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Abstract

In the classical model of computation, it is well established that one-way functions (OWF)
are essential for almost every computational cryptographic application. In the quantum setting,
however, OWFs appear not to be essential (Kretschmer 2021; Ananth et al., Morimae and
Yamakawa 2022), and the question of whether a minimal primitive exists remains open.

We consider EFI pairs — efficiently samplable, statistically far but computationally indis-
tinguishable pairs of distributions. Building on the work of Yan (2022) which shows equivalence
between EFI pairs and statistical commitment schemes, we show that EFI pairs are necessary
and sufficient for a large class of quantum-cryptographic applications. Specifically, while it was
known how to construct commitments schemes, oblivious transfer, and general secure multiparty
computation from any EFI, we show how to construct EFI pairs from minimalistic versions of
each one of these primitives. We also construct from EFI quantum computational zero knowl-
edge (𝖰𝖢𝖹𝖪) proofs for all of 𝖰𝖨𝖯, and construct EFI pairs from essentially any non-trivial
𝖰𝖢𝖹𝖪.

This suggests that, for much of quantum cryptography, EFI pairs play a similar role to that
played by OWFs in the classical setting: they are simple to describe, essential, and also serve
as a linchpin for demonstrating equivalence between primitives.

1 Introduction

One of the most fundamental achievements of cryptography has been the conceptualization and
eventual formalization of the forms of computational hardness that are needed for obtaining preva-
lent cryptographic tasks. Notions such as one-way functions (capturing functions that are easy to
compute but hard to meaningfully invert) [DH76, Yao82] and pseudorandom generators (capturing
the ability to efficiently expand short random strings into longer strings that are hard to distinguish
from fully random) [Sha83, Yao82, BM84] became foundational pillars for the design and reduction-
based analysis of cryptographic schemes that are only “computationally secure” (that is, secure
only against computationally-bounded attacks). Furthermore, the celebrated equivalence between
the two notions [GL89, HILL99] has cemented the combined concept as the “foundational com-
putational hardness for cryptography”: One that is implied by almost any computationally secure
cryptographic scheme, and that at the same time suffices for realizing a large class of cryptographic
tasks.
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However, in the quantum setting, where both schemes and attacks can generate, process, and
communicate quantum information, the lay of the land of computational hardness turns out to be
different. First, quintessential tasks such as key-exchange with only public communication, which
classically can only be computationally secure, can be obtained without any need for computational
hardness [BB84, REN08]. Furthermore, quantum protocols can use (quantum-hard) one way func-
tions to obtain tasks that are provably unobtainable from one way functions alone in the classical
setting, at least in a relativizing manner. These include non-interactive commitments with either
statistical hiding or statistical binding property [MP12, YWLQ15, BB21], and oblivious transfer
[IR89, CLS01, BCKM21, GLSV21].

Even further, it has been recently shown how to obtain commitments, oblivious transfer and
general multiparty computation from a form of computational hardness that appears to be “purely
quantum”, in the sense that it does not appear to imply one way functions (or any equivalent
formulation of computational hardness) — not even ones against classical attackers [AQY21, MY21].
Superficially, this new form of computational hardness, called Pseudorandom States (PRS), is a
straightforward generalization of pseudorandom generators: it postulates the ability to efficiently
generate quantum states that are hard to distinguish from a Haar-random state even when given
multiple instances [JLS18, BS19, BS20]. However, this apparent similarity is deceiving: First, there
are no relativizing constructions of one way functions from PRS [Kre21]. On the other hand, we do
not know whether PRS are essential for realizing any of the above primitives. Also, in spite of initial
attempts [MY21], the celebrated classical equivalence between one-wayness and pseudorandomness
does not appear to naturally generalize to the quantum setting, at least not with respect to PRS.

This leaves quantum cryptography devoid of a convenient form of “foundational computational
hardness”, namely a form of computational hardness that is both necessary for any meaningful
computational security, and sufficient for realizing a large class of tasks.

Our contributions. We make headways towards understanding the landscape of quantum cryp-
tography. Specifically, we formulate a simple and natural primitive and show that its existence
is both necessary and sufficient for a significant class of cryptographic applications in a quantum-
enabled computational model. This primitive draws from a a primitive considered by Goldreich
[Gol90], that is aimed to capture non-trivial and “cryptographically useful” computational indistin-
guishability:

Definition 1.1 (EFID pairs [Gol90]). An EFID pair is a pair of efficient (classical) sampling algo-
rithms such that their output distributions are statistically far but computationally indistinguishable.

Goldreich’s work leverages the result of Impagliazzo, Levin, and Luby [ILL89] to show that
EFID pairs exist if and only if (classical) pseudorandom generators exist. This, together with what
we know about pseudorandom generators, means the existence of a classical protocol for almost
any cryptographic task implies existence of EFID pairs and furthermore that EFID pairs suffice for
realizing any cryptographic task in Minicrypt. We consider a natural quantum analogue of EFID
pairs:

Definition 1.2 (EFI pairs, informal). An EFI pair is a pair of efficient quantum algorithms such
that the mixed states they output are statistically far but computationally indistinguishable.

Clearly, any quantum-hard EFID pair is also an EFI pair. On the other hand, it is unknown
whether existence of EFI pairs implies the existence of (classical) pseudorandom generators or one-
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way functions. Indeed, via existing works (for example, [Kre21] combined with [AQY21, Theorem
4.1]), such an implication is false in the relativizing setting.

Still, we show that the existence of EFI pairs is essential for the existence of commitment
schemes, oblivious transfer protocols, non-trivial multi-party computation protocols, and zero-
knowledge proofs for non-trivial languages. Furthermore, for each one of these primitives, we use
EFI pairs as a tool for demonstrating that existence of protocols for a minimal version of the
primitive implies existence of protocols for a full-fledged version of that primitive. Informally:

• Quantum commitment schemes. A commitment scheme is a cryptographic protocol where
a committer commits to a hidden bit to a receiver that can be later revealed but not modified.
It is known that EFI pairs can be readily used as statistically binding non-interactive quantum
commitments, which subsequently imply statistically hiding commitments [Yan22].
We construct EFI pairs from any plain “semi-honest” interactive commitment scheme, namely
an interactive commitment scheme that is only computationally binding and hiding as long
as both parties are honest during the commitment phase.

• Quantum oblivious transfer. An oblivious transfer scheme is a cryptographic protocol
where a sender makes two bits available to a receiver in a way that enables the receiver to
obtain exactly one of them, without the sender learning which bit it obtained. Fully secure
(namely, simulation-secure against adversaries that deviate from the protocol) quantum obliv-
ious transfer is known to be constructible from quantum statistically binding commitments
[BCKM21, AQY21] (and so also from EFI pairs).
We show how to construct EFI pairs from any semi-honest OT protocol, namely any OT
protocol that is only guaranteed to be secure when both parties follow the protocol instructions
without abort and up to purifications (namely, without tracing out any register used by each
party).

• Quantum secure multiparty computation protocols. A multiparty secure computation
protocol is a protocol where participating parties jointly compute the output of a function of
their secret inputs without revealing anything but the function value. Known constructions of
general MPC from any statistically binding quantum commitment [AQY21] imply that EFI
pairs can also be used to perform secure evaluation of any functionality.
We show how any protocol for securely evaluating any non-trivial classical finite functionality
(namely a function with an insecure minor as in [BMM99]), even in the semi-honest model,
implies the existence of EFI pairs.

• Quantum computational zero-knowledge (𝖰𝖢𝖹𝖪) proofs. Finally, a computational
zero-knowledge proof is an interactive proof system where any malicious verifier cannot learn
anything beyond the fact that the statement is true, in the sense that their view could be
efficiently simulated given only the public instance.
We show that if EFI pairs exist, then by observing that zero knowledge is a special case of
secure two-party computation (2PC), we have that 𝖰𝖢𝖹𝖪 = 𝖰𝖨𝖯, and any language in 𝖰𝖬𝖠
also admits 𝖰𝖢𝖹𝖪 proofs with negligible soundness and an efficient prover that uses only a
single copy of the witness. Conversely, we show how to construct EFI pairs from any honest
verifier 𝖰𝖢𝖹𝖪 proof (𝖰𝖢𝖹𝖪𝖧𝖵) for any language that is hard on average for 𝖡𝖰𝖯. More
specifically, 𝖰𝖢𝖹𝖪𝖧𝖵 is a relaxation of 𝖰𝖢𝖹𝖪 where zero knowledge property is guaranteed to
hold only against purified verifiers with abort, rather than arbitrary polytime verifiers. As an
auxiliary result we show, unconditionally, that 𝖰𝖢𝖹𝖪 = 𝖰𝖢𝖹𝖪𝖧𝖵. This is reminiscent of what
happens in the context of classical zero knowledge [GSV98, Vad06] and quantum statistical
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Figure 1: Our results for EFI pairs illustrated. We give a more detailed overview of these implica-
tions in Section 1.1.

zero knowledge [Wat02].

Furthermore, all these equivalences relativize1. Thus, Kretschmer’s oracle separation [Kre21]
immediately generalizes to show that none of the objects constructible from EFI pairs (or pseudo-
random states) imply the existence of one-way functions (post-quantum or not) in a relativizing
way.

1.1 Our techniques

We now give a conceptual overview of the proofs for these results.

EFI pairs and statistical commitments. In the classical setting, building a commitment
scheme from EFID pairs would naturally go via Goldreich’s transformation to a PRG, and then
use, say, Naor’s commitment [Nao91]. However, it is not clear how this transformation could be
generalized to the quantum setting. In particular, Goldreich’s proof crucially relies on the fact that
for a 𝖡𝖯𝖯 (randomized) algorithm, it is possible to pull the randomness out of the machine — or
even arbitrarily program the randomness. Such techniques cannot work for quantum algorithms,
as also observed by the recent work of Aaronson, Ingram, and Kretschmer [AIK22] comparing the
complexity classes 𝖡𝖯𝖯 and 𝖡𝖰𝖯.

