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Abstract

All known instantiations for fully homomorphic encryption (FHE) produce noisy ciphertexts and
rely on a technique called bootstrapping to reduce the noise so as to enable an arbitrary number of
homomorphic operations. Bootstrapping is the main performance bottleneck and arguably the biggest
obstacle to widespread adoption of FHE. Among the FHE schemes, TFHE and its variations present
the appealing property of having a bootstrapping procedure—as well as its extension to programmable
bootstrapping—that is relatively light-weight. The essential operations consist of a series of multiplica-
tions in (Z/qZ)[X]/(XN + 1). While the NTT is seemingly the natural candidate for evaluating these
multiplications in a fast and exact way, it restricts the possible choices for q and N . To the authors’
knowledge, all current implementations of TFHE with q a power of two actually employ the FFT over
the complex numbers instead. This introduces real numbers to the otherwise purely discrete algorithms,
including all the drawbacks of the need to approximate them using finite precision.

This work studies the avenues available to apply the NTT in the context of TFHE-like schemes.
In particular, it considers various combinations of coefficient rings and quotient polynomials that are
compatible with the requirements of the underlying scheme. Importantly, this work provides methods for
adapting the (programmable) bootstrapping to quotient polynomials beyond power-of-two cyclotomics.
As a side effect, it also demonstrates how this may enhance the programmability of the bootstrapping.

Keywords. Number-theoretic transform · Polynomial multiplication · Blind rotation · Fully homomorphic
encryption · Programmable bootstrapping · Functional circuits.

1 Introduction

Encryption enables the protection of sensitive data while it is stored or when it needs to be transferred.
However, standard encryption technologies require data to be decrypted to be processed. On the contrary,
there is no necessity to decrypt with homomorphic encryption [28]; operations are directly performed on
encrypted data. An encryption scheme capable of evaluating any program is said to be fully homomorphic.

(Programmable) bootstrapping Fully homomorphic encryption as introduced by Gentry [15] impor-
tantly employs the concept of bootstrapping.

Known realizations for fully homomorphic encryption produce noisy ciphertexts. The noise present in the
ciphertexts however tends to increase when ciphertexts are homomorphically processed. If the noise grows
too much, it can render decryption impossible. This issue is addressed through bootstrapping. In Gentry’s
original scheme, bootstrapping is done by homomorphically evaluating the decryption circuit, resulting in
another ciphertext that encrypts the same plaintext. Since decryption removes noise, the noise present
in a bootstrapped ciphertext is reset to a nominal level (i.e., it only contains the noise coming from the
bootstrapping).

Building on the FHEW cryptosystem [12], an encryption scheme achieves a relatively fast bootstrapping (a
few tens of milliseconds) is TFHE [8]. Its security is based on the learning with errors problem (LWE) [27] and
its ring variant (RLWE) [23, 30]. Originally designed for boolean circuits, TFHE can be extended to support
further input formats, such as integers [9] (see also [16]). Variants making use of the NTRU assumption are
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given in [6, 18]. Finally, bootstrapping in TFHE and the likes can be programmed to evaluate a univariate
function for free, at the same time as the noise is reduced. This technique is referred to as programmable
bootstrapping (PBS) and provides a powerful way for homomorphically evaluating non-linear functions such
as activation functions in a neural network [10].

Implementation The costliest operation during a PBS is a series of multiplications in (Z/qZ)[X]/(XN+1),
where q and N are powers of two. For concreteness, the reader may think of q ∈ {232, 264} and N ∈
{210, 211, . . . , 214}, but other parameters are possible. Due to the large degree of the polynomials, fast
Fourier techniques are employed to compute these multiplications. Given that the involved polynomials all
have coefficients in Z/qZ, it would be natural to apply the number-theoretic version of the FFT (the so-called
Number Theoretic Transform, NTT). Unfortunately, the typical choices of N and q as powers of two, while
extremely convenient from an implementation standpoint, are incompatible with the NTT. Accordingly, to
the best of our knowledge, implementations of TFHE with q a power of two, e.g. [7, 9], employ the FFT over
the complex numbers for the polynomial multiplication. The same is true for the prototype implementation of
FHEW [13]. The drawback in this approach is that it introduces real numbers in the otherwise purely discrete
computations of the PBS, which introduces some approximation error. While this approximation error can
in theory be controlled to fit the needs of the PBS parametrization by tuning the precision parameter, in
practice going beyond a precision that is natively supported in common hardware requires using software
libraries for high-precision floating point arithmetic, which usually incurs a significant slowdown and limits
the parameter choices for practical purposes. We discuss these issues in more detail in Section 3.2.

Some works consider quotient polynomials that are not power-of-two cyclotomics, but for other techniques
and applications. So [4] deals with cyclotomics of prime-power index pt in the context of FHEW. Their
setting enables to homomorphically test equality of an encrypted message with a given plaintext message.
The technique in [5] allows lifting elements of (Z/qZ)[X]/(p(X)), where p(X) is a cyclotomic, to the NTRU
ring (Z/qZ)[X]/(Xp−1) (hence they call this technique the “NTRU trick”), while preserving security based
on RLWE and (mostly) the geometry of the ring. Corresponding implementations in both cases use the FFT
for the multiplication of ring elements.

Our contributions

In this work we explore options to apply the NTT within the TFHE family to obtain a version that oper-
ates purely on small discrete data-types without approximation errors. There are two ways to change the
parametrization for the NTT to be applicable. The obvious choice is to change the modulus q to some
“NTT-friendly” integer. This is the approach taken by the Palisade implementation [26, 24]. In practice, it
might however be useful to keep the modulus a power of two. So in this work, we also study the alternative
approach of changing the quotient polynomial from XN +1 to some other cyclotomic polynomial p(X). We
focus on trinomials for the choice of p(X) in order for the reductions modulo p(X) to be almost as effi-
cient as modulo a power-of-two cyclotomic, but the approach is more general and works for any cyclotomic
polynomial (and in fact an even larger class of polynomials; cf. Section 3.2).

Since the PBS in TFHE-like encryption schemes is specifically tailored to quotient polynomials that are
power-of-two cyclotomics, this requires non-trivial adaptations to the operations that we develop in this
work. Most notably, a more general quotient polynomial p(X) changes how multiplications with monomials
affect the coefficients of the resulting polynomial in (Z/qZ)[X]/(p(X)). Such a multiplication simply yields
a negacyclic rotation when p(X) is a power-of-two cyclotomic and the PBS heavily leverages this property
to program the so-called test polynomial (cf. Section 3.1). For other quotient polynomials, the impact of a
multiplication on an element in (Z/qZ)[X]/(p(X)) is more complex. The core technical part of this work
analyses how to program the test polynomial in such a setting.

Finally, we remark that the size of the fraction of the usable plaintext space in TFHE and the likes is
restricted by the ratio N/M , where M is the index and N the degree of the cyclotomic polynomial. In
the case of power-of-two cyclotomics this ratio is of 1

2 , so only half of the plaintext space may be used
when applying the PBS. An additional advantage of using a different quotient polynomial is that it allows
increasing this ratio. For example, in Section 7, we give some concrete parametrization that allow a ratio
of 2

3 with cyclotomic trinomials.
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Outline of the paper

The rest of this paper is organized as follows. The next section reviews the number-theoretic transform
and its application to the fast multiplication of polynomials. Section 3 recaps the bootstrapping for TFHE-
like cryptosystems and its extension to programmable bootstrapping. Section 4 is the core of the paper.
It generalizes the programmable bootstrapping so as to accommodate more general quotient polynomials.
In particular, this includes programming the so-called test polynomial and extracting the matching LWE
ciphertext. Section 5 analyzes which functions may be evaluated without padding in case the quotient
polynomial is a trinomial (cf. end of Section 3.1) while Section 6 discusses the noise growth incurred
by different quotient polynomials. Section 7 gives certain sets of concrete parameters for the proposed
techniques. Finally, Section 8 concludes the paper.

