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Abstract. At Eurocrypt 2022, Tang et al proposed a practical digital
signature scheme in the context of post-quantum cryptography. The con-
struction of that scheme is based on the assumed hardness of the alter-
nating trilinear form equivalence problem (ATFE), the Goldreich-Micali-
Widgerson (GMW) zero-knowledge protocol for graph isomorphism, and
the Fiat-Shamir (FS) transformation. We refer to that scheme as the
ATFE-GMW-FS scheme. The security of the ATFE-GMW-FS scheme was
only proved in the random oracle model (ROM), and its security in the
quantum random oracle model (QROM) was left as an open problem.
In this paper, we study the ATFE-GMW-FS scheme from two perspec-
tives, namely the QROM security and (linkable) ring signature schemes.
First, we provide two approaches of proving its QROM security, based
on the perfect unique response property and lossy identification schemes,
respectively. Second, we design (linkable) ring signatures based on the
ATFE-GMW-FS scheme, inspired by a recent result of Beullens, Kat-
sumata and Pintore (Asiacrypt 20) on isogeny-based cryptography.

1 Introduction

In [22], Goldreich, Micali and Wigderson described a zero-knowledge proof pro-
tocol for graph isomorphism (GI). The Fiat-Shamir transformation FS [21] can
be applied to it to yield a digital signature scheme.This construction has been
observed by several researchers since the 1990’s. However, this scheme based on
graph isomorphism is not secure, because GI can be solved effectively in practice
[33,34], not to mention Babai’s quasipolynomial-time algorithm [3].

Fortunately, the Goldreich-Micali-Wigderson zero-knowledge proof protocol
applies to any isomorphism problem. This gives the hope that, by choosing an
appropriate isomorphism problem, such a construction could be secure. This
has been carried out to two areas in the context of post-quantum cryptography,



namely multivariate cryptography and isogeny-based cryptography. In multi-
variate cryptography, Patarin proposed using polynomial isomorphism problems
to replace graph isomorphism [36]. In isogeny-based cryptography, Couveignes
proposed the use of class group actions on elliptic curves [16]. Both proposal
have their own merits and issues; interested readers are referred to [40] for more
details.

The recent advances in complexity theory [23,24] and algorithms [30,14,24]
reveal a much clearer picture on the complexity of isomorphism problems of alge-
braic structures. Based on these advances, [40] proposed to use the isomorphism
problem for alternating trilinear forms as the basis of this construction. For a
detailed definition of the alternating trilinear form equivalence (ATFE) problem,
see Section 2. For convenience, we shall refer to the digital signature scheme in
[40] as the ATFE-GMW-FS scheme.

The main message of [40] is that ATFE-GMW-FS scheme could serve as an
alternative candidate for the NIST’s post-quantum digital signatures. This is
backed by carefully-chosen concrete parameters based on both theoretical and
practical attacks, and a prototype implementation which indicates fast running
times in practice.

Therefore, it is desirable to study the ATFE-GMW-FS scheme further. In this
paper, we investigate the ATFE-GMW-FS scheme from two important aspects:
security in the quantum random oracle model, and ring signature schemes. For
both aspects, we obtain good evidence that favors the ATFE-GMW-FS scheme.

Our Contributions

Security in the quantum random oracle model. The quantum random oracle
model (QROM) was proposed in 2011 in [8] and has received considerable at-
tention since then. There are certain inherent difficulties to prove security in the
QROM model, such as the adaptive pragrammability and rewinding [8]. Indeed,
the QROM security of the Fiat-Shamir transformation was only recently shown
after a series of works [44,29,32,18]. The QROM security of the ATFE-GMW-FS
scheme was briefly discussed in [40] but was left as an open problem.

In this paper we make progress on the QROM security of the ATFE-GMW-
FS scheme based on the works [44,29,32,18]. Our results on this line can be
informally summarised as follows.

1. The ATFE-GMW-FS scheme is secure in the QROM model, if the automor-
phism group of the initial alternating trilinear form is trivial. We then provide
experimental results to support that, for certain parameters proposed in [40],
a random alternating trilinear form has the trivial automorphism group.

2. The ATFE-GMW-FS scheme is secure in the QROM model, if the group
action under ATFE satisfies the pseudorandom property as defined in [27,2].
In particular, in this setting the security proof is tight. Whether the group
action under ATFE is pseudorandom or not is an open problem. In [40], some
arguments were provided to support that it is.

2



In particular, we do not need to modify the original ATFE-GMW-FS scheme
in [40] to attain the security in QROM, i.e., as opposed to the context of isogeny-
based cryptography, e.g., [19]. We will discuss more about this shortly.

Ring signature schemes. Ring signature, introduced by Rivest, Shamir and Tau-
man, is a special type of digital signature, in which a signer can sign on behalf of
a group chosen by himself while retaining anonymous within the group, and ring
signatures are formed without a complex setup procedure or the requirement
for a group manager. They simply require users to be part of an existing public
key infrastructure. Linkable ring signatures [31] is a variant of ring signatures in
which any signatures produced by the same signer can be publicly linked. Link-
able ring signatures are suitable in many different practical applications, such
as privacy-preserving digital currency (Monero [39]) and e-voting [41].

Recently at Asiacrypt 2020, Beullens, Katsumata and Pintore [7] proposed
an elegant way to construct efficient ring and linkable ring signatures from com-
mutative group actions, with instantiations in both isogeny and lattice settings.
The advantage of their schemes are the scalability of signature sizes with the ring
size, even compared to other logarithmic-size post-quantum ring signatures.

Inspired by Beullens, Katsumata and Pintore’s construction [7], in this paper,
we show that the ATFE-GMW-FS scheme can be adapted to allow for (linkable)
ring signatures. The construction is described in Section 5. We are in the process
of estimating the parameters and implementing the protocols, and the results
will be reported in a future revision of this work in which we will provide a
comparison with Calamari and Falafl, the counterparts in isogeny and lattice
settings, proposed in [7].

Discussions

Discussions on QROM security. Though tight QROM security proofs of Fiat-
Shamir can be obtained by constructing lossy key generation [29], the lossy
assumption seems very strong, so a natural question is to relax this assumption.
In a pair of breakthrough papers [32] and [18], security reductions from the Fiat-
Shamir transform to the underlying Σ-protocol with mild losses were presented.
Combining these results with the perfect unique response property introduced by
Unruh [42], we can obtain the security of the ATFE-GMW-FS signature scheme
based on the Fiat-Shamir transform under QROM assuming a certain property
of automorphism groups of alternating trilinear forms. While we don’t have a
rigorous analysis of this automorphism group property, we have experimental
data to support it; see 3.4.

There is one further approach which could avoid analysing automorphism
groups mathematically. In [32,18], a property called quantum unique response in
[18] or collapsing sigma protocol in [32] is introduced, generalising the collaps-
ingness which introduced by Unruh [43] to the quantum setting. The definition
of this property relies on a certain protocol and basically asks to distinguish
between measuring or not measuring during the execution of the protocol. It is
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an interesting problem to study isomorphism problems from the point of this
property, which would lead to another security proof under QROM.

Comparisons with results from isogeny based cryptography. Some of our results,
such as the lossy identification scheme (cf. Section 4.3) and the ring signature
schemes (cf. Section 5, are inspired by corresponding works in isogeny-based
cryptography [19,7]. Still, there are substantial differences, so we compare our
results with those in [19,7].

First, the group action underlying our lossy identification scheme is the same
action as the original ATFE-GMW-FS scheme, while the group action underlying
the lossy CSI-FiSh [19] is the diagonal action of the class group on two elliptic
curves following [38]. One reason is that for the pseudorandom group action
assumption [27] (cf. Definition 8) to be useful, it is necessary that the underlying
group action is intransitive, but the class group action on the classes of elliptic
curves is transitive, which is why two copies are needed there. This results in
doubling of the public-key size in lossy CSI-FiSh compared to the original CSI-
FiSh, as opposed to our case where the public key size remains the same.

Second, our (linkable) ring singatures essentially follows the designs of their
counterparts proposed by Beullens, Katsumata and Pintore [7]. The main differ-
ence lies in the choice of group actions. The class group action leads to smaller
signature sizes, but it suffers the problems of efficiently computing the group
action and random sampling. The group action underlying ATFE allows for fast
group action and random sampling computations, though the signature sizes are
somewhat larger. For a more detailed comparison in these aspects we refer the
reader to [40].

Discussions on generalising our results in group action based cryptography. Most
of our results can be generalised to general group actions. We refer the reader
to [13,16,27,2] for frameworks of cryptography based on group actions. Here we
only briefly indicate the group action underying ATFE, using terminologies and
notation introduced in Section 2. Let G be a group, S be a set, and α : G×S → S
be a group action, i.e. a function satisfying certain axioms. In the case of ATFE,
the group G is the general linear group GL(n, q), the set S is the set of all
alternating trilinear forms as Fn

q ×Fn
q ×Fn

q → Fq, and the group action is defined
as in Section 2. Based on this example, it is not hard to rephrasemost of the
results in this paper in the language of group actions. However, we adopt to
use ATFE directly because it is more concrete and allows us to directly use the
results and parameters from [40].

Organization. In Section 2, we will review notions and security of idenfitication
protocol and the associated Fiat-Shamir signature. We also recall alternating
trilinear forms, some hardness assumptions to be used throughout the paper, and
the ATFE-GMW-FS signature scheme in [40]. Section 3 is devoted for the security
proof in QROM of ATFE-GMW-FS under the assumption on the triviality of the
automorphism group of associated alternating trilinear forms. We also present
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some experimental results supporting this assumption at the end of Section 3.
In Section 4, we prove that the underlying sigma protocol of ATFE-GMW-FS
is lossy and present the corresponding Fiat-Shamir signature scheme which is
proved to be tightly secure in QROM. Section 5 is devoted for our construction
of (linkable) ring signatures. We conclude in Section 6 with some discussions and
open problems.

