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Abstract. CSI-FiSh is one of the most efficient isogeny-based signa-
ture schemes, which is proven to be secure in the Quantum Random
Oracle Model (QROM). However, there is a bottleneck in CSI-FiSh in
the threshold setting, which is that its public key needs to be gener-
ated by using k − 1 secret keys. This leads to very inefficient threshold
key generation protocols and also forces the parties to store k − 1 se-
cret shares. We present CSI-SharK, a new variant of CSI-FiSh that has
more Sharing-friendly Keys and is as efficient as the original scheme.
This is accomplished by modifying the public key of the ID protocol,
used in the original CSI-FiSh, to the equal length Structured Public Key
(SPK), generated by a single secret key, and then proving that the mod-
ified ID protocol and the resulting signature scheme remain secure in
the QROM. We translate existing CSI-FiSh-based threshold signatures
and Distributed Key Generation (DKG) protocols to the CSI-SharK set-
ting. We find that DKG schemes based on CSI-SharK outperform the
state-of-the-art actively secure DKG protocols from the literature by a
factor of about 3, while also strongly reducing the communication cost
between the parties. We also uncover and discuss a flaw in the key gener-
ation of the actively secure CSI-FiSh based threshold signature scheme
Sashimi, that can prevent parties from signing. Finally, we discuss how
(distributed) key generation and signature schemes in the isogeny set-
ting are strongly parallelizable and we show that by using C independent
CPU threads, the total runtime of such schemes can basically be reduced
by a factor C. As multiple threads are standard in modern CPU archi-
tecture, this parallelizability is a strong incentive towards using isogeny-
based (distributed) key generation and signature schemes in practical
scenarios.

Keywords: Isogeny-based cryptography · Distributed Key Generation · Thresh-
old Schemes · Secret Sharing · CSIDH

There’s always a bigger FiSh.

Qui-Gon Jinn

1 Introduction

Following Shor’s attack [32] on the Factoring and Discrete Logarithm (DL) prob-
lems, researchers started exploring post-quantum cryptographic techniques to



construct primitives and protocols that can be secure in the presence of quan-
tum adversaries. One of these areas is isogeny-based cryptography, which was
initially proposed by Couveignes [11] and by Rostovtsev and Stolbunov [29,35].
These proposals use hardness assumptions based on isogenies between ordinary
elliptic curves, but were strongly weakened by the quantum attack of Childs,
Jao and Soukarev [10] a few years later. Later proposals by Jao and De Feo [23]
(SIDH) and Castryck et al. [7] (CSIDH) use supersingular elliptic curves instead
of ordinary ones. While the attack by Childs et al. is still applicable to the latter,
the authors of [7] managed to push the secure parameter set back into practical
sizes. SIDH on the other hand was recently broken by a different attack, designed
by Castryck and Decru [6] and further improved in subsequent works [24, 28].
These attacks do not apply to CSIDH-based schemes.

Based on CSIDH, two signature schemes called SeaSign [15] and CSI-FiSh [3]
have been proposed. The basic version of both these signature schemes are based
on the same ID protocol that was introduced in [29] and both papers discuss
extending the public keys in order to reduce the soundness error rate by using
multiple secret keys. To allow this extension, the underlying language in the ID
protocol is changed, and a witness for the Multi-Target Group Action Inverse
Problem (MT-GAIP) [3, 15] is proven (see Definition 2.3). The fundamental
difference between SeaSign and CSI-FiSh is that in the latter, the authors have
performed a record computation of the underlying ideal-class group, which allows
uniform sampling and canonical representations of ideals. As a result, unlike
SeaSign, CSI-FiSh does not need to rely on rejection sampling and was therefore
one of the first practical signature scheme based on isogenies, with signing times
just below 3 seconds in the basic version of the scheme and a signature size
of 1.8 KB. With an extended public key, signing can even be done in a few
hundred milliseconds (Table 3 in [3]). Other practical isogeny-based signature
schemes include [21,38] and later [16]. Recently, Baghery, Cozzo and Pedersen [1]
presented a new extension of the basic ID protocol used in CSI-FiSh. They
extend the public key to a Structured Public Key (SPK), which is generated
using a single secret key and a set of public integers. This allows working with
a larger challenge space and efficiently proving the actual witness, rather than
the differences of two curves, as in MT-GAIP. However, to extract the single
secret key, they require a Trusted Third Party (TTP) to generate the keys.
Furthermore, to prove the security of their ID protocol, they rely on a new
computational assumption, so-called Ck-Vectorization Problem with Auxiliary
Inputs (Ck-VPwAI, see Definition 3.2).

By virtue of its flexibility, CSI-FiSh is used as the base scheme to build
various isogeny-based protocols, such as threshold signatures [12, 17], lossy sig-
natures [19], and forward secure ones [31]. Due to a wide range of applications
(e.g. in blockchain), Threshold Signature Schemes (TSSs) have received more at-
tention in recent years. Such schemes allow distributing the secret key into shares
among multiple parties or devices, such that only a set of authorized parties can
jointly sign a message to produce a single signature. Key recovery attacks on
TSSs require more effort than the non-threshold ones, as the adversary has to
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attack more than one device or party simultaneously. A large amount of effort
has been put on constructing threshold versions of classic schemes based on
discrete logarithms and RSA. Most of these schemes could be integrated with
a Distributed Key Generation (DKG) protocol, which was initially proposed
by Pedersen in [26]. A secure version of it along with robustness guarantees
was proposed by Gennaro et al. [22]. On the other hand, research on threshold
isogeny-based signatures is very young. In 2020, De Feo and Meyer [17] pro-
posed a threshold version of CSI-FiSh using Shamir secret sharing. The protocol
is almost as efficient as a CSI-FiSh signature but only passively secure. Cozzo
and Smart [12] then proposed Sashimi, the first actively secure threshold signa-
ture scheme with abort based on CSI-FiSh, that uses replicated secret sharing.
Sashimi uses Zero-Knowledge (ZK) proofs to achieve active security, resulting
in the rather elevated signing times of around 5 minutes for two parties. The
cost of their DKG step is even higher, but was not estimated by the authors.
Later, Beullens et al. proposed CSI-RAShi [2], an actively secure DKG protocol
for CSI-FiSh using Shamir secret sharing. By introducing a new primitive called
piecewise verifiable proofs, the authors manage to reduce the cost of generating
public keys to about 18 seconds per party. Still, Sashimi [12] as well as CSI-
RAShi [2], when used for extended public keys, remain quite inefficient to be
used in practice.

1.1 Our Contributions and Techniques

CSI-SharK Signature Scheme. As our initial contribution, we present CSI-SharK
in Section 3, a new variant of CSI-FiSh [3] that has more Sharing-friendly Keys.
To this end, we slightly modify the ID protocol used in CSI-FiSh [3] and then
prove that the modified ID protocol and the resulting signature scheme remain
secure in the QROM. Our main modification is to change the public key of
CSI-FiSh to a SPK, (E0, E1 = [c1 · sk]E0, · · · , Ek−1 = [ck−1 · sk]E0), which is
generated using a single secret key sk and k − 1 public integers c1, · · · , ck−1,
instead of using k − 1 distinct secret keys. Then we prove that the modified
ID protocol is special sound for the language of MT-GAIP, and Honest-Verifier
Zero-Knowledge (HVZK) for the language of Ck-VPwAI. Roughly speaking, the
modified ID protocol achieves to the best of the two ID protocols presented in [3]
and [1]. In comparison with [3], the modified ID protocol has only a single secret
key but needs to rely on an additional hardness assumption. In comparison with
the one proposed in [1], it does not require a TTP, but only proves knowledge of a
witness for the MT-GAIP, which is sufficient for building a signature scheme. We
turn the modified ID protocol into a signature scheme in the standard manner
using the Fiat–Shamir transform [20]. Our results and analysis show that, due
to having a SPK and a single secret key, CSI-SharK is a suitable replacement for
CSI-FiSh and achieves the same efficiency as the original scheme, without the
need of storing multiple secret keys. The real advantage of CSI-SharK however
manifests itself when it is used to build threshold schemes, which can be much
more efficient than in the CSI-FiSh setting.
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Threshold Schemes. As a next contribution, we show how to distribute key
generation schemes and signatures using structured public keys. First, we take a
look at the state-of-the-art DKG schemes in Section 4, i.e. the passively secure
scheme by De Feo and Meyer [17], as well as the actively secure Sashimi [12]
and CSI-RAShi [2]. We notice that there is a flaw in the current description
of the key generation protocol in Sashimi that can lead to an attack, which
could allow an adversary to prevent an honest party from using its share to
sign. We then describe a version of Sashimi that we use as an actively secure
full-threshold signature scheme with abort, preventing the attack. Finally, we
discuss optimizations of these state-of-the-art schemes to act as a baseline for
comparison with our proposed schemes.

In Section 5, we show how using structured public keys decreases the overall
computational and communication cost of these protocols in a natural way, by
allowing the aggregation of many small ZK proofs into a single, big one. We
then describe ways to further reduce the computational cost of these protocols.
The final protocols have a computational cost decreased by about a factor 3,
when compared to the most optimal implementations without a SPK, while
furthermore reducing the communication cost between the different parties by a
significant factor, which depends on the public key size. In Appendix A, we also
discuss how to translate the signature schemes from [2,12,17] to our setting. We
note that the computational cost of signature schemes is not decreased by using
structured public keys, but we discuss optimizations that are applicable to both
settings.

Parallel Computations in Isogeny-based Schemes. Due to the round-robin com-
putational structure in isogeny-based threshold schemes, the total latency of dis-

Table 1. Comparison of our proposed CSI-SharK-based key generation schemes and
the existing ones based on CSI-FiSh, for n parties, a public key with k − 1 elliptic
curves and a security parameter λ. Next to displaying the number of necessary secret
sharings (Sec. Shar.), we present the leading term in the computational cost of the
public key generation (PKGen) in terms of group actions as well as the leading term
in communication cost per party (Comm.) in bits. The latter two mainly depend on
the parameters k, n and λ, as well as log p, the size of the underlying prime field Fp.
We further display the hardness assumptions underlying the security of the different
schemes. These assumptions are formally introduced in Sections 2 and 3. TTP: Trusted
Third Party, DKG: Distributed Key Generation, SSS: Shamir Secret Sharing, FT: Full-
Threshold secret sharing.

(Distributed) Key Generation Schemes from Isogenies
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tributed protocols can be huge. Because of this issue, based on the estimations
done in Sashimi [12], signing could take about 5 minutes with two parties. As
the final contribution, presented in Section 6, we observe that many of the com-
putations in both non-threshold and threshold signatures built from isogenies
are parallelizable. In light of this observation, we propose a general parallel exe-
cution strategy to be used in the cases that one (as in CSI-FiSh or CSI-SharK)
or multiple parties (as in TSSs or DKG protocols) need to compute multiple
independent elliptic curves, e.g. [x1]E0, . . . , [xr]E0. For the single party case, the
computation simply uses the different cores (or threads) of a multi-core CPU
to compute a subset of curves, while in the multi-party case, different parties
further can run their computations in parallel. Using the proposed strategy and
several optimizations, we could significantly reduce the runtimes of CSI-SharK,
CSI-FiSh, and their threshold variants, making them quite practical. We give an
overview of the overall complexities in Table 1.

2 Preliminaries

In this section, we briefly review secret sharing schemes, commitment schemes
and isogeny-based cryptography. For an introduction to sigma protocol and
(threshold) signatures, we refer the reader to Appendices A.1 and A.2.

Notation. We let x ← X denote the uniformly random assignment to the
variable x from the set X, assuming a uniform distribution over X. If D is a
probability distribution over a set X, then we let x← D denote sampling from
X with respect to the distribution D. We further write ZN = Z/NZ and define
log(x) := log2(x).

Secret sharing schemes. We define an (n, t)-threshold access structure as a
set consisting of n players, where each player holds shares of a secret, so that
any subset of t or more players can reconstruct this secret. We assume that all
players are Probabilistic Polynomial Time (PPT) Turing machines. We revisit
two well known ways for realizing a (n, t)-threshold access structure that we
will use in our distributed signature schemes, namely the Shamir Secret Sharing
(SSS) scheme [30] and the Full-Threshold Secret Sharing (Full-TSS) scheme.
Unlike the traditional versions that are defined over a prime field, we will use
them over an integer ring ZN .

Shamir Secret Sharing. In (n, t)-Shamir secret sharing, a common polynomial
f(x) ∈ ZN [x] of degree t − 1 is chosen, such that the secret s is set to be its
constant term, i.e. s = f(0). Each party Pi for i ∈ {1, · · · , n} is assigned the
secret share si = f(i) Then any subset S ⊂ {1, . . . , n} of at least t parties can
reconstruct the secret s via Lagrange interpolation by computing s = f(0) =∑

i∈S si · LS
0,i, where

LS
0,i :=

∏
j∈S\{i}

j
j−i (mod N),

are Lagrange basis polynomials evaluated at 0. Any subset of less than t parties
are not able to find s = f(0), as this is information-theoretically hidden, even
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given t− 1 shares. Since we will be working over the ring ZN with N composite,
the difference j− i of any two elements in i, j ∈ S must be invertible modulo N .
If q is the smallest prime factor of N , it is enough to require that n < q.

Full-threshold secret sharing. In a Full-TSS, a secret s ∈ ZN is additively shared
among P1, . . . , Pn. Specifically, each party Pi holds a random share si ∈ ZN such
that s = s1 + · · · + sn mod N . Clearly, all parties are required to recover the
secret s and thus a Full-TSS realizes a (n, n)-threshold access structure. Since
the shares are random, up to n−1 parties cannot get any information about the
secret s, as the remaining share information-theoretically hides it.

Commitment Schemes. In our protocols, we assume parties have access to a
commitment functionality FCommit, which allows one party to commit, and later
open the value to a set of parties. We assume the opened value is only avail-
able to the targeted receivers and is sent over a secure communication channel.
The description of FCommit is provided in Figure 1, which can be easily imple-
mented in the random oracle model. This gives the commitment properties such
as extractability and equivocability that are crucial for our security proofs.

Init: On input of (Init, Pi, B) from all parties, this initializes a commitment func-
tionality from party Pi to the parties in B. This is shown with F i,B

Commit, if B is
a singleton set B = {j} then we write F i,j

Commit, and if B = P \ {i} then we write

FPi
Commit.