2 Fast Polynomial Multiplication

Let R be a ring with unity and M ∈ Z≥1. Given two polynomials f,g ∈ R[X]/(XM − 1), their product can
be computed thanks to the discrete Fourier transform. This requires the existence of certain roots of unity.
Excellent references to the topic are [31, Chapter 8] and [3].

Discrete Fourier transform Let ω ∈ R be a principal M -th root of unity. A polynomial f := f(X) =
f0 + f1 X + · · · + fM−1 X

M−1 ∈ R[X] of degree < M is identified with its coefficient vector (f0, f1, . . . ,
fM−1) ∈ RM . The discrete Fourier transform (DFT) of polynomial f (viewed as a vector of RM ) is the
vector consisting of the evaluation of f at the successive powers of ω; namely

DFTω : R
M ∼−→ RM , f 7−→ DFTω(f) =

(
f(ωj)

)
0≤j≤M−1

.

Moreover, for two polynomials f,g ∈ R[X] of degree < M , we have

DFTω(f∗ g) = DFTω(f) ·DFTω(g)

where ∗ denotes the polynomial convolution and · denotes the point-wise multiplication of vectors; see [31,
Lemma 8.11].

DFT and polynomial multiplication Consider now polynomials f,g ∈ R[X]/(XM − 1) (and thus of
degree < M). Since multiplication modulo XM − 1 is a convolution (i.e., fg ≡ f∗ g (mod XM − 1)), the
product of h := fg ∈ R[X]/(XM − 1) can be obtained as

h= DFTω
−1

(
DFTω(f) ·DFTω(g)

)
where DFTω

−1 denotes the inverse discrete Fourier transform. Interestingly, it holds that DFTω
−1(h) =

1
M DFTω−1(h), for any polynomial h ∈ R[X] of degree < M ; see [31, Theorem 8.13].

FFT trick The “FFT trick” is apparently due to Gauss and was re-discovered by Cooley and Tukey [11]
for the case R = C; see also [14].

Assume that M is even. In this case, the Chinese remainder theorem states that we have the mapping

R[X]/(XM − 1) →
(
R[X]/(X

M
2 − 1)

)
×

(
R[X]/(X

M
2 + 1)

)
.

So, for f(X) = f0 + f1 X + · · · + fM−1 X
M−1 ∈ R[X]/(XM − 1), letting F0 := F0(X) = f0 + f1 X + · · · +

fM
2 −1 X

M
2 −1 and F1 := F1(X) = fM

2
+ fM

2 +1 X + · · ·+ fM−1 X
M
2 −1, we can write f(X) = F0 +F1 X

M
2 and

therefore f(X) ≡ F0 + F1 (mod (X
M
2 − 1)) and f(X) ≡ F0 − F1 (mod (X

M
2 + 1)). Furthermore, applying

X 7→ ωX defines f∗(X) = f(ωX) and so, from (ωX)
M
2 +1 = −X

M
2 +1, the last equation can be rewritten

as
f∗(X) ≡ F ∗

0 − F ∗
1 (mod (X

M
2 − 1))

with F ∗
0 := F ∗

0 (X) = F0(ωX) and F ∗
1 := F ∗

1 (X) = F1(ωX). Now, ω2 is a principal (M/2)-th root of unity.
Hence, if M is a power of two, the process can be iterated. This divide-and-conquer strategy allows one to
evaluate f at the powers ωj for 0 ≤ j ≤ M −1 (i.e., the DFT of f) in O(M log(M)) ring operations—instead
of O(M2) with the naive approach.
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Cryptographic applications For security reasons, RLWE-based cryptosystems consider cyclotomic poly-
nomials p(X) | XM − 1 and work in R[X]/(p(X)). In particular, TFHE-type schemes take M a power of
two and define p(X) = XN + 1 with N = φ(M) = M/2. The coefficient ring is R = Z/qZ with q a power
of two for discretized implementations.

Remark 1. When computing modulo XN + 1, it is advantageous to use the negacyclic discrete Fourier
transform,

DFT: RN → RN ,f 7→ DFTω(f) =
(
f(ω2j+1)

)
0≤j≤N−1

where ω is a principal 2N -th root of unity. If f̂= DFTω(f), the inverse transform is given by DFTω
−1

(f̂) =(
ω−j

N f̂(ω−2j)
)
0≤j≤N−1

.

For TFHE-like cryptosystems, polynomial multiplications moduloXN+1 can always be quickly evaluated
through classical FFT (i.e., DFT over C). A principal 2N -th root of unity is given by ω = eiπ/N .

Example 1. Suppose N = 23 and q = 24. Set ω = eiπ/8 ∈ C. Given polynomials f(X) = 5X7+3X6+5X5+
8X4+9X3+7X2+9X+3 and g(X) = 2X7+8X6+4X5+5X4+9X3+4X+5 withf,g ∈ (Z/16Z)[X]/(X8+1),
the goal is to compute h := fg ∈ (Z/16Z)[X]/(X8 + 1).

Lifting the coefficients of f and g to C, we obtain (displaying decimals rounded to 2 digits) DFTω(f) ≈
(11.05+33.36i,−1.99+6.65i, 2.34+8.51i, 0.60+3.22i, 0.60−3.22i, 2.34−8.51i,−1.99−6.65i, 11.05−33.36i)
and DFTω(g) ≈ (3.10 + 24.96i, 6.80 + 1.23i, 14.51− 0.09i,−4.42 + 3.65i,−4.42− 3.65i, 14.51 + 0.09i, 6.80−
1.23i, 3.10− 24.96i), which in turn leads to DFTω(h) ≈ (−798.53+379.53i,−21.70+42.78i, 34.66+123.22i,
−14.42− 12.03i,−14.42+12.03i, 34.66− 123.22i,−21.70− 42.78i,−798.53− 379.53i). We so obtain h(X) =
260X7 + 201X6 + 131X5 + 118X4 + 7X3 − 91X2 − 113X − 200 as an element of Z[X]/(XN + 1). Reducing
modulo q yields the expected result h(X) = 4X7 + 9X6 + 3X5 + 6X4 + 7X3 + 5X2 + 15X + 8.

The NTT (i.e., DFT over Z/qZ) does not readily apply to the typical TFHE-type parameters: the
existence of a principal 2N -th root of unity in Z/qZ prohibits q of being a power of two. In this case, when
p(X) = XN + 1, the coefficient ring is usually selected as a prime field Fp with p ≡ 1 (mod 2N). This
ensures the existence of a principal 2N -th root of unity. We illustrate below an application of NTT in such
a setting.

Example 2. Suppose N = 23 and q = 17 (a prime). It is easily checked that ω = 3 is a principal 16-th root
of unity in F17. Consider the same polynomials f and g as in Example 1, but in F17[X]/(X8 + 1). We have
DFTω(f) = (4, 13, 14, 10, 1, 15, 1, 0), DFTω(g) = (11, 8, 15, 3, 12, 16, 4, 5), and DFTω(h) = (10, 2, 6, 13, 12,
2, 4, 0). The inverse transformation directly gives h(X) = 5X7+14X6+12X5+16X4+7X3+11X2+6X+4
in F17[X]/(X8 + 1), as expected.

