
Hardware Implementation of SpoC-128

Compliant with George Mason University’s LWC API

Ambati Sathvik1, Tirunagari Rahul1, Anubhab Baksi2, and Vikramkumar Pudi1

1 Indian Institute of Technology Tirupati, Andhra Pradesh, India
2 Nanyang Technological University, Singapore

ee17b002@iittp.ac.in, ee17b030@iittp.ac.in, anubhab001@e.ntu.edu.sg, vikram@iittp.ac.in

Abstract. In this work, we present a hardware implementation of the lightweight Authenticated
Encryption with Associated Data (AEAD) SpoC-128. Designed by AlTawy, Gong, He, Jha, Mandal,
Nandi and Rohit; SpoC-128 was submitted to the Lightweight Cryptography (LWC) competition
being organised by the National Institute of Standards and Technology (NIST) of the United States
Department of Commerce. Our implementation follows the Application Programming Interface (API)
specified by the cryptographic engineering research group in the George Mason University (GMU). The
source codes are available over the public internet as an open-source project.

Keywords: lightweight cryptography · spoc-128 · hardware implementation · api compliance

1 Introduction

Lightweight cryptography is among the recent trends in the community. The objective of this is to design new
primitives with low device footprint or find optimised device implementation of an existing primitive. To boost
up research-and-development in this area, currently a competition named the “Lightweight Cryptography”1

(LWC) is being organised by the National Institute of Standards and Technology (NIST). This competition
is for the so-called Authenticated Encryption with Associated Data (AEAD) [3] schemes; which offer
authenticity and privacy for a given plaintext, and authenticity for a given associated data.

To state more formally, given a message plaintext and an associated data; such a scheme encrypts the
plaintext and generates a tag that takes both the plaintext and the associated data as inputs. The sender
(Alice), after generating the ciphertext and the tag, sends over along with the associated data through an
insecure channel (where the attacker, Eve, is active) to the recipient (Bob). Upon receiving, Bob recreates
the plaintext and the tag. If both the tags match, then the received ciphertext and the associated data are
considered not perturbed by Eve. Otherwise, Bob decides the received data are disturbed; in which case, he
generates an invalid signal and follows the recovery procedure (typically discards the received data).

Given the fundamental aspect of the lightweight cryptography is to reduce the cost of device imple-
mentation, there is a body of research dedicated to find optimised implementation. Overall, this can be
classified into software and hardware categories. Our target here is limited to hardware implementation only.
Dedicated research works attempting to find optimised hardware implementation of lightweight ciphers have
been reported earlier, for instance, one may refer to [2, 5].

Contribution

While (at least) one hardware implementation (together with a benchmark) is almost an integral part of a
lightweight cipher design, we observe some of the ciphers in LWC are missing any viable implementation.
Here we pick the cipher SpoC-128, which is a primary recommendation (along with SpoC-64) in the SpoC
family2 [1]. There is a third-party open-source implementation of SpoC-643, which serves as the stepping
stone in our implementation.

All the source codes, along with Vivado project files and stuffs, can be accessed in the public repository4 as
an open-source project. At the same time, the researchers from the cryptographic engineering Research group
in the George Mason University (GMU); under the “ATHENa: Automated Tools for Hardware EvaluatioN”5

project; have specified a standardised Application Programming Interface (API) in order to make hardware
benchmark fair, comprehensive and homogeneous. Our implementation is compliant with this API. This is
the first (and so far only) hardware implementation of SpoC-128, to the best of our knowledge.

1https://csrc.nist.gov/Projects/Lightweight-Cryptography.
2The cipher is eventually not selected in the final round of the LWC competition.
3https://github.com/vtsal/spoc_lwc.
4 https://github.com/T-Rahul/SpoC_128 .
5Website: https://cryptography.gmu.edu/athena/index.php.

https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://github.com/vtsal/spoc_lwc
https://github.com/T-Rahul/SpoC_128
https://cryptography.gmu.edu/athena/index.php

2

2 Description

SpoC-64 and SpoC-128 are the two member of the SpoC family [1], 64 and 128 are the rates at which
information is fed and processed, both of them require 128 bit key and nonce. SpoC-128 is has a 256-bit
state and generates 128-bit tag.

S0 S1 S2 S3

S0’ S1’ S2’ S3’

SB SB
��� ���

��� ���

input state

output state

Fig. 1: sLiSCP-light (step) permutation

sLiSCP-light (step) permutation diffuses the information across the state as shown in Figure 1. The
Simeck box (SB) is illustrated in Figure 2. The constants rca, rcb, sca, scb are provided in [1], hence omitted
here for the interest of brevity. The state is represented as S0||S1||S2||S3; where each Si, 0 ď i ď 3, is a
64-bit sub-state.