Commit: On input of (Commit, id, data) from parties Pi and (Commit, id,⊥) from
all parties in B the functionality stores (id,⊥).

Open: On input of (Commit, id) from all players in B∪{i} the functionality retrieves
the entry (id, data) and returns data to all parties in B.

Fig. 1. The Functionality FCommit

Isogeny-based cryptography. Isogenies are rational maps between two ellip-
tic curves φ : E → E′, that are also homomorphisms with respect to the natural
group structure of E and E′ [14,34]. For simplicity, we introduce isogenies as an
abstract cryptographic concept in this section and focus only on the high-level
ideas that allow us to build cryptographic protocols on top of them. For a more
thorough introduction, we refer the reader to [7] and [14].

Isogeny computations can be abstracted as a group G acting freely and tran-
sitively on a set E [11]. In the case relevant to this work, E denotes the set of
supersingular elliptic curves over a finite field Fp where p is a large prime. G
denotes the ideal-class group Cl(O), where O is an order of the quadratic imag-
inary field Q(

√
−p), isomorphic to the Fp-rational endomorphism ring EndFp

(E)
elliptic curves E ∈ E . Isogenies are uniquely defined through the kernels of the
ideals in O. Throughout this work, we assume that the class group, as well as
a generating ideal g of it are known. In that case, we can define this group ac-
tion as [·] : ZN × E → E , where N is the size of the class group; asymptotically
N ≈ √p [7,33]. As an example for the group action, we could identify the isogeny
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φ : E → E′ with some element a ∈ ZN , such that E′ = [a]E holds. This means
that the separable part of the isogeny φ has the kernel

⋂
α∈ga kerα. Note that

[a]([b]E) = [a+b]E. In cryptographic settings, this group action comes equipped
with some hardness assumptions, that are also difficult for quantum computers.

Definition 2.1 (Group action inverse problem (GAIP) [7, 15]). Given
two supersingular elliptic curves E,E′ ∈ E over the same finite field Fp and with
EndFp (E) ≃ EndFp (E′) ≃ O, find a ∈ ZN , such that E′ = [a]E.

Definition 2.2 (Decisional GAIP [2, 36]). Given a triple ([a]E, [b]E, [c]E),
where E ∈ E, with the same Fp-rational endomorphism ring, decide whether
[c]E = [a + b]E or not.

Isogenies are efficiently computable, but hard to invert. As such, they are
a powerful tool to build post-quantum cryptographic protocols. One of these
schemes is the isogeny-based signature scheme CSI-FiSh proposed by Beullens,
Kleinjung and Vercauteren [3]. The basic version of CSI-FiSh is based on an ID
protocol with binary challenges initially proposed in [36]. CSI-FiSh starts with
the special elliptic curve E0 : y2 = x3 + x. Public keys are created with the
action of an element a ∈ ZN on E0. The owner of the public key E = [a]E0

proves knowledge of the secret key a by a standard binary sigma protocol. This
is then turned into a signature scheme using the Fiat–Shamir heuristic [20].
Note that the class group enjoys a symmetry around the elliptic curve E0, as
the elliptic curve [−a]E0 is Fp-isomorphic to the quadratic twist of [a]E0, a map
that is easily computable without any extra information. As a result, we can
implicitly include the twist in the public key and extend the challenge space to
{−1, 0, 1}, so that the soundness error rate is reduced to 1

3 .
To further reduce the number of repetitions needed to achieve a security

level of 2sec, the authors of [3] used a technique proposed in [15] and enlarged
the public key by using multiple secret keys (a1, . . . , ak−1) and an extended
public-key of the k− 1 associated elements. The resulting number of repetitions
is tS = ⌈sec log2k−1 2⌉, although one can reduce tS a little bit by choosing a ‘slow’
hash function. We present the CSI-FiSh in Figure 2. Note that H : {0, 1}⋆ →
{−(k−1), . . . , k−1}tS⌈log(2k−1)⌉ represents a hash function modeled as a random
oracle. We simply denote the twist of a curve Ea as E−a. The extension of the
public key in this way leads to a change in the underlying language, and the
prover now must prove that it knows a secret s ∈ ZN such that Ej = [s]Ei for
some pair of elliptic curves appearing in the public key list. As a result, CSI-FiSh
relies on the hardness of a multi-target version of GAIP, called MT-GAIP.

Definition 2.3 (MT-GAIP [3, 15]). Given k supersingular elliptic curves
E0, E1, . . . , Ek ∈ E over Fp with the same Fp-rational endomorphism ring, find
a ∈ ZN , such that Ei = [a]Ej for some i, j ∈ {0, . . . , k} with i ̸= j.

CSI-FiSh is sEUF-CMA secure in the QROM under the MT-GAIP assump-
tion [3]. For later reference, we also introduce the Power-Decision Diffie-Hellman
(Power-DDHA) assumption defined in [17], which is used in some schemes in
this work.
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KeyGen(1sec): Given E0, the secret and public key are generated as follows:
1. For i = 1, . . . , k − 1, sample ai ← ZN and compute Ei = [ai]E0.
2. Return sk = (a1 . . . , ak−1), pk = (E0, . . . , Ek−1).

Sign(sk,m): To sign a message m, the signer performs
1. For i = 1, . . . , tS : sample bi ← ZN , and set Ebi = [bi]E0.
2. Set (d1, . . . , dtS ) = H(Eb1 , . . . , EbtS

∥ m).
3. For i = 1, . . . , tS : set ri = bi − sign(di)a|di| (mod N).

4. Return {(ri, di)}tSi=1.
Verify({(ri, di)}tSi=1,m, pk): To verify a signature {(ri, di)}tSi=1 on m, one performs:

1. For i = 1, . . . , tS : compute E′
bi

= [ri]Edi .
2. (d′1, . . . , d

′
tS ) = H(E′

b1
, . . . , E′

btS
∥m).

3. If (d1, . . . , dtS ) = (d′1, . . . , d
′
tS ) then return valid, else output invalid.

Fig. 2. CSI-FiSh Signature Scheme [3].

Definition 2.4 (Power-DDHA). Given an element E ∈ E and a ∈ ZN . The
a-Power-DDHA problem is: given (a,E, [s]E,F ), where s is uniformly sampled
from ZN and where F ∈ E, either sampled from the uniform distribution on E
or F = [as]E, decide which distribution F is drawn from.

For details on the quantum security of CSIDH-based schemes, see [5, 7, 9, 27].

3 CSI-FiSh with Structured Public Keys

In this section, we revisit a different way of extending the public key (of the ID
protocol) used in CSI-FiSh, where instead of sampling a total of k − 1 different
secrets a1, . . . , ak−1, we use k − 1 different multiples of the same secret key a
to generate the public key. The idea to build such an ID protocol for proving
the knowledge of a was first proposed by Baghery et al. [1], but needed a TTP
to generate the public key in order to guarantee the correct structure. Such a
structured public key (SPK) consists of an integer set Ck−1 = {c0 = 0, c1 =
1, c2, . . . , ck−1} and a set of elliptic curves1{Ei = [cia]E0}i=0,...,k−1. In their
ID protocol, to ensure extractability of the witness modulo a composite number
N , the integer set Ck−1 has to be an exceptional set [4, 13], as defined below.
When E0 is the same special base curve as in CSI-FiSh, the authors further
introduce the notation of superexceptional sets [1]. The latter case is referred to
as a symmetric hard homogeneous space.

Definition 3.1 ((Super-)Exceptional set). An exceptional set modulo N is
a set Ck−1 = {c0, . . . , ck−1} ⊆ ZN , where the pairwise difference ci − cj of all
elements ci ̸= cj is invertible modulo N . A superexceptional set modulo N is an
exceptional set Ck−1 = {c0, . . . , ck−1}, where also the pairwise sum ci + cj of all
elements ci, cj (including ci = cj) is invertible modulo N .

The hardness of obtaining the secret key from a structured public key relies on
the following computational problem which is defined in [1].

1 For simplicity, we include E0 in the public-key. Note that [0] simply denotes the
neutral element of the group action.
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Definition 3.2 ((c0, c1, · · · , ck−1)-Vectorization Problem with Auxiliary

Inputs (Ck−1-VPwAI)). Given an element E ∈ E and the pairs (ci, [cix]E)
k−1
i=1 ,

where Ck−1 = {c0 = 0, c1 = 1, c2, . . . , ck−1} is an exceptional set, find x ∈ ZN .

The ID protocol of Baghery et al. [1] is designed to allow the prover to efficiently
prove the knowledge of the secret key a, while relying on the fact that the
public key indeed has the desired structure. The authors of [1] solve this problem
by letting either a trusted third party generate these keys, or alternatively by
relying on computationally rather heavy well-formedness proofs for proving the
correctness of the key generation. We refer to the original source for more details.

3.1 The Modified Identification Protocol

In this section, we construct an ID protocol that achieves the best of the two ID
protocols constructed in [1] and [3]. The protocol of [1] uses structured public
keys and soundness relies on the Ck−1-VPwAI assumption (Definition 3.2), while
the protocol from [3] uses non-structured (extended) public keys and soundness
relies on MT-GAIP (Definition 2.3). Note that in order to guarantee that the
public keys in the former actually have the correct structure, the scheme either
relies on trusted third parties generating the keys or on heavy proofs of well-
formedness.

The idea behind our new ID protocol is to work with structured public keys,
but nevertheless base the soundness of the protocol on MT-GAIP. The advantage
of relying on MT-GAIP, rather than on Ck−1-VPwAI for soundness, is that we
do not need a trusted third party, or heavy proofs of well-formedness, to generate
the public keys. The structured public key thus becomes a perk for the prover
rather than a requirement for the protocol. The idea is simple, yet powerful:
the prover first samples a secret key a ← ZN and a public (super-)exceptional
set Ck−1 = {c0 = 0, c1 = 1, c2, · · · , ck−1}, then generates and publishes the
structured public key (E0, E1, . . . , Ek−1), where Ei = [cia]E0 for i = 1 . . . , k−1.
Next, instead of proving knowledge of a witness a ∈ ZN for Ck−1-VPwAI, i.e.
the secret key underlying the structured public key, as done in [1] and requiring
the public key to be well-formed, the prover proves a witness for MT-GAIP, i.e.
that it knows a secret s ∈ ZN such that Ej = [s]Ei for some pair of elliptic curves
appearing in the public key, as in [3]. This prevents the prover from cheating,
even if the public key would not actually be correctly structured. In the case
where the public key would indeed be correctly structured, knowing a witness to
the MT-GAIP instance also allows to extract a witness for Ck−1-VPwAI. With
this, we have circumvented the need to prove well-formedness of the structured
public key, a main shortcoming of the protocol in [1]. In comparison to the
protocol in [3], our ID protocol has the advantage, that it only needs a single
public key to be stored, independent of the size of the public key.

Interestingly, our new ID protocol is HVZK assuming that Ck−1-VPwAI is
hard. Figure 3 summarizes the resulting ID protocol.
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Setup: Given E0, the keys are generated as follows:
1. Sample a public (super)exceptional set Ck−1 = {c1 = 1, c2, · · · , ck−1};
2. Sample a← ZN and for i = 1, . . . , k − 1 set Ei = [cia]E0.
3. Output (Ck−1, E0, E1, . . . , Ek−1).

Prover: Given (a, (Ck−1, E0, · · · , Ek−1)) the prover samples b ← ZN , and sends
Eb = [b]E0 to the Verifier.

Verifier: Given (Ck−1, E0, · · · , Ek−1) and Eb the verifier samples a random chal-
lenge d← {0, . . . , k − 1} and sends it to the prover.

Prover: Given (a,Ck−1, d) the prover computes r = b− cd · a mod N and sends it
to the verifier.

Verifier: Given ((Ck−1, E0, · · · , Ek−1), Eb) and r, return Eb
?
= [r]Ed.

Fig. 3. The Modified Identification Protocol with Structured Public Keys.

Note that similar to the ID protocol used in CSI-FiSh, the key generation can
be done by the prover. Therefore a malicious prover might choose to publish a
public key that is not structured. However, based on MT-GAIP, without knowing
s, it would be still hard for an adversarial prover to prove that it knows s ∈ ZN

such that Ej = [s]Ei for some pair of elliptic curves in the public key. On
the other hand, relying on the Ck−1-VPwAI from Definition 3.2, we know that
obtaining a from an honestly generated SPK is computationally hard. As a result,
there is no real reason for the prover to generate its public key maliciously. In
fact, due to several efficiency reasons that we will discuss in later sections, the
prover is rather incentivized to sample the public key honestly.

Theorem 3.1. The ID protocol presented in Figure 3 is complete, special sound
with soundness error rate 1

k for the language of MT-GAIP, and HVZK for the
language of Ck−1-VPwAI.

Proof. The proof is given in Appendix B.1.

Remark 3.1. Note that the ID protocol used in CSI-Fish [3] is special sound
and HVZK for the language of MT-GAIP, and under a trusted key generation
the ID protocol proposed in [1] is special sound and HVZK for the language of
Ck−1-VPwAI. The issue with the former is that it requires k − 1 independent
secret keys, and the concern with the later is that it needs a TTP to generate
the keys. Our ID protocol achieves to the best of both, as it has a single secret
key, and does not require a TTP, while relying on both assumptions.

3.2 NIZK Argument and Signature Scheme

Our ID protocol from Figure 3 can be transformed into a non-interactive zero-
knowledge argument or a signature scheme in the standard ways using the Fiat–
Shamir transform [20]. To this end, we introduce the hash function H : {0, 1}∗ →
{0, 1}tS⌈log2 k⌉

, modelled as a random oracle, where tS denotes the number of rep-
etitions needed in the protocol. For simplicity, we will only present the resulting
signature. The NIZK argument can be constructed with a similar technique, and
its security can be proven in a similar way as in Lemma 3.1 in [1]. We present our
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KeyGen(1n): Given E0, the secret key and public are generated as follows:
1. Sample a← ZN ;
2. Generate a public (super)exceptional set Ck−1 = {c1 = 1, c2, · · · , ck−1};
3. Given E0, for each ci ∈ Ck−1 set Ei = [cia]E0.
4. Return sk = a, pk = (E0, E1, . . . , Ek−1).