There exist variants of the NTT that only require 2N to be a unit in Z/qZ. Examples include Schönhage’s
algorithm [29] (see also [31, Algorithm 8.30]) and Nussbaumer’s algorithm [25] (see also [19, Exercise 4.6.4.59]).
We follow the presentation of [3, § 9]. In some sense, these methods “manufacture” roots of unity. For in-
stance, assuming that N = mt with t | m, Nussbaumer’s method relies on the correspondence

(Z/qZ)[X]/(XN + 1) ∼=
(
(Z/qZ)[Y ]/(Y m + 1)

)
[X]/(Xt − Y ) .

The elements of the right-hand side are polynomials of X-degree < t and with coefficients in the ring
R := (Z/qZ)[Y ]/(Y m +1). As such, they can be seen as elements in R[X]/(X2t − 1). The main observation

is that ω = Y N/t2 is a 2t-th principal root of unity in R. The usual DFT machinery can therefore be applied.
This is shown in the next example.

Example 3. Consider the exact same setting as in Example 2. Write N = 23 = 4 ·2 and fix m = 4 and t = 2.
Define ω = Y 2. As elements of

(
(Z/17Z)[Y ]/(Y 4 + 1)

)
[X]/(X2 − Y ), polynomials f and g are respectively

expressed asf(X,Y ) = (5Y 3+5Y 2+9Y +9)X+(3Y 3+8Y 2+7Y +3) and g(X,Y ) = (2Y 3+4Y 2+9Y +4)X+
(8Y 3+5Y 2+5). We get DFTω(f) = (8Y 3+13Y 2+16Y +12, 12Y 3+2Y +15, 15Y 3+3Y 2+15Y +11, 11Y 3+
16Y 2+12Y +8) and DFTω(g) = (10Y 3+9Y 2+9Y +9, 9Y 2+15Y +1, 6Y 3+Y 2+8Y +1, 16Y 3+Y 2+2Y +9).
This leads to DFTω(h) = (11Y 3 + 16Y + 14, 13Y 3 + 12Y 2 + 5, Y 3 + 10Y 2 + 2Y + 2, 16Y 3 + 10Y + 12) and,
in turn, DFTω

−1
(
DFTω(h)

)
≡ (8Y 2 + 2Y + 4)X2 + (5Y 3 + 12Y 2 + 7Y + 6)X + (6Y 3 + 14Y 2 + 7Y + 4).

Replacing Y with X2 and reducing the result modulo X8 + 1 finally yields h(X) = 5X7 + 14X6 + 12X5 +
16X4 + 7X3 + 11X2 + 6X + 4.
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Remark 2. Schönhage’s and Nussbaumer’s algorithms extend to higher radices. The mappings for q a power
of three can be found in [3, § 9]. The 3-adic variant of Schönhage’s algorithm is also described in [31,
Algorithm 8.30; Exercise 8.30].

3 Programmable Bootstrapping

Programmable bootstrapping (PBS) is an extension of the bootstrapping technique that allows resetting
the noise to a fixed level while at the same time evaluating a function on the input ciphertext. Given an
LWE-type ciphertext

(
a, b = ⟨a, s⟩+ µ(m) + e

)
∈ (Z/qZ)n+1—where

� the secret s is a (typically small) vector in (Z/qZ)n,

� a ∈ (Z/qZ)n is uniformly random,

� µ(m) ∈ Z/qZ is the encoding of a plaintext m ∈ Z/pZ with p < q, and

� the noise e ∈ Z is small enough to be able to recover m from µ(m) + e,

the goal is to compute an LWE-type ciphertext
(
a′, b′ = ⟨a′, s⟩ + µ(f(m))

)
+ e′ ∈ (Z/qZ)n+1 for some

function f : Z/pZ → Z/pZ and |e′| < |e|. In the following, the reader should keep in mind that PBS is a
public operation and needs to be feasible without knowledge of the secret key s.

3.1 Negacyclic PBS

We begin with an overview of the PBS, which we call negacyclic PBS for reasons that will become apparent
at the end of the section. The technical details of this procedure are quite involved, but not important to
understand this work. We refer the interested reader to [9, 10, 16] and the references therein for further
information. It suffices to note that while this procedure does incur some nominal noise in the output
ciphertext, this noise is independent of the noise present in the input ciphertext.

The PBS involves a series of four steps:

Modulus Switch Let N = 2β be a parameter defining the ring (Z/qZ)[X]/(XN + 1). Each component
of an input LWE-type ciphertext is scaled by 2N/q and rounded; i.e., each component goes through
an operation of the form ⌈2N(· mod q)/q⌋. The result is an LWE-type ciphertext modulo 2N ,

(
a, b =

⟨a, s⟩+µ(m)+e
)
. Note that we assume here (and throughout) that the encoding µ is compatible with

such a scaling and yields a scaled encoding µ (and a corresponding decoding).

Blind Rotate This is the core operation. Essentially, it is a homomorphic decryption of the input ciphertext
and thus requires a bootstrapping key, which basically are encryptions of s under some other secret
key s′. The output of the blind rotation is an RLWE-type ciphertext*

(
a, b = a · s′ + µ + e

)
∈(

(Z/qZ)[X]/(XN + 1)
)2
, where polynomial µ contains µ(f(m)) in its constant coefficient.

The blind rotation starts with a so-called test polynomial v ∈ (Z/qZ)[X]/(XN + 1). This polynomial
(as any polynomial) can be viewed as a trivial RLWE-type encryption of itself (under any key); i.e., as(
0, v

)
. The key idea is to rotate it homomorphically by ⟨a, s⟩−b = −(µ(m)+e) positions by multiplying

it with X⟨a,s⟩−b. The result is an RLWE-type ciphertext encrypting the polynomial X−(µ(m)+e) · v(X)
under key s′. In order for the PBS to work, the coefficients of the test polynomial v need to be
set up such that after the blind rotation it holds that the underlying plaintext polynomial µ has its
constant coefficient equal to µ(f(m)). Since the quotient polynomial is XN + 1, forming the test
polynomial is immediate: first a look-up table T is defined by setting T [i] = µ(f(mi)) ∈ Z/qZ for each
i ∈ {0, . . . , N − 1} if the decoding corresponding to µ applied to i is mi ∈ Z/pZ. The table is then
used to program the test polynomial as

v(X) = v0 + v1 X + · · ·+ vN−1 X
N−1

*This is a slight simplification. More generally, the output of the blind rotation is a so-called GLWE-type ciphertext of the
form

(
a1, . . . ,ak, b =

∑
i ai · s′i + µ+ e

)
, but for the sake of clarity we focus on the k = 1 case here. The generalization of our

techniques to larger k is immediate.
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with vi = T [i]. It is worth noting that the constant coefficient of X−(µ(m)+e) · v(X) is vµ(m)+e and by
construction this is equal to µ(f(m)).

Sample Extract To turn the RLWE-type ciphertext back into an LWE-type ciphertext, a sample extraction
is applied. This operation uses the coefficients of the RLWE-type ciphertext

(
a, b

)
resulting from the

blind rotation to get an LWE-type ciphertext of the constant coefficient under the ‘same’ key s′ (where
s′ is the coefficient vector of the secret key s′). In the negacyclic setting (i.e., where the quotient
polynomial is XN + 1), the LWE sample can essentially be “read off” of the RLWE sample.

Key Switch Finally, to obtain a ciphertext under s, a key switch is applied. This uses an encryption of s′

under s, which is typically called the key-switching key. Switching keys is a fairly standard operation
and has no impact on this work.