The state is initialised from 128-bit key (split as K0||K1) and nonce N0||N1, as N0||K0||N1||K1. As only
128-bit data can only be introduced into the state, associated data and plaintext are split into 128-bit blocks
and the final block is padded (if necessary).

Control bits pc3||c2||c1||c0q differentiate the complete and partial blocks, AD, plaintext and tag operations.
The most significant bit c3 is 1 during tag generation only. The bits c2 and c1 correspond to plaintext (also
referred as message block) and associated data and are 1 during their processes respectively.

64 64 64 64
Sb1 Sb2 Sb3 Sb8

64 64

64 A||B C||A 64

...
��� ��� ���

�������� || ��� || ��� || ... || ���

���

SB

>> 5

>> 1

A C

Pad
��

���������B

Sb

Concatenation

Bit-wise AND

Bit-wise XOR

Equal split

Fig. 2: Simeck box (SB) and Sub-Simeck box (Sb)

Processing associated data of length adlen starts with splitting AD into blocks of 128-bits (starting from
MSB). If required, the last block is padded with 1||0p, p “ adlen pmod 128q ´ 1 and the further process is
described in Figure 3.

Plaintext during encryption and ciphertext during decryption of length pclen, is padded (if required)
and split into 128-bit blocks. During encryption, the input message block M i is further split into 64-bit

3

step
permutation

input state

output state

Associated data block

ctrl || 028

S0 S1 S2 S3 S0’ S1’

AD0i AD1i

S2’ S3’

S0’’ S1’’ S2’ S3’’

AD0i

AD1i

ADi

Fig. 3: Processing associated data

halves M i
0,M

i
1 and XORed with appropriate sub-states S1

1 and S1
2. During the decryption process, the input

ciphertext block CT i is XORed with sub-states Si
0||Si

2 and the obtained plaintext block M i is split and the
successive steps are same as encryption.

step
permutation

input state

output state

Message block

ctrl || 028

S0 S1 S2 S3 S0’ S1’

M0 i M1 i

S2’ S3’

S0’’ S1’’ S2’ S3’’

M0 i

M1 i

M i

M i

CT i

Ciphertext block

Fig. 4: Processing plaintext during encryption

The output state of plaintext process is XORed with ctrl||0252 and step permutation is performed. The
sub-states S1||S3 of the resulting state make up the 128-bit tag.

3 Hardware Configuration (LWC API by GMU)

As mentioned, the LWC API is a standardised interface specified by researchers (mostly) from GMU; which
is used to implement authenticated ciphers efficiently with several constraints like permitted widths of input,
output ports, single clock throughout the core6.

˛ PreProcessor is the unit responsible for passing input blocks to the CryptoCore and records the remaining
blocks, thereby specifying the type of input data (AD, PT/CT) and their nature (partial or not) through
bdi type signal.

˛ CryptoCore depends on the cipher, so, this unit performs padding, processes blocks of input data, provides
CT and tag during encryption, PT and verification signal during decryption.

‚ Controller mainly commands the stages of algorithm (reset, key stage, npub stage, initialisation,
processing AD blocks, processing PT/CT blocks, pre-tag stage, finish tag) by instructing enable
signals accordingly.

‚ Datapath is solely dependent on cipher, this module directly collects pdi and sdi data from PrePro-
cessor and yields the output ciphertext, tag and passes to PostProcessor.

˛ PostProcessor takes care of invalid bytes of output words, and functions with respect to message
authentication signal.

The input data are categorised as secret data input (sdi) and public data input (pdi). The secret key
enters through sdi, and nonce, AD, PT/CT, and tag are passed through pdi and block data input (bdi).
General signals that make up the LWC core are explained below:

6API homepage: https://cryptography.gmu.edu/athena/index.php?id=LWC.

