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Abstract. Several broadcast encryption (BE) constructions have been
proposed since Fiat and Naor introduced the concept, some achieving
short parameters size while others achieve better security. Since 1994,
a lot of alternatives to BE have moreover been additionally proposed,
such as the broadcast and trace (BT) primitive which is a combination
of broadcast encryption and traitor tracing. Among the other variants
of BE, the notion of augmented BE (AugBE), introduced by Boneh and
Waters in 2006, corresponds to a BE scheme with the particularity that
the encryption algorithm takes an index as an additional parameter. If
an AugBE scheme is both message and index hiding, it has been proved
that it can generically be used to construct a secure BT scheme. Hence,
any new result related to the former gives an improvement to the latter.
In this paper, we first show that both BE and AugBE can be obtained
by using an identity-based encryption scheme with wildcard (WIBE).
We also introduce the new notion of anonymous AugBE, where the used
users set is hidden, and prove that it implies index hiding. We then
provide two different WIBE constructions. The first one has constant
size ciphertext and used to construct a new constant size ciphertext BE
scheme with adaptive CPA security, in the standard model (under the
SXDH assumption). The second WIBE provides pattern-hiding, a new
definition we introduced, and serves as a basis for the first anonymous
AugBE scheme (and subsequently a BT scheme since our scheme is also
index hiding by nature) in the literature, with adaptive security in the
standard model (under the XDLin assumption).

Keywords: Broadcast Encryption - Augmented Broadcast Encryption
- Identity Based Encryption with Wildcard - Broadcast and Trace - Pair-
ings.

1 Introduction

Broadcast Encryption. Broadcast Encryption (BE), defined by Fiat and Naor
[15], is a public key encryption scheme in which the encryption algorithm takes
as input the public key pk, a message m, a subset S C [N] of users (N being



the number of users in the system), and such that the output ciphertext can
be decrypted by any user in the subset S. Regarding related work, Boneh et
al. (8]) were the first to achieve constant size ciphertext (i.e., independent of
the number of users in the set), but the security was only selective and proven
in the generic group model. Recently, Agrawal et al. (3]) achieves constant size
parameters with a security proven in the standard model. But it is only selec-
tive secure and their scheme combines both pairings and lattices. Lastly, Gay et
al. (17]) proposes a scheme based on pairings with constant size ciphertext. As
far as we know, this is the only BE scheme with a constant-size ciphertext and
providing adaptive security in the standard model.

Augmented Broadcast Encryption. In 2006, Boneh and Waters [10] intro-
duced Augmented Broadcast Encryption (AugBE), in which the encryption al-
gorithm takes as additional input an index ind € [N +1]. As for any BE scheme,
the output ciphertext can be decrypted by any user in the subset S, but it is
additionally required that the user’s index is greater or equal to ind. In particu-
lar, if ind = N + 1, no one can decrypt. Regarding security, an AugBE scheme
should verify both some indistinguishability security (usually called message-
hiding in this context), and some index-hiding security to protect the index.
Both properties can be defined in a selective or in an adaptive way. The first
AugBE constructions [10, 16| give a ciphertext’s size in O(v/N). In [18], using
both pairings and lattices, Goyal et al. propose a selectively secure construction
with ciphertext size in O(N€) (0 < € < 1/2). Goyal et al. also propose in [19]
a generic construction of an AugBE based on Positional Witness Encryption
(PWE). Their scheme is the first one providing constant parameters. However,
currently only few instantiations of PWE exist and all rely on multilinear maps.

Broadcast and Trace. Another variant of BE is the Broadcast and Trace
(BT) primitive, i.e., the combination of BE and Traitor Tracing (a message is
encrypted for the whole subset [N] but if some subset of traitors uses their secret
keys to produce a pirate decoder, then the tracing procedure can identify at least
one of the traitors). In [10,19], it was demonstrated that a BT scheme can be
constructed from any message and index-hiding AugBE. As for traitor tracing,
BT schemes can achieve either public (anyone can find the traitors) or private
(traitors can only be retrieved by the owner of a specific master key) traceability,
and both cases are indeed useful for different kinds of use cases. Theoretically
speaking, public traceability is however known to be harder to achieve [9]. By
construction, the Boneh-Waters AugBE definition [10] gives a publicly traceable
BT scheme. Goyal et al.[18] have recently given another definition of AugBE that
is suitable for the private case, where two encryption algorithms called Encrypt
and Index-Encrypt need to be defined. Their resulting BT is based on pairings
and lattices, has ciphertext in O(N€), for 0 < e < 1/2, and is secretly trace-
able. In 2020, Zhandry [31] proposed a secretly traceable BT scheme based only
on pairings, that has constant size ciphertext, but is only secure in the generic
group model. To the best of our knowledge, it does not exist yet an efficient



AugBE/BT scheme which is adaptively secure in the standard model. In this
paper, we only focus on the Boneh-Waters’ AugBE definition, and thus public
traceability.

Our contributions. In this paper, our idea is to use identity based encryption
with wildcard (WIBE) [2] to construct BE schemes. In a WIBE scheme, private
keys and ciphertexts are created for vectors of size L (called patterns) over a set
U, which contains a wildcard symbol “x”. A message encrypted for a pattern P
can be decrypted by a secret key made for a pattern P’ such that P’ belongs to
P,ie. ifforalli € [L], P, =%or P, = PZ-/ . More precisely, we provide two main
contributions to broadcast encryption:

— we prove (Section 3.1) that WIBE can be used to construct BE schemes.
Then, any new result on WIBE directly gives an improvement in the BE
setting;

— we also prove (Section 3.2) that if WIBE satisfies some additional specific
security property it can be used to construct AugBE schemes.

As a complement to those two results, we additionally the following minor
contributions:

— we propose (Section 4) two new WIBE schemes, in the pairing setting and
proven adaptively secure in the standard model. The first one has constant
size ciphertext while the other achieves pattern hiding, the new property we
introduced;

— our first WIBE construction gives a constant-size ciphertext BE scheme with
adaptive security, proven in the standard model and using only pairings.
Compared to the only existing equivalent construction [17], ours does not
have constant size secret keys but has shorter public key (Table 1).

— our second WIBE construction gives us the first AugBE scheme, based on
pairings, which is adaptively secure in the standard model. Using the generic
transformation [10,19], this gives us a BT scheme with similar characteris-
tics. Compare to the state-of-the-art (Table 2), and especially Zhandry’s
BT scheme [31], we do not reach constant-size ciphertext, but we provide
the harder publicly traceable property (while Zhandry’s scheme is secretly
traceable), and we prove the security of our construction in the standard
model while Zhandry’s is only proven secure in the generic group model.

Details on our generic constructions. We first remark that any subset
S* C [N] can be represented as a pattern in P € {0,*}N, where for j € [1, NJ,
P; = x if j € S* and P; = 0 otherwise. This fact can then be used to associate
such pattern to the BE encryption set S. Additionally, any user identity ¢ € [N]
can be represented as a pattern P’ € {0, 1}N such that for j € [1, N], PJ? =1if

i1 =7 and Pj? = 0 otherwise. This finally gives us that i € S iff P’ belongs to P.
Regarding AugBE, we have noticed that the decrypting condition ¢ > ind for any
i € [N],ind € [N +1] can be rewritten as i € {ind,ind +1,--- , N + 1}. It follows
that the AugBE decrypting condition becomes i € SN{ind,ind+1,--- , N 4+ 1}.



