversarial
validators at round 3∆t+∆, eligible to propose for slot t.

Finally, for any given slot t, each valid slot t proposal broad-
cast within rounds [3∆t, 3∆t+∆] has the same probability of
achieving the minimum precedence up to terms negligible in
λ15. Now, at a slot t, if an honest validator’s proposal achieves
the minimum precedence among the valid slot t proposals
broadcast by ∆ rounds into the slot, then that validator is
identified as the slot leader by all honest validators awake
at round 3∆t + ∆. Taking a fixed t ≥ κ, the probability
that no awake honest validator’s proposal has the minimum
precedence among the valid slot s proposals broadcast by ∆
rounds into the slot, during the slots s ∈ [t − κ, t], is upper
bounded by 2−κ+negl(κ)+negl(λ). Union bounding over all
Thor many such intervals, we find that w.o.p., all slot intervals
of length κ have at least one slot t, where an honest validator
is identified as the slot leader by all awake honest validators
at round 3∆t+∆.

Now with key-evolving primitives, we define H̃t = H3∆t+∆

and Ãt = A3∆t+∆. Similarly, we define nt = H3∆t+∆ +
A3∆t+∆ ≥ n0 = Θ(κ). In this case, Ar

Ar+Hr
≤ β < 1

2 − ϵ
for all rounds r. Note that the adversary cannot predict in
advance which honest validators will become eligible to vote
or propose at a given slot due to the pseudorandomness
property of the lottery. Moreover, if the adversary corrupts the
honest validators eligible to vote at a slot t after learning their
identities at round 3∆t + ∆, it cannot make these validators
broadcast new valid votes for slot t since the keys for slot t
would have been evolved prior to adversarial corrruption (i.e.,
these corrupted validators cannot be counted as part of Ãt).
Hence, the number of valid slot t votes adversarial validators
can broadcast by round 3∆(t + 1) + ∆ is upper bounded by
the number of adversarial validators at round 3∆t+∆ that are
eligible to vote at slot t. Finally, by the same calculations as
above, every slot t has more honest validators eligible to vote
and awake at round 3∆t + ∆ than the adversarial validators

15We assume that poly(κ) negl(λ) = negl(λ).
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at round 3∆(t + 1) + ∆ eligible to vote at slot t (and more
than 1

2n0thrv such honest validators), except with probability

2Thor exp

(
− ϵ2

1 + 3ϵ
n0thrv

)
+ negl(λ) = negl(κ) + negl(λ).

Similarly, w.o.p., every slot t has more honest validators awake
and eligible to propose for slot t at round 3∆t than adversarial
validators at round 3∆t+∆ eligible to propose for slot t. Thus,
via the same argument, w.o.p., all slot intervals of length κ
have at least one slot t, where an honest validator is identified
as the slot leader by all awake honest validators at round 3∆t+
∆.

Since Goldfish slots consist of 4∆ rounds in the case of
fast confirmation, we state an analogue of Lem. 1 to match
the new slot structure:

Lemma 6. Suppose the Goldfish execution is ( 12 , 4∆)-
compliant.

Then, w.o.p., for every slot t, the number of adversarial
validators at round 4∆(t+ 1) + ∆, eligible to vote at slot t,
is less than the number of honest validators, awake at round
4∆t+∆ and eligible to vote at slot t.

Also w.o.p., all slot intervals of length κ have at least one
slot t, where an honest validator is identified as the slot leader
by all awake honest validators at round 4∆t+∆.

Proof of Lem. 6 is very similar to the proof of Lem. 1,
and follows from the same arguments using ( 12 , 4∆)-compliant
executions.

APPENDIX F
ANALYSIS OF GOLDFISH WITH ACCOUNTABILITY

GADGETS

We now prove the ebb-and-flow property for Goldfish
combined with accountability gadgets (Fig. 4). The following
analysis extensively refers to the details of the accountability
gadgets described in [6, Section 4]. These gadgets can be
instantiated with any BFT protocol that satisfies accountable
safety (e.g., PBFT [15], HotStuff [17]).

