Goldfish: No More Attacks on Ethereum?!

Francesco D’Amato!, Joachim Neu?, Ertem Nusret Tas?, and David Tse?

! Ethereum Foundation
francesco.damato@ethereum.org
2 Stanford University
{jneu,nusret,dntse}@stanford.edu

Abstract. The LMD GHOST consensus protocol is a critical compo-
nent of proof-of-stake Ethereum. In its current form, this protocol is
brittle, as evidenced by recent attacks and patching attempts. We pro-
pose Goldfish, a new protocol that satisfies key properties required of a
drop-in replacement for LMD GHOST: Goldfish is secure in the sleepy
model, assuming a majority of the validators follows the protocol. Gold-
fish is reorg resilient so that honestly produced blocks are guaranteed
inclusion in the ledger, and it supports fast confirmation with expected
confirmation latency independent of the desired security level. Subsam-
pling validators can improve the communication efficiency of Goldfish,
and Goldfish is composable with finality/accountability gadgets. Crucially,
Goldfish is structurally similar to LMD GHOST, providing a credible
path to adoption in Ethereum. Attacks on LMD GHOST exploit lack
of coordination among honest validators, typically provided by a locking
mechanism in classical BFT protocols. However, locking requires votes
from a quorum of all participants and is not compatible with fluctuating
participation. Goldfish is powered by a novel coordination mechanism to
synchronize the honest validators’ actions. Experiments with our proto-
type implementation of Goldfish suggest practicality.

1 Introduction

Ethereum’s Consensus Protocol. Ethereum’s proof-of-stake (PoS) Byzan-
tine fault tolerant (BFT) consensus protocol (Gasper [15], Fig. [I) consists of
an overlay finality gadget (Casper FFG [14]) which provides safety under asyn-
chrony, on top of an wnderlay chain (LMD GHOST, Latest Message Driven
Greedy Heaviest Observed Sub-Tree [12,/73]) which should be secure under
synchrony and dynamic participation. Importantly, dynamic participation here
refers to the sleepy model |65] for a large number of unezpected temporary crash
faults, not to, for instance, stake shift. This design works around the impossibil-
ity [34Lj441/561/601/61,/69] of having a single ledger that is secure under both asyn-
chrony and dynamic participation. It is crucial that the underlay is both safe and
live in the sleepy model, because earlier works have shown [16}(53[60,/61,(69] that
otherwise the whole protocol (i.e., underlay and overlay) can stall indefinitely. In

L2 The authors are listed alphabetically. Contact authors: FD, JN, ENT.

2 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

iJustiﬁca‘cions

Chain tip Overlay: Finalizations

> > C FFG > >
asper Chain tip

Underlay:
LMD GHOST

txs ——>

>

Fig. 1. Gasper [15] consists of two sub-protocols: LMD GHOST (‘fork choice rule’)
and Casper FFG [14] (‘finality gadget’). The desiderata for Gasper were formalized
by ebb-and-flow |60,/61L(69], which consists of security of the full chain under dynamic
participation of validators, and accountable security of a finalized prefix.

particular, the overlay can only ‘checkpoint’ transactions that are stable in the
underlay. If the underlay stalls (not live) or keeps switching between different
chains (not safe), then the overlay won’t make progress. Thus, the underlay is
not “just some optional optimistic path”, but on the critical path for any transac-
tion to get confirmed. Also, from a practical point of view, overlay confirmation
is typically slow (e.g., min. 12min delay to finality in Ethereum), while the un-
derlay generates a block every few seconds. As a result, in Ethereum today, most
users don’t wait for Casper overlay confirmation, but de-facto already consider
a transaction confirmed when it enters the tip of the LMD GHOST underlay
chain. If the underlay does not provide at least some non-trivial safety guaran-
tee, transactions can be reverted that have not yet been ‘checkpointed’ by the
overlay, especially when overlay confirmation is delayed due to many unexpected
crash faults, e.g., as happened on Ethereum mainnet in May 2023 [26]/63)|.

Attacks and Patches for LMD GHOST. But, LMD GHOST (cf. Fig. [4) is
not secure in the sleepy model. The initial version of LMD GHOST |[15] is sus-
ceptible to the balancing attack |60,70]. In the attack, the adversary exploits the
lack of a coordination mechanism for synchronizing the views of honest valida-
tors; so that different validators vote for conflicting blocks at each slot, and the
network fails to reach consensus indefinitely. In response, a patch called proposer
boosting was added |13]. Proposer boosting gives a current proposal a tempo-
rary extra weight in fork-choice. This was supposed to coordinate voters towards
honest proposals and break the balance. However, the LMD provision alone can
be exploited to conduct a balancing-type attack despite boosting [62], and LMD
GHOST without LMD would suffer from a so called avalanche attack |62]. Again
in response, a patch called equivocation discounting was added to the protocol.
Not least because of its complexity, the protocol with these patches has so far
defied security analysis—both in terms of giving a security proof and further
attacks. Certainly, the extra weight from proposer boosting gives an adversary
much control over the chain, especially when the number of votes is low. Thus,
proposer boosting renders LMD GHOST insecure under dynamic participation.

Quest for a Coordination Mechanism. PBFT-style protocols [11}[18}/19,
74] coordinate validators using locking and absolute quorums, i.e., sets of votes
from a large fraction of all validators. However, absolute quorums cannot be
reached in the presence of many unexpected crash faults. Thus, such protocols
don’t satisfy liveness under dynamic participation in the sleepy model, which is
crucial to withstand unforeseen regulatory changes, or soft-/hardware failures or

Goldfish: No More Attacks on Ethereum?! 3

upgrades [60]. Tolerating dynamic participation is indeed one reason why LMD
GHOST avoids absolute quorums and selects relatively heavier blocks.
Conversely, PoS variants of Nakamoto’s longest chain (LC) protocol [4}21}
27,41, |65] are secure in the sleepy model [65]. In LC, validators continuously
build blocks extending the (relatively) longest chain. Only after a while, honest
validators reach coordination on a chain prefix. Unfortunately, this entails slow
conﬁrmatiowﬂ i.e., expected confirmation latency linear in the desired consensus
failure probability. Moreover, in LC, honestly produced blocks can be displaced
(reorg’ed) by adversaries [30], and validators have incentives to do so [1417}22/45|.

Key Techniques of Goldfish. For Goldfish’s overall structure, failure of LC
protocols to satisfy reorg resilience and fast confirmation due to “too few votes
spread across too much time” suggests to employ a committee of voters that can
create many votes supporting honest proposals soon after they are broadcast,
similar to committees in PBFT-style protocols. However, as absolute quorums
of PBFT-style protocols are incompatible with liveness under dynamic partici-
pation, rather than using the absolute number of votes, a protocol for dynamic
participation must use their relative weights to favor blocks with stronger sup-
port during fork choice, similar to Nakamoto’s longest-chain rule. Together, these
observations vindicate some structural elements of LMD GHOST and suggest
to retain them in Goldfish: a succession of slots with a proposer and a committee
that votes, all based on blocks’ relative vote weights like in the GHOST rule.
Key to Goldfish is a novel coordination mechanism for honest voters to rally
behind honest proposals. Unlike aforementioned mechanisms, this mechanism is
secure in the sleepy model while also allowing for reorg resilience and fast con-
firmations. It is based on two techniques not commonly found in the literature:
e Message buffering’| means each validator buffers votes received from the
network and carefully times the inclusion of these votes into its local view, with
priority given to votes relayed by the proposer. Conceptually, a validator echoes
received votes but processes them only after some time or as soon as the pro-
poser relays them. This ensures that in slots with an honest proposer, all honest
validators adopt the view of the proposer and thus vote for its proposed block.
e Vote expiry means that during each slot, only votes from the immediately
preceding slot influence honest validators’ behaviorEI As a result, if in some slot
all honest validators (which are assumed to outnumber adversary validators)
vote to support a block (i.e., vote for the block or one of its descendants), then
all honest validators will again vote to support that block in the next slot.
Together, these two techniques allow for a simple inductive security argu-
ment: Because proposers are selected randomly among the majority-honest val-

3 Confirmation latency denotes the delay for a transaction to enter the ledgers of all
validators. It is a random variable that depends on the sequence of block proposers.

4 Message buffering was also called ‘view-merge’ in a blog post |6] by one of the authors.
We later noticed that a similar technique was used before in the unpublished Highway
protocol [37]. Message buffering (cf. Alg. |2) also bears some conceptual resemblance
to the view-change sub-protocol of Sync HotStuff |3 Fig. 2.

5 Alleged forgetfulness of its animal namesake inspired Goldfish’s name.

4 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

idators, slots with an honest proposer are frequent. By message buffering, all
honest voters vote for the block proposed in such a slot (base case). By vote
expiry, honest voters keep reaffirming this vote in perpetuity (induction step).
Thus, honest proposals are guaranteed to remain in the canonical chain, implying
reorg resilience. Since honest proposals contain fresh transactions and stabilize
their prefix, and long streaks of adversary proposers are exponentially unlikely,
liveness and safety follow readily. Details are provided in and [4

A complementary perspective is that, conceptually, message buffering thwarts
balancing-type attacks [60L|70] (it ensures that honest voters rally behind hon-
est proposals), while vote expiry thwarts avalanche-type attacks [62] (it ensures
that the adversary cannot reveal votes from long past slots—where the respective
voter may still have been honest even). In this regard, LMD has a similar effect
as vote expiry [62], but LMD does not recover reorg resilience under dynamic
participation, and is rendered ineffective entirely if validators are subsampled
to form small voter committees for reduced communication complexity. In con-
trast, vote expiry allows subsampling. With expiry and subsampling, vote expiry
drastically reduces the number of votes validators need to buffer and consider at
any point, greatly contributing to message buffering’s practicality (see [Sec. 5)).

Goldfish’s Contributions. Goldfish achieves the aforementioned desiderata:
(a) Goldfish is provably secure, i.e., safe and live, under dynamic participation
in the sleepy model assuming an honest majority of validators, and adversary
network delay up to a known upper bound A. (b) Goldfish is reorg resilient, i.e.,
honest proposals eventually enter the ledger, with the proposal’s prefix as deter-
mined at the time of block production (thus, no selfish mining [30]). (c) Goldfish
satisfies optimistic fast confirmation: under optimistic conditions, i.e., when par-
ticipation is high and % fraction of validators are honest, it confirms transactions
with constant expected latency independent of the consensus failure probability.
Additionally, Goldfish supports subsampling of validators, which reduces com-
munication and achieves resilience to adaptive corruption, since randomly se-
lected validators send only a single protocol message (cf. player-replaceability |20}
331/72]). Goldfish is also composable with finality and accountability gadgets such
as [14,/60,/61L/69]. This means it can indeed be used as a dynamically available
underlay in conjunction with an overlay (cf. Fig. |1) that preserves safety under
asynchrony. Since the construction and its security proof mostly reuses tech-
niques from [60}/61L|69], we provide it in and focus in the following on
Goldfish’s standalone behavior in the sleepy model assuming synchrony.
Crucially, Goldfish is intentionally simple, and similar to LMD GHOST as
currently deployed in Ethereum, to provide a credible path for adoption (compare
Figs. and @ Message buffering and vote expiry can be realized with modest
changes to the existing vote accounting logic of LMD GHOST. Goldfish is the
first positive result (security proof) for a variant of LMD GHOST, strengthening
confidence in this protocol family. Simplicity of Goldfish also makes it a good
pedagogical example as a feature-rich consensus protocol for the sleepy model.

Related Works. The first secure consensus protocol for the sleepy model [65]
was Nakamoto’s LC protocol, first based on proof-of-work (PoW) [32}/52], and

Goldfish: No More Attacks on Ethereum?! 5

Table 1. Comparison of Goldfish with related works regarding key desiderata. Opti-
mistic (‘opt.”) fast confirmation requires high participation and less than % adversary
fraction. Dynamic participation ‘v (slow)’ indicates the protocol remains live only
under slow fluctuations in participation. A number next to ‘v’ for fast confirmation
denotes the minimum confirmation latency. Responsive (‘resp.’) confirmation means

with delay of the actual network delay rather than delay bound A.

‘ PoS/permissioned BFT consensus protocols ... for the sleepy model [65] ‘

... for other models

LC [4 Thunder- KW21 GLR21 MR22 MMR22 GL237 MMR23" Goldfish | PBFT-style Highway
15,21,/31] ella |66] |40] 135] 151) 147] |46] 149] (this work) | [11},/18}|19L|74] [37]
Dynamic participation v v/ (slow) V/ (slow) v v v v 4 v/ X X
Reorg resilience X X v v v 4 v v v v v
Adversary resilience 1/2 1/2 1/3 1/2 1/2 1/3 1/2 1/2 1/2 1/3 flexible
Fast confirmation X opt. (resp.) v X v/ (374) v (3A) v/ (104) / (4A) opt. (44) v/ (resp.) 4
Similar to LMD GHOST X X X X X X X X 4 X 4

i Appeared in preprint after completion of Goldfish |23].

subsequently on PoS [4121],[27,/41}/65] (see Tab. [I| for a comparison of Goldfish
with related works). Parallel composition of LC protocol instances was suggested
in [5/31] to overcome the scaling of LC protocols’ confirmation latency with the
security parameter . For the same goal, Thunderella [66] proposed combining
a PBFT-style protocol achieving optimistic fast confirmation with a slow LC
protocol for when the adversary fraction is high. (A similar idea was explored in
Zyzzyva |2L|43|, where validators run a PBFT-style protocol, but optimistically
confirm the primary’s ordering. Zyzzyva is not dynamically available.) However,
as observed above, LC protocols and Thunderella that builds on an LC proto-
col are not reorg resilient. Moreover, under optimistic conditions, Thunderella
recovers fast confirmation only after a period of LC confirmation delay, whereas
Goldfish can instantaneously resume fast-confirming. Many classical PBFT-style
consensus protocols [18|19/74] have constant (expected) confirmation latency and
can be reorg resilient, but don’t tolerate dynamic participation. Highway [37] en-
ables confirming blocks using different absolute quorum sizes; however it does
not support dynamic participation. An early ‘classical’ BF'T protocol for a model
with unknown (but static) participation is KW21 [39//40]. A subsequent protocol
GLR21 |35] supports dynamic participation with confirmation latency indepen-
dent of the participation level, but still linear in the security parameter x [51].
Confirmation latency independent of the security parameter is achieved in the
PoW setting with omission and Byzantine faults by [67] and [68], respectively.
A recent work MR22 [51] presents the first permissioned/PoS protocol that
supports dynamic participation with confirmation latency independent of the
security parameter and participation level, with the caveats that temporary sta-
bility in the honest participation is necessary to ensure liveness, and a growing
adversary cannot be tolerated. Whereas [51] ensures fast confirmation with ad-
versary resilience % without requiring high participation, its confirmation latency
is 37A, considerably larger than the latency of Goldfish (4A) under optimistic
conditions. In the contemporary independent work [47.|48], the prerequisites for
liveness were relaxed and latency was improved to 34, at the expense of re-
1

duced adversary resilience (from % down to 3). After completion of Goldfish,

6 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

MMR23 [49] combines techniques from [51] and [47] to achieve resilience 3 and
latency 4A, while doing away with the stable participation requirement for live-
ness of [51]. GL23 |46] achieves a similar result independently and concurrently.
Both use expiring votes, like Goldfish, to tolerate increasing adversaries.

Increased communication complexity is a challenge with these later proto-
cols. In Goldfish, each voter only has to send a single message per slot, and
messages can be relayed as-is to other validators, in practice efficiently imple-
mented through gossip networks. In MMR23 [49], for instance, validators need
to send tally messages for potentially many blocks, while GL23 [46] requires each
validator to attach its own signature on every received vote before relaying. Thus,
Goldfish always needs to gossip at most linearly many distinct messages, while
GL23 [46] needs to at times gossip quadratically many distinct messages. The
possibility of many messages with different contents also makes these protocols
less amenable to signature aggregation. Together with their considerable devia-
tions from LMD GHOST, these are concrete challenges faced by these protocols
in their possible path to adoption in Ethereum, as compared to Goldfish.

Follow-Ups & Adoption. A challenge Goldfish shares with related works [46]
491/51] is that a brief period of asynchrony suffices to cause ‘deep’ safety violations
(up to the last checkpoint if used with overlay, cf. Fig. . A Goldfish variant in
follow-up work [24] addresses this issue, by trading off a longer vote expiry period
for a less dynamic participation model. The current candidate protocol [25] to
provide ‘single-slot finality’ for Ethereum is based on that Goldfish variant.

2 Preliminaries and Model

We recap the sleepy model [65] for dynamic participation under synchrony.

Preliminaries. Let k, A\ be the security parameters of Goldfish itself and of
the cryptographic primitives it uses, respectively. Specifically, x will be Gold-
fish’s (slow-path) confirmation latency, cf. Alg. |2} 1. A function is negligible
in p, denoted negl(u), if it is o(1/u?) for all d > 0. An event happens with
overwhelming probability (w.o.p.) if it happens except with probability (w.p.)
negl(x) 4+ negl(\). Goldfish uses a signature scheme Sig with key generation, sign,
and verify algorithms Sig.Gen, Sig.Sign, Sig.Verify (cf. . A verifiable ran-
dom function (VRF) [50] scheme Vrf with function generation, evaluation prove,
and evaluation verify algorithms Vrf.Gen, Vrf.Eval, Vrf.Verify (cf. is

used for leader election and committee subsampling, as in [20,33].