Then, we can associate encryption and key patterns as for the BE scheme to build
our AugBE. From that, our generic constructions are then quite straightforward,
and the security also comes directly, assuming that the used WIBE is indistin-
guishable. But in order to obtain AugBE security, we need a WIBE scheme that
does not give information about the pattern used in encryption. For this purpose,
we introduce such definition that we call pattern-hiding, and which may be of
independent interest. We finally remark that using a pattern-hiding WIBE, we
additionally freely obtain for the AugBE that the used user set is hidden into the
ciphertext: this is the anonymity property, which has never been considered until
now for AugBE. Saying that, it remains us to build such (pattern-hiding) WIBE.

Details on our WIBE constructions. We started from the paper of Kim
et al. [21], who proposes a selectively secure WIBE scheme with constant size
ciphertext. We have first adapted it to our keys and ciphertexts patterns, and
using [20]’s idea to use composite order bilinear groups we obtained adaptive
security. Afterwards, we have moved it from a symmetric bilinear group setting
to an asymmetric prime order one, thanks to the combination of the work on
Dual Pairing Vector Spaces by Lewko [22] with the one of Chen et al. [14] *.
Our first scheme is then adaptively secure under the Symmetric External Diffie-
Hellman assumption. We have then modified this first scheme to achieve the
pattern-hiding property. Inspired by the work of [28] on attribute-hiding inner
product encryption scheme, we obtain a new WIBE scheme that is adaptively
pattern-hiding in the standard model, based on the External Decisional Linear
Assumption in G; and Gs. The idea is to use the orthogonality of dual pairing
vector spaces as follow: let B, B* be two dual orthonormal bases with L elements
in each. The secret key is computed using the elements of B* corresponding
to the positions where the associated pattern is equal to 1; the ciphertext is
computed using the elements of B corresponding to the positions where the as-
sociated pattern is equal to 0. If the secret key pattern belongs to the ciphertext
pattern, then the intersection of the two above sets is empty. Thus, thanks to
the orthogonality property the elements in the key and in the ciphertext will
cancel with each other. However, as we are using dual orthonormal bases of
size L, each element of the bases has size L which results in a scheme with lin-
ear (in the number of user in the scheme) ciphertext and secret keys, and with
quadratic public key (as we need to give the L elements of size L for encryption).
Also notice that now the target set is no longer given as an additional parameter.

Broadcast encryption efficiency comparison. In Table 1, we give a com-
parison between our BE scheme (taking the case L = N in the WIBE scheme of
Section 4.1) and existing BE schemes.

4 [5] proposed generic methods to transfer a composite order group scheme into a
prime order group scheme via computational pair encodings. We do not used this
method as the less general method of [22] and [14] is enough as we are considering
simple predicates and encodings.



Table 1. Broadcast Encryption comparison; “GGM”, “Sym” and “Asym” stand for
“Generic Group Model”, “Symmetric” and “Asymmetric” respectively. Here ¢ € N, such
that ¢ divides N.

Scheme Ipk| Iski| | |ct| | Security |Assumption| Model Settings
Section 4.1|  O(N) O(N) |O(1)|Adaptive] SXDH |Standard|Asym pairings

[3] O(N) O(X) |O(X)|Selective LWE, |Standard| Lattices
KOALA

[17] O(N?) O(1) |O(1)|Adaptive| k—Lin [Standard|Asym pairings

[13] O(t+ N/t)|O(N/t)|O(t)|Adaptive| k—Lin |Standard|Asym pairings

[8] O(N) O(1) |O(1)|Selective| N-BDHE | GGM | Sym pairings

Our scheme is not as efficient as [3]’s scheme, which is currently the most
efficient BE scheme in the literature. However, our scheme satisfies the stronger
adaptive security notion, and is proven secure under standard assumption. Com-
pare to the adaptively secure scheme given in [17], we have a bigger user secret
key (sk;) size, but a shorter public key (pk) size. To be exhaustive, [11] proposed
a scheme with all parameters in poly(log(V)), with adaptive security. However,
this scheme is using multilinear maps and its security is proven in the GGM.
[12] proposed a scheme with all parameters in poly(n,log(N)) using lattices, but
no security proof is given.

Augmented broadcast encryption and broadcast and trace efficiency
comparison. Using our generic construction and our WIBE instantiation from
section 4.2 with L = N we obtain an instantiation of AugBE. The resulting
scheme is the first proven adaptively secure in the standard model. Our scheme
can itself be turned into a BT scheme, using the generic construction given in [10,
19]. Table 2 gives a comparison between our resulting BT and existing ones.

Table 2. Broadcast and Trace schemes comparison; tk, “p.o”, “c.0”, “PWE”, “std”
“Multi”, “P” and “S” mean tracing key, “prime order” “composite order”, “Positional
Witness Encryption”, “standard”, “multilinear”, “public” and “secret respectively, 0 <

€<1/2.

Scheme Ipk| |sks| |ct| |Users set| Security |Model|tk Object
Section 4.2] O(N?) | O(N) | O(N) x  |Adaptive| Std |[P| Pairings p.o.
[31] O(N) | O(N) | O(1) | Given [Adaptive]GGM |S| Pairings p.o.
[18] Q(N) [ 2(N?) | O(N®) | Given [Selective|GGM|S |Pairing, lattices
P
P

[19] poly(1*)[poly(1*)[poly(1*)| Given [Adaptive| Multi PWE
[10] O(N)|O(N)|O(V/N)| Given |Adaptive|GGM Pairing c.o.

As we can see our scheme is the first BT scheme (as far as we know) that
does not need the description of the user sets to be able to decrypt, and that
has security proven in the standard model. Moreover, our scheme is publicly
traceable (known to be harder to achieve than private traceability), and uses
pairings in prime order group while other existing publicly traceable schemes
are using either pairings in composite order group (less secure), or positional
witness encryption. Regarding efficiency, our resulting BT scheme has a com-
plexity similar to a “trivial” scheme [29] (with all parameters sizes linear in the
number of users). However, the claimed of our work is not to provide a new



efficient Broadcast and Trace scheme, but a new generic way to build AugBE
schemes, and our generic construction could be more efficient than a “trivial” BT
scheme, even if our current instantiation is not. Moreover, we also consider that
our proposal has the additional feature of anonymity, that the trivial construc-
tion could not have without being less efficient than ours. With such property,
the users set is included in the ciphertext and no longer given in the clear which
leads to a linear additional computational cost during decryption. Anonymity in
the context of BT seems to be an overkill, but we think that for applications in
which being in the used users set reveals some private information about users,
it might be a real interest to use an anonymous scheme. Please refer to appendix
D for more details about anonymity in the context of Broadcast (and Trace)
Encryption. Hence, if our new instantiation of a BT scheme is not more efficient
than the “trivial” scheme, it has some specific features that could not be obtained
so easily “trivially”.