To distinguish the votes cast by validators as part of the
accountability gadget iterations from those broadcast within
Goldfish, we will refer to the former as gadget votes.
Similarly, to distinguish the leaders of accountability gadget
iterations from the leaders of Goldfish slots, we will refer
to the former as the iteration leaders. We refer the reader
to [6] for the accountability gadget specific definitions of the
timeout parameter Ttmout and the confirmation delay Tbft of
the BFT protocol. We highlight that honest iteration leaders
propose only the blocks B∗ that are confirmed in their view
of chava, i.e., B∗ ⪯ B⌈κ for B identified in Alg. 1, ll. 8,
22, 28 run using chava. Similarly, honest validators send
accepting gadget votes only for the checkpointing proposals
that are confirmed in their view of chava. We set Tchkpt, the
time gap between the accountability gadget iterations, to be
at least 6∆(κ + 1) + Ttmout + Tbft (this is necessary for
proving the ebb-and-flow property as will be evident in the

following proofs). This makes the upper bound Tupper on
the total duration of an iteration Tchkpt + Ttmout + Tbft =
6∆(κ+ 1) + 2(Ttmout + Tbft) = Θ(κ).

We first show that chava remains secure under synchrony in
the sleepy network model, despite the added gadget.

Proposition 2. Suppose a ( 12 , 3∆)-compliant execution of
Goldfish in the synchronous sleepy network model of
Sec. II-B. If a block B is observed to be checkpointed by
an honest validator for the first time at some round r, then B
is in the common prefix of the chains identified in Alg. 1, ll. 8,
22, 28 right before round r by all awake honest validators.

Proof. Since the execution is ( 12 , 3∆)-compliant, for a block to
become checkpointed, at least one honest validator must have
sent an accepting gadget vote for that block. Let Bi denote
the sequence of checkpointed blocks listed in the order of the
rounds ri at which, an awake honest validator observed Bi to
be checkpointed for the first time. Proof is by induction on
the indices of these blocks.

Induction Hypothesis: Bi is in the common prefix of the
chains identified in Alg. 1, ll. 8, 22, 28 right before round
ri by all awake honest validators, and stays so until at least
round ri+1.

Base Case: Since an honest validator sends an accepting
gadget vote only for a confirmed block (i.e., κ slots deep),
B1 must have been confirmed by an honest validator at some
slot t1 before round r1. As all honest validators start the fork-
choice at the genesis block prior to r1 and B1 is confirmed
in an honest view, it is in the prefix of a block proposed by
an honest leader by Lem. 1 and Thm. 1. Hence, B1 is in the
common prefix of the chains identified in Alg. 1, ll. 8, 22, 28
right before round r1 by all awake honest validators. It also
stays in the common prefix until at least round r2.

Inductive Step: By the induction hypothesis, checkpointing
of the blocks B1, . . . , Bi−1 does not alter the fork-choice rule
at Alg. 3, l. 2 for any awake honest validator. Hence, by the
same reasoning above, Bi is in the common prefix of the
chains identified in Alg. 1, ll. 8, 22, 28 right before round
ri by all awake honest validators, and stays so until at least
round ri+2.

Lemma 7 (Safety and liveness of chava under synchrony).
Suppose a ( 12 , 3∆)-compliant execution of Goldfish in the
synchronous sleepy network model of Sec. II-B. Then, w.o.p.,
the available ledger chava satisfies 1/2-safety and 1/2-liveness
(at all times).

Proof. By Prop. 2, checkpointing of blocks does not alter
the fork-choice rule at Alg. 3, l. 2 for any awake honest
validator. Concretely, if the honest validators started the fork-
choice rule from the genesis block at all rounds instead of
the latest checkpoint in view, then they would end up with
the same execution. Thus, the security of chava follows from
Thm. 2.

We next demonstrate the liveness of chacc after
max(GST,GAT). In the subsequent analysis, the total number
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of validators is denoted by n (cf. Sec. II). The accountability
gadget is instantiated with a BFT protocol that has an
accountable safety resilience of n/3.