https://cryptography.gmu.edu/athena/index.php?id=LWC

4 OM

sdi_data
32
/

sdi_valid

sdi_ready

pdi_data
32
/

32
/

32
 /

32
 /

32
 /

 4
 /

 4
 /

 4
 /

 3
 /

 2

/
 2

/

 2

/

pdi_valid

pdi_ready

do_data

do_valid

do_ready

bdi
key

key_valid
key_ready

key_update

bdi_valid
bdi_ready

bdi_type
bdi_eot
bdi_eoi

bdi_valid_bytes
bdi_pad_loc

bdo_valid_bytes
end_of_block

bdi_size

bdo_valid
bdo_ready

bdo
msg_auth

msg_auth_valid

decrypt

msg_auth_ready

Pre
Processor

Controller

Datapath

CryptoCore
LWC

Post
Processor

pe
rm

_d
on

e

tru
nc

_c
om

pl
et

e

bd
o_

ct
r

bd
i_

ct
r

in
it_

tru
nc

lo
ck

_t
ag

_s
ta

te
se

l_
ta

g

st
ar

t

in
it_

lo
ck

in
it_

st
at

e

cl
r_

bd
i

en
ab

le
s

ct
rl_

w
or

d
de

cr
yp

t_
re

g

bd
i_

pa
rti

al
_r

eg

Fig. 5: Top level block diagram of LWC core

˛ bdi, sdi signals are of width 32 bits (4 bytes) carrying input data as mentioned above.
˛ bdi valid, sdi valid specify the instants when input is fed. bdi valid bytes of size, bdi size/8

specifies the valid bytes of present input block. The signal is 1110, if 24 bits (first 3 bytes) of the current
block (maximum of 4 bytes) are valid.

˛ bdi size conveys the size of valid bytes in the current 32-bit block.
˛ bdi pad loc commands the padding by providing the starting location to pad. The size of this signal
is same as that of bdi vali bytes. The signal is 0001 for the above example, so that the last byte is
padded according to the cipher. For complete block inputs, bdi valid bytes is 1111 and bdi pad loc

is 0000.
˛ bdi ready, sdi ready indicate that the module is prepared to take inputs.
˛ bdi type, a 4-bit encoded representation identifies bdi data as nonce, AD, PT/CT, and tag.
˛ bdi eot intimates the end of type that is being sent. This signal is reset by default, is set high to specify
the last block of current input type. This signal is 1, only during the last blocks of nonce, AD and PT.

˛ bdi eoi is set high to specify the last block of overall inputs. For example, if there exist no associated
data and plaintext during encryption process, bdi eoi is high at the last block of nonce itself, so that,
the tag generation process is started.

Signals that are specific to SpoC-128 are explained below:

˛ enables is set of enable key, enable npub, enable bdi, enable state, and enable cumulative size signals
which activates the corresponding activities.

˛ decrypt, decrypt reg is low during the process of encryption and are high during decryption.
˛ As the key, npub sizes are of known sizes and are mandatory, these inputs can be automatically identified.

So, ctrl word (2 bits) indicate AD with 01 and PT/CT with 10, this representation simplifies the 4-bit
control code used later, within the SpoC-128.

˛ bdi ctr holds the number of 32-bit turns taken to process one 128-bit input block of AD/PT/CT.
Similarly, cum size holds the number of bytes, so, it is of logp128{8q bits.

˛ Initialisation stage is signalled by setting init state and init lock to 1.
˛ The step permutation of SpoC-128, consisting 18 rounds, is commenced by exciting start signal once.
Datapath module, after the completion of 18 rounds, sets perm done to high.

˛ The controller indicates truncation of partial blocks through init trunc. Datapath replies the accom-
plishment of the task through trunc complete signal.

˛ The tag process state is specified by setting lock tag state to 1, and sel tag “ 1 extracts tag through
bdo port.

4 Result and Discussion

Our study resulted in a tangible output as we have developed a hardware code capable of implementing
the discussed AE algorithms. The 1, 088 test vectors (comprising several combinations of associated data

5

and plaintext, for fixed 128-bit key and nonce) of SpoC-128 provided with the official C code7 were passed
successfully by our hardware description code. The properties of ZYNQ-7 ZC702 evaluation board for the
proposed HDL code are indicated in Tables 1, 2 and 3.