1We say that 𝐴 can be constructed in a relativizing way from a protocol 𝐵 if 𝐴 can be constructed by using each
step (or “next message functions”) of 𝐵, perhaps with purifications, as a black box. One example of this is the work
of Watrous [Wat02] constructing 𝖰𝖲𝖹𝖪 from honest-verifier 𝖰𝖲𝖹𝖪𝖧𝖵. Note that this standard notion is the natural
generalization of classical black box reductions between protocols.

Furthermore, throughout this work, we reserve the use of the term black-box reductions to reductions which are
black box in a primitive, namely a reduction that uses oracle access to the ideal functionality describing the primitive,
irrespective of any particular implementation (as e.g. in the work of Kilian [Kil91]).
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As noticed several times in the literature, EFI pairs give quantum commitments in a rather
direct way. To sketch this basic construction, we first recall the syntax of a canonical form quantum
commitment scheme:2

• To commit to 𝑏, the committer efficiently generates a bipartite (i.e., two-register) state |𝜓𝑏⟩𝖢𝖱,
and sends the commitment register 𝖢.

• To open, simply reveal the other register 𝖱 and 𝑏, and the receiver can perform a rank-1 pro-
jection onto the corresponding state |𝜓𝑏⟩𝖢𝖱 (or equivalently, uncompute the state generation
unitary for committing to 𝑏 and check if we get back all zeroes) to check whether to accept
the commitment.

Yan [Yan22] observed that we can view the purified generation of the EFI pair as a canonical
form commitment where the output corresponds to the commitment register 𝖢 and the purification
corresponds to the opening register 𝖱. They further showed that for canonical form commitments,
the statistical distance requirement of EFI is equivalent to statistical binding of the commitment, and
the computational indistinguishability requirement of EFI is equivalent to computational hiding of
the commitment. Thus an EFI pair is essentially a statistically binding canonical form commitment,
and this is indeed the starting point of our work.

In fact, Yan also proved a round collapsing theorem, showing that any quantum commitment can
be compiled into the canonical form while preserving the hiding and binding properties. Therefore,
since statistically binding commitments and statistically hiding commitments are equivalent [CLS01,
Yan22], we can construct EFI pairs from either one.

However, showing how to construct EFI pairs from commitment schemes that are neither sta-
tistically binding nor statistically hiding appears more challenging. One may hope to somehow
construct a candidate EFI pair of states, and prove computational indistinguishability from com-
putational security of the commitment, and statistical distance via an inefficient attack on the
commitment scheme. However, it is not clear how to transform an inefficient attack against the
binding property into a distinguishing attack as needed for EFI pairs. (Classically, this part can be
done using one-way functions, but, as argued above, these techniques do not have natural quantum
analogues.)

Instead, our main idea is to go through oblivious transfer, where the security for both ends can
be naturally viewed as distinguishing tasks, and thus it is more amenable to constructing EFIs even
when neither party has statistical security. In fact, we observe that semi-honest OT suffices.

EFI pairs from semi-honest oblivious transfer. We first define a new security notion of
quantum oblivious transfer, which considers only “purification attacks”. (This notion can be viewed
as a quantum analogue of the classical “non-erasing, honest-but-curious” attacks.) Furthermore,
the semi-honest adversaries must run the purified protocol till the end, i.e. are disallowed to abort.
(Classically, this does not matter.)

We first describe constructing EFI from semi-honest OT, which is more straightforward. Con-
sider the adversarial view in the following two executions:

2This (non-interactive) canonical form of quantum bit commitment schemes was first introduced by the work of Yan
et al. [YWLQ15], but the idea dates back to the work of Chailloux, Kerenidis, and Rosgen [CKR11]. Subsequently, it
has been shown that canonical form commitments are as useful as traditional bit commitments by Yan et al. [YWLQ15,
FUYZ20, Yan22] Its connection to (classical) EFID pairs was observed by Yan in a 2022 revision of their work [Yan22].
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• Here the sender is honest and the receiver is semi-honest. The sender chooses the bits uniformly
at random and the semi-honest receiver chooses the choice bit uniformly at random. (By
correctness, the receiver is always able to recover one bit specified by the choice bit with
certainty. The task for the semi-honest receiver is to extract the sender’s other bit from his
purified view.)

• Here the receiver is honest and the sender is semi-honest. The receiver chooses the choice
bit uniformly at random and the semi-honest sender prepares two equal superposition states
|+⟩⊗2 for her input bits. (Here the task for the semi-honest sender is to extract receiver’s
choice bit from her purified view.)

It is easy to see that these views can be computed efficiently since the OT protocol is efficient; and
by the semi-honest security of OT, both tasks should be impossible for efficient algorithms. At the
same time, the impossibility of Chailloux, Gutoski, and Sikora [CGS16] states that for every OT
protocol, one of these two tasks can be accomplished with success probability ≥ 2

3 inefficiently.
Now the construction of EFI pairs follows by simply reinterpreting these bit extraction tasks as

a distinguishing task. In particular, for 𝑏 = 0, 1, the 𝑏-th state is simply the concatenation of the
two above views, conditioned on the correct answers being 𝑏 in both executions. In other words,
the 𝑏-th state consists of the semi-honest receiver’s view of the first execution when the sender’s
other bit is 𝑏, followed by the semi-honest sender’s view of the second execution when the receiver’s
choice bit is 𝑏.

Semi-honest OT from commitments. Many prior works have already studied constructing
quantum oblivious transfer from commitments [CK88, BBCS91, Cré94, CLS01, FUYZ20, Yan22].
However, they all start with a commitment with some statistical security guarantee – either sta-
tistically binding or statistically hiding. On the other hand, we want to start from an arbitrary
commitment scheme (which may be computationally binding and computationally hiding). While
these constructions could probably still carry over, since here we are aiming for a much weaker se-
curity, we instead give a much simplified protocol with a self-contained description. Let us begin by
considering the simplest (almost trivial) quantum oblivious transfer protocol inspired by Crépeau
and Kilian [CK88], which is only secure if both parties are completely honest during the protocol:

1. The sender on input two message bits 𝑏0, 𝑏1, sends two qubits |𝑏0⟩ ⊗ 𝐻 |𝑏1⟩, where the first
qubit encodes the first message bit in the standard basis and the second qubit encodes the
second message bit in the Hadamard basis.

2. The receiver measures both qubits in the standard basis to recover 𝑏0 and a random bit 𝑏′1, or
in the Hadamard basis to recover a random bit 𝑏′0 and 𝑏1.

Security is straightforward: the sender gets no information at all, and the receiver destroys the
information about the other bit by measuring it in an incompatible basis.

However, this is obviously not semi-honest secure as a purified receiver could simply uncompute
a purified measurement to recover the other bit as well. Indeed, a better way to “erase” information
in the semi-honest model is to simply send it to the other party: in this case, the receiver sends a
copy of these two measured (classical) bits to the sender. Since the semi-honest receiver’s purified
view at the end has the sender’s private registers traced out, doing this ensures that these measured
bits do indeed collapse even for the purified view.

On the other hand, since these two bits contains information about the receiver’s choice bit, we
cannot simply send it in the clear as now the sender can break. One simple fix is to have the receiver
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instead commit to the two measured bits to the sender. This strategy is also often employed when
designing maliciously secure OT from commitments [BBCS91, Cré94, CLS01].

It is easy to see that this committed-measurement OT remains secure against semi-honest sender
by hiding of the commitment, and security against semi-honest receiver remains to be seen. If the
commitment is statistically binding, then it can be seen that the collapse still occurs; but the
computational binding case seems less clear. Fortunately, this can be overcome through Yan’s
computational collapse theorem [Yan22], which on a high level states that a canonical form compu-
tationally binding commitment scheme computationally “collapses” the commited qubit (given that
the commit phase was performed semi-honestly), even if the commitment is never opened. (Their
theorem is established via reducing a collapsing distinguishing adversary to an adversary that breaks
computational binding of the canonical form commitment.) This completes the argument.

Multiparty secure computations for classical functionalities. Using a known sequence
of transformations outlined in existing works [AQY21] (which builds on existing works including
but not limited to [BBCS91, BCKM21, GLSV21]), it is already known how construct, given any
statistically binding quantum commitment scheme (and hence also given any EFI pair), multi-party
protocols that securely evaluate any classical function with any number of faults. Furthermore, these
protocols provide statistical security guarantees against at least one of the parties. As an aside,
via known results, these protocols can further be used to construct two-party secure computations
for general quantum functions (or channels) where only one party obtains output [DNS12], and in
addition, reactive (meaning stateful and interactive) classical functionalities [CGT95, IPS08].

For the converse direction, we can now use the powerful equivalence established for oblivious
transfer above, and simply invoke the classical equivalence of Beimel, Malkin, and Micali [BMM99]
to complete the proof. While the [BMM99] proof contains parts which do not naturally generalize to
the quantum setting, the only thing we need from that proof is the reduction from semi-honest OT
to semi-honest 2PC for any non-trivial classical functionality (i.e. if it contains an insecure minor),
and this construction is black-box and hence extends to our setting. While the semi-honest models
are slightly different, we verify that their semi-honest reduction also works for our model. Once we
have semi-honest OT, we get EFI pairs by the equivalence above.

Zero knowledge proofs from EFI pairs. We now turn to establishing an equivalence between
EFI pairs and non-trivial quantum computational zero knowledge (𝖰𝖢𝖹𝖪) proofs. We first con-
sider the task of constructing 𝖰𝖢𝖹𝖪 protocols for 𝖰𝖬𝖠 from EFI pairs. Here the commit-and-open
𝖰𝖢𝖹𝖪 protocol by Broadbent and Grilo [BG20] can be readily instantiated by any quantum com-
mitment. However, this protocol uses sequential repetition, and as a consequence, requires multiple
copies of the quantum witness to achieve negligible soundness. As also proposed by Broadbent et
al. [BJSW20], this limitation can be avoided via performing 2PC for quantum (CPTP) functionali-
ties, which can be constructed from OT [DNS12] and thus EFI pairs.