Sign(sk,m): To sign a message m, the signer performs
1. For i = 1, 2, . . . , tS : sample bi ← ZN , and set Ebi = [bi]E0.
2. Set (d1, . . . , dtS ) = H(Eb1 , . . . , EbtS

∥ m).
3. For i = 1, 2, . . . , tS : set ri = bi − cdi · a (mod N).
4. Return {(ri, di)}tSi=1.

Verify({(ri, di)}ti=1,m, pk): To verify a signature {(ri, di)}tSi=1 on m, one performs:
1. For i = 1, 2, . . . , tS : compute E′

bi
= [ri]Edi .

2. (d′1, d
′
2, . . . , d

′
tS ) = H(E′

b1
, . . . , E′

btS
∥m).

3. If (d1, d2, . . . , dtS ) = (d′1, d
′
2, · · · , d′tS ) then return valid, else output invalid.

Fig. 4. CSI-Shark Signature Scheme.

signature scheme in Figure 4, and call it CSI-SharK, which stands for CSI-FiSh
with Sharing-friendly Keys.

Theorem 3.2. Under MT-GAIP and Ck−1-VPwAI, when H is modelled as a
(quantum) random oracle, then the CSI-SharK signature scheme described in
Figure 4 is sEUF-CMA secure.

Proof. The proof is given in Appendix B.2.

Optimizations and Efficiency. Our basis protocol has a soundness error rate
1
k . By choosing the unique base curve E0 we can again increase this to a sound-
ness error rate of 1

2k−1 by also using the twists. This implies that we need
tS = ⌈sec log2k−1 2⌉ protocol repetitions to reach a desired target soundness er-
ror of 2−sec. To guarantee that the protocol is still HVZK and the SPK does
not reveal any information about the secret key, we need to restrict Ck−1 to
superexceptional sets. As a result, the runtimes of our protocols are exactly the
same as the respective versions from [3] or [1]. The same holds for the public-key
and proof or signature sizes.

3.3 Proof of Commitments and Well-formedness of SPK

In our actively secure distributed protocols, to guarantee that the parties follow
the protocol, they are asked to commit to their secret shares and prove knowledge
of the committed value. Furthermore, the parties will be required to prove that
they indeed act with their committed secret value on some given elliptic curve
to prove the correctness of generating/updating the SPK. More precisely, each
party will need to prove knowledge of a witness s to the following language,
which we define for arbitrary j and a public (super)exceptional set Cj with
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ZK.P1((F0, F
′
0, E1, E

′
1, . . . , Ej , E

′
j), {c1 = 1, c2, · · · , cj}): The prover does:

1. b← ZN ; Set F̂0 ← [b]F0.
2. For i = 1, . . . , j compute Êi ← [cib]Ei. Output (F̂0, Ê1, . . . , Êj).

ZK.V1(F0, F
′
0, F̂0, E1, E

′
1, Ê1, . . . , Ej , E

′
j , Êj): The verifier acts as below:

1. If Ei ̸= E0 for any i ∈ {1, . . . , j} then sample d← {0, 1} and output it.
2. Else sample d← {−1, 0, 1} and output it.

ZK.P2((F0, F
′
0, F̂0, E1, E

′
1, Ê1, . . . , Ej , E

′
j , Êj), d, s): Given d, the prover computes

r ← b− d · s mod N , and outputs r.
ZK.V2((F0, F

′
0, F̂0, E1, E

′
1, Ê1, . . . , Ej , E

′
j , Êj), {c1 = 1, c2, · · · cj}, d, r): The verifier

returns 1 if all the following checks pass, and otherwise returns 0.

1. If d = −1 return
(
[r]F ′

0
t = F̂0

)
∧
∧j

i=1

(
[cir]E

′
i
t = Êi

)
.

2. If d = 0 return
(
[r]F0 = F̂0

)
∧
∧j

i=1

(
[cir]Ei = Êi

)
.

3. If d = 1 return
(
[r]F ′

0 = F̂0

)
∧
∧j

i=1

(
[cir]E

′
i = Êi

)
.

Fig. 5. The HVZK Argument for Proving the Commitment and the Well-formedness
of Structured Public Keys

integer elements {c1 = 1, c2, · · · , cj}.

Lj :=


(

(F0, F
′
0, E1, E

′
1, . . . , Ej , E

′
j ,Cj := {c1 = 1, c2, · · · , cj}), s

)
:

(F ′
0 = [s]F0)

∧(∧j
i=1 (E′

i = [cis]Ei)
)

 . (1)

In other words, since we set c1 = 1, then the prover would need to prove in a
zero-knowledge manner that it knows a unique witness s for

- an instance of the GAIP, when j = 0.
- two simultaneous instances of the GAIP, when j = 1.
- an instance for conjunction of the GAIP and Ck−1-VPwAI, when j = k− 1.

The first item can be proven using the basic ID protocol from CSI-FiSh [3],
while for the next two items we use the techniques of conjunctive Σ-protocols.
We present the underlying Σ-protocol in Figure 5, which is obtained by the
conjunction of the basic ID protocol with the well-formedness proof for struc-
tured public keys, presented in Section 5.1 of [1]. The resulting Σ-protocol can
be considered as an extension of the Σ-protocol presented in Figure 7 of [12],
to work with structured public keys. We also note that since in a structured
public key c1 = 1, these two proofs coincide in the cases j = 0 and j = 1.
Similar to [12], we consider two variants of the presented Σ-protocol, one when
F0 = E1 = . . . = Ej = E0 which we call the Special case, and the other when
this condition does not hold, which is called the General case. Next, we prove the
security of the presented Σ-protocol.

Theorem 3.3. The interactive argument in Figure 5 is correct, has soundness
error rate 1

2 in the General case and soundness error rate 1
3 in the Special case,

and is computational HVZK for the language Lj assuming GAIP and Cj-VPwAI.

Proof. The proof is given in Appendix B.3.
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Soundness Error Rate. The above theorem showed that the basic interactive
argument has soundness error rate 1/2 in the General case and 1/3 in the Special
case. Therefore, to achieve a target soundness error rate 2−sec for a given security
parameter sec, we need to repeat the protocol sec (resp. ⌈sec log3 2⌉) times.

Making the Protocol Non-Interactive. The Σ-protocol in Figure 5 is an
HVZK public coin interactive argument and can be turned into a NIZK argument
in the standard manner using a hash function G : {0, 1}∗ → {0, 1}sec in the
General case, or G : {0, 1}∗ → {−1, 0, 1}⌈sec log3 2⌉ in the Special case. Using
a ‘slow’ hash function for G, as in the case of CSI-FiSh, which is 2h times
slower than a normal hash function, we can reduce the number of repetitions
to tGeneralZK = sec− h or tSpecialZK = ⌈(sec− h) log3 2⌉, respectively.2 In the resulting
NIZK argument, we denote the prover and verifier by NIZK.P and NIZK.V .

Both the prover and the verifier need to compute a total of (j + 1)tZK group
actions throughout this protocol, ignoring the cost of the other operations, as
they are negligible in comparison to group action computations. The output size
of the proof is composed of the hash output and the responses. The former has a

size of approximately tGeneralZK bits (log2 3t
Special
ZK ≈ tGeneralZK ), while the latter consists

of tZK elements from ZN , depending on either the Special or the General case. It
is interesting to note that the proof size does not depend on j.

Lemma 3.1. The two algorithms NIZK.P and NIZK.V constitute a non-interactive
zero-knowledge quantum proof of knowledge in the quantum random oracle model.

Proof. Since the group action is free [7, 11], our schemes have superlogarithmic
collision entropy as defined in [37] and unique responses as defined in [18]. Us-
ing the results from Theorem 3.3, [37] implies ZK against quantum attackers
while [18], along with a challenge space superpolynomial in sec implies that our
protocol is a quantum proof of knowledge. ⊓⊔

4 Key Generation based on CSI-FiSh

In this section, we review the current isogeny-based key generation protocols for
generating the public key of CSI-FiSh. In particular, we look at the key genera-
tion of two threshold signature schemes presented in [12, 17], and a Distributed
Key Generation (DKG) protocol presented in [2]. We also discuss their extension
to larger public keys in the same manner as is needed to extend e.g. CSI-FiSh [3].

We also show that the actively secure threshold signature scheme Sashimi
proposed by Cozzo and Smart [12], in its general form for replicated secret
sharing, has a security flaw in the key generation. We present a sample attack
that ends up giving an honest party a wrong share after the key generation step,
without the party realizing. As such, the honest party is rendered unable to
sign, resulting in incorrect signatures, even if the signing protocol is correctly

2 As an example, we can choose h = 16 for sec = 128 as is done in [1] and [3]. This
gives tGeneralZK = 112 for the General case and tSpecialZK = 71 for the Special case.
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executed. We will therefore only focus on the full-threshold version of Sashimi,
which is immune to the described attack.

At the end, we also discuss some optimizations to the DKG protocols, which
allow parties to stagger the computations so as to minimize the idle time in the
distributed protocol and thus optimize the overall runtime. This approach was
briefly mentioned in [17] and we show that it can also be used in the actively
secure case by staggering the zero-knowledge proofs needed for active security.
We end each subsection by giving the optimal runtime for n parties by using this
type of public key extension and also give an estimate of the communication costs
between the parties. The sequential runtimes are simply expressed in terms of
group actions. Regarding the communication costs, we note that elliptic curves
over finite fields in the CSIDH setting can be expressed with a single parameter
of size log p. As N = #Cl(O) ≈ √p, elements in ZN can be expressed with
approximately 1

2 log p bits. Finally, we choose sec = 1
4 log p.3

4.1 Key Generation of a Passively Secure TSS

De Feo and Meyer [17] presented the first TSS based on isogenies using Shamir
secret sharing. Their TSS uses CSI-FiSh to generate distributed signatures and
is proven to be secure against passive adversaries. The key generation step is
done by a TTP called the dealer, who generates a secret key and splits it into
shares using Shamir secret sharing (SSS). These shares are distributed securely
to the parties and the public key is also computed by the dealer. In Figure 6, we
present this protocol in the case where we have to generate k−1 secret elements
as for the case of an extended public key. At the end of this protocol, each party
Pj will hold a share si,j of each secret key si. We also present the description of
the signing protocol in Appendix A.3.

KeyGen: Given E0, a TTP acts as follows:
1. For i = 1, . . . , k− 1, sample secrets si ← ZN and use Shamir secret sharing

to split the shares si into subshares si,j for j = 1, . . . , n.
2. Distribute s1,j , . . . , sk−1,j privately to party Pj .
3. Output the public key pk := (E0, . . . , Ek−1), where Ei = [si]E0.

Fig. 6. The key generation protocol of De Feo and Meyer’s TSS [17].

Cost. It is clear that the TTP has to generate k − 1 secrets and distribute a
total of n(k−1) subshares to the different players. The TTP is left with creating
the public key through the computation of k − 1 group actions.

3 Choosing the security parameter this high is meant to reflect the classical security
of CSIDH-based protocols against meet-in-the-middle attacks, cf. [8] and sources
therein for more details.
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4.2 Full-threshold Sashimi

The original Sashimi protocol. While the TSS from the last subsection
achieves passive security and requires a TTP to perform the key generation,
Sashimi [12] aims to achieve active security and uses a Pseudo-Random Secret
Sharing (PRSS) to generate a replicated secret sharing. Fig. 8 describes the
algorithms underlying Sashimi, as presented in [12], using Fig. 7 as a subroutine.
During the key generation the parties first run an instance of FRand.PRSS() and
form a secret sharing ⟨ai⟩ of each secret key ai (we refer the reader to the original
paper for more details on FRand.PRSS() and the protocol that implements it).
For replicated secret sharing, each party holds multiple shares and the same
share belongs to multiple parties (except for the special case of full-threshold
where each party holds exactly one share of the secret). Then the parties agree
on a qualified set Q and turn the replicated secret sharing ⟨ai⟩ into a full-
threshold secret sharing over Q by properly re-arranging the shares and adding
them together. This means that each party P ∈ Q holds a single share ai,P for
each key, which is the sum of some (possibly all) the previous shares. The formal
way to pass from a replicated to full-threshold is explained in the original paper
(Section 2.2 of [12]).

After the sharing phase the parties engage in the GrpAction protocol for
generating the public key elements E1, . . . , Ek−1. Within GrpAction, each party
in Q first commits to its shares ai,P and attaches a proof of knowledge. Then
it commits to this data using a RO-based commitment scheme and sends the
commitment to the other parties. After the successful verification of the proofs,
the parties start a round-robin protocol and compute the public keys Ei by using
their committed secret shares. Again, the parties give a proof to ensure that they
are updating the public key using the same value they committed to earlier.
The NIZK proofs inside GrpAction protocol are given for the language

Lj :=
{(

(F0, F
′
0, E1, E

′
1, . . . , Ej , E

′
j), s

)
: (F ′

0 = [s]F0)
∧(∧j

i=1 (E′
i = [s]Ei)

)}
,

for the cases that j = 0 and j = 1. For these two cases, this language exactly
coincides with the language introduced in Equation (1). As a result, the protocol
presented in Fig. 5 also coincides with the one proposed in [12], when j = 0, 1.

A Security Flaw in Sashimi. Unfortunately, the ZK proofs inside GrpAction
are not enough to guarantee that the parties follow the protocol. A malicious
party can deviate from the key generation protocol in such a way, that another
(honest) party might not be able to sign anymore and such that after the key
generation, the produced signature will not pass the final verification, even if all
parties behave honestly in the signing protocol.

The issue arises from the fact that in the key generation phase, after ob-
taining the secret shares ⟨ai⟩ from the PRSS protocol, each party in Q has to
commit to ai,P which is the sum of some of its replicated shares. In particular it
might not commit to the single shares they got from the PRSS. Malicious parties
could simply commit to a different secret value than their original secret share
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Input: The fixed elliptic curve E0, a set of partiesQ, a secret shared element s ∈ ZN

held via a full threshold sharing, i.e. P ∈ Q holds sP such that s =
∑

P∈Q sP .
Output: [s]E0

1. Define an ordering the players in Q = {P1, . . . , Pt}.
2. Each party Pj initialises an instance of FCommit; call it F

Pj

Commit.
3. For j = 1, . . . , t

- EPj ← [sPj ]E0.
- π1

Pj
← NIZK.P ((E0, EPj ), sPj ).