Validators. Goldfish is run among n validators, with identities id € [n] =

{1,...,n}. Each generates a secret/public key pair (sskid, spkiq) and (vskiq, vpkiq)
for Sig and Vrf, respectively. The public keys are commonly known (i.e., PKI). As
is customary to study new consensus protocols, we assume that every validator
has one unit of stake throughout the execution (i.e., static homogeneous stake).
Gradual stake shift (i.e., dynamic stake) can be supported using techniques that
bootstrap PoS protocols from static-stake protocols with PKI [2127]29].

Environment and Adversary. Time proceeds in discrete rounds and the

Goldfish: No More Attacks on Ethereum?! 7

validators have synchronized clocks. (Bounded clock offsets can be lumped into
the network delay upper bound A discussed below.) Validators receive transac-
tions (txs) from the environment, and can broadcast messages to each other. The
adversary is a probabilistic poly-time (PPT) algorithm that can control three
aspects of the model (corruption, sleepiness, network delay) to attack consensus.
We first discuss these three aspects, and then the adversary’s powers and limits.

Corruption. The adversary chooses f adversary validators (adaptively, subject
to constraints detailed below). Non-adversary validators are honest. Naturally,
the adversary learns the internal state of its validators and can make them devi-
ate from the protocol arbitrarily (Byzantine faults) for the rest of the execution
(permanent corruption). We define the adversary fraction 3 £ f/n.

Sleepiness. The adversary decides for each round and honest validator whether
it is asleep or not. Asleep validators do not execute the protocol (temporary
crash faults). Messages delivered to an asleep validator are picked up by it only
once it is no longer asleep. When a validator stops being asleep, it becomes
dreamy. It then joins the protocol, possibly over multiple rounds, using a joining
procedure specified by the protocol. Upon completion, the validator becomes
awake and follows the protocol normally. Adversary validators are always awake.
The number of awake validators is bounded below by a constant ng across rounds.

Network Delay. Messages sent between validators are delivered with an adver-
sarially determined delay that can differ for each recipient. Upon picking up
messages (i.e., once not asleep), an honest validator re-broadcasts them.

Adversary Powers and Limits. For message delivery, the adversary has to obey
a delay upper-bound of A rounds, which is known to the validators (synchrony).
Message delays and sleep schedule are chosen by the adversary adaptively. For
sleepiness and corruption, Goldfish supports two assumptions: Either, we require
mildly adaptive corruption, where it takes 3A rounds for corruption to take ef-
fect, together with the constraint that for every round r, the number of adversary
validators at round r must be less than the number of honest awake validators
at round r — 3A. Or, analogously to earlier works [41/20,/41], through the use
of key evolving [7},/36] signature and VRF schemes, we allow for fully adaptive
corruption, together with the constraint that for every round r, the number of
adversary validators at round r must be less than the number of honest awake
validators at round 7. The precise technical assumptions are stated by Def. 2]

Security. Security is parameterized by k, which for Goldfish affects the confir-
mation latency. We consider a finite execution horizon of T, = poly(x) rounds.

Definition 1 (Security). Let ch < ch’ express that ledger ch is a prefiz of
(or the same as) ledger ch’. A consensus protocol, where at round r validator id
outputs ledger chf, 1s secure with transaction confirmation time Teont, iff w.0.p.:
— Safety: Vr,r’: Yhonest id,id" awake at r,r': (ch¥ < chi,fj,/) \Y (chif,/ < chi9).
— Liveness: If transaction tx was received by some awake honest validator by
r, then Vr' > r + Toone: Vhonest id awake at r': tx € ch;g,

The protocol satisfies f-safety (f-liveness) if it is safe (live) if f < f. It
satisfies 1/2-safety (1/2-liveness) if it is safe (live) if 8 < 1/2 — ¢ for some € > 0.

8 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

Algorithm 1 Interface of VRF-based lotteries and validity of data structures.
: > VRF-based lotteries
02 (y,m) Openi(dtag’th') (t) £ Vrf.Eval(vskig, tag || t)
{1,0} ¢ Wins(*8((id, 1), 0) £ (0. < thr2”) A Vif.Verify(vpky, tag | t. (0-y, 0.7))
. A 0.y
[0, 1] « Prio(g) 2 &
> Data structures
{1,0} « Valid(B) £ (B = Bo) > Block B
v (Wins®**®™") (B.id, B.t), B.g)
A Sig.Verify(spk g iq, block || B.h || B.txs, B.o)
A Valid(*[B.h]) A (B.t > *[B.h].t))
7: {1,0} + Valid(v) £ Wins(vote’thr")((v.id, v.t),v.0) A Sig.Verify(spk, .4, vote || v.h,v.0) > Vote v
A Valid(*[v.h]) A (v.t > "[v.Rh].t)
8: {1,0} « Valid(M) £ Valid(M.z) > Piece M
9: {1,0} « Valid(P) £ Valid(P.B) > Proposal P
A Consistent(P.7 U {P.B})
A Sig.Verify(spkp. g5 iq, propose || P.T || P.B, P.o)
A (Vx € P.T: Valid(z) A (z.t < P.B.t))

3 Protocol

We describe the basic Goldfish protocol in and its optimistic fast confir-
mation extension in [Sec. 3.2} The composition of Goldfish as underlay chain with

an overlay gadget (cf. Fig.[l)) is described and analyzed in due to space
constraints and since this mostly reuses orthogonal techniques from [60,61L(69],

3.1 The Goldfish Protocol

The basic Goldfish protocol (cf. Algs. and [3]) proceeds in slots of 3A rounds.

VRF-based Lotteries. The VRF PKI enables cryptographic lotteries. A lot-
tery (tag,thr) is defined by a fixed tag and threshold thr € [0, 1]. Each validator
id receives for each slot ¢ a lottery ticket (id,t). A ticket can be opened, Alg.[1} 1.
An opened ticket with opening o can be winning for (tag,thr), Alg.[1] 1. 3| and
winning opened tickets are totally ordered by increasing precedence, Alg.[1] 1. [

Data Structures. Blocks and wvotes are central to Goldfish. A block B £
(block, (id,t), 0, h,txs, o) consists of tag ‘block’, ticket (id,¢) and opening o to
the (block, thry) block production lottery, hash h committing to the new block’s
parent block and transactions txs (as block ‘content’), and signature o binding
together block production opportunity and the block’s content. A special genesis
block By = (block, (1,0), L, 1,0, 1) is known to all validators. A block B is valid
following Alg. (1} L. |§|, where *[B.h] means the parent block that B.h commits
to (namely, *[z] represents the block committed by hash z). The context within
which these references get resolved is detailed with the different network message
types below. A vote v £ (vote, (id,), 0, h, o) consists of tag ‘vote’, ticket (id, t)
and opening p to the (vote, thry) voting lottery, hash A committing to the block
voted for (as vote ‘content’), and signature o binding together voting opportunity
and the vote’s content. Every vote v is tied to its slot v.t via the lottery ticket
(id, t). A vote v is valid following Alg. [1] 1.[7]

Goldfish: No More Attacks on Ethereum?! 9

We call block-vote-set (short buset) a set of blocks and votes. Commitments
to blocks for the purpose of the references v.h or B.h are computed using H(.).
For a bvset T we denote by T[h| the block B € T with H(B) = h, and L if non-
existent. In Goldfish, votes and blocks are encapsulated and exchanged in two
network message types, pieces and proposals. A piece M £ (piece,x) consists
of tag ‘piece’ and for payload x either a vote or a block, and is valid following
Alg. [1] 1. B Pieces are used to propagate blocks and votes and abstract peer-
to-peer broadcast object propagation. In determining a piece’s validity, block
references *[.] are resolved with respect to the bvset T each validator maintains
as part of its state, see below. If a validator does not have any matching block
in 7, it cannot currently determine the piece’s validity. It then queues the piece
‘in limbo’ for re-examination until its (in-)validity is established. A proposal
P % (propose,T,B,o) consists of tag ‘propose’, bvset 7 and block B (as
proposal content), and signature ¢ tying the proposal to the block production
opportunity of B. Thus, a proposal P is wvalid following Alg. 1. 0 where
Consistent(7T) is satisfied on a bvset T iff By € T and for every vote and block
in 7 the referenced target /parent block is also in 7. In determining the validity of
proposal P, block references *[.] are resolved with respect to P.7. We call a bvset
T with Consistent(7") a block-vote-tree (short bvtree). MERGE(T, B) returns the
largest bvtree 7’ that is a subset of the union of 7 and the pieces in B.

Protocol. Each validator knows the current slot ¢, and maintains a buffer B
and a bvtree 7. On a high level, messages enter from the network into B, while
votes are tallied on 7. The ‘magic’ of Goldfish is in how blocks and votes enter
from B to T (message buffering, purple) and leave T (vote expiry, orange).

Valid messages received from the network are re-broadcast and added to B.
(As is customary, messages whose validity is unknown due to missing references,
and messages with future slot numbers, are queued ‘in limbo’ outside the pro-
tocol.) For proposals, the blocks and votes contained therein are additionally
re-broadcast and added to B as individual pieces.

We describe the three phases (PROPOSE, VOTE, CONFIRM) of each slot ¢
from the perspective of an awake honest validator id (Alg. [2| Fig. [9):

e PROPOSE: At round 3At, id checks if its lottery ticket (id,) is winning for
(block, thrb (Alg. I, L. |§[) If so, id temporarily merges its bvtree with its buffer

Alg , ic en‘rlhes the GHOST-Eph chain tip using only slot t — 1 votes
Alg , and proposes its temporary bvtree and a new block based
on it (Alg Note that in a practical implementation, the proposals need

not contain the Whole bvtree, but merely the votes therein (see .

For GHOST-Eph fork-choice (Alg. , a validator walks its bvtree, starting
at the genesis block, and at each block B, the validator proceeds to the child of
B whose subtree is heaviest, i.e., received the plurality of non-expired votes.

e VOTE: At 3At + A, id identifies as leader for slot ¢ the proposal with
smallest precedence (Alg. |2} L. . It merges the leading proposal’s bvtree into
its bvtree 7 (Alg. [2 1. [19). Then it checks if its lottery ticket (id,¢) is winning
for (vote,thry) (Alg.[2 1.[21). If so, id identifies the GHOST-Eph chain tip using
only slot ¢ — 1 votes (Alg. 2| 1. 22), and votes for it (Alg. [2] 1. [25).

10 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

Algorithm 2 Goldfish executed by validator id with signature keys (sskiq, spkig),
VRF keys (vskig, vpkiy), bvtree 7 and buffer B. Here, notation ‘at’ means ex-
ecuting the code block at the specified round, ch' denotes the Goldfish chain
momentarily confirmed at id. For GHOST-EPH(T,t), see Alg.

1: (B, T,t) + (0,{Bo},0) > Initialize buffer B and bvtree 7T

2: > As is customary, only valid messages with time slot numbers at most t are re-broadcast and
put into B. Invalid messages are discarded. Messages of unknown validity are queued. Blocks
and votes contained in proposals are also re-broadcast and added to B as individual pieces.

3: fort=1,2,...do > Slots
4: at 3At do > PROPOSE phase
5: o Openi(dblochthrb)(t) > Check if eligible to propose
6: if Wins®%tb) ((id, t), o) then
7: T’ + MerGe(T, B) > Bvtree to propose
8: B + GHOST-Epu(T',t — 1) > Parent block
9: o < Sig.Sign(sskiq, block || H(B) || txs)
10: B + (block, (id, t), 0, H(B), txs, o) > New block
11: o + Sig.Sign(sskid, propose || 7' || B)
12: Broadcast (propose, 7', B, o) > Propose
13: at 3At + A do > VoTE phase
14: > Filter for proposals from slot t
15: B’ + {(T’,B) | (propose, 7', B,.) € BA B.t =t}
16: > Identify the leader of slot ¢ and its proposal
17: (T'*, B*) ¢ argmin s+ p)ecps Prio(B.o)
18: > Merge own buffer and that of the leader into own bvtree
19: T + Merce(T,T"* U{B*})
20: 0+ Openi(dvm:e’tm")(t) > Check if eligible to vote
21: if Wins("*t"v) ((id, t), o) then
22: B < GHOST-Epu(T,t — 1) > Target block
23: o < Sig.Sign(sskig, vote || H(B))
24: v < (vote, (id, t), 0, H(B), o) > New vote
25: Broadcast (piece, v) > Vote
26: at 3At + 2A do > CoNFIRM phase
27: T + MEerce(T, B) > Merge buffer and bvtree
28: B + GHOST-EprH(T,t) > Canonical GHOST-Eph chain
29: chid « BI* > Output ledger: B’s k-deep prefix in terms of slots

Algorithm 3 GHOST-Eph fork-choice rule.

1: Cuipren(T,B) 2 {B’ € T | B'.h = H(B)}

2: Vores(T, B, t) £ |{id" | (vote, (id’,t),.,h,.) € T A B < T[h]}|

3: function GHOST-Epru(T,t)

4: B + Bo > Start fork-choice at genesis block

5: forever do

6: > Choose the heaviest subtree (breaking ties deterministically) rooted at one of the
children blocks B’ of B, by number of validators that have cast a vote in slot ¢ for B’ or one of
its descendants; B’ = L if CHILDREN(T, B) = 0

T B« arg mMaXp/ e CuiLpren(T, B) VOTES(Ta B/: t)

8: if B’ = L then return B

9: B+ B’

e CONFIRM: At round 3At 4+ 24, id merges its buffer into its bvtree
(Alg. L. 27). It then identifies the GHOST-Eph chain tip using only slot
t votes (Al L. , and outputs as confirmed ledger ch' the transactions of
those blocks in the GHOST-Eph chain that are from slots < ¢t — k (‘k-deep in
time’, Alg. [2} 1. . Since the ledger in view of an awake honest validator id is
only updated at this point, we may view the ledger as indexed by slot ¢: ch;d.

Key Mechanism. Message buffering ensures that if in slot ¢ the leading pro-
posal is honest, then all honest voters in ¢ will vote for it (Lem. , because in

Goldfish: No More Attacks on Ethereum?! 11

PROPOSE, the leader’s temporary bvtree 7" is a superset of all honest validators’
bvtrees, and thus in VOTE all honest voters adopt that leader’s bvtree. Vote ez-
piry (and honest majority) ensures that if in slot ¢ all honest voters vote into
the subtree rooted at some block B, then all honest voters in slot ¢ + 1 will also
vote into the subtree rooted at B (Lem. . Induction on ¢ readily yields reorg
resilience. Furthermore, w.o.p., every interval of x slots has at least one honest
leading proposer (Lem. . The prefix of that proposal stabilizes (by reorg re-
silience), and the proposal includes unconfirmed transactions, leading to safety
and liveness (with Teonr = 2k 4 2) of the k-deep confirmation rule.

Without message buffering, honest voters would no longer be guaranteed to
rally behind honest proposals. Instead, the adversary could induce inconsistent
views among honest voters, leading to them no longer voting en bloc, which
restores the balancing attack [60}/70]. Without vote expiry, honest voters would
not be guaranteed to vote into the subtree of B in ¢t + 1 just because B gathered
votes from all honest validators in t. In fact, the adversary could use votes
from longer ago to break the protocol. We give two examples. First, adversary
validators could strategically release votes for long past slots, like in the avalanche
attack |62]. Second, in periods where participation is increasing, the adversary
could, for validators that were asleep in the past but are now adversary, forge
votes for these past slots for a block conflicting with B. Conceptually, thereby,
the adversary gains control of a dishonest majority for past slots, which can
break security. Vote expiry preserves security when the number of adversary
validators increases together with the number of honest validators over time.

Joining Procedure. At each round, a validator is either asleep, dreamy or
awake . Whenever a validator stops being asleep, it is dreamy. Dreamy
validators don’t follow Alg. [2] except for relaying messages. With the next CON-
FIRM phase, the validator returns to being awake and fully resumes Alg. 2| To
allow for more time to download messages missed during sleep, dreaminess can
be extended accordingly, but should always end at a CONFIRM phase.

3.2 Optimistic Fast Confirmations

Basic Goldfish provides reorg resilience, but its x-deep confirmation
rule leads to ©(x) latency in worst and expected case. We add a FAST-CONFIRM
phase and introduce a fast confirmation rule, to achieve constant expected con-
firmation latency under optimistic conditions, i.e., under high participation and
honest 3/4-supermajority (Fig.[6] Alg.[4)). In particular, validators can now con-
firm honest proposals within the same slot, under optimistic conditions. The
r-deep confirmation rule (Alg. [6] 1. (now called standard confirmation rule),
still applies and guarantees security when optimistic conditions don’t hold.

Fast Confirmation Phase. Slots are now 44 rounds, with the insertion of
phase FAST-CONFIRM at round 4At +2A (Fig. [6] Alg.[d). In FAST-CONFIRM, a
validator id first merges its buffer into its bvtree 7 (Alg L. . It then marks a
block B as fast confirmed if [VOTES(T, B,t)| > n(3 + £)thr, for some € > 0 that
can be made arbitrarily small as n — co, and updates chi . to the highest fast

12 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

Algorithm 4 Goldfish executed by validator id, modified (blue) to use (opti-
mistic) fast and standard confirmation (cf. Alg. . See Alg. [3|for VOTES.

1: Same initialization and housekeeping as Alg. @

2: fort=1,2,...do > Slots
3 at 4A¢ do > PROPOSE phase
4 Same as PROPOSE phase in Alg.