We now move on to general 𝖰𝖢𝖹𝖪 proofs without any constraint on prover efficiency and show
how to use EFI pairs to construct 𝖰𝖢𝖹𝖪 proofs for all of 𝖰𝖨𝖯. Before presenting our protocol, let
us recall the celebrated construction of Ben-Or et al. [BGG+88] that transforms any (without loss
of generality, Arthur-Merlin or public-coin) 𝖨𝖯 protocol into a 𝖢𝖹𝖪 protocol. In the transformed
protocol, the parties first run the original public-coin protocol, where the prover only sends (statisti-
cally binding) commitments to its messages. Next, the parties engage in a zero-knowledge protocol
where the instance consists of the transcript so far, and the language accepts a transcript if there
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exist valid openings to all the prover commitments that would have caused the original verifier to
accept.

Since we know 𝖰𝖨𝖯 = 𝖨𝖯 [Sha92, JJUW11] and thus in our setting we can also start with the same
public-coin protocol. Directly extending this protocol to our setting hits a roadblock: the statement
that needs to be proven in zero knowledge is now a quantum statement involving the commitment
states when instantiated with quantum commitments. Since the study of even zero knowledge proofs
for 𝖰𝖬𝖠 still consider classical statements, this is not a context that is traditionally considered by
the zero knowledge literature. Even if we attempt to mimic a zero knowledge proof via statistical
2PC, we soon encounter another issue: how should the two parties agree on the quantum statement
that is being proven? Sure, we could make the verifier send the quantum state in the statement to
2PC, but a malicious verifier could refuse to provide the correct state. This becomes an issue as the
verifier might be able to manipulate the commitment message so that checking the validity of the
commitments itself might reveal non-trivial information about the committed bit.

We thus take a different path: we have the prover and the verifier engage in a secure evaluation of
the following reactive functionality (which also can be constructed from OT [CGT95, IPS08]). The
verifier inputs its random challenges in the underlying interactive proof, and the functionality uses
these challenges to play the verifier role in an interactive proof with the external prover. Finally the
functionality outputs the acceptance bit to the external verifier. Both soundness and zero knowledge
follow from the security of the MPC.

EFI pairs from non-trivial 𝖰𝖢𝖹𝖪𝖧𝖵. Finally, we show how to construct EFI pairs from any
𝖰𝖢𝖹𝖪 proof for any language that is hard on average against 𝖡𝖰𝖯. Note that the computational
indistinguishability given by the 𝖰𝖢𝖹𝖪 security does not give EFI pairs immediately as it might be
possible to generate the hoenst view efficiently.

One possible approach might be to try to extend the classical result of Ostrovsky and Widger-
son [OW93] to our setting. However, they use the non-existence of one way functions to build
universal extrapolators that efficiently turn simulators into cheating provers, and it is not clear how
to use the non-existence of EFI pairs to construct quantum universal extrapolators.

We instead turn to the works of Ong and Vadhan [Vad06, OV08], showing an equivalence be-
tween instance-dependent commitments and 𝖢𝖹𝖪, that is a language admits an instance-dependent
commitment (a commitment, parameterized by an instance 𝑥, whose computational hiding and
statistical binding properties only hold if 𝑥 is in or not in the language, respectively) if and only if
it admits a 𝖢𝖹𝖪 proof. We note that if a hard-on-average language admits an instance-dependent
commitment, then this commitment is essentially a full-fledged commitment, thus implying the ex-
istence of EFI pairs. Therefore, it remains to extend the equivalence to the quantum setting, i.e. we
wish to establish that any language admits a 𝖰𝖢𝖹𝖪 proof if and only if it admits instance-dependent
quantum commitments.

The bad news is that going from 𝖢𝖹𝖪 to instance-dependent commitments again involve going
through instance-dependent one-way (universal hash) functions. However, we note that the mixed
states considered by Watrous [Wat02] for handling 𝖰𝖲𝖹𝖪 readily gives an instance-dependent mixed
state for 𝖰𝖢𝖹𝖪 protocols: a weak variant of EFI states that is only required to satisfy either statisti-
cal farness or computational indistinguishability if 𝑥 is in or not in the language, respectively. It can
be seen that the transformations described before also readily extends to the instance-dependent
setting, and thus this gives an instance-dependent commitment. We then conclude that if 𝐿 is hard
on average for 𝖡𝖰𝖯, then this instance-dependent mixed state averaged over the hard distribution
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immediately gives an EFI pair.
Upon the completion of this work, we discovered a result by Chailloux, Kerenidis, and Ros-

gen [CKR11] that is similar to this part with very similar proof techniques. However, their sepa-
ration is between 𝖰𝖨𝖯 = 𝖯𝖲𝖯𝖠𝖢𝖤 and 𝖰𝖬𝖠, which is technically incomparable with our separation
between 𝖰𝖢𝖹𝖪 and 𝖡𝖰𝖯. Furthermore, they consider worst case hardness instead of average case
hardness here, and thus only getting quantum auxiliary-input EFI. In our case, this difference is
rather minor and the results can translate back and forth (see Theorem 6.8); and in their case, it
is not clear how to get standard EFI pairs from any notion of average case hardness of 𝖰𝖨𝖯 against
𝖰𝖬𝖠.3

1.2 Discussions and open questions

We now give a few open questions in this direction, organized into three categories. To keep the
discussion succinct, we point the readers to the references for details of the terminologies.

EFI and quantum complexity. One way functions (and equivalently pseudorandom generators
and classical EFID pairs) have been one of the central objects in complexity theory [AB09]. Since
EFI pairs are both essential and sufficient for much of quantum cryptography, and furthermore are
very simple to describe, it is natural to ask whether EFI pairs could also be a useful object to study
from the complexity point of view. Note that the computational hardness underlying EFI pairs,
which is the quantum state distinguishability problem, seems especially relevant to the study of the
complexity of quantum states and transformations [Aar16].

One very important question, we think, is whether there is any barrier for proving the existence
of EFI pairs. In the classical setting, existence of one-way functions implies 𝖯 ̸= 𝖭𝖯, but is there
any barrier for establishing the existence of quantum EFI pairs? EFI pairs would immediately imply
a quantum circuit lower bound for an explicit two-outcome measurement, but is there any reason
to believe that such a lower bound would be hard to establish?

For a more concrete example, is 𝖯 vs 𝖯𝖲𝖯𝖠𝖢𝖤 a (classical) barrier for the existence of EFI pairs?
In other words, does the existence of EFI pairs separate 𝖡𝖰𝖯 from 𝖯𝖲𝖯𝖠𝖢𝖤? We know that the
existence of pseudorandom states do separate 𝖡𝖰𝖯 from 𝖯𝖯 = 𝖯𝗈𝗌𝗍𝖡𝖰𝖯 [Kre21], but nothing is
known for EFI pairs. One way to achieve this could be to demonstrate a way to synthesize the
Helstrom measurement given a 𝖯𝖲𝖯𝖠𝖢𝖤 oracle, which is closely related to the unitary synthesis
problem [AK07]: in particular, if the unitary synthesis problem could be done by a 𝖯𝖲𝖯𝖠𝖢𝖤 oracle,
then the existence of EFI pairs would separate 𝖯𝖲𝖯𝖠𝖢𝖤 from 𝖡𝖰𝖯.

Candidate EFI? Given the oracle separation, are there any concrete candidate assumptions that
imply quantum EFI, with formal evidence that it does not imply one-way functions?

Two natural candidates come from pseudorandom state candidates. One possible approach is to
assume that “sufficiently large” quantum random circuits are pseudorandom unitaries. These random
quantum circuits are already being investigated with motivations like quantum supremacy [AA13,
AC17] and the theory of black holes [BS18, BCH+21, HFK+22]. One could hope that pursuing
this direction could ultimately lead to useful quantum cryptography that could be implemented

3For readers that are familiar with [CKR11], even if we assume 𝖰𝖨𝖯 is hard on average against 𝖰𝖬𝖠 for 𝖡𝖰𝖯
samplable distributions, this still does not suffice for getting EFI pairs without quantum auxiliary input. The reason
is that the quantum auxiliary input needs to specify the state that witnesses the diamond norm of the two channels,
and it is not clear how this state could be prepared efficiently.
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on near-term quantum devices. Another possible approach is to consider the pseudorandom states
proposed by Bouland, Fefferman, and Vazirani [BFV20] from the physical description of wormholes.
Intuitively, such a construction could be secure based on the physical belief that a wormhole is highly
“scrambling”. In that paper, they also prove that their construction is a secure pseudorandom state
generator if the evolution unitary is a black-box Haar random unitary.

Another candidate is proposed by Kawachi, Koshiba, Nishimura, and Yamakami [KKNY12]. On
a high level, they consider computational indistinguishability between two types of random coset
states, and show that it is at least as hard as the graph automorphism problem.

EFI and quantum cryptography. The importance of one way functions in classical cryptogra-
phy cannot be overstated: virtually any non-trivial computational cryptography (those that cannot
be realized with respect to computationally unbounded adversaries) implies the existence of one way
functions classically. Yet it still remains to be seen how much of quantum cryptography is related
to EFI. For instance:

Quantum pseudorandomness. The celebrated result of Goldreich [Gol90] shows existence of
classical EFI pairs imply pseudorandom generators and subsequently pseudorandom func-
tions. While we know how to construct various quantum cryptography from quantum EFI
pairs, the way we do it completely avoids the need to construct quantum pseudorandomness.
Nevertheless, given the many applications of both classical and quantum pseudorandomness,
an important question is whether it is possible to construct quantum pseudorandomness (pseu-
dorandom states, unitaries, or any other meaningful pseudorandom objects) from EFI pairs.

Quantum unforgeability. Cryptographic primitives such as digital signatures, message authen-
tication codes, or quantum money appear to inherently require some flavor of one-wayness, in
that a break involves solving a computationally hard search problem where solutions exist and
are efficiently verifiable given some additional secret information. (In the public key setting,
where some classical verification key is made public, solutions are verifiable publicly.) As
discussed, in the quantum setting this form of computational hardness appears very different
than indistinguishability. Still, can we show that existence of any one of these primitives
implies existence of EFI pairs? Can we construct any of these primitives from EFI pairs?