Potential applications. In this work, we introduced an extension of WIBE
security, pattern hiding security, in order to obtain the required security for the
built AugBE. However, this new security may be of independent interest, in
constructing fuzzy extractors for example or for access control encryption, as
anonymity is an important required property in such schemes [30].

2 Preliminaries

Notations. Let “PPT” denotes “probabilistic polynomial-time” and unless spec-
ified, we consider that any PPT adversary A has output in {0,1}. For a,b € N
we denote {1,2,--- ,a} as [a], and {a,a+ 1, -+ ,b} as [a,b]. For every finite set
S, x < S denotes a uniformly random element z from the set S. The security pa-
rameter of our schemes is denoted by 1%, where X\ € N. Vectors are written with
bold face lower case letters, patterns and matrices with bold face upper case
letters. Regarding security definitions, we always present them in the adaptive
way; the selective version can easily be derived. We also consider in this work
only security against Chosen Plaintext Attacks (CPA). We also do not consider
the multi-challenge setting (17]) for BE. In each security definition, adversary
is allowed to query at most @) € N secret keys. For Broadcast Encryption and
its variants, we have chosen to put the description of the target S as an input of
the decryption algorithm. A consequence is that for any scheme (ours and the
state-of-the-art ones), the size of S is not taken into account for the computation
(and comparison) of the ciphertext’s size, unless specified.

2.1 Broadcast Encryption

Definition 1. Broadcast Encryption [15] [17]. A broadcast encryption scheme
consists of algorithms (Setup, KeyGen, Encrypt, Decrypt):
— Setup(1*,1V) — (pk, msk). This algorithm takes as input 1* and the number
of users 1N . It outputs the public parameters pk and the master secret key
msk.



— KeyGen(msk, i) — sk;. This algorithm gets as input the master secret key
msk and an index i € [N]. It outputs the secret key sk; for user i.

— Encrypt(pk, S, m) — cts. This algorithm gets as input pk, a message m and
a subset S C [N]. It outputs a ciphertext ctg.

— Decrypt(pk, S, i,sk;, cts) — m or L. This algorithm gets as input pk, S, 1, sk;
and ctg. It outputs message m or reject symbol L.

Definition 2. BE Correctness [17]. Let (Setup,KeyGen, Encrypt, Decrypt) be
a BE scheme. We require that for all S C [N], messages m, and i € [N] for
which i € S,

Pr [cts + Encrypt(pk, S, m), sk; «+ KeyGen(msk, 7)|Decrypt(pk, sk;, cts) =m] =1

where the probability is taken over (pk, msk) < Setup(1*,1%) and the coins of
Encrypt.

Definition 3. Adaptive security (IND-CPA-BE)[17]. A BE scheme is said
adaptively secure (or satisfying IND-CPA-BE security) if all PPT adversaries A
have at most negligible advantage in the game presented in Figure 1, where A’s

advantage is defined as Adv'yP“PABE()\) .= ‘Pr {b/ = b} - 1/2‘ .

SETUP: challenger C runs Setup(1*,1") to generate pk and msk, and gives pk to .A.

KEY QUERY: A issues queries to C for index ¢ € [N]. C returns sk; < KeyGen(msk, 7).

CHALLENGE: A selects messages mo, m; and set S C [N] of users. We require that
A has not issued key queries for any ¢ € S*. A passes mo,m; and S* to C. The
latter picks b € {0,1} random and computes ct* < Encrypt(pk, S*, my) which is
returned to A.

KEY QUERY: .4 makes queries for index ¢ € [N] with the restriction that ¢ ¢ S™.

GUESS: A outputs its guess b € {0,1} for b, and wins the game if b =b.

Fig. 1. IND-CPA-BE security game.

2.2 Augmented Broadcast Encryption

Definition 4. Awugmented Broadcast Encryption scheme (AugBE) [10,
19] . An AugBE scheme is a tuple of algorithms (Setup, Encrypt, Decrypt):

— Setup (1, 1V) — (msk, pk, {sk,--- ,skn}). This algorithm takes as input 1*
and the number of users N. It outputs a master secret key msk, a public key
pk and secret keys {sky,--- ,skn}, where sk; is the secret key for user i.

— Encrypt (pk, S, m,ind) — ct . It takes as input the public key pk, a set of
users S C [N], a message m, an index ind € [N +1], and outputs a ciphertext
ct.



— Decrypt (pk,sk;, S,ct) — m or L. This algorithm takes as input the public
key pk, the secret key for i'h user sk;, a set of users S C [N], a ciphertext ct
and outputs a message m or reject symbol L.

Definition 5. AugBE Correctness [19] . An AugBE scheme is said to be
correct if for every security parameter A € N, any number of users N € N,
any message m, any subset of users S C [N], any indez ind € [N], any i € SN
{ind,--- , N}, (msk, pk, {sky,--- ,skn}) < Setup(1*,1) and ct < Encrypt(pk, S,
m,ind), we have: Decrypt(pk, sk;, S, ct) = m.

Definition 6. Message Hiding Security [19]. An AugBE scheme satisfies
adaptive message hiding security if for every stateful PPT adversary A, there
exists a negligible function negl(.) such that for every A\ € N, the advantage of A
to win the game presented in Figure 2 is lower or equal to 1/2 4 negl()).

SETUP: challenger C runs Setup(1*,1%) to obtain msk, pk, {Ski}ie[N] and gives pk
to A.

KEY QUERY: A chooses an index ¢ € [N] and sends it to C, who responds with sk;.

CHALLENGE: A chooses two messages mo, m; and a challenge set S™ and sends it to
C. C chooses b € {0,1}, runs ct* « Encrypt(pk, S*, my, N + 1) and gives ct* to
A.

KEY QUERY: A chooses an index ¢ € [N] and sends it to C, who responds with sk;.

GUESS: A outputs its guess b e {0, 1} for b, and wins the game if b =b.

Fig. 2. Adaptive message hiding security game.

Definition 7. Index Hiding Security [19]. An AugBE scheme satisfies adap-
tive index hiding security if for every stateful PPT adversary A, there exists a
negligible function negl(.) such that for every A € N, the advantage of A to win
the game presented in Figure 3 is lower or equal to 1/2 + negl()).

SETUP: challenger C runs Setup(1*,1%) to obtain pk, msk, {Ski}ie[N] and gives pk
to A.

KEY QUERY: at each query, .4 chooses an index i € [N] and sends it to C. C responds
with sk;. Let S be the set of indices for which a key is queried by A.

CHALLENGE: A chooses a message m, a challenge set S* and an index ind € [N] and
sends them to C. If ind € SN S*, C aborts. Otherwise, C chooses b € {0, 1}, runs
ct* < Encrypt(pk, S*,m,ind 4+ b) and gives ct* to A.

KEY QUERY: at each query, A chooses an index i € [N] and sends it to C who adds
ito S. If ind € SN S*, C aborts. Otherwise C responds with sk;.