- The parties call FPj

Commit where Pj submits input (Commit, idPj , (EPj , π
1
Pj
))

and all other parties input (Commit, idPj ,⊥)
4. For j = 1, . . . , t

- The parties execute FPj

Commit with input (Open, idPj ) and abort if FPj

Commit

returns abort.
- For all Pj ̸= Pi party Pj executes NIZK.V ((E0, EPi), π

1
Pi
) and aborts if the

verification algorithm fails.
5. E0 ← E0.
6. For j = 1, . . . , t do

- Party Pj computes Ej ← [sPj ]E
j−1.

- π2
P ← NIZK.P ((E0, EPj , E

j−1, Ej), sPj ).

- Broadcast (Ej , π2
Pj
) to all players.

- All players execute NIZK.V ((E0, EPj , E
j−1, Ej), π2

Pj
) and abort if the veri-

fication algorithm fails.
7. Return Et.

Fig. 7. Group Action Computation for a Full Threshold Secret Sharing [12].

KeyGen: To generate a distributed key we execute:
1. Call FRand.Init().
2. For i ∈ [1, . . . , k − 1] do

(a) ⟨ai⟩ ← FRand.PRSS().
(b) Ei ← GrpAction(E0, Q, ⟨ai⟩) for some qualified set Q. If this protocol

aborts, then abort.
3. Output ⟨a1⟩, . . . , ⟨ak−1⟩ and E1, . . . , Ek−1.

Sign(m, ⟨s⟩): For a set of qualified parties Q to sign a message m they execute:
1. Write Q = {P1, . . . , Pt} ⊂ P.
2. For i = 1, . . . , tS

(a) Party Pj generates bi,j ← ZN , so as to form a full threshold sharing [bi]
over the t parties.

(b) The parties execute E′
i ← GrpAction(E0, Q, [bi]).

3. The parties locally compute (c1, . . . , ctS)← H(E′
1∥ . . . ∥E′

tS∥m).
4. For i = 1, . . . , tS party Pj computes ri,j ← bi,j−sign(ci) ·

∑
ΨQ(B)=Pj

a|ci|,B .

5. The parties broadcast their values ri,j and locally compute ri ←
∑t

j=1 ri,j .

6. Output {(ri, ci)}tSi=1.

Fig. 8. The Distributed Key Generation and Signing Protocols of Sashimi [12].
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and generate a NIZK proof and pass the verification, thus effectively changing
the “correct” share. Note that this problem only regards the adversarial shares
that are also held by an honest party. The full-threshold case, where each party
only holds a single share of the secret, is not affected by this issue. As a coun-
termeasure, in the public key generation the parties in Q need to commit to all
the shares they got from the PRSS and consistency checks need to be done by
all the parties, not just those in Q.

A Sample Attack. Suppose that we have a (3, 2)-threshold access structure done
with a replicated secret sharing scheme. This means that we have a secret x
defined as x = x1 + x2 + x3, such that P1 obtains {x2, x3}, P2 obtains {x1, x3},
and P3 gets {x1, x2}. Assume wlog that P1 is the corrupt party and that the
qualified set in the key generation step is Q = {P1, P2}. Suppose that the parties
agree on re-arranging the shares so that in the GrpAction protocol P1 enters
xP1

:= x2 + x3 and P2 enters xP2
:= x1. If P1 now enters an arbitrary value y

instead of xP1 , then this would not be detected. This is because P1 only commits
to y and not to x2 and x3 individually, therefore there is no way for P2 and P3

to check this. As a result, the final secret key would be x′ = x1 + y rather than
x = x1 + x2 + x3, so the final public key would be E′

i = [x1 + y]E0 instead of
Ei = [x1 +x2 +x3]E0. As a result, in the threshold signing protocol, even if both
parties of a qualified set {P2, P3} behave honestly and follow the protocol, the
resulting signature cannot be succesfully verified under the public key E′

i, as it
is signed with the secret key x = x1 + x2 + x3.

Based on the current design of the protocol, this attack cannot be detected
by the other parties, because there is no check inside the GrpAction protocol
to ensure that the parties commit to the same secret shares sampled in the
secret-sharing phase.

An Actively Secure Full-TSS from Sashimi. Here we present a slightly
modified, simpler version of Sashimi for the special case of full-threshold access
structure. The signing protocol of the full-threshold version is same as original
scheme (shown in Fig. 8), while the full-threshold key generation protocol is
described in Fig. 9. The new key generation protocol is a full-threshold k-MT-
GAIP generation protocol, since it can generally be used to sample a k length
MT-GAIP instance in a full-threshold manner. The security proof of the full-
threshold version follows in Sashimi [12] but is specialized to the full-threshold
case. For completeness we give the proof in Appendix B.4. Next, we discuss the
efficiency of the resulting full-threshold DKG protocol.

Cost. We express the protocol cost in terms of Group Actions (GAs) and con-
sider the other computational costs as negligible in comparison.

In step 4, all parties compute k−1 GAs, k−1 times execute the ZK argument
in Fig. 5 with j = 0, and then verify each other’s proofs in step 5. This can be
done by all parties in parallel and results in a total cost of (k − 1)(1 + ntSpecialZK )
GAs, since we are in the Special case. In step 7, each party first computes k − 1
elliptic curves, runs k− 1 times the ZK argument in Fig. 5 with j = 1, and then
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Input: The fixed elliptic curve E0 and a set Q of n parties.
Output: ([s1]E0, . . . , [sk−1]E0)

1. Parties individually sample k − 1 secrets si ∈ ZN shared between the parties,
where Pj ∈ Q holds s1,j , . . . , sk−1,j such that si =

∑
Pj∈Q si,j .

2. Define an ordering the players in Q = {P1, . . . , Pn}.
3. Each party Pj initialises an instance of FCommit; call it F

Pj

Commit.
4. For i = 1, . . . , k − 1, each party Pj executes

- Ei,Pj ← [si,j ]E0.
- π1

i,j ← NIZK.P ((E0, Ei,Pj ), si,j). (Run the argument in Figure 5 for j = 0)

- Use FPj

Commit where Pj submits input (Commit, idPj , (Ei,Pj , π
1
i,j)) and all other

parties input (Commit, idPj ,⊥)
5. For i = 1, . . . , k − 1

- The parties execute FPj

Commit with input (Open, idPj ) and abort if FPj

Commit

returns abort.
- All other players execute NIZK.V ((E0, Ei,Pj ), π

1
i,j) and abort if the verifica-

tion algorithm fails.
6. E0

1 ← E0, E
0
2 ← E0, · · · , E0

k−1 ← E0.
7. For j = 1, . . . , n

- Party Pj computes

Ej
1 ← [s1,j ]E

j−1
1 , · · · , Ej

k−1 ← [sk−1,j ]E
j−1
k−1.

- For i = 1, . . . , k − 1, compute π2
i,j ← NIZK.P ((E0, Ei,Pj , E

j−1
i , Ej

i ), si,j).
(Run the argument in Figure 5 for j = 1)

- Broadcast (Ej
1, E

j
2, · · · , E

j
k−1, π

2
1,j , . . . , π

2
k−1,j) to all players.

- For i = 1, . . . , k − 1, all other players execute NIZK.V (E0, Ei,Pj , E
j−1
i , Ej

i )
and abort if the verification algorithm fails.

8. Return (En
1 , E

n
2 , . . . , E

n
k−1) = ([s1]E0, [s2]E0, · · · , [sk−1]E0).

Fig. 9. Full-threshold k-MT-GAIP distributed key generation protocol.

all other players can verify this proof in parallel. Because of the round-robin
structure, this is repeated sequentially for all players, i.e. n times. Note that
since (E0

1 , E
1
i ) = (E0, Ei,Pj

), P1 does not need to compute anything in this step.
The full sequential cost of each party’s round in step 7 (except for P1) amounts
to 2(k − 1)tGeneralZK GA for the proof, and another 2(k − 1)tGeneralZK GA for the
verification, which can be done by all other players in parallel. We end up with a
total naive cost of (k−1)(n+ntSpecialZK + 4(n−1)tGeneralZK ) GA for the full protocol.
The runtime of step 7 can however be improved by using an idea similar to the
staggering approach mentioned in [17], but where the players stagger the NIZK
proofs and verifications. The idea is that at step j, party Pj computes its k − 1
elliptic curves and then builds π1,j (while the other players are idle). As soon
as this proof is finished, this proof is broadcast and Pj starts computing π2,j .
At the same time, all other players verify π1,j , which takes the same amount of
computational effort as building the proof. This continues until all players have
finally verified πk−1,j in the last step (where Pj is idle). It is easy to see, that
the round of Pj has a total sequential cost k− 1 + 2ktGeneralZK GA. We finally end
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up with a total sequential cost of

n(k − 1)(1 + tSpecialZK ) + (n− 1)2ktGeneralZK (2)

for the entire protocol.
For the communication cost, we see that both in step 4 and 7, each party

publishes k−1 elliptic curves and proofs. We can bound the total communication
output per player by (k − 1) (10 + log p) 1

4 log p.4

4.3 CSI-RAShi: A Distributed Key Generation Protocol

In [2], Beullens et al. proposed a DKG protocol based on Shamir’s secret shar-
ing [30] called CSI-RAShi, that allows a set of parties to generate a public key
E1 = [a]E0 in a distributed manner, with a being their shared secret. Since
Pedersen commitments [26] do not exist as such in the isogeny setting, they can
not be used for parties to verify the correctness of their shares. As a way out,
the authors introduce Piecewise Verifiable Proofs (PVP), which allow parties to
prove and verify correctness of their collective and individual shares using ZK
proofs in a much faster way than the naive approach. PVPs are a major contri-
bution of [2], however we skip their definition here, as our later improvements are
mainly related to CSI-RAShi’s bottleneck, which are standard ZK proofs needed
in the public-key computation step. We also refer to the original source for the
details about the complaint-disqualification mechanisms between the players. In
Figure 10, we present CSI-RAShi extended to generating k − 1 keys. We also
call it Shamir k-MT-GAIP generation protocol, as it can be used to sample a
k length MT-GAIP instance based on Shamir secret sharing. We note that by
simply using one key, we recover the original version from [2].

Cost. The runtime of CSI-RAShi is very similar to the DKG of Sashimi. A
major difference is that in the VSS step, the parties first compute k − 1 elliptic

curves R
(j)
i and build their proofs using PVPs. The cost of the PVP is dominated

by the main proof (e.g. π̃
(j)
i ) which costs tGeneralZK . Adding n − 1 verifications for

each such proof, the VSS ends up costing (k − 1)(2 + ntGeneralZK ) sequential group
actions. Steps 4 and 5 amount to the same cost as step 6 of the Sashimi group
action, i.e. 2(k−1)tGeneralZK per proof and again per verification. The difference with
the protocol in Fig. 9 is that party P1 also has to run these proofs. Finally, we
end up with a total naive cost of (k−1)(2 +n+ 5ntGeneralZK ).5 By again staggering

4 In order get this compact formula, we are ignoring the parameter h of the slow hash
function, as well as the gain resulting from the Special case. As such, this formula
represents an upper bound of the total communication per player.

5 In [2], another optimization is discussed which reduces the dominant term from
5ntGeneralZK to 4ntGeneralZK . This can be achieved by parties already starting to create
their own proofs in their idle time. This optimization could also be used in Sashimi,
but only has a minor effect when combined with staggering. We choose to omit it
here for simplicity, given that staggering will reduce the dominant term to 3ntGeneralZK

in either case.
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Input: An elliptic curve E0, a set {P1, . . . , Pn} of n parties.
Output: A public key ([a1]E0, . . . , [ak−1]E0)

Verifiable Secret Sharing:

1. For i = 1, . . . , k − 1, each player Pj samples a degree t − 1 polynomial f
(j)
i (x)

with coefficients from ZN , as well as a uniformly random elliptic curve R
(j)
i and

computes R
′(j)
i = [f

(j)
i (0)]R

(j)
i . Then, each player constructs a PVP

π
(j)
i = (π̃

(j)
i , π

(j)
i,1 , . . . , π

(j)
i,n)

which includes a main proof π̃
(i)
i as well as individual proof pieces π

(j)
i,l for each

other player Pl. Finally, each player publishes the main part ((R
(j)
i , R

′(j)
i ), π̃

(j)
i )

and sends (f
(j)
i (l), π

(j)
i,l ) privately to Pl. The main proof π̃

(j)
i allows to verify the

statement R
′(j)
i = [f

(j)
i (0)]R

(j)
i , while a proof piece π

(i)
j allows a player to verify

correctness of their share f
(j)
i (l).

2. For i = 1, . . . , k − 1, each player Pj verifies all the proofs π̃
(l)
i and π

(l)
i,j of all

other players Pl with respect to their statements. Whenever a proof fails, players
broadcast complaints and the interaction of the concerned players are scrutinized
by the other players. This might result in the disqualification of players that
didn’t follow the protocol properly (see [2] for more details).

3. In the end, all the honest players agree on the same set of qualified players
Q ⊂ {1, . . . , n}. At this point the joint secret keys are implicitly defined as ai =∑

j∈Q f
(j)
i (0). Each party Pj derives their share of ai as ai,j =

∑
l∈Q f

(l)
i (j).

Computing the Public Key:

Set F 0
1 ← E0, . . . , F

0
k−1 ← E0.

4. For j = 1, . . . , n, in a round-robin way, Pj computes
F j
1 ← [f (j)(0)]F j−1

1 , . . . , F j
k−1 ← [f (j)(0)]F j−1

k−1 , then builds the proofs

π
′(j)
i ← NIZK.P (R

(j)
i , R

′(j)
i , F i

j−1, F
i
j ),

by running the argument in Figure 5 for j = 1.
5. These proofs are verified by all parties. Whenever a proof fails, parties again

scrutinize the interaction and can disqualify malicious players. In the honest
majority setting, parties can even reconstruct missing information if needed, so
that the public key implicitly defined by point 3.

6. In the end, the parties return their public key

(F
|Q|
1 , F

|Q|
2 , . . . , F

|Q|
k−1) = ([a1]E0, [a2]E0, . . . , [ak−1]E0) .