5: at 4At + A do > VoTE phase
6: Same as VOTE phase in Alg.

7 at 4At + 2A do > FasT-CoNFIRM phase
8 T < MEeRrce(T, B) > Merge buffer and bvtree
9 chify, « arg MAXBeT: |Vores(T,B,6)|2n(3 +§)thry |Bl
10: at 4At + 3A do > CoNFIRM phase
11: T « Merce(T, B) > Merge buffer and bvtree
12: B < GHOST-EPH(T, t) > Canonical GHOST-Eph chain
13: chi « arg max che fenid By |ch] > Output Goldfish ledger

confirmed block (Alg. ll E[) In CONFIRM (Alg. '1 , validator id outputs the
higher of chf%t and the standard-confirmed x-deep preﬁx Bl" . For simplicity, we
omit a mechanism to avoid ledger ‘roll back’ (to ensure Vid,# > t: chid < chi9).

Intuitively, the extra FAST-CONFIRM phase guarantees that when an honest
validator fast confirms a block B in slot ¢, all honest awake validators see the
causative votes by the time their bvtrees are last updated in t. The subtree rooted
at B will be heaviest in all steps of GHOST-Eph fork-choice for all honest voters
and forever (Thm. [4]), which implies that fast confirmations are safe (Thm. [5).
Security of Goldfish with fast confirmations is proven in

Joining Procedure. Once a validator stops being asleep, it is dreamy until the
next CONFIRM phase (Alg. |4} 1. , when it turns awake and resumes execution.

4 Security Proof

Due to space constraints, we show the security proof for ‘basic’ Goldfish
here. The proofs for Goldfish with fast confirmations (Sec. 3.2)), and for Goldfish
when used as an underlay chain composed with an overlay finality /accountability
gadget (as in Fig. [1)), are provided in and [D] respectively.

In the subsequent analysis, a validator id is eligible to vote at slot t if its ticket
(id, t) is winning for the lottery (vote,thr,). Recall that awake honest validators
consider the proposal with lowest precendence received by 3At + A from the
leader of slot ¢ (Alg. [2] L . We use blocks and the chains they induce via the
parent relation interchangeably. A block Bj is a descendant (resp., ancestor) of
block By iff the underlying chains satisfy By < By (resp., By = Ba).

Let A, and H, denote the number of adversary and honest validators awake
at round r, respectively. Our theorems hold for (%,3A)—compliant executions
(Def. [2) that satisfy the following relations on A, and H,: (i) in the absence
of key-evolving cryptographic primitives, the adversary is mildly adaptive and

. $ l _ .o . _ . . oy . Ai l _
Vri g <3 —6and (ii) with key-evolving primitives, Vr: A <3 €

Theorem 1. Suppose a (%,3A)—compliant execution of Goldfish in the syn-

Goldfish: No More Attacks on Ethereum?! 13

chronous sleepy network model of [Sec. 3, and validator id with proposal P* is
recognized as the leader of a slot t by all awake honest validators at round 3At+ A
(Alg. @ . @) Then, w.o.p., P*.B =< B for any B identified in Alg. @ Il @
by any awake honest validator in any round r > 3At + 2A.

Theorem 2 (Security). Suppose a (%,3A)-compliant execution of Goldfish
in the synchronous sleepy network model. Then, w.o.p., Goldfish is secure with
transaction confirmation time Teons = 2Kk + 2 slots.

Theorem 3 (Reorg resilience). Suppose a (%,3A)—complz’ant execution of
Goldfish in the synchronous sleepy network model, and validator id with proposal
P* is recognized as the leader of a slot t by all awake honest validators at round
3At + A (Alg. @ l. @ Then, w.o.p., 3r': ¥r > r': Vid: P*.B =< ch'¥, where

chi,‘.j denotes Goldfish’s ledger at validator id and round r. In particular, v’ =
3A(t + k) + 2A satisfies the above.

Due to space constraints, a formal definition of (v, 7)-compliant executions
and formal proofs of Thms. and [3| and the subsequent lemmas are given in
[App. B] In the rest of this section, we focus on the intuition. Proof of Thm. [I]in
follows from Lems. [T} 2] and [3|below. The structure of this argument is inductive:
Lem. [T shows that in compliant executions, honest voters outnumber adversary
voters; and every long interval of slots contains at least one slot in which all
honest validators recognize the same honest validator as the slot leader. Lem.
shows that in a slot ¢ with such recognized honest leader, all honest voters vote
for the leader’s proposal. Finally, Lem. [3|shows that if in slot ¢, all honest voters
have voted for a descendant of a certain block, then in slot ¢+ 1 all honest voters
will vote for a descendant of that block. This concludes the induction and Thm.[I]
follows. Proofs of Thms. 2] and [3] follow readily from Thm. [I] and Lem. [T] below.

Lemma 1. Suppose the Goldfish execution is (%73A)—compliant. Then, w.o.p.,
for every slot t, adversary validators at round 3A(t + 1) + A eligible to vote at
slot t are less than honest validators awake at round 3At + A and eligible to
vote at slot t. Also w.o.p., all slot intervals of length k have at least one slot t
where an honest validator is recognized as the slot t leader by all awake honest
validators at round 3At + AP

Lem. [Is proof uses correctness, uniqueness and pseudorandomness of VRF-
based lotteries along with Chernoff bounds.

Lemma 2. Suppose an execution of Goldfish in the synchronous sleepy network
model, and validator id* with proposal P* is recognized as leader of a slot t by
all awake honest validators at round 3At + A (Alg. @ l. @) Then, all honest
validators awake at round 3At + A and eligible to vote at t vote for P*.B at t.

By message buffering and honest id*, P*.T is a superset of the bvtrees of all
honest validators awake at round 3At + A and eligible to vote at slot ¢. Hence,
upon merging P*.T into their bvtrees (Alg. [2] L at round 3At + A, all of
these validators vote for the GHOST-Eph tip in P*.T, i.e., for P*.B.

5 The proposer-lottery threshold thry, can be tuned following Algorand [33, Appendix-
B.1] so that each slot has at least one eligible proposer.

14 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

Lemma 3. Suppose a (%, 3A)-compliant execution of Goldfish in the syn-
chronous sleepy network model. Consider a slot t where all honest validators
awake at round 3At + A and eligible to vote at slot t, vote for a descendant of
B. Then, w.o.p., all honest validators awake at round 3A(t+1)+ A and eligible
to vote at slot t + 1, vote for a descendant of B.

By vote expiry, the eligible honest validators awake at round 3A(t + 1) + A
consider only the slot ¢ votes in GHOST-Eph fork-choice (Alg. 2| 1. . Due to
honest majority, the subtree rooted at B is heaviest in all steps of GHOST-Eph
fork-choice. Thus, all honest voters vote for a descendant of B, if all eligible
honest validators awake at round 3At + A voted for a descendant of B.

5 Implementation and Experiments

We discuss implementation aspects of Goldfish and study its behavior under
dynamic participation. We focus on communication-efficient implementation of
proposals and message buffering, and on the interplay between the block produc-
tion lottery threshold thry, communication load, and behavior under low partic-
ipation. We have implemented a prototype of Goldfish in Rustﬂ with BLAKE3
hashes [64] and BLS signatures 8] over the BLS12-381 curve [10] for signatures
and VRFs. The network was simulated with delay A = 4s.

Proposal Size and Wire Format. In the Goldfish variant of [Sec. 3.1} for ease
of exposition, proposals include the proposer’s entire bvtree 7' (Alg. [2] L @
This raises concerns about the resulting communication load. Proposal mes-
sages would grow over time with the number of blocks, and could be inflated by
equivocation spamming (i.e., adversary uses one winning lottery ticket to create
many equivocating blocks or votes, cf. [42,/55]). The following implementation
details resolve these concerns. It suffices for a proposal to only include votes from
the latest VOTE phase, as older votes are already expired anyway. Another tweak
is equivocation discounting, i.e., not counting votes during fork-choice from val-
idators who have sent votes for two or more different blocks during the latest
VOTE phase. We discuss equivocation discounting in detail, and show it to not
compromise security, in [App. E|l As any two equivocating votes suffice as evi-
dence for an honest validator to discount all votes of an equivocating adversary,
the above two measures mean that every proposal needs to include at most two
votes per validator eligible to vote in the previous slot.

Notice also that it suffices for proposals to include references (hashes) to
blocks and votes. In fact, an honest proposer’s role in message buffering is only
to point validators to messages (which they already have in their buffer because
at least the honest proposer would have relayed them) that they should merge
into their bvtree. Finally, only blocks with nonzero fork-choice weight need to
be referenced, because blocks with zero weight cannot possibly alter fork-choice
regarding the proposer’s block. Nonzero weight blocks are either referenced by
votes, or by a nonzero weight child block. Thus, it suffices for proposals to only

7 Source code: [https://github.com /tse-group/goldfish-experiments

https://github.com/tse-group/goldfish-experiments

Goldfish: No More Attacks on Ethereum?! 15

&._

[kByte/s|

e
e+
,,f.q:f*

Communication

Ledger growth
rate [blocks/slot]
o
ot

+

0
0.000 0.002 0.004 0.006 0.008
Block production lottery threshold thry,

Py FEEEE FEEE RN

o
=
o

Fig. 2. Ledger growth rate and average broadcast load of Goldfish as a function of block
production lottery threshold, for experiments with n = 1000, thr, = 0.1,
A = 4s, under full honest participation. For the block production lottery, we expect
the number of proposals per slot to be binomially distributed with mean n thry,. The
measurements fit the predictions for the probability of zero proposals in a given slot
(1—e nthm, EI), and that the communication load is affine (5723 - thr, + 4.472 with
coefficients to four digit accuracy, ED with the constant term accounting for votes.

reference at most two votes per validator eligible to vote in the previous slot.
Concretely, if Goldfish is used among n = 1,024 validators without voter
subsampling, so thr, = 1, with 32 Byte hashes, then even worst-case a proposal
is only of 64kByte plus one block. This is representative for a deployment in
Ethereum, where votes get aggregated by 1,024 aggregators per slot, Goldfish’s
fork-choice would operate on aggregates, and at most two aggregates per aggre-
gator need to be referenced in a proposal. Comparing 64 kByte to the current
block size of 80 kByte, message buffering seems feasible in terms of network load.

Garbage Collection. Proposals are discarded after their slot’s VOTE phase. Vote
expiry allows to discard votes within two slots. Blocks (including ‘in limbo’) are
discarded once inconsistent with confirmed blocks (i.e., after at most « slots).

Block Production Lottery Threshold. shows how to tune the vote
lottery threshold thr, so that, w.o.p., all voter committees over the execution
horizon have an honest majority. Given a number n of validators and a threshold
thry, the size of a proposal and the communication load resulting from votes are
close to constant. The block production lottery threshold thry, is the remaining
parameter affecting the overall broadcast load through the expected number of
proposals per slot n thry, (Fig. . For low thry, < 1/n, communication load is low
but ledger growth is impaired because many slots have no proposal. For high
thr, > 1/n, most slots have more than one proposal, leading to communication
overhead but also close-to-optimal ledger growth. For a reasonable tradeoff in
the non-degraded common case of near-full participation, we tune thr;, = 3/n.

Behavior under Dynamic Participation. Based on Fig. we expect a
confirmation performance degradation under low participation if thr, = 3/n. (If
good performance is to be ensured even under very low participation ng < n,
tune thry, to ng rather than to n.) To study the impact of dynamic participation
on Goldfish with thr, = 3/n, we run it (Fig. [3) in four different dynamic par-
ticipation environments inspired by [51|: @ Stable participation: Starting from
50%, randomly increase or decrease participation by 3% per A (unless this would
exceed [10%,90%]). @ Unstable participation: Select a participation level uni-

16 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

S oo
[=ENe)

Ledger length
[blocks|
IS

o S o

TTTTTTT T T TTTTT] R IT T ITTTITTTT

600

400

200

Age of tip [s]

(=)

1,000
750
500

pation

=N
[S -]
(=N l)
[O R A

[kByte/s]
=
o
=3

Il l“lnlnh““l Ln“n ll Mol o hnhl“mlnn “A““A pnd N

200 400 600 800 1,000 1,200 1,400 1,600 1,800
-~ —————————>
o O Timclsl @ (]

Fig. 3. Ledger length / age of most recently confirmed block under fast ED / slow
EI) confirmation, and resulting broadcast load EI), for Goldfish with n = 1000,
thr, = 0.1, A = 4s, thr, = 3/n, & = 10, block size 80kByte, different environments
of dynamic participation (——|). When participation is above the fast-confirmation
threshold of approx. 3n/4 (-), transactions are confirmed swiftly (44, E 00
otherwise fast confirmation stalls. When participation is volatile (cf. 600s to 950s, @),
many honest validators are dreamy D cf. ‘ Then, or when participation is
steady but at a low level (cf. 1400s to 1700s, @), effective participation (by honest
validators who are neither asleep nor dreamy) is low. Slow confirmation (4Axk base
latency, |—) takes place throughout, but since thr, = 3/n, slow confirmation degrades
(cf. Fig.Ethen effective participation is low (cf. slots with no proposal around 650s
or 1600s, 3 lead to latency spikes, EI) Communication load is modest B

ot
[}

Communication pgrtici

formly at random in [10%, 90%] per A. @ High participation: Reset participation
to 80%, randomly increase or decrease by 3% per A (staying in [70%, 90%]). @
Low participation: Reset participation to 20%, randomly increase or decrease
by 3% per A (staying in [10%,30%]). Once the participation level was drawn
according to this schedule, from instant to instant the environment selects a ran-
dom set of asleep (awake) validators to wake up (put to sleep), respectively, to
meet the participation levels. A performance-based comparison of LMD GHOST
and Goldfish is apples-to-oranges, as LMD GHOST is not secure under dynamic
participation, while Goldfish is. That said, Goldfish has a slightly lower block
production rate due to extra phases (cf. Figs. and @, at otherwise compara-
ble confirmation latency and communication load. The choice of leader election
mechanism, i.e., VRF-based vs. a randomness beacon like Ethereum’s RANDAO

(cf. [App. F.2)), also affects performance of both protocols equally.

Goldfish: No More Attacks on Ethereum?! 17

Acknowledgment

We thank Aditya Asgaonkar, Carl Beekhuizen, Vitalik Buterin, Justin Drake,
Dankrad Feist, Sreeram Kannan, Georgios Konstantopoulos, Barnabé Monnot,
Ling Ren, Dan Robinson, Danny Ryan, Caspar Schwarz-Schilling, Alberto Son-
nino, and Fan Zhang for fruitful discussions. The work of JN was conducted
in part while at Paradigm. JN, ENT and DT are supported by a gift from the
Ethereum Foundation. JN is supported by the Protocol Labs PhD Fellowship
and the Reed-Hodgson Stanford Graduate Fellowship. ENT is supported by the
Stanford Center for Blockchain Research.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

Maximal extractable value (MEV) (2023), |https://ethereum.org/en/developers/
docs/mev/

Abraham, I., Gueta, G., Malkhi, D.; Alvisi, L., Kotla, R., Martin, J.P.: Revisiting
fast practical Byzantine fault tolerance. arXiv:1712.01367v1 [cs.DC]| (2017), http:
//arxiv.org/abs/1712.01367v1

Abraham, I., Malkhi, D., Nayak, K., Ren, L., Yin, M.: Sync HotStuff: Simple and
practical synchronous state machine replication. In: SP. pp. 106-118. IEEE (2020)
Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros Genesis:
Composable proof-of-stake blockchains with dynamic availability. In: CCS. pp.
913-930. ACM (2018)

Bagaria, V.K., Kannan, S., Tse, D., Fanti, G., Viswanath, P.: Prism: Deconstruct-
ing the blockchain to approach physical limits. In: CCS. pp. 585-602. ACM (2019)
Beekhuizen, C., Schwarz-Schilling, C., D’Amato, F.: Change fork choice rule to mit-
igate balancing and reorging attacks (2021), https://ethresear.ch/t/change-fork-
choice-rule-to-mitigate-balancing-and-reorging-attacks,/11127

Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: CRYPTO.
LNCS, vol. 1666, pp. 431-448. Springer (1999)

Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptol. 17(4), 297-319 (2004)

Boneh, D., Shoup, V.: A graduate course in applied cryptography (2015), http:
/ /cryptobook.us/| version 0.6, posted Jan. 14, 2023

Bowe, S.: BLS12-381: New zk-SNARK elliptic curve construction (2017), https:
/ /electriccoin.co/blog/new-snark-curve/

Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus.
arXiv:1807.04938v3 [cs.DC] (2018), http://arxiv.org/abs/1807.04938v3

Buterin, V.: A CBC Casper tutorial (2018), https://vitalik.eth.limo/general /2018 /
12/05/cbc_casper.html

Buterin, V.: Proposal for mitigation against balancing attacks to LMD GHOST
(2020), |https://notes.ethereum.org/@vbuterin/lmd _ghost mitigation

Buterin, V., Griffith, V.: Casper the friendly finality gadget. arXiv:1710.09437v4
[cs.CR] (2017), http://arxiv.org/abs/1710.09437v4

Buterin, V., Hernandez, D., Kamphefner, T., Pham, K., Qiao, Z., Ryan, D., Sin,
J., Wang, Y., Zhang, Y.X.: Combining GHOST and Casper. arXiv:2003.03052v3
[cs.CR] (2020), http://arxiv.org/abs/2003.03052v3