GUESS: A outputs its guess b € {0, 1} for b, and wins the game if b = b.

Fig. 3. Adaptive index hiding security game.



Finally, we introduce a new security property for AugBE: anonymity. The
below definition, close to the one for BE schemes (26]), provides the adaptive
version.

Definition 8. Anonymous AugBE (ANO-AUGE-BE). We say that an AugBE
scheme is adaptively anonymous if all adaptive PPT adversaries A have at most
negligible advantage in the game presented in Figure 4, where A’s advantage is

defined as Adv"8()\) = ‘Pr [b’ - b] 1 /2’ :

SETUP: challenger C runs Setup(1*,1%) to obtain pk, msk, {Ski}ie[N]’ and gives pk
to A.

KEY QUERY: A can issue queries to the challenger for index i € [N]. C responds with
Ski.

CHALLENGE: A selects a message m, two distinct sets S°, S* C [N] of users and an
index ind € [N +1]. We impose that A has not issued key queries for any ¢ > ind
such that ¢ ¢ S° N S'. The adversary A passes m,S° S' ind to C. The latter
picks a random bit b € {0, 1} and computes ct* < Encrypt(pk, S®, m,ind) which
is returned to A.

KEY QUERY: A makes queries for index i € [N] such that if i > ind then i € S°N S,

GUESS: A outputs its guess b e {0, 1} for b, and wins the game if b =b.

Fig. 4. ANO-AUGE-BE security game.

In the following theorem, we then prove that this new anonymity property
is enough to obtain an index-hiding AugBE.

Theorem 1. If an AugBE scheme is anonymous, then it is also index hiding.

Proof. Let C be a challenger and B be an adversary that wins the index hiding
security game with non negligible advantage. Informally, index hiding means that
an adversary cannot distinguish between an encryption to index ind and one to
index ind 4+ 1 without the key skj,g and that an adversary cannot distinguish an
encryption to index ind and one to index ind + 1 when ind is not in the target
set S* (10]). Thus B can either distinguish which index was used in encryption
when ind € §* and without knowing sk;,q, or he can distinguish the encryption
index when ind ¢ S*, knowing skj,q. Therefore he either chooses ind € S* or
ind ¢ S* but in this case he asks skj,g otherwise he would have advantage equal
to 1/2. We construct, in Figure 5, an adversary A that wins the anonymous
security game with non negligible advantage.

We have that if all B’s queries satisfy the game constraints, then all A’s
queries have the same property. Thus A’s simulation is perfect and the advantage
of A is the same as B’s. This concludes the proof.

Note 1. If ind € S*, then ind € S° Aind ¢ S! thus adversary cannot query sking-
If ind ¢ S*, then ind ¢ S° Aind ¢ S thus adversary can query sking-



SETUP: C runs Setup(1*,1V) — (msk, pk,ski, --- ,skx), and sends pk to A, and B.

KEY QUERY: B chooses i € [N], sends it to A who sends it to C. The later sends sk;
to A who sends it to B.

CHALLENGE: B chooses a message m, a set S™ of users and an index ind € [N]
and sends m, S*,ind to A. The latter creates the sets S° = S$* N {ind,--- , N}
and S* = S*N{ind+1,---,N}. A sends m,S° S to C. If for any queried
i,i € S°Ai ¢ S* then C aborts. Otherwise, it chooses b + {0,1} and sets
ct* « Encrypt(pk, S®, m, 1). It sends ct* to A who sends it to B.

KEY QUERY: A and B act like in the previous KEY QUERY step. If i € S Ai ¢ S*, C
aborts. Otherwise, it sends sk; to A who sends it to B.

GUESS: B outputs its guess b to A, who outputs it as its guess.

Fig. 5. Construction of ANO-AUGE-BE adversary from index hiding adversary.

Note 2. Index hiding does not imply anonymous. Indeed, in the index hiding
security game, in the case where ind is not in the challenge, knowing the challenge
set does not help determining if ind or ind + 1 was used for encryption.

2.3 Identity-Based Encryption with Wildcard

Definition 9. A pattern P is a vector (Py,--- , Pr) € U*, where U is a set with
a special wildcard symbol “x”, and L € N. A pattern P = (Pll7 e ,PL) belongs
to P, denoted P €, P, if and only if Vi € {1,--- L}, (P, = P)) V (P, = *).
For a pattern P € UL, W (P) denoted the set of all indices i € {1,--- L} such

that P; = , and IX/(P) is the complementary set.

Definition 10. Identity-based Encryption with Wildcard (WIBE) [2, 21].
A WIBE scheme consists of four algorithms:

— Setup(1*,17): the setup algorithm takes as input 1* and the pattern length
L € N. It outputs a public key pk and a master secret key msk.

— KeyDer(msk, P): the key derivation algorithm takes as input msk and a pat-
tern P and create a secret key skp for P. It can also take as input a secret
key skp: for a pattern P’ instead of msk and derive a secret key for any
pattern P €, P.

— Encrypt(pk, P, m): this algorithm takes as input the public key pk, a pattern
P and a message m. It outputs ciphertext ct for pattern P.

— Decrypt(skp,ct,P/): the decryption algorithm takes as input a user secret
key skp for a pattern P and a ciphertext ct for a pattern P Any user in
possession of the secret key for a pattern P that belongs to P’ can decrypt
the ciphertext using skp, and the algorithm outputs message m.

Definition 11. WIBE Correctness [21]. Correctness requires that for all key
pairs (pk, msk) output by Setup, all messages m, and all patterns P, P € U*,
such that P €, P then Decrypt(KeyDer(msk, P ), Encrypt(pk, P,m)) = m.

10



In the sequel we will only consider adaptive indistinguishability CPA security
of WIBE (IND-WID-CPA). We introduce another security definition for WIBE:
adaptive (resp. selective) pattern-hiding security. For lack of space we present
both IND-WID-CPA and pattern-hiding security games in one.

Definition 12. Adaptive security. The advantage of an adversary A in the
game presented in Figure 6 is defined as Adv'y TPF(\) = Pr[A wins | — 1/2 for
any A € N. A WIBE scheme is adaptively secure if for all PPT adversaries
A, all A € N, AdeXIBE()\) is negligible. For each run of the game, we define a
variable s as s =0if m* #m' and P° = P' =P*, ands=1ifm° =m' =m
and P° # P'. The case s = 0 corresponds to IND-WID-CPA security, and the
case s = 1 corresponds to pattern-hiding security. Let C be a challenger.

SETUP: challenger C runs Setup(1*,1%) to get keys pk and msk, and pk is given to
A.

KEY QUERY: A may adaptively query a key for pattern P. In response, A is given
the corresponding secret key skp + KeyGen(msk, P).

CHALLENGE: A outputs challenge patterns P° P! and challenge messages mg, m1,
subject to the following restrictions:

— if s =0, P ¢, P” for all the key queried pattern P.
— if s =1, any key query P verifies one of the following conditions:
e Pc,PPANPe, P!
e P¢, P°ANP¢E, P!
A random bit b is chosen. A is given ct* < Encrypt(pk, P’, m®).

