
Towards a Fast and Efficient Hardware
Implementation of HQC

Sanjay Deshpande1, Mamuri Nawan2, Kashif Nawaz2, Jakub Szefer1 and
Chuanqi Xu1

1CASLAB, Department of Electrical Engineering, Yale University, New Haven, USA,
sanjay.deshpande@yale.edu,chuanqi.xu@yale.edu,jakub.szefer@yale.edu

2Technology Innovation Institute, Abu Dhabi, UAE,
mamuri@tii.ae,kashif.nawaz@tii.ae

Abstract. This work presents a hardware design for constant-time implementation of
the HQC (Hamming Quasi-Cyclic) code-based key encapsulation mechanism. HQC
has been selected for the fourth-round of NIST’s Post-Quantum Cryptography stan-
dardization process and this work presents first, hand-optimized design of HQC key
generation, encapsulation, and decapsulation written in Verilog targeting implemen-
tation on FPGAs. The three modules further share a common SHAKE256 hash
module to reduce area overhead. All the hardware modules are parametrizable at
compile time so that designs for the different security levels can be easily generated.
The architecture of the hardware modules includes novel, dual clock domain design,
allowing the common SHAKE module to run at slower clock speed compared to
the rest of the design, while other faster modules run at their optimal clock rate.
The design currently outperforms the other hardware designs for HQC, and many
of the fourth-round Post-Quantum Cryptography standardization process, with one
of the best time-area products as well. For the dual clock design targeting lowest
security level, we show that the HQC design can perform key generation in 0.12 ms,
encapsulation in 0.30 ms, and decapsulation in 0.43 ms when synthesized for an Xilinx
Artix 7 FPGA. The performance can be increased even further at the cost of resources
by increasing the level of parallelism, e.g. by having parallel polynomial multiplication
modules in the encrypt module, or including even more clock domains, one for each
of the main modules. The presented design will further be made available under
open-source license.
Keywords: HQC · Hamming Quasi-Cyclic · PQC · Post-Quantum Cryptography
· Key Encapsulation Mechanism · Code-Based Cryptography · FPGA · Hardware
Implementation

1 Introduction
Since 2016 NIST has been conducting a standardization process with the goal to standardize
cryptographic primitives that are secure against attacks aided by quantum computers.
There are today five main families of post-quantum cryptographic algorithms: hash-based,
code-based, lattice-based, multivariate, and isogeny-based cryptography. Very recently
NIST has selected one algorithm for standardization in the key encapsulation mechanism
(KEM) category, CRYSTALS-Kyber, and four fourth-round candidates that will continue
in the process. One of the four fourth-round candidates is HQC. It is a code-based KEM
based on structured codes.

As the standardization process is coming to an end after the fourth round, the perfor-
mance as well as hardware implementations of the algorithms are becoming very important

mailto:sanjay.deshpande@yale.edu, chuanqi.xu@yale.edu, jakub.szefer@yale.edu
mailto:mamuri@tii.ae, kashif.nawaz@tii.ae

2 Towards a Fast and Efficient Hardware Implementation of HQC

factor in selection of the algorithms to be standardized. The motivation for our work is
to understand how well hand-optimized HQC hardware implementation can be designed
and realized on FPGAs. To date, most of the post-quantum cryptographic hardware
has focused on lattice-based candidates, with code-based algorithms receiving much less
attention. All existing hardware implementations for HQC are based on high-level synthesis
(HLS) [AAB+20]. While HLS can be used for rapid prototyping, in our experience it
cannot yet outperform Verilog or other hand optimized designs. Indeed, as we show in
this work, our design outperforms the existing HQC HLS design.

In addition, our hardware design competes very well with the hardware designs for other
candidates currently in the fourth round of NIST’s process: BIKE, Classic McEliece, and
SIKE. The presented design has best time-area product as well as time for key generation
and decapsulation compared to the hardware for these designs. We also achieve similar
time-area product for encapsulation when compared to BIKE. Due to limited breakdown of
data for SIKE’s hardware [MLRB20] comparison to SIKE for all aspects is more difficult,
but we believe our design is better since for similar area cost, their combined encapsulation
and decapsulation times are two orders of magnitude larger. Detailed comparison to related
work is given in Section 4.

As this work aims to show, code-based designs can be competitive with other schemes
when optimized hardware is developed. Further our design is constant-time, eliminating
timing-based attacks. We believe our work shows that HQC can be a strong contender in
the fourth round of NIST’s process.

1.1 Open-Source Design
All our hardware designs reported in this paper are fully reproducible, and their source
code will be released as open-source after the acceptance of this paper to a journal or a
conference with proceedings.

1.2 Paper Outline
The remainder of the paper is structured as follows. Section 2 gives background on the
HQC algorithm. Section 3 presents the hardware designs of the HQC modules, as well
as, it provides the evaluation results. Section 4 summarizes related work and presents
comparison of the HQC design to other existing designs. Section 5 concludes the paper.

2 Preliminaries
In this section, we briefly introduce HQC. We first introduce notations used in this paper.
Then concatenated Reed–Muller and Reed–Solomon codes that are used to encode and
decode messages in HQC are presented. In the end, HQC public key encryption (PKE)
and key encapsulation mechanism (KEM) are described. We refer to the specification of
HQC [AAB+20] for more detailed information.

2.1 Notation
In this paper, we denote F2 the binary finite field, and R = F2[X]/(Xn − 1) the quotient
ring on which vectors and operations of HQC are defined. For any field or ring, Fl

2 or Rl

denotes the field or ring of l dimensional vectors over F2 or R. An element x ∈ R can
be represented as either a vector x := (x0, x1, . . . , xn−1) or a polynomial x :=

∑n−1
i=0 xiX

i.
The Hamming weight of x is defined as

∑n−1
i=0 xi, i.e., the number of non-zero coefficients

in x. x ← R denotes x is chosen uniformly random from R, while x w←− R denotes x
is randomly chosen from R and the Hamming weight of x is w. Optionally, a random

Sanjay Deshpande, Mamuri Nawan, Kashif Nawaz, Jakub Szefer and Chuanqi Xu 3

seed can be specified for the sampling process, and the sampling process with random
seed θ is denoted as x w,θ←−− R. For x, y ∈ R, the addition a = x + y ∈ R and is
defined as ai = xi + yi mod 2 or ai = xi xor yi for i = 0, . . . , n − 1. The multiplication
a = x · y ∈ R and is defined as ak =

∑
i+j≡k mod n xi · yj mod 2 for k = 0, . . . , n − 1.

Encode(·) and Decode(·) are the encode and decode function of concatenated Reed–Muller
and Reed–Solomon codes, which will be introduced in Section 2.2.1. G(·),H(·),K(·) are
hash functions with domain separation bytes 3, 4, 5 respectively. Parameters n, w, wr

depend on the security level, which can be found on Table 1.

2.2 HQC PKE and KEM Schemes

To introduce HQC KEM, we first introduce how to encode and decode concatenated
Reed–Muller and Reed–Solomon codes, which are important parts in HQC PKE to encode
and decode messages. Then we introduce HQC PKE. Finally, HQC KEM that achieves
IND-CCA2 by performing the Fujisaki–Okamoto [HHK17] transformation is described.

2.2.1 Concatenated Reed–Muller and Reed–Solomon Codes

Concatenated Reed–Muller and Reed–Solomon Codes are used in the encode and decode
function of HQC to encode and decode messages. Specifically, the encode of concatenated
Reed–Muller and Reed–Solomon Codes is to first encode with Reed–Solomon code, and
then the output is encoded with Reed–Muller code. The decode process is executed in the
reverse order, i.e., first decode with Reed–Muller code, and then the output is decoded
with Reed–Solomon code. The parameter sets for the concatenated code can be found
in Table 1. Notice that shortened Reed–Solomon code and duplicated Reed–Muller code
instead of the conventional codes are used in HQC.
Encode of shortened Reed–Solomon code. In the polynomial representation, the
message can be denoted as u(x) = u0 + · · ·uk−1xk−1 ∈ F28 [x]/(x8 + x4 + x3 + x2 + 1). The
codeword is given by c(x) = b(x) + xn−ku(x), where b(x) = xn−ku(x) mod g(x), and g(x)
is the generator polynomial1, which is shown below for different security levels:

ghqc-128(x) = 89 + 69x + 153x2 + 116x3 + 176x4 + 117x5 + 111x6 + 75x7 + 73x8 + 233x9

+ 242x10 + 233x11 + 65x12 + 210x13 + 21x14 + 139x15 + 103x16 + 173x17 + 67x18+
118x19 + 105x20 + 210x21 + 174x22 + 110x23 + 74x24 + 69x25 + 228x26 + 82x27+
255x28 + 181x29 + x30

ghqc-192(x) = 45 + 216x + 239x2 + 24x3 + 253x4 + 104x5 + 27x6 + 40x7 + 107x8 + 50x9