2 Preliminaries for the ATFE-GMW-FS scheme

2.1 Notations

We collect some basic notation in this subsection. We use Fq to denote the finite
field of order q. The general linear group of degree n over Fq is denoted as
GL(n, q). The base of logarithm is 2 unless otherwise specified. For a finite set
S, we use s ∈R S to denote that s is uniformly randomly sampled from S. Given
a positive integer k ≥ 1, we denote by [k] the set {1, · · · , k}.

2.2 Sigma Protocol

Let R ⊆ X × W be a binary relation, where X ,W,R are recognizable finite
sets. In other words, there is a polynomial time algorithm can decide whether
(x,w) ∈ R for x ∈ X and w ∈ W. Given an instance generator Gen of a
relation R, the relation R is hard if for any poly-time quantum algorithm A,
the probability Pr[(x,w′) ∈ R | (x,w)← Gen(1λ), w′ ← A(x)] is negligible.

Given a hard relation R, the Σ-protocol for R which is 3-move interactive
protocol between a prover P and a verifier V in which the prover P who has the
witness w for the statement x tries to convince the verifier V that he possesses
a valid witness w without revealing any more than the fact that he knows w.
Formally, Σ-protocol is defined as follows.

Definition 1. Let R be a hard binary relation. Let ComSet,ChSet,ResSet be
the commitment space, challenge space and response space respectively. The Σ-
protocol Σ for a relation R consists of three PPT algorithms (P = (P1,P2),V),
where V is deterministic and we assume that P1 and P2 share the same state,
working as the following:

– The prover P first computes a commitment a← P1(w, x) and sends a to the
verifier V.

– On input a commitment a, the V samples a random challenge c from the
challenge space ChSet and sends to P.

– P computes a response r ← P2(w, x, a, c) and sends to the V who will run
V(x, a, c, r) and outputs 1 if the transcript (a, c, r) is valid and 0 otherwise.

Identification from Σ-protocol. A Σ-protocol (P,V) with a key generation algo-
rithm ID.Gen gives an identification scheme (ID.Gen,P,V).

5



Completeness. The Σ-protocol is said to be complete if for all pair (x,w) ∈
R, an honest prover P with (pk, sk), where pk := x and sk := w, can always
convince an honest verifier, i.e. Pr[V(pk, a, c, r) = 1 | a← P(sk), c ∈R ChSet, r ←
P2(pk, sk, a, c)] = 1.

Post-Quantum 2-Soundness. We say aΣ-protocol has post-quantum 2-soundness
if for all pairs (x,w) ∈ R, no poly-time quantum adversaries A with only
the statement x, where (x,w) ∈ R, can compute two valid transcripts (a, c, r)
and (a, c′, r′) of different challenges c ̸= c′ with non-negligible probability, i.e.
Pr[V(pk, a, c, r) = 1 ∧ V(pk, a, c′, r′) = 1 ∧ c ̸= c′ | (a, c, r, c′, r′) ← A(pk)] ≤
negl(λ).

Honest Verifier Zero Knowledge. The Σ-protocol has honest verifier zero knowl-
edge (HVZK) if for all pairs (x,w) ∈ R, there is a simulator S with only the
statement x, can always compute a valid transcript (a, c, r), i.e. Pr[V(pk, a, c, r) =
1 | (a, c, r)← S(pk)] = 1. Moreover, the output distribution of S on input (x, c)
is equal to the distribution of those outputs generated via an honest execution
conditioned on the verifier using c as the challenge.

Min-entropy. The Σ-protocol has α-bit min-entropy, if

Pr
(x,w)∈RR

[min-entropy(a|a← P1(x,w)) ≥ α] ≥ 1− 2−α.

Perfect Unique Response. The Σ-protocol has perfect unique response if for
all pairs (x,w) ∈ R, there is no two valid transcripts (a, c, r) and (a, c, r′) of
the same commitment a and challenge c but different responses r ̸= r′, i.e.
Pr[V(x, a, c, r) = 1 ∧ V(x, a, c, r′) = 1 ∧ r ̸= r′] = 0.

Computationally Unique Response. The Σ-protocol has computationally unique
response if for all pairs (x,w) ∈ R, no poly-time quantum adversaries A with a
statement x can compute two valid transcripts (a, c, r) and (a, c, r′) of different
responses r ̸= r′ with non-negligible probability, i.e.,

Pr[V(x, a, c, r) = 1 ∧ V(x, a, c, r′) = 1 ∧ r ̸= r′ | (a, c, r, r′)← A(pk)] ≤ negl(λ).

Commitment Recoverability. The Σ-protocol is commitment recoverable if given
c and r, there is a unique a such that (a, c, r) is a valid transcript. Therefore,
the commitment can be computed with the input (c, r).

2.3 Digital signatures

Definition 2. A digital signature consists of the following polynomial-time (pos-
sibly probabilistic) algorithms.

– Gen(1λ): On input a security parameter λ, generates a pair (sk, pk) of secret
key sk and verification key pk.
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– Sign(sk,M): On input a message M and the secret key sk, it generates a
signature σ.

– Ver(pk,M, σ): On input the verification key pk, a messageM and a signature
σ, it returns 1 or 0.

For correctness, it is required that

Pr[Ver(pk,M,Sign(sk,M)) = 1] = 1

where the probability is taken over the randomness of algorithms Sign and Ver.

Definition 3 (Security of Signature Scheme). The signature scheme is said
to be unforgeable (i.e., EUF-CMA secure) if for any poly-time quantum adver-
saries A, who has seen a number of signatures of messages of his choosing,
the probability that A can sign a message that he has not seen its signature is
negligible, i.e., Pr[Verify(pk,m, σ) = 1 ∧ (m,σ) /∈ Σ|(pk, sk) ← Gen(1n), σ ←
A(pk,m)] ≤ negl(λ), where Σ is the list of all message-signature pairs that A
has seen before.

A stronger notion is strongly unforgeablility (sEUF-CMA) that allows an ad-
versary A to output a different signature of a message whose signature he has
already seen. The schemes presented in this paper satisfy this stronger notion of
unforgeability.

The Fiat-Shamir transformation [21] FS turns an identification protocol ID =
(ID.Gen,P = (P1,P2),V) into a signature scheme FS[ID] as follows.

– ID.Gen(1λ): On input a security parameter λ, run (ID.sk, ID.pk)← ID.Gen(1λ)
and define the secret key sk := ID.sk and verification key pk := ID.pk.

– Sign(sk,M) : On input the secret key sk and a messageM , do the following:
• Run a← P1(sk, pk).
• Compute c := H(M∥a) where H : {0, 1}∗ → ChSet is a secure hash
function.

• Run r ← P2(sk, pk, a, c).
• Return a signature σ := (a, r).

– Ver(pk,M, σ) : On input a message M and a signature σ, do the following:
• Compute c := H(M∥a).
• Return V(pk, a, c, r).

Theorem 1 ([37]). If an identification protocol is HVZK and satisfies special
soundness, then FS[ID] has EUF-CMA security in the QROM model.

2.4 Ring signatures

In this section, we provide the definition of ring signature following Beullens,
Katsumata and Pintore [7].

Definition 4 (Ring signature). A ring signature scheme ΠRS consists of three
PPT algorithms (RS.KeyGen,RS.Sign,RS.Verify) where,
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– RS.KeyGen(1λ): This algorithm generates a list (R = {vk1, . . . , vkN}, {sk1, . . . , skN})
of the secret keys vki and public keys ski.

– RS.Sign(ski,R,M): Given the secret key ski, a list of public key R = {vk1, . . . , vkN}
and a message M, it outputs a signature σ.

– RS.Verify(R,M, σ): Given a list of public key R = {vk1, . . . , vkN}, a message
M and a signature σ, this algorithm verifies if this signature is 1 (valid) or
0 (invalid).

A ring signature needs to satisfy three properties: correctness, anonymity
and unforgeability.

Correctness: A ring signature ΠRS is said to have correctness if for any security
parameter λ, polynomial N = poly(λ) and message M, the following probability
is 1:

Pr

RS.Verify(R,M, σ) = 1

∣∣∣∣∣∣∣
({vk1, . . . , vkN}, {sk1, . . . , skN})← RS.KeyGen(1λ)

R := {vk1, . . . , vkN}
σ ← RS.Sign(ski,R,M)


Anonymity: A ring signature ΠRS is said to be anonymous if for every security
parameter λ and polynomial N = poly(λ), any PPT adversary A has at most
negligible advantage in the following game:

(1) The challenger generates public keys and secret keys

({vk1, . . . , vkN}, {sk1, . . . , skN})← RS.KeyGen(1λ, r),

where r is random bits, and samples b
$← {0, 1}. Then it sends random bits

r to A.
(2) A computes a challenge (R,M, i0, i1), where R contains ski0 and ski1 , and

sends it to challenger.
(3) Challenger runs RS.Sign(skib ,R,M)→ σ and sends σ to A.
(4) A check if RS.Verify(R,M, σ) = 1, and if so outputs b′. If b = b′, we say A

wins this game.

The advantage of A is

AdvAnonRS (A) = |Pr[A wins]− 1/2| .

Unforgeability: A ring signature ΠRS is said to be unforgeable if for every
security parameter λ and polynomial N = poly(λ), any PPT adversary A has
at most negligible probability to win the following game:

(1) The challenger generates public keys and secret keys

({vk1, . . . , vkN}, {sk1, . . . , skN})← RS.KeyGen(1λ, r = {ri}i∈[N ]),

where random bits ri is used to generate corresponding pair vki, ski. It sends
the list of public keys VK = {vki}i∈[N ] to A and prepares two empty list SL
and CL.
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(2) A can make polynomial times of signing queries and corrupting queries:

• (sign, i,R,M): The challenger outputs the signature σ ← RS.Sign(ski,R,M)
to A and adds (i,R,M) to SL.

• (corrupt, i) The challenger sends the random bits ri to A and adds vki to
CL.

(3) We say A wins this game if A outputs (R′,M′, σ′) such that R′ ⊆ VK \ CL,
(·,M′,R′) /∈ SL, and RS.Verify(R′,M′, σ′) = 1.

2.5 Linkable ring signatures

Linkable ring signature is a variant of ring signature in which the linkability can
detect if a secret key is used more than once. The definition and properties of
linkable ring signature, following [7], are provided as follows.