Buterin, V., Stewart, A.: Beacon chain Casper mini-spec (comments #17, #19)
(2018), |https://ethresear.ch/t /beacon-chain-casper-mini-spec/2760/17

https://ethereum.org/en/developers/docs/mev/
https://ethereum.org/en/developers/docs/mev/
http://arxiv.org/abs/1712.01367v1
http://arxiv.org/abs/1712.01367v1
https://ethresear.ch/t/change-fork-choice-rule-to-mitigate-balancing-and-reorging-attacks/11127
https://ethresear.ch/t/change-fork-choice-rule-to-mitigate-balancing-and-reorging-attacks/11127
http://cryptobook.us/
http://cryptobook.us/
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
http://arxiv.org/abs/1807.04938v3
https://vitalik.eth.limo/general/2018/12/05/cbc_casper.html
https://vitalik.eth.limo/general/2018/12/05/cbc_casper.html
https://notes.ethereum.org/@vbuterin/lmd_ghost_mitigation
http://arxiv.org/abs/1710.09437v4
http://arxiv.org/abs/2003.03052v3
https://ethresear.ch/t/beacon-chain-casper-mini-spec/2760/17

18

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

Carlsten, M., Kalodner, H.A., Weinberg, S.M., Narayanan, A.: On the instability
of Bitcoin without the block reward. In: CCS. pp. 154-167. ACM (2016)

Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: OSDI. pp. 173-186.
USENIX Association (1999)

Chan, B.Y., Shi, E.: Streamlet: Textbook streamlined blockchains. In: AFT. pp.
1-11. ACM (2020)

Chen, J., Micali, S.: Algorand: A secure and efficient distributed ledger. Theor.
Comput. Sci. 777, 155-183 (2019)

Daian, P., Pass, R., Shi, E.: Snow White: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In: Financial Cryptography. LNCS,
vol. 11598, pp. 23—-41. Springer (2019)

Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, 1., Breidenbach, L.,
Juels, A.: Flash Boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability. In: SP. pp. 910-927. IEEE (2020)
D’Amato, F., Neu, J., Tas, E.N., Tse, D.: Goldfish: No more attacks on Ethereum?!
Cryptology ePrint Archive, Paper 2022/1171 (2022), https://eprint.iacr.org/2022/
1171

D’Amato, F., Zanolini, L.: Recent latest message driven GHOST: Balancing dy-
namic availability with asynchrony resilience. Cryptology ePrint Archive, Paper
2023/279 (2023), https://eprint.iacr.org/2023/279

D’Amato, F., Zanolini, L.: A simple single slot finality protocol for Ethereum.
Cryptology ePrint Archive, Paper 2023/280 (2023), https://eprint.iacr.org/2023/
280

Das, N., Tsao, T., Loon, P.V., Potuz, Kirkham, K., He, J.: Post-mortem re-
port: Ethereum mainnet finality (05/11/2023) (2023), https://offchain.medium.
com/post-mortem-report-ethereum-mainnet-finality-05- 11-2023-95e271dfd8b2
David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros Praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: EUROCRYPT (2). LNCS,
vol. 10821, pp. 66-98. Springer (2018)

Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Public Key Cryptography. LNCS, vol. 3386, pp. 416-431. Springer (2005)
Duan, S., Zhang, H.: Foundations of dynamic BFT. In: SP. pp. 1317-1334. IEEE
(2022)

Eyal, 1., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. Commun.
ACM 61(7), 95-102 (2018)

Fitzi, M., Gazi, P., Kiayias, A., Russell, A.: Parallel Chains: Improving throughput
and latency of blockchain protocols via parallel composition. Cryptology ePrint
Archive, Paper 2018/1119 (2018), https://eprint.iacr.org/2018,/1119

Garay, J.A., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: Analysis
and applications. In: EUROCRYPT (2). LNCS, vol. 9057, pp. 281-310. Springer
(2015)

Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
Byzantine agreements for cryptocurrencies. In: SOSP. pp. 51-68. ACM (2017)
Gilbert, S., Lynch, N.A.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2), 51-59 (2002)

Goyal, V., Li, H., Raizes, J.: Instant block confirmation in the sleepy model. In:
Financial Cryptography (2). LNCS, vol. 12675, pp. 65-83. Springer (2021)

Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verifying.
In: CRYPTO. LNCS, vol. 2139, pp. 332-354. Springer (2001)

https://eprint.iacr.org/2022/1171
https://eprint.iacr.org/2022/1171
https://eprint.iacr.org/2023/279
https://eprint.iacr.org/2023/280
https://eprint.iacr.org/2023/280
https://offchain.medium.com/post-mortem-report-ethereum-mainnet-finality-05-11-2023-95e271dfd8b2
https://offchain.medium.com/post-mortem-report-ethereum-mainnet-finality-05-11-2023-95e271dfd8b2
https://eprint.iacr.org/2018/1119

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Goldfish: No More Attacks on Ethereum?! 19

Kane, D., Fackler, A., Gagol, A., Straszak, D.: Highway: Efficient consensus with
flexible finality. arXiv:2101.02159v2 [cs.DC| (2021), http://arxiv.org/abs/2101.
02159v2

Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Second Edition. CRC
Press (2014)

Khanchandani, P., Wattenhofer, R.: Brief announcement: Byzantine agreement
with unknown participants and failures. In: PODC. pp. 178-180. ACM (2020)
Khanchandani, P., Wattenhofer, R.: Byzantine agreement with unknown partici-
pants and failures. In: IPDPS. pp. 952-961. IEEE (2021)

Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: CRYPTO (1). LNCS, vol. 10401, pp. 357—
388. Springer (2017)

Kiffer, L., Neu, J., Sridhar, S., Zohar, A., Tse, D.: Security of Nakamoto consensus
under congestion. Cryptology ePrint Archive, Paper 2023/381 (2023), https://
eprint.iacr.org/2023/381

Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.L.: Zyzzyva: Speculative
Byzantine fault tolerance. ACM Trans. Comput. Syst. 27(4), 7:1-7:39 (2009)
Lewis-Pye, A., Roughgarden, T.: Byzantine generals in the permissionless setting.
In: FC (1). LNCS, vol. 13950, pp. 21-37. Springer (2023)

Liao, K., Katz, J.: Incentivizing blockchain forks via whale transactions. In: Finan-
cial Cryptography Workshops. LNCS, vol. 10323, pp. 264-279. Springer (2017)
Losa, G., Gafni, E.: Consensus in the unknown-participation message-adversary
model. arXiv:2301.04817v2 [cs.DC]| (2023), http://arxiv.org/abs/2301.04817v2
Malkhi, D., Momose, A., Ren, L.: Byzantine consensus under fully fluctuating par-
ticipation. Cryptology ePrint Archive, Paper 2022/1448, Version 20221024:011919
(2022), |https://eprint.iacr.org/archive,/2022 /1448 /20221024:011919

Malkhi, D., Momose, A., Ren, L.: Instant finality in Byzantine generals with un-
known and dynamic participation (2022), |https://blog.chain.link /instant-finality-
in-byzantine-generals-with-unknown-and-dynamic-participation/

Malkhi, D., Momose, A., Ren, L.: Towards practical sleepy BFT. In: CCS. pp.
490-503. ACM (2023)

Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: FOCS. pp.
120-130. IEEE Computer Society (1999)

Momose, A., Ren, L.: Constant latency in sleepy consensus. In: CCS. pp. 2295—
2308. ACM (2022)

Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/
bitcoin.pdf| (2008)

Nakamura, R.: Analysis of bouncing attack on FFG (2019), https://ethresear.ch/
t /analysis-of-bouncing-attack-on-ffg/6113

Nakamura, R.: Prevention of bouncing attack on FFG (2019), https://ethresear.
ch/t/prevention-of-bouncing-attack-on-ffg/6114

Neu, J., Sridhar, S., Yang, L., Tse, D., Alizadeh, M.: Longest chain consensus under
bandwidth constraint. In: AFT. pp. 126-147. ACM (2022)

Neu, J., Tas, E.N., Tse, D.: Short paper: Accountable safety implies finality. Fi-
nancial Cryptography and Data Security 2024, https://eprint.iacr.org/2023/1301
Neu, J., Tas, E.N., Tse, D.: A balancing attack on Gasper, the current candidate for
Eth2’s beacon chain (2020), https://ethresear.ch/t/a-balancing-attack-on-gasper-
the-current-candidate-for-eth2s-beacon-chain /8079

Neu, J., Tas, E.N., Tse, D.: Snap-and-Chat protocols: System aspects.
arXiv:2010.10447v1 [cs.CR] (2020), http://arxiv.org/abs/2010.10447v1

http://arxiv.org/abs/2101.02159v2
http://arxiv.org/abs/2101.02159v2
https://eprint.iacr.org/2023/381
https://eprint.iacr.org/2023/381
http://arxiv.org/abs/2301.04817v2
https://eprint.iacr.org/archive/2022/1448/20221024:011919
https://blog.chain.link/instant-finality-in-byzantine-generals-with-unknown-and-dynamic-participation/
https://blog.chain.link/instant-finality-in-byzantine-generals-with-unknown-and-dynamic-participation/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
https://ethresear.ch/t/prevention-of-bouncing-attack-on-ffg/6114
https://ethresear.ch/t/prevention-of-bouncing-attack-on-ffg/6114
https://eprint.iacr.org/2023/1301
https://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079
https://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079
http://arxiv.org/abs/2010.10447v1

20

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

Neu, J., Tas, E.N., Tse, D.: Attacking Gasper without adversarial network de-
lay (2021), https://ethresear.ch/t/attacking-gasper-without-adversarial-network-
delay /10187

Neu, J., Tas, E.N., Tse, D.: Ebb-and-Flow protocols: A resolution of the availability-
finality dilemma. In: SP. pp. 446-465. IEEE (2021)

Neu, J., Tas, E.N., Tse, D.: The availability-accountability dilemma and its reso-
lution via accountability gadgets. In: Financial Cryptography. LNCS, vol. 13411,
pp. 541-559. Springer (2022)

Neu, J., Tas, E.N., Tse, D.: Two more attacks on proof-of-stake GHOST /Ethereum.
In: Proceedings of the 2022 ACM Workshop on Developments in Consensus. Con-
sensusDay 22, ACM (2022). https://doi.org/10.1145/3560829.3563560

Nijkerk, M.: Ethereum briefly stopped finalizing transactions. what hap-
pened? (2023), https://www.coindesk.com/tech/2023/05/17/ethereums-loss-of-
finality-what-happened /

O’Connor, J., Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z.:
BLAKE3 (2020), https://github.com/BLAKE3-team/BLAKE3-specs/blob/
eab1a3ac997288bi690ee82ac9ctc8b3e0e60f2a/ blake3. pdf

Pass, R., Shi, E.: The sleepy model of consensus. In: ASTACRYPT (2). LNCS, vol.
10625, pp. 380-409. Springer (2017)

Pass, R., Shi, E.: Thunderella: Blockchains with optimistic instant confirmation.
In: EUROCRYPT (2). LNCS, vol. 10821, pp. 3—-33. Springer (2018)

Pu, Y., Alvisi, L., Eyal, I.: Safe permissionless consensus. In: DISC. LIPIcs, vol. 246,
pp. 33:1-33:15. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2022)

Pu, Y., Farahbakhsh, A., Alvisi, L., Eyal, I.: Gorilla: Safe permissionless byzantine
consensus. In: DISC. LIPIcs, vol. 281, pp. 31:1-31:16. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik (2023)

Sankagiri, S., Wang, X., Kannan, S., Viswanath, P.: Blockchain CAP theorem al-
lows user-dependent adaptivity and finality. In: Financial Cryptography (2). LNCS,
vol. 12675, pp. 84-103. Springer (2021)

Schwarz-Schilling, C., Neu, J., Monnot, B., Asgaonkar, A., Tas, E.N., Tse, D.: Three
attacks on proof-of-stake Ethereum. In: Financial Cryptography. LNCS, vol. 13411,
pp. 560-576. Springer (2022)

Sheng, P., Wang, G., Nayak, K., Kannan, S., Viswanath, P.: BFT protocol foren-
sics. In: CCS. pp. 1722-1743. ACM (2021)

Sheng, P., Wang, G., Nayak, K., Kannan, S., Viswanath, P.: Player-replaceability
and forensic support are two sides of the same (crypto) coin. In: FC (1). LNCS,
vol. 13950, pp. 56-74. Springer (2023)

Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in Bitcoin. In:
Financial Cryptography. LNCS, vol. 8975, pp. 507-527. Springer (2015)

Yin, M., Malkhi, D., Reiter, M.K., Golan-Gueta, G., Abraham, I.: Hotstuff: BFT
consensus with linearity and responsiveness. In: PODC. pp. 347-356. ACM (2019)

A Protocol Slot Structures

The slot structure of LMD GHOST, Goldfish, and Goldfish with optimistic fast
confirmations are depicted in Fig. [4] Fig. [} and Fig. [0 respectively.

https://ethresear.ch/t/attacking-gasper-without-adversarial-network-delay/10187
https://ethresear.ch/t/attacking-gasper-without-adversarial-network-delay/10187
https://doi.org/10.1145/3560829.3563560
https://doi.org/10.1145/3560829.3563560
https://www.coindesk.com/tech/2023/05/17/ethereums-loss-of-finality-what-happened/
https://www.coindesk.com/tech/2023/05/17/ethereums-loss-of-finality-what-happened/
https://github.com/BLAKE3-team/BLAKE3-specs/blob/ea51a3ac997288bf690ee82ac9cfc8b3e0e60f2a/blake3.pdf
https://github.com/BLAKE3-team/BLAKE3-specs/blob/ea51a3ac997288bf690ee82ac9cfc8b3e0e60f2a/blake3.pdf

Goldfish: No More Attacks on Ethereum?! 21

Slot t proposer: run LMD GHOST fork-choice rule; propose new block
of unconfirmed transactions at the tip of the identified canonical chain

a Slot ¢ voters: run LMD GHOST fork-choice rule;
0 vote for the block at the tip of the identified canonical chain

PRroPOSE

A\
24t414 240D
} - -» Rounds (i.e., time)

Slot (t—1) : Slot ¢ Slot t+1

[> < >
> > >

A A

Fig. 4. LMD GHOST has slots with two phases of A duration each. Each slot has a
pseudorandomly elected proposer and a committee of voters. PROPOSE: At the start
of a slot, the proposer runs fork-choice and proposes a block extending the tip of the
identified canonical chain. VOTE: Midway into a slot, voters run fork-choice and vote
for the block at the tip of the identified chain. * For greedy heaviest observed sub-tree
fork-choice |15 Alg. 3.1] (cf. Alg. [3), conceptually, a validator walks the block tree in
its view, starting at the genesis block, and at each block B, the validator proceeds to
the child of B whose subtree is heaviest, i.e., received the largest number of votes.

N
D -
&

Slot ¢ proposers: temporarily merge buffer B and bvtree 7
to get T'; propose merged bvtree 7’ and new block based on it

Slot ¢ voters: identify slot leader; merge leader’s proposal’s
bvtree T into local bvtree T; cast vote based on it

PRropPoOSE

a8 4o Awake validators: merge buffer B into
g 8 z: local bvtree T; output ledger based on it
\/ <
A\ A\
BAL 3At41A 3At+24 32+
- - } } - » Rounds
Slot (t—1) i Slot t Slot t+1
BRI e e

Fig. 5. Throughout the execution, validators buffer received proposals and pieces, and
merge the blocks and votes contained therein into their bvtrees only as explicitly in-
structed. Goldfish has slots of three phases of A rounds each. Each slot has proposers
(one of which will later be recognized as the slot’s leader) and a committee of voters.
PROPOSE: At the start of a slot, proposers temporarily merge their buffers into their
local bvtrees, and propose their temporary bvtrees and a new block based on it. VOTE:
One-thirds into a slot, voters identify the slot’s leader’s proposal, merge the proposed
bvtree into their local bvtrees, and cast a vote based on their local bvtrees. CONFIRM:
Two-thirds into a slot, all awake validators merge their buffers into their local bvtrees,
and confirm a ledger based on their local bvtrees.

B Security Proof for Goldfish

In this section, we provide a formal, complete security proof of Goldfish under
a synchronous network in the sleepy model. For this purpose, we restate and
expand on the definitions and theorem statements first presented in

B.1 Definitions

In the subsequent analysis, a valid proposal P (cf. [Sec. 3)) is for slot t iff t =
P.B.t, and it has precedence p iff p = Prio(P.B.p). A validator id is eligible

22 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

Slot ¢ proposers: temporarily merge buffer B and bvtree 7
to get T'; propose merged bvtree 7’ and new block based on it

Slot t voters: identify slot leader; merge leader’s proposal’s
bvtree 7' into local bvtree T; cast vote based on it

Awake validators: merge buffer B into local
bvtree 7 run optimistic fast confirmation rule

& ; Awake validators: merge buffer B into
i 8 local bvtree T; output ledger based on it
e

v ' ' Y AA(F1

AAt JALH1A 4At42A 4AE43A HAEED
--- } } } - » Rounds
Slot ¢
D N S S e

Fig. 6. To enable optimistic fast confirmations, a FAsT-CoNFIrRM phase (blue) of A
rounds is inserted between VOTE and CONFIRM phase (cf. Fig. [5). FAsT-CONFIRM:
Two-fourth into a slot, all awake validators merge their buffers into their local bvtrees,
and run the optimistic fast confirmation rule based on their local bvtrees.

to propose at slot t if its ticket (id,t) is winning for the lottery (block,thry).
Similarly, a validator id is eligible to vote at slot t if its ticket (id,t) is winning
for the lottery (vote,thry). Recall that awake honest validators consider the
proposal with lowest precendence received by 3At + A from the leader of slot ¢
(Alg. [2] 1.[16]). We hereafter use blocks and the sequences of blocks they induce
via the parent-block chain relation interchangeably. A block Bj is a descendant
(resp., ancestor) of block By iff the underlying chains satisfy Bs < B; (resp.,
B; < Bj). Two blocks By, By are conflicting if By is neither an ancestor nor a
descendant of Bs.