+ 163x10 + 210x11 + 227x12 + 134x13 + 224x14 + 158x15 + 119x16 + 13x17 + 158x18+
x19 + 238x20 + 164x21 + 82x22 + 43x23 + 15x24 + 232x25 + 246x26 + 142x27 + 50x28+
189x29 + 29x30 + 232x31 + x32

1Zeroth Coefficient of ghqc-128(x) is updated based on the software reference implementation given at
https://pqc-hqc.org/implementation.html

https://pqc-hqc.org/implementation.html

4 Towards a Fast and Efficient Hardware Implementation of HQC

ghqc-256(x) = 49 + 167x + 49x2 + 39x3 + 200x4 + 121x5 + 124x6 + 91x7 + 240x8 + 63x9

+ 148x10 + 71x11 + 150x12 + 123x13 + 87x14 + 101x15 + 32x16 + 215x17 + 159x18+
71x19 + 201x20 + 115x21 + 97x22 + 210x23 + 186x24 + 183x25 + 141x26 + 217x27+
123x28 + 12x29 + 31x30 + 243x31 + 180x32 + 219x33 + 152x34 + 239x35 + 99x36 + 141x37

+ 4x38 + 246x39 + 191x40 + 144x41 + 8x42 + 232x43 + 47x44 + 27x45 + 141x46 + 178x47

+ 130x48 + 64x49 + 124x50 + 47x51 + 39x52 + 188x53 + 216x54 + 48x55 + 199x56+
187x57 + x58

The generator polynomial can also be computed by g(x) =
∏n−k−1

i=0 (x− αi), where α is
the primitive element of the field.
Decode of shortened Reed–Solomon code. We denote the codeword to be v(x) =
v0 + v1x + · · ·+ vn−1xn−1, the error polynomial to be e(x) = e0 + e1x + · · ·+ en−1xn−1,
and the received word to be r(x) = r0 + r1x + · · · + rn−1xn−1. With these definitions,
r(x) = v(x) + e(x). The primitive element α of the field satisfies v(αi) = 0 for i = 1, . . . , 2d
(notice 2d = n − k), since g(αi) = 0 and v(x) mod g(x) = 0. If there is no error
in the received word, r(αi) = v(αi) = 0, so e(αi) = 0. Otherwise, we can denote
r(αi) = e(αi) = ej1(αi)j1 + · · ·+ ejt

(αi)jt where e(x) has t errors at locations j1, . . . , jt.
Let us define:
Si = r(αi) = e(αi) = ej1(αj1)i + · · ·+ ejt

(αjt)i, i = 1, . . . , 2d

σ(x) = (1 + αj1x)(1 + αj2x) · · · (1 + αjtx) = 1 + σ1x + σ2x2 + · · ·+ σtx
t

Z(x) = 1 + (S1 + σ1)x + (S2 + σ1S1 + σ2)x2 + · · ·+ (St + σ1St−1 + σ2St−2 + · · ·+ σt)xt

Then the error value at location jl can be computed by:

ejl
= Z((αjl)−1)∏t

i=1,i̸=l [1 + αji · (αjl)−1]

The decode steps are:
1. Compute Si = r(αi), i = 1, . . . , 2d.

2. Because σ((αji)−1) = 0, i = 1, . . . , t, the coefficients σi, i = 1, . . . , t can be calculated
from the linear equation set: 0 =

∑t
i=1 eji(αji)l+tσ((αji)−1) = Sl+t + σ1Sl+t−1 +

σ2Sl+v−2 + · · ·+ σtSl, l = 0, . . . , t− 1.

3. The roots of σ(x) can be calculated, which are (αji)−1, i = 1, . . . , t.

4. Z((αjl)−1), l = 1, . . . t can be computed, and so do ejl
, l = 1, . . . , t.

5. The codeword can be computed by v(x) = r(x)− e(x).
Encode of duplicated Reed–Muller code. Encode of duplicated Reed–Muller code is
to directly perform a matrix vector multiplication. The generator matrix is shown below
(note that numbers are big endian and in hexadecimal):

G =



aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
cccccccc cccccccc cccccccc cccccccc
f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0
ff00ff00 ff00ff00 ff00ff00 ff00ff00
ffff0000 ffff0000 ffff0000 ffff0000
00000000 ffffffff 00000000 ffffffff
00000000 00000000 ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff



Sanjay Deshpande, Mamuri Nawan, Kashif Nawaz, Jakub Szefer and Chuanqi Xu 5

If the message is m = (m0, . . . , m7) ∈ F28 , then c = mG, and the codeword is given by
duplicating c 3 or 5 times, depending on the security level.
Decode of duplicated Reed–Muller code. The decoding of duplicated Reed–Muller
codes is done in three steps:

1. The first step is applying the function F on the received codeword. Let v be
a duplicated Reed–Muller codeword with multiplicity 3, it can be seen as v =
(a1b1c1, ..., an1bn1cn1) where each ai, bi, ci has 128 bits size (ai = (ai1 , ..., ai128),
bi = (bi1 , ..., bi128) and ci = (ci1 , ..., ci128)). The transformation F is applied to each
element in v as ((−1)ai1 + (−1)bi1 + (−1)ci1 , ..., (−1)ai128 + (−1)bi128 + (−1)ci128).
For multiplicity 5, it follows the same process.

2. The second step is applying Hadamard transform on the output of the previous step.

3. The third step is finding the location of the highest value on the output of Hadamard
transform. When the peak is positive, we add all-one-vector. If there are two identical
peaks, we take the peak with smallest value in the lowest 7 bits.

2.2.2 HQC PKE

Key generation. First a vector h is sampled uniformly random, which is viewed as the
vector to generate a circulant matrix and further a systematic quasi-cyclic code of index 2.
More specifically, let h = (h0, . . . , hn−1). Then

rot(h) =


h0 hn−1 · · · h1
h1 h0 · · · h2
...

...
hn−1 hn−2 · · · h0


is a circulant matrix, and H = [I|rot(h)] is the parity-check matrix of a systematic quasi-
cyclic code of index 2. The secret key is composed of two vectors x, y that are sampled
with a specified weight w. [x|y] can be viewed as a random codeword with a random error.
Its syndrome is s = [x|y]HT = x + y× rot(h)T = x + h · y, where y× rot(h)T is defined
as the general vector-matrix multiplication. The public key is composed of h and the
syndrome s.
Encryption. Similar to key generation, three vectors r1, r2, e are sampled with a specified
weight wr. Then the syndrome u of [r1, r2] is computed. The message is encoded by
concatenated Reed–Muller and Reed–Solomon code introduced previously, as well as added
by s · r2 + e to get v. The final ciphertext comprises of u and v, i.e., c = [u|v].
Decryption. v− u · y is decoded by concatenated Reed–Muller and Reed–Solomon code.
The message can be correctly decoded whenever the Hamming weight of the given element
is less than the minimum distance of the code. The probability that the message cannot
be decoded from v− u · y is shown to be very small [AAB+20].

Algorithm 1 HQC.PKE.KeyGen() and HQC.KEM.KeyGen()
1: h ← R
2: (x, y) w←− R2

3: s := x + h · y
4: return (pk := (h, s), sk := (x, y))

6 Towards a Fast and Efficient Hardware Implementation of HQC

Algorithm 2 HQC.PKE.Encrypt(pk = (h, s), m, θ)

1: (r1, r2, e) ωr,θ←−−− R3

2: u := r1 + h · r2
3: t := Encode(m)
4: v := t + s · r2 + e
5: return c := (u, v)

Algorithm 3 HQC.PKE.Decrypt(sk = (x, y), c = (u, v))
1: m′ := Decode(v− u · y)
2: return m′

2.2.3 HQC KEM

Key generation. Key generation in KEM is the same as key generation in PKE.
Encapsulation. The message m is sampled to generate the shared secret. The random
seed θ = G(m), which will be used in the encryption to control the randomness. m is then
encrypted to generate c. Finally, the shared secret K = K(m, c), and the ciphertext is
[c|H(m)].
Decapsulation. c is used to retrieve the message m′. The decryption process may not be
correct and thus returns a wrong message. Therefore, the same process as encapsulation
needs to be done and the ciphertext needs to be checked with the received ciphertext.
Finally, whether there are mistakes is returned.