Fig. 10. The DKG Protocol CSI-RAShi [2] for an Extended Public Key.

the proofs and verifications, as described in the Sashimi DKG, we can further
reduce the sequential cost of steps 4 and 5. Optimally, we end up with a total
sequential cost of

(n + 2)(k − 1) + ntGeneralZK (3k − 1) . (3)

Regarding the communication cost, in the first step, each party publishes
2(k − 1) elliptic curves and k − 1 main proofs of the PVPs, then sends k − 1
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shares and proof pieces to each of the n− 1 other players. In step 4, each party
further publishes k − 1 elliptic curves and proofs. After some arithmetic,6 the
total communication output per player can be expressed as 1

4 log p(k − 1)(7n +
15 + log p).

5 Key Generation based on CSI-SharK

In this section, we revisit the (distributed) key generation protocols from Sec-
tion 4 and show, that by using structured public keys (as used in CSI-SharK)
instead of standard extended public keys (as used in CSI-FiSh), the cost of these
DKG protocols is naturally reduced to a lower cost than the optimal cases from
the previous section. This gain mainly arises from the fact, that the VSS steps
need to be performed for a single key only, and during the key generation the
k−1 independent NIZK proofs can be replaced with a single proof of Fig. 5 with
j = k − 1. We then discuss optimizations to the sequential cost of the protocol,
which allows us to even further reduce the cost of these protocols by optimally
splitting these larger proofs into chunks and staggering them. We note that this
approach is only possible when using (multiples of) the same secret key in these
protocols, which happens in the structured public key case.

5.1 Structured Key Generation in a Passively Secure TSS

Figure 11 presents a passively secure DKG protocol, based on the protocol
from [17], which uses the structured public keys. For the associated signing
protocol we refer to the Appendix A.3.

KeyGen: Given E0, a TTP acts as follows:
1. Sample a secret s← ZN and define a (super)exceptional set Ck−1 = {c1 =

1, c2, . . . , ck−1}.
2. Use SSS to split s into subshares sj for j = 1, . . . , n and distribute sj

privately to party Pj .
3. Output the public key pk := (E0, . . . , Ek−1), where Ei = [cis]E0.

Fig. 11. Passive distributed key generation protocol with structured public key.

Theorem 5.1. Under the Power-DDHA and Ck−1-VPwAI assumptions, the
protocol in Figure 11 is correct and simulatable.

Proof. The proof is completely analogous to the proof of Theorem 1 in [17]. ⊓⊔

6 Using the description in [2], the communication content in a PVP is composed of
a main proof of sec(4(n + 1) + logN) bits and n + 1 proof shares, each of sec bits,
resulting in a total of sec(5(n+ 1) + logN).
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Computational cost. We can see that the TTP computes pk using k−1 group
actions. While this is the same number of computations as in Section 4.1, the
TTP in this case only has to generate a single secret and distribute n shares of
these secrets, reducing the communication by a factor k − 1.

5.2 Structured Sashimi

In Figure 12, we present a new variant of the full-threshold DKG protocol pre-
sented in Figure 9 that can be used to generate a structured public key. Similar
to the previous case, as this protocol can be used to sample a Ck-VPwAI instance
in a full-threshold fashion, we call it full-threshold Ck-VPwAI generation pro-
tocol. To achieve active security, parties compute NIZK proofs for the language
from equation (1) for the cases j = 0 and j = k − 1.

In Appendix A.4, we also introduce a full-threshold signature scheme based
on this DKG protocol, which is a variant of the signing algorithm in Sashimi. We
further prove the security of the DKG and the signature scheme against active
adversaries in Appendix B.5.

Computational cost. We can see that steps 5 and 6 of Figure 12 have a total
cost of 1 + ntSpecialZK , as all steps can be done in parallel by all players. Step 8
consists of each player computing k−1 isogenies and then building a NIZK proof
for j = k − 1, which is then verified in parallel by all other players. Each such
step therefore costs (k − 1)(1 + 2tGeneralZK ). The exception is player P1, which has
already computed EPj

= E1
1 and therefore can exclude it from the NIZK proof.

Furthermore, the proofs and verification of P1’s step are in the Special case, so
we end up with the total cost of

(n− 2)tSpecialZK + (k − 1)(n + 2tSpecialZK + (n− 1)2tGeneralZK ) . (4)

We note that the dominant term in this equation scales with 2nktGeneralZK , which
is already lower than the cost of the protocol in Section 4.2.

We can however further optimize step 8 for k > 2. Currently, each player
computes the full proof with j = k− 1, while other players wait, then this proof
is verified while the prover waits. Instead, we can subdivide the one full proof
of k − 1 elements into r smaller proofs of j = ⌈k−1

r ⌉ elements. The idea is to
stagger these smaller proofs and verifications steps as was done in Section 4.2.
While the proving party computes the first proof, the other players are idle.
After finishing this proof, it is published, and the proving player computes its
second proof while the other players verify the first one. This is repeated r times.
In the last round, the other parties verify the rth proof, while the prover is idle.
As such, there is a big overlap between the computations of the prover and the
verifiers, reducing the overall idle time. Assuming for simplicity that r divides
k− 1, it is clear that each of the proofs should contain the pair (E0, EPj

) as the

reference curves, as well as k−1
r other curves, which should be proven to have

been computed correctly. Given the staggered approach, we end up with a total
of r + 1 proof-verification cycles, where each costs

(
k−1
r + 1

)
tZK group actions.
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Input: The fixed elliptic curve E0 and a set Q of n parties.
Output: [s]E0, [c2s]E0, · · · , [ck−1s]E0

1. Parties agree on a super-exceptional set Ck−1 = {c1 = 1, c2, . . . , ck−1}.
2. Parties individually sample a secret sj ∈ ZN , such that s =

∑
Pj∈Q sj .

3. Define an ordering the players in Q = {P1, . . . , Pn}.
4. Each party Pj initialises an instance of FCommit; call it F

Pj

Commit.
5. Each party Pj computes

- EPj ← [sj ]E0.
- π1

j ← NIZK.P ((E0, EPj ), sj). (Run the argument in Figure 5 for j = 0)

All parties call FPj

Commit where Pj submits input (Commit, idPj , (EPj , π
1
j )) and all

other parties input (Commit, idPj ,⊥)
6. For j = 1, . . . , n

- The parties execute FPj

Commit with input (Open, idPj ) and abort if FPj

Commit

returns abort.
- For all Pi ̸= Pj , party Pi executes NIZK.V ((E0, EPj ), π

1
j ) and aborts if the

verification algorithm fails.
7. E0

1 ← E0, E
0
2 ← E0, · · · , E0

k−1 ← E0.
8. For j = 1, . . . , n do

- Party Pj computes

Ej
1 ← [sj ]E

j−1
1 , Ej

2 ← [c2sj ]E
j−1
2 , · · · , Ej

k−1 ← [ck−1sj ]E
j−1
k−1.

π2
j ← NIZK.P ((E0, EPj , E

j−1
1 , Ej

1, · · · , E
j−1
k−1, E

j
k−1),Ck−1, sj)

(Run the argument in Figure 5 for j = k − 1)

- Broadcast (Ej
1, E

j
2, · · · , E

j
k−1, π

2
j ) to all players.

- All players execute NIZK.V ((E0, EPj , E
j−1
1 , Ej

1, . . . , E
j−1
k−1, E

j
k−1),Ck−1, π

2
j )

and abort if the verification algorithm fails.
9. Return ([s]E0, [c2s]E0, · · · , [ck−1s]E0) = (En

1 , E
n
2 , · · · , En

k−1).

Fig. 12. Full-threshold Ck-VPwAI Generation Protocol.

By assuming the prover has already precomputed the (E0, EPj ) part of its first

proof, as explained above, we can reduce the cost of the first cycle to k−1
r tZK

group actions. Including the costs of the elliptic curve computations, this yields
a total of k − 1 + k−1

r tZK + r
(
k−1
r + 1

)
tZK sequential group actions per round.

It is clear that this cost is minimized for r =
√
k − 1. We end up with a cost per

round-robin step of k − 1 +
(
(
√
k − 1 + 1)2 − 1

)
tZK for players P2, . . . , Pn.

We are left with establishing the cost of P1’s round. Again, P1 only needs
to compute k − 2 curves and consequently prove correctness of these k − 2
elements. Using the same process as before we end up with an optimal r′ =√
k − 2, i.e. we have a total of

√
k − 2 +1 cycles with proofs/verifications of cost

(
√
k − 2+1)tSpecialZK per cycle. Adding the cost of step 5, we end up with the total

sequential cost of the DKG protocol of:7

TDKG(n, k, sec) = n(k − 1) +
(
n + (

√
k − 2 + 1)2

)
tSpecialZK
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+ (n− 1)
(

(
√
k − 1 + 1)2 − 1

)
tGeneralZK . (5)

The cost in equation (4) is dominated by the term 2kntGeneralZK , while here, this

term is reduced to n(k+2
√
k)tGeneralZK . For large k, this gives another improvement

by almost a factor of 2.
It is easy to see that our protocol also strongly reduces the communication

cost needed between the parties. First of all, by using only one secret instead
of k − 1, we reduce the communication cost of the VSS step by a factor k − 1.
Similarly, in the public-key computation step, we reduce the number of proofs
from k − 1 to

√
k − 1 per player, and even to 1 in the non-optimized case.

Only the number of elliptic curves published in the public-key computation
step stays constant, when compared to the non-structured case. Expressed in
bits, we find 1

4 log p (4k + 7n + 7 + log p) in the case with one single proof and
1
4 log p

(
4k + 7n + 6 + 1

2 log p + (
√
k − 1 + 1)(1 + 1

2 log p)
)

in the optimized case,
as the communication output per player. It is easy to see that asymptotically
for large k, both these cases yield a gain factor of 1

4 (10 + log p), when compared
to the protocol in Section 4.2.

5.3 Structured CSI-RAShi

We conclude this section by presenting a CSI-RAShi-based DKG protocol for an
SPK in Figure 13. The protocol is called Shamir Ck-VPwAI generation protocol,
as it can also be used to sample a Ck-VPwAI instance in a fully distributed
manner using Shamir secret sharing. We also present an actively secure TSS
based this DKG in Appendix A.5.

Theorem 5.2. The protocol of Figure 13 satisfies the consistency requirement,
assuming GAIP and Ck−1-VPwAI and satisfies the secrecy requirement, further
assuming the Ck−1-Decisional GAIP.

Proof. The proof is given in Appendix B.6.

Computational cost. In contrast to the extension with multiple secret keys,
the SPK extension in Figure 13 requires only a single execution of the VSS step,
instead of k − 1 repetitions, and so it is independent of the public key size.
The cost of this step is 2 + ntGeneralZK group actions. Furthermore, parties do not
have to repeat separate ZK proofs multiple times, but can rather compute one
big proof for all k − 1 elements. This results in a cost per round-robin step of
(k − 1)(1 + 2tGeneralZK ), resulting in the total sequential cost of

2 + ntGeneralZK + n(k − 1)(1 + 2tGeneralZK ) (6)

7 Note that equation (5) is slightly simplified, since in general, the square roots within
this equation are not integers. If e.g.

√
k − 1 is not an integer, we construct r =

⌈
√
k − 1⌉ proofs, each of size at most ⌈x

r
⌉. This means that we can substitute the

terms of type (
√
x + 1)2 by the term (⌈

√
x⌉ + 1)(⌈ x

⌈
√
x⌉⌉ + 1) (where e.g. x ∈ {k −

1, k − 2}) in order to upper bound the actual cost.
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Input: An elliptic curve E0, a set {P1, . . . , Pn} of n parties.
Output: A public key ([a]E0, [c2a]E0, · · · , [ck−1a]E0)

Verifiable Secret Sharing:

1. Each player Pi, for i = 1, . . . , n, samples a degree t − 1 polynomial f (i)(x)
with coefficients from ZN , as well as a uniformly random elliptic curve R(i) and
computes R′(i) = [f (i)(0)]R(i). Then, each player constructs a PVP

π(i) = (π̃(i), π
(i)
1 , . . . , π(i)

n )

which includes a main proof π̃(i) as well as individual proof pieces π
(i)
j for each

other player Pj . Finally, each player publishes the main part ((R(i), R′(i)), π̃(i))

and sends (f (i)(j), π
(i)
j ) privately to Pj . The main proof π̃(i) allows verifying the

statement R′(i) = [f (i)(0)]R(i), while a proof piece π
(i)
j allows a player to verify

the correctness of their share f (i)(j).

2. Now, each player Pj verifies all the proofs π̃(i) and π
(i)
j of all other players with

respect to their statements. Whenever a proof fails, players broadcast complaints
and the interaction of the concerned players are scrutinized by the other players.
This might result in the disqualification of players that didn’t follow the protocol
properly.

3. In the end, all the honest players agree on the same set of qualified players
Q ⊂ {1, . . . , n}. At this point the joint secret key is implicitly defined as a =∑

i∈Q f (i)(0). Each party Pj derives their share of a as aj =
∑

i∈Q f (i)(j).

Computing the Structured Public Key:

4. Parties agree on a super-exceptional set Ck−1 = {c1 = 1, c2, . . . , ck−1}.
5. In a round-robin way, the qualified players compute

F 1
i ← [f (i)(0)]F 1

i−1, F
2
i ← [c2f

(i)(0)]F 2
i−1, . . . , F

k−1
i ← [ck−1f

(i)(0)]F k−1
i−1 ,

where F 1
0 = · · · = F k−1

0 = E0. At each step, player Pi publishes the proof

π′(i) ← NIZK.P ((R(i), R′(i), F 1
i−1, F

1
i , . . . , F

k−1
i−1 , F k−1

i ,Ck−1), f
(i)(0)),

by running the NIZK argument in Figure 5 for j = k − 1.
6. This proof is verified by all parties. Whenever a proof fails, parties again scruti-

nize the interaction and can disqualify malicious players. In the honest majority
setting, parties can even reconstruct missing information if needed, so that the
public key is implicitly defined by point 3.

7. In the end, the parties return their structured public key

(F 1
|Q|, F

2
|Q|, . . . , F

k−1
|Q| ) = ([a]E0, [c2a]E0, . . . , [ck−1a]E0) .