Table 1: Cryptocore components (ZYNQ-7 FPGA)

Module Component Size Quantity

Controller
Adders

2-input, 5-bit 1
2-input, 2-bit 3

Registers 1-bit 11
MUXes 2-input, 1-bit 1020

Datapath

Adders 2-input, 5-bit 3
XORs 2-input, 1-bit 261

Registers 1-bit 391
MUXes 2-input, 1-bit 3860
LUTs 32 ˆ 8 4

Table 2: Resource utilisation of SpoC-128 (ZYNQ-7 FPGA)

Component type Available Used Utilised (%)

Slice LUTs 53200 2711 5.09

Flip-flops 106400 919 0.86

Bonded IOBs 200 105 52.50

Table 3: Primitives utilisation of SpoC-128 (ZYNQ-7 FPGA)

Ref Name Used Functional Category

LUT6 1412 LUT

FDRE 899 Flop & Latch

LUT5 669 LUT

LUT2 432 LUT

LUT3 349 LUT

LUT4 150 LUT

IBUF 69 IO

OBUF 36 IO

RAMD32 30 Distributed Memory

CARRY4 24 CarryLogic

FDSE 20 Flop & Latch

RAMS32 10 Distributed Memory

LUT1 8 LUT

BUFG 1 Clock

Various flowcharts for Controller can be found in Figures 6, 7, 8 and 9. The Controller starts in RESET ST

(reset state). The CryptoCore module allows only 32 bits for input and output. So, the key through sdi and
then nonce through bdi are obtained in 4 cycles each, and the state gets loaded. Now, the Controller reaches
INIT ST as shown in flowchart of Figure 6.

Controller then proceeds to PROC ST and rests in STORE PROC ST till the sLiSCP-light (step) permutation
is performed as shown in Figure 7.

Each AD block is loaded in 4 cycles and then undergoes step permutation, and Controller finally
reaches to FINISH PROC ST. After AD processing is finished, as bdi type reg is not 1 (NOT AD), it goes
to WRITE PTCT ST to process plaintext or ciphertext. Figure 8 shows that the Controller directly reaches
PRE TAG ST in case there is no PT/CT.If PT/CT is available, the complete blocks are processed and then

7https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/

submissions-rnd2/spoc.zip

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/submissions-rnd2/spoc.zip
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/submissions-rnd2/spoc.zip

6

outputs the CT/PT block through bdo in 4 cycles. However, if the last PT/CT block is partial, after zero-
padding and the step permutation, the produced CT/PT block is truncated with the help of cum size signal
and the obtained output is passed through bdo in appropriate number of cycles (for example, 72-bit block
requires 3 cycles). The Controller then reaches PRE TAG ST.

In encryption mode, the Controller goes to FINISH TAG ST, then the tag gets generated and is passed
through bdo in 4 cycles. In decryption mode, the tag is generated before the Controller reaches FINISH TAG ST

and then the tag is verified. After this process, Controller again gets back to RESET ST as in Figure 9.

5 Conclusion

We present a hardware implementation of the lightweight AEAD SpoC-128 which is compliant with the
API designed by the researchers from GMU. Our work is the first implementation of the API complaint
hardware (and it is not generated by high level synthesis) SpoC-128. It is featured in [4] unded the name
“SpoC IIT” with the design group name as “VLSI Group, IIT Tirupati”. Our work will hopefully further
help the community in making the hardware implementation/fair benchmark for lightweight ciphers in the
coming future.

References

1. AlTawy, R., Gong, G., He, M., Jha, A., Mandal, K., Nandi, M., Rohit, R.: Spoc: An authenticated cipher.
Submission to NIST LWC Standardization Process (Round 2) (2019), https://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf 1, 2

2. Baksi, A., Pudi, V., Mandal, S., Chattopadhyay, A.: Lightweight ASIC implementation of AEGIS-128. In: 2018
IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2018, Hong Kong, China, July 8-11, 2018. pp.
251–256. IEEE Computer Society (2018), https://doi.org/10.1109/ISVLSI.2018.00054 1

3. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and analysis of the generic
composition paradigm. IACR Cryptology ePrint Archive 2000, 25 (2000), http://eprint.iacr.org/2000/025 1

4. Mohajerani, K., Haeussler, R., Nagpal, R., Farahmand, F., Abdulgadir, A., Kaps, J.P., Gaj, K.: FPGA benchmarking
of round 2 candidates in the nist lightweight cryptography standardization process: Methodology, metrics, tools,
and results. Tech. rep. (2020), https://eprint.iacr.org/2020/1207 6

5. Sönnerup, J., Hell, M., Sönnerup, M., Khattar, R.: Efficient hardware implementations of grain-128aead. In: Hao,
F., Ruj, S., Gupta, S.S. (eds.) Progress in Cryptology - INDOCRYPT 2019 - 20th International Conference on
Cryptology in India, Hyderabad, India, December 15-18, 2019, Proceedings. Lecture Notes in Computer Science,
vol. 11898, pp. 495–513. Springer (2019), https://doi.org/10.1007/978-3-030-35423-7_25 1