Remark that the parameter N (or more generally the quotient polynomial p(X) = XN + 1) plays a
crucial role in the blind rotation: it controls the size of the ciphertext space, and thus also the plaintext
space and tolerable noise, and the size of the table T to be evaluated. Note though that the cost of the PBS
also depends in large part on N . Finally, remark that the modulus in the first step is switched from q to 2N
to guarantee the correctness of the blind rotation. Indeed, as an element of (Z/qZ)[X]/(XN +1), X verifies
X2N = 1. Accordingly, one needs

� either to ensure that µ(m) + e ∈ {0, . . . , N − 1}; i.e., only make use of half the plaintext space—this
is known as the padding technique (see e.g. [9]), or

� require p to be even and the function f to be negacyclic over Z/pZ; that is, f(x + p/2) = −f(x)
(mod p). An important example of a negacyclic function is the sign function.

3.2 Implementation Considerations

As aforementioned, PBS involves performing a number of multiplications in (Z/qZ)[X]/(XN + 1) for some
power-of-two N . Since N is typically large (≥ 210) fast Fourier techniques as described in Section 2 seem
to be the way to go for performing these multiplications. The obvious choice would be to rely on DFT
over Z/qZ (so performing an NTT), which would require Z/qZ to contain a principal 2N -th root of unity.
Unfortunately, the modulus q is typically chosen to be also a power of two, which is extremely convenient
from an implementation perspective since reductions mod q are trivial and highly efficient. But thenM = 2N
is not a unit in Z/qZ, which is a necessary condition for an M -th principal root of unity to exist in Z/qZ.

To overcome this problem and keep the modulus q as a power of two we may perform the DFT over
the complex numbers instead of Z/qZ; i.e., the FFT. This has the drawback of introducing real numbers to
the otherwise purely discrete computations in the PBS. Since real numbers need to be approximated, this
results in an approximation error for the polynomial multiplication determined by the used precision. One
can think of this approximation error as an additional error being introduced during the blind rotation. The
problem is exacerbated by the fact that the FFT over the complex numbers cannot perform the reductions
mod q in the FFT domain and thus this needs to be done as an extra step after the multiplication. This
requires to represent the unreduced numbers and thus even more precision. In theory, we may scale the
precision to our needs given a set of PBS parameters (see e.g. [3] and references therein), but in practice this
is more complicated. While the FFT over natively supported data-types in common hardware (i.e., precision
of 53 to at most 80 bits) is very fast, moving to arbitrary-precision libraries for higher precision slows it
down severely. This means that for any practical purpose, there is a hard limit on the precision of the FFT
based multiplication, which essentially yields a lower bound on the error introduced during the PBS. For an
exploration of this bound, see e.g. [17]. This critically limits the possible range of parameters for TFHE-like
schemes and may lead to inefficient implementations for certain applications.

As should be clear from the above, it would be very desirable to be able to apply the NTT in the context
of the PBS. An easy solution is to change the modulus q to some “NTT-friendly” integer such that Z/qZ
contains an M -th principal root of unity, as done in other lattice-based schemes [2, 26]. But this slows down
all operations that involve modular reductions. This can be alleviated to some degree by carefully choosing
the modulus and designing reduction algorithms specifically for this choice [20].
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In this work, we also explore an alternative route to address this problem: changing the quotient polyno-
mial. We consider some (suitable)M that is a unit in Z/qZ for a power-of-two q and choose the corresponding
M -th cyclotomic polynomial as the quotient polynomial. The fact that M is a unit in Z/qZ does not imply
that there exists a principal M -th root of unity in Z/qZ, but it suffices to enable the use of certain variants
of the NTT (cf. Remark 2).�

As a by-product, changing the quotient polynomial also allows one to mitigate the padding issue alluded
to in Section 3.1. When M is a power of two, the degree of the M -th cyclotomic polynomial is φ(M) = M/2,
which means that only a φ(M)/M = 1

2 fraction of the plaintext space can be used. Using e.g. a power-of-
three M , the M -th cyclotomic polynomial has degree φ(M) = 2

3M and thus enables to use a 2
3 fraction of

the plaintext space. So even when opting to change the modulus to an NTT-friendly prime, it may be worth
to consider using a different quotient polynomial.

4 General PBS

Of course, changing the polynomial ring (Z/qZ)[X]/(XN + 1) requires to generalize the operations behind
the programmable bootstrapping (PBS), most obviously the computation of the test polynomial for the blind
rotation. The sample extraction requires only a slight adaptation.

In this section, we study how to accommodate the PBS with more general quotient polynomials. Recall
from Section 3.1 that the core operation of the PBS is a series of homomorphic multiplications by monomials
so as to obtain an RLWE-type encryption of polynomial X−(µ(m)+e) · v(X). The main challenge in moving
to other quotient polynomials is to adapt the computation of the test polynomial, since multiplying v(X)
by X−(µ(m)+e) does not simply yield a (negacyclic) rotation of the coefficients.

We begin by describing the effect of multiplications with X−1 modulo a monic polynomial p(X) (that
divides XM − 1 for some positive integer M) on the coefficient vector of an element in (Z/qZ)[X]/(p(X)).
Next, we show how to compute the test polynomial for a given table T defining the function to be evaluated
during the PBS in different settings.

� We consider the case where the blind rotation should encode the result in the constant coefficient of
the resulting RLWE-type ciphertext (the typical case) and where the quotient polynomial is arbitrary
(except with above restrictions).

� We describe how to program the test polynomial in case the result of the operation should be embedded
in the leading coefficient instead of the constant one.

� We specialize to the case where p(X) is a trinomial, in which case the computation of the test poly-
nomial is simpler and more efficient. In fact, in this latter case, we provide efficient formulas to embed
the result in an arbitrary coefficient index.

Finally, we explain how to adapt the sample extraction step.

Remark 3. The PBS can be trivially adapted to homomorphically compute Xµ(m)+e · v(X) instead of
X−(µ(m)+e) ·v(X), so we may also program v(X) accordingly. That would require to consider multiplications
with X instead of X−1, which would slightly simplify Section 4.1. On the other hand, the results and proofs
from Sections 4.2.1 to 4.2.3 would be symmetrical with no additional simplification, so we opt for consistency
with previous works and consider monomials with negative exponent.

4.1 Monomial Multiplication in (Z/qZ)[X]/(p(X))

Let R be a ring with identity. Consider the monic degree-N polynomial

p(X) = XN + pN−1 X
N−1 + pN−2 X

N−2 + · · ·+ p0

�If q is a power of two, any attempt to find an M such that Z/qZ contains a principal M -th root of unity must fail, since
one simultaneously needs M to be co-prime to q, but require Z/qZ to contain an element of order M . The latter means that
M | φ(q) = q/2, which is clearly incompatible with the first requirement.
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defined over R, and such that p(X) divides XM − 1 for a certain given M . For convenience, we let pN = 1

so that we can write p(X) =
∑N

j=0 pj X
j .