Fig. 13. Shamir Ck-VPwAI Generation Protocol.

for the entire protocol. It is easy to see that the dominant term scales with
2nktGeneralZK , which is lower than the cost of the protocol in Section 4.3. We can
improve this cost by using the staggering approach described in Section 5.2, in
which we split the main proof into

√
k − 1 smaller proofs of size approximately√

k − 1. A difference to the cost established in that section is again that P1 is
not in the Special case and has to compute k − 1 curves (as opposed to k − 2 in
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Figure 12). We end up with the final cost

2 + n(k − 1) + tGeneralZK

(
n(
√
k − 1 + 1)2 + 1

)
. (7)

The dominating term in CSI-RAShi scales as 3nktGeneralZK , while using structured

keys can reduce this to n(k+2
√
k)tGeneralZK . For large k, this gives an improvement

of almost a factor 3.

Again, we note that our protocol reduces the communication cost in the VSS
by a factor k−1, as only a single PVP is needed. Similarly, in the public-key com-
putation step, we reduce the number of proofs from k−1 to

√
k − 1 per player, or

1 in the non-optimized case, while the number of published curves stays k−1. For
the case with a single proof, we find the total cost of 1

4 log p (4k + 5n + 9 + log p),

while in the optimized case, we find 1
4 log p

(
4k + 5n + 7 + (

√
k − 1 + 1)

(
1 + 1

2 log p
))

,
as the communication output per player.

For asymptotically large k, we see that, in comparison to the non-structured
case, we get a gain factor of the communication of 1

4 (7n + 15 + log p), when
compared to Section 4.3. We note that the gain increases with the number of
parties. This is due to the fact that the size of the PVPs depends on the number
of players.

6 Parallel Executions and Performances

In this section, we discuss the benefits of parties having multiple CPU threads at
their disposal when executing isogeny-based signatures and NIZK proofs. Given
the fact that multi-core CPUs are standard, we want to consider their impact
on the schemes presented in this work.

As observed in all threshold protocols, in order to compute a curve [x]E0,
where x is shared among multiple parties, having to adopt a sequential round-
robin communication structure between the parties seems to be an unavoidable
fact. However, we observe that in the cases that we need to compute more
than one curve, e.g. [x1]E0, . . . , [xk−1]E0, be it either as a single party (as in
the CSI-FiSh or CSI-SharK signatures) or by several parties (as in the threshold
variants of them or distributed key generation), these computations are in general
independent of each other and can therefore very easily be parallelized.

In the case of non-threshold protocols, where only one party runs the al-
gorithm, the parallelization can be done using different threads (or cores) of a
CPU. Namely, each thread of the CPU can compute a subset of these curves,
and will finish the total computation considerably faster than the consecutive
approach described in the original CSI-FiSh [3] and its follow-up schemes [2,12].
As an example, assuming a party has C independently accessible threads, they
can compute a CSI-SharK (or CSI-FiSh) signature for the consecutive cost of
⌈tS/C⌉ group actions instead of the full tS , because of the independence of the
commitments. In Table 3 of Appendix A.7, we show the impact of parallelizing
signature schemes in this way. It can be seen that by using 8 cores with a public
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key of size k = 2 (64 B) already allows for signing and verifying as fast than
using a public key of size k = 212 + 1 (256 KB) with a single core.

In the case of threshold protocols, the same idea can be applied to NIZK
arguments, such as the one in Figure 5, reducing the proof cost from (j + 1)tZK
to (j + 1)⌈tZK/C⌉ group actions. Since all commitments can be independently
computed, and the j individual commitments are parallelizable, we can further
reduce this to ⌈(j + 1)tZK/C⌉ group actions, effectively reducing the sequential
costs of our algorithms by a factor C, up to some constant terms. Furthermore,
while parties are still forced to adopt a sequential structure due to the round
robins, they can however run multiple such round-robins in parallel to fill up
the idle time. This was already observed in [17] for passively secure threshold
protocols. Here we extend this idea to actively secure threshold case, where
parties also need to generate ZK proofs and verify the proofs of other parties.

In Table 2, we present estimates of the performances of our actively secure
threshold signature schemes based on CSI-SharK for different parameter sets.
We compare our schemes with the DKGs from [2, 12] and the signature scheme
from [12]. For these estimates, we use the formulas established throughout this
work, including the results for signatures from Appendix A.6. We compare them
to the original time complexity formulas from the relevant sources. We use the
(conservative) approximate cost of 40 ms per group action that can be expected
when combining the benchmarks presented in [3] with the optimizations from [25]
on a 3.5 GHz processor [7]. The table indicates that structured public keys give
a strong performance benefit, even when compared to the most optimal case
without structured keys.

Since multiple threads are standard in modern CPU architecture, our results
show that isogeny-based signature and threshold schemes become quite practical
by virtue of the parallelizability of their computations. For instance, 3 parties,
each with 16 cores, could sign in 28 seconds by using a 16 KB large public key,
while 8 parties would need 94 seconds with the same parameters. Key generation
in these settings can be done in a few minutes.

7 Conclusion

We presented CSI-SharK as a new variant of the isogeny-based signature scheme
CSI-FiSh [3], that allows one to build more efficient distributed protocols than
those based on CSI-FiSh. CSI-SharK is based on a modified version of the Σ-
protocol underlying CSI-FiSh [3]. A key difference between CSI-SharK and CSI-
FiSh is that CSI-SharK uses structured public keys, as recently introduced in [1].

At the cost of an additional computational assumption, CSI-SharK improves
CSI-FiSh in a number of ways. Public keys with k − 1 elliptic curves are now
generated using a single secret, instead of k−1, which means that only one secret

7 We note that by using the optimizations from Appendix A.6, the runtime of our
signature is about twice as fast as the naive approach presented in [12]. This is
independent of the public key structure and is readily applicable to signature schemes
without structured public keys as well, such as [12].
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Table 2. Comparison of computational and communication cost for different instances
of the full-threshold Sashimi DKG (upper table) and CSI-RAShi (lower table) for the
CSIDH-512 parameter set. We compare both schemes in the CSI-FiSh (extended public
key) and CSI-SharK cases (structured public key) for different public key sizes k − 1.
We compare naive implementations (as presented in their original paper or by simply
using structured public keys) and optimized (staggered) implementations, as discussed
in Sections 4 and 5. We also indicate the communication cost (output per party) for
each of these cases. We note that the communication costs in the CSI-FiSh case do
not change when using the staggering optimization, while it does so in the CSI-SharK
setting. In the full-threshold case, we further indicate the signature cost, as established
in Appendix A.6. For completeness, we also compare secret key sizes |sk| per party in
the CSI-FiSh and CSI-SharK cases in the lower table. Runtimes are estimated based
on the conservative estimate that a group action computation takes 40 ms. For better
readability, some communication cost and secret key size entries are omitted in the
tables, as they are simply the same results as in the block above.

Full- CSI-FiSh CSI-SharK
Threshold k − 1 naive staggered comm. naive staggered Signing8

Case [12] (Sec. 4) (Sec. 5) (Sec. 5) (App. A)

24 17 min 10 min 131 kB 7.3 min 9.1 kB 5.5 min 21 kB 12 min
28 4.5 h 2.6 h 2.0 MB 1.9 h 24 kB 65 min 84 kB 7.2 min

3 parties

each with

1 core 212 73 h 42 h 33 MB 31 h 264 kB 16 h 517 kB 4.5 min

24 67 s 38 s 27 s 21 s 47 s
28 18 min 10 min 7 min 4 min 28 s

3 parties

each with

16 cores 212 4.8 h 2.6 h 1.9 h 60 min 18 s

24 3.1 min 1.8 min 80 s 60 s 147 s
28 50 min 28 min 21 min 12 min 94 s

8 parties

each with

16 cores 212 13 h 7.4 h 5.6 h 2.9 h 87 s

Shamir CSI-FiSh CSI-SharK
secret k − 1 naive staggered comm. |sk| naive staggered |sk|
sharing [2] (Sec. 4) (Sec. 5) (Sec. 5)

24 18 min 13 min 137 kB 512 B 8.5 min 9.5 kB 6.5 min 26 kB 32 B
28 4.7 h 3.3 h 2.1 MB 8 kB 2.2 h 25 kB 65 min 89 kB 32 B

3 parties

each with

1 core 212 76 h 53 h 34 MB 128 kB 35 h 265 kB 18 h 522 kB 32 B

24 69 s 48 s 32 s 24 s
28 18 min 13 min 8.2 min 4.7 min

3 parties

each with

16 cores 212 4.9 h 3.3 h 2.2 h 68 min

24 2.9 min 2.1 min 146 kB 85 s 10 kB 65 s 26 kB
28 47 min 33 min 2.3 MB 22 min 25 kB 12 min 89 kB

8 parties

each with

16 cores 212 12 h 8.8 h 36 MB 5.8 h 265 kB 3.0 h 522 kB

needs to be generated and stored, independent of the public key size. This is most
noticeable in distributed key generation protocols, where secrets are further split
into parts and distributed among the parties. The heavy zero-knowledge proofs
in current state-of-the-art protocols can be strongly reduced in numbers and even
merged, when working with structured public keys. This reduces even the most
optimal implementations by a factor 3 and the communication cost by a much
greater factor, e.g. up to 130 for Sashimi and about 132 + 3

4n for CSI-RAShi,
where n is the number of parties.
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While these results make threshold schemes in the isogeny setting much more
practical, we further presented a general strategy for parallel computations, ex-
ploiting the independence of commitments in zero-knowledge proofs and signa-
ture schemes. We show that by parallelizing computations, isogeny-based thresh-
old (and non-threshold) signatures become truly practical and competitive in the
post-quantum realm.

As an independent contribution, we revealed a flaw in the DKG protocol of
Sashimi, which can allow an honest party to end up with a wrong share after
the protocol, thus preventing it from generating correct signatures, even after a
correctly executed signing protocol.

We think that the very design of the CSI-SharK public keys, its Σ-protocol
and some of our proposed structured DKG protocols can offer many advantages
for different applications and hope that the structure may be further exploited
to design more practical isogeny-based cryptographic primitives.
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A Signatures

In this section, we discuss standard and distributed signatures in both the CSI-
FiSh and CSI-SharK setting. We start by first introducing sigma and ID proto-
cols, then move on to introducing signature schemes and distributed signature
schemes in the next subsection. Later, we present signature schemes related to
the DKG schemes with structured public keys from Section 5. We then discuss
execution strategies for distributed signature schemes in order to minimize the
idle time of the players. Finally, in the last subsection, we discuss the influence
of using multiple cores on the non-distributed signature schemes CSI-FiSh and
CSI-SharK.

Throughout this section, we assume the structured public keys have k − 1
elements, meaning that the signature process has a soundness error rate of 1

2k−1 ,

by also using the twists. To achieve a soundness error of 2−sec, we therefore have
to repeat the signing process tS = ⌈sec log2k−1 2⌉ times. We define the hash

function H : {0, 1}∗ → {0, 1}tS⌈log2 2k−1⌉. Furthermore, for the elements ci ∈ Ck,
we define c−i = −ci.

A.1 Sigma Protocols and ID protocols

Next, we recall the definition of sigma protocols (Σ-protocols) and identification
schemes. Here the algorithms are Probabilistic Polynomial-Time (PPT), unless
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mentioned. Let λ be a security parameter and let X = X(λ) and
W = W (λ) be sets. Let R be a relation on X × W that defines a language
 L = {x ∈ X : ∃ω ∈ W,R(x, ω) = 1}. Given x ∈  L, an element ω ∈ W such
that R(x, ω) = 1 is called a witness. Let R be a PPT algorithm such that R(λ)
outputs pairs (x, ω) such that R(x, ω) = 1.

A sigma-protocol (Σ-protocol) for the relation R is a 3-round interactive
protocol between two PPT algorithms: a prover P and a verifier V . P holds a
witness ω for x ∈  L and V is given x. P first sends a value a to V , and then V
answers with a challenge c , and finally P answers with z. V accepts or rejects
the proof. The triple trans = (a, c, z) is called a transcript of the Σ-protocol. A
Σ-protocol is supposed to satisfy Completeness, Honest Verifier Zero-Knowledge
(HVZK), and Special Soundness defined below.

Definition A.1 (Completeness). A Σ-protocol Π with parties (P, V ) is com-
plete for R, if for all (x, ω) ∈ R,

Pr [trans(P (R, x, ω)↔ V (R, x)) is accepted by V ] = 1 ,

where trans denotes the transcript of the protocol.

Definition A.2 (HVZK). A Σ-protocol satisfies HVZK for R, if there exists
a PPT algorithm S that given x ∈ X, can simulate the trans of the scheme, s.t.
for all x ∈  L, (x, ω) ∈ R,

trans(P (R, x, ω)↔ V (R, x)) ≈ trans(S(R, x)↔ V (R, x))

where trans(P (·) ↔ V (·)) indicates the transcript of Π with (P, V ), and ≈ de-
notes the indistinguishability of transcripts.

Definition A.3 (Special Soundness). The Σ-protocol Π with parties (P, V )
is special sound for R, if there exists a PPT extractor Ext, such that for any
x ∈  L, given two valid transcripts (a, c, z) and (a, c′, z′) for the same message a
but c ̸= c′, then Ext(a, c, z, c′, z′) outputs a witness ω for the relation R.

Identification Protocols. An ID protocol is a special case of a Σ-protocol
between two parties (P, V ), with respect to a hard relation defined by a key
generator KGen, as (pk, sk)← KGen(1λ), where one thinks of sk as a witness for
the public key pk.

A.2 Signatures

Digital Signature Schemes. A digital signature scheme consists of three algo-
rithms (KeyGen, Sign, Verify) that are defined as bellow.

- KeyGen
(
1λ

)
is a PPT algorithm that given the security parameter λ, returns

a public key pk and a secret key sk.
- Sign (sk,m) is a PPT algorithm that given the secret key sk and a message
m returns a signature σ.
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- Verify (pk, (σ,m)) is a deterministic polynomial-time algorithm that given
the pk, a signature σ and a message m returns either 1 (valid) or 0 (invalid).

A primary security notion for a disgital signature scheme is defined as follows.