Let A, and H, denote the number of adversary and honest validators awake
at round 7, respectively. Our security theorems hold for compliant executions
that satisfy the following relations on A, and H,:

Definition 2. In the absence of key-evolving cryptographic primitives (signa-

tures and VRF's), an execution is (v, T)-compliant iff:

. Ay

— The corruption is mildly adaptive: If the adversary decides to corrupt an
honest validator at round r, then the validator becomes adversary no earlier
than at round r + 7.

With key-evolving primitives, an execution is compliant iff:

— Vr: ﬁ§5<7_6
Moreover, in both cases, H, > yng = O(k) for all rounds r, and the time horizon
Thor of the protocol execution satisfies Thor = poly(k).

B.2 Lem.[d

Lem. [T shows that in compliant executions, honest voters outnumber adversary
voters (as long as votes have not yet expired); and every long interval of slots
contains at least one slot in which all honest validators recognize the same honest
validator as the slot leader.

Goldfish: No More Attacks on Ethereum?! 23

Lemma 1. Suppose the Goldfish execution is (%,3A)—compliant. Then, w.o.p.,
for every slot t, adversary validators at round 3A(t + 1) + A eligible to vote at
slot t are less than honest validators awake at round 3At + A and eligible to
vote at slot t. Also w.o.p., all slot intervals of length k have at least one slot t
where an honest validator is recognized as the slot t leader by all awake honest
validators at round 3At + AF]

Lem. [Is proof uses correctness, uniqueness and pseudorandomness of VRF-
based lotteries along with Chernoff bounds.

Proof of Lem. [1 By the pseudorandomness property of the VRF-based lottery
(App. GJ), for any given slot ¢ and validators id; and ids, id; # ids,

Pr [Winsl“((id,t),Openilgl (t))] — thr, (1)
Pr [Winslb((id,t),openfgl (t))] — thr, 2)
Pr {Prio(Opemf}j1 () < Prio(Openilg2 (t))] = %, (3)

where [, = (vote,thry) and [, = (block,thry) are the lotteries, and Opemil;;1 (t),

Openilj1 (1), Openilj2 (t), and Openf{j{j (t) are independent random variables.

We first consider the protocol without key-evolving primitives. By the unique-
ness property of the lottery , w.0.p., for all validators id and slots t,
the ticket (id,t) can be opened at most one unique opening (Alg. [2} 1. . Let
H; denote the number of honest validators awake at round 3At + A and eligi-
ble to vote at slot ¢. Let A; denote the number of adversary validators at round
3A(t+1)+ A that are eligible to vote at slot t. Recall that A, and H, denote the
number of adversary and honest validators awake at round r respectively (note
that the honest validators have been awake since the closest round 3At 4+ 2A
same as or preceding 7). Let ny = Hzasya + Aza@+1)+a4 > no = O(K).

By the pseudorandomness property, the adversary cannot predict in advance
which honest validators will become eligible to vote or propose at a given slot.
Moreover, if the adversary decides to corrupt the honest validators eligible to
vote at a slot ¢ after learning their identities at round 3At + A, it takes over 3A
rounds for the corruption to take effect, implying that these validators cannot

A 1

be counted as part of A,. Hence, as A TH s = B < 5 — e for all rounds r,
W.0.p.,

F 1
E[H] = Hza¢yathry > (5 + €)nythry,
It 1
E[A¢] = AzA(t41)+athry < (5 — €)ngthry
By a Chernoff bound,

2

-~ 1
Pr [Ht < 2ntthrv} < e~ Tz nthry

8 The proposer-lottery threshold thry, can be tuned following Algorand [33, Appendix-
B.1] so that each slot has at least one eligible proposer.

24 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse
A 1 7in thr.
Pr|A; > intthrv < e T MY,

Thus, at any given slot ¢, H, > A,, except with probability
€2
14 3e
By a union bound, every slot ¢ has more honest validators awake at round 3At+A
and eligible to vote at slot ¢ than adversary validators at round 3A(t + 1) + A,

eligible to vote at slot ¢ (and more than %noth ry such honest validators), except
with probability

2exp (— nothry,).

2

2Thor €XP <1j_3€nothrv> + negl(A) = negl(x) + negl(A),

since ng = O(k) and Tho, = O(k). By the same reasoning, w.o.p., every slot ¢
has more honest validators awake and eligible to propose for slot ¢ at round 3At
than adversary validators at round 3At + A, eligible to propose for slot t.

Finally, for any given slot ¢, each valid slot ¢ proposal broadcast within rounds
[3At,3At + A] has the same probability of achieving the minimum precedence
up to terms negligible in /\H Now, at a slot ¢, if an honest validator’s proposal
achieves the minimum precedence among the valid slot ¢ proposals broadcast by
A rounds into the slot, then that validator is identified as the slot leader by all
honest validators awake at round 3At + A. Taking a fixed ¢ > «, the probability
that no awake honest validator’s proposal has the minimum precedence among
the valid slot s proposals broadcast by A rounds into the slot, during the slots
s € [t — K,], is upper bounded by 27" + negl(x) + negl(A). Union bounding over
all Thor many such intervals, we find that w.o.p., all slot intervals of length
have at least one slot ¢, where an honest validator is identified as the slot leader
by all awake honest validators at round 3At + A.

Now with key-evolving primitives, we define H, = H, At+A and Ay = Ay At+A-
Similarly, we define ny = Hsarrn + Asarra > no = O(k). In this case, ATATTHT <
B < % — ¢ for all rounds r. Note that the adversary cannot predict in advance
which honest validators will become eligible to vote or propose at a given slot
due to the pseudorandomness property of the lottery. Moreover, if the adversary
corrupts the honest validators eligible to vote at a slot t after learning their
identities at round 3At+ A, it cannot make these validators broadcast new valid
votes for slot ¢ since the keys for slot ¢ would have been evolved prior to adversary
corrruption (i.e., these corrupted validators cannot be counted as part of flt).
Hence, the number of valid slot ¢ votes adversary validators can broadcast by
round 3A(t+ 1) + A is upper bounded by the number of adversary validators at
round 3At+ A that are eligible to vote at slot ¢. Finally, by the same calculations
as above, every slot ¢t has more honest validators eligible to vote and awake at
round 3A¢ + A than the adversary validators at round 3A(t + 1) + A eligible
to vote at slot ¢ (and more than %nothrV such honest validators), except with

9 We assume that poly(x) negl(\) = negl(\).

Goldfish: No More Attacks on Ethereum?! 25

probability

2

2T or €XP (— nothrv) + negl(\) = negl(k) + negl(A).

1+ 3e
Similarly, w.o.p., every slot ¢ has more honest validators awake and eligible
to propose for slot ¢ at round 3At than adversary validators at round 3At +
A eligible to propose for slot t. Thus, via the same argument, w.o.p., all slot
intervals of length x have at least one slot ¢, where an honest validator is identified
as the slot leader by all awake honest validators at round 3At + A. O

B.3 Main Security Results
The main security results are as follows:

Theorem 1. Suppose a (%,3A)—complmnt execution of Goldfish in the syn-
chronous sleepy network model of [Sec. 3, and validator id with proposal P* is
recognized as the leader of a slott by all awake honest validators at round 3At+ A
(Alg. @ l. @) Then, w.o.p., P*.B < B for any B identified in Alg. @ l. @
[23, 28 by any awake honest validator in any round r > 3At + 2A.

Theorem 2 (Security). Suppose a (%, 3A)-compliant execution of Goldfish in
the synchronous sleepy metwork model. Then, w.o.p., Goldfish is secure with
transaction confirmation time Teons = 2Kk + 2 slots.

Theorem 3 (Reorg resilience). Suppose a (3,3A)-compliant execution of
Goldfish in the synchronous sleepy network model, and validator id with pro-
posal P* is recognized as the leader of a slot t by all awake honest validators at
round 3At + A (Alg. @ L. @) Then, w.o.p., Ir': ¥Vr > r': Vid: P*.B < ch;fj,
where chfi denotes Goldfish’s ledger at validator id and round r. In particular,
' =3A(t + k) + 2A satisfies the above.

We first prove Thms. 2] and 3] from Thm. |1 and Lem. Then, we prove
Thm. [I] from the subsequent Lems. [I]} [2] and

Proof of Thm.[Z By Lem.[I] w.o.p., all slot intervals of length have at least one
slot t, where an honest validator with proposal P* is recognized as the slot leader
by all awake honest validators at round 3At + A, and, by Thm. [, P*.B < B
for any B identified in Alg. [2] 11. §] 22} 2§ by any awake honest validator in any
r > 3At + 2A.

Liveness. A transaction tx is input to an honest validator at some round 7. At
most 6A rounds (i.e., 2 slots) later the transaction is propagated to all honest
validators and we have reached the beginning of a slot ¢y. For the next x slots all
honest proposers will include tx if they extend a tip whose chain does not include
tx yet. By the earlier argument, one of these proposals will be an ancestor of
any B identified in Alg. [2] 1. by any awake honest validator in any
' > 3A(to + k) + 2A. From & slots later onwards, all awake honest validators
include the transaction in their ledger (Alg. [2] 1. 29). Thus, Goldfish is live with

26 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

Teont = 2K + 2 slots.

Safety. Pick any two honest validators id; and ids, and two slots ¢; and to >
t1. By the earlier argument, there exists a block B’ proposed (by an honest
validator) at some slot ¢ € [t; — k, 1] such that B’ < B for any B identified
in Alg. 2] 1L by any awake honest validator in any r’ > 3At' + 2A.
As t' > t; — k but by Goldfish’s confirmation rule blocks in ch'tdl1 are from no
later than ¢; — &, ch;dl1 = B. Similarly, if ' > t5 — &, then chitcl‘2 = B; otherwise,
B = chitd;. In both cases, either chitdl1 = chLd; or chitci2 = chLdll. O

Proof of Thm.[3 By Thm. [T, P*.B < B for any B identified in Alg. [2] 1L
by any awake honest validator in any r > 3At + 2A. From & slots
later onwards, all awake honest validators include the transaction in their ledger

(Alg. B 1.29). O

Proof of Thm. [I] follows from Lems. [T 2] and [3] and is provided at the end of
this section. The structure of the argument is inductive: Lem. [2 shows that in a
slot t with honest leader, all honest voters vote for the leader’s proposal. Lem. [3]
shows that if in slot ¢ all honest voters have voted for a descendant of a certain
block, then in slot ¢t + 1 all honest voters will vote for a descendant of that block.

Lemma 2. Suppose an execution of Goldfish in the synchronous sleepy network
model, and validator id* with proposal P* is recognized as leader of a slot t by
all awake honest validators at round 3At + A (Alg. @ l. @) Then, all honest
validators awake at round 3At + A and eligible to vote at t vote for P*.B at t.

Proof. Let T/ = P*T, and B* and T* denote the buffer and bvtree of
id* at round 3At. Since id* is honest, it must have broadcast P* at round
3At with bvtree 7/ = MERGE(7*,B*) and a new block P*.B with parent
GHOST-Epu(T',t — 1) (Alg. |2} 11 m .

By synchrony, any message that a non-asleep honest validator id could have
added to its bvtree Ty by 3A(t — 1) + 24, is received by id* by 3A¢, and thus
in 7’. As awake honest validators do not update their bvtrees and no honest
validators turn awake in the interval (3A(t — 1) + 24, 3At + A), for any honest
validator id awake at round 3At + A, Ty C T prior to Alg. [2} 1.

Since id* is recognized as the leader of slot ¢ by all awake honest validators at
round 3At + A, at that round, each awake honest validator id merges its bvtree
with 7" U {P*.B} (Alg.[2} L and reaches Ty = 7' U {P*.B}. Consequently,
each honest validator id awake at round 3At+ A and eligible to vote at slot ¢ votes
for P*.B due to the recursive structure of the GHOST-Eph rule (Alg. . O

Lemma 3. Suppose a (%, 3A)-compliant execution of Goldfish in the syn-
chronous sleepy network model. Consider a slot t where all honest validators
awake at round 3At + A and eligible to vote at slot t, vote for a descendant of
B. Then, w.o.p., all honest validators awake at round 3A(t+1)+ A and eligible
to vote at slot t + 1, vote for a descendant of B.

Goldfish: No More Attacks on Ethereum?! 27

Proof. By Lem. [l w.o.p., for every slot ¢, the number of adversary validators
at round 3A(t 4+ 1) + A and eligible to vote at slot ¢ is less than the number of
honest validators awake at round 3At + A and eligible to vote at slot ¢.

Let t be a slot such that all honest validators awake at round 3At + A and
eligible to vote at ¢ voted for a descendant of B. Pick any honest validator id
awake at round 3A(t+1)+ A and eligible to vote at slot £+ 1. Since id must have
been awake at least since round 3At+2A4, its bvtree at round 3At +2A contains
all votes broadcast by honest validators awake at round 3At + A and eligible to
vote at slot ¢ (Alg.[2] 1. [19). The same is true for its bvtree at round 3A(t+1)+A,
even after id merges its bvtree with that of any proposal (Alg.[2] 1. E[) Moreover,
the number of honest validators awake at round 3At + A and eligible to vote at
slot ¢ is greater than the number of adversary validators at round 3A(t41) + A
that are eligible to vote at slot ¢.

Consequently, upon invoking the GHOST-Eph fork-choice rule at round
3A(t+1)+ A (Alg. 2 1. 22), id observes that at every iteration of the fork choice
(Alg. 3l 1. , blocks consistent with B have more votes than blocks conflicting
with B. Thus, at round 3A(¢t + 1) + A, fork choice returns a descendant of B,
and id votes for it. O

Proof of Thm.[1 From Lems. and [3] it follows by induction that w.o.p., for
all ¢ > t, all honest validators awake at round 3At# + A and eligible to vote at
slot t/, vote for a descendant of P*.B.

By synchrony, the honest votes of slot ¢’ reach all honest validators awake
at 3At' + 2A by then, when they also merge the votes into their bvtrees. The
number of honest validators awake at round 3At' + A and eligible to vote at slot
t’ is greater than the number of adversary validators by round 3A(¢ +1)+ A that
are eligible to vote at slot ¢’ (by Lem. . Upon invoking the GHOST-Eph rule of
Alg. 2] 11. 28 at 3AL +2A, BA(’ +1) and 3A(t' + 1) + A, respectively, an
awake honest validator id (who must have been awake since at least 3At' + 2A,
due to the joining procedure) observes that at every iteration of the fork choice
(Alg.[3} 1. , blocks consistent with P*.B have more votes than blocks conflicting
with P*.B. Thus, id’s fork choice reaches a descendant of P*.B. O

C Security Proof of Goldfish with Fast Confirmation

In the following analysis, we consider a synchronous network in the sleepy model
as described in [Sec. 2} Recall that the total number of validators is n (cf. [Sec. 2).
Since Goldfish slots consist of 4A rounds in the case of fast confirmation, we
hereafter assume that the Goldfish execution is (4, 4A)-compliant. We show that
Thm. [2| holds for Goldfish with fast confirmations (w.o.p.) in compliant execu-
tions. To do so, we first prove Thm. 4] an analogue of Thm. [I| for fast confirma-
tions, showing that fast confirmed blocks are always in the canonical chain of
awake validators at later rounds.

Since Goldfish slots consist of 4A rounds in the case of fast confirmation, we
state an analogue of Lem. [I] to match the new slot structure:

28 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

Lemma 4. Suppose the Goldfish execution is (%,4A)—compliant. Then, w.o.p.,
for every slot t, the number of adversary validators at round 4A(t + 1) + A,
eligible to vote at slot t, is less than the number of honest validators, awake at
round 4At + A and eligible to vote at slot t. Also w.o.p., all slot intervals of
length k have at least one slot t, where an honest validator is identified as the
slot leader by all awake honest validators at round 4At + A.

Proof of Lem. [4] is analogous to the proof of Lem. [T} and follows from the
same arguments using (%, 4A)-compliant executions.

Proposition 1. Suppose Tyhor = poly(k). Then, w.o.p., there can be at most
(1 + e)nthr, validators that are eligible to vote at any given slot. If the Goldfish
execution is (%,4A)—compliant, then, w.o.p., for all slots t, the number of ad-
versary validators at round 4A(t + 1) + A, eligible to vote at slot t, is less than
%n thry,.

Proof follows from a Chernoff bound.

Lemma 5. Suppose the Goldfish execution is (%7 4A)-compliant in the syn-
chronous sleepy network model, and an honest validator id* fast confirms a block
B at slot t. Then, w.o.p, all honest validators awake at round 4A(t+1)+ A and
eligible to vote at slot t + 1, vote for a descendant of B at slot t + 1.

Proof is stated below and follows from Prop. [I| and a quorum intersection
argument.