Proposition 3 (Prop. 2 of [6]). The BFT protocol satisfies
n/3-liveness after max(GST,GAT) with transaction confirma-
tion time Tbft <∞.

Proposition 4 (Prop. 3 of [6]). Consider a ( 13 , 3∆)-compliant
execution of Goldfish in the partially synchronous sleepy
network model of Sec. II-B. Suppose a block from iteration c
was checkpointed in the view of an honest validator at round
r. Then, every honest validator enters iteration c+1 by round
max(GST,GAT, r) + ∆.

Let c′ be the largest iteration such that a block B was
checkpointed in the view of some honest validator before
max(GAT,GST). (Let c′ = 0 and B be the genesis block
if there does not exist such an iteration.) If an honest val-
idator enters an iteration c′′ > c′ at some round r ≥
max(GAT,GST) + ∆ + Tchkpt, every honest validator enters
iteration c′′ by round r +∆.

Proof of Prop. 4 follows from the proof of [6, Prop. 3].

Proof. Suppose a block B from iteration c was checkpointed
in the view of an honest validator id at round r. Then, there
are over 2n/3 accepting gadget votes for B from iteration c on
LOGr

bft,id, the output ledger of the BFT protocol in id’s view at
round r. All gadget votes and BFT protocol messages observed
by id by round r are delivered to all other honest validators by
round max(GST,GAT, r)+∆. Hence, by the safety of the BFT
protocol when f < n/3, for any honest validator id′, the ledger
LOGr

bft,id is the same as or a prefix of the ledger observed
by id′ at round max(GST,GAT, r) +∆. Thus, for any honest
validator id′, there are over 2n/3 accepting gadget votes for B
from iteration c on LOGbft at round max(GST,GAT, r) +∆.
This implies every honest validator enters iteration c + 1 by
round max(GST,GAT, r) + ∆.

Finally, by the reasoning above, all honest validators enter
iteration c′+1 by round max(GAT,GST)+∆. Thus, entrance
time of the honest validators to subsequent iterations have
become synchronized by round max(GAT,GST)+∆+Tchkpt:
If an honest validator enters an iteration c′′ > c′ at some round
r ≥ max(GAT,GST) + ∆ + Tchkpt, every honest validator
enters iteration c′′ by round r+∆. Similarly, if a block from
iteration c′′ is first checkpointed in the view of an honest
validator at some round after max(GAT,GST) +∆+ Tchkpt,
then it is checkpointed in the view of all honest validators
within ∆ rounds.

Lemma 8 (Liveness of chacc, analogue of Thm. 4 of [6]).
Consider a ( 13 , 3∆)-compliant execution of Goldfish in the
partially synchronous sleepy network model of Sec. II-B.
Suppose chava is secure (safe and live) after some round
Theal ≥ max(GST,GAT) + ∆ + Tchkpt. Then, w.o.p., chacc
satisfies n/3-liveness after round Theal with transaction con-
firmation time Tconf = Θ(κ2).

Proof of Lem. 8 follows from the proof of [6, Thm. 4].

Proof. By Prop. 3, LOGbft is live with transaction confir-
mation time Tbft after max(GST,GAT), a fact we will use
subsequently.

Let c′ be the largest iteration such that a block B was
checkpointed in the view of some honest validator before
max(GAT,GST) (Let c′ = 0 and B be the genesis block
if there does not exist such an iteration). Then, by Prop. 4,
entrance times of the honest validators to subsequent iterations
become synchronized by round max(GAT,GST)+∆+Tchkpt:
If an honest validator enters an iteration c > c′ at some round
r ≥ max(GAT,GST) + ∆ + Tchkpt, every honest validator
enters iteration c by round r +∆.