Quantum zero knowledge arguments. It is possible to extend our proof (Theorem 6.3) to show
that if EFI pairs exist then we can give a 𝖰𝖲𝖹𝖪 argument for any 𝖰𝖬𝖠 language with an
efficient prover having a single copy of the witness. On the other hand, we are unable to
show that if 𝐿 admits an argument then the instance-dependent commitment constructed in
Theorem 6.7 is computationally binding for NO instances. On a high level, the difficulty is
that known techniques in the statistical binding setting do not translate to the computational
setting, since we do not have a hardness amplification procedure for computationally binding
commitments: it is not clear whether parallel repetition of commitments decreases the com-
putational binding error against malicious committers. We refer the readers to the related
discussions in Yan’s work [Yan22] for more details.
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2 Preliminaries

2.1 Quantum information

We refer the reader to [NC10] for a comprehensive reference on the basics of quantum information
and quantum computation. We use standard Dirac notation for quantum states.

We recall the notion of density matrices, which are PSD trace-1 matrices that represent the
complete characterization of a state of a quantum system. The state of a system can be “pure”, i.e.
in the form of a state |𝜓⟩, in which case the density matrix is |𝜓⟩⟨𝜓| (i.e. of rank 1), or “mixed”
which corresponds to a distribution over pure states, and is represented by a density matrix of
rank > 1. Two quantum states are identical if and only if their density matrices are equal, and
the distance between quantum states is also expressed as a function of their density matrices, as
explained below.

We recall that quantum operations can always be expressed as unitary operators on some quan-
tum system, and they act on the density matrix of this quantum system via conjugation. We
may sometimes refer to a quantum operation that uses some auxiliary registers, or that removes
(“traces out”) registers during the computation. Such a general quantum operation is known as a
quantum channel. (Mathematically, a quantum channel can be expressed as a completely-positive
trace-preserving (CPTP) map on the space of density matrices, but this formulation will not be
required for our purposes.)

We use 𝒟(ℋ) to denote the set of density matrices on a Hilbert space ℋ. Let 𝜌, 𝜎 ∈ 𝒟(ℋ) be
density matrices. We write TD(𝜌, 𝜎) to denote the trace distance between them, i.e.,

TD(𝜌, 𝜎) =
1

2
‖𝜌− 𝜎‖1

where ‖𝑋‖1 = Tr(
√
𝑋†𝑋) denotes the trace norm. We also use 𝐹 (𝜌, 𝜎) =

(︀
Tr

(︀√︀√
𝜌𝜎
√
𝜌
)︀)︀2 to

denote the fidelity of 𝜌 and 𝜎.

Fact 2.1. For any two mixed states 𝜌, 𝜎, (𝐹 (𝜌, 𝜎))2 + (TD(𝜌, 𝜎))2 ≤ 1.

Theorem 2.2 (Holevo–Helstrom [Hol73, Hel69]). The best success probability to (inefficiently) dis-
tinguish two mixed states 𝜌, 𝜎 is given by 1

2 (1 + TD(𝜌, 𝜎)). The measurement that achieves this
success probability is called the Helstrom measurement.

Corollary 2.3. For any mixed states 𝜌, 𝜎 and integer 𝑛 > 0,

TD(𝜌⊗𝑛, 𝜎⊗𝑛) ≥ 1− exp(−𝑛TD(𝜌, 𝜎)/2).

We recall that 𝜌⊗𝑛 is the state containing 𝑛-copies of the state represented by 𝜌.

Proof. We prove this by building a majority-vote distinguisher. Let𝐷 be the distinguisher optimally
distinguishing 𝜌 from 𝜎 by Holevo–Helstrom theorem. We apply 𝐷 on each copy, and take the
majority vote. Corollary follows by applying Hoeffding’s inequality and Holevo–Helstrom again.

2.2 Quantum algorithms

A quantum algorithm 𝐴 is a family of generalized quantum circuits {𝐴𝑛}𝑛∈ℕ over a discrete universal
gate set (such as {𝐶𝑁𝑂𝑇,𝐻, 𝑇}). By generalized, we mean that such circuits can have a subset of
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input qubits that are designated to be initialized in the zero state, and a subset of output qubits
that are designated to be traced out at the end of the computation. Thus a generalized quantum
circuit 𝐴𝑛 corresponds to a quantum channel. When we write 𝐴𝑛(𝜌) for some density matrix 𝜌, we
mean the output of the generalized circuit 𝐴𝑛 on input 𝜌. If we only take the quantum gates of 𝐴𝑛

and ignore the subset of input/output qubits that are initialized to zeroes/traced out, then we get
the unitary part of 𝐴𝑛, which corresponds to a unitary operator which we denote by 𝐴𝑛. The size
of a generalized quantum circuit is the number of gates in it, plus the number of input and output
qubits.

We say that 𝐴 = {𝐴𝑛}𝑛 is a quantum polynomial-time (QPT) algorithm if there exists a polyno-
mial 𝑝 such that the size of each circuit 𝐴𝑛 is at most 𝑝(𝑛). We furthermore say that 𝐴 is uniform
if there exists a deterministic polynomial-time Turing machine 𝑀 that on input 1𝑛 outputs the
description of 𝐴𝑛.

We also define the notion of a non-uniform QPT algorithm𝐴 that consists of a family {(𝐴𝑛, 𝜌𝑛)}𝑛
where {𝐴𝑛}𝑛 is a polynomial-size family of circuits (not necessarily uniformly generated), and for
each 𝑛 there is additionally a subset of input qubits of 𝐴𝑛 that are designated to be initialized
with the density matrix 𝜌𝑛 of polynomial length. This is intended to model nonuniform quantum
adversaries who may receive quantum states as advice.

The notation we use to describe the inputs/outputs of quantum algorithms will largely mimic
what is used in the classical cryptography literature. For example, for a state generator algorithm
𝐺, we write 𝐺𝑛(𝑘) to denote running the generalized quantum circuit 𝐺𝑛 on input |𝑘⟩⟨𝑘|, which
outputs a state 𝜌𝑘.

Ultimately, all inputs to a quantum circuit are density matrices. However, we mix-and-match
between classical, pure state, and density matrix notation; for example, we may write 𝐴𝑛(𝑘, |𝜃⟩ , 𝜌)
to denote running the circuit 𝐴𝑛 on input |𝑘⟩⟨𝑘| ⊗ |𝜃⟩⟨𝜃| ⊗ 𝜌. In general, we will not explain all the
input and output sizes of every quantum circuit in excruciating detail; we will implicitly assume that
a quantum circuit in question has the appropriate number of input and output qubits as required
by context.

3 EFI pairs of states

In this work, all cryptographic protocols that we consider implicitly allow for arbitrary (noiseless)
quantum communications, and all parties are implicitly quantum. We assume all algorithms know
the security parameter and thus sometimes may omit it as an input to the algorithm. A function
𝑓 : ℕ → ℝ≥0 is negligible, if for any polynomial 𝑝, 𝑓(𝜆) ≤ 1/𝑝(𝜆) for all sufficiently large 𝜆 ∈ ℕ.
Otherwise, we say it is noticeable, or equivalently when it is infinitely often at least 1/𝑝(𝜆).

Definition 3.1 (Computational indistinguishability). For two families of mixed states {𝜌𝜆}𝜆, {𝜎𝜆}𝜆,
we say that they are computationally indistinguishable (against 𝖡𝖰𝖯/𝗊𝗉𝗈𝗅𝗒), if for any QPT algo-
rithm 𝐷, there exists a negligible function 𝜀 such that for any security parameter 𝜆 and advice state
𝛼 = (𝛼𝜆)𝜆,

|Pr[𝐷(𝛼𝜆, 𝜌𝜆) = 1]− Pr[𝐷(𝛼𝜆, 𝜎𝜆) = 1]| ≤ 𝜀(𝜆).

Extending the standard cryptographic convention,the above definition considers adversaries with
non-uniform quantum advice. The definition can be adapted to the uniform setting by simply
requiring fixing 𝛼 = ⊥. We note that the reductions shown in this work are all uniform, or “advice
preserving”: given an adversary with some advice, the generated adversary uses the same advice.
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We now formally define the main object considered in this work, namely pairs of efficiently gen-
eratable mixed quantum states that are statistically far and yet computationally indistinguishable:

Definition 3.2. We call 𝜉 = (𝜉𝑏,𝜆) a pair of EFI states if it satisfies the following criteria:

1. Efficient generation: There exists a uniform QPT quantum algorithm 𝐴 that on input
(1𝜆, 𝑏) for some integer 𝜆 and 𝑏 ∈ {0, 1}, outputs the mixed state 𝜉𝑏,𝜆.

2. Statistically Far: TD(𝜉0,𝜆, 𝜉1,𝜆) as a function of 𝜆 is at least inverse polynomial.
3. Computational Indistinguishability: (𝜉0,𝜆)𝜆 is computationally indistinguishable to (𝜉1,𝜆)𝜆.

Here we require exact generation of the mixed state. Since we only care about the existence of
such object, this requirement does not make a difference. In particular, if we can approximately
synthesize a certain family of states with inverse-exponential fidelity, then taking the output of the
circuit directly would also satisfy the requirement.

4 Commitments and semi-honest oblivious transfer

4.1 Commitments

In this work, we without loss of generality focus on the canonical form of quantum commitment
schemes [Yan22, Definition 4]. A commitment scheme consists of two phases. In the commitment
phase of a canonical commitment scheme, Alice (the committer) chooses a bit 𝑏, and runs a uniform
QPT circuit 𝑄𝜆,𝑏 on all zeroes, which outputs two registers 𝖢,𝖱; she then proceeds to send the
register 𝖢 to Bob (the receiver). Later in the reveal phase, Alice sends the other register 𝖱 and
the bit 𝑏 to Bob; Bob accepts the opening if he performs 𝑄†

𝜆,𝑏 on two registers and measures all
zeroes in the computational basis. We now recall the requirements on the commitment schemes,
specialized to canonical forms for convenience. It will be convenient to define the commitment
message 𝜌𝜆,𝑏 := Tr𝖱(𝑄𝜆,𝑏 |0⟩⟨0|𝑄†

𝜆,𝑏).