Proof of Lem. [5. By Prop.[} w.o.p., the number of adversary validators at round
4A(t + 1) + A, eligible to vote at slot ¢, is less than inthr,. An eligible awake
honest validator sends a single slot ¢ vote at round 4At + A, implying that over
(3 + £)nthry — inthr, = (3 + $)nthr, validators broadcast a single slot ¢ vote
by round 4A(t+1)+ A, and that is for a descendant of B. By Prop. [1} w.o.p., for
all slots ¢, there can be at most (1 + ¢)nthr, validators that are eligible to vote
at t. Hence, the number of valid slot ¢ votes for the descendants of any block B’
conflicting with B must be less than (14 €)nthr, — (+ £)nthr, = (3 + £)nthr,
at any given round. The validator id* broadcasts B and over (% + 5)nthry valid
votes for it (in pieces) at round 4At+2A. Each honest validator, awake at round
4A(t+1)+ A and eligible to vote at slot t+1, observes these votes in its bvtree at
the round of voting (Alg. 4] 1. . Upon invoking the GHOST-Eph fork-choice
rule at any of the rounds 4At + 3A, 4A(t + 1) or 4A(t+ 1) + A (Alg. [2 11
, for any awake honest validator id with bvtree 7/, VoTES(7’, B,t) >
VoTEs(T’, B, t) for any block B’ conflicting with B. This implies that all honest
validators, awake at round 4A(t + 1) + A and eligible to vote at slot t + 1 all
vote for B or one of its descendants at slot ¢ + 1. O

Theorem 4. Suppose the Goldfish execution is (%,4A)—complmnt in the syn-
chronous sleepy network model, and an honest validator id™ fast confirms a block
B at slot t. Then, w.o.p., B < B for any B identified in Alg.[3 1.3, by
any awake honest validator in any round r > 4A(t + 1) + A.

Goldfish: No More Attacks on Ethereum?! 29

Proof is stated below and follows from Lems. [4] [f] and [3] and the inductive
argument used in the proof of Thm. [I]

Proof of Thm. [} Follows by Lems. [] 5] and [3] by the same inductive argument
used in the proof of Thm.[I] in that case following from Lems. [} 2] and [3] Here,
Lem. []is the analogue of Lem. [T| with the new slot structure, and Lem. [5| provides
the base case, substituting Lem. O

Theorem 5. Suppose the Goldfish execution is (%,4A)—compliant. Then, Gold-
fish with fast confirmations satisfies safety (w.o.p.).

Proof is stated below and follows from Thm. 2

Proof of Thm.[5 If an honest validator fast confirms a block B at slot ¢, then
B is in the canonical GHOST-Eph chain of every awake honest validator at all
slots larger than ¢ by Thm. @] Therefore, B is in the k-slots-deep prefix of the
canonical GHOST-Eph chains of all awake honest validators at slot ¢ + x, and
thus confirmed by them with the standard confirmation rule. Therefore, Thm. [2]
implies the safety of the protocol. O

In (%,4A)—compliant executions, we automatically get liveness of Goldfish
with fast confirmations from the liveness of the standard confirmation rule, since
fast confirmation is not needed for a block to be confirmed. Under optimistic
conditions, liveness of fast confirmations holds as well. We prove that a block
within an honest, valid proposal is immediately fast confirmed within the same
slot by the awake honest validators, if there are over (3 + 2¢)n awake, honest
validators at the voting time of the given slot, implying the liveness of fast

confirmations under optimistic conditions.

Theorem 6. Suppose the Goldfish execution is (%,4A)-compliant. Then, Gold-
fish with fast confirmations satisfies liveness with Teont = O(K) (w.0.p.).

Consider a slot t, such that there are (% + %e)n thry honest validators eligible
to vote at slot t and awake at round 4At+ A. Suppose an honest validator id with
proposal P* is recognized as the leader of a slot t by all awake honest validators
at round 4At + A (Alg. [3, 1. [16). Then all honest validators awake at round
4At + 2A fast confirm P*.B in Alg.[4) 1.[§

Liveness is stated below and follows from Thm. [2] and fast confirmation from
Lem. 2

Proof of Thm. [6 Proof of liveness follows from Thm. [2]

For the second part of the proof, by Lem. [2] all of eligible and awake honest
validators vote for P*.B at slot t. Then, the buffer of any honest validator awake
at round 4At+2A contains at least (3 + £)nthr, votes (by Chernoff bound) for
the block P*.B, implying that all honest validators awake at rounds 4At + 2A
fast confirm P*.B at the respective slots. U

30 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

D Goldfish with Overlay Gadgets

Two properties desired for Ethereum consensus as a whole, besides security under
dynamic participation, fast confirmation, and reorg resilience, are security under
partial synchrony and accountable safety. However, it is impossible for all these
properties to be satisfied by a single ledger [34}44L60,|/61}/69]. For this reason,
Ethereum’s consensus protocol (Gasper [15], Fig. [1]) consists of an overlay final-
ity /accountability gadget (Casper FFG [14]) which provides accountable safety
under asynchrony, on top of an underlay chain which should be secure under
synchrony and dynamic participation, and provide fast confirmations and reorg
resilience. The desiderata for Gasper were formalized by ebb-and-flow [6061,/69].
The objective is, slightly more abstractly, to design a flexible two-ledger consen-
sus protocol, which supports a full dynamically available ledger in conjunction
with a finalized and accountable prefix ledger. The finalized ledger falls behind
the full ledger when the network partitions or participation is low, but catches
up when the network heals. Clients adopt the ledger that provides the property
(accountable safety under network partition, or liveness under dynamic partici-
pation) which they value more.

In this section, we show that Goldfish can indeed be used as an underlay chain
in conjunction with an overlay finality/accountability gadget, and that the so
composed protocol satisfies the design goal for Gasper, the ebb-and-flow formu-
lation [60}/61]. Specifically, for ease of exposition, since the focus of this paper is
on designing a new underlay, Goldfish, rather than designing the gadget/overlay
and the checkpointing interaction between underlay and overlay, and since we are
not aware of any formal work showing how to apply Casper to an underlay chain
to obtain a secure ebb-and-flow protocol, we instead reuse finality /accountability
gadgets from the literature [60,61,69]. Given their earlier analyses, the primary
job left to do for us as designers of the Goldfish underlay, is to show that Goldfish
‘heals’ (to be made precise below) after network partition and in conjunction
with the gadget (i.e., despite the gadget’s influence over the underlay).

presents the formal model and problem formulation.
describes the composition of Goldfish with accountability gadgets [61]. A security

proof for the composition is presented in D4 and

D.1 Model

D.1.1 Partial Synchrony Security under a partially synchronous network
captures the resilience of the consensus protocol against network partitions. A
partially synchronous network in the sleepy model 60| is characterized by a
global stabilization time (GST), a global awake time (GAT), and a delay upper-
bound A. GST and GAT are constants unknown to the honest validators chosen
adaptively by the adversary, i.e., as causal functions of the execution, whereas A
is a constant known to the validators. Before GST, message delays are arbitrarily
adversary (asynchronous). After GST, message delays are subject to the delay
upper bound A (synchronous). Similarly, before GAT, the adversary can set the
sleep schedule for honest validators. After GAT, all honest validators are awake.

Goldfish: No More Attacks on Ethereum?! 31

D.1.2 Security We next formalize the notion of security after a certain time,
generalizing Def. [T} Security is parameterized by k, which, for longest-chain
protocols and Goldfish, determines the confirmation delay for transactions (i.e.,
these protocols come with a security—latency trade-off). We consider a finite time
horizon Ty, that is polynomial in k. We denote a consensus protocol’s output
ledger, e.g., the Goldfish ledger, in the view of a validator ¢ at round r by ch..
We write chy < chy to express that the ledger chy is a prefix of (or the same as)
ledger chs.

Definition 3 (Security). Let Tconr be a polynomial function of the security
parameter k. A state machine replication protocol that outputs a ledger ch is
secure after time Tiec, and has transaction confirmation time Teont, iff:
Safety: For any two rounds r,r" > Ty, and any two honest validators i, j awake
at rounds r and r', respectively, either ch’. < ch’, or ch’, < ch®.

Liveness: If a transaction has been received by some awake honest validator by
some round r > Tuec, then for any round v’ > v+ Teons and any honest validator
i awake at round ', the transaction will be included in ch’, .

The protocol satisfies f-safety (f-liveness) if it satisfies safety (liveness) as
long as the number of adversary validators f stays below f for all rounds. It
satisfies 1/2-safety (1/2-liveness) if it satisfies safety (liveness) if the fraction of
adversary validators § is bounded above away from 1/2 for all rounds.

D.1.3 Accountable Safety Accountable safety provides a trust-minimizing
strengthening of safety, with the aim to hold validators accountable for their
actions. In a protocol with accountable safety resilience f > 0, after a safety
violation, one can, upon collecting evidence from sufficiently many honest val-
idators, generate a cryptographic proof that identifies f adversary validators as
protocol violators [61,|71]. By definition, the proof does not falsely accuse any
honest validator, except with negligible probability.

D.1.4 The Ebb-and-Flow Formulation As Goldfish outputs a dynamically
available ledger (i.e., live under dynamic participation), by the availability-
accountability dilemma [61], its output ledger cannot satisfy accountable safety.
Similarly, it cannot satisfy safety under a partially synchronous network (i.e.,
finality), by an analogue of the CAP theorem [34,/44]. However, Goldfish can
be used as an underlay composed with an accountability gadget as overlay (cf.
Figs. |1l and [7)) in order to obtain a separate prefix ledger that attains account-
able safety under partial synchrony while staying consistent with the output of
Goldfish |61]. Denoting the output of Goldfish as the available ledger ch,y, and
that of the accountability gadget as the accountable final prefix ledger ch,cc, the
desiderata are captured in the ebb-and-flow formulation [60]:

Definition 4 (Ebb-and-flow formulation [60,/61]).

1. (P1: Accountability and finality) Under a partially synchronous network
in the sleepy model, the accountable final prefix ledger ch,cc has accountable

32 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

Checkpoints
! Accountable
Underlay: | Confirmations | Ouverlay: final ledger)
v Goldfish g " AG/FG [> Chice
Available
ledger
&% chava

Fig. 7. An accountability /finality gadget (AG/FG, a.k.a. overlay, like Casper) check-
points decisions of the dynamically available protocol Goldfish (a.k.a. underlay) (cf.
Fig. . A feedback loop ensures that Goldfish respects earlier checkpoints. This con-
struction satisfies the ebb-and-flow design objective of Ethereum, to produce an avail-
able full ledger that is secure under dynamic participation of validators, and a prefix
ledger that is accountably secure under network partition [60L/61].

Algorithm 5 GHOST-Eph (cf. Alg. [3) modified (green) to respect the latest
checkpoint B. See Alg. [3] for CHILDREN and VOTES.

1: function GHOST-Epru(T,t, B)
2 > Start fork-choice from latest checkpoint B
3: forever do
4 > Choose the heaviest subtree rooted (breaking ties deterministically) at one of the
children blocks B’ of B, by number of validators that have cast a vote in slot ¢ into the subtree
rooted at B’; B’ = L if CHiLDREN(T, B) = 0

B’ + arg MaXp/ ¢ CHiLDREN(T, B) Vores(T, B, t)

if B’ = 1 then return B

B+ B’

safety resilience n/3 at all times, (except w.p. negl(\)), and there exists a
constant C such that ch,e. provides n/3-liveness with confirmation time Teont
after round max(GST,GAT) + C - k (w.o.p.).

2. (P2: Dynamic availability) Under a synchronous network in the sleepy
model (i.e., for GST = 0), the available ledger ch,y, provides 1/2-safety and
1/2-liveness at all times (w.o.p.).

3. (Prefiz) For each honest id and round r, chS_ < ch'

acc,r — ava,r*

The accountable final prefix ledger ch,.. can experience liveness violations
before GST or GAT, due to lack of timely communication among sufficiently
many honest validators, but ch,c. remains accountably safe throughout. The
available ledger ch,,, can experience safety violations before GST, but remains
live throughout. When conditions improve, ch,.. catches up with ch,y,. This
ebb-and-flow behavior lends the formulation its name. Providing the irreconcil-
able properties in two separate but consistent ledgers provides a user-dependent
resolution to the CAP theorem [34}/44].

D.2 Goldfish with Accountability Gadgets

For the composition of Goldfish with accountability gadgets, we follow the con-
struction of [611[69] (Fig.[7} Alg.[6). In this construction, a partially synchronous
accountably-safe consensus protocol such as Streamlet, Tendermint, or Hot-
Stuff [11}/19,/58,[74], with accountable safety resilience of n/3 out of n valida-

Goldfish: No More Attacks on Ethereum?! 33

Algorithm 6 Composition of Goldfish and accountability gadget (cf. Fig. m (61}
Alg. 1]), executed by validator id. Here, Goldfish (cf. Alg. [2) uses a modified
GHOST-Eph rule (Alg._, starting the recursion from the latest checkpoint,
i.e., the last block of chy .. Throughout, Goldfish maintains the available chain
chd . RUNACCOUNTABILITYGADGET attempts the next iteration of the gadget,

where valid checkpoint candidates are determined using chi;\,a. Iterations may
fail (1), e.g., if the gadget invokes a malicious leader.

1: <:hijCC < By > ‘Zero-th’ checkpoint: Goldfish’s genesis block
2: forc=1,2,...do . > Checkpoint iterations
3: checkpoint <— RUNAccoUNTABILITYGADGET(chfva)

4: if checkpoint # L then

5: ch® . < checkpoint > Update latest checkpoint
6: Sleep for Tepkpt rounds

tors, is used to determine checkpoints of Goldfish’s output ledger. To ensure that
Goldfish respects earlier checkpoints, its fork-choice rule is modified to respect
earlier checkpoint decisions (cf. Alg. [5). The most recent checkpoint forms the
accountably-safe finalized prefix ledger ch,.., while Goldfish’s output forms the
dynamically available full ledger ch,y, (cf. ebb-and-flow, Def. . As Goldfish now
respects checkpoints, ch,c. < chay, holds.

The full protocol proceeds in checkpointing iterations (cf. Alg. @ Iterations
may fail, e.g., when the consensus protocol of the gadget invokes a malicious
leader, or during asynchrony before GST, or while many validators are asleep be-
fore GAT. Successful checkpoint iterations are separated by at least Tchipt rounds
of inactivity of the gadget. In the following sections, we apply the techniques of
earlier analyses [61,/69] to the combination of Goldfish and the accountability
gadget, to show how to tune Tenipe as a function of the network delay A and the
confirmation parameter x, and to formally prove that the combination satisfies
the ebb-and-flow desiderata:

Theorem 7 (Ebb-and-flow property). Goldfish combined with accountability
gadgets (cf.|[App. D.2) satisfies the ebb-and-flow property of Def. .

Proof of Thm. [7] is provided in D4 and It follows

the same blueprint as the original construction of accountability gadgets in |61}
Appendices B, CJ.

Fast Confirmation Rule and Accountability Gadgets. When composing
accountability gadgets and Goldfish with the fast confirmation rule, we stipulate
that the validators input to the gadget only those blocks confirmed via the stan-
dard confirmation rule (GHOST-EPH(T,#)/*) in their view. This is necessary
to ensure that all honest validators promptly agree on the confirmation status
of the blocks input to the gadget for checkpointing, which in turn is a prerequi-
site for the liveness of the accountable final prefix ledger ch,... Otherwise, it is
possible that a block fast confirmed by one honest validator might not become
confirmed in the view of another honest validator until after x slots, stalling the
checkpointing process of the accountability gadget for that block. Thus, the fast
confirmation rule is primarily for reducing the latency of the available ledger

34 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

chava, and does not affect the time for a block to enter the accountable final
prefix ledger chyec.

D.3 Overview of the Analysis

Recall that in Goldfish with accountability gadgets, the fork-choice rule of Gold-
fish is modified to respect earlier checkpoint decisions (Alg. . This modification
requires adjustments of the analysis of Goldfish, because it opens up the possi-
bility that for a proposal P* by an honest leader, P*.B < B no longer holds for
all blocks B identified in Alg. [2] 11. by awake honest validators at future
rounds, due to a new checkpoint conflicting with P*.B.

In the synchronous sleepy network model, implies that ch,y, remains
secure until the first checkpoint is determined. Therefore, checkpoints cannot
undermine its security since only confirmed blocks in ch,,, are approved for
checkpointing by honest validators for formal analysis). However,
when GST > 0, one cannot directly rely on the analysis of Goldfish under syn-
chrony. In this case, to prevent checkpoints from undermining the security, and
rigorously argue security for the combination despite the modified fork-choice
rule, the framework of accountability gadgets [61,/69] relies on two principles:

— Gap property: After a (successful) checkpointing iteration with a new
checkpoint, honest validators wait for Tipipy = ©(k) rounds before par-
ticipating in the next iteration.

— Recency property: For checkpointing, honest validators suggest and ap-
prove only the blocks that were recently confirmed as part of chyys.

We prove that once the network heals and honest validators become awake at
round max(GST, GAT), ch,y, regains its security with the help of these proper-
ties, a feature called the healing property. The healing property, together with
the liveness of the accountability gadget’s consensus protocol imply the liveness
of ch,. in the partially synchronous sleepy network model for formal
analysis). Finally, accountable safety of ch,.. follows from the accountable safety
of the gadget. Security of ch,y, under the synchronous sleepy network model,
accountable safety of ch,.. and its liveness after max(GST, GAT) together imply
the ebb-and-flow property, i.e. Theorem Thm. .