Suppose an iteration c > c′ has an honest iteration leader
L(c), which sends a checkpoint proposal, denoted by b̂c,
at some round r > Theal + Tchkpt. The proposal b̂c is
received by every honest validator by round r + ∆. Since
the entrance times of the validators are synchronized by
Theal ≥ max(GST,GAT)+∆+Tchkpt, every honest validator
sends a gadget vote by round r +∆. By Lem. 10, b̂c ⪯ B⌈κ

for any B identified in Alg. 1, ll. 8, 22, 28 by any awake
honest validator after r. Moreover, b̂c is a descendant all
of the checkpoints seen by the honest validators until then.
Consequently, at iteration c, every honest validator sends a
gadget vote accepting b̂c by round r+∆, all of which appear
within LOGbft in the view of every honest validator by round
r +∆+ Tbft. Thus, b̂c becomes checkpointed in the view of
every honest validator by round r+∆+Tbft. (Here, we assume
that Ttmout was chosen large enough for Ttmout > ∆ + Tbft

to hold.)
Since r > Theal + Tchkpt, by Lem. 10, b̂c contains at least

one honest block since an earlier checkpointed block in its
prefix from before iteration c. This implies that the prefix of
b̂c contains at least one fresh honest block that enters chacc
by round r +∆+ Tbft.

Next, we show that an adversarial leader cannot make an
iteration last longer than ∆ + Ttmout + Tbft for any honest
validator after the initial Tchkpt period elapsed. Indeed, if an
honest validator id enters an iteration c at round r − Tchkpt,
by round r + Ttmout, either it sees a block (potentially ⊥)
become checkpointed for iteration c, or it sends a reject vote
for iteration c. In the first case, every honest validator sees
a block checkpointed for iteration c by round at most r +
Ttmout + ∆. In the second case, rejecting gadget votes from
over 2n/3 > n/3 validators appear in LOGbft in the view of
every honest validator by round at most r+Ttmout+∆+Tbft.
Hence, a new checkpoint, potentially ⊥, is output in the view
of every honest validator by round r + Ttmout +∆+ Tbft.

Finally, we observe that except with probability (1/3)κ,
there exists a checkpoint iteration with an honest leader
within κ consecutive iterations. Since an iteration lasts at
most max(∆ + Ttmout + Tbft,∆ + Tchkpt + Tbft) ≤ ∆ +
Tchkpt + Ttmout + Tbft = Θ(κ) rounds, and a new checkpoint
containing a fresh honest block in its prefix appears when
an iteration has an honest leader (Lem. 10), w.o.p., any
transaction received by an honest validator at round t appears
within chacc in the view of every honest validator by round
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at most t + κ(∆ + Ttmout + Tbft + Tchkpt). Hence, via a
union bound over the total number of iterations (which is a
polynomial in κ), we observe that if chava satisfies security
after some round Theal, then w.o.p., chacc satisfies liveness after
Theal with a transaction confirmation time Tconf = Θ(κ2).

The latency expression Tconf = Θ(κ2) stated in Lem. 8 is
a worst-case latency to guarantee that an honest block enters
the accountable, final prefix ledger chacc with overwhelming
probability. In the expression, the first κ term comes from
the requirement to have Tchkpt = Θ(κ) slots in between
the accountability gadget iterations, and the second κ term
comes from the fact that it takes Θ(κ) iterations for the
accountability gadget to have an honest iteration leader except
with probability negl(κ). The accountability gadget protocol
asks honest validators to wait for Tchkpt = Θ(κ) slots in
between iterations to ensure the security of the protocol,
reasons for which will be evident in the proof of Lem. 10.

Unlike the worst-case latency, the expected latency for an
honest block to enter chacc after chava regains its security
would be Θ(κ) as each checkpointing iteration has an honest
leader with probability at least 2/3. In this context, the
latency of Θ(κ) is purely due to the requirement to have
Tchkpt = Θ(κ) slots in between the accountability gadget
iterations. Here, waiting for Tchkpt slots in between iterations
guarantees the inclusion of a new honest block in chava, which
in turn appears in the prefix of the next checkpoint, implying
a liveness event whenever there is an honest iteration leader.