Clearly, in R[X]/(p(X)), it holds that
∑N

j=1 pj X
j = −p0 and, in turn, that

(−p0)
−1

N∑
j=1

pj X
j = 1 ⇐⇒ X−1 = (−p0)

−1
N−1∑
j=0

pj+1 X
j . (1)

This assumes that p0 is invertible in R. Note that this condition is also implied by the fact that p(X) divides

XM − 1. Indeed, writing XM − 1 = p(X) · q(X) for some polynomial q(X) =
∑M−N

i=0 qi X
i ∈ R[X], we

must have p0 q0 = −1 or, equivalently, p0 (−q0) = 1; hence, the inverse of p0 exists and is given by −q0. For

any polynomial v(X) =
∑N−1

i=0 vi X
i in R[X]/(p(X)) we define(

v(X)
)
i
:= vi

the degree-i coefficient of v(X) (in particular,
(
v(X)

)
0
= v0 denotes the constant term), and vN = 0 for

convenience. Now using (1), given such a polynomial v(X) =
∑N−1

i=0 vi X
i, we have

X−1 v(X) =

N−1∑
i=0

vi X
i−1

=
(∑N−1

i=1 vi X
i−1

)
+ v0 X

−1

=
(∑N−2

i=0 vi+1 X
i
)
+ (−p0)

−1v0

(∑N−1
i=0 pi+1 X

i
)

=
(∑N−2

i=0

(
vi+1 + (−p0)

−1pi+1v0
)
Xi

)
+ (−p0)

−1pNv0 X
N−1

=

N−1∑
i=0

(
vi+1 + (−p0)

−1pi+1v0
)
Xi

where the last equality holds due to our definition of vN = 0. Remark that this is the same as

X−1 v(X) =

N−1∑
i=0

(
vi+1 + (−p0)

−1pi+1

(
v(X)

)
0

)
Xi . (2)

Intuitively, this means that a multiplication with X−1 leads to adding a scaled version of the constant
term of v(X) to the other coefficients (where the scaling depends on the index of the coefficient) and a shift.

4.2 Programming the Test Polynomial

We show that one can efficiently compute the test polynomial, where a set of values can be embedded either
in the constant or in the leading coefficients of X−t v(X). Extensions to general coefficients are also dealt
with; in particular, in the case of trinomials.

4.2.1 Constant coefficient

Given a table T with N input/output values
{
T [i]

}N−1

i=0
, we need to be able to compute a polynomial v(X)

such that the constant term of X−t v(X) is Kt := T [t]. We now show how to do that.

Proposition 1. With the previous notations, define v(X) =
∑N−1

i=0 vi X
i ∈ R[X]/(p(X)) be such that

vi =

i∑
j=0

pi−j

p0
Kj

for any
{
Ki ∈ R

}N−1

i=0
. Then

(
X−t v(X)

)
0
= Kt for all t ∈ {0, . . . , N − 1}.
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Proof. The proof is by induction over t. Clearly, the result is true for t = 0 since
(
X−0 v(X)

)
0
= v0 = K0.

From (2), for any polynomial w(X) ∈ R[X]/(p(X)), we observe that
(
X−1 w(X)

)
0
=

(
w(X)

)
1
−

p1

p0

(
w(X)

)
0
and, more generally, that(

X−1 w(X)
)
i
=

(
w(X)

)
i+1

− pi+1

p0

(
w(X)

)
0
.

Repeatedly using this observation, we see that(
X−t v(X)

)
0

=
(
X−1(X−t+1 v(X))

)
0

=
(
X−t+1 v(X)

)
1
− p1

p0

(
X−t+1 v(X)

)
0

=
(
X−t+2 v(X)

)
2
− p2

p0

(
X−t+2 v(X)

)
0
− p1

p0

(
X−t+1 v(X)

)
0

...

=
(
X−t+t v(X)

)
t
− pt

p0

(
X−(t−t) v(X)

)
0
− · · · − p1

p0

(
X−t+1 v(X)

)
0

= vt −
∑t−1

j=0
pt−j

p0

(
X−j v(X)

)
0
.

To conclude, we simply invoke the induction hypothesis for all 0 ≤ j < t:(
X−t v(X)

)
0
= vt −

∑t−1
j=0

pt−j

p0

(
X−j v(X)

)
0

= vt −
∑t−1

j=0
pt−j

p0
Kj

=
∑t

j=0
pt−j

p0
Kj −

∑t−1
j=0

pt−j

p0
Kj

= Kt .

4.2.2 Leading coefficient

Given a table T with N input/output values
{
T [i]

}N−1

i=0
, we can also compute a polynomial v(X) such that

the leading coefficient of X−t v(X) is Kt := T [t].

Proposition 2. With the previous notations, define v(X) =
∑N−1

i=0 vi X
i ∈ R[X]/(p(X)) be such that

vi =

{
K0 if i = N − 1

−
∑i

j=0 pi−j Kj+1 otherwise

for any
{
Ki ∈ R

}N−1

i=0
. Then

(
X−t v(X)

)
N−1

= Kt for all t ∈ {0, . . . , N − 1}.

Proof. The proof is similar to the one of Proposition 1, but we need an additional equation. In particular,
we note that from (2) we obtain (

v(X)
)
0
= −p0

(
X−1 v(X)

)
N−1

and, more generally, (
X−j v(X)

)
0
= −p0

(
X−1 X−jv(X)

)
N−1

= −p0
(
X−j−1 v(X)

)
N−1

(3)

for any j. Now recall from the proof of Proposition 1 that we have(
X−i v(X)

)
0
= vi −

∑i−1
j=0

pi−j

p0

(
X−j v(X)

)
0

(4)

for all 0 ≤ i < N . Using (3) and (4), we can write

−p0
(
X−t v(X)

)
N−1

=
(
X−t+1 v(X)

)
0

= vt−1 −
∑t−2

j=0
pt−1−j

p0

(
X−j v(X)

)
0

= vt−1 +
∑t−2

j=0 pt−1−j

(
X−j−1 v(X)

)
N−1

.
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The case t = 0 is trivial. We conclude again using induction for t > 1, where the base case t = 1 is
straightforward to verify. Then, invoking the induction hypothesis for all 1 ≤ j < t:

−p0
(
X−t v(X)

)
N−1

= vt−1 +
∑t−2

j=0 pt−1−j

(
X−(j+1) v(X)

)
N−1

−
∑t−1

j=0 pt−1−j Kj+1 +
∑t−2

j=0 pt−1−j Kj+1

= −p0 Kt .

4.2.3 Trinomials

This section deals with the special case where p(X) is a trinomial of the form p(X) = XN + ϵXN/2 + 1
for some even N and ϵ ∈ {−1, 1}. In particular, this means that p0 = pN = 1, pN/2 = ±1, and pi = 0
for all i ∈ {0, . . . , N} \ {0, N/2, N}. We demonstrate how to program the test polynomial v(X) such that
Kt = (X−t v(X))s for arbitrary s. For this, we need to consider different cases of s.

Proposition 3. Let N be an even positive integer, p(X) = XN + ϵXN/2 +1 with ϵ ∈ {−1, 1}, and s < N/2

a non-negative integer. If v(X) =
∑N−1

i=0 vi X
i ∈ R[X]/(p(X)) is such that

vi =


−ϵKN/2+(i−s) −KN+(i−s) if 0 ≤ i < s

Ki−s if s ≤ i < N
2

−ϵKN/2+(i−s) if N
2 ≤ i < N

2 + s

ϵK(i−s)−N/2 +Ki−s if N
2 + s ≤ i < N

for any
{
Ki ∈ R

}N−1

i=0
, then

(
X−t v(X)

)
s
= Kt for all t ∈ {0, . . . , N − 1}.

Proof. We may specialize Equation (2) to our case as

X−1 v(X) = −ϵ
(
v(X)

)
0
X

N
2 −1 −

(
v(X)

)
0
XN−1 +

N−1∑
i=0

vi+1 X
i .

From this we deduce

(
X−t v(X)

)
i
=


(
X−t+1 v(X)

)
N/2

− ϵ
(
X−t+1 v(X)

)
0

if i = N
2 − 1

−
(
X−t+1 v(X)

)
0

if i = N − 1(
X−t+1 v(X)

)
i+1

otherwise

. (5)

We may now derive the following expressions for
(
X−t v(X)

)
s
. For 0 ≤ t < N

2 − s, we have(
X−t v(X)

)
s
=

(
v(X)

)
t+s

.