Definition 4.1 (Computational hiding). A commitment scheme satisfies computational hiding, if
𝜌𝜆,0 is computationally indistinguishable to 𝜌𝜆,1.

We are going to consider a specific more restricted variant of statistical binding called honest
binding. We refer the readers to related works [YWLQ15, FUYZ20, MY21, Yan22] for a more
thorough discussion on this variant (and how it is equivalent to statistical binding for canonical
commitment schemes).

Definition 4.2 (Honest binding). A canonical commitment scheme satisfies honest computational
(resp. statistical) binding if for any auxiliary state |𝜓⟩ and any polynomial-time (resp. physically)
realizable unitary 𝑈 , we have that⃦⃦⃦(︁

𝑄𝜆,1 |0⟩⟨0|𝖢𝖱𝑄
†
𝜆,1 ⊗ 𝐼𝖹

)︁
(𝐼𝖢 ⊗ 𝑈𝖱𝖹) (𝑄𝜆,0 |0⟩𝖢𝖱 ⊗ |𝜓⟩𝖹)

⃦⃦⃦
2

is negligible.
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4.2 Oblivious transfer and semi-honest adversaries

In an oblivious transfer protocol, Bob (the sender) chooses two bits 𝑥0, 𝑥1 to send to Alice, and
Alice (the receiver) chooses the bit 𝑏 to receive. At the end of the protocol, Alice is able to recover
𝑥𝑏. Here, we assume the protocol is able to transmit 𝑥𝑏 with probability 1.

Here, we say a (quantum) party is semi-honest (or secure against purified adversaries, analogous
to the classical honest-but-curious security), if they follow the protocol (without abort) except that
they can purify (without loss of generality) all measurements. We in addition also allow Bob (the
sender) to purify his randomness for 𝑥0, 𝑥1 if he was to sample them randomly; on the other hand, we
require Alice (the receiver) to specify a classical input to make it easier to define security. (Looking
ahead, this is also needed to invoke the semi-honest inefficient attack [CGS16].) At the end, they
output their residual state as their view for the distinguisher as usual.

Definition 4.3 (Statistical security against semi-honest Alice). We say an oblivious transfer protocol
is 𝑃 *

𝐴-secure against semi-honest Alice, if for every bits 𝑏, 𝑐, at the end of the protocol with Alice’s
input being 𝑏, a semi-honest Alice’s view when 𝑥𝑏 = 𝑐 and 𝑥1−𝑏 = 0 is at most 𝑃 *

𝐴-close to that
when 𝑥𝑏 = 𝑐 and 𝑥1−𝑏 = 1 in trace distance.

Definition 4.4 (Statistical security against semi-honest Bob). We say an oblivious transfer protocol
is 𝑃 *

𝐵-secure against semi-honest Bob, if for every possible (purified) Bob’s inputs (meaning an
arbitrary bipartite quantum state where the first part is a qubit indicating the input choice bit), at
the end of the protocol, a semi-honest Bob’s view when 𝑏 = 0 is at most 𝑃 *

𝐵-close to that when 𝑏 = 1
in trace distance.

Computational security against semi-honest Alice and Bob can be similarly defined, except
considering these two views to be computationally indistinguishable instead of statistically indis-
tinguishable.

We recall the impossibility due to Chailloux, Gutoski, and Sikora showing that oblivious transfer
protocols that are statistically secure against both parties do not exist. While the “semi-honest”
definition they have is different from here, we could open the proof and check that the cheating
strategies constructed there are indeed semi-honest according to our definition.

Theorem 4.5 ([CGS16, Theorem 1.1]). For any oblivious transfer protocol, it holds that 2𝑃 *
𝐵+𝑃

*
𝐴 ≥

2, where Alice chooses the choice bit uniformly at random (classically) and Bob chooses the two bits
as uniform superposition (12 (|00⟩+ |01⟩+ |10⟩+ |11⟩)), and 𝑃 *

𝐴 is the best probability that a semi-
honest Alice is able to predict Bob’s choice correctly, and 𝑃 *

𝐵 is the best probability that a semi-honest
Bob is able to predict both bits being sent by Alice correctly.

We briefly recall the cheating strategies constructed in their proof. Alice’s strategy is the fol-
lowing [CGS16, Section 2.1]: she randomly chooses 𝑏 and then follows the protocol semi-honestly
according to our definition; at the end, she performs a gentle measurement to learn 𝑥𝑏 (it is gen-
tle since by completeness she is supposed to be able to learn 𝑥𝑏 with almost certainty), and then
performs the Helstrom measurement (Theorem 2.2) to learn 𝑥1−𝑏. Similarly, Bob’s strategy is the
following [CGS16, Section 2.2]: he follows the protocol semi-honestly, purifying all measurements
including the uniform sampling of 𝑥0, 𝑥1; at the end, he performs a post-processing to try to guess
𝑏. Let the success probability of Alice and Bob be 𝑝𝑎, 𝑝𝑏 respectively. They establish that for these
two strategies, 2𝑝𝑏 + 𝑝𝑎 ≥ 2, and thus the theorem follows.
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4.3 Equivalence theorem

Theorem 4.6. The following assumptions are equivalent.

1. Existence of EFI states.
2. Existence of statistically binding (canonical-form) commitment schemes.
3. Existence of commitment schemes.
4. Existence of semi-honest oblivious transfer.

Proof. 1⇒ 2 is shown in Lemma 4.7. 3⇒ 4 is shown in Lemma 4.9. 4⇒ 1 is shown in Lemma 4.10.
Finally, 2⇒ 3 is trivial.

Lemma 4.7. Assuming the existence of pairs of EFI states, there exists statistically binding com-
mitments.

Proof. Let 𝐴0, 𝐴1 be the two quantum channels that generate two parts of the EFI state pair
respectively. Without loss of generality, we assume that their statistical distance is negligibly close
to 1, in particular, at least 1− 𝑒−𝜆/2 — by Corollary 2.3, let 𝛿 = TD(𝐴0(1

𝜆), 𝐴1(1
𝜆)), then taking

𝜆/𝛿 copies of their outputs suffices since 1/𝛿 by assumption is polynomial; on the other hand,
computational indistinguishability still holds by a straightforward hybrid argument.

Let the unitary part of 𝐴𝑖(1
𝜆) be 𝐴𝑖 for 𝑖 = 0, 1, which acts on registers 𝖢𝖱 where the output

register is 𝖢 and the auxiliary register is 𝖱. The construction of canonical bit commitment scheme
is simply running the unitary part as specified above.

It is easy to see that this scheme satisfies computational hiding since by construction 𝐴𝑏(1
𝜆) =

Tr𝖠

(︁
𝐴𝑏 |0⟩⟨0|𝐴†

𝑏

)︁
and thus Bob after the commitment phase sees exactly 𝐴𝑏(1

𝜆). On the other
hand, since by Fact 2.1,

𝐹
(︁
𝐴0(1

𝜆), 𝐴1(1
𝜆)
)︁
≤

√︁
1− (TD(𝐴0(1𝜆), 𝐴1(1𝜆)))

2 ≤
√
2𝑒−𝜆/4

is negligible, it also satisfies honest-binding by Uhlmann’s theorem. Finally, it is known that honest
binding for canonical form commitment schemes do imply the more general statistical binding
property [Yan22, Theorems 1 and 2].

To construct semi-honest oblivious transfer from commitments, we need the following lemma
by Yan, which is originally developed to use computational binding property of a canonical form
commitment in order to construct statistically binding quantum commitments from statistically
hiding quantum commitments. On a high level, it reduces the collapsing property of an honest
commitment to the computational binding property.

Lemma 4.8 (Computational collapse theorem [Yan22, Theorem 7]). Let 𝑄 a canonical computation-
ally binding quantum bit commitment scheme. Then for every polynomial 𝑚, and every normalized
quantum state

∑︀
𝑠∈{0,1}𝑚 𝛼𝑠 |𝑠⟩ |𝜓𝑠⟩ (of polynomial length), every projector Π,⃒⃒⃒⃒

⃒⃒
⃦⃦⃦⃦
⃦⃦Π ∑︁

𝑠∈{0,1}𝑚
𝛼𝑠 |𝑠⟩ (𝑄𝑠 |0⟩)𝖢𝖱⊗𝑚 |𝜓𝑠⟩

⃦⃦⃦⃦
⃦⃦
2

−
∑︁

𝑠∈{0,1}𝑚
‖𝛼𝑠Π |𝑠⟩ (𝑄𝑠 |0⟩)𝖢𝖱⊗𝑚 |𝜓𝑠⟩‖2

⃒⃒⃒⃒
⃒⃒

is negligible, given that Π does not act on the registers 𝖢⊗𝑚 and is efficient.
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Lemma 4.9. Assuming the existence of commitment schemes, there exists a two-message semi-
honest quantum oblivious transfer.

Proof. The semi-honest oblivious transfer scheme is the following. The sender, on input 𝑥0, 𝑥1, sends
|𝑥0⟩ ⊗𝐻 |𝑥1⟩; in other words, the sender encodes 𝑥0 in the standard basis and 𝑥1 in the Hadamard
basis and send these two qubits to the receiver. The receiver measures both qubits in standard basis
if 𝑏 = 0, or in Hadamard basis if 𝑏 = 1. Let 𝑥0, 𝑥1 be the measurement outcomes. The receiver
commits to both of them using the commitment scheme in canonical form4, and outputs 𝑥𝑏.