KEY QUERY: The adversary may continue to issue key queries for additional pattern
P, subject to the restrictions given above. A is given the corresponding key
skp < KeyGen(msk, P).

GUESS: A outputs a bit b, and wins if b = b.

Fig. 6. Adaptive security game.

Note 3. [1] introduced anonymous WIBE, but the difference with our notion
of pattern-hiding is that in anonymous security game the adversary can only
query keys that do not decrypt the challenge ciphertext. In our definition, ad-
versary can query keys that decrypt the challenge ciphertext for both challenge
patterns.

Note 4. Also notice that if a WIBE is pattern-hiding, then the decryption algo-
rithm does no longer take as input the pattern associated to the ciphertext.
2.4 Other Definitions

Definition 13. Asymmetric bilinear pairing groups [14]. Asymmetric bi-
linear groups I' = (p, G1,G2,Gr, 91, g2, €) are tuple of prime p, cyclic (multi-
plicative) groups Gi1,Go, Gr of order p, g1 # 1 € Gy, go # 1 € Go, and a
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polynomial-time computable non-degenerate bilinear pairing e : G; x Go — G,
i.e. e(gi, 95) = e(g1,92)*" and e(g1,92) # 1.

Note 5. For any group element g € G, and any vector v of size [ € N, we denote
by g¥ the vector (g%, ---,g"). Let u,v be two vectors of length L. Then by
g*?, we denote the element g%, where o = u-v = uy - vy +us -vo+---+ug -vp.

Definition 14. Dual pairing vector spaces (DPVS) [1}]. For a prime p and

a fized (constant) dimension n, we choose two random bases B = (by,--- ,b,)
and B* = (b],---,b;,) of Z, subject to the constraint that they are dual or-

thonormal, meaning that b; - b; = 0 (mod p) whenever i # j, and b; - b; =
(mod p) for all i, where ¥ is a uniformly random element of Z,. Here the ele-
ments of B,B* are vectors and - corresponds to the scalar product. We denote
such algorithm as Dual(Zy). For generators g1 € Gy and g2 € Ga, we note that

e(gf",g;)j) =1 whenever i # j.

Definition 15. Symmetric External Diffie-Hellman (SXDH) [14].The
SXDH assumption holds if DDH problems are intractable in both Gy and Gs.

Definition 16. eXternal Decision Linear 1 Assumption (XDLinl) [7]. Let
G1,Gs be cyclic groups of prime order, with generators (gi1,92), and e : Gy x
Go — G be a bilinear map. The XDLinl assumption states that given a tuple
(91,97, 9, 0%, g% go, g%, 9%, 9%, g% ¢%) it is hard to decide if c = a+b or not,
for random a,b,x,y € Zy,.

The eXternal Decision Linear 2 Assumption (XDLin2) is defined sim-
ilarly, except that the last element of the tuple is equal to g5, where c either
equals a + b, or is random.

3 Generic Construction of AugBE from WIBE

This section presents two generic broadcast encryption constructions from iden-
tity based encryption with wildcard: one for a basic BE scheme and the other for
an AugBE scheme. It also formalizes which properties of WIBE are needed in
order to obtain a secure BE (resp. AugBE). For sake of simplicity, we admit in
proofs that the number of keys queried is always lower or equal to the maximal
number @ of keys that an adversary is allowed to query. All proofs are done
for adaptive security definitions and can be adapted to the selective case. The
length of patterns is L € N.

3.1 Broadcast Encryption from WIBE

Let WIBE = (w.Setup,w.KeyDer, w.Encrypt, w.Decrypt) be an identity based
encryption with wildcard scheme for key pattern space {0, I}L\{OL} and ci-

phertext pattern space {07*}L\{0L}. Let N € N be the number of users in the
scheme. We construct a BE scheme BE = (Setup, Encrypt, Decrypt) in Figure 7.

12



— Setup(1*,1%): set L = N, run w.Setup(1*,17) and set pk = w.pk and msk =

w.msk.

KeyGen(msk,i € [N]): define P’ € {0,1}" such that for j € [1,N], P; = 0 if

Jj # i and P; = 11if s = j. Then set sk; = w.KeyDer(w.msk, P/). It outputs sk;.

— Encrypt(pk, S, m): first, associate S with a pattern P in {0,*}N such that for
j € [1,N], P; = xif j € S and P; = 0 otherwise. Finally compute ct =
w.Encrypt(pk, P, m) and outputs ct.

— Decrypt(pk, ski, ct, S): gets m < w.Decrypt(sk;, P, ct) if i € S, L otherwise.

Fig. 7. Generic construction of BE from WIBE.

Note 6. Encryption for pattern 0% is not relevant here as it means that no one
can decrypt, that is why we excluded this pattern of encryption pattern space.
Secret key for pattern 0 is not relevant either as it corresponds to none of the
users.

Theorem 2. The BE scheme obtained is correct if the underlying WIBE is
correct.

Proof. P' ¢, P implies that P/ = P; or P* = . As P! = 1, we have that

K2

P = % and thus i ¢ IX/(P), i.e. i € S. Suppose that i € S. By construction for
all j € [N],j # i, PJ? = 0 and either P; =0=DPjor Pj =, and P; = %, i.e.
P €, P. Then correctness follows from WIBE’s correctness.

Theorem 3. If WIBE satisfies adaptive (resp selective) IND-WID-CPA secu-
rity, then the obtained BE scheme satisfies adaptive (resp selective) IND-CPA-BE
security.

Proof. Let B be an adversary against IND-CPA-BE security, that wins with
non negligible advantage. In Figure 8 we construct A, an adversary against
IND-WID-CPA that uses B and wins with non negligible advantage. Let C be a
challenger.

If all B’s queries satisfy the game constraints, then all A’s queries have the
same property. Thus, A’s simulation is perfect and the advantage of A is the
same as B’s.

3.2 Augmented Broadcast Encryption from WIBE

Let WIBE = (w.Setup, w.KeyDer, w.Encrypt, w.Decrypt) be an identity based
encryption with wildcard scheme for key pattern space {0,1}"\ {02} and cipher-

text pattern space {0, *}L. Let N € N be the number of users in the scheme. We
now construct an AugBE scheme AugBE = (Setup, Encrypt, Decrypt) in Figure
9.

Note 7. Here encryption for pattern 0F corresponds to encryption for index
N +1.

13



SETUP: C runs Setup(1*,1V) — (msk, pk) and gives pk to A, who gives it to B.

KEY QUERY: B chooses an index i € [N] and sends it to A, who creates P*, for
j € [1,N], such that P; = 1 if i = j and P} = 0 otherwise. A sends P’ to C.
The latter runs KeyDer(msk, P*) — skp: and sends skp: to A, who sends it as
sk; to B.

CHALLENGE: B chooses mo, m; and a set S™; it sends it to .A who creates the pattern
P~ for j € [1,N] s.t. P; =0if j ¢ S*, Pj/ = x otherwise, and sends P*, mg, m;
to C. If for any queried P*, P* €, P* then C aborts. Otherwise it chooses
b € {0,1} and runs ct* < Encrypt(pk, P*,m;). It sends ct* to A who sends it
to B.