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf
https://doi.org/10.1109/ISVLSI.2018.00054
http://eprint.iacr.org/2000/025
https://eprint.iacr.org/2020/1207
https://doi.org/10.1007/978-3-030-35423-7_25

7

CHECK_KEY_ST

key_update==1

key_valid==1

LOAD_KEY_ST

Yes

No

bdi_valid==1

LOAD_NPUB_ST

Yes

Yes

No

No

key_valid==1

ld_ctr ==
KEYWORDS-1

Yes

key_ready <= 1;
en_key <= 1;

No

Yes

clr_ld_ctr <= 1;

en_ld_ctr <= 1;No

bdi_valid==1

No

en_npub <= 1;
bdi_ready <= 1;

Yes

en_decrypt_reg <= 1;
clr_ld_ctr <= 1;

ld_ctr ==
KEYWORDS-1 ld_ctr ==

NPUB_WORDS-1

Yes

INIT_ST

bdi_eoi == 1

set_eoi_flag <= 1;

Yes

No en_ld_ctr <= 1;

LOAD_NPUB_ST

clr_bdi <= 1;
en_bdi <= 1;
en_cum_size <= 1;
init_trunc <= 1;
clr_ld_ctr <= 1;
reset_eoi_flag <= 1;
reset_eot_flag <= 1;
reset_bdi_ctr <= 1;
reset_bdo_ctr <= 1;
store_bdi_partial <= 1;

RESET_ST

Fig. 6: Controller reaching initialisation from reset

8

FINISH_INIT_ST

init_lock <= 1;
en_state <= 1

eoi_flag == 1

PRE_TAG_ST

UPDATE_ST
start <= 1;

reset_eot_flag <= 1;

No

INIT_ST PROC_ST

eoi_flag == 1

Yes bdi_valid == 1

Yes

en_bdi <= 1;
en_cum_size <= 1;

bdi_ready <= 1;
store_bdi_type <= 1;

store_bdi_partial <= 1;

bdi_eot == 1

Yes

set_eot_flag <= 1;

bdi_ctr == 3

No

STORE_PROC_ST

Yes

bdi_eot == 1

Yes

bdi_eoi == 1

Yes

set_eot_flag <= 1;

STORE_PROC_ST

No

en_bdi_ctr <= 1;No

perm_done == 1

FINISH_PROC_ST

Yes

No

bdi_type_reg
== 1

en_state <= 1;
reset_bdi_ctr <= 1;
ctrl_word <= 2'b01;

clr_bdi <= 1;
init_trunc <= 1;

en_cum_size <= 1;

eoi_flag == 1

PRE_TAG_ST

Yes

reset_eot_flag <= 1;No

WRITE_PTCT_ST

Yes

No

Yes

No

Fig. 7: Initialised state processing with AD

9

FINISH_INIT_ST

bdo_ready
== 1

bdo_valid <= 1;

bdo_ctr == bdi_ctr

Yes

Yes

No

WRITE_PTCT_ST

trunc_complete
== 1

No en_trunc <= 1;

reset_bdo_ctr <= 1;
ctrl_word <= 2'b10;

en_state <= 1;
clr_bdi <= 1;

init_trunc <= 1;
en_cum_size <= 1;

eot_flag == 1

end_of_block <= 1;

Yes

en_bdo_ctr <= 1;No

Yes

PRE_TAG_ST

eoi_flag == 1No

Yes

reset_bdi_ctr <= 1;No UPDATE_ST

Fig. 8: Updated state processing with PT/CT

PRE_TAG_ST

lock_tag_state <= 1;
en_state <= 1;

TAG_ST

start <= 1;

decrypt_reg
== 1

reset_bdi_ctr <= 1;

Yes

LD_EXP_TAG_ST

STORE_TAG_ST

No

en_bdi <= 1;
bdi_ready <= 1;

bdi_valid
== 1

Yes

reset_bdi_ctr <= 1;

bdi_ctr == 3

Yes

en_bdi_ctr <= 1;No

No

perm_done
== 1

FINISH_TAG_ST

No

Yes

decrypt_reg
== 1

msg_auth_ready
== 1

Yes

bdo_ready
== 1

No

msg_auth_valid <= 1;

Yes

RESET_ST

No

sel_tag <= 1;
bdo_valid <= 1;

Yes

bdo_ctr == 3

reset_bdo_ctr <= 1;
end_of_block <= 1;

Yes

en_bdo_ctr <= 1;No

No

Fig. 9: Tag generation and Controller reaching reset state

	Hardware Implementation of SpoC-128