Algorithm 4 HQC.KEM.Encapsulate(pk = (h, s))
1: m ← Fk

2
2: θ := G(m)
3: c := (u, v) = HQC.PKE.Encrypt(pk, m, θ)
4: K := K(m, c)
5: d := H(m)
6: return (K, (c, d))

3 Hardware Design of HQC
HQC Key Encapsulation Mechanism (HQC-KEM) consists of three main primitives: Key
Generation, Encapsulation, and Decapsulation. The algorithms for each primitive were
shown in Algorithm 1, Algorithm 4, and Algorithm 5, respectively. These primitives are
built upon the HQC Public Key Encryption (HQC-PKE) primitives shown in Algorithm 1,
Algorithm 2, and Algorithm 3. Which in turn are built upon other, more basic building
blocks. In this work, we implement optimized and parameterizable hardware designs for
all the primitives and the building blocks from scratch. In the following subsections we
briefly discuss all the building blocks and provide comparisons with any existing designs.
The main building blocks involved for each of the primitives are as follows:

• Key Generation: Fixed weight vector generator, PRNG based random vector genera-
tor, polynomial multiplication, modular addition, and SHAKE256

• Encapsulation: Encrypt, SHAKE256

• Decapsulation: Decrypt, Encrypt, SHAKE256

Sanjay Deshpande, Mamuri Nawan, Kashif Nawaz, Jakub Szefer and Chuanqi Xu 7

Algorithm 5 HQC.KEM.Decapsulate(sk = (x, y), c, d)
1: m′ := HQC.PKE.Decrypt(sk, c)
2: θ′ := G(m′)
3: c′ := (u′, v′) = HQC.PKE.Encrypt(pk, m′, θ′)
4: d′ := H(m′)
5: K ′ := K(m′, c)
6: if c ̸= c′ or d ̸= d′ then
7: return (K ′, 0)
8: else
9: return (K ′, 1)

10: end if

Table 1: Parameter sets for HQC. n is the length of the vector (polynomial). n1 is the
length of the Reed–Solomon code. n2 is the length of the Reed–Muller code. w is the
weight of vectors x, y. wr is the weight of vectors r1, r2, e. [n, k, d] of Reed–Solomon
and Reed–Muller codes are shown in the last two columns, and they are the length, the
dimension, and the minimum distance of the code. In HQC, shortened Reed–Solomon code
and duplicated Reed–Muller code are used. The multiplicity for duplicated Reed–Muller
code is 3, 5, 5 for hqc-128, hqc-192, hqc-256.

Instance n w wr security pfail Reed–Solomon Reed–Muller
hqc128 17,669 66 75 128 < 2−128 [46, 16, 15] [384, 8, 192]
hqc192 35,851 100 114 192 < 2−192 [56, 24, 16] [640, 8, 320]
hqc256 57,637 131 149 256 < 2−256 [90, 32, 29] [640, 8, 320]

3.1 Modules Common Across the Design
In this section we give a high-level overview of hardware designs of the building blocks
that are used across the HQC-KEM and HQC-PKE.

3.1.1 SHAKE256

HQC uses SHAKE256 for multiple purposes e.g., as a PRNG for fixed weight vector
generation and random vector generation in Key Generation, as a PRNG for fixed weight
vector generation in Encryption, and for hashing in encapsulation and decapsulation. We
use the SHAKE256 module described in [CCD+22] (which was originally designed based
on Keccak design from [WTJ+20]) to perform SHAKE256 operations. We further tailor
the SHAKE256 hardware module as per the requirement for our hardware design:

• The existing SHAKE256 module [CCD+22] operates with command based interface
where the number of input bytes to be processed and number of output bytes required
are specified before starting the hash operation and there is no command to request
for additional bytes. We modify the exiting design and add an additional command
which provides the capability of requesting additional bytes. The purpose of adding
this command is to support the fixed weight vector generation process described in
Section 3.1.4.

• Since our modification of SHAKE256 holds the current state and does not automatically
return to its new input loading state, we modify the operation of the existing forced
exit signal to return the SHAKE256 module to default state. To support the dual clock
domain design described in Section 3.7, we also add a forced exit acknowledgement
port.

8 Towards a Fast and Efficient Hardware Implementation of HQC

SHAKE256

din
32

dout

32

dout_valid

din_valid

force_done force_done_ack

dout_ready din_ready

Figure 1: Interface for SHAKE256 module.

Table 2: SHAKE256 module area and timing information, data based on synthesis results
for Artix 7 board with xc7a200t-3 FPGA chip. Formula for time-area product, T × A, is
(LUT * Time)/103.

Resources

Parallel Slices Logic Memory F Cycles Time T x A
(LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

1 1,437 0 498 0 163 5,010 30.74 44
2 1,558 0 466 0 167 2,306 13.81 21
4 1,625 0 370 0 157 1,086 6.92 11
8 1,958 0 280 0 158 542 3.43 6
16 2,819 0 236 0 164 270 1.65 4

We use a similar performance parameter parallel_slices as described in the original
keccak design in [WTJ+20]. The SHAKE256 module has a fixed 32-bit data ports and data
input and output is based on typical ready-valid protocol. The results targeting Xilinx Artix
7 xc7a200t FPGA are shown in Table 2. The clock cycle numbers provided in the Table 2
are for processing one block of input and generating one block of output (where each block
size is 1088-bits). There are five different options to chose for the parallel_slices which
provide different time-area trade-offs. We choose parallel_slices = 16 as it provides
the best time-area product. An interface diagram of the SHAKE256 module is shown in
Figure 1. For brevity, we represent all the ports interfacing with the SHAKE256 module
with ⇔ in all further block diagrams in this paper.

3.1.2 Polynomial Multiplication

HQC uses polynomial multiplication operation in all the primitives of HQC-KEM. The
polynomial multiplication operation is multiplication of two polynomials with n components
in F2. Our polynomial multiplication module uses sparse polynomial multiplication
technique followed by a specific modular reductions to Xn − 1 (values of n can be found
in Table 1).

After profiling all the polynomial multiplication operations from the HQC specifica-
tion document and the reference design [AAB+20], we note that in all the polynomial
multiplication operations, one of the inputs is a sparse fixed weight vector (with weight w
or wr in Table 1) of width n-bits. Consequently, we design a position based polynomial
multiplication unit where one of the inputs to the module is a non-sparse polynomial (‘A’)
while the other input is a list of the positions of ones from the sparse fixed-weight vector
polynomial (‘B’). The multiplication is performed by shifting ‘A’ with each position of
‘B’ and then performing addition of all the resultant vectors. Since the value of n is large
in all parameter sets, we take a sequential approach for performing the multiplication.
We design our sequential shifter similar to ‘SVS module’ described in [DdPM+21]. The
polynomial multiplication module works as follows: each time the input at the port din is
sequentially shifted by position given at shift_pos_in and resultant vector is added with

Sanjay Deshpande, Mamuri Nawan, Kashif Nawaz, Jakub Szefer and Chuanqi Xu 9

seq_
variable_

shift

reduction

adder AxB
_RAM

Control
Logic

dout

shift_loc_indin start done

addr

addr

Figure 2: Hardware design of poly_mult module.

Table 3: poly_mult module (with datapath width 128-bits) area and timing information,
data based on synthesis results for Artix 7 board with xc7a200t-3 FPGA chip.

Resources

Input Length Logic Memory F Cycles Time T x A
(bits) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)
17,669 1,834 0 573 4 228 18,765 82.30 150
35,851 1,821 0 587 6 215 56,969 264.97 482
57,637 1,837 0 606 6 203 119,333 587.85 1,080

the previous result and stored in AxB_RAM. Since all the operations take place in F2 the
addition is achieved by performing an exclusive-OR operation. The maximum resultant
vector size after multiplying two n-bit polynomials is 2n-bit polynomial.

The 2n-bit resultant polynomial is reduced using the reduction module shown in Fig-
ure 2. The polynomial needs to be reduced to back to a n-bit polynomial and to do so
we slice the n-bit polynomial into two parts and then perform an addition. And since
operations take place in F2 the addition is achieved by performing an exclusive-OR
operation. The reduction module sequentially performs the slicing and addition. We
make the width of sequential shifter as a performance parameter based on which the
width of reduction module, adder module and the width and depth of AxB RAM is chosen.
A user can choose the width of sequential shifter based on suitable time-area trade off.
Results of our polynomial multiplication module for one performance parameter (width =
128) are shown in Table 3.

3.1.3 Polynomial Addition/Subtraction

HQC uses polynomial addition/subtraction in all of its primitives. Since all addition and
subtraction operations happen in F2, the addition and subtraction could be realized as the
same operation. We design two variants of constant-time adders namely xor_based_adder
and location_based_adder that could be attached with our polynomial multiplication
module described in Section 3.1.2. We design our adder modules as an extension for
polynomial multiplication because the addition/subtraction always appears with the

10 Towards a Fast and Efficient Hardware Implementation of HQC

Table 4: Polynomial addition modules (xor_based_adder and loc_based_adder with
datapath width 128-bits) area and timing information, data based on synthesis results for
Artix 7 board with xc7a200t-3 FPGA chip.