We now formally prove the ebb-and-flow property for Goldfish combined with
accountability gadgets (Fig. . The following analysis extensively refers to the
details of the accountability gadgets described in |61, Section 4]. To distinguish
the votes cast by validators as part of the accountability gadget iterations from
those broadcast within Goldfish, we will refer to the former as gadget votes.
Similarly, to distinguish the leaders of accountability gadget iterations from the
leaders of Goldfish slots, we will refer to the former as the iteration leaders. We
refer the reader to [61] for the accountability gadget specific definitions of the
timeout parameter Timous and the confirmation delay Ty of the BFT protocol.
We highlight that honest iteration leaders propose only the blocks B* that are
confirmed in their view of chyy,, i.e., B < Bl* for B identified in Alg. 2 11.
[22] 28| run using chyy,. Similarly, honest validators send accepting gadget votes

Goldfish: No More Attacks on Ethereum?! 35

only for the checkpointing proposals that are confirmed in their view of chy,.
We set Tinkpt, the time gap between the accountability gadget iterations, to
be at least 6A(k + 1) + Timout + Tbfe (this is necessary for proving the ebb-
and-flow property as will be evident in the following proofs). This makes the
upper bound Typper on the total duration of an iteration Tohipt + Ttmout + Tbfe =
6A(Kk + 1) 4+ 2(Timout + Tore) = O(K).

D.4 Security of ch,y, under the Synchronous Sleepy Network Model

We first show that ch,y, remains secure under synchrony in the sleepy network
model, despite the added gadget.

Proposition 2. Suppose a (%7 3A)-compliant execution of Goldfish in the syn-
chronous sleepy network model of [Sec. 3. If a block B is observed to be check-
pointed by an honest validator for the first time at some round r, then B is in
the common prefiz of the chains identified in Alg. [3 1. [8 [23 2§ right before
round r by all awake honest validators.

Proof. Since the execution is (%,3A)—compliant, for a block to become check-
pointed, at least one honest validator must have sent an accepting gadget vote
for that block. Let B; denote the sequence of checkpointed blocks listed in the
order of the rounds r; at which, an awake honest validator observed B; to be
checkpointed for the first time. Proof is by induction on these blocks’ indices.

Induction Hypothesis. B; is in the common prefix of the chains identified in
Alg. 2] 1. 8] 22] [28] right before round r; by all awake honest validators, and
stays so until at least round 7;41.

Base Case. Since an honest validator sends an accepting gadget vote only for a
confirmed block (i.e., k slots deep), By must have been confirmed by an honest
validator at some slot t; before round r1. As all honest validators start the fork-
choice at the genesis block prior to 1 and Bj is confirmed in an honest view, it
is in the prefix of a block proposed by an honest leader by Lem. [l and Thm.
Hence, By is in the common prefix of the chains identified in Alg. [2] 11. [§] 22] 28]
right before round ry by all awake honest validators. It also stays in the common
prefix until at least round rs.

Inductive Step. By the induction hypothesis, checkpointing of the blocks
Bi,...,B;_1 does not alter the fork-choice rule at Alg. L. 2| for any awake
honest validator. Hence, by the same reasoning above, B; is in the common
prefix of the chains identified in Alg. 2] 11. [8] 22] 28 right before round r; by all
awake honest validators, and stays so until at least round r;42. O

Lemma 6 (Safety and liveness of ch,,, under synchrony). Suppose a
(%, 3A)-compliant execution of Goldfish in the synchronous sleepy network model
of. Then, w.o.p., the available ledger ch,y, satisfies 1/2-safety and 1/2-
liveness (at all times).

36 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

Proof. By Prop. 2] checkpointing of blocks does not alter the fork-choice rule at
Alg. [f] 1. 2] for any awake honest validator. Concretely, if the honest validators
started the fork-choice rule from the genesis block at all rounds instead of the
latest checkpoint in view, then they would end up with the same execution.
Thus, the security of ch,ys follows from Thm. O

D.5 Liveness of ch,.. after max(GST, GAT)

We next demonstrate the liveness of ch,e. after max(GST, GAT). In the subse-
quent analysis, the total number of validators is denoted by n (cf. . The
accountability gadget is instantiated with a BFT protocol that has an account-
able safety resilience of n/3.

Proposition 3 (Prop. 2 of [61]). The BET protocol satisfies n/3-liveness
after max(GST, GAT) with transaction confirmation time Ty < 00.

Proposition 4 (Prop. 3 of [61]). Consider a (3,34)-compliant execution
of Goldfish in the partially synchronous sleepy network model of [Sec. 3 Sup-
pose a block from iteration ¢ was checkpointed in the view of an honest valida-
tor at round r. Then, every honest validator enters iteration ¢ + 1 by round
max(GST, GAT,r) + A.

Let ¢’ be the largest iteration such that a block B was checkpointed in the
view of some honest validator before max(GAT,GST). (Let ¢ =0 and B be the
genesis block if there does not exist such an iteration.) If an honest validator
enters an iteration ¢’ > ¢ at some round r > max(GAT,GST) + A + Tehkpt,
every honest validator enters iteration ¢’ by round r + A.

Proof of Prop. 4] follows from the proof of [61, Prop. 3].

Proof. Suppose a block B from iteration ¢ was checkpointed in the view of an
honest validator id at round r. Then, there are over 2n/3 accepting gadget votes
for B from iteration ¢ on LOGyy 4, the output ledger of the BFT protocol in id’s
view at round r. All gadget votes and BFT protocol messages observed by id by
round r are delivered to all other honest validators by round max(GST, GAT,)+
A. Hence, by the safety of the BFT protocol when f < n/3, for any honest
validator id’, the ledger LOGy, ;4 is the same as or a prefix of the ledger observed
by id" at round max(GST, GAT,r) + A. Thus, for any honest validator id’, there
are over 2n/3 accepting gadget votes for B from iteration ¢ on LOGyg at round
max(GST, GAT,r) 4+ A. This implies every honest validator enters iteration ¢+ 1
by round max(GST, GAT,r) + A.

Finally, by the reasoning above, all honest validators enter iteration ¢’ + 1
by round max(GAT,GST) + A. Thus, entrance time of the honest validators
to subsequent iterations have become synchronized by round max(GAT, GST) +
A + Tonpe: If an honest validator enters an iteration ¢’ > ¢ at some round
r > max(GAT,GST) + A + Tonipt, every honest validator enters iteration ¢’ by
round r + A. Similarly, if a block from iteration ¢’ is first checkpointed in the
view of an honest validator at some round after max(GAT,GST) + A + Tohkpt,
then it is checkpointed in the view of all honest validators within A rounds. [

Goldfish: No More Attacks on Ethereum?! 37

Lemma 7 (Liveness of ch,., analogue of Thm. 4 of [61]). Consider a
(%,3A)—compliant ezecution of Goldfish in the partially synchronous sleepy net-
work model of, Suppose ch,y, is secure (safe and live) after some round
Theal > max(GST, GAT) + A + Tehkpt- Then, w.o.p., chaee satisfies n/3-liveness
after round Thea with transaction confirmation time Teons = O(K2).

Proof of Lem. [7] follows from the proof of [61, Thm. 4].

Proof. By Prop. |§|, LOG,y is live with transaction confirmation time Ty after
max(GST, GAT), a fact we will use subsequently.

Let ¢ be the largest iteration such that a block B was checkpointed in the
view of some honest validator before max(GAT,GST) (Let ¢/ = 0 and B be the
genesis block if there does not exist such an iteration). Then, by Prop. 4] entrance
times of the honest validators to subsequent iterations become synchronized by
round max(GAT, GST) + A + Tehkpe: If an honest validator enters an iteration
¢ > ¢ at some round r > max(GAT, GST) + A + Tinips, every honest validator
enters iteration ¢ by round r + A.

Suppose an iteration ¢ > ¢’ has an honest iteration leader L(°) which sends
a checkpoint proposal, denoted by IA)C7 at some round 7 > Theal + Tenkpt. The
proposal b is received by every honest validator by round r + A. Since the
entrance times of the validators are synchronized by Thea > max(GST, GAT) +
A+Tenkpt, every honest validator sends a gadget vote by round r+A. By Lem. |§|,
be < BI* for any B identified in Alg. |2 11. by any awake honest validator
after r. Moreover, b is a descendant all of the checkpoints seen by the honest
validators until then. Consequently, at iteration c¢, every honest validator sends
a gadget vote accepting be by round r 4+ A, all of which appear within LOG
in the view of every honest validator by round r + A 4 Tps. Thus, l;c becomes
checkpointed in the view of every honest validator by round r + A + Ti,q. (Here,
we assume that Tymous was chosen large enough for Tipout > A + Thee to hold.)

Since r > Theal + Tenkpt, by Lem. |§|, I;C contains at least one honest block since
an earlier checkpointed block in its prefix from before iteration c¢. This implies
that the prefix of l;c contains at least one fresh honest block that enters ch,.. by
round 7 + A + Ti.

Next, we show that an adversary leader cannot make an iteration last longer
than A + Timout + Thse for any honest validator after the initial Tenipe period
elapsed. Indeed, if an honest validator id enters an iteration c at round r — Tinkpt,
by round r + Timout, either it sees a block (potentially 1) become checkpointed
for iteration c, or it sends a reject vote for iteration c. In the first case, every
honest validator sees a block checkpointed for iteration ¢ by round at most
7+ Timout + A. In the second case, rejecting gadget votes from over 2n/3 > n/3
validators appear in LOG.g in the view of every honest validator by round at
most r + Timout + A + Thie- Hence, a new checkpoint, potentially L, is output in
the view of every honest validator by round r + Timous + A + Thst-

Finally, we observe that except with probability (1/3)", there exists a check-
point iteration with an honest leader within x consecutive iterations. Since an
iteration lasts at most max(A + Timout + Tofes A + Tenkpt + Tbit) < A+ Tehkpt +

38 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

Timout +Tbfe = @ (k) rounds, and a new checkpoint containing a fresh honest block
in its prefix appears when an iteration has an honest leader (Lem. E[), W.0.p., any
transaction received by an honest validator at round ¢ appears within ch,.. in the
view of every honest validator by round at most ¢+ &£(A + Timout + Tbft + Tehkpt)-
Hence, via a union bound over the total number of iterations (which is a poly-
nomial in k), we observe that if ch,y, satisfies security after some round Theal,
then w.o.p., ch,.. satisfies liveness after The, with a transaction confirmation
time Teonr = O(K2). O

The latency expression Tyont = O(k2) stated in Lem. mis a worst-case latency
to guarantee that an honest block enters the accountable, final prefix ledger chc.
with overwhelming probability. In the expression, the first £ term comes from the
requirement to have Tepkpe = O(k) slots in between the accountability gadget
iterations, and the second k term comes from the fact that it takes ©(k) iterations
for the accountability gadget to have an honest iteration leader except with
probability negl(x). The accountability gadget protocol asks honest validators
to wait for Tenkpy = O(k) slots in between iterations to ensure the security of
the protocol, reasons for which will be evident in the proof of Lem. [0}

Unlike the worst-case latency, the expected latency for an honest block to
enter chyce after ch,y, regains its security would be @(k) as each checkpointing
iteration has an honest leader with probability at least 2/3. In this context, the
latency of ©(k) is purely due to the requirement to have Tohkpy = O(k) slots
in between the accountability gadget iterations. Here, waiting for Tehipt slots in
between iterations guarantees the inclusion of a new honest block in ch,y,, which
in turn appears in the prefix of the next checkpoint, implying a liveness event
whenever there is an honest iteration leader.

Lem. [7]requires the available ledger chyy, to eventually regain security under
partial synchrony when there are less than n/3 adversary validators. Towards
this goal, we first analyze the gap and recency properties, the core properties
that must be satisfied by the accountability gadget for recovery of security of
ch,va- The gap property states that the blocks are checkpointed sufficiently apart
in time, controlled by the parameter Tcpipt:

Proposition 5 (Gap property, analogue of Prop. 4 of [61]). Consider
a (%, 3A)-compliant execution of Goldfish in the partially synchronous sleepy
network model of. Given any round interval of size Tehkpt, no more than a
single block can be checkpointed in the interval in the view of any honest validator.

Proof of Prop. [5| follows from the fact that upon observing a new checkpoint
that is not L for an iteration, honest validators wait for Tipkpt rounds before
sending gadget votes for the checkpoint proposal of the next iteration, and there
cannot be two conflicting checkpoints for the same iteration in the view of any
honest validator.

As in [61] and [69], we state that a block B* checkpointed at iteration ¢ and
round r > max(GST, GAT) in the view of an honest validator id is Tycne-recent if
B* < BI* for B identified in Alg. 2] 1. by id” at some round within [r—Tyent, 7]
Then, we can express the recency property as follows:

Goldfish: No More Attacks on Ethereum?! 39

Lemma 8 (Recency property, analogue of Lem. 1 of [61]). Consider
a (%,3A)—compliant ezecution of Goldfish in the partially synchronous sleepy
network model of, Every checkpointed block proposed after max(GST, GAT)
18 Trent-recent fOT Trent = A+ Timout + Thrt.

Proof. By the proof of Lem. m if a block B proposed after max(GST, GAT)
is checkpointed in the view of an honest validator at some round r, it should
have been proposed after round r — (A + Timout + Thfe)- Moreover, over 2n/3
validators must have sent accepting gadget votes for B by round r. Let id denote
such an honest validator. It would vote for B only after it sees the checkpoint
proposal for iteration ¢, i.e., after round r — Tient = 7 — (A + Timout + Tbit),
and only if the proposal is confirmed in its view. Hence, B must be k slots
deep in the chain returned at Alg. 2] 1. 28] by validator id at some round within
[r — Tient, r]. This concludes the proof that every checkpointed block proposed
after max(GST, GAT) is Tycnt-recent. O

Lemma 9 (Healing property, analogue of Thm. 5 of [61]). Consider a
(%,3A)-compliant execution of Goldfish in the partially synchronous sleepy net-
work model of [Sec. 4 Then, chay, is secure with transaction confirmation time
Tenkpt + Timout + Toie = O(k) after round max(GAT, GST) + A + 2T chipt -

Moreover, for the iteration proposal be of an honest iteration leader broadcast
at round r, it holds that b, < BI* for any B identified in Alg. @ l. @ by
any awake honest validator after r, and be contains a fresh honest block that is
not in the prefix of any checkpoint from before iteration c.

Proof of Lem. [J]is different from the proof of [61, Thm. 5| since the account-
ability gadget is applied to a longest chain protocol in [61], whereas it is applied
to Goldfish in our case. Therefore, the full proof is presented below.

Proof. By [61, Thm. 3], ch,c. provides accountable safety with resilience n/3 ex-
cept with probability negl(\) in the partially synchronous sleepy network model.
As the execution is (%, 3A)-compliant, w.o.p., no two checkpoints observed by
awake honest validators conflict.

Let ¢ be the largest iteration such that a block B was checkpointed in the
view of some honest validator before max(GAT, GST). (Let ¢ = 0 and B be the
genesis block if there does not exist such an iteration.) Then, by Prop. |4l if an
honest validator enters an iteration ¢’ > ¢ at some round r > max(GAT, GST) +
A+ Tonkpt, every honest validator enters iteration ¢ by round r+A. Let ¢’ be the
first iteration such that the first honest validator to enter ¢’ enters it after round
max(GAT, GST) + A+ Tepipt (€.g., at some round r such that max(GAT, GST) +
A+ Tenkpy < 7 < max(GAT, GST) + A + 2T¢hkpt). Then, all honest validators
enter iteration ¢’ and agree on the last checkpointed block within A rounds.
Subsequently, the honest validators wait for Tinkpe rounds before casting any
gadget vote for a checkpoint proposal of iteration ¢/, during which no block can
be checkpointed (Prop. 5] gap property).

By Lem. [} w.o.p., the slot interval of length x starting after round r + A
contains a slot ¢ with an honest leader and proposal P*. After round r > GST,

40 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

all messages broadcast by honest validators are received by all honest validators
within A rounds. As honest validators agree on the last checkpointed block
during the interval [r + A, r + Tohkpt], by the absence of new checkpoints, the
GHOST-Eph fork-choice rule starts at the same last checkpointed block for all
honest validators during the interval (Alg. 1. . Then, by Lem. |1} w.o.p.,
P*.B < B for any B identified in Alg. 2] 1L B} 2] 2§ by any awake honest
validator in any round after 3A¢+ 2A, until at least a new block is checkpointed
in the view of an honest validator.

By Lem. [§] (recency property), the next block checkpointed in the view of
an honest validator (which happens earliest at some iteration ¢’ > ¢ and round
" > r + Tenkpt by Prop. o} the gap property) must have been confirmed by
some honest validator id at some round within [’ — Tyent, r’], where r' — Tyeny >
r 4+ 6Ax + 4A. Hence, the new checkpointed block is « slots deep in the chains
identified in Alg. 2] 11. [} 22] 28] by id, and is a descendant of P*.B. This implies
P*.B < B for any B identified in Alg. 2 1L B} 22 2§ by any awake honest
validator in any round after 3At + 2A indefinitely.

Note that if the iteration leader was honest, for its proposal b broadcast at
some round r”, it holds that b, < BI* for any B identified in Alg. 11.
by any awake honest validator after round r. Moreover, P*.B < be, implying
that honest checkpoint proposals contain fresh honest blocks in their prefixes.