Semi-honest security against semi-honest sender is easy to see, by a simple hybrid argument
invoking the hiding property of the commitment twice, replacing each commitment to committing
to 0; furthermore, this reduction even extends if the sender chooses an arbitrary purified input.
Semi-honest security against receiver follows immediately from collapsing. Formally, without loss
of generality, we assume the choice bit 𝑏 = 0 and thus the receiver should measure in the standard
basis. As the goal of the adversary is to extract 𝑥1, we can for simplicity remove 𝑥0 from the
view. The second qubit (denoted by register 𝖷) the receiver sends is 1√

2
(|0⟩+ (−1)𝑥1 |1⟩). After

the purified protocol concludes, the probability of an efficient distinguisher outputting 1 is⃦⃦⃦⃦
⃦⃦Π 1√

2

∑︁
𝑦∈{0,1}

(−1)𝑥1𝑦 |𝑦⟩ (𝑄𝑦 |0⟩)𝖢𝖱 |𝜓𝑦⟩

⃦⃦⃦⃦
⃦⃦
2

for some auxiliary states |𝜓0⟩ , |𝜓1⟩ (possibly containing the distinguisher’s advice and auxiliary
registers), where Π denotes the projector for the distinguisher outputting 1 acting on everything
but the 𝖢 register. By the computational collapse theorem, this is negligibly close to

1

2

∑︁
𝑦∈{0,1}

⃦⃦
Π |𝑦⟩ (𝑄𝑦 |0⟩)𝖢𝖱 |𝜓𝑦⟩

⃦⃦2
,

which is independent of 𝑥1. This concludes the proof.

We remark that we construct semi-honest OT here instead of considering the CLS scheme
directly because (1) semi-honest OT suffices for the following lemma but also (2) as observed by
Yan [Yan22], it is not clear whether the CLS scheme indeed satisfy malicious (indistinguishability)
security when instantiated with a commitment scheme that is only computationally binding but
not statistically binding nor extractable, due to the difficulties in using computational binding for
a quantum commitment scheme.

Also this semi-honest OT protocol fully intentionally ends with a receiver message to erase the
information about the other bit from the distinguisher. For a classical OT, if the last message comes
from a receiver, it can always be removed without impacting the scheme (semi-honest or malicious);
this is certainly not the case here.

Finally, this protocol has the minimum round complexity for semi-honest OT. This can be seen
from the following argument. Even with trusted setup, 1-message protocols are impossible: the
message has to be sent by the sender as otherwise the receiver cannot recover the output; however,
this means that a semi-honest receiver can always extract both bits efficiently via correctness and
gentle measurement. Without trusted setup, 1-round protocols (two parties exchanging a single

4We use canonical form only because we want the commitment to be non-interactive. Even if it is an interactive
quantum commitment, everything else could still be extended minus the round complexity.
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message simultaneously) are also impossible: this can be seen as the receiver message is useless and
thus reduces to the impossibility above. Finally, if the sender and the receiver share two EPR pairs,
then there is a variant of the protocol above that is 1-round: the receiver is the same but acts on
his halves of EPR pairs instead of sender’s message, and the sender measures his part of EPR pairs,
the first qubit in standard basis and the second qubit in Hadamard basis, obtaining 𝑦0, 𝑦1, and send
𝑥0 ⊕ 𝑦0, 𝑥1 ⊕ 𝑦1 to the receiver. The correctness and security of this protocol can be argued with
the same proof techniques as above.

Lemma 4.10. Assuming the existence of semi-honest oblivious transfer, there exists a pair of EFI
states.

Proof. Let us consider both parties to be semi-honest, i.e. purifying all the measurements. Then
their final state would be given by 𝑈𝑥0,𝑥1,𝑏 |0⟩𝖠𝖡, for some efficient unitaries 𝑈𝑥0,𝑥1,𝑏 for 𝑥0, 𝑥1, 𝑏 =
0, 1, and at the end Alice holds register 𝖠 and Bob holds register 𝖡. By Theorem 4.5, we know
that either 𝑃 *

𝐴 ≥
2
3 or 𝑃 *

𝐵 ≥
2
3 for every security parameter 𝜆. In particular, either a semi-honest

Alice who chooses the choice bit uniformly at random could achieve 𝑃 *
𝐴, or a semi-honest Bob who

chooses the two input bits to be uniform superposition could achieve 𝑃 *
𝐵.

Fix any security parameter 𝜆. If 𝑃 *
𝐴 ≥

2
3 , we construct EFI generators 𝐺𝑦 for 𝑦 = 0, 1 that

outputs
1

2
· Tr

𝖡

(︂
𝔼
𝑥

[︁
|0⟩⟨0| ⊗ 𝑈𝑥,𝑦,0 |0⟩⟨0|𝑈 †

𝑥,𝑦,0 + |1⟩⟨1| ⊗ 𝑈𝑦,𝑥,1 |0⟩⟨0|𝑈 †
𝑦,𝑥,1

]︁)︂
.

Note that 𝐺𝑦 is exactly Alice’s view when she chooses a random choice bit (and remembers the bit
in the first register), and Bob sends 𝑦 in the other slot not chosen by Alice, and thus computational
indistinguishability follows by semi-honest security of oblivious transfer. On the other hand, they
are statistically far since there exists a distinguisher that achieves advantage at least 1

6 by our
assumption.

Otherwise if 𝑃 *
𝐵 ≥

2
3 , we construct EFI generators 𝐻𝑏 for 𝑏 = 0, 1 that outputs Tr𝖠(|𝜑𝑏⟩⟨𝜑𝑏|),

where |𝜑𝑏⟩ is defined to be
1

2

∑︁
𝑥,𝑦

(𝑈𝑥,𝑦,𝑏 |0⟩)𝖠𝖡 ⊗ |𝑥⟩ |𝑦⟩ .

Note that 𝐻𝑏 is exactly Bob’s view when Alice wants to choose the slot 𝑏, and thus computational
indistinguishability follows by semi-honest security of oblivious transfer. On the other hand, they
are statistically far since there exists a distinguisher that achieves advantage at least 1

6 by our
assumption.

Putting everything together, we get that 𝐺0 ⊗𝐻0 and 𝐺1 ⊗𝐻1 generate EFI pairs: statistical
farness follows as at least one of 𝐺𝑏, 𝐻𝑏 have trace distance ≥ 1

6 for all security parameters, and
computational indistinguishability follows from a direct hybrid argument.

5 Dichotomy for secure two party computations

In this section, we study secure two party computations with quantum parties for classical func-
tionalities. A secure two-party computation protocol consists of two (interactive uniform quantum)
algorithms 𝐴,𝐵, where they receive (implicitly) the security parameter 𝜆 and their respective in-
puts 𝑎, 𝑏, take turns to run and exchange a message register back and forth; in the end, we denote
their joint state as ⟨𝐴,𝐵⟩ (𝑎, 𝑏). We can also denote Alice’s state to be ⟨𝐴,𝐵⟩ (𝑎, 𝑏)𝐴 and Bob’s to
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be ⟨𝐴,𝐵⟩ (𝑎, 𝑏)𝐵. Without loss of generality, we consider the protocol so that only Bob gets the
output and otherwise they do not learn any other information [BMM99, Definition 1]. In this case,
⟨𝐴,𝐵⟩ (𝑎, 𝑏) would simply be (⊥, 𝑧) as Alice outputs nothing and Bob outputs the evaluated result
𝑧. In particular, this evaluated result could be the output of any efficient quantum channel [DNS12].
We can also define the output state ⟨𝐴*, 𝐵⟩ (𝑎, 𝑏) for a malicious Alice (and analogously for Bob),
where the malicious Alice can output anything she wants and not necessarily ⊥.

We now describe the definition for malicious simulation security.

Definition 5.1 (Malicious simulation security). Let 𝑓 = (𝑓𝜆)𝜆 be a quantum channel computable by
a polynomial-size quantum circuit. A protocol computing 𝑓 satisfies malicious simulation security for
Alice, if the following holds. For any (malicious) QPT algorithm 𝐴*, there exists a QPT simulator 𝑆
such that for any QPT distinguisher 𝐷, there exists a negligible function 𝜀 such that for all security
parameter 𝜆, non-uniform bipartite advice state 𝜌𝐴𝐷, and Bob’s input 𝑏 (permissible by 𝑓𝜆),

|Pr[𝐷(⟨𝐴*, 𝐵⟩ (𝜌𝐴, 𝑏), 𝜌𝐷) = 1]− Pr[𝐷(𝑆𝑓 (𝜌𝐴, 𝑏), 𝜌𝐷) = 1]| ≤ 𝜀(𝜆),

where 𝑆𝑓 (𝜌𝐴, 𝑏) is the following algorithm:

• The two-stage algorithm 𝑆(1𝜆, 𝜌𝐴) is run, which outputs some 𝑎*.
• Compute (𝑧𝑎, 𝑧𝑏)← 𝑓𝜆(𝑎

*, 𝑏) to be the output of 𝑓 . (In our setup, 𝑧𝑎 = ⊥ but 𝑧𝑏 is the actual
output.)

• Finish executing 𝑆 with input 𝑧𝑎, which in the end outputs a certain state 𝜎.
• Output (𝜎, 𝑧𝑏).

Malicious simulation security for Bob can be defined in the same way as above, except exchanging
the role of Alice and Bob.

We say the malicious simulation security is statistical if it holds even against any unbounded
algorithms 𝐴* and 𝐷, and in this case there need not be a running time bound on the simulator.

In this work, we focus on secure two-party computations although the consequences also gen-
eralize to secure multi-party computations where possibly more than two parties are involved and
all of them could receive outputs. We refer the readers to the prior work [BCKM21] for related
literature.

Combining our equivalence theorem from before and existing work constructing one-sided statis-
tically secure 2PC from statistically binding (quantum) commitments [BCKM21, AQY21, WW06],
we immediately get the following corollary.

Corollary 5.2. Assuming EFI state pairs exist, then any 𝖯/𝗉𝗈𝗅𝗒 functionalities can be computed
with full malicious security and one-sided statistical security.

For the rest of the section, we show EFI states are also implied by non-trivial 2PC protocols.
For that purpose, we focus on 2PC protocols for finite functionalities. By “finite”, we mean that the
function to be computed is a fixed-size function independent of the security parameter, say Yao’s
millionaires’ problem.