Resources

Input Length Logic Memory F Cycles Time T x A
(bits) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

xor_based_adder
17,669 143 0 159 0 330 142 0.43 0.06
35,851 142 0 161 0 318 284 0.89 0.12
57,637 142 0 161 0 311 455 1.46 0.20

loc_based_adder
17,669 160 0 174 0 316 69 0.22 0.03
35,851 161 0 174 0 300 103 0.34 0.05
57,637 161 0 175 0 300 134 0.45 0.07

polynomial multiplication as shown in Algorithm 1, Algorithm 2, and Algorithm 3. The
adders operate on contents of block RAM since the polynomials are stored inside the block
RAM. Both of the adder module designs do not use any additional block RAM resources,
they load the polynomial multiplication output, perform the addition, and write the value
back to the same block RAM inside the polynomial.

The xor_based_adder design performs addition in a regular F2 fashion by performing
bit-wise exclusive-OR operation. The module performs addition sequentially by generating
one block RAM address per clock cycle to load inputs from two block RAMs and then
performs addition and writes them back to one of the specified block RAMs at the same
block RAM address.

The location_based_adder is an optimized adder designed to perform addition when
one of the input is a sparse vector. This module is mainly designed to perform operations
x+h ·y from Algorithm 1 and r1 +h ·r2 and s ·r2 +e from Algorithm 2. In these operations
the values of x, r1, and e are sparse, fixed-weight vectors so the addition is optimized by
only flipping the bits of the other input in the position of one. The location_based_adder
module takes location of ones from the sparse vector as input and computes the address to
load out the part of non-sparse polynomial from the block RAM and flips the bit on the
appropriate location and writes it back to the same location. The process is repeated until
all locations with ones are covered. Since there are a fixed, and known number of ones in
the fixed-weight vector, there is a fixed number of operations and timing does not reveal
any sensitive information. Results of our polynomial addition location_based_adder
module for one performance parameter (width = 128) are shown in Table 4.

3.1.4 Fixed-Weight Vector Generator

The fixed-weight vector generator function generates a uniform random n-bit fixed-weight
vector of a specified input weight (w). The module assumes that there is a random
number generator that can be used to generate uniformly random bits. The algorithm for
fixed-weight generation as specified in [AAB+20] first generates 24×w random bits. These
random bits are then arranged into w 24-bit integers. These 24-bit integers undergo a
threshold check and are rejected if the integer value is beyond the threshold (949× 17, 669,
467 × 35, 851, 291 × 57, 637 for hqc-128, hqc-192 and hqc-256 respectively). After the
threshold check, these integers are reduced modulo n. After the threshold check and
reduction process if the weight is not equal to w then more random bits are drawn from
RNG and the process is repeated until w integers are achieved. After the threshold check
and reduction then a check for duplicates is performed over all the reduced integers. In

Sanjay Deshpande, Mamuri Nawan, Kashif Nawaz, Jakub Szefer and Chuanqi Xu 11

ctx
_RAM

Control Logic Seed
Handling

seed_
RAM

p
r
e

p
r
o
c
e
s
s loca

tion
_RAM

T
h
r
e
s
h
o
l
d

C
h
e
c
k
 a
n
d

R
e
d
u
c
t
i
o
n

OneGen

Control Logic to handle
SHAKE communication

Control Logic to
handle Threshold

check and Reduction

outputseed_in

Vector
BRAM

(init.
with
all 0)

=

c
o
l
l
i
s
i
o
n

A
d
d
r
e
s
s

D
e
c
o
d
e
r

Position
Decoder

l
o
c
a
t
i
o
n

Put 1

Control Logic

vector_output
(optional)

shake_output

SHAKE256

Control Logic to
handle Context

Figure 3: Hardware design of fixed_weight_vector module.

Table 5: fixed_weight_vector module area and timing information, data based on
synthesis results for Artix 7 board with xc7a200t-3 FPGA chip and probability of failing
constant-time behavior of our fixed_weight_vector generation module best and worst
case values for the parameter, ACCEPTABLE_REJECTIONS.

Resources

Design Weight Logic Memory F Cycles Time T x A Failure+

(LUT) (FF) (BR) (MHz) (cyc.) (us) Prob.

non constant-time design (ACCEPTABLE_REJECTIONS = 0)
hqc128 75 240 111 2.0 226 709 3.14 0.75 1.1 × 2−11

hqc192 114 229 112 2.0 220 1,840 8.36 1.92 1.1 × 2−9

hqc256 149 234 117 2.0 228 2,106 9.24 2.16 1.1 × 2−12

constant-time design (ACCEPTABLE_REJECTIONS = wr)
hqc128 75 316 124 2.0 223 3,649 16.36 5.17 2.8 × 2−199

hqc192 114 295 125 2.0 236 4,200 17.80 5.25 1.1 × 2−280

hqc256 149 314 192 2.5 242 5,935 24.52 7.70 4.9 × 2−355

+ = Probability of our design failing to behave constant-time.

case any duplicate is found, that integer is discarded and more random bits are requested
drawn from the RNG which again undergo threshold check, reduction and duplicate check.
This process is repeated until a uniform fixed weight vector is generated.

In our hardware design, we use a PRNG to generate the uniformly random bits required
for the fixed weight vector generation from an input seed of length 320-bits. Our hardware
design includes this PRNG in the form of SHAKE256. Our design assumes that the
seed will be initialized by some other hardware module implementing a true random
number generator.

The hardware design of fixed_weight_vector generation module is shown in Figure 3.
We use SHAKE256 module described in Section 3.1.1 to expand 320-bit seed to a 24×w-bit
string. Since the SHAKE256 module has 32-bit interface the seed is loaded in 32-bit chunks
and the seed is stored in seed_RAM as shown in the Figure 3. The 32-bit chunk from
SHAKE256 is broken into 24-bit integer by preprocess unit and stored in the ctx_RAM
then threshold check and reduction are performed. For the reduction, we use Barrett
reduction. The Barrett reduction is optimized to reduce for specific value (n) since that
value is constant. After the reduction, the integer values are stored in the locations_RAM.

12 Towards a Fast and Efficient Hardware Implementation of HQC

Once the locations_RAM is filled the OneGen module is triggered. The OneGen module
helps in detecting if there are any duplicates in the locations_RAM. Our OneGen module is
inspired from duplicate checking logic described in [CCD+22]. While the OneGen module
checks for duplicates, the SHAKE256 module generates the next 24× w-bit string to tackle
any potential duplicates and stores them in the ctx_RAM. This way we are able to mask
any clock cycles taken for seed expansion.

The main pitfall where the fixed-weight vector generation process may show non
constant-time behavior is the rejection sampling process (i.e., the threshold check and
duplicate detection as discussed earlier). A timing attack on existing software reference
implementation of HQC [AAB+20] was performed in [GHJ+22]. The authors use the
information of rejection sampling routine (that is part of fixed-weight generation) being
invoked during the deterministic re-encryption process in decapsulation and show that this
leaks secret-dependent timing information. The timing of the rejection sampling routine
depends upon the given seed. This seed is derived for the encrypt function in encapsulation
and decapsulation procedures using the message. The decapsulation operation is dependent
on the decoded message and this dependency allows to construct a plaintext distinguisher
(described in detail in [GHJ+22]) which is then used to mount the timing attack.

In our hardware module, we make the constant time behavior parameterizable (pa-
rameter name is ACCEPTABLE_REJECTIONS). We can specify how many indices could be
rejected and still the design will behave constant time (at the cost of extra area for more
storage and extra cycles). The extra area is because we generate additional (based on
parameter value) uniformly random bits in advance and store them in the ctx_RAM (shown
in Figure 3). The extra clock cycles are because even after we found the required number
of indices under the threshold value, we still go over all the ctx_RAM locations and for the
duplicate detection logic inside OneGen module (shown in Figure 3), the control logic is
programmed to take the same cycles in case of duplicate is detected or not. The parameter
can be set based on user’s target failure probability. If the actual failures are within the
failure probability set by the selected parameter value, then the timing side channel given
in [GHJ+22] is not possible.

The right most column in Table 5 shows probability of non constant-time design
(ACCEPTABLE_REJECTIONS = 0) versus constant-time design (ACCEPTABLE_REJECTIONS =
wr) failing to behave in constant-time manner. The choice of the demonstrated parameter
is made based on the values of wr given in Table 1. We choose wr as the parameter value
for demonstration because when the rejection sampling procedure rejects the first index
the seedexapander function in software reference implementation [AAB+20] generates wr

new set of indices and first index from the new set is used to replace the old rejected
index and for the second rejection next index from the new set is chosen to replace the old
rejected index. This process is repeated until specified weight for the vector is achieved.
To compute the failure probability (given in Table 5) for each parameter set, we take
in to account both threshold check failure and duplicate detection probabilities for the
respective parameter sets.