For N
2 − s ≤ t < N − s, we reduce it to the case above before applying (5):(

X−t v(X)
)
s
=

(
X−(N/2−s−1)X−(t−N/2+s+1) v(X)

)
s

=
(
X−(t−N/2+s+1) v(X)

)
N/2−1

=
(
X−(t−N/2+s) v(X)

)
N/2

− ϵ
(
X−(t−N/2+s) v(X)

)
0

=
(
v(X)

)
t+s

− ϵ
(
v(X)

)
t+s−N/2

.

And finally, for N − s ≤ t < N , again by reducing to the previous case:(
X−t v(X)

)
s
=

(
X−(N−s−1)X−(t−N+s+1) v(X)

)
s

=
(
X−(t−N+s+1) v(X)

)
N−1

− ϵ
(
X−(t−N+s+1) v(X)

)
N/2−1

= −
(
X−(t−N+s) v(X)

)
0
− ϵ

((
X−(t−N+s) v(X)

)
N/2

− ϵ
(
X−(t−N+s) v(X)

)
0

)
= −ϵ

(
X−(t−N+s) v(X)

)
N/2

= −ϵ
(
v(X)

)
t+s−N/2
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where we used that ϵ2 = 1. To sum up,

(
X−t v(X)

)
s
=


(
v(X)

)
t+s

if 0 ≤ t < N
2 − s(

v(X)
)
t+s

− ϵ
(
v(X)

)
t+s−N/2

if N
2 − s ≤ t < N − s

−ϵ
(
v(X)

)
t+s−N/2

if N − s ≤ t < N

. (6)

We now verify the solution for all t.

Case 0 ≤ t < N
2 − s: This implies that s ≤ t+ s ≤ N

2 and thus(
X−t v(X)

)
s
=

(
v(X)

)
s+t

= K(s+t)−s = Kt .

Case N
2 − s ≤ t < N

2 : This corresponds to the second case of (6) and so we have(
X−t v(X)

)
s
=

(
v(X)

)
t+s

− ϵ
(
v(X)

)
t+s−N/2

.

The condition implies N
2 ≤ s+ t ≤ N

2 + s and 0 ≤ s+ t− N
2 ≤ s and so(

X−t v(X)
)
s
= −ϵKN/2+t − ϵ(−KN/2+t − ϵKt) = Kt .

Case N
2 ≤ t < N − s: Again, this corresponds to the second case of (6), but this time we have N

2 + s ≤
t+ s < N and s ≤ t+ s− N

2 < N
2 , which yields(

X−t v(X)
)
s
= ϵKt−N/2 +Kt − ϵKt−N/2 = Kt .

Case N − s ≤ t < N : In this case we have N
2 ≤ t+ s− N

2 < N
2 + s, and thus(

X−t v(X)
)
s
= −ϵ

(
v(X)

)
t+s−N/2

= ϵ2KN/2+(t+s−N/2−s) = Kt .

We now consider the case s ≥ N/2.

Proposition 4. Let N be an even positive integer, p(X) = XN + ϵXN/2 + 1 with ϵ ∈ {−1, 1} and N/2 ≤
s < N an integer. If v(X) =

∑N−1
i=0 vi X

i ∈ R[X]/(p(X)) is such that

vi =


−KN−(s−i) if 0 ≤ i < N

2

−ϵKN/2−(s−i) −KN−(s−i) if N
2 ≤ i < s

K−(s−i) if s ≤ i < N

for any
{
Ki ∈ R

}N−1

i=0
, then

(
X−t v(X)

)
s
= Kt for all t ∈ {0, . . . , N − 1}.

The same steps from the proof of Proposition 3 can be mechanically applied to this case, so we omit the
proof of this proposition.

4.2.4 Other polynomials

The approach with trinomials can be adapted to other sparse polynomials by writing out the explicit formulas
for

(
(X−t v(X))

)
s
for each value of t and solving the resulting system. The complexity of the solution will

then depend on the sparsity of the quotient polynomial p(X).
For dense polynomials, programming the test polynomial for other coefficients than the leading or the

constant one is also possible by viewing the multiplication of a polynomial v(X) by X−1 in R[X]/(p(X))
as a matrix multiplication with the coefficient vector of v(X). This enables to set up a system of N linear
equations and N variables, with the solution corresponding to the coefficients of the test polynomial. Of
course, this requires that the corresponding linear system indeed has a solution, which is not always the case.
This means that for certain choices of R, p(X) and index of coefficient, programming the test polynomial
is not possible.
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4.3 Sample Extraction

Assume we are given an RLWE-type encryption

(a, b) ∈
(
(Z/qZ[X])/(p[X])

)2
of a plaintext µ =

∑
i µi X

i encoding m(X) such that b − a · s ≈ µ for some secret key s. The goal of
sample extraction (for a fixed index j) is to compute a vector a ∈ (Z/qZ)N such that bj −⟨a, s⟩ ≈ µj , where
s ∈ (Z/qZ)N is the vector consisting of the coefficients of s. This is easily done from the observation that
a(X) · s(X) = a(X)

∑
si X

i =
∑

si X
i · a(X). Since addition is component-wise in (Z/qZ)[X]/(p[X]),

this allows one to compute the correct a as ai =
(
Xi · a(X)

)
j
for all i.

5 PBS-friendly Functions

Recall that the PBS in TFHE is able to evaluate negacyclic functions over Z/pZ without the need for a
padding bit when using a power-of-two cyclotomic as the quotient polynomial. This is important as it allows
the evaluation of the sign function, which can be used to implement boolean gates, like the NAND gate
(after a suitable linear combination of the input ciphertexts, see e.g. [8]). Thus we call negacyclic functions
PBS-friendly for power-of-two cyclotomics. Note that by definition these functions have a function table of
the form K = [a | −a] for some sub-table a of size M/2 = N .

Clearly, the class of PBS-friendly functions is closely related to the quotient polynomial and so it stands
to reason that there are different PBS-friendly functions also for other quotient polynomials. In this section,
we derive the classes of PBS-friendly functions for trinomials.

5.1 Negative Trinomials

Let M = 2α3β with α, β ≥ 1, in which case the quotient polynomial is ΦM (X) = XN − XN/2 + 1 for
N = M/3. For simplicity we focus on the case s = 0; i.e., we program the table into the constant coefficient
of the test polynomial.

Proposition 5. A function over Z/pZ is PBS-friendly w.r.t. ΦM (X) = XN −XN/2+1 if its function table
K satisfies

Kt =


−Kt−N +Kt−N

2
if N ≤ t < 3N

2

−Kt− 3N
2

if 3N
2 ≤ t < 2N

−Kt− 3N
2

if 2N ≤ t < 5N
2

Kt− 5N
2

−Kt−2N if 3N
2 ≤ t < 3N

.

In other words, letting a =
(
Ki ∈ Z/qZ

)N/2−1

i=0
and b =

(
Ki ∈ Z/qZ

)N−1

i=N/2
for some function f with function

table K, then f is PBS-friendly for ΦM (X) if

K = [a | b | b− a | −a | −b | a− b] .