KEY QUERY: B chooses index i € [N], sends it to A, who creates P?, for j € [1, N],
s.t. P} = 1if i = j and P} = 0 otherwise. A sends P’ to C. If P* €, P*, aborts.
Otherwise C runs KeyDer(msk, P*) — skpi and sends skp: to A, who sends it
as sk; to B.

GUESS: B outputs a bit b to A who outputs it as its guess.

Fig. 8. Construction of IND-WID-CPA adversary from IND-CPA-BE adversary.

— Setup(1*,1%): set L = N, and run w.Setup(1*,1V) to obtain w.pk, w.msk. Then
for each ¢ € [N], define P c {0,1}" such that for j € [1, N], P]{ =0ifj # ¢ and
P; = 1if 4 = j. Then set sk; = w.KeyDer(w.msk, P/), (pk, msk) = (w.pk, w.msk).
It outputs msk, pk and {Ski}ie[zv]'

— Encrypt(pk, S,ind,m): here ind € [N + 1]. Associate S with a pattern P* in
{0, x}" such that for j € [1,N], Py = xif j € S and P;/ = 0 otherwise.
Then define the pattern P™™ e {0, *}N such that for j € [1,N], Pjiv"d =0
if j < ind and Pji-"d = % otherwise. Finally, define P € {0,%}" such that for
j€[1,N], P, =P} A P]i-"d with the following rule : x A 0 = 0. Finally compute
ct = w.Encrypt(pk, P, m) and outputs ct.

— Decrypt(pk, ski, ct): compute m <— w.Decrypt(sk;,ct) if i € S A4 > ind, L other-
wise.

Fig. 9. Generic construction of AugBE from WIBE.

Note 8. As the underlying WIBE is pattern-hiding, the AugBE decryption al-
gorithm does not take as input the set for which the message was encrypted.

Theorem 4. The AugBE scheme obtained is correct if the underlying WIBE is
correct.
Proof. P' ¢, P implies that P} = P; or P; = . As P/ = 1, we have that P! = »

and thus i ¢ IX/(P), ie. ¢ € SAi > ind. Suppose that i € S A¢ > ind. By
construction for all j € [N],j # i, P]? = 0 and either PJ? =0= P or P; = %,
and P; = x, i.e. Pl €, P. Then correctness follows from WIBE’s correctness.

Theorem 5. If WIBE satisfies adaptive (resp. selective) IND-WID-CPA security,
then the obtained AugBE scheme satisfies adaptive (resp. selective) message hid-
mng security.
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Proof. Let B be an adversary against message hiding security, that wins with
non negligible advantage. In Figure 10 we construct .4 an adversary against
IND-WID-CPA that uses B and wins with non negligible advantage. Let C be a
challenger.

SETUP: C runs Setup(1*,1") — (msk, pk) and sends pk to A, who sends it to B.

KEY QUERY: B chooses i € [N], sends it to .A who creates the pattern P’ such that
for j € [1, NJ, P; =1ifi=yj, P; = 0 otherwise. A sends P’ to C, who responds
with skpi < KeyDer(msk, P*). A sends skp: to B as sk;.

CHALLENGE: B chooses messages mg, m; and a set S™. It sends mg, m1, S™ to A, who
creates pattern P, such that for j € [1, N], P = 0. A sends mo, m1, P* to C,
who chooses b + {0,1} and runs ct® < Encrypt(pk, P*, m;). C gives ct™ to A,
who sends it to B.

KEY QUERY: A, B,C act like in the previous KEY QUERY step.

GUESS: B outputs its guess b to A, who outputs it as its guess.

Fig. 10. Construction of IND-WID-CPA adversary from message hiding adversary.

If all B’s queries satisfy the game constraints, then all A’s queries have the
same property. Thus A’s simulation is perfect and the advantage of A is the
same as B’s. This concludes the proof.

Note 9. Pattern P* is equal to 0. Then, for all i € [N], P* ¢, P*: the WIBE
adversary’s constraint is always verified and we do not specify it in the proof.

Theorem 6. If WIBE satisfies adaptive (resp. selective) pattern-hiding security,
then the obtained AugBE scheme satisfies adaptive (resp. selective) anonymous
security.

Proof. Let C be a challenger and B be an adversary that wins the anonymous
security game with non negligible advantage. We construct, in Figure 11, an
adversary A that uses B and wins the pattern-hiding security game with non
negligible advantage.

If all B’s queries satisfy the game constraint, then all A’s queries have the
same property. Thus A’s simulation is perfect, and the advantage of A is the
same as B’s. This concludes the proof.

Combining theorem 1 and 6 we obtain that if WIBE satisfies adaptive (resp.
selective) pattern-hiding security then the AugBE scheme obtained from the
WIBE satisfies adaptive (resp. selective) index hiding security.

4 Instantiations of WIBE

In this section, we first present a WIBE that has constant-size ciphertext but
does not provide the pattern-hiding property, then a second scheme which does
not have constant-size ciphertext but is proved to be pattern-hiding. Both do
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SETUP: C runs Setup(1*,1V) — (msk, pk) and sends pk to A, who sends it to B.

KEY QUERY: B chooses i € [N], sends it to .A who creates the pattern P’ such that
for j € [1,N], P} = 1ifi=j, Pj = 0 otherwise. A sends P’ to C, who responds
with skpi < KeyDer(msk, P*). A sends skp: to B as sk;.

CHALLENGE: B chooses a message m, two sets S°, S' and sends m, S°, S' to A. The
latter creates the patterns P°, P! such that for j € [1, N, P]Q =%if j € S°,
P]Q = 0 otherwise, and le =xif j € S, le = 0 otherwise. A sends m, P°, P*
to C. If for any queried P*, P* ¢, P° A P" ¢, P' or P' ¢, P° ANP' ¢, P', C
aborts. Otherwise, it chooses b <— {0,1} and sets ct* + Encrypt(pk, P®, m). Tt
sends ct* to A who sends it to B.

KEY QUERY: A and B act like in the previous KEY QUERY step. If P* ¢, P°AP* ¢ P!
or P ¢, P° A P' ¢ P!, C aborts. Otherwise, it runs KeyDer(msk, P%) — sk pi
and sends skpi to A who sends it as sk; to B.

GUESS: B outputs its guess b to A, who outputs it as its guess.

Fig.11. Construction of pattern-hiding adversary from AugBE anonymous adversary.

not allow key derivation for a pattern from another pattern’s key (thus KeyDer
algorithm will be written KeyGen). As in the previous section, both schemes

have key pattern space equal to {0, 1}L\{0L}, and ciphertext pattern space is
equal to {0,x}"\{0%} for the first scheme and to {0,%}"\{**} for our second
scheme. Let P € {0, 1}L\{OL} and P € {0,x}" be patterns. We define T =
{i e[L)|P, = 1} and O = {z e[L)|P, = 0}; notice that [L] = ZUO. Also notice
that P €, P = Vi € [L], if P" = 1 then P, =  and thus Z C W (P).