Table 5 shows the results of the fixed weight hardware module targeting Artix 7
xc7a200t FPGA. The area excludes SHAKE256 module as the SHAKE256 is shared among
all primitives. The reported frequency in Table 5 is the core frequency. We discuss later
our dual clock domain design (in Section 3.7) that allows the modules to run at their core
frequency while SHAKE256 runs on a slower clock.

3.2 Encode and Decode Modules
The encode and decode modules are building blocks of the encrypt and decrypt modules,
respectively. We describe the encode and decode modules here, before describing the bigger
encrypt and decrypt modules in Section 3.3.

Sanjay Deshpande, Mamuri Nawan, Kashif Nawaz, Jakub Szefer and Chuanqi Xu 13

3.2.1 Encode Module

As specified in Section 2.2.1, HQC Encode uses concatenation of two codes namely Reed–
Muller and Reed–Solomon codes. The Encode function takes K-bit input and first encodes
it with the Reed–Solomon code. The Reed–Solomon encoding process involves systematic
encoding using a linear feedback shift register (LFSR) with a feedback connection based
on the generator polynomial (shown in Section 2.2.1). The Reed–Solomon code generates
a n1-bit output (as given in [AAB+20] the value for n1 is 368, 448, and 720 for hqc128,
hqc192, and hqc256 respectively). We design a Galois field multiplication unit for the field
F2[x]/(x8 + x4 + x3 + x2 + 1) which takes one byte of input per clock cycle and multiplies
it with the generator polynomial (gx). The number of Galois field multiplication units we
run in parallel is equal to the degree of the generator polynomial. The outputs from Galois
field multipliers are fed in to a LFSR after each cycle. At the end of encoding process the
module generates a n1-bit output.

The n1-bit output from Reed–Solomon code is then encoded by Reed–Muller code. The
Reed–Muller encoding is achieved by performing vector-matrix multiplication where each
byte from input is the vector and the matrix is generator matrix (G) given in Section 2.2.1.
In our design we store the generator matrix rows (each row is of length 128-bits) in ROM
and we select the matrix rows based on each input byte. We store the output after
multiplying input byte into a block RAM in chunks of 128-bits. Based on the security
parameter set the code word output from Reed–Muller code has a multiplicity value (i.e.,
number of times a code word or in our case number of times each block RAM location
is repeated). As per the specification [AAB+20], hqc128 has multiplicity value of 3 and
hqc192 and hqc256 have multiplicity value of 5. To optimize the storage, we only store
one copy of code word, and while accessing the code word we compute the block RAM
address in a way that the multiplicity is achieved.

3.2.2 Decode Module

As introduced in Section 2.2.1, the ciphertext is first decoded with duplicated Reed-Muller
code and then shortened Reed-Solomon code. To decode duplicated Reed-Muller code,
the Transformation module expands and adds multiple code words into expanded code
word, and then Hadamard_Transformation module applies Hadamard transformation to
the expanded code word. Finally, Find_Peak finds the location of the highest absolute
value of the Hadamard_Transformation output. To decode Reed-Solomon code, we need
to sequentially compute syndromes Si, coefficients σi of error location polynomial σ(x),
roots of error location polynomial (αi)−1, pre-defined helper polynomial Z((αi)−1), errors
ei, and finally correct the output of decode of Reed-Muller code based on the errors.

3.3 Encrypt and Decrypt Modules
The encrypt and decrypt modules are building blocks of the encapsulation and decapsulation
modules, respectively. We describe the encrypt and decrypt modules here, before describing
the bigger encapsulation and decapsulation modules later.

3.3.1 Encrypt Module

The encrypt module (shown in Algorithm 2) takes public key (h, s), message m, and
seed (θ) and generates a ciphertext (u,v) as the output. The hardware design for the
encrypt module is shown in Figure 4a. We use fixed_weight_vector hardware module
described in Section 3.1.4 to generate r1, r2, and e fixed-weight vectors of weight wr by
expanding theta_in and in parallel we run encode module (described in Section 3.2.1).
After the generation of r2 we start the polynomial multiplication of h.r2 in parallel to
the e generation. For polynomial multiplication we use the poly_mult with the datapath

14 Towards a Fast and Efficient Hardware Implementation of HQC

fixed_
weight_
vector

Control Logic

theta_in

poly_
mult

encode

location_
based_
adder

m_in

u_
RAM

v_addr

v_out

u_out

s_inh_in

r1_
RAM

r2_
RAM

xor_
based_
adder

S
H
A
K
E
2
5
6

hs_addr_out

start done

(a) encrypt module.

Control
Logic

poly_mult

decode

dout

u
_
a
d
d
r
_
o
u
t v

_
a
d
d
r
_
o
u
t

u_in y_in

xor_based
_adder

v_in

v-u.y

y
_
a
d
d
r
_
o
u
t

s
t
a
r
t

done

(b) decrypt module.

Figure 4: Hardware design of encrypt and decrypt modules.

Table 6: encrypt module area and timing information, data based on synthesis results
for Artix 7 board with xc7a200t-3 FPGA chip.

Resources†

Design Logic Memory F Cycles Time T x A
(LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

hqc128 2,245 0 1,667 13 245 44,982 183 411
hqc192 2,437 0 1,855 13 245 133,586 543 1,324
hqc256 2,581 0 2,978 13 247 277,083 1,119 2,888
† = Given resources does not include the area for SHAKE256 module.

width of 128-bits module described in Section 3.1.2. The addition of r1 in u computation
and e in v computation is performed by our location_based_adder and addition with t
is performed by xor_based_adder (described in Section 3.1.3).

Table 6 shows our hardware implementation results targeting Xilinx Artix 7 xc7a200t
FPGA. The area results do not include the SHAKE256 module for the same reason as
described in Section 3.1.4. We note that, although in the Figure 4a we only show one
poly_mult module, we provide a choice of using two poly_mult modules running in
parallel this would reduce the number of clock cycles by approximately half but with some
increase in the area.

3.3.2 Decrypt Module

The decrypt module (shown in Algorithm 3) takes secret key (x, y), ciphertext (u,v), and
generates the message (m’). Figure 4b shows our hardware design for decrypt module.
The module accepts part of the secret key (y) as locations with ones (since it is a sparse
fixed weight vector). We use our poly_mult module described in Section 3.1.2 to compute
u.y and use xor_based_adder module (described in Section 3.1.3) to compute v− u.y.
We then use the decode module (described in Section 3.2.2) to decode v−u.y and retrieve
the message. Table 7 shows our hardware implementation results for decrypt module
targeting Xilinx Artix 7 xc7a200t FPGA.

Sanjay Deshpande, Mamuri Nawan, Kashif Nawaz, Jakub Szefer and Chuanqi Xu 15

Table 7: decrypt module area and timing information, data based on synthesis results
for Artix 7 board with xc7a200t-3 FPGA chip.

Resources†

Design Logic Memory F Cycles Time T x A
(LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

hqc128 5,747 0 4,801 12.5 204 24,889 0.12 701
hqc192 6,242 0 5,705 12.5 148 64,099 0.43 2,703
hqc256 7,488 0 7,248 15 156 130,313 0.84 6,255
† = Given resources does not include the area for SHAKE256 module.

3.4 Key Generation
We now begin to describe the top-level modules, starting with the key generation, following
in later sections with encapsulation and decapsulation. The discussion here focuses on
single clock domain design. The novel dual clock domain design which allows the top-level
modules run at different frequencies from the SHAKE256 module that they depend on is
described in Section 3.7.

The key generation (shown in Algorithm 1) takes secret key seed and public key seed
as an input and generates secret key (x, y) and public key (h, s) respectively as output.
Figure 5 shows the hardware design of our keygen module. Our keygen module assumes
that the public key seed and the secret key seed are generated by some other hardware
module implementing a true random number generator. We use fixed_weight_vector
module described in Section 3.1.4 to generate (x, y) from the secret key seed. x and y are
fixed weight vectors of weight w and length n-bits. To optimize the storage, rather than
storing full n-bit sparse vector we only output locations of ones. There is also an optional
provision to output the full vector as described in Section 3.1.4. The vector_set_random
uses the SHAKE256 module to expand the public key seed and generates h. We then
use poly_mult module (described in Section 3.1.2) to compute (h.y and finally use
location_based_adder module (described in Section 3.1.3) to compute s. We note that
in the Figure 5 only a block RAM for x storage (X_RAM) is visible because the y, h, s
are stored in the block RAMs which are inside fixed_weight_vector, poly_mult, and
location_based_adder modules respectively.