Proof. Using (6) and its counterpart for s ≥ N
2 we obtain

(
X−(N−1) v(X)

)
s
=



(
v(X)

)
N−1

+
(
v(X)

)
N
2 −1

if s = 0(
v(X)

)
N
2 −1+s

if 0 < s < N
2

−
(
v(X)

)
N
2 −1

if s = N
2

−
[(
v(X)

)
s−1

+
(
v(X)

)
s−1−N

2

]
if N

2 < s < N

(7)

and (
X−t v(X)

)
0
=

{(
v(X)

)
t

if 0 ≤ t < N
2(

v(X)
)
t
+
(
v(X)

)
t−N

2

if N
2 ≤ s < N

. (8)
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Combining (5) and (7), we get

(
X−N v(X)

)
s
=

{(
v(X)

)
N
2 +s

if 0 ≤ s ≤ N
2

−
(
v(X)

)
s
−

(
v(X)

)
s−N

2

if N
2 ≤ s < N

. (9)

Then, we can use (8) and (9) to obtain(
X−t v(X)

)
0
=

(
X−(t−N)X−N v(X)

)
0

=

{(
v(X)

)
t−N

2

if N ≤ t < 3N
2

−
(
v(X)

)
t− 3N

2

if 3N
2 ≤ t < 2N

.

Finally, by applying Proposition 3, we see that

(
X−t v(X)

)
0
=

{
−Kt−N +Kt−N

2
if N ≤ t < 3N

2

−Kt− 3N
2

if 3N
2 ≤ t < 2N

.

So, to be able to compute a function without padding, it is necessary that the function table satisfies

Kt =

{
−Kt−N +Kt−N

2
if N ≤ t < 3N

2

−Kt− 3N
2

if 3N
2 ≤ t < 2N

. (10)

Applying (10) again, we also see that we need

Kt =

{
−Kt− 3N

2
if 2N ≤ t < 5N

2

Kt− 5N
2

−Kt−2N if 3N
2 ≤ t < 2N

.

5.2 Positive Trinomials

Let M = 3β with β ≥ 1, in which case the quotient polynomial is ΦM (X) = XN +XN/2 +1 for N = 2M/3.
Again, for simplicity we focus on the case s = 0; i.e., we program the table into the constant coefficient of
the test polynomial.

Proposition 6. A function over Z/pZ is PBS-friendly w.r.t. ΦM (X) = XN +XN/2+1 if its function table
K satisfies

Kt = −
(
Kt−N +Kt−N/2

)
.

In other words, letting a =
(
Ki ∈ Z/qZ

)N/2−1

i=0
and b =

(
Ki ∈ Z/qZ

)N−1

i=N/2
for some function f with function

table K, then f is PBS-friendly for ΦM (X) if

K = [a | b | −(a+ b)] .

We omit the proof since it is very similar to the one of Proposition 5. It is noteworthy that the class of
PBS-friendly functions for positive trinomials includes a function that is similar to a step activation function
with two thresholds; e.g., with function table K = [1,0,−1].

6 Noise Growth

During the blind rotation (cf. Section 3.1), an RLWE ciphertext of the form (a, b = as′+µ+e) is multiplied
homomorphically by powers of X. Note that the absolute size of the coefficients of e is not affected by these
multiplications if we work in the ring (Z/qZ)[X]/(XN +1), since these multiplications are simply negacyclic
rotations. A potential concern is the noise growth when considering more general rings (Z/qZ)[X]/(p(X)).

In order to analyze the impact of the blind rotation on the noise, recall that we assume that p(X)q(X) =
XM − 1 for some polynomial q(X) and M ∈ Z. Accordingly, any algebraic computation in the ring
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(Z/qZ)[X]/(p(X)) may be viewed as being performed in (Z/qZ)[X]/(XM −1) with a final reduction modulo
p(X). It is clear that multiplications with powers of X in (Z/qZ)[X]/(XM − 1) also do not affect the noise
term as, again, these multiplications simply yield rotations on the coefficients. While the PBS involves
non-algebraic operations, like decomposition and rounding, we show in Appendix A that the final noise
term can be written as an algebraic expression that involves only small terms multiplied with powers of X.
Accordingly, the argument can be applied to the noise term to bound the noise growth.

It remains to analyze how a reductionmodp(X) of a degree M − 1 polynomial affects the size of its
coefficients. This is characterized by the expansion factor of the quotient polynomial [22, 21]. We focus on
the important case of trinomials. For trinomials, we can show tighter bounds than the ones given in [21] for
more general polynomials. Specifically, we show below that the size of the coefficients may grow by at most
a factor of

� 2 in case p(X) = XN +XN/2 + 1, i.e., a power-of-three-index cyclotomic, and

� 4 in case p(X) = XN −XN/2 + 1, i.e., the index of p(X) is of the form M = 2α3β with α, β ≥ 1.

Proof. Consider the degree M − 1 polynomial f=
∑M−1

i=0 fi X
i. We have:

1. Suppose M = 3β with β ≥ 1. Then N = 2M/3 and p(X) = XN + XN/2 + 1. We so have f(X) ≡∑3N/2−1
i=0 fi X

i ≡
∑N−1

i=0 fi X
i+

∑N/2−1
i=0 fi+N Xi(−XN/2−1) ≡

∑N/2−1
i=0 (fi−fi+N )Xi+

∑N−1
i=N/2(fi−

fi+N/2)X
i (mod p(X)).

2. Suppose now M = 2α3β with α, β ≥ 1. Then N = M/3 and p(X) = XN −XN/2 + 1. We get

f(X) ≡
∑3N−1

i=0 fi X
i

≡
∑N−1

i=0

(
fi X

i + fi+N Xi(XN/2 − 1) + fi+2N Xi(−XN/2)
)

≡
∑N−1

i=0

(
(fi − fi+N )Xi + (fi+N − fi+2N )Xi+N/2

)
≡

∑N−1
i=0 (fi − fi+N )Xi +

∑N−1
i=N/2(fi+N/2 − fi+3N/2)X

i

+
∑N/2−1

i=0 (fi+3N/2 − fi+5N/2)X
i(XN/2 − 1)

≡
∑N/2−1

i=0 (fi − fi+N − fi+3N/2 + fi+5N/2)X
i

+
∑N−1

i=N/2(fi − fi+N + fi+N/2 − fi+3N/2 + fi+N − fi+2N )Xi

≡
∑N/2−1

i=0 (fi − fi+N − fi+3N/2 + fi+5N/2)X
i

+
∑N−1

i=N/2(fi + fi+N/2 − fi+3N/2 − fi+2N )Xi (mod p(X))

which concludes the proof.

In conclusion, while the noise may increase in contrast to the negacyclic PBS, at least in the cases that we
target in this work, this increase is very moderate and can be easily compensated by adjusting the parameters
of the scheme.

7 Example Parameters

The (external) product in the TFHE family and similar cryptosystems boils down to a series of polynomial
multiplications modulo XM − 1, or a divisor thereof. In particular, the programmable bootstrapping as
described in Section 3 corresponds to the case M = 2N and polynomial multiplications modulo p(X) =
XN + 1 where N is a power of two. Using our results from Section 4, we may now change the quotient
polynomial.

For efficiency reasons it makes sense to focus on sparse polynomials in order to allow for efficient modular
reductions, so we will consider the case of trinomials as quotient polynomials.

We give below example parameters that admit the application of the NTT for multiplying polynomials.
We select a power of three for M , concretely M = 37 = 2187, and the M -th cyclotomic polynomial p(X) =
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XN +XN/2 + 1 as the quotient polynomial, where N = 2 · 36 = 1458. Note that N/M = 2/3 > 1/2, which
yields a larger plaintext space. Given K = (K0, . . . ,KN−1) ∈ (Z/qZ)N we choose to embed the values of K
in the constant coefficients of X−t v(X). Then Proposition 3 shows that we can compute the coefficients of

v(X) =
∑N−1

i=0 viX
i as

vi =

{
Ki if i < N

2

Ki +Ki−N/2 otherwise
.