Definition 5 (Linkable ring signature). A linkable ring signature scheme
ΠLRS consists of three PPT algorithms in the ring signature in addition with a
PPT algorithm such that:

– LRS.Link(σ0, σ1): It checks if two signatures σ0, σ1 are produced with a same
secret key, and outputs 1 if it is the case and 0 otherwise.

Correctness: A ring signature ΠLRS is said to have correctness if for any security
parameter λ, polynomial N = poly(λ), messages M0,M1, and sets D0, D1 ⊆ [N ]
that j ∈ D0 ∩D1, the following probability is 1:

Pr

LRS.Verify(R,M, σb) = 1

∀b ∈ {0, 1} and
LRS.Link(σ0, σ1) = 1

∣∣∣∣∣∣∣
({vk1, . . . , vkN}, {sk1, . . . , skN})← LRS.KeyGen(1λ),

Rb := {vki}i∈Db
,

σb ← LRS.Sign(skj ,Rb,Mb).


Linkability: A ring signature ΠLRS is said to be unforgeable if for every security
parameter λ and polynomial N = poly(λ), any PPT adversary A has at most
negligible probability to win the following game:

(1) The challenger sends λ to A.
(2) A generates public keys and secret keys ({vk1, . . . , vkN}, {sk1, . . . , skN}) ←

LRS.KeyGen(1λ), and then produces a set (σi,Mi,Ri)i∈[N+1].

(3) We say A wins this game if all the following conditions are satisfied:

• ∀i ∈ [N + 1], have Ri ⊆ VK;
• ∀i ∈ [N + 1], have LRS.Verify(Ri,Mi, σi) = 1;
• ∀i, j ∈ [N + 1], where i ̸= j, have LRS.Link(σi, σj) = 0.

Linkable Anonymity: A ring signature ΠLRS is said to be linkable anonymous if
for every security parameter λ and polynomial N = poly(λ), any PPT adversary
A has at most negligible advantage in the following game:
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(1) The challenger generates public keys and secret keys

({vk0, . . . , vkN}, {sk1, . . . , skN})← RS.KeyGen(1λ, r = {ri}i∈[N ]),

where random bits ri is used to generate corresponding pair vki, ski and
it also samples a ramdom bit b ∈ {0, 1}. Then it sends the public keys
VK = {vk0, . . . , vkN} to A.

(2) A sends two public keys vk′0, vk
′
1 to the challenger, and we let sk′0, sk

′
1 be the

corresponding secret keys.
(3) The challenger outputs ri of the corresponding vki ⊆ VK \ {vk′0, vk

′
1}.

(4) A chooses a public key vk ∈ {vk′0, vk
′
1} and provides a massage M and a ring

R that {vk′0, vk
′
1} ⊆ R to query the challenger:

• If vk = vk′0, the challenger outputs the signature LRS.Sign(skb,R,M) →
σ.

• If vk = vk′1, the challenger outputs the signature LRS.Sign(sk1−b,R,M)→
σ.

(5) A check if LRS.Verify(R,M, σ) = 1, and if so outputs b′. If b = b′, we say A
wins this game.

The advantage of A is AdvAnonLRS (A) = |Pr[A wins]− 1/2|.

Non-frameability: A ring signature ΠLRS is said to be non-frameable if for
every security parameter λ and polynomial N = poly(λ), any PPT adversary A
has at most negligible probability to win the following game:

(1) The challenger generates public keys and secret keys LRS.KeyGen(1λ, r =
{ri}i∈[N ])→ ({vk0, . . . , vkN}, {sk1, . . . , skN}), where random bits ri is used to
generate corresponding pair vki, ski. It sends the list of public keys VK =
{vki}i∈[N ] to A and prepares two empty list SL and CL.

(2) A can make polynomial times of signing queries and corrupting queries:
• (sign, i,R,M): The challenger outputs the signature LRS.Sign(ski,R,M)→
σ to A and adds (i,R,M) to SL.

• (corrupt, i): The challenger sends the random bits ri to A and adds vki
to CL.

(3) We say A wins this game if A outputs (R′,M′, σ′) such that (·,M′,R′) /∈ SL,
LRS.Verify(R′,M′, σ′) = 1, and for some query (i,R,M) ∈ SL where the
identity i satisfies vki ∈ VK \ CL, the challenger outputs a signature σ that
LRS.Link(σ′, σ) = 1 holds.

Unforgeability: The definition of unforgeability remains the same as that of
the normal ring signature. The unforgeability can be easily derived from the
linkable anonymity and the non-frameability.

2.6 Alternating trilinear forms and their isomorphisms

In this section, we briefly review the notions of alternating trilinear forms, their
isomorphisms, how to represent these in algorithms, and the algorithmic prob-
lems relevant to us. For details the reader is referred to [40, Sec. 2.1 and 6.2].
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Let Fq be the finite field of order q. A trilinear form ϕ : Fn
q × Fn

q × Fn
q → Fq

is alternating, if ϕ evaluates to 0 whenever two arguments are the same. We use
ATF(n, q) to denote the set of all alternating trilinear forms defined over Fn

q .

Let A be an invertible matrix of size n×n over Fq. Then A sends ϕ to another
alternating trilinear form ϕ◦A, defined as (ϕ◦A)(u, v, w) := ϕ(At(u), At(v), At(w)).
This yields a group action of GL(n, q) on ATF(n, q). Given an alternating tri-
linear form ϕ ∈ ATF(n, q), the orbit of ϕ, denoted by O(ϕ), is the set of all
ϕ ◦A for A ∈ GL(n, q). The automorphism group of ϕ (also known as the stabi-
lizer group of ϕ), denoted by Aut(ϕ), is the subgroup of GL(n, q) fixing ϕ, i.e.,
Aut(ϕ) := {A ∈ GL(n, q) | ϕ ◦A = ϕ}. By the orbit-stabilizer theorem, we have
that |O(ϕ)| · |Aut(ϕ)| = |GL(n, q)|.

The alternating trilinear form equivalence (ATFE) problem asks to decide,
given two alternating trilinear forms ϕ, ψ : Fn

q × Fn
q × Fn

q → Fq, whether there
exists an invertible matrix A such that ϕ = ψ ◦A.

In algorithms, an alternating trilinear form is represented by
(
n
3

)
field ele-

ments in Fq. The group action of GL(n, q) on ATF(n, q) can be computed in
time O(n4 · log q). Uniformly sampling an element in ATF(n, q) or an element in
GL(n, q) can be done in time poly(n, log q).

The following two algorithmic problems are of key relevance to the use in
cryptography. The first algorithmic problem is a slight modification of the m-
psATFE problem in [40].

Definition 6 (K-psATFE-RO). The promised search version of the alternating
trilinear form equivalence problem with K random instances from a random orbit
(K-psATFE-RO) is the following.

Input: K alternating trilinear forms ϕ0, ϕ1, . . . , ϕK−1 : Fn
q × Fn

q × Fn
q → Fq,

such that: (1) ϕ0 ∈R ATF(n, q), and (2) for i ∈ [K−1], ϕi := ϕ0 ◦Ai, where
Ai ∈R GL(n, q).

Output: Some A ∈ GL(n, q) and i, j ∈ {0, 1, . . . ,K − 1}, i ̸= j, such that
ϕi = ϕj ◦A.

In Section 3, we also need the following variation of Definition 6 by restricting
to a particular orbit.

Definition 7 (K-psATFE-O(ϕ)). Let ϕ ∈ ATF(n, q). The promised search ver-
sion of the alternating trilinear form equivalence problem with K random in-
stances in the orbit of ϕ (K-psATFE-O(ϕ)) is the following.

Input: K alternating trilinear forms ϕ0, ϕ1, . . . , ϕK−1 : Fn
q × Fn

q × Fn
q → Fq,

such that for i ∈ {0, 1, . . . ,K − 1}, ϕi := ϕ ◦Ai, where Ai ∈R GL(n, q).

Output: Some A ∈ GL(n, q) and i, j ∈ {0, 1, . . . ,K − 1}, i ̸= j, such that
ϕi = ϕj ◦A.

The second algorithmic problem is obtained by applying the pseudorandom
group action notion [27] to K-psATFE-RO.
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Definition 8 (K-PR-psATFE-RO). The pseudorandom version of the alter-
nating trilinear form equivalence problem with K random instances from a ran-
dom orbit (K-PR-psATFE-RO) asks to distinguish the following two distribu-
tions.

The random distribution: K alternating trilinear forms ϕ0, ϕ1, . . . , ϕK−1 :
Fn
q × Fn

q × Fn
q → Fq, such that every ϕi ∈R ATF(n, q).

The pseudorandom distribution: K alternating trilinear forms ϕ0, ϕ1, . . . ,
ϕK−1 : Fn

q × Fn
q × Fn

q → Fq, such that: (1) ϕ0 ∈R ATF(n, q), and (2) for
i ∈ [K − 1], ϕi := ϕ0 ◦Ai, where Ai ∈R GL(n, q).

Remark 1. Since two random alternating trilinear forms are unlikely to be in
the same orbit for reasonably large n, an algorithm that solves K-psATFE-RO
can be used to distinguish the two distributions in K-PR-psATFE-RO with high
probability.

Assumption 1. No quantum polynomial-time algorithm can solve K-psATFE-
RO problem with a non-negligible probability.

Assumption 2. No quantum polynomial-time algorithm can solve K-psATFE-
O(ϕ) problem with a non-negligible probability.

2.7 The ATFE-GMW-FS scheme

As mentioned in Section 1, the ATFE-GMW-FS scheme in [40] is obtained by ap-
plying the Fiat-Shamir (FS) transformation to the Goldreich-Micali-Wigderson
(GMW) zero-knowledge protocol instantiated with the ATFE problem, or more
precisely, the K-psATFE-RO problem as in Definition 6.

For our purposes in this paper, the key is that the GMW protocol instanti-
ated with the K-psATFE-RO problem. This protocol is easily interpreted as an
identification protocol, and we shall refer it as the ATFE-GMW protocol. There-
fore, we describe the ATFE-GMW protocol in detail, and refer the reader to [40,
Section 3.1] for a detailed description of the ATFE-GMW-FS signature scheme.