Table 8 shows the results for the keygen module. We note that the maximum clock
frequency of keygen module alone (without SHAKE256) module is in range 241-248 MHz
based on the parameter set selected, but since the critical path lies inside the SHAKE256
module we report SHAKE256’s frequency in the Table 8. The area results do not include the
SHAKE256 module for the same reason as described in Section 3.1.4. Our dual clock domain
design can be applied to the key generation to run the key generation and SHAKE256 at
two different frequencies (discussed in Section 3.7).

3.5 Encapsulation Module
The encapsulate operation (shown in Algorithm 4) takes public key (h, s) and message m as
an input and generates shared secret (K) and ciphertext (c = (u,v)) and d. The hardware
design of the encap module is shown in Figure 6a. Our encap module assumes that m is
generated by some other hardware module implementing a true random number generator
and provided as an input to our module. Since the SHAKE256 module is extensively
used in encapsulate operation we design a HASH_processor module which handles all
the communication with the SHAKE256 module. HASH_processor modules reduces the
multiplexing logic of inputs to the SHAKE256 module significantly.

The Hash_processor modules helps in expanding m to generate θ. We then use

16 Towards a Fast and Efficient Hardware Implementation of HQC

poly_mult
X_
RAM

vector_
set_

random

Control Logic

out

sk_seed_in

start done

fixed_
weight_
vector

location_
based_adder

pk_seed_in

out_type

s
h
a
k
e
_
o
u
t
p
u
t

SHAKE256

Figure 5: Hardware design of the keygen module.

Table 8: keygen module area and timing information, data based on synthesis results for
Artix 7 board with xc7a200t-3 FPGA chip. Data for single clock design, using slow clock
due to hash module critical path.

Resources†

Design Logic Memory F Cycles Time T x A
(LUT) (DSP) (FF) (BR) (MHz) (cyc.) (ms)

hqc128 OUR 2,350 0 1,106 9.5 164 23,480 0.14 336
hqc192 OUR 1,221 0 834 13.5 164 65,446 0.39 476
hqc256 OUR 1,348 0 876 13.5 164 132,720 0.81 1,091

hqc128-perf HLS∗[AAB+20] 12,000 0 9,000 3 150 40,000 0.27 3,240
hqc128-comp. HLS∗[AAB+20] 4,700 0 2,700 3 129 630,000 4.80 22,560

hqc128-pure HLS∗[Ong2x] 53,513 0 21,158 7 171 50,662 0.33 17,873
hqc128-opt. HLS∗[Ong2x] 53,534 0 21,155 6 171 50,658 0.33 17,880
† = Given resources does not include the area for SHAKE256 module, ∗ = Target FGPA is Artix-7 xc7a100t-1

our encrypt module (described in Section 3.3.1) to encrypt m using θ and the public
key as inputs and generates ciphertext. After the generation of r1, r2, and e inside the
encrypt module (described in Section 3.3.1) we then run HASH_processor module in
parallel to encrypt module to generate d. After the encryption of m we then use the
HASH_processor to compute K(m, c) to generate the shared secret K.

Table 9 shows the results for the encap module. We note that the maximum clock
frequency of encap module alone (without SHAKE256) module is in range 208-218 MHz
based on the parameter set selected but since the critical path lies inside the SHAKE256
module we report that frequency in the Table 9. The area results do not include the
SHAKE256 module for the same reason as described in Section 3.1.4. The design can be
further improved using our dual clock domain design discussed later, where module and
SHAKE256 run on different clocks.

Sanjay Deshpande, Mamuri Nawan, Kashif Nawaz, Jakub Szefer and Chuanqi Xu 17

S
H
A
K
E
2
5
6

m
_
i
n C

o
n
t
r
o
l

L
o
g
i
c

uv_out

HASH_
RAM

Encrypt

H
A
S
H

P
r
o
c
e
s
s
o
r

D_
RAM

Seed
RAM

K_out

d
_
o
u
t

shake_output

s
t
a
r
t

d
o
n
e

(a) encap module.

Encap S
H
A
K
E
2
5
6

u
_
i
n

control
logic

u_
RAM K_out

v_
RAM

u_compare

v
_
i
n

D_
RAMd

_
i
n

v_compare

d_compare

h_in s_in

Decrypt

mprime

y start done

m
p
r
i
m
e
_
f
a
i
l

(b) decap module.

Figure 6: Hardware design of encap and decap modules.

Table 9: encap module area and timing information, data based on synthesis results for
Artix 7 board with xc7a200t-3 FPGA chip. Design with single clock, using the slow clock
due to hash module critical path.

Resources†

Design Logic Memory F Cycles Time T x A
(LUT) (DSP) (FF) (BR) (MHz) (cyc.) (ms)

hqc128 OUR 2,725 0 2,060 15.5 164 52,757 0.32 872
hqc192 OUR 2,784 0 2,379 17.5 164 150,265 0.91 2,533
hqc256 OUR 3,231 0 2,972 17.0 164 302,845 1.84 5,945

hqc128 perf HLS∗[AAB+20] 16,000 0 13,000 5.0 151 89,000 0.59 9,440
hqc128 comp. HLS∗[AAB+20] 6,400 0 4,100 5.0 127 1,500,000 12.00 76,800

hqc128 pure HLS∗[Ong2x] 67,494 0 26,223 11.0 169 112,351 0.74 50,080
hqc128 opt. HLS∗[Ong2x] 67,534 0 26,219 10.0 168 112,326 0.74 50,042
† = Given resources does not include the area for SHAKE256 module, ∗ = Target FGPA is Artix-7 xc7a100t-1

3.6 Decapsulation Module

The decapsulate operation (shown in Algorithm 5) takes secret key (x, y), public key
(h, s), ciphertext (c = (u, v)), d as an input and generates shared secret (K). Figure 6b
shows hardware design the decap module. We use our decrypt module (described in
Section 3.3.2) to decrypt the input ciphertext using secret key (y) and generate the m′.
We then use encap module to perform re-encryption of m′ and generate u′, v′ and d′. We
then pause the encap module to verify the u′, v′ and d′ against u, v and d. After the
verification we set a signal (optional port mprime_fail) if the verification fails. Irrespective
of verification result we still continue with the generation of the shared secret K to maintain
the constant-time behavior.

Table 10 shows the results for the decap module. We note that the maximum clock
frequency of decap module alone (without SHAKE256) module is in range 204 MHz for
parameter set hqc128 but since the critical path lies inside the SHAKE256 module so we
report that frequency in the Table 10. For parameter sets hqc192 and hqc256 the critical
path lies inside decode module so we report the frequency accordingly in Table 10. The
area results do not include the SHAKE256 module for the same reason as described in
Section 3.1.4.

18 Towards a Fast and Efficient Hardware Implementation of HQC

Table 10: decap module area and timing information, data based on synthesis results for
Artix 7 board with xc7a200t-3 FPGA chip. Design with single clock, using slow clock
due to hash module critical path.

Resources†

Design Logic Memory F Cycles Time T x A
(LUT) (DSP) (FF) (BR) (MHz) (cyc.) (ms)

hqc128 OUR 8,426 0 6,642 36.0 164 78,223 0.48 4,044
hqc192 OUR 10,021 0 8,045 37.5 148 215,511 1.46 14,630
hqc256 OUR 12,470 0 9,962 40.0 156 434,987 2.78 34,666

hqc128 perf HLS∗[AAB+20] 19,000 0 15,000 9.0 152 190,000 1.20 22,800
hqc128 comp. HLS∗[AAB+20] 7,700 0 5,600 10.5 130 2,100,000 16.00 123,200

hqc128 pure HLS∗[Ong2x] 58,638 0 21,787 18.0 116 224,430 1.92 112,526
hqc128 opt. HLS∗[Ong2x] 58,645 0 21,800 18.0 153 222,515 1.47 86,149
† = Given resources does not include the area for SHAKE256 module, ∗ = Target FGPA is Artix-7 xc7a100t-1

3.7 Dual Clock Design

By profiling our keygen, encap, and decap modules we observe that the maximum number
of clock cycles in all the operations are taken by our poly_mult module (described in
Section 3.1.2) and we note that (as specified in Section 3.1.4) the maximum clock frequency
of keygen, encap, decap modules is limited by the SHAKE256 module since the critical
path lies inside the round function of SHAKE256. To optimize the time taken by the time
consuming modules such as poly_mult whose frequency is higher than that of SHAKE256
module, we implement a core_wrapper module (shown in Figure 7) that has a capability
to support two asynchronous clocks.