Definition A.4 (Strong Existential Unforgeability under Chosen Mes-
sage Attacks). A signature scheme Π = (KeyGen, Sign, Verify) is said to be
strong Existentially Unforgeable under adaptive Chosen-Message Attacks (sEU-
CMA) if for all PPT adversaries A,∣∣∣∣∣Pr

[
(pk, sk)← KGen(1λ), σi ← Sign(sk,mi) for 1 ≤ i ≤ k;

(m,σ)← ASign(.)(pk, (mi, σi)
k
i=1) : Verify(m,σ, pk) = 1 ∧ (m,σ) ̸∈ Q

]∣∣∣∣∣,
is negligible in λ, where Q := {(m1, σ1) · · · , (mk, σk)} is the set of the messages
requested by A and the signatures returned from the signing oracle.

Threshold Signature Schemes. A threshold signature scheme allows a set of qual-
ified parties to jointly sign a message m, and produce a signature σ on it that
can be verified using a single public key pk. More precisely, a threshold signature
scheme with respect to a (n, t)-threshold access structure is dedfined as follows

Definition A.5. A threshold digital signature scheme is given by a tuple of
probabilistic algorithms (KeyGen,Sign,Verify):

- KeyGen
(
1λ

)
is a randomized algorithm that takes as input the security pa-

rameter and returns the public key pk and a set of secret keys ski, one secret
key for every party9

- Sign ({ski}i∈Q,m) is a randomized signing algorithm that takes as inputs a
qualified set of private keys and a message and returns a signature on the
message.

- Verify (pk, (σ,m)) is a deterministic verification algorithm that takes as in-
puts the public key and a signature σ on a message m and outputs a bit
which is equal to one if and only if the signature on m is valid.

Informally, security for a threshold signature scheme implies that an unqualified
set of parties cannot forge a signature on a new message. In our distributed signa-
tures, we also require that a valid output signature should be indistinguishable
from the signature produced by the signing algorithm of the underlying non-
thresholdized scheme with the same public key.

A.3 Passively Secure Threshold Signing Protocols

We introduce the passively secure TSS from [17] as well as its counterpart using
structured public keys.

CSI-FiSh-based TSS. At the end of the DKG from Figure 6, each party Pj will

hold a share si,j of the secret key si, for i = 1, · · · , k−1 s.t. si =
∑

j∈Q si,j ·LQ
0,i,j

for a set Q. To sign a message m, any qualified set Q = {1, . . . , n} of n parties
generates a signature as in Figure 14.9 Since the focus of this paper is on Shamir and full-threshold secret sharing, here we

can limit ourselves to the case where each party gets a single share of the secret.
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Sign(m, ⟨s⟩): Set E0
1 ← E0, E

0
2 ← E0, · · · , E0

ts ← E0, and then act as follows:
1. In a round robin for j = 1, . . . , n, each player samples bji ← ZN , then

computes Ej
i = [bji ]E

j−1
i for i = 1, · · · , tS .

2. Set (d1, . . . , dts) = H(En
1 , E

n
2 , . . . , E

n
ts ∥ m).

3. For i = 1, · · · , tS , each player computes an broadcasts rji = bji − sign(di) ·
sjdi · L

Q
0,di,j

(mod N).

4. Return {(ri, di)}tsi=1, where ri =
∑n

j=1 r
j
i .

Fig. 14. Passively Secure Signature Scheme Based on CSI-FiSh [17].

CSI-SharK-based TSS. At the end of the DKG from Figure 11, each party Pj

will hold a single share sj of the secret key s, s.t. s =
∑

j∈Q sj ·LQ
0,j for a set Q.

To sign a message m, any qualified set Q = {1, . . . , n} of n parties generates a
signature as in Figure 15.

Sign(m, ⟨s⟩): Set E0
1 ← E0, E

0
2 ← E0, · · · , E0

ts ← E0, and then act as follows:
1. In a round robin for j = 1, . . . , n, each player samples bji ← ZN , then

computes Ej
i = [bji ]E

j−1
i for i = 1, · · · , tS .

2. Set (d1, . . . , dts) = H(En
1 , E

n
2 , . . . , E

n
ts ∥ m).

3. For i = 1, · · · , tS , each player computes an broadcasts rji = bji − sign(di) ·
cdisj · L

Q
0,j (mod N).

4. Return {(ri, di)}tsi=1, where ri =
∑n

j=1 r
j
i .

Fig. 15. Passively Secure Signature Scheme Based on CSI-SharK

Theorem A.1. Under the Power-DDHA and Ck−1-VPwAI, the signature pro-
tocol of Figure 15 is correct and simulatable.

Proof. The proof is analogous to the proof of [17, Theorem 1]. ⊓⊔

A.4 Structured Sashimi with Full-Threshold Secret Sharing

At the end of the key generation from Figure 6, each party Pj will hold a Shamir

share sj of the secret key s, s.t. s =
∑

j∈Q sj ·LQ
0,j for a set Q. To sign a message

m, any qualified set Q = {1, . . . , n} of n parties can use the passively secure
signing protocol in Figure 15 and generate a signature.

Similarly, at the end of the DKG from Figure 9, each party Pj will hold a
share sj of the secret key s, s.t. s =

∑
j∈Q sj for a set Q. Then, using the full-

threshold actively secure signing protocol in Figure 16, a set of Q parties will
be able to sign a message. The proof closely follows that in Sashimi [12], and is
adapted to the CSI-SharK case. For the sake of completeness, we give the proof
in Appendix B.4.
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Sign(m, ⟨a⟩): For a set of (qualified) parties Q = {P1, . . . , Pn} to sign a message m
they act as follows:
1. For i = 1, . . . , tS: Given E0, the set of Q parties run the full-threshold k-MT-

GAIP generation protocol in Figure 9 for k = 2 and generate E′
i := [bi]E0,

and party Pj stores bi,j as a share of ⟨bi⟩ a.
2. The parties locally compute (d1, . . . , dtS)← H(E′

1∥ . . . ∥E′
tS∥m).

3. For i = 1, . . . , tS, each party Pj computes ri,j ← bi,j − sign(di) · cdiaj .
4. The parties broadcast their values ri,j and locally compute ri ←

∑n
j=1 ri,j .

5. Output {(ri, di)}tSi=1.

a
Note that, for k = 2 the protocols in Figures 9 and 12 are equivalent and can be used inter-
changeably.

Fig. 16. Actively Secure Full-Threshold Signing Protocol with Structured Public Keys.

Sign(m, ⟨a⟩): To sign a message m, a set of (qualified) parties Q = {P1, . . . , Pn}
acts as follows,
1. For i = 1, . . . , tS: Given E0, the set of Q parties run the full-threshold k-MT-

GAIP generation protocol in Figure 9 for k = 2 and generate E′
i := [bi]E0,

and party Pj stores bi,j as a share of ⟨bi⟩ a.
2. The parties locally compute (d1, . . . , dtS)← H(E′

1∥ . . . ∥E′
tS∥m).

3. For i = 1, . . . , tS, each party Pj computes ri,j ← bi,j − sign(di) · c|di|ajL
Q
0,j .

4. The parties broadcast their values ri,j and locally compute ri ←
∑n

j=1 ri,j .

5. Output {(ri, di)}tSi=1.

a
For k = 2 the protocols in Figures 9 and 12 are equivalent and can be used interchangeably.

Fig. 17. Actively Secure Threshold Signing Protocol with Structured Public Keys
Based on (n, t)-Shamir Secret Sharing.

A.5 Distributed Shamir-based Actively Secure Signature

Using our Shamir Ck-VPwAI Generation Protocol, presented in Figure 13, a set
of parties can generate the secret and structure public key of our actively secure
threshold signature scheme.

At the end of the key generation, the n parties will obtain a Shamir sharing
of the secret key ⟨a⟩. After that, in order to sign a message m, any set of qualified
parties Q use the actively secure signing protocol described in Figure 17.

Security readily follows from that of the key generation in Theorem 5.2,
since then the simulator has the adversarial shares of the key, which it can use
to simulate the signing protocol exactly in the same way as in Theorem B.2.

A.6 Optimal Executions of Signature Schemes

Throughout this work, we have shown, how using SPKs naturally increases the
efficiency of distributed key generation. Unfortunately, this advantage does not
immediately transfer to signatures as there, the protocols, such as Figures 9
and 12 are executed for k = 2 only, so we do not have an advantage of using
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structured elements. In this section, we discuss how to use the strategy described
in Section 6 and optimize the execution of distributed signature schemes to
reduce the idle time as much as possible. These results are applicable to both
structured and non-structured extended public keys with k − 1 elements and
therefore also readily apply to the signature scheme presented in [12].

Since the commitment values b1, . . . , btS of these signatures are all indepen-
dently computable, the tS separate round-robins Figures 16 and 17 all can ac-
tually be computed in parallel, by choosing the order of the players in these
round-robins as different cyclic permutations of the original set.

Assume for simplicity that we have n = tS parties. For j = 1, . . . , n, the
players compute one step towards the commitment and one proof, then verify
the tS − 1 other proofs, all in parallel. Adding the tS invocations of steps 4 and
5 in Figures 9 and 12, we find the total cost of

T Sign
n=tS (n, k, sec) = (1 + ntSpecialZK )tS + (n− 1)

(
1 + 2tSt

General
ZK

)
.

If n > tS , n− tS parties will stay idle during the commitment and proofs in each
step. However, we have to realize that the number of verifications per round
increases to tS instead of tS − 1, since the idle parties will have to verify all
proofs. Yet, players can simply postpone this verification to a later round, and
verify it whenever they are idle again, waiting for other players’ proofs to finish.
After the very last round, each player will have one more of these verifications
to complete. In the case, where n < tS , we can compute at most n elements at
the same time, so we have to repeat each round ⌈ tSn ⌉ times. Note that the cost
per round is 1 + 2ntGeneralZK , as we have to verify at most n − 1 proofs. We can
summarize the cost of our actively secure signatures as

T Sign(n, k, sec) = (1 + ntSpecialZK )tS +

{⌈
tS
n

⌉
(n− 1)

(
1 + 2ntGeneralZK

)
, if n ≤ tS ,

(n− 1)(1 + 2tSt
General
ZK ) + 2tGeneralZK , if n > tS .

(8)

It is interesting to note that this means choosing n ≥ tS is in general favorable to
n < tS . In particular, this means that running the SSS-based TSS from Figure 17
can be more efficient by adding more parties in case the threshold is below tS .
These considerations lead to the results presented in Table 2.

A.7 Signature Schemes with Multiple CPU Threads

As discussed in Section 6, since the commitments needed in the signature schemes
CSI-SharK and CSI-FiSh are independent, parties with multiple independently
accessible CPU threads can compute these signatures for the consecutive cost of
⌈tS/C⌉ group actions instead of the full tS . Table 3 estimates the runtimes of CSI-
SharK (and CSI-FiSh) using multi-core CPUs for different sets of parameters.

We can see that by using multi-core CPUs, both CSI-SharK and CSI-FiSh
become very practical. For example, using a 16-core CPU and k− 1 = 24 results
in a signature scheme with public key size of 1 KB, signature size of 759 B, where
key generation takes 40 ms, and both signing and verification take 80 ms.

37



Table 3. Parameter choices and empirical performance estimation for CSI-SharK (and
CSI-FiSh). #Cores: Number of cores in the CPU, k: number of curves in the public
key, tS: number of parallel executions, h: “slowness” parameter in hash function, |x|:
size of x. Run times are estimated based on the previous results that each GA takes
40 ms.

#Cores k − 1 tS h |sk| |pk| |sig| KGen Sign Verify

1

20 71 16 16 B 64 B 2307 B 40 ms 2840 ms 2840 ms
24 23 15 16 B 1 KB 759 B 640 ms 920 ms 920 ms
28 13 12 16 B 16 KB 436 B 10 s 520 ms 520 ms
212 9 11 16 B 256 KB 306 B 164 s 360 ms 360 ms

8

20 71 16 16 B 64 B 2307 B 40 ms 360 ms 360 ms
24 23 15 16 B 1 KB 759 B 80 ms 120 ms 120 ms
28 13 12 16 B 16 KB 436 B 1280 ms 80 ms 80 ms
212 9 11 16 B 256 KB 306 B 20 s 80 ms 80 ms

16

20 71 16 16 B 64 B 2307 B 40 ms 200 ms 200 ms
24 23 15 16 B 1 KB 759 B 40 ms 80 ms 80 ms
28 13 12 16 B 16 KB 436 B 640 ms 40 ms 40 ms
212 9 11 16 B 256 KB 306 B 10 s 40 ms 40 ms

B Security proofs

B.1 Proof of Theorem 3.1

Proof. The proof is analogous to the security proofs of the ID protocols discussed
in [3] and [1]. However, similar to the ID protocol proposed in [1], we additionally
rely on the hardness of Ck−1-VPwAI [1], but without the need for a TTP.

Completeness. The honest prover knows the secret a for the public key {Ei =
[cia]E0}i=0,...,k−1, where Ck−1 = {c0 = 0, c1 = 1, c2, · · · , ck−1} is a public (super-

)exceptional set. The honest verifier checks if Eb
?
= [r]Ed. For an honestly gen-

erated proof, it holds that [r]Ed = [b− cda]Ed = [b− cda][cda]E0 = [b]E0 = Eb.

Honest-Verifier Zero-Knowledge. We construct a simulator that acts as fol-
lows: given the honestly sampled d, it samples r randomly from ZN ; then sets
Eb = [r]Ed and returns the transcript (Eb, d, r). In both the real and the sim-
ulated transcripts, r and Eb are sampled uniformly at random, yielding indis-
tinguishable distributions. Note that relying on the Ck−1-VPwAI, obtaining the
secret key a from an honestly generated SPK is computationally hard.

Special Soundness. Given two valid transcripts of the Σ-protocol, an efficient
extraction algorithm extracts a witness as follows: Let (Eb, d, r) and (Eb, d

′, r′) be
two acceptable transcripts of the protocol, where d ̸= d′, consequently r ̸= r′ (for
non-zero a). From the verification equation, one can conclude that [r]Ed = [r′]Ed′

and consequently Ed = [r′ − r]Ed′ , which allows the extractor to obtain r′ − r
as a solution to the MT-GAIP.