In the ATFE-GMW protocol, the public key consists of alternating trilinear
forms ϕ0, ϕ1, · · · , ϕK−1 such that ϕ0 ∈R ATF(n, q), ϕi ◦ A−1

i = ϕ0 for i =
1, · · · ,K − 1, and Ai ∈R GL(n, q). The private key consists of Ai ∈ GL(n, q),
i ∈ [k]. In this protocol, the goal of the prover is to convince the verifier that,
for every i ̸= j, the prover knows some A ∈ GL(n, q) such that ϕi = ϕj ◦A.

Define the relation R := {x = {ϕ0, ϕ1, . . . , ϕK−1} , w = {A1, . . . , AK−1} |
x ⊆ ATF(n, q), w ⊆ GL(n, q), ϕ0 ◦ A−1

i = ϕi,∀i ∈ [K − 1]}. The protocol is
described in Figure 1. The protocol needs to be repeated t times for appropriate
t to attain the required security level.

It is known that ATFE-GMW protocol in Figure 1 has the following proper-
ties; see e.g. [40]. Here we provide some proof sketches for completeness.

Completeness. It is clear that the honest provers with statement and witness
(x,w) following the Σ-protocol can always convince the honest verifiers.
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P(ϕ0, · · · , ϕK−1, A1, · · · , AK−1) V(ϕ0, · · · , ϕK−1)

B ∈R GL(n, q)

ψ = ϕ0 ◦B

ψ

c
$← {0, 1, · · · ,K − 1}

c

Set D := B + Sign(c)(AcB −B)

D

Check if ϕc ◦D = ψ?

Fig. 1. The ATFE-GMW protocol.

Post-Quantum 2-Soundness. If there is a poly-time quantum adversary A
with statement x = {ϕ0, . . . , ϕK−1} who can compute two valid transcripts
(ψ, c,D) and (ψ, c′, D′) where c ̸= c′. Since ϕc ◦ D = ψ and ϕ′c ◦ D′ = ψ,
the A can get E = D′D−1 such that ϕc = ϕ′c ◦ E, which is contradicted to the
Assumption 1.

HVZK. Given a statement x = {ϕ0, . . . , ϕK−1}, there is a simulator S first sam-
pling c ∈R {0, . . . ,K − 1} and D ∈R GL(n, q) and then computing ψ = ϕc ◦D.
(ψ, c,D) is a valid transcript. Then the distributions of D and c are uniform, and
ψ = ϕc ◦D is uniformly from the orbit where statement x is in. The distribution
of (a, c, r)← S(x) is equal to the distribution of real transcripts since the both
are uniform distribution on commitments, challenges, and responses.

Min-Entropy. Since commitment ψ is uniformly taken from the orbit O where
elements of the statement x = {ϕ0, . . . , ϕK−1} are in, the ATFE-GMW protocol
has α-bit min-entropy with α = log2(|O|) and |O| is the size of orbit O.

Remark 2. By the orbit-stabiliser theorem, for an alternating trilinear form ϕ
over Fn

q , we have |O(ϕ)| = |GL(n, q)|/|Aut(ϕ)|. In Section 3.4, some results on
the automorphism group orders, and therefore orbit sizes, of random alternating
trilinear forms will be presented.

Commitment Recoverable. The ATFE-GMW protocol is commitment recov-
erable. In fact, given a challenge c and a response D, there is only one commit-
ment ψ computed by ψ = ϕc ◦D.
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The ATFE-GMW-FS-O(ϕ) scheme. In Section 3, we will need a variant of the
ATFE-GMW-FS scheme as follows. Briefly speaking, this variant restricts to an
orbit of some specific ϕ ∈ ATF(n, q) instead of working in the orbit of a random
ϕ ∈ ATF(n, q). That is, we fix a specific ϕ ∈ ATF(n, q), and in the key generation
step, we randomly sample Ai ∈R GL(n, q) for i ∈ {0, 1, . . . ,K − 1} to compute
ϕi = ϕ ◦ Ai for i ∈ {0, 1, . . . ,K − 1}. The rest is the same as the ATFE-GMW-
FS scheme. We shall call such a scheme the ATFE-GMW-FS-O(ϕ) scheme, and
its underlying Sigma-protocol the ATFE-GMW-O(ϕ) protocol. Follow the above
proof and Assumption 2, ATFE-GMW-O(ϕ) protocol also has these properties.

3 QROM security via perfect unique responses

In this section, we show that the ATFE-GMW-FS scheme is secure in the quan-
tum random oracle model (QROM) subject to a certain condition on the auto-
morphism group of the alternating trilinear form in use.

This section is organised as follows. In Section 3.1, we review some basics
of the quantum random oracle model. In Section 3.2, we translate perfect and
computational unique response properties of the ATFE-GMW protocol to cer-
tain properties about automorphism groups of alternating trilinear forms. In
Section 3.3, we formally state the theorem on QROM security of the ATFE-
GMW-FS scheme. Finally in Section 3.4, we provide theoretical and experiment
results on the automorphism group orders of random alternating trilinear forms
for the parameters proposed in [40].

3.1 Preliminaries on the quantum random oracle model

The random oracle model (ROM) was first proposed in 1993 by Bellare and
Rogaway in [5] as a heuristic to provide security proofs in cryptography. Briefly
speaking, in the ROM model, the hash function is replaced by a random oracle.
However, ROM is insufficient when considering quantum adversaries, which leads
to the proposal of the quantum ROM (QROM) [8]. One main reason comes from
that quantum adversaries can make queries as a superposition. For example,
let H : X → Y be a hash function, a quantum adversary will make super-
position queries to evaluate this function, that is, for input

∑
x βx|x⟩ return∑

x βx|x⟩|H(x)⟩. Security proof migration from ROM to QROM is not an easy
task, due to several obstacles from some properties in the quantum setting, such
as whether the query is a superposition, quantum no cloning, and quantum mea-
surement causes collapse, etc. Indeed, there exist that protocols that are secure
in ROM but not in QROM [8,45] .

Recently, thanks to a pair of breakthrough papers [18,32], the QROM se-
curity of the Fiat-Shamir transform is now much better understood. Based on
these papers, we study the relation between the ATFE-GMW scheme and the
perfect unique response property introduced by Unruh [42]. With this important
property and some additional properties we state in Section 2.7, we can prove
the security of the ATFE-GWM protocol under quantum ROM.
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3.2 Perfect and computationally unique responses of the
ATFE-GMW protocol

We require some extra properties such that the ATFE-GMW or ATFE-GMW-O(ϕ)
protocols in Section 2.7 meet the perfect unique response and computationally
unique response properties.

Lemma 1 (Perfect Unique Response). The ATFE-GMW-O(ϕ) protocol sup-
ports perfect unique response iff Aut(ϕ) is trivial.

Proof. In the one direction, assume that Aut(ϕ) is trivial. If there are two valid
transcripts (ψ, c,D) and (ψ, c,D′) for the protocol in 1. Then we have ϕc ◦D =
ϕc ◦D′. It implies that E ∈ Aut(ϕ) where E = D′D−1 and thus D = D′.

Now assume that the ATFE-GMW-O(ϕ) protocol satisfies the perfect unique
response property. If Aut(ϕ) is non-trivial, i.e., there exists an invertible ma-
trix E ̸= In such that ϕ ◦ E = ϕ. Therefore, all elements in {ϕ0, . . . , ϕK−1}
have non-trivial automorphism groups. Due to the completeness, there is a valid
transcript (ψ, c,D) for any ψ and any c ∈ {0, 1}K−1. Hence, for the statement
{ϕ0, . . . , ϕK−1}, every commitment ψ, and every challenge c, there are two differ-
ent responses D and ED such that (ψ, c,D) and (ψ, c, ED) are valid transcripts,
which is a contradiction. This completes the proof.

We have the following triviality assumption on the autormophism group of
alternating trilinear forms. We present some experimental support for this As-
sumption in Section 3.4.

Assumption 3. The automorphism group of an alternating trilinear form ϕ ∈R
ATF(n, q) is trivial with a high probability.

Remark 3. Although perfect unique response for ATFE-GMW protocol can not
be proved rigorously, statistical unique response3 can be proved based on As-
sumption 3. However, it is not known if statistical unique response is enough to
prove the quantum proof of knowledge.

To illustrate the relation between the computationally unique response and
alternating trilinear form, we claim a new algorithm problem.

Definition 9. The alternating trilinear form automorphism problem is the fol-
lowing.

Input: An alternating trilinear forms ϕ ∈R ATF(n, q) : Fn
q × Fn

q × Fn
q → Fq.

Output: Some A ∈ GL(n, q), A ̸= In such that ϕ = ϕ ◦A.

Lemma 2 (Computationally Unique Response). The ATFE-GMW proto-
col in 1 supports computationally unique response iff no poly-time quantum algo-
rithm can solve ATF automorphism problem in Definition 9 with a non-negligible
probability.

3 Given commitment and challenge, there are more than one possible valid response
with a negligible probability.
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Proof. Assume that the Σ-protocol supports computationally unique response.
If there is a poly-time quantum adversary A such that for any statement x =
{ϕ0, . . . , ϕK−1} ⊆ ATF(n, q), it can compute two valid transcripts (ψ, c,D) and
(ψ, c,D′), where D ̸= D′, with a non-negligible probability. Then there is an
algorithm A1 using A as subroutine such that for any ϕc ∈ ATF(n, q), it can
produce an E = D′D−1 such that ϕc ◦E = ϕc with a non-negligible probability.

Assume that no poly-time quantum algorithm can solve ATF automorphism
problem with a non-negligible probability.If there is a poly-time quantum al-
gorithm A1 such that, for any ϕ ∈ ATF(n, q), it can get an automorphism E
such that ϕc ◦E = ϕc with a non-negligible probability. By the HVZK property,
there exists a simulator S such that, for any x = {ϕ0, . . . , ϕK−1} ⊆ ATF(n, q),
it can produce a valid transcript (ψ, c,D). Then there is an adversary A using
A1 and S as subroutines such that it firstly computes a valid transcript (ψ, c,D)
by S, and then computes E such that ϕc ◦ E = ϕc by A1. Thus, for any state-
ment {ϕ0, . . . , ϕK−1} ⊆ ATF(n, q), A can compute two transcripts (ψ, c,D) and
(ψ, c, ED) with a non-negligible probability.