Definition 5.3 (Insecure minor). Let 𝑆1, 𝑆2, 𝑆3 be finite sets and 𝑓 : 𝑆1 × 𝑆2 → 𝑆3 be a (finite)
function. Then we say 𝑓 contains an insecure minor, if there exists 𝑥0, 𝑥1 ∈ 𝑆1 and 𝑦0, 𝑦1 ∈ 𝑆2 such
that 𝑓(𝑥0, 𝑦0) = 𝑓(𝑥1, 𝑦0) and 𝑓(𝑥0, 𝑦1) ̸= 𝑓(𝑥1, 𝑦1).

18



Lemma 5.4 ([BMM99, Claim 1]). If a function 𝑓(·, ·) does not contain an insecure minor, then
there is a classical one-message perfectly secure computation protocol for 𝑓 .

Lemma 5.5. If a function 𝑓(·, ·) contains an insecure minor, then we can build an semi-honest OT
protocol from an semi-honest secure computation protocol for 𝑓 .

Proof. This essentially follows from the work of Beimel, Malkin, and Micali [BMM99, Claim 3].
Since the original proof is black-box, it also immediately generalizes to our setting when the parties
are quantum. As the precise definition of semi-honest is different in our case, we give the proof for
completeness.

Let 𝑥0, 𝑥1, 𝑦0, 𝑦1 be the values guaranteed by the insecure minor, and let Π𝑓 be the semi-honest
secure computation protocol for 𝑓 . The (semi-honest) oblivious transfer protocol described in that
proof works as follows:

• (Recall) Alice gets as input 𝑎0, 𝑎1 and Bob gets as input a choice bit 𝑏.
• Execute Π𝑓 on input 𝑥𝑎0 , 𝑦1−𝑏, and Bob gets output 𝑧0.
• Execute Π𝑓 on input 𝑥𝑎1 , 𝑦𝑏, and Bob gets output 𝑧1.
• Bob outputs 0 if 𝑧𝑏 = 𝑓(𝑥0, 𝑦1), otherwise Bob outputs 1.

Correctness follows directly since the construction is black-box. A semi-honest Alice’s view only
consists of her semi-honest view from two protocol executions, and thus Alice does not learn anything
about 𝑏. Similarly, a semi-honest Bob’s view only consists of his semi-honest view from two protocol
executions, and thus semi-honest security also follows from the property of insecure minor and Alice’s
privacy against semi-honest Bob for Π𝑓 .

Combining this with Theorem 4.5, we immediately get the following:

Corollary 5.6. If a function 𝑓(·, ·) contains an insecure minor, then 𝑓 cannot be computed by
statistically-secure semi-honest protocols.

Combining our equivalence theorem with Lemmas 5.4 and 5.5, we obtain the following dichotomy
theorem. We shall remark that this theorem, similar to the classical proof [BMM99], is non-black-
box in the use of the functionalities [CK88, Kil91, KKMO00] due to the use of the equivalence
theorem.

Theorem 5.7. If there is a semi-honest two-party secure computation protocol for a classical finite
functionality 𝑓(·, ·), then either 𝑓 can be computed perfectly securely in a single message or EFI
states exist.

6 Quantum computational zero knowledge proofs

The existence of one-way functions implies that all of 𝖯𝖲𝖯𝖠𝖢𝖤 admit a computational zero knowledge
proof [BGG+88, Sha92], and 𝖭𝖯 admits computational zero-knowledge proofs where proofs can be
efficiently generated given a witness for membership [GMW86]. Furthermore, the existence of
computational zero-knowledge proofs for any non-trivial (i.e., average-case easy) language implies
the existence of (infinitely-often) one-way functions [OW93]. In this section, we use our equivalence
theorem to establish the quantum analogue of these classical results.
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Definition 6.1. A language 𝐿 is in 𝖰𝖢𝖹𝖪 if there is a (quantum) interactive protocol between an
unbounded prover and a QPT verifier (specified by an interactive quantum Turing machine 𝑉 ) such
that the following holds:

• Completeness: For any 𝑥 ∈ 𝐿, there is an unbounded prover strategy 𝑃 that would make 𝑉
accept with probability at least 1− 2|𝑥|.

• Soundness: For any 𝑥 ̸∈ 𝐿 and any unbounded prover strategy, 𝑉 accepts with probability at
most 2|𝑥|.

• Computational zero knowledge: For any malicious QPT verifier 𝑉 *, there exists a QPT sim-
ulator 𝑆 such that for any QPT distinguisher 𝐷 and non-uniform bipartite advice state 𝜌𝐴𝐷,
there exists a negligible function 𝜀 such that for any 𝑥 ∈ 𝐿,

|Pr[𝐷(⟨𝑃, 𝑉 *(𝜌𝐴)⟩ (𝑥, 𝑥)𝑉 * , 𝜌𝐷) = 1]− Pr[𝐷(𝑆(𝑥, 𝜌𝐴), 𝜌𝐷) = 1]| ≤ 𝜀(|𝑥|).

We can also consider a (much) weaker variant of this zero knowledge requirement called compu-
tationally zero knowledge against purified verifiers with abort (or “honest verifier”), where we restrict
the malicious 𝑉 * to only purifying his state and aborting after any fixed number of rounds5. We
call the corresponding class 𝖰𝖢𝖹𝖪𝖧𝖵, similar to 𝖰𝖲𝖹𝖪𝖧𝖵 with respect to 𝖰𝖲𝖹𝖪 for statistical zero
knowledge [Wat02].

Note that here, unlike semi-honest OT where we disallow a semi-honest party to prematurely
abort, here we must allow a purified verifier to abort prematurely (this makes the complexity class
smaller). This is because otherwise we can even show the corresponding class (for even quantum
perfect zero knowledge) is trivially equal to 𝖨𝖯, by simply asking the 𝖨𝖯 verifier at the end to destroy
all the other information he has learned by measuring them in Hadamard basis and then returning
them to the prover.

Fact 6.2 ([Sha92, Wat02, JJUW11] and Theorem 6.7). 𝖡𝖰𝖯 ⊆ 𝖰𝖲𝖹𝖪 = 𝖰𝖲𝖹𝖪𝖧𝖵 ⊆ 𝖰𝖢𝖹𝖪 =
𝖰𝖢𝖹𝖪𝖧𝖵 ⊆ 𝖰𝖨𝖯 = 𝖨𝖯 = 𝖯𝖲𝖯𝖠𝖢𝖤.

6.1 With EFI, everything provable is provable in QCZK

We first consider 𝖰𝖢𝖹𝖪 protocols with efficient provers (in which case the largest complexity class we
can consider is 𝖰𝖬𝖠), and then move on to 𝖰𝖢𝖹𝖪 with inefficient provers. The work by Broadbent
and Grilo on 𝖰𝖢𝖹𝖪 [BG20] show how to build a commit-and-open zero knowledge protocol for 𝖰𝖢𝖹𝖪
using a commitment scheme, and thus combining it with a quantum commitment scheme, we get a
𝖰𝖢𝖹𝖪 proof, but it requires multiple copies of the advice to boost the soundness to negligible. We
now strengthen this to show that we can achieve the same thing from the same assumption, but
with a single copy of the witness.

Theorem 6.3. If EFI states exist, then 𝖰𝖬𝖠 ⊆ 𝖰𝖢𝖹𝖪. Furthermore, the protocol has an efficient
prover given access to only a single copy of the witness and negligible soundness.

Proof. By our equivalence theorem, we get maliciously-secure quantum 2PC for any quantum func-
tionality (any quantum channel) with one-sided statistical security via existing works [DNS12].

5Formally, we require that for a 𝑘-round protocol, there exists a simulator 𝑆 whose output is computationally
indistinguishable to 𝜌1 ⊗ · · · ⊗ 𝜌𝑘, where 𝜌𝑖 for 𝑖 ∈ [𝑘] is the purified verifier’s state immediately after receiving 𝑖-th
message from the prover.
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Formally, the protocol is simply the prover and the verifier engaging in the following secure two-
party computation for the following quantum functionality that is statistically secure against the
prover:

• Prover’s input: The witness state.
• Verifier’s input: None.
• The functionality computes whether the amplified verifier (so that the completeness-soundness

gap is exponentially close to 1 [MW05]) accepts the witness. If so then output 1 to the verifier,
otherwise output 0. The prover gets no output.

Completeness follows from the correctness of 2PC. Soundness follows from the statistical security of
2PC; in particular, we can extract the witness used by the prover and have the guarantee that this
extracted witness passes verification with probability negligibly different from the success probability
of the original malicious prover. For zero knowledge, we simply tell the 2PC simulator to simulate
the malicious verifier’s view given the ideal functionality outputting 1. Since the amplified verifier
has completeness exponentially close to 1, the output of 2PC is unchanged with overwhelming
probability, and thus invoking the security of 2PC, this change is computationally indistinguishable.

Theorem 6.4. If EFI states exist, then 𝖰𝖢𝖹𝖪 = 𝖰𝖨𝖯.

Proof. By our equivalence theorem, we get a maliciously-secure quantum 2PC for any (classical)
reactive functionality with one-sided statistical security via existing works [CGT95, IPS08]. By
reactive, we mean that the functionality can interact with the two parties and keep private states.
Given any language 𝐿 ∈ 𝖰𝖨𝖯, let Π be a (classical many-round) Merlin–Arthur interactive proof
protocol for 𝐿 with completeness 1. The zero knowledge protocol is simply the prover and the verifier
engaging in the following secure two-party computation for the following reactive functionality that
is statistically secure against the prover:

• Π is executed in the following way: for every prover message, the functionality remembers
the message and only sends ⊤ to the verifier; and for every verifier message, the functionality
forwards it to the prover. (Both parties are able to participate in the protocol as usual since
the prover sees all the messages and the verifier only needs to flip random coins.)

• At the end, if the verifier for Π accepts the transcript, we output 1 to the verifier; otherwise
we output 0. The prover gets no output.