4.1 WIBE with Constant Size Ciphertext

We start by our first WIBE scheme (Figure 12), which has a constant-size ci-
phertext, and can be used to instantiate our BE scheme given in the previous
section.

— Setup(1*,1%): generate an asymmetric bilinear pairing group I° =
(p,G1,G2,Gr, g1, g2, €) for sufficiently large prime order p. Sample random dual
orthonormal bases (D,D*) < Dual(Z3). Let di,-- -, ds denote the elements of
D and d7,- - - ,dj denote the elements of D*. Pick a, a1, -+ ,ar, < Z,. The pub-
lic key is computed as: pk = (F,p,e(gl,gz)“dl'di,gfll,h1 =givd2 ... hp =

92°92) and the master secret key is msk = (cuhq;liﬁ,g;l'2 ,Q1, " ,QL).

91
— KeyGen(msk, P'): pick r « Z,. Compute a = g‘;lerT'ziEI @A and by =

T

o 4 for i € O. The secret key is skp = (@, {bi},c0)-
— Encrypt(pk, P,m € Gr): choose s + Z, and compute ct = (c1,cz) where ¢; =

* s d s
m - (e(g1,92)* M), 2 = g7 ™ Liewp) hi-

— Decrypt(skp/, P, ct): compute a = a]_[iew(mmo b; and finally C; - —2

e(ez,a’)’

Fig.12. An adaptive WIBE in prime order group, with constant size ciphertext.
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Theorem 7. Our first WIBE scheme is correct.

Proof.

N o_ sdy s adi+r. 3, raidi—rd] rdia;
e(cz,a ) =e (91 'HieW(P) ki, 9, ' ’ HieW(P)ﬁO 92

sd ad] sd rdi(Xiezr @i+ cw(pyno &) sde 3 cw(p) @i —r.d
:e(gl ' 9o 1)-6(91 ) ' ' elgy gy

As thanks to dual vector spaces properties: e (gfdl,gg_rd2> =e(g1,92)" and

sds ) S as adi+r. 3 ai.df—i-ziew(}jmo r.a;.dy
e e e = e(g1,92)° = 1. The first
g1 y 92 = €e{g1,92 = 1. € nrs

pairing is equal to (e(g1, g2)*%%)* which will canceled with the element of ¢;.
The second pairing is equal to e(gl,gg)sw(ZiEI @it2iewPno %) and the third
pairing is equal to e(gy, go) " Ziew @) %

As user is allowed to decrypt then Z C W (P), thus we can rewrite Z as ZNW (P)

and we have that 3,7 ai + > ey (p)no @ = 2icw (P)n(zuo) % = Dicw (p) Y-
Therefore multiplying the two last pairings gives 1, and user can decrypt.

Theorem 8. If SXDH holds then our scheme satisfies adaptive IND-WID-CPA.

Our proof is based on the ones of [22] (Section 4.6) and [14] (Section 4)
and is using dual system encryption (24]). We introduce a second form of
keys and ciphertexts: semi functional keys and semi functional ciphertexts. Let

sk = (a, {bi},c) be anormal key, and ¢3,t4, {tp i}, , be random elements of Z,,.

. . ’ ’ ’ , toodtdta-d*
We define a semi functional key as sk = (a , {bi} ) where a' = a-gi¥ &%
i€o

and b, = b, ~g;"”"'d§ for i € O.

Let ct = (¢1,¢2) be a normal ciphertext, and z3,z4 < Z,. We define a semi

. . ’ ’ ’ ’ ’ . .
functional ciphertext as ct’ = (¢}, cy) where ¢; = ¢; and ¢, = ¢y - g7 %T7da

We are going to prove Theorem 8 with a sequence of @ + 3 hybrids games.
— Gamey: is the real IND-WID-CPA security game (Definition 12 for s = 0).
— Game;: is as Gamej except that the challenge ciphertext is semi-functional.
— Game,_;: for j from 1 to @), Game,_; is the same as Game; except that the
first j keys are semi-functional and the remaining keys are normal.
— Games: is the same as Gamey_¢, except that the challenge ciphertext is a
semi-function encryption of a random message in Gr.

For lack of space, we only give an overview of the proofs of indistinguisha-
bility between these games (refer to Annex B for the full proofs). Moving from
symmetric pairings to asymmetric pairings is not an issue if elements are taken in
the correct group (G; for ciphertext and public key elements, and G, for secret
keys elements). The proofs are using assumptions called DS1 and DS2, presented
in Annex A. Here is the idea of how to prove indistinguishability between theses
games.
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— If an adversary can distinguish Gamey from Game; then we can build an
adversary with non-negligible advantage against DS1 with £ = 2 and n = 4.

— If an adversary can distinguish Game,_(;_;) from Gamey_; then we can
build an adversary with non-negligible advantage against DS2 with k& = 2
and n = 4.

— If an adversary can distinguish Gamey_¢ from Games then we can build an
adversary with non-negligible advantage against DS1 with £ = 1 and n = 4.
We prove this in two steps, by randomizing each appearance of s in the cs
term of the ciphertext, thereby severing its link with the blinding factor. The
end result is a semi-functional encryption of a random message. As a first
step, we consider an intermediary game, called GameQ_Q/, that is exactly
like Gamey_g, except that in the c; term of the challenge ciphertext the
coefficient of ds is changed from being s Ziew( p) @i to a fresh random value
in Z,. Then we prove that

e If an adversary can distinguish Game,_¢ from Game,_ then we can
build an adversary with non-negligible advantage against DS1 with &k = 1
and n = 4.

e If an adversary can distinguish Game27Qf from Games then we can build
an adversary with non-negligible advantage against DS2 with £ = 1 and
n=4

4.2 Pattern Hiding WIBE

We describe our scheme (Figure 13), which can be used to obtain an instantiation
of our AugBE scheme given in Section 3.

— Setup(1*,1%): generate an asymmetric bilinear pairing group I° =
(p,G1,G2,Gr, g1, g2,¢) for sufficiently large prime order p. Sample random
dual orthonormal bases (B,B*) < DuaI(Zf,L+2). Let bo,- - ,bsr+1 denote
the elements of B. Pick a <« Z,. The public key is computed as: pk =

(Fapve(gth agfo7gf4L+17h1 = gi’l?"' 7h’L = gi’L) and the master se-
. * * * bk *
cret key is msk = (a,g;’O,g;’l ,ee ~g§'L,g23LJrl ,gé’“).
— KeyGen(msk, Pl): pick r,n € Zﬁ. The secret key is skp =
aby+3 ez b+ ML

)abo.ba

2
— Encrypt(pk, P,m € Gr): choose s1, s2, s3  Z, and compute ct = (¢1, c2) where
x. s1bo+s2b
c1=m- (e(gr, g2)*P0b0)5 1, ey = gt 0TI, _ hj3.
€W (P)

— Decrypt(skp, ct): compute c; - W
sk

Fig.13. An adaptive WIBE in prime order group, satisfying pattern-hiding.

Theorem 9. Our WIBE scheme is correct.
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Proof.