Remark 4. The above proof can be applied to show the same result for ATFE-
GMW-O(ϕ).

3.3 QROM security via perfect unique responses

Theorem 2. Suppose ϕ ∈ ATF(n, q) satisfies that Aut(ϕ) is trivial. The ATFE-
GMW-FS-O(ϕ) signature based on the t repeatitions of ATFE-GMW-O(ϕ) pro-
tocol has strong existential unforgeability under chosen-message attack (EUF-
CMA) security. More specifically, for any polynomial-time quantum adversary
A querying the quantum random oracle QH times against EUF-CMA security of
ATFE-GMW-FS-O(ϕ) signature, there is a quantum adversary B for m-psATFE-
O(ϕ) problem such that,

AdvATFE−EUF-CMA
A ≤ O

(
QH

9 ·
(
Advm−psATFE

B

) 1
3

)
.

Proof. By Theorem 4, we have a Σ-protocol with post-quantum ID soundness.
Then the EUF-CMA security can be achieved by Theorem 6.

Post-Quantum ID soundness of ATFE-GMW Σ-protocol When a Σ-
protocol is for identification, we need a definition of ID soundness to protect
against the adversaries with eavesdropping attack.

Definition 10. A Σ-protocol has post-quantum ID soundness if for any (x,w) ∈
R, every adversary AOP,V =

(
AOP,V

0 ,AOP,V
1

)
with only the pk and polynomial

times of queries to the valid transcripts generated with an honest prover P with
pk and sk and an honest verifier V with pk can convince an honest verifier V
with a negligible probability, i.e.

Pr
[
V.Ver(pk, a, c, r) = 1 | a← AOP,V

0 (pk) ∧ c $← Cn ∧ r ← A
OP,V
1 (pk, a, c)

]
≤ negl(λ).
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Liu and Zhandry show that post-quantum identification soundness can be
satisfied if sigma protocol has weakly collapsing property and extra properties
[32, Theorem 1]. Since the perfect unique response is a stronger property than
weakly collapsing property, we can state the result in [32] as follows.

Theorem 3 ([32]). If a Σ-protocol with an exponentially large challenge space
has completeness, post-quantum 2-soundness, HVZK, and perfect unique re-
sponse, it is a Σ-protocol with post-quantum ID soundness that for any polynomial-
time quantum adversary A against post-quantum ID soundness, there is a quan-
tum adversary B for 2-soundness such that,

AdvID-sound
A ≤ O

((
Adv2-soundB

) 1
3

)
.

Theorem 4. The t repeatitions of ATFE-GMW-O(ϕ) Σ-protocol in Figure 1
is a Σ-protocol with post-quantum ID soundness that for any polynomial-time
quantum adversary A against post-quantum ID soundness, there is a quantum
adversary B for K-psATFE problem such that,

AdvATFE−ID
A ≤ O

((
AdvK−psATFE

B

) 1
3

)
.

Proof. By the Assumption 3 and the Lemma 1, the Σ-protocol in Figure 1 has
perfect unique response. We also proved that it has completeness, 2-soundness,
and HVZK in the Section 2.7. Since the The t repeatitions of Σ-protocol in
Figure 1 has an exponentially large challenge space, we complete the proof using
the result of Theorem 3.

Security of ATFE-GMW-FS signature Liu and Zhandry [32, Theorem 11]
showed that the signature security can be reduced to the underlying Σ-protocol
with post-quantum ID soundness through a variant of Zhandry’s compressed
oracle model [46]. Since min-entropy α = Ω(λ) implies that the Σ-protocol has
unpredictable commitment, we can substitute unpredictable commitment with
Ω(n) bits min-entropy to have the following theorem.

Theorem 5 ([32]). If a Σ-protocol has post-quantum ID soundness and Ω(n)
bits min-entropy, the Fiat-Shamir transformation can produce a signature scheme
with EUF-CMA security that for any polynomial-time quantum adversary A
querying the quantum random oracle QH times against EUF-CMA security,
there is a quantum adversary B against ID-soundness of the underlying protocol
such that,

AdvEUF-CMA
A ≤ O

(
Q9

H · Adv
ID-sound
B

)
.

Theorem 6. If the t repeatitions of ATFE-GMW-O(ϕ) protocol showed in Fig-
ure 1 has post-quantum ID soundness, then the corresponding Fiat-Shamir sig-
nature has EUF-CMA security that for any polynomial-time quantum adversary
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A querying the quantum random oracle QH times against EUF-CMA security of
ATFE-GMW-FS signature, there are quantum adversary B against ID-soundness
of ATFE-GMW-O(ϕ) protocol such that,

AdvATFE−EUF-CMA
A ≤ O

(
Q9

H · Adv
ATFE−ID
B

)
.

Proof. Assume the t repeatitions of Σ-protocol showed in Figure 1 has post-
quantum ID soundness. We proved that it has log2(|O|) bits min-entropy in
Section 2.7, and |O| = 2Ω(λ). Now we complete the proof utilizing the result of
Theorem 5

3.4 On the automorphism group orders of alternating trilinear
forms

The above results indicate the key role played by the automorphism groups of
the alternating trilinear forms in use. In this section we present some theoretical
and experiment results on this topic. The main messages are, for certain (n, q)
of interest in cryptography proposed in [40], (1) there exist many alternating
trilinear forms with trivial automorphism groups, and (2) a random alternating
trilinear form is expected to have a trivial automorphism group, but to our best
knowledge, to estimate this probability is open.

Let ϕ ∈ ATF(n, q), and let Aut(ϕ) := {A ∈ GL(n, q) | ϕ = ϕ◦A}. Some basic
facts about Aut(ϕ) are as follows. First, note that if 3|q−1, then Aut(ϕ) cannot be
trivial. This is because 3|q−1 implies the existence of λ ∈ Fq, λ ̸= 1, and λ3 = 1.
Therefore λIn ∈ Aut(ϕ). Second, for (a) n = 7 and (b) n = 8 and char(Fq) ̸= 3,
there exist no alternating trilinear forms with trivial automorphism groups, by
classifications of alternating trilinear forms in these cases [15,35,25]. Third, for
n = 9 and q = 2, by the classification of alternating trilinear forms [26], there
exists a unique orbit of alternating trilinear forms with trivial automorphism
groups.

In general, because of the difference between the dimension of GL(n, q) (which
is n2) and the difference between the dimension of ATF(n, q) (which is

(
n
3

)
), it is

expected that for n ≥ 10 and 3 ∤ q−1, most alternating trilinear forms would have
the trivial automorphism group. To verify this, we wrote a program in Magma [9]
for computing automorphism group orders of alternating trilinear forms. Built
on the Magma program in [40], our program implements the following procedure.
Let ϕ : Fn

q × Fn
q × Fn

q → Fq be an alternating trilinear form.

1. Enumerate every v ∈ Fn
q and compute the rank of ϕ(v, ·, ·) as an alternating

bilinear form. Let S ⊆ Fn
q be the set of non-zero vectors such that ϕ(v, ·, ·)

is of lowest rank.
2. Fix u ∈ S. Let X and Y be two n × n variable matrices. For every v ∈ S,

set up a system of polynomial equations expressing the following:
(a) ϕ ◦X = ϕ, and ϕ = ϕ ◦ Y .
(b) For any a, b, c ∈ Fn, ϕ(X(a), X(b), c) = ϕ(a, b, Y (c)), and ϕ(X(a), b, c) =

ϕ(a, Y (b), Y (c)).
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(c) XY = In, and Y X = In.
(d) X(u) = v, and Y (v) = u.
The use the Gröbner basis algorithm implemented in Magma to compute
the number of solutions to this system of polynomial equations. Let it be sv.

3. Sum over sv over v ∈ S as the order of Aut(ϕ).

This algorithm runs in time qn · poly(n, log q). The use of Gröbner computations
follows the practices of works in multivariate cryptography for solving polyno-
mial isomorphism [20,10,11,12]. The reason for Step 1 is to limit the number of
Gröbner basis computations, which are more costly compared to computing the
ranks. This idea could be found, for example, in [14]. The way we set up the
equations is from [40].

Our experiment results are as follows.

– For q = 2 and n = 9, out of 100 samples there are three ones with trivial
automorphism groups. This is consistent with the fact that in this setting,
there exists exactly one orbit of alternating trilinear forms, which implies
that the probability of sampling one from this orbit is |GL(2, 9)|/284 ≈
3.6169%.

– For q = 2 and n = 10, 11, all 100 samples return trivial automorphism
groups.

– For q = 3 and n = 10, 11, all 10 samples return trivial automorphism groups.
– For q = 3 and n = 9, all 100 samples return non-trivial automorphism

groups.
– For q = 5 and n = 9, all 3 samples return non-trivial automorphism groups.

These suggest that for n = 10 and q satisfying 3 ∤ q−1, a random alternating
trilinear form has the trivial automorphism group with good probability. To the
best of our knowledge, to give an estimation of this probability (depending on q
and n) is open.

4 Tightly Secure Signature from ATFE in QROM

4.1 Definition

In this section, we recall the definition of lossy identification protocol [1,19] and
a security result of its associated Fiat-Shamir signature in QROM from [29].

Definition 11. An identification protocol ID is called lossy, denoted by IDls,
if it has one additional PPT algorithm LossyGen, called lossy key generatation
that on input the security parameter outputs a lossy verification key pk. To be
more precise, LossyGen(1λ) generates xls ← LossyGen(1λ) such that there are no
w ∈ W satisfying (xls, w) ∈ R.

A lossy identification protocol is required to satisfy the following additional
properties.
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Indistinguishability of lossy statements. It is requires that the lossy statements
generated by LossyGen(1λ) is indistinguishable with ones generated by Gen(1λ),
i.e., . for any PPT (or quantum PT) adversary A, the advantage of A against
the indistinguishability of lossy statements

AdvlsA(λ) := |Pr[A(xls = 1)|xls ← LossyGen(1λ)]

− Pr[A(x) = 1|(x,w)← Gen(1λ)]

is negligible.