Similarly as before, completeness follows from completeness of Π and the correctness of 2PC. Sound-
ness follows from the soundness of the original 𝖨𝖯 protocol and the statistical security of 2PC; in
particular, we can use the 2PC simulator to come up with a malicious prover for Π and have the
guarantee that this malicious prover has success probability negligibly different from the success
probability of the original malicious prover. For zero knowledge, we simply invoke the 2PC simula-
tor for the verifier, and tell the simulator that the ideal functionality outputs 1. Since the protocol
has completeness 1, the output of 2PC is unchanged no matter what the verifier’s input is, and thus
invoking the security of 2PC, this change is computationally indistinguishable.

6.2 EFI pairs are essential for non-trivial QCZK

Theorem 6.5. If there is a language in 𝖰𝖢𝖹𝖪𝖧𝖵 that is hard on average for 𝖡𝖰𝖯 for some 𝖡𝖰𝖯-
samplable distribution 𝐷, i.e. any 𝖡𝖰𝖯 algorithm has negligible success probability in deciding 𝐿 on
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average over 𝐷 and the algorithm’s randomness, then EFI state pairs (secure against uniform 𝖡𝖰𝖯
adversaries) exist.

As is the classical case [OW93], the other direction is more involved. Since we could not use one-
way functions like the classical proof, we instead use ideas from the works of Ong and Vadhan [Vad06,
OV08]. On a high level, they also study the equivalence between zero-knowledge and commitments in
the classical setting, but their proof goes through universal one-way hash functions. We adapt their
high-level proof ideas but replace certain ingredients with quantum techniques originally developed
by Watrous when studying quantum statistical zero knowledge proofs [Wat02]. In particular, we
are going to take their idea of considering instance-dependent probability ensembles/commitments,
and propose the quantum analogue of instance-dependent probability ensembles in the following
lemma, showing the equivalence between a language being inside 𝖰𝖢𝖹𝖪 and the existence of an
instance-dependent computational indistinguishability for that language6.

Lemma 6.6. If a language 𝐿 admits a 𝖰𝖢𝖹𝖪𝖧𝖵 proof, then there are instance-dependent mixed
states {𝜉𝑏,𝑥}𝑏,𝑥 for 𝐿 where 𝑏 = 0, 1 and 𝑥 ∈ {0, 1}* such that:

• There is a uniform QPT procedure that on input 𝑏, 𝑥 generates 𝜉𝑏,𝑥.
• For every nonuniform QPT distinguisher 𝐷, there is a negligible function 𝜀 such that for all
𝑥 ∈ 𝐿,

|Pr[𝐷(𝑥, 𝜉0,𝑥) = 1]− Pr[𝐷(𝑥, 𝜉1,𝑥) = 1]| ≤ 𝜀(|𝑥|).

• There is some constant 𝑐 such that for every 𝑥 ̸∈ 𝐿, TD(𝜉0,𝑥, 𝜉1,𝑥) ≥ 𝑐.

Proof. The mixed states that we consider is due to Watrous [Wat02, Theorem 7], who introduced
these states while finding a complete problem for 𝖰𝖲𝖹𝖪. We are given a 𝑘-round computational
zero knowledge protocol, where each round consists of the verifier sending a message followed by the
prover sending a response. In Watrous’s work, 𝛾0 and 𝛾1 are defined to be 𝛾0 = 𝜌1 ⊗ · · · ⊗ 𝜌𝑘 and
𝛾1 = 𝜉1 ⊗ · · · ⊗ 𝜉𝑘, where 𝜌𝑖 corresponds to the simulated purified verifier’s state if he aborts at the
end of round 𝑖 and then trace out the prover’s message, and 𝜉𝑖 corresponds to the simulated purified
verifier’s state if he aborts immediately before sending the 𝑖-th round’s message and then trace
out the verifier’s message (more formally, this is taken to be the simulated output after (𝑖 − 1)-th
message from the prover, apply the verifier’s action in 𝑖-th round and then trace out the message
register). Efficient generation is immediate and trace distance for NO instances follows from the
soundness of the protocol as in the case for 𝖰𝖲𝖹𝖪 [Wat02, Lemma 8].

Finally, computational indistinguishability for YES instances follows from a straightforward
hybrid argument, invoking the computational zero knowledge property. This is because in the
honest execution (for a YES instance), the verifier’s (unsimulated) states corresponding to 𝜌𝑖 and
𝛾𝑖 are identical since they only differ by an action from the prover, which does not act on the
verifier’s private register that we are not outputting. More formally, let 𝛾2 = 𝜓1 ⊗ · · · ⊗ 𝜓𝑘, where
𝜓𝑖 is the purified verifier’s state after 𝑖 rounds of interaction with the real prover. By semi-honest
zero knowledge, we immediately have that 𝛾0 is computationally indistinguishable to 𝛾2. Invoking
semi-honest zero knowledge again, we have that 𝛾1 is computationally indistinguishable to a state
that is identical to 𝛾2, by our discussion above. This completes the proof via hybrid argument.

6We only formally show one direction, but the other direction follows the same proof as the classical case via
constructing zero-knowledge proofs from instance-dependent commitments.
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We first sketch how this object is powerful enough for us to recover the following auxiliary
unconditional result about 𝖰𝖢𝖹𝖪𝖧𝖵, matching the classical analogue proven by Vadhan [Vad06].

Theorem 6.7. 𝖰𝖢𝖹𝖪𝖧𝖵 = 𝖰𝖢𝖹𝖪 holds unconditionally.

Proof sketch. By definition, 𝖰𝖢𝖹𝖪 ⊆ 𝖰𝖢𝖹𝖪𝖧𝖵. Using the lemma above with Lemma 4.7, for any
language 𝐿 ∈ 𝖰𝖢𝖹𝖪𝖧𝖵, we obtain instance-dependent quantum commitments, which is statistically
binding when 𝑥 is not in the language and computationally hiding when 𝑥 is in the language. This
is sufficient to obtain an instance-dependent 2PC for reactive functionalities via known compilers
[BCKM21, AQY21, WW06, CGT95, IPS08], where it is statistically secure against the prover when
𝑥 is not in the language and computationally secure against the verifier when 𝑥 is in the language.
This can be then plugged into Theorem 6.4 to give a 𝖰𝖢𝖹𝖪 proof for 𝐿.

Proof of Theorem 6.5. Assume that there exists 𝐿 that admits a 𝖰𝖢𝖹𝖪 proof but (𝐿,𝐷) is hard
on average against 𝖡𝖰𝖯 for some efficiently samplable distribution 𝐷. By Lemma 6.6, we get
instance-dependent mixed states.

Since 𝐷 is hard-on-average, it is easy to see that YES and NO instances are of at least 1/3
fraction for all sufficiently large instance lengths, as otherwise a trivial machine that outputs a
constant decides this language with a noticeable advantage (infinitely often). Given that this is the
case, it is easy to see that the mixed states (𝑥, 𝜉𝑏,𝑥) taken average over this distribution for 𝑥 is still
statistically far.

We now assume for contradiction that this EFI state pair does not satisfy computational in-
distinguishability, i.e. there is a 𝖡𝖰𝖯 algorithm 𝑀 that distinguishes (𝑥, 𝜉0,𝑥) from (𝑥, 𝜉1,𝑥). In
particular, without loss of generality that it outputs 1 with probability 𝑐(|𝑥|) when 𝑏 = 1 but 𝑠(|𝑥|)
when 𝑏 = 0 over |𝑥|, where 𝑐− 𝑠 is noticeable.

We now give a QPT algorithm for 𝐿: on input 𝑥, generate the instance-dependent mixed states
with 𝑏 uniformly chosen from random; if 𝑀 correctly predicts 𝑏 then reject, otherwise accept. When
the input is a YES instance, we accept correctly with probability within

[︀
1
2 − 𝜀(|𝑥|),

1
2 + 𝜀(|𝑥|)

]︀
for

some universal negligible function 𝜀 as otherwise we can use this algorithm to break computational
indistinguishability of the instance-dependent mixed states. Since the algorithm predicts correctly
with non-negligible probability over the entire domain of 𝐷, it must be the case that almost all the
prediction advantages are from NO instances7. Therefore, for NO instances, this algorithm correctly
rejects with probability noticeably more than 1

2 . This breaks the average-case hardness of (𝐿,𝐷), a
contradiction.

Theorem 6.8. If 𝖡𝖰𝖯 ̸= 𝖰𝖢𝖹𝖪 then auxiliary-input EFI state pairs exist, where the definition of
auxiliary-input EFI state pairs is the following:

1. Efficient generation: There exists a uniform QPT quantum algorithm 𝐴 that on input (𝑥, 𝑏)
outputs the mixed state 𝜉𝑏,𝑥.

2. Statistically Far: There exists an infinite set 𝑆 ⊆ {0, 1}* and some polynomial 𝑝, such that
for any 𝑥 ∈ 𝑆, we have that TD(𝜉0,𝑥, 𝜉1,𝑥) ≥ 1/𝑝(|𝑥|).

3. Computational Indistinguishability: For any uniform QPT distinguisher 𝐷 and every
polynomial 𝑞, there exists 𝑥 ∈ 𝑆 such that |Pr[𝐷(𝑥, 𝜉0,𝑥) = 1]− Pr[𝐷(𝑥, 𝜉1.𝑥) = 1]| ≤ 1/𝑞(|𝑥|).

7We cannot argue this fact directly from the non-existence of EFI states since the distribution conditioning on the
input being a NO instance might not be efficiently samplable.
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Proof. The proof works similarly as before. Given a 𝖰𝖢𝖹𝖪 language 𝐿, we start by constructing
instance-dependent mixed states 𝜉𝑏,𝑥. Consider 𝑆 = �̄�. If 𝑆 is finite then 𝐿 is trivial then we
are done. Otherwise, by the non-existence of auxiliary-input EFI states, we get that there exists
a uniform 𝖡𝖰𝖯 distinguisher 𝐷 such that for every 𝑥 ∈ 𝑆, the 𝖡𝖰𝖯 distinguisher distinguishes
these two distributions with inverse polynomial probability. Using the same 𝖡𝖰𝖯 decider as the
proof above, we get that this decider (after parallel repetition and majority vote) is correct with
probability at least 2/3 except on finitely many instances. Therefore, 𝐿 ∈ 𝖡𝖰𝖯.
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