The core_wrapper block represented in Figure 7 can be any of the our modules that
needs to interface with the SHAKE256 module, i.e. key generation, encapsulation or decapsu-
lation module. In the core_wrapper design we use two FIFOs (generated using the Xilinx
IP generator) one in each direction (Core_to_SHAKE256_FIFO, SHAKE256_to_Core_FIFO).
We compute the depth of the FIFO considering the worst case scenario and CoreClock
to be of higher frequency than SHAKE256Clock. For Core_to_SHAKE_FIFO we note the
depth be 36 (with width of each location to be 32). Out of 36 locations first two block
are the SHAKE256 module commands describing input and output width and rest of
34× 32 = 1088-bits represents the block size of the SHAKE256. We select FIFO width to
be 32 since the SHAKE256 module has a 32-bit interface (as described in Section 3.1.1). For
SHAKE_to_CORE_FIFO we compute the depth of the FIFO to be 1. For the force_done
and force_done_ack signals we use a Dual_Flop_Synchronizer.

Table 11 shows the results for our dual clock hardware designs of keygen, encap, decap
modules. We note that there is some overhead in terms of additional clock cycles when
moving the data through FIFOs but the overhead is overcome through the higher clock
frequency of the core. We also note that using core_wrapper was possible, but currently
not used, for decap for hqc192 and hqc256 because the critical path moves inside the
decode module. The area results do not include the SHAKE256 module for the same reason
as described in Section 3.1.4. Overall using core_wrapper gives a benefit of about 10%
performance improvement for the modules. Time-area product also actually improves
when core_wrapper is used, since the area overhead of adding the FIFOs and control logic
is outweighted by the performance improvement.

Sanjay Deshpande, Mamuri Nawan, Kashif Nawaz, Jakub Szefer and Chuanqi Xu 19

CORE SHAKE256

Control
Logic

CORE
TO
SHAKE
FIFO

SHAKE
TO
CORE
FIFO

Control
Logic

Control
Logic

Control
Logic

D
u
a
l
-
F
l
o
p

S
y
n
c
h
r
o
n
i
z
e
r

din

dout

force_done

force_done_ack

din_shake

dout_shake

CoreClock SHAKE256Clock

C
o
r
e

I
n
p
u
t
s

C
o
r
e

O
u
t
p
u
t
s

Figure 7: Hardware design of core_wrapper supporting dual clock.

4 Related Work
This section presents related work, focusing on full hardware designs of the four fourth-
round public-key encryption and key-establishment algorithms in NIST’s standardization
process: BIKE, Classic McEliece, HQC, and SIKE. We also include the CRYSTALS-
Kyber which is a public-key encryption and key-establishment algorithm selected for
standardization at the end of the prior third-round. Due to limited space, related work on
software implementations is omitted.

4.1 Related Hardware Designs
A hardware design for BIKE has been presented in [RBMG22]. The work investigated
different strategies to efficiently implement the BIKE algorithm on FPGAs. The authors
improved already existing polynomial multipliers, proposed efficient designs to realize
polynomial inversions, and implement the Black-Gray-Flip (BGF) decoder. The authors
provided VHDL designs for key generation, encapsulation, and decapsulation. For the
fastest design, the authors showed 2.7ms for the key generation, 0.1ms for the encapsulation,
and 1.9ms for the decapsulation, the times correspond to the high-speed implementation
for the lowest security level. The authors also provide data for light-weight implementation
for the lowest security level. Their paper further discusses Level 3 parameters for BIKE,
but does not give final hardware data for the that security level. The authors provide free,
non-commercial license for the hardware code.2

Classic McEliece has been most recently implemented in [CCD+22]. This is the first
complete implementation of Classic McEliece KEM. The design provided Verilog code
for encapsulation and decapsulation modules as well as key generation module with seed
expansion. The authors presented three new algorithms that can be used for systemization
of the public key matrix during key generation. The authors showed that the complete
Classic McEliece design can perform key generation in 8.6ms, encapsulation in 0.3ms, and
decapsulation in 0.9ms, the times correspond to the high-speed implementation for the
lowest security level. The authors also provide hardware implementation for other security

2https://github.com/Chair-for-Security-Engineering/BIKE

https://github.com/Chair-for-Security-Engineering/BIKE

20 Towards a Fast and Efficient Hardware Implementation of HQC

Table 11: keygen, encap, and decap modules area and timing information, data based
on synthesis results for Artix 7 board with xc7a200t-3 FPGA chip. Designs with dual
clocks, using slow clock for hash module, and fast clock for remainder of the design.

Resources†

Design Logic Memory FC FS Cyc.C Cyc.S Time T x A
(LUT) (DSP) (FF) (BR) (MHz) (MHz) (cyc.) (cyc.) (ms)

keygen
hqc128 3,094 0 879 14.5 242 164 27,013 738 0.12 359
hqc192 3,148 0 890 15.5 235 164 70,425 738 0.30 958
hqc256 3,001 0 911 15.5 248 164 140,993 738 0.57 1,720

encap
hqc128 2,609 0 2,070 15.5 218 164 45,739 14,528 0.30 779
hqc192 4,500 0 2,410 20 208 164 136,405 28,384 0.83 3,730
hqc256 4,961 0 3,045 20 218 164 280,213 44,706 1.56 7,729

decap
hqc128 8,434 0 6,652 36 204 164 71,199 14,528 0.43 3,691
FC = Core Frequency, FS = SHAKE256 Frequency, CycC = Core Cycles, CycS = SHAKE256 Cycles,
† = Given resources does not include the area for SHAKE256 module

levels, and light-weight and high-speed versions for all the levels. The authors provide
open-source code for the hardware.3

A hardware designs for HQC has been previously reported in [AAB+20]. The design
was generated using high-level synthesis (HLS) as opposed to hand-written HLD code. The
code can be generated to obtain performance numbers: 0.3ms for key generation, 0.6ms
for encapsulation, and 1.2ms for decapsulation, the times correspond to the high-speed
implementation of the lowest security level. Authors also provide light-weight version
for the lowest security level, but did not provide hardware designs for other levels. Our
implementation covers all three security levels. The authors provide code to generate
VHDL implementation, for an Artix-7, from the HLS-compatible sources.4

Hardware implementation of SIKE has been provided in [MLRB20]. The authors
created VHDL implementation of SIKE as a hardware co-processor. Their design can
realize any of the SIKE security levels. For the high-speed design for the lowest security
level, authors report the time for encapsulation, decapsulation, and keygen as 15.3ms,
16.3ms, and 9.1ms respectively . The authors make the code available under Creative
Commons public domain license.5

Different hardware implementations of CRYSTALS-Kyber are available in [JGCS21,
DMG21, XL21]. The authors presented design configurable for different performance
and area requirements. The high-speed design provdied [DMG21] outperforms all other
algorithms in terms of time for key generation, encapsulation, and decapsulation. For
the lowest security level, the authors reported 0.02ms for key generation, 0.03ms for
encapsulation, and 0.04ms for decapsulation. The authors did not provide access to the
code for their hardware design.

4.2 Comparison to Related Work
The area and timing of the different hardware designs is listed in Table 12. The table
compares our HQC design to other existing HQC HLS designs from the literature. We also
provide Table 13 where we tabulate latest hardware implementations of all post-quantum

3https://caslab.csl.yale.edu/code/pqc-classic-mceliece/
4https://pqc-hqc.org/implementation.html
5https://github.com/pmassolino/hw-sike

https://caslab.csl.yale.edu/code/pqc-classic-mceliece/
https://pqc-hqc.org/implementation.html
https://github.com/pmassolino/hw-sike

Sanjay Deshpande, Mamuri Nawan, Kashif Nawaz, Jakub Szefer and Chuanqi Xu 21

Table 12: Comparison of the time and area for our HQC hardware design with the related
work.

Resources

Design Logic Memory F Encap Decap KeyGen

(LUT) (DSP) (FF) (BR) (MHz) (Mcyc.) (ms) (Mcyc.) (ms) (Mcyc.) (ms)

Security Level 1 — Classical 128-bit Security
HQC – Our Work, HDL design, Artix 7 (xc7a200t)

SC 16,320 0 10,044 61.0 164 0.05 0.32 0.08 0.48 0.02 0.14
DC 16,956 0 9,837 66.0 204 0.06 0.30 0.08 0.43 0.03 0.12

HQC – [AAB+20], HLS design, Artix 7 (xc7a100t)
LightW eight 8,900 0 6,400 14.0 132 1.50 12 2.10 16.0 0.63 4.8
HighSpeed 20,000 0 16,000 12.5 148 0.09 0.6 0.19 1.2 0.04 0.3

HQC – [Ong2x], HLS design, Artix 7 (xc7a100t)
P ure 179,645 0 69,168 36.0 116 0.11 0.96 0.22 1.92 0.05 0.43
Optimized 179,713 0 69,174 34.0 153 0.11 0.73 0.22 1.47 0.05 0.33
SC = SingleClockDomain, DC = DualClockDomain, FF = flip-flop, F = Fmax, BR = BRAM

cryptographic algorithm hardware implementations from the fourth round of NIST’s
standardization process, plus the to-be standardized Kyber algorithm. Our data is from
synthesis reports, while data for the other algorithms is from the cited papers. We focus on
comparison of the hardware designs for lowest level of security, Level 1, as all publications
give clear time and area numbers. Majority of related work provides hardware designs
for more than the lowest security level, but the timing and area numbers are not clearly
broken down in the respective publications, so we focus only on comparing among the
lowest security level designs.