Statistical lossy soundness. Consider following experiment ExplsID,A(λ) between
an adversary A and a challenger.

– The challenger runs xls ← LossyGen(1λ) and provides xls to the adversary A.
– On input xls, the adversary A selects a commitment a and sends it to the

challenger who responds with a random challenge c.
– On input (a, c), the adversary A outputs a response r.
– Return 1 if (a, c, r) is a valid transcript for xls, and 0 otherwise.

We say that the lossy identification protocol IDls is ϵls-lossy sound if for any
unbounded (possibly quantum) adversary A, the probability of winning the ex-
periment ExplsID,A(λ) is less than ϵls, i.e.,

Pr[ExplsID,A(λ) = 1] ≤ ϵls.

Fiat-Shamir transformation applied to a lossy identification protocol yields a
tightly secure signature in QROM [29,32,18]. The following is from [19, Theorem
2.5] which is derived from [29, Theorem 3.1] with the derandomization by a
pseudorandom function PRF.

Theorem 7. Assume that the identification protocol ID is lossy, perfect HVZK,
has α bits of min-entropy, has perfect unique response, and is ϵls-lossy sound.
Then the signature scheme FS[ID] obtained from applying the Fiat-Shamir trans-
formation to ID is such that for any quantum adversary A against the sEUF-CMA
security that issues at most QH queries to the quantum random oracle, there exist
quantum adversaries B,D such that

AdvsEUF-CMA
A (λ) ≤ AdvlsB(λ) + 8(Qh + 1)2 · ϵls + 2−α+1 + AdvPRFD (λ),

and Time(B) = Time(D) = Time(A) +QH
∼= Time(A).

In the classical setting, we can replace 8(Qh + 1)2 by (Qh + 1).

4.2 Lossy identification protocol from ATFE

In this section, we construct a lossy identification protocol based on the psATFE
problem. The underlying sigma protocol is the ATFE-GMW protocol in Figure 1.
Here, we consider a relation R consisting of statement-witness pairs (x,w) with
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x = {ϕ0, ϕ1, . . . , ϕK−1} ⊆ ATF(n, q)and w = {A1, . . . , AK−1} :⊆ GL(n, q),
where ϕ0 ◦A−1

i = ϕi for each i = 1, · · · ,K − 1.
The lossy identification scheme for the relation R defined as above with chal-

lenge space {0, 1, · · · ,K−1} consists of five algorithms (IGen, LossyGen,P1,P2,V)
as follows.

• Algorithm IGen randomly samples an alternating trilinear form ϕ0 : Fn
q ×

Fn
q × Fn

q → Fq and invertible matrices A1, · · · , Ak−1 ∈R GL(n, q). It outpus

a statement x = (ϕ0, ϕ1, · · · , ϕK−1) with ϕi = ϕ0 ◦A−1
i for i = 1, · · · ,K− 1,

and a witness w = (A1, · · · , AK−1).
• Algorithm LossyGen randomly samples alternating trilinear forms ϕ0, ϕ1, · · · , ϕK−1 ∈
ATF(n, q) and outputs a lossy statement xls = (ϕ0, ϕ1, · · · , ϕK−1).
• On input a statement-witness pair (x,w), P1 samples a random invertible
matrix B ∈R GL(n, q) and outputs the commitment ψ = ϕ0 ◦B.
• On input (x,w, ψ, c) where c ∈ {0, 1, · · · ,K − 1} is a challenge, P2 outputs
a response D = B + Sign(c)(AcB −B).
• On input (x, ψ, c,D), the verification algorithm V check whether ψ = ϕc ◦D.

Security analysis Since the underlying protocol is the same as in Figure 1, it
is clear that our lossy identification protocol is complete, has α-bit min-entropy
with α ≈ log2 |O|, satisfies HVZK property and commitment recoverability. It
remains to show that our protocol has indistinguishablity of lossy statements
and statistical lossy soundness.

Assumption 4. No quantum polynomial-time algorithm can distinguish theK-
PR-psATFE-RO problem defined in Definition 8 with a non-negligible probability.

Lemma 3. Assume the hardness of the K-PR-psATFE-RO problem, our lossy
indenfication protocol satisfies lossy statement indistinguishability.

Proof. The lossy generator of our protocol just random samples K elements
ϕ0, ϕ1, · · · , ϕK−1 ∈R ATF(n, q). By the hardness assumption of the K-PR-
psATFE-RO problem, lossy statements and real statements are indistinguish-
able.

Lemma 4. The lossy identification protocol satisfies statistical ϵls-lossy sound-

ness for ϵls = 1
K

∏K−1
i=1

N−iM
N +

(
1−

∏K−1
i=1

N−iM
N

)
, where M = |GL(n, q)|,

N = |ATF(n, q)|.

Proof. This proof is similar to the proof of [19, Lemma 3.3]. Let X be the set of
the statements such that given a commitment ψ, there is only one challenge c
resulting in a valid transcript. Assume that for a given commitment ψ, there are
two valid transcripts (ψ, c,D) and (ψ, c′, D′) then these two transcripts satisfies
following equations:

ϕc ◦D = ψ

ϕc′ ◦D′ = ψ
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It implies that ϕc ◦ (DD′−1) = ϕc′ , i.e., ϕc and ϕc′ are in the same orbit. There-
fore, if any two elements in the statement are not in the same orbit, the statement
can’t have two valid transcripts with different challenges.

The number of different statements in X isN
∏K−1

i=1 (N−i|Oi|) ≥ N
∏K−1

i=1 (N−
iM), where |Oi| is the size of Oi and |Oi| ≤ M . The number of all state-
ments is NK . Then we can have the probability that a statement is in X :
Pr[x ∈ X | x ← LossyGen] ≥

∏K−1
i=1

N−iM
N . We can obtain the probability

that an adversary wins as follows:

Pr[A wins] = Pr[A wins | x ∈ X ] Pr[x ∈ X ] + Pr[A wins | x /∈ X ] Pr[x /∈ X ]

≤ Pr[A wins | x ∈ X ]
K−1∏
i=1

N − iM
N

+

(
1−

K−1∏
i=1

N − iM
N

)

=
1

K

K−1∏
i=1

N − iM
N

+

(
1−

K−1∏
i=1

N − iM
N

)
.

This completes the proof.

Corollary 1. The lossy identification protocol in Figure 1, that is run t parallel
rounds with the same statement-witness pair, satisfies statistical ϵls-lossy sound-

ness for ϵls = 1
Kt

∏K−1
i=1

N−iM
N +

(
1−

∏K−1
i=1

N−iM
N

)
, where M = |GL(n, q)|,

N = |ATF(n, q)|.

Proof. The proof is straight-forward from that of Lemma 4. Note that for a
statement x ∈ X , the adversary has at most 1

Kt probability in winning the lossy
impersonation game. The result follows.

Remark 5. Since M = qn
2

and N = q(
n
3), N ≫ M as the security parameter λ

is large enough. Therefore, the lossy soundness ϵls ≈ 1
Kt ≈ 1

2λ
.

4.3 Tightly secure signature scheme in QROM from ATFE

Construction In this section, we instatiate our signature scheme from applying
the Fiat-Shamir transformation [21] to the lossy identification protocol in Sec-
tion 4.2. The signature scheme depicted in Algorithms 1, 2, 3. The parameter
K and t are chosen such that t · log2(K) ∼= λ in the classical setting (as in [40])
and such that t · log2(K) ∼= λ + log2(QH), where QH is the number of queries
to the quantum random oracle, in the quantum setting. We call our signature
ATFE-Sig. Here H : {0, 1}∗ → {0, 1, · · · ,K − 1}t is a secure hash function. In
fact, it is the ATFE-GMW-FS scheme in [40] with the use of a secure PRF to
derandomize the signature generation, as similar in [19].

Theorem 8. Let ATFE-Sig be the signature defined as in Algorithms 1, 2, 3 and
assume that the hash functions are modeled as quantum random oracle models.
Then for any quantum adversary A against sEUF-CMA security of ATFE-Sig that
issues at most QH queies to the quantum random oracle, there exists a quantum
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Algorithm 1: Key generation.

Input: The variable number n ∈ N, a prime power q, a parameter K ∈ N.
Output: Public key: K alternating trilinear forms

ϕ0, ϕ1, · · · , ϕK−1 ∈ ATF(n, q) such that the ϕi’s are isomorphic.
Private key: Invertible matrices A1, · · · , AK−1 ∈ GL(n, q) such that
ϕ0 ◦A−1

i = ϕi for i = 1, · · · ,K − 1.
1 Randomly sample an alternating trilinear form ϕ0 : Fn

q × Fn
q × Fn

q → Fq.
2 Randomly sample invertible matrices A1, · · · , AK−1 ∈ GL(n, q).

3 Compute ϕi = ϕ0 ◦A−1
i for i = 1, · · · ,K.

4 E ← K #Sample a key for PRF
5 return Public key: ϕ0, ϕ1, · · · , ϕK−1. Private Key: A1, · · · , AK−1, E

Algorithm 2: Signature generation.

Input: Public key pk, secret key sk and a message M .
Output: A signature σ.

1 for k ∈ {1, · · · , t} do
2 Bk ∈R GL(n, q) #Derive randomness using PRF(E,M∥k)
3 ψk := ϕ0 ◦Bk

4 end
5 (c1, · · · , ct) = H(ψ1∥ · · · ∥ψt∥M)
6 for k ∈ {1, · · · , t} do
7 Dk := B + Sign(ck)(AckB −B)
8 end
9 σ := (c1, · · · , ct, D1, · · · , Dt)

10 return σ

Algorithm 3: Verification.

Input: Public key pk, a message M and a signature σ.
Output: 0 or 1.