Lem. 8 requires the available ledger chava to eventually
regain security under partial synchrony when there are less
than n/3 adversarial validators. Towards this goal, we first
analyze the gap and recency properties, the core properties
that must be satisfied by the accountability gadget for recovery
of security of chava. The gap property states that the blocks
are checkpointed sufficiently apart in time, controlled by the
parameter Tchkpt:

Proposition 5 (Gap property, analogue of Prop. 4 of [6]).
Consider a ( 13 , 3∆)-compliant execution of Goldfish in the
partially synchronous sleepy network model of Sec. II-B.
Given any round interval of size Tchkpt, no more than a single
block can be checkpointed in the interval in the view of any
honest validator.

Proof of Prop. 5 follows from the fact that upon observing a
new checkpoint that is not ⊥ for an iteration, honest validators
wait for Tchkpt rounds before sending gadget votes for the
checkpoint proposal of the next iteration, and there cannot be
two conflicting checkpoints for the same iteration in the view
of any honest validator.

As in [6] and [14], we state that a block B∗ checkpointed at
iteration c and round r > max(GST,GAT) in the view of an
honest validator id is Trcnt-recent if B∗ ⪯ B⌈κ for B identified
in Alg. 1, l. 28 by id′ at some round within [r−Trcnt, r]. Then,
we can express the recency property as follows:

Lemma 9 (Recency property, analogue of Lem. 1 of [6]).
Consider a ( 13 , 3∆)-compliant execution of Goldfish in the

partially synchronous sleepy network model of Sec. II-B. Every
checkpointed block proposed after max(GST,GAT) is Trcnt-
recent for Trcnt = ∆+ Ttmout + Tbft.

Proof. By the proof of Lem. 8, if a block B proposed after
max(GST,GAT) is checkpointed in the view of an honest
validator at some round r, it should have been proposed after
round r−(∆+Ttmout+Tbft). Moreover, over 2n/3 validators
must have sent accepting gadget votes for B by round r. Let
id denote such an honest validator. It would vote for B only
after it sees the checkpoint proposal for iteration c, i.e., after
round r − Trcnt = r − (∆ + Ttmout + Tbft), and only if the
proposal is confirmed in its view. Hence, B must be κ slots
deep in the chain returned at Alg. 1, l. 28 by validator id at
some round within [r−Trcnt, r]. This concludes the proof that
every checkpointed block proposed after max(GST,GAT) is
Trcnt-recent.

Lemma 10 (Healing property, analogue of Thm. 5 of [6]).
Consider a ( 13 , 3∆)-compliant execution of Goldfish in the
partially synchronous sleepy network model of Sec. II-B. Then,
chava is secure with transaction confirmation time Tchkpt +
Ttmout + Tbft = Θ(κ) after round max(GAT,GST) + ∆ +
2Tchkpt.

Moreover, for the iteration proposal b̂c of an honest iteration
leader broadcast at round r, it holds that b̂c ⪯ B⌈κ for any B
identified in Alg. 1, ll. 8, 22, 28 by any awake honest validator
after r, and b̂c contains a fresh honest block that is not in the
prefix of any checkpoint from before iteration c.

Proof of Lem. 10 is different from the proof of [6, Thm. 5]
since the accountability gadget is applied to a longest chain
protocol in [6], whereas it is applied to Goldfish in our case.
Therefore, the full proof is presented below.

Proof. By [6, Thm. 3], chacc provides accountable safety
with resilience n/3 except with probability negl(λ) in the
partially synchronous sleepy network model. As the execution
is ( 13 , 3∆)-compliant, w.o.p., no two checkpoints observed by
awake honest validators conflict.

Let c be the largest iteration such that a block B was
checkpointed in the view of some honest validator before
max(GAT,GST). (Let c = 0 and B be the genesis block
if there does not exist such an iteration.) Then, by Prop. 4,
if an honest validator enters an iteration c′ > c at some
round r ≥ max(GAT,GST) + ∆ + Tchkpt, every honest
validator enters iteration c by round r + ∆. Let c′ be the
first iteration such that the first honest validator to enter c′

enters it after round max(GAT,GST) + ∆ + Tchkpt (e.g., at
some round r such that max(GAT,GST) + ∆ + Tchkpt <
r < max(GAT,GST) + ∆ + 2Tchkpt). Then, all honest
validators enter iteration c′ and agree on the last checkpointed
block within ∆ rounds. Subsequently, the honest validators
wait for Tchkpt rounds before casting any gadget vote for a
checkpoint proposal of iteration c′, during which no block can
be checkpointed (Prop. 5, gap property).