For most other designs there is a light-weight and high-speed version. For our design
we present data for single clock domain (SC) and dual clock domain (DC) designs, both of
these target high performance while keeping good time-area product. For our SC design,
the resources are the sum of all the resources used by the key generation, encapsulation,
decapsulation and shared hash module. The SC frequency is limited by the hash module
frequency. For our DC design, we also sum the resources. The resource usage increases due
to the asynchronous FIFOs used to bridge the two clock domains and associated control
logic. The cycles increase due to the extra cycles waiting for FIFOs to be filled with data
before being read. However, since most of the cycles are spent in the faster clock domain,
the overall times are reduced.

Compared to fourth-round candidates, our DC design achieves faster key generation
and decapsulation that all candidates except for the following high-speed version of Kyber
designs [DMG21] and [XL21]. Our DC design beats prior HQC HLS design’s encapsulation,
and the other designs, except only BIKE’s and Kyber’s encapsulation is faster. Our design
achieves better time-area product than all other candidates except for Kyber.

5 Conclusion
This work presented hardware design for constant-time implementation of the HQC code-
based key encapsulation mechanism. This work presented first, hand-optimized design
of HQC key generation, encapsulation, and decapsulation written in Verilog targeting
implementation on FPGAs. The three modules further share a common SHAKE256 hash
module to reduce area overhead. The architecture of the hardware modules included novel,

22 Towards a Fast and Efficient Hardware Implementation of HQC

Table 13: Comparison of the time and area of hardware designs of other (NIST PQC
competition) round 4 KEM candidates.

Resources

Design Logic Memory F Encap Decap KeyGen

(LUT) (DSP) (FF) (BR) (MHz) (Mcyc.) (ms) (Mcyc.) (ms) (Mcyc.) (ms)

Security Level 1 — Classical 128-bit Security
BIKE – [RBMG22], HDL design, Artix 7 (xc7a35t)

LightW eight 12,868 7 5,354 17.0 121 0.20 1.2 1.62 13.3 2.67 21.9
HighSpeed 52,967 13 7,035 49.0 96 0.01 0.1 0.19 1.9 0.26 2.7

BIKE – [RBCGG21], HDL design, Artix 7 (xc7a200t)
LightW eight 12,319 7 3,896 9.0 121 0.05 0.4 0.84 0.46 3.8
T radeOff 19,607 9 5,008 17.0 100 0.03 0.3 0.42 4.2 0.18 1.9
HighSpeed 25,549 13 5,462 34.0 113 0.01 0.1 0.21 1.9 0.19 1.7

Classic McEliece – [CCD+22], HDL design, Artix 7 (xc7a200t)
LightW eight 23,890 5 45,658 138.5 112 0.13 1.1 0.17 1.5 8.88 79.2
HighSpeed 40,018 4 61,881 177.5 113 0.03 0.3 0.10 0.9 0.97 8.6

SIKE – [MLRB20], HDL design, Artix 7 (xc7a100t)
LightW eight 11,943 57 7,202 21 145 — 25.6 — 27.2 — 15.1
HighSpeed 22,673 162 11,661 37 109 — 15.3 — 16.3 — 9.1

Kyber – [JGCS21], HDL design, (xc7a35t-2)
CB 5,269 2 2,422 6 — 0.67 2.67 0.73 2.93 0.69 2.75
RB 7,151 2 2,422 5 — 0.03 0.10 0.03 0.12 0.04 0.15

Kyber – [DMG21], HDL design, (xc7a200t)
HighSpeed 9,457 4 8,543 4.5 220 0.003 0.01 0.004 0.02 0.002 0.01

Kyber – [XL21], HDL design, (xa7a12)
HighSpeed 7,412 2 4,644 3 161 0.005 0.03 0.006 0.04 0.003 0.02
CB = CoProcessorBased, RB = RoundBased, FF = flip-flop, F = Fmax, BR = BRAM

dual clock domain design, allowing the common SHAKE module to run at slower clock
speed compared to the rest of the design, while other faster modules run at their optimal
clock rate. The design currently outperforms the other hardware designs for HQC, and
many of the fourth-round Post-Quantum Cryptography standardization process. As this
work showed, code-based designs can be competitive with other schemes when optimized
hardware is developed.

Sanjay Deshpande, Mamuri Nawan, Kashif Nawaz, Jakub Szefer and Chuanqi Xu 23

References
[AAB+20] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier

Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti,
Gilles Zémor, and Jurjen Bos. HQC. Technical report, National Institute of
Standards and Technology, 2020. available at https://pqc-hqc.org/doc/
hqc-specification_2021-06-06.pdf.

[CCD+22] Po-Jen Chen, Tung Chou, Sanjay Deshpande, Norman Lahr, Ruben Niederha-
gen, Jakub Szefer, and Wen Wang. Complete and improved FPGA implemen-
tation of Classic Mceliece. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2022(3):71–113, 2022.

[DdPM+21] Sanjay Deshpande, Santos Merino del Pozo, Victor Mateu, Marc Manzano,
Najwa Aaraj, and Jakub Szefer. Modular inverse for integers using fast
constant time gcd algorithm and its applications. In Proceedings of the
International Conference on Field Programmable Logic and Applications,
FPL, August 2021.

[DMG21] Viet Ba Dang, Kamyar Mohajerani, and Kris Gaj. High-speed hardware
architectures and fpga benchmarking of crystals-kyber, ntru, and saber.
Cryptology ePrint Archive, Paper 2021/1508, 2021. https://eprint.iacr.
org/2021/1508.

[GHJ+22] Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander
Nilsson, and Robin Leander Schröder. Don’t reject this: Key-recovery timing
attacks due to rejection-sampling in hqc and bike. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2022, Issue 3:223–263, 2022.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki–Okamoto transformation. In Yael Kalai and Leonid Reyzin,
editors, Theory of Cryptography, pages 341–371, Cham, 2017. Springer Inter-
national Publishing.

[JGCS21] Arpan Jati, Naina Gupta, Anupam Chattopadhyay, and Somitra Kumar
Sanadhya. A configurable CRYSTALS-Kyber hardware implementation with
side-channel protection. Cryptology ePrint Archive, 2021.

[MLRB20] Pedro Maat C. Massolino, Patrick Longa, Joost Renes, and Lejla Batina. A
compact and scalable hardware/software co-design of SIKE. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2020(2):245–271,
Mar. 2020.

[Ong2x] Ongoing. Undecided. Ongoing, 202x.

[RBCGG21] Jan Richter-Brockmann, Ming-Shing Chen, Santosh Ghosh, and Tim Güneysu.
Racing bike: Improved polynomial multiplication and inversion in hard-
ware. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2022(1):557–588, Nov. 2021.

[RBMG22] Jan Richter-Brockmann, Johannes Mono, and Tim Guneysu. Folding bike:
Scalable hardware implementation for reconfigurable devices. IEEE Transac-
tions on Computers, 71(5):1204–1215, 2022.

https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://eprint.iacr.org/2021/1508
https://eprint.iacr.org/2021/1508

24 Towards a Fast and Efficient Hardware Implementation of HQC

[WTJ+20] Wen Wang, Shanquan Tian, Bernhard Jungk, Nina Bindel, Patrick Longa, and
Jakub Szefer. Parameterized hardware accelerators for lattice-based cryptog-
raphy and their application to the hw/sw co-design of qTESLA. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2020(3):269–306,
Jun. 2020.

[XL21] Yufei Xing and Shuguo Li. A compact hardware implementation of cca-secure
key exchange mechanism crystals-kyber on fpga. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2021(2):328–356, Feb. 2021.

	Introduction
	Open-Source Design
	Paper Outline

	Preliminaries
	Notation
	HQC PKE and KEM Schemes

	Hardware Design of HQC
	Modules Common Across the Design
	Encode and Decode Modules
	Encrypt and Decrypt Modules
	Key Generation
	Encapsulation Module
	Decapsulation Module
	Dual Clock Design

	Related Work
	Related Hardware Designs
	Comparison to Related Work

	Conclusion