1 Parse σ as (c1, · · · , ct, D1, · · · , Dt)
2 for k ∈ {1, · · · , t} do
3 Compute ψk = ϕ0 ◦Dk

4 end
5 (c′1, · · · , c′t) = H(ψ1∥ · · · ∥ψt∥M)
6 if (c′1, · · · , c′t) == (c1, · · · , ct) then
7 return 1
8 else
9 return 0

10 end
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adversary B against the K-PR-psATFE problem and a quantum adversary D
against the PRF such that

AdvsEUF-CMA
A (λ) ≤ AdvK−PR−psATFE

B (λ) + AdvPRFD (λ) +
2

|O|

+ 8(QH + 1)2 ·

(
1

Kt

K−1∏
i=1

N − iM
N

+

(
1−

K−1∏
i=1

N − iM
N

))

and Time(B) = Time(D) = Time(A) + QH
∼= Time(A). Here |O| is the size of

the orbit where elements of the statement x = (ϕ0, ϕ1, · · · , ϕK−1) are in.
In the classical setting, we can replace 8(QH + 1)2 with QH + 1.

Proof. The proof is similar to that of [18, Theorem 5.1]. It follows from Sec-
tion 3.4, Lemma 1 and Section 4.2 that the underlying sigma protocol has perfect
unique response, perfect HVZK and at least λ bits of min-entropy. The result
now follows from Theorem 7.

Remark 6. Since our results about min entropy and lossy soundness, Assump-
tion 4, and further assume the hardness of pseudorandom function, all items in
Theorem 8 are negligible. Therefore, AdvsEUF-CMA

A (λ) is negligible.

5 Ring Singatures from ATFE

In this section, we describe the construction of ring signatures from ATFE. The
design follows the framework of Beullens, Katsumata and Pintore [7] in the
context of commutative group actions. The ring signature is obtained by applying
the Fiat-Shamir transformation to an OR-Sigma protocol, which is described in
Figure 2.

5.1 Base OR-Sigma protocol from ATFE

In particular, let A1, A2, . . . , AN
$← G be the secret keys, and ϕ1 = ϕ0 ◦

A1, . . . , ϕN = ϕ0 ◦ AN be the public keys, Com be a commitment scheme. The
base OR-Sigma protocol in Figure 2, with statement {ϕ0, . . . , ϕN ∈ ATF(n, q)}
and witness {AI ∈ GL(n, q), I ∈ [N ] such that ϕ0 ◦AI = ϕI}, works as follows:

1. First, the prover random sample an invertible matrix B ∈ GL(n, q), and
apply it to ϕ1, . . . , ϕN respectively. Specifically, ψ1 = ϕ1 ◦ B, . . . , ψN =

ϕN ◦ B. Then the prover samples bitsi
$← {0, 1}λ and commits to ψi with

Ci = Com(ψi, bitsi). The prover further builds a Merkle tree4 with the
(C1, . . . ,CN ) as its leaves. The prover computes the root root of the Merkle
tree and sends it to the verifier as the commitment.

4 Note that the Merkle tree used here is slightly modified. It is index-hiding Merkle
tree, please see [7, Section 2.6]
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P1(ϕ1, . . . , ϕN )

1 : seed
$← {0, 1}λ

2 : (B, bits1, . . . , bitsN )← PRG(seed)

3 : for i from 1 to N do

4 : ψi ← ϕi ◦B
5 : Ci ← Com(ψi, bitsi)

6 : (root, tree)← MerkleTree(C1, . . . ,CN )

7 : com← root

8 : The prover P sends the commitment com to the verifier V

V1(com)

1 : c
$← {0, 1}

2 : cha← c

3 : The verifier V sends the challenge cha to the prover P

P2(AI , I, cha)

1 : c← cha

2 : if c = 0 then

3 : D ← BAI

4 : path← getMerklePath(tree, I)

5 : rsp← (D, path, bitsI)

6 : else

7 : rsp← seed

8 : The prover P sends the response rsp to the verifier V

V2(com, cha, rsp, ϕ0, ϕ1, . . . , ϕN )

1 : (root, c)← (com, cha)

2 : if c = 0 then

3 : (D, path, bits)← rsp

4 : ψ̃ ← ϕ0 ◦D

5 : C̃← Com(ψ̃, bits)

6 : ˜root← ReconstructRoot(C̃, path)

7 : The verifier V outputs accept if ˜root = root, else outputs reject

8 : else

9 : seed← rsp

10 : ˜root← P1((ϕ1, . . . , ϕN ), seed)

11 : The verifier V outputs accept if ˜root = root, else outputs reject

Fig. 2. OR-Sigma protocol.
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2. When the verifier receives the commitment, it will randomly sample a chal-

lenge c
$← {0, 1} and response it to the prover.

3. If c = 0, then the prover computes D = BAI and the authenticated path
for CI . The prover sends back a response rsp = (D, path, bitsI). The verifier
applies D to ϕ0 to get ψ̃ and computes C̃ = Com(ψ̃, bitsI). The verifier then
get a root ˜root by path and C̃. Finally the verifier checks whether ˜root = root.

4. If c = 1, then the prover sends (B, bits1, . . . , bitsN ) to the verifier. This
information allows verifier to rebuild a Merkle tree as in step 1, and then
check that the roots are consistent.

5.2 Optimization

Following some optimization techniques used in [7], we can have a more efficient
OR-Sigma protocol. We just briefly describe the following three techniques, for
more details please see [7, Section 3.4].

1. The challenge space of original challenge space is binary. One can observe
that the response with challenge cha = 0 is more costly than that challenge
cha = 1. Instead of choosing the challenge bit uniformly in each round, we
execute OR sigma protocol M > λ rounds and fix exactly K rounds with
challenge cha = 0. To satisfy the λ bits of security, we can choose proper
parameters M,K such that

(
M
K

)
≥ 2λ. Denote CM,K as the set of strings in

{0, 1}M with K-bits of 0.

2. With the unbalanced challenge space technique, we do M executions of OR
sigma protocol and M −K executions respond with random seeds. Instead
of randomly sampleM independent seeds, we can utilize seed tree to generate
these seeds. Then prover can responsd with seedsinternal ← ReleaseSeeds(seedroot, c)
instead of M −K seeds, where c is randomly sampled from CM,K . The ver-
ifier can use seedsinternal and c to recover M −K seeds.

3. Adding salt is a well-known technique that allows us to have tighter security
proofs for zero-knowledge. Also it avoids multi-target attacks, as in [17],
without affecting too much efficiency.

After applying the above methods, we obtain the optimized base OR sigma
protocol shown in Figure 3.

5.3 Security proof for the optimized base OR-Sigma protocol

Theorem 9. Define the following relation

R =

{
((ϕ0, ϕ1, . . . , ϕN ), (A, I))

∣∣∣∣∣A ∈ GL(n, q), ϕi ∈ ATF(n, q)

I ∈ [N ], ϕI = ϕ0 ◦A

}
,
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P ′
1(ϕ1, . . . , ϕN )

1 : seedroot
$← {0, 1}λ

2 : salt
$← {0, 1}2λ

3 : (seed1, . . . , seedM )← SeedTreeO(salt||·)(seedroot,M)

4 : for i from 1 to M do

5 : comi ← PO(salt||i||·)
1 ((ϕ1, . . . , ϕN ), seedi)

6 : com← (salt, com1, . . . , comM )

7 : The prover P sends the commitment com to the verifier V

V ′
1(com)

1 : c
$← CM,K

2 : cha← c

3 : The verifier V sends the challenge cha to the prover P

P ′
2(AI , I, cha)

1 : c = (c1, . . . , cM )← cha

2 : for i s.t. ci = 0 do

3 : rspi ← P2(AI , I, ci, seedi)

4 : seedsinternal ← ReleaseSeedsO(salt||·)(seedroot, salt, c)

5 : rsp← (seedsinternal, {rspi}i s.t. ci=0)

6 : The prover P sends the response rsp to the verifier V

V ′
2(com, cha, rsp, ϕ0, ϕ1, . . . , ϕN )

1 : ((salt, com1, . . . , comM ))← com

2 : c = (c1, . . . , cM )← cha

3 : (seedsinternal, {rspi}i s.t. ci=0)← rsp

4 : {rspi}i s.t. ci=1 ← RecoverLeavesO(salt||·)(seedsinternal, c)

5 : for i from 1 to M do

6 : if VO(salt||i||·)
2 (comi, ci, rspi) outputs reject then

7 : The verifier V outputs reject

8 : The verifier V outputs accept

Fig. 3. Optimized OR sigma protocol.
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and the relaxed relation

R =

((ϕ0, ϕ1, . . . , ϕN ), w)

∣∣∣∣∣∣∣∣∣
w = (A, I) :

w = (x, x′) :

A ∈ GL(n, q), ϕi ∈ ATF(n, q)

I ∈ [N ], ϕI = ϕ0 ◦A
or x ̸= x′,HColl(x) = HColl(x

′)

or Com(x) = Com(x′)

 ,

Then the optimized base OR sigma protocol shown in Figure 3 has correctness,
relaxed special soundness and honest-verifier zero-knowledge for the relation R.

Proof. Let G,S1, S2 := GL(n, q), X := ATF(n, q), DX = {◦} and δ = 1. Then
assume the ATFE problem is hard, (G,X , S1, S2, DX ) is a 1-admissible group ac-
tion satisfied the properties (1), (2), (3) in the [7, Definition 3.1]. By the Theorem
3.5 and Theorem 3.6 in [7], our OR sigma protocol is proved to have correctness,
relaxed special soundness and honest-verifier zero-knowledge.

5.4 From OR-Sigma protocol to ring signatures

In this section, we obtain a ring signature by applying the Fiat-Shamir’s trans-
formation to the OR-Sigma protocol. The Key generation, signature generation
and verification of the ring signature scheme are described in Algorithms 4 5 6
respectively.

Algorithm 4: Key generation

Input: The variable number n ∈ N, a prime power q, the ring size N .
Output: Public key: N alternating trilinear forms ϕ0, . . . , ϕN ∈ ATF(n, q).
Private key: N matrices A1, . . . , AN such that ϕi = ϕ0 ◦Ai for i ∈ [N ].