By Lem. 1, w.o.p., the slot interval of length κ starting
after round r+∆ contains a slot t with an honest leader and
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proposal P ∗. After round r ≥ GST, all messages broadcast by
honest validators are received by all honest validators within
∆ rounds. As honest validators agree on the last checkpointed
block during the interval [r +∆, r + Tchkpt], by the absence
of new checkpoints, the GHOST-Eph fork-choice rule starts
at the same last checkpointed block for all honest validators
during the interval (Alg. 2, l. 2). Then, by Lem. 1, w.o.p.,
P ∗.B ⪯ B for any B identified in Alg. 1, ll. 8, 22, 28 by any
awake honest validator in any round after 3∆t+ 2∆, until at
least a new block is checkpointed in the view of an honest
validator.

By Lem. 9 (recency property), the next block checkpointed
in the view of an honest validator (which happens earliest at
some iteration c′′ ≥ c′ and round r′ ≥ r + Tchkpt by Prop. 5,
the gap property) must have been confirmed by some honest
validator id at some round within [r′ − Trcnt, r

′], where r′ −
Trcnt ≥ r+6∆κ+4∆. Hence, the new checkpointed block is
κ slots deep in the chains identified in Alg. 1, ll. 8, 22, 28 by
id, and is a descendant of P ∗.B. This implies P ∗.B ⪯ B for
any B identified in Alg. 1, ll. 8, 22, 28 by any awake honest
validator in any round after 3∆t+ 2∆ indefinitely.

Note that if the iteration leader was honest, for its proposal
b̂c broadcast at some round r′′, it holds that b̂c ⪯ B⌈κ for
any B identified in Alg. 1, ll. 8, 22, 28 by any awake honest
validator after round r. Moreover, P ∗.B ⪯ b̂c, implying that
honest checkpoint proposals contain fresh honest blocks in
their prefixes.

Finally, we extend the above argument to future checkpoints
by induction. Let Bn denote the sequence of checkpointed
blocks, ordered by their iteration numbers cn ≥ c′, c1 = c′′.
The rounds rn, at which the blocks Bn are first checkpointed
in the view of an honest validator satisfy the relation rn+1 ≥
rn+Tchkpt and r1 = r′′. Via the inductive assumption and the
reasoning above, w.o.p., in each interval [rn+∆, rn+1−Trcnt],
there exists a slot tn with an honest leader and proposal Pn

such that Pn.B ⪯ B for any B identified in Alg. 1, ll. 8,
22, 28 by any awake honest validator in any round after
3∆tn + 2∆ indefinitely. Hence, for a sufficiently large con-
firmation time exceeding the maximum possible length of an
iteration (i.e., Tconf ≥ Tchkpt + Ttmout + Tbft), these honest
blocks imply the security of the Goldfish protocol after round
max(GAT,GST) + ∆ + 2Tchkpt.

Note that Thm. 1 holds for the honest blocks proposed
during the intervals [rn + ∆, rn+1 − Trcnt] as all honest
validators agree on the latest checkpoint during these intervals.

Proof of Thm. 4. We first show the property P1, namely, the
accountable safety and liveness of the accountable, final prefix
ledger chacc under partial synchrony in the sleepy model. By
[6, Thm. 3], chacc provides accountable safety with resilience
n/3 except with probability negl(λ) under partial synchrony
in the sleepy model. By Lem. 10, under the same model, the
available ledger chava is secure after round max(GAT,GST)+
∆ + 2Tchkpt. Using this fact and Lem. 8, we can state that,
w.o.p., chacc satisfies liveness after round max(GAT,GST) +
∆+2Tchkpt with transaction confirmation time Tconf = Θ(κ2).

Finally, the property P2 follows from Lem. 7, and Prefix
follows by construction of the ledgers chacc and chava. This
concludes the proof of the ebb-and-flow property.
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