Finally, we extend the above argument to future checkpoints by induction.
Let B, denote the sequence of checkpointed blocks, ordered by their iteration
numbers ¢, > ¢, ¢ = ¢”’. The rounds r,, at which the blocks B,, are first
checkpointed in the view of an honest validator satisfy the relation 7,17 >
Tn + Tenkpt and 7 = r”’. Via the inductive assumption and the reasoning above,
w.0.p., in each interval [r, + A, 7,41 — Tyent), there exists a slot ¢, with an honest
leader and proposal P, such that P,,.B < B for any B identified in Alg. [2] 11. 8]
[22] 2§ by any awake honest validator in any round after 3A¢,, + 2A indefinitely.
Hence, for a sufficiently large confirmation time exceeding the maximum possible
iteration length (i.e., Teont > Tehkpt +Ttmout +2Ibft), these honest blocks imply the
security of the Goldfish protocol after round max(GAT, GST) + A + 2T gpips. O

Thm. [I|holds for the honest blocks proposed in intervals [r,, + A, 7,11 — Trent)
as all honest validators agree on the latest checkpoint during these intervals.

D.6 Proof of Thm.

Proof of Thm. [We first show the property P1, namely, the accountable safety
and liveness of the accountable, final prefix ledger ch,.. under partial synchrony
in the sleepy model. By [61, Thm. 3], ch,.. provides accountable safety with
resilience n/3 except with probability negl(A) under partial synchrony in the
sleepy model. By Lem. [0] under the same model, the available ledger chay, is
secure after round max(GAT,GST) + A + 2T¢hkpt- Using this fact and Lem.
we can state that, w.o.p., ch,c. satisfies liveness after round max(GAT,GST) +
A + 2T epypt with transaction confirmation time Teons = O(K2).

Finally, the property P2 follows from Lem.[6] and Prefix follows by construc-

Goldfish: No More Attacks on Ethereum?! 41

tion of the ledgers ch,.. and ch,y,. This concludes the proof of the ebb-and-flow
property. O

E Equivocation Discounting to Mitigate Spamming

For ease of exposition, we have presented a version of Goldfish which deals with
equivocating votes simply by accepting all of them, but counting at most one per
subtree (Alg. |3} 1. . This approach is vulnerable to spamming attacks, because
it requires validators to accept all the votes they receive. Even a single adver-
sarially controlled validator can be used to create an arbitrarily large number of
equivocating votes at a slot, with the goal of creating network congestion and
making it impossible for honest validators to download all of the other votes in
time, which can result in a loss of safety.

Equivocations are attributable faults, punishable by slashing a posteriori, but
this does not prevent the attack vector a priori, given that only one validator
is required for it. To mitigate it, we introduce equivocation discounting. This
general technique is already present in the current implementation of Ethereum,
but the ephemerality of votes in Goldfish allows for a simpler rule, with clear
bounds on the number of messages required for honest views to converge. This
is particularly important in order to have guarantees about the functioning of the
vote buffering technique, and in turn about the security of the whole protocol,
which relies on reorg resilience. We formalize the simple equivocation discounting
rule here, as a combination of a modification to the GHOST-Eph fork-choice, a
download rule, and a validity condition for proposals.

Equivocation Discounting.

(a) Fork-choice discounting: When running the GHOST-Eph fork-choice
rule at slot ¢,, only count the valid slot ¢ — 1 votes from those validators for
which your bvtree contains a single valid slot ¢ — 1 vote, i.e., those which are
not viewed to have equivocated at slot ¢ — 1.

(b) Download rule: Only download (or forward as part of the peer-to-peer
gossip layer) votes from the current and prior slots, and at most two votes
per eligible validator (i.e., the opened ticket (id,t) for the validator id is
winning for the tag (vote, thry), cf. [Sec. 4).

(¢) Validity condition for proposals: A proposal whose bvtree contains
more than two valid votes for the same slot from some validator is invalid,
and so is one which contains any invalid vote.

The download rule and validity condition ensure that a validator only ever needs
to download at most two votes per subsampled validator of the current and
previous slot. Setting the subsampling parameters so that this is manageable,
we can ensure that equivocations cannot succeed at creating network congestion
sufficient to prevent the functioning of vote buffering. Previously, this meant
guaranteeing that an honest proposer’s bvtree be a superset of honest validators’
bvtrees. Instead, the success of vote buffering now only requires that a leader’s
view of votes from voters which have not equivocated in the last slot is a superset

42 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

of the validators’ views of such votes, and so is its view of the list of equivocators
from the previous slot. Agreement on these two is sufficient for agreement on the
fork-choice output, i.e., Lem. [2] still holds. Note that the leader still only needs
to include its bvtree in the proposal message, because following the download
rule guarantees that it will contain exactly all valid votes from validators which
have not equivocated in the previous slot, together with a pair of votes, i.e.,
equivocation evidence, for validators which have.

The security analysis for Goldfish with equivocation discounting is then the
same as that for vanilla Goldfish. Vote buffering implies that all honest valida-
tors vote together when the proposal with the minimum precedence is honest,
as in Lem. [2| and all honest validators voting together implies that the proposal
is never reorged, as in Lem. |3] The latter is not affected by equivocation dis-
counting, because it relies on the valid votes of honest validators, which do not
equivocate. From these two properties, we obtain reorg resilience as in Thm. [3]
and from reorg resilience, we eventually obtain safety and liveness.

Optimistic fast confirmations are also compatible with equivocation discount-
ing, without any loss of resilience. Liveness and fast confirmation of honest pro-
posals follow from Thm. [6] since equivocation discounting plays no role in it. For
safety, the key ingredient is Lem. [5| from which Thm. [5] follows unchanged. We
thus prove Lem. [5] here for Goldfish with equivocation discounting, by making a
very small modification to the argument:

Proof of Lem. [} with equivocation discounting. By Prop. [I, w.o.p., the number
of adversary validators at round 4A(t + 1) + A, eligible to vote at slot ¢, is
less than %n thry. An eligible awake honest validator sends a single slot ¢t vote
at round 4At + A, implying that over (3 + £)nthr, — Snthr, = (1 + $)nthry
validators broadcast a single slot ¢ vote by round 4A(t + 1) + A, and that is
for a descendant of B. By Prop. [T} w.o.p., for all slots ¢, there can be at most
(14 €)nthr, validators that are eligible to vote at ¢. Hence, the number of valid
slot t votes for the descendants of any block B’ conflicting with B, and which
are from validators which have not also cast one of the (2 + §)nthr, votes for
B, must be less than (1 + €)nthr, — (3 + £)nthr, = (3 + £)nthr, at any given
round. The validator id* broadcasts B and over (2 + £)n thr, valid votes for it (in
pieces) at round 4At+2A. Each honest validator, awake at round 4A(t+1)+ A
and eligible to vote at slot ¢ + 1, observes these votes in its bvtree at the round
of voting (Alg. |4l 1. . Upon invoking the GHOST-Eph fork-choice rule at any
of the rounds 4At + 3A, 4A(t 4+ 1) or 4A(t + 1) + A, using only the votes from
validators which are not seen to be equivocating at slot t — 1, the votes for the
descendants of any block B’ conflicting with B are then less than (% + 5)nthry,
and the votes for descendants of B are over (i + §)nthr,. This implies that all
honest validators, awake at round 4A(t+ 1)+ A and eligible to vote at slot t 41,

all vote for B or one of its descendants at slot ¢ + 1. O

Goldfish: No More Attacks on Ethereum?! 43
F From LMD GHOST to Goldfish

In this section, we outline the shortcomings of LMD GHOST in comparison to
Goldfish, then discuss how Goldfish could replace it in the Ethereum protocol.

F.1 Limitations of Gasper

In the first iteration of Gasper’s LMD GHOST, ex-ante reorgs and balancing
attacks [57,[59L(70] prevent security even in the full participation setting and
without subsampling. The proposer boost technique [13] mitigates these issues,
but is itself not compatible with dynamic participation, and it entails a lower
adversary tolerance (1) than what is obtained with message buffering (4). More-
over, ex-ante reorgs 70| are still possible with subsampling, compromising reorg
resilience, and the latest message rule (LMD) itself is not compatible with dy-
namic participation. Both of these issues are due to considering votes from older
slots, and Goldfish solves them through vote expiry. In the following, we give a
more detailed account of all of these limitations.

Interaction of LMD GHOST and Casper FFG. The combination of Gold-
fish with the accountability gadget in follows the generic construction
of [61], which is proven to be secure for any appropriately secure dynamically
available protocol and accountable BET protocol. On the other hand, the com-
bination of LMD GHOST and Casper FFG in HLMD GHOST, the hybrid fork-
choice rule of [15], is ad-hoc and complicated to reason about. Firstly, it is known
to be susceptible to a bouncing attack [53]. Instead of LMD GHOST starting its
fork-choice iteration from the last block finalized by Casper FFG, it starts from
the last justified block, in the terminology of Casper FFG, i.e., the last block
that has been the target of FFG votes by a supermajority of all n validators.
This is sufficient to ensure accountable safety of the finalized checkpoints; how-
ever, it hinders safety of the available ledger ch,y, (after max(GST, GAT)) under
partial synchrony in the sleepy model, in particular negating the healing prop-
erty (Lem. E[) of ch,ya, preventing us from proving the ebb-and-flow property.
The current mitigation for the bouncing attack causes other problems such as
the splitting attack [54], akin to the balancing attacks [60]. Another problematic
interaction stems from the fact that the FFG votes at any Ethereum epoch point
at the epoch boundary block of that epoch, regardless of its confirmation status
by the underlying LMD GHOST rule. (In fact, there is no confirmation rule
specified for LMD GHOST.) The accountability gadget can then in principle
interfere with the available chain, jeopardizing its standalone security proper-
ties. Finally, the FFG voting schedule is staggered throughout an epoch, as FFG
votes are cast together with LMD GHOST votes, so it is not clear how to ensure
that the views of honest validators when casting FFG votes are consistent, which
would at least ensure liveness of the accountable chain.

Stale Votes in LMD GHOST. Without vote expiry, the votes of honest asleep
validators can be weaponized by an adversary controlling a small fraction of the
validator set to execute an arbitrarily long reorg. This implies that the protocol

44 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

is not dynamically available with any confirmation rule with finite confirmation
time Teons- Consider for example a validator set of size n = 2m + 1, and a
partition of the validator set into three sets, Vi, Va, V3, with |Vi| = |Vo| = m
and |V3| = 1. The validators in V;, V5 are all honest, while the one in V3 is
adversary. Suppose that the adversary validator in V3 is the leader of slots ¢,
and that it broadcasts two proposals, with conflicting blocks B; and Bs. It does
so in such a way that validators in V; see only B; before voting, and validators
in V5 only Bs. Validators in V; then vote for Bi, and so does the adversary
validator, while validators in V5 vote for By. By becomes canonical, since it has
received m + 1 votes. The adversary then puts all validators in V5 to sleep, and
they do not become awake for the remainder of the protocol. The adversary
validator does not cast any more votes for a while. Meanwhile, validators in V7,
keep voting for descendants of By. After waiting for > T,ons slots, the adversary
validator votes for Bsy. Since the m latest votes of the validators in V5 are still for
Bs, it now has m + 1 votes and becomes canonical, resulting in all awake honest
validators experiencing a reorg of all blocks confirmed after slot ¢. If there are
no such blocks, liveness is violated, and otherwise safety is violated.

Proposer Boost. Proposer boost is not compatible with dynamic participation,
because the artificial fork-choice weight it temporarily provides to proposals is
independent of participation: the lower the participation, the more powerful the
boost is relative to the weight of real attestations from awake validators, and
thus the more it can be exploited by the adversary. When the weight of awake
honest validators is less than the boost, the adversary has complete control of
the fork-choice during the slots in which it is elected as the leader.

Reorg Resilience. Even in the setting of full participation, where the adver-
sary cannot take advantage of votes of asleep validators, LMD GHOST lacks
reorg resilience. This is firstly due to subsampling without vote expiry, because
it allows the adversary to accumulate fork-choice weight by withholding blocks
and attestations, i.e., to execute ex ante reorgs |70]. Without subsampling, LMD
GHOST is indeed reorg resilient in the full participation setting, if proposer boost
1s replaced by vote buffering. In fact, Thm. [3] obtains reorg resilience as a conse-
quence of two properties, Lems. [2|and [3] respectively the properties that all hon-
est awake validators vote for an honest proposal, and all honest validators voting
together guarantee the inclusion of honest blocks in the canonical GHOST-Eph
chain, both of which also hold for LMD GHOST with vote buffering.

With proposer boost, LMD GHOST is not reorg resilient for g > %, even
in the full participation setting and without subsampling, because those two
properties are in conflict for such 3, for any boost value W,,. The first property
only holds if W, > 2/, because the adversary can otherwise still conclude an
ex ante reorg by revealing later votes, which move all adversary weight £ from
the proposer’s branch to a conflicting one, and outweigh the proposer boost W7,.
On the other hand, the second property only holds if W, + 8 < 1 — 3, because
otherwise an adversary proposer can make use of boost to conclude an ex post
reorg. Therefore, we can only have reorg resilience when 38 < W, + 3 <1 — j3,
i.e., for B < i, by setting W, = %

Goldfish: No More Attacks on Ethereum?! 45

F.2 Replacing LMD GHOST with Goldfish in Gasper

For Goldfish to be used as a drop-in replacement for LMD GHOST in Ethereum,
only a few adjustments are required. Most importantly, vote expiry and message
buffering would have to be introduced, with the latter replacing proposer boost.
In principle, the proposer selection mechanism does not need to be overhauled,
as Goldfish can operate with RANDAO, the proposer selection mechanism of
LMD GHOST. RANDAOQO always selects a unique proposer, which reduces the
communication load, when compared to a VRF lottery. On the other hand, it is
not compatible with adaptive security, because the selected proposer is publicly
known in advance, and moreover the selection is biasable. A VRF lottery also
enables the confirmation time to be independent of participation.

Finally, in order to benefit from the security guarantees of Goldfish in its
combination with an accountability gadget, the interaction with Casper FFG
would have to be modified to fit the construction from [61], which we have also
employed in this work.

G Cryptographic Preliminaries

G.1 Digital Signatures

Definition 5 (Informal, cf. [9,38]). A signature scheme Sig = (Gen, Sign, Verify)
consists of probabilistic poly-time (PPT) algorithms so that:

— (ssk,spk) < Sig.Gen(1) creates a secret/public key pair.

— o < Sig.Sign(ssk,m) creates a signature on a message.

— {0, 1} « Sig.Verify(spk, m, o) verifies a signature.

— Correctness: With overwhelming probability, for all messages,
Sig.Verify(spk, m, Sig.Sign(ssk, m)) = 1.

— Security (existential unforgeability): An adversary with access to spk
and to a signing oracle Sig.Sign(ssk,.) cannot produce a valid (m,o) other
than via the oracle.

G.2 Verifiable Random Functions

A verifiable random function (VRF) [50] is used for leader election and subsam-
pling of the validators within the Goldfish protocol.

Definition 6 (Informal, cf. |27, Sec. 3.2, Fig. 2|, [20,28]). A verifiable
random function (VRF) scheme Vrf = (Gen, Eval, Verify) consists of PPT algo-
rithms so that:

— (vsk,vpk) « Vrf.Gen(1*) samples a VRF with associated secret/public key
pair for evaluation/verification.

— (y,m) < Vrf.Eval(vsk,) obtains the output y of the VRF at input =, and the
evaluation proof .

— {0,1} « Vrf.Verify(vpk, z, (y, 7)) verifies an evaluation.

46 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse

— Correctness: With overwhelming probability, for all inputs,
Vrf Verify(vpk, , Vrf.Eval(vsk,)) = 1.

— Uniqueness: Per input x, there is only one output y: if
Vrf Verify(vpk, z, (y, 7)) = 1 for (y,m) = (y1,m) and (y,7) = (ya2,m2), then
Y1 = Y2

— ‘Pseudorandomness’: Conceptually, the VRF behaves like a random or-
acle that is unpredictable (i.e., without knowledge of vsk, the VRF output
cannot be distinguished from a random string) and verifiable (i.e., given
vpk, an alleged output of the VRF can be verified). For a formal definition,
see (27, Sec. 3.2, Fig. 2].

	Goldfish: No More Attacks on Ethereum?!
	Introduction
	Preliminaries and Model
	Protocol
	The Goldfish Protocol
	Optimistic Fast Confirmations

	Security Proof
	Implementation and Experiments
	Protocol Slot Structures
	Security Proof for Goldfish
	Definitions
	honest-leader-almost-everywhere
	Main Security Results

	Security Proof of Goldfish with Fast Confirmation
	Goldfish with Overlay Gadgets
	Model
	Partial Synchrony
	Security
	Accountable Safety
	The Ebb-and-Flow Formulation

	Goldfish with Accountability Gadgets
	Overview of the Analysis
	Security of chava under the Synchronous Sleepy Network Model
	Liveness of chacc after max(GST,GAT)
	Proof of ebb-and-flow-formalized

	Equivocation Discounting to Mitigate Spamming
	From LMD GHOST to Goldfish
	Limitations of Gasper
	Replacing LMD GHOST with Goldfish in Gasper

	Cryptographic Preliminaries
	Digital Signatures
	Verifiable Random Functions