We now describe possible choices of the modulus q.

Power-of-two modulus As previously noted, it is often very convenient to choose a power-of-two modulus.
Common choices are q = 232 or q = 264. Since we choose M to be a power of three, clearly M and q are
co-prime. Still, we cannot apply the [plain] NTT directly in this case, since Z/qZ does not contain a
principal M -th root of unity. However, since M is a unit in Z/qZ, variants like Schönhage’s algorithm
and Nussbaumer’s algorithm are still applicable (cf. Remark 2) so this choice is still compatible with some
variants of the NTT.

Prime modulus A power-of-two modulus q restricts the type of NTT that is applicable independently
of the quotient polynomial. As a consequence, even when using a trinomial as quotient polynomial, it may
make sense to choose an NTT-friendly integer for modulus q in order to enable the plain NTT for efficiency
reasons. One may now wonder why one would then go through the trouble of using a trinomial since a
power-of-two quotient polynomial would also work, but recall that in this case we still retain the advantage
of an increased plaintext space in comparison to a power-of-two cyclotomic.

For [plain] NTT, we need to choose the modulus q such that Z/qZ contains a principal M -th root of
unity. One way of ensuring this is by setting q to be a prime such that M divides q − 1. We give examples
of such primes of size 32 bits and 64 bits to match common data types:

� 231 < q = 10 · 318 + 1 < 232, and

� 263 < q = 4 · 339 + 1 < 264 .

Corresponding principal M -th roots of unity are easy to obtain. For example, one may set ω =
(1024)3

18−7

mod q for q = 10 · 318 + 1, and ω = (625)3
39−7

mod q for q = 4 · 339 + 1. They are both
respective principal 37-roots of unity.

TFHE-like parameters We note that finding and optimizing parameters for TFHE-like schemes (and
FHE schemes in general) is an involved task and outside of the scope of this work. But to give an idea that our
choice of parameters above can give significant advantages, we adjust and compare with a typical parameter
set for TFHE-like schemes, e.g. as used in (some instantiations of) Concrete [9]. In this setting, it is common
to parameterize the RLWE scheme with a secret from a uniform binary distribution, a ring dimension of
N = 1024 and discrete or discretized Gaussian error distribution with (normalized by q) standard deviation
of 2−25. First note that our ring dimension N is somewhat larger, which results in an increase of security,
but also a decrease in performance. On the other hand, we need to reduce the error in the bootstrapping
key to accommodate for the larger dimension and for the additional noise growth due to the use of a non-
power-of-two cyclotomic (cf. Section 6), which reduces security. Using the lattice estimator [1]� suggests that
the increase in dimension easily compensates for the reduced error rate and, in fact, is likely to admit even
smaller error. This might allow to optimize other parameters, e.g. the basis for the decomposition, which
could improve performance.

As stated, fully optimizing parameters is a complex task, but we conclude that at the very least, our
approach allows to find parameters that provide a new trade-off between performance and available plaintext
space that is not possible using only power-of-two cyclotomics. Depending on the application and the required
plaintext space, this can significantly improve the performance of the scheme.

�https://github.com/malb/lattice-estimator

15

https://github.com/malb/lattice-estimator


8 Conclusion

This paper generalized the programmable bootstrapping for TFHE-like cryptosystems so as to make it
compliant with the number-theoretic transform (NTT) or its variants. Formulas for programming the test
polynomial in the extended settings were provided, including for the important case of q a power of two.
Earlier implementations relied on the FFT for the polynomial multiplications (with the limitations that were
pointed out).
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A Detailed Noise Analysis

Here we show that final noise term in the ciphertext after a blind rotation can be written as an algebraic
expression that involves only small terms multiplied with powers of X. This completes the argument in
Section 6. The proof requires to analyze the individual operations of the blind rotation, so we we need to
assume some familiarity of the reader with TFHE.

Proposition 7. Let c ∈ (Z/qZ)[X]/p(X)2 be the result of a blind rotation of ciphertext
(
a, b = ⟨a, s⟩ +

µ(m) + e
)
∈ (Z/qZ)n+1. Then the noise in c verifies

e=
∑
i

Xzi · ei

for some zi ∈ ZM and small ei ∈ (Z/qZ)[X]/p(X).

Proof. The basic idea of the blind rotation is to start with the polynomial v(X) · X−b and successively
and homomorphically multiply it by Xai·si to obtain an encryption of v(X) ·X−b+

∑
i ai·si . Since in TFHE

si ∈ {0, 1}, this can be realized by making a copy of the current value, multiplying one of the copies with
Xai and using the two resulting values as input to a homomorphic CMUX controlled by the bit si. The
CMUX with input two RLWE ciphertexts c0 and c1 and RGSW encryption C of the control bit b, is realized
by an external product of the form (c1 − c0) ⊙ C+ c0. Recall that the external product ⊙ between an
RLWE ciphertext encrypting µ(X) and a RGSW ciphertext encrypting b is an RLWE ciphertext encrypting
b · µ(X). So the above construction indeed yields a homomorphic CMUX.

We will analyze the error for the operations in the PBS from the bottom up, starting with the external
product. For the following lemma, recall that GLevs(µ) is defined to be the vector of RLWE encryptions of
µ · q

Bi for all i.

Lemma 1. Let c= (a, b = a · s+ µ+ e) be an RLWE ciphertext and C= (GLevs(−b · s),GLevs(b)) be an
RGSW ciphertext of bit b. Let c′ = c⊙ C be the result of the external product between c and C. Then, as
a ciphertext encrypting b · µ, the error term of c′ is b · e+ e for some small e independent of e.

Proof of Lemma 1. (In the following we ignore the subscript s.) The external product of the two inputs is
defined as

c⊙ C= ⟨Dec(b),GLev(b)⟩+ ⟨Dec(a),GLev(−b · s)⟩

where Dec(p) = (p1,p2, . . . ,pℓ) is such that
∑

pi
q
Bi ≈ p and |pi|∞ < B/2.

Write GLev(b) = [(ai,ai s+
q
Bi b+ ei)i]. Then

⟨Dec(b),GLev(b)⟩ =
(
a′,a′ · s+ b · b+ b · eb +

∑
ei · bi

)
with a′ =

∑
aibi and eb =

∑
bi

q
Bi − b the rounding error. We let e′ = b · eb +

∑
ei · bi, so we can write

⟨Dec(b),GLev(b)⟩ = (a′,a′ · s+ b · b+ e′) .

Note that e′ is small and independent of e.
Analogously, we get

⟨Dec(a),GLev(−b · s)⟩ = (a′′,a′′ · s− b · a · s+ e′′)
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where a′′ and e′′ are defined similarly as above. For the external product, we then have

c⊙ C= (a,as+ b · (b− a · s) + e)

= (a,as+ b · (∆m+ e) + e)

= (a,as+ b ·∆m+ b · e+ e)

with a = a′ + a′′ and e = e′ + e′′. So as a ciphertext encrypting b ·∆m, the error term of the result is
b · e+ e for some small e independent of e.

The following corollary follows from above description of the CMUX construction.

Corollary 1. Let e0 and e1 be the error polynomials in RLWE ciphertexts (c0 and c1), respectively, and
C = (GLevs(−b · s),GLevs(b)) be an RGSW ciphertext of bit b. Then the error in the result of a CMUX
with input c0, c1 and C is b · e1 + (1− b) · e0 + e, where e is small and independent of e0 and e1.

The proof is easily completed by induction on the dimension of the input LWE secret n.
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