⊓⊔
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B.2 Proof of Theorem 3.2

Proof. From the security of the resulting NIZK argument (similar to Lemma 3.2
in [1]), we know that the modified ID protocol has special soundness and unique
responses. Then, by Theorem 25 in [18], it is a quantum argument of knowledge.
Moreover, since the modified protocol has λ bits of min-entropy, from Theorem
22 of [18], this shows that the CSI-SharK obtained via Fiat–Shamir is sEUF-
CMA in the QROM. ⊓⊔

B.3 Proof of Theorem 3.3

Proof. We show the proof for the General case. The Special case is analogous.

Correctness. An honest prover knows a secret s such that F ′
0 = [s]F0, and

E′
i = [cis]Ei for all i = 1, · · · , j and {c1 = 1, c2, · · · , cj}. If c = 0, then the

honest verifier checks whether [r]F0 = F̂0 and [cir]Ei = Êi for all i, and {c1 =
1, c2, · · · , cj}. Since [r]F0 = [b]F0 and [cir]Ei = [cib]Ei and this is equal to F̂0

and Êi for all i and {c1 = 1, c2, · · · , cj}, then the verifier accepts. If c = 1,

then honest verifier checks whether [r]F ′
0 = F̂0 and [r]E′

i = Êi for all i and
{c1 = 1, c2, · · · , cj}. Since [r]F ′

0 = [b−s]F ′
0 = [b−s] ([s]F0) = [b]F0 and [cir]E′

i =

[ci(b− s)]E′
i = [cib− cis] ([cis]Ei) = [cib]Ei and this is equal to Êi for all i and

{c1 = 1, c2, · · · , cj}, the verifier accepts. This shows that an honestly generated
proof is always accepted by an honest verifier.

Special Soundness. Given two accepting transcripts π = ((F̂0, Ê1, . . . , Êj), d, r)

and π′ = ((F̂0, Ê1, . . . , Êj), d
′, r′) of the protocol obtained by rewinding, where

d ̸= d′, and hence r ̸= r′ (unless s = 0), we can construct an efficient extraction
algorithm for the witness s as follows. We conclude that

[r]F0 = F̂0 ∧ [cir]Ei = Êi ∧ [r′]F ′
0 = F̂0 ∧ [cir

′]E′
i = Êi,

for all i ∈ {1, . . . , j}, and {c1 = 1, c2, · · · , cj−1}. This implies that we have
F ′
0 = [−r′]([r]F0) = [r − r′]F0 and E′

i = [−cir′]([cir′]E′
i) = [−cir′]([cir]Ei) =

[ci(r − r′)]Ei for all i, and therefore that cis = ci(r − r′) for all i and {c1 =
1, c2, c3, · · · , cj}. Therefore from the first equation and the fact that c1 = 1,
then we conclude that s = r − r′.

Honest Verifier Zero-Knowledge (HVZK). To prove the HVZK, we construct a
simulator that given {c1 = 1, c2, · · · , cj} and the honestly generated challenge
d, which is sampled at random from {0, 1} for the General case (from {−1, 0, 1}
in the Special case), simulates the transcript of the protocol. To this end, the
simulator first samples r at random from ZN , then sets

- F̂0 = [r]F0 and Êi = [cir]Ei if d = 0,
- F̂0 = [r]F ′

0 and Êi = [cir]E′
i if d = 1,

- F̂0 = [r]F ′
0
t and Êi = [cir]E′

i
t if d = −1.
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The functionality works with parties P1, . . . , Pn, where Pl is honest as follows:

KeyGen: Upon receiving (ZN , E0, k − 1, Init) from all parties:
1. The functionality receives shares ai,j ∈ ZN with i = 1, . . . , k−1 and j ∈ [n]\l

from the adversary.
2. The functionality samples random s1, . . . , sk−1 ← ZN and then sets

s1,l := s1 −
∑
i ̸=l

s1,i, . . . , sk−1,l := sk−1 −
∑
i̸=l

sk−1,i

as the shares of the honest party.
3. The functionality then computes E1 := [s1]E0, · · · , Ek−1 := [sk−1]E0 and

sends them to the adversary and waits for an input from the adversary.
4. If the input is abort then abort execution. Otherwise send the public keys

to the honest party.

Fig. 18. Distributed key generation functionality for Sashimi: FDKG

When the input to the proof is from Lj , then the simulation is perfect. If it
is not the case, then the commitments also look like they come from a uniform
distribution, as they are deterministic functions of r, which is uniform. Therefore
it is computationally hard for an adversary to distinguish an honestly generated
proof from a simulated proof, and the argument is computationally HVZK. ⊓⊔

B.4 Security Proof of the Key Generation in Full-threshold Sashimi

The proof is analogous to the one in Section 4.2 of [12], but for the special case
of full-threshold. In Figure 18, we define the functionality FDKG. The function-
ality works with n parties according to a full-threshold access structure. The
functionality takes (n− 1) · (k− 1) adversarial shares, completes them to get an
additive share of random elements s1, . . . , sk−1 and outputs the public key for
CSI-FiSh consisting of the elements E1 = [s1]E0, . . . , [sk−1]E0.

Then we prove the following theorem.

Theorem B.1. The protocol in Figure 9 securely implements the functional-
ity FDKG (defined in Figure 18) in the FCommit-hybrid model against an active
adversary corrupting up to n− 1 parties.

KeyGen Simulation: Let Pl be the honest party. A and S engage in an execu-
tion of the full-threshold k-MT-GAIP distributed key generation protocol (given
in Figure 9).

In the commit phase each party needs to commit with FComm to the elliptic
curves holding its secret shares of s1, . . . , sk−1 and the associated proofs. The
simulator, which does not have the shares of Pl, commits with FPl

Commit to ar-
bitrary inputs, instead of committing to E1,Pl

, . . . , Ek−1,Pl
and the associated

proofs of knowledge. When later it is asked to open this, it will simply equivo-
cate the commitment so that it can be opened to the correct elliptic curves and
proofs that it is able to compute after extracting the adversarial shares.
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From the π1
Pi

, given in the commit phase, S is able to extract the values
si,j entered by A in the first round of proofs. The extracted values si,j are now
passed to the functionality FDKG, which completes them to a valid set of shares
of the secret and returns the corresponding public key E1 = [s1]E0, . . . , Ek−1 =
[sk−1]E0 to the simulator.

At this point, S has all the adversarial shares and the public key. However,
the honest shares s1,l, . . . , sk−1,l are unknown to S. Even though it does not
have the honest shares, it can equivocate the commitment FCommit so that it can
be opened to

E1,Pl
:=

[
−
∑

i ̸=l s1,i

]
E1, . . . , Ek−1,Pl

:=
[
−
∑

i ̸=l sk−1,i

]
Ek−1

and the associated simulated proofs, which the simulator can compute as it has
the correct statement.

The commitments can now be opened. Now A and S proceed with the round-
robin protocol for computing the public keys as in step 8 of Figure 9.

When it comes the turn of party Pl, the curves it gets from party Pl−1 are

El−1
1 =

[∑l−1
i=1 s1,i

]
E0, . . . , E

l−1
k−1 =

[∑l−1
i=1 sk−1,i

]
E0

The simulator will then output the curves

El
1 =

[
−
∑n

i=l+1 s1,i
]
E1, . . . , E

l
k−1 =

[
−
∑n

i=l+1 sk−1,i

]
Ek−1

and the associated ZK proof can hence be simulated as well. At the end of the
round robin protocol, the parties output the correct public key E1, . . . , Ek−1.

If A deviates from the protocol in any way, this is caught be the ZK proofs
π2
i and S will be able to abort. Thus the protocol, assuming no abort occurs,

will output the same public keys as provided by the ideal functionality.

B.5 Security Proofs of the Full-TSS Scheme

We prove the security of our Full-TSS presented in Figure 16 against an active,
static adversary, controlling up to n − 1 parties. Having a full-threshold access
structure we assume that the only honest party is party Pj . Since we are in
the dishonest majority setting, we are only able to prove security with aborts,
which means that if the parties detect an anomaly, then they decide to abort
the protocol.

The proof is based on the simulation paradigm. Specifically, we define an
ideal functionality FDist−CSI−SharK which represents an ideal execution of the
distributed key generation and signing algorithm, which takes the inputs from
the adversary and the honest party and returns the signature. This is opposed to
the real world protocol in Figure 16 where the adversary interacts with the honest
party. To prove security we show that there exists an efficient simulator S that
impersonates the honest party in the ideal execution with the functionality such
that the adversary cannot tell if it is interacting with the real party in the real
protocol or with the simulator in the ideal world. In other words, the simulator
needs to make the transcripts of its interaction with the adversary in the ideal
world indistinguishable from the transcripts coming from the interaction between
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The functionality works with parties P1, . . . , Pn as follows:

KeyGen: Upon receiving (ZN , E0,Ck−1, Init) from all parties:
1. The functionality samples a random a ← ZN and then computes

the structured public key with k − 1 curves as E1 := [a]E0, E2 :=
[c2a]E0, · · · , Ek−1 := [ck−1a]E0.

2. The adversary enters shares a1, . . . , aĵ , . . . , an.
3. The functionality completes the adversarial shares with an honest share aj .

Specifically, it computes aj := a−
∑

i ̸=j ai.
4. The functionality sends E1, . . . , Ek−1 to the adversary and waits for input

from the adversary. If the input is abort then aborts execution. Otherwise
sends the public keys to the honest party along with the honest share of the
secret key and stores (ZN , E0,Ck−1, Init; a) internally.

Sign: On input a message m from all parties, the functionality proceeds as follows:
1. The functionality waits for an input from the adversary.
2. If the input is not abort then the functionality generates a signature σ on

the message m as in a normal CSI-SharK signature using the information
in (ZN , E0,Ck−1, Init; a).

3. The signature is returned to the adversary, and the functionality again waits
for input. If the input is again not abort then the functionality returns σ to
the honest players.

Fig. 19. Distributed Signature Functionality: FDist−CSI−SharK

the adversary and Pj in the real protocol. In order to do so, the simulator needs
to extrqct the adversarial inputs so as to query the ideal functionality on them
and get the correct result, from which it can fake the messages of the honest
party. This is done via the extraction algorithms built in the proof of special
soundness of the ZK arguments, that requires rewinding the adversary.

In Figure 19, we define the functionality FDist−CSI−SharK. The functionality
works with n parties and consists of two sub-functionalities for the key generation
and signing. Then we prove the following theorem.

Theorem B.2. The protocols in figures 12 and 16 securely implements the
functionality FDist−CSI−SharK (defined in Figure 19) in the fCommit-hybrid model
against an active adversary corrupting up to n− 1 parties.

KeyGen Simulation: Let Pj is the honest party.A and S engage in an execution
of the full-threshold Ck-VPwAI generation protocol (given in Figure 12). As each
party needs to commit to its secret share of s, the simulator commits to a random
share s∗j , say E∗

Pj
= [s∗j ]E0, produces a simulated proof and then commits to the

curve and proof using the commitment scheme. If later it is asked to open this,
it will simply equivocate the commitment so that it can be opened to the correct
elliptic curve and proof that it is able to compute using the adversarial shares.
From the π1

Pi
, given in the commit phase, S is able to extract the values si

entered by A in the first round of proofs. The extracted values si are now passed
to the functionality, which completes them to a valid set of shares of the secret
and returns the corresponding public key E0, E1 = [s]E0, . . . , Ek−1 = [ck−1s]E0.
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At this point, S has all the adversarial shares and the public key. The honest
share sj is unknown to S. Even though it does not have the honest share, it can
fake the commitment by setting

EPj :=
[
−
∑

i ̸=j si

]
E1

which it can do by using the public key it got from the functionality and the
adversarial shares that it got from the PoKs. Having E0 and EPj

, S can simu-

late the corresponding proof. It then commits to this proof using FPj

Commit. The
commitments can now be opened. Now A and S proceed with the round-robin
protocol for computing the public keys as in step 8 of Figure 12. All steps for
honest players can be simulated exactly by following the real protocol, except
that for the party Pj which holds the unknown share sj . The input to this party
in execution j will be

Ej−1
1 =

[∑j−1
i=1 si

]
E0, . . . , E

j−1
k−1 =

[∑j−1
i=1 ck−1si

]
E0

while the output needs to be

Ej
1 =

[
−
∑n

i=j+1 si

]
E1, . . . , E

j
k−1 =

[
−
∑n

i=j+1 ck−1si

]
Ek−1

so as to create the correct output public keys E1, . . . , Ek−1. The curves Ej
1, . . . , E

j
k−1

can thus be computed by S like it did for computing EPj and the associated ZK
proof can hence be simulated as well. If A deviates from the protocol in any way,
this is caught be the ZK proofs and S will be able to abort. Thus the protocol,
assuming no abort occurs, will output the same public keys as provided by the
ideal functionality.

Sign Simulation: The signing simulation is roughly the same as the key gen-
eration simulation. The adversarial inputs can be derived from the initial com-
mitments in the full-threshold k-MT-GAIP generation protocol in Figure 9, for
k = 2. In our simulation of full-threshold 2-MT-GAIP generation protocol the
value bj is unknown and ‘fixed’ by the implicit equation given by the signature
(r, cd) returned by the functionality which gives us E′ = [b]E0 = [r]Ecd .

The final part of the signature which needs to be simulated is the output of
rj . We know what A should output and hence can define rj = r−

∑
i ̸=j ri. If A

deviates from the protocol in the final step and uses an invalid value of ri, then
the adversary will learn the signature, but the honest players will abort; which
is exactly the behaviour required by the ideal functionality. ⊓⊔

B.6 Proof of Theorem 5.2

Proof. This proof closely follows the proof of Theorem 3 in [2], which proves
the consistency and secrecy of the original CSI-RAShi scheme. The authors of [2]
reduce consistency to the soundness of both the PVP and of the NIZK for j = 1,
while secrecy follows from the zero-knowledge property of the PVP and the NIZK
for j = 1, as well as from the decisional GAIP assumption (Definition 2.2).
The decisional GAIP is needed in the simulation-based proof to ensure that the
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adversary cannot distinguish between the real and simulated transcripts. While
we are leaving the PVP unchanged, we use the NIZK for the case j = k − 1,
so we have to adapt the proof accordingly. To this end, we can readily use the
results from Theorem 3.3, which implies these properties. By further assuming
the Ck−1-Decisional GAIP, we can also ensure the indistinguishability of the real
and simulated transcripts. ⊓⊔
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