1 Randomly sample an alternating trilinear form ϕ0 from ATF(n, q).
2 Randomly sample N matrices A1, . . . , AN from GL(n, q).
3 For every i ∈ [N ], ϕi ← ϕ0 ◦Ai.
4 return Public key: ϕ0, ϕ1, . . . , ϕN . Private key: A1, . . . , AN .

Algorithm 5: Signing procedure

Input: The public key: ϕ0, . . . , ϕN . The private key: A1, . . . , AN . The security
parameter λ. The message msg. The commitment scheme
Com : {0, 1}∗ → {0, 1}λ. A hash function H : {0, 1}∗ → {0, 1}λ.

Output: The signature Sig on msg.
1 com = (salt, (comi)i∈[M ])← P ′

1(ϕ1, . . . , ϕN )
2 cha← H(msg||ϕ1|| · · · ||ϕN ||com)
3 rsp← P ′

2(AI , I, cha)
4 return Sig = (salt, cha, rsp)
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Algorithm 6: Verification procedure

Input: The public key ϕ0, . . . , ϕN ∈ ATF(n, q). The signature
Sig = (salt, cha, rsp). The message msg. A hash function
H : {0, 1}∗ → {0, 1}λ.

Output: ”Yes” if Sig is a valid signature for msg. ”No” otherwise.
1 com← RecoverCom(ϕ0, . . . , ϕN , salt, cha, rsp)
2 if accept = V ′

2(com, cha, rsp) ∧ cha = H(msg||ϕ|| · · · ||ϕN ||com) then
3 return Yes

4 else
5 return No

6 Linkable ring signature from ATFE

6.1 Tag

To construct a linkable OR sigma protocol, we add a tag τ0 ∈ ATF(n, q) associ-
ated with a group action • into the relation. The group action • on ATF(n, q) is

defined as τ • A := τ ◦ (At)
−1

. This tag τ0 is used to track if some secret key is
signed more than once. In addition, we restrict the initial public key ϕ0 is sam-
pled from an orbit O(ϕ) with a trivial automorphism group. By the discussions
in Section 3.4, a randomly sampled form ϕ0 has a high probability to be in an
orbit with the trivial automorphism group if we choose a proper parameter n
and q, adding this restriction is reasonable. After adding the tag into the base
OR sigma protocol, we can get a linkable OR sigma protocol shown in the Figure
4. Then we apply the same optimization methods in Section 5.2 to this protocol.

6.2 Security proof for linkable OR sigma protocol

To derive the security proof for linkable OR sigma protocol, we introduce an
algorithm problem here and assume this problem is hard.

Definition 12 (PR-itATFE). The pseudorandom inverse-transpose alternating
trilinear form equivalence problem with 2 pair of forms asks to distinguish the
following two distributions.

The random distribution: 2 pair of alternating trilinear forms (ϕ0, ϕ1), (τ0, τ1) :
Fn
q × Fn

q × Fn
q → Fq, such that ϕ0, ϕ1, τ0, τ1 ∈R ATF(n, q).

The pseudorandom distribution: K alternating trilinear forms (ϕ0, ϕ1), (τ0, τ1) :
Fn
q ×Fn

q ×Fn
q → Fq, such that: (1) ϕ0, τ0 ∈R ATF(n, q), and (2) ϕ1 := ϕ0 ◦A

and τ1 := τ0 •A, where A ∈R GL(n, q).

Note that a similar proposal in the context of code equivalence was proposed
in [4].
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P1(ϕ1, . . . , ϕN , τ)

1 : seed
$← {0, 1}λ

2 : (B, bits1, . . . , bitsN )← PRG(seed)

3 : τ ′ ← τ •B
4 : for i from 1 to N do

5 : ψi ← ϕi ◦B
6 : Ci ← Com(ψi, bitsi)

7 : (root, tree)← MerkleTree(C1, . . . ,CN )

8 : h← HColl(τ
′, root)

9 : The prover P sends the commitment com← h to the verifier V

V1(com)

1 : c
$← {0, 1}

2 : The verifier V sends the challenge cha← c to the prover P

P2(AI , I, cha)

1 : c← cha

2 : if c = 0 then

3 : D ← BAI

4 : path← getMerklePath(tree, I)

5 : rsp← (D, path, bitsI)

6 : else

7 : rsp← seed

8 : The prover P sends the response rsp to the verifier V

V2(com, cha, rsp, ϕ0, ϕ1, . . . , ϕN , τ0, τ)

1 : (h, c)← (com, cha)

2 : if c = 0 then

3 : (D, path, bits)← rsp

4 : ψ̃ ← ϕ0 ◦D

5 : C̃← Com(ψ̃, bits)

6 : τ̃ ′ ← τ0 •D

7 : ˜root← ReconstructRoot(C̃, path)

8 : The verifier V outputs accept if h = HColl(τ̃ ′, ˜root), else outputs reject

9 : else

10 : seed← rsp

11 : ˜root← P1((ϕ1, . . . , ϕN ), seed)

12 : The verifier V outputs accept if ˜root = root, else outputs reject

Fig. 4. Linkable OR sigma protocol.
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Then we define the following relation

R =

((ϕ0, ϕ1, . . . , ϕN , τ0, τ), (A, I))

∣∣∣∣∣∣∣
A ∈ GL(n, q), ϕi ∈ ATF(n, q)

I ∈ [N ], ϕI = ϕ0 ◦A
τ ∈ ATF(n, q), τ = τ0 •AI

 ,

and the relaxed relation

R̃ =


((ϕ0, ϕ1, . . . , ϕN , τ0, τ), w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
w = (A, I) :

w = (x, x′) :

A ∈ GL(n, q), ϕi ∈ ATF(n, q)

I ∈ [N ], ϕI = ϕ0 ◦A
τ ∈ ATF(n, q), τ = τ0 •AI

or x ̸= x′,

HColl(x) = HColl(x
′)

or Com(x) = Com(x′)


for the relaxed special soundness.

Theorem 10. The linkable OR sigma protocol shown in the Figure 4 after the
optimization has correctness, high min-entropy, special zero-knowledge and re-
laxed special soundness.

Proof. Let G,S1, S2 := GL(n, q), X , T := ATF(n, q), DX := {◦}, DT := {•}
and LinkGA be the equivalent relation. Then assume the K-psATFE problem and
PR-itATFE problem are hard, it’s easy to see that (G,X , T , S1, S2, DX , DX , LinkGA)
satisfise the properties (1), (2), (3) in the Definition 3.1 and (1), (2), (3) in the
Definition 4.2 of [7]. For the property (5), we can derive this property by restrict-
ing the orbit of ϕ0 has trivial automorphism. Finally, by the PR-iATFE assump-
tion, we can have property (4) and (6). Therefore, we obtain an 1-admissible
group action. By the Theorem 4.5 and Theorem 4.6 in [7], our OR sigma proto-
col is proved to have correctness, relaxed special soundness and honest-verifier
zero-knowledge.

6.3 Linkable ring signature

After applying the Fiat-Shamir transformation to the linkable OR sigma proto-
col, we obtain a linkable ring signature shown in Algorithm 7, 8, 9 and 10. The
linkable ring signature is similar to the normal ring signature in addition with a
link algorithm.

Remark 7. Since the linkable OR sigma protocol is proved to satisfy all condi-
tions in Theorem 10, and by the Theorem 4.7 in [7], the linkable ring signature
in Algorithm 7, 8, 9 and 10 has correctness, linkability, linkable anonymity and
non-frameability.

Remark 8. The above security proof is derived from the rewinding technique, but
its security reduction is non-tight due to the loss of forking lemma[21]. Beullens
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Algorithm 7: Linkable key generation

Input: The variable number n ∈ N, a prime power q, the ring size N .
Output: Public key: N alternating trilinear forms ϕ0, . . . , ϕN ∈ ATF(n, q).
Private key: N matrices A1, . . . , AN such that ϕi = ϕ0 ◦Ai for i ∈ [N ].

1 Randomly sample an alternating trilinear form ϕ0, τ0 from ATF(n, q).
2 Randomly sample N matrices A1, . . . , AN from GL(n, q).
3 For every i ∈ [N ], ϕi ← ϕ0 ◦Ai.
4 return Public key: ϕ0, ϕ1, . . . , ϕN . Private key: A1, . . . , AN .

Algorithm 8: Link procedure

Input: Two signature Sig = (salt, τ, cha, rsp) and Sig′ = (salt′, τ ′, cha′, rsp′).
Output: ”Yes” if two signatures are produced by a same secret key. ”No”

otherwise.
1 if τ = τ ′ then
2 return Yes

3 else
4 return No

Algorithm 9: Linkable signing procedure

Input: The public key: ϕ0, . . . , ϕN . The private key: AI . The security
parameter λ. The message msg. The commitment scheme
Com : {0, 1}∗ → {0, 1}λ. A hash function H : {0, 1}∗ → {0, 1}λ.

Output: The signature Sig on msg.
1 τ ← τ0 •AI

2 com = (salt, (comi)i∈[M ])← P ′
1(ϕ0, ϕ1, . . . , ϕN , τ)

3 cha← H(msg||ϕ1|| · · · ||ϕN ||τ ||com)
4 rsp← P ′

2(AI , I, cha)
5 return Sig = (salt, τ, cha, rsp)

Algorithm 10: Linkable verification procedure

Input: The public key ϕ0, . . . , ϕN ∈ ATF(n, q). The signature
Sig = (salt, τ, cha, rsp). The message msg. A hash function
H : {0, 1}∗ → {0, 1}λ.

Output: ”Yes” if Sig is a valid signature for msg. ”No” otherwise.
1 com← RecoverCom(ϕ0, . . . , ϕN , τ, salt, cha, rsp)
2 if accept = V ′

2(com, cha, rsp) ∧ cha = H(msg||ϕ|| · · · ||ϕN ||τ ||com) then
3 return Yes

4 else
5 return No
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et.al. proposed a new property called online extractability [6], which is used to
obtain a almost tight security reduction of ring signature.Further they use some
techniques including the Katz-Wang technique [28] to obtain the tight security.
Since our ring signature is following their construction, if append above property
and techniques to our ring signature, we can get a tight security reduction as
well.
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