« . L .
s1bo+s2bar 41 s aby+> e b+, mb 3L+
e(ea,skp) =e | gy AR | I A Y e
€W (P)
bi-Sg

> .
_ sibg _abg iEW (P) 2 jezTib]
—e<gl”,gz °)~6<91 192" !

The last row is obtained thanks to dual vector spaces properties. The first

pairing cancels itself with the pairing in ¢;. Now, let’s see the valueof 3  _ ") b;-
iew (P

ZjeZ b;f. Suppose that user with pattern P’ is allowed to decrypt. Then P Ex

P, that means that Z C W(P). Thus ZNW (P) = &, and thanks to dual vector
spaces properties, the above product is equal to 0 and decryptor obtains m.

Theorem 10. If XDLinl, XDLin2 hold, then our scheme is adaptively pattern-
hiding secure, in the standard model.

Our proof is inspired by the one of [28] (Section 4.3) for their IPE scheme: the
security is proven throughout a series of games. We start with the two following
games.

— Gamey is the original game given in the WIBE security definition (Definition
12).

— Gamey is the same as Gameg except that a coin ¢t € {0,1} is chosen before
setup, and the game is aborted in challenge step if ¢ # s.

First, we execute a preliminary game transformation from Game to Game,y .
We define that adversary .4 wins with probability 1/2 when the game is aborted
(and the advantage in Game, is Pr[A wins| — 1/2 as well). Since ¢ is indepen-
dent from s, the game is aborted with probability 1/2. Hence, the advantage

in Game, is a half of that in Gamey, i.e., Adv’ (\) = 1/2 - Adv’(\). Moreover,
Pr[A wins] = 1/2 - (Pr[A wins|t = 0] 4+ Pr [A wins|t = 1]) in Game since ¢ is
uniformly and independently generated.

For lack of space, we only present the idea of the security proofs when ¢ = 0
and ¢t = 1. For the full proofs, refer to Annex B.

IND-WID-CPA security (¢ = 0). This proof is similar to the one of [23] (Section
3.5.2); it uses a series of @ + 2 games:
— Game: is the same as Game, except that the challenge ciphertext (i, c2)
for challenge plaintexts (mg, m;) and challenge pattern P* is changed into
temporal 1 form: si,s2,83,t1,- - ,tr < Zp,b < {0,1}, and requires that

P # %,

bi+>k tibr g

(1)

sibo+sabart1+s3 )
abo-bSSl iEW (P*)

c1 =my - e(g1,92) , 2 =9,
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— Gamey_y (k € [1,Q]): is the same as Gamey_(;,—1) (for k =1, Gamey_(;,_1)
is Game; ) except that the reply to the k-th key queried for P is changed into
temporal 1 form: o, {r;},c 7, {ni,%i}icp 1y < Zp,

by +3cr Tib+ g @b+ mbiL gy
SkP — g2 Jje J (2)

— Games: is the same as Gamey_¢ except that the challenge ciphertext (c1, c2)
for challenge plaintexts (mg, m;) and challenge pattern P* is changed into
unbiased form: sy, {3}, 1) < Zp

’ ~
)abo.bgsl’ gflb0+52b4L+l+EL1 Sibq‘,+ZlL:1 tibr 4 (3)

C1 = mp - 6(91792 Cy =

and all the other variables are generated as in Games_g.

Indistinguishability is proven using intermediate problems (defined in Annex
A) that hold if XDLin1, XDLin2 hold. If an adversary can distinguish Game, from
Game; then an adversary against Problem 1 bis (Definition 20) can be created.
Then, they build an adversary against Problem 2 bis (Definition 22) using an
adversary that distinguishes Game,_(;,_1) from Gamey_j. Finally they proved
that the advantage of an adversary in winning Games_¢ is the same than the
one of an adversary winning Games; and the latter is equal to 0. The original
proofs are made in the symmetric pairing settings but they can easily be made
in the asymmetric setting by taking elements in the correct group.

Pattern hiding security (¢ = 1). The proof is done as in [28] (Section 4.3.3),
except that it is turned into the asymmetric setting (easily when considering
elements in the correct group). It uses a sequence of 4Q) +2 games using different
forms of ciphertexts and keys that we introduce. The different forms of ciphertext
are defined according to challenge patterns P°, P'. ¢; is the same in all forms,
just ¢y is different:

— Game;: is as Game except that the ciphertext is changed to temporal 0
form: let b € {0,1},t € Z,, and suppose that P} = 0. Define c; as

s1bo+sobary1+s3s >, bittbria
iew (Pb)
91 (4)

— For 1 < h < @ (the number of keys queried), we define the following 4 games:
e Gamey_j_1: in this game, the challenge ciphertext is changed to tem-
poral 1 form: let b € {0,1},¢,u, @ € Z,,. Define ¢, as g1 with exponent

s1bo + s2bart1+s3 >, bi+t > bryit+u >, by
ievT/(Pf) W (Pb) €W (PY) 5)
+a >, borys
€W (P1)

20



and the first h — 1 keys are temporal 2 forms: let « € Z% be a random
vector. Define the key as

g;‘b6+2j61 Tibi+3er mjb£L+_7’+ZlL:1 m-b3 4y (6)
while the remaining keys are normal.

e Gamey_j_o: in this game the h-th key is changed to temporal 1 form:
let z € Zﬁ be a random vector. Define the key as

g‘;bSJFZjez ij;+zjel Zjbz+j+ZLL:1 Wl'b§L+l (7)
while the remaining keys and the challenge ciphertext are the same as
in Gameg_h_l.

e Gamey_j_3: in this game, challenge ciphertext is changed to temporal
2 form: let b € {0,1},t,t,u, @ € Z,. Define ¢y as g1 with exponent

sibo + sebar41+s3 >, bi+t >, brys

3 iew (Pb) iEW (P0) (8)
+t > bryit+u Y, baryi+a D, barys
ieW (P1) iEeW (P9) iEW (P1)

while all the queried keys are the same as in Gamey_j_s.

o Gamey_j_4: in this game, the h-th key is changed to temporal 2 form
(eq. 6) while the remaining keys and the challenge ciphertext are as in
Gameg_j_3.

— Games: the challenge ciphertext is changed to unbiased form: let b €
{0,1} ,w, W, t,t, u, @ € Z,. Define ¢y as g; with exponent

s1bo + sebaryi+w Y bi+w Y, bi+t Y brys
3 ieW (PY) z‘eVT/(Plz €W (PO) )
+t > bryitu Y, bayita Y, barg
W (P1) €W (PO) iew (P1)

while all the queried keys are temporal 2 form (eq. 6). In this game, the
advantage of adversary is 0.

Indistinguishability between games is proven as in the original proof, using
intermediate problems (defined in Annex A) that hold if XDLin1, XDLin2 hold:

— If there exists an adversary that can distinguish Game, from Game; then
there exists an adversary that breaks Problem 1 (Definition 19).

— Gamey_(j,—1)—4 can conceptually be changed into Games_j, ;. The advantage
of an adversary in distinguishing theses games is equal to 4/p when h = 1,
otherwise it is equal to 3/p.

— If there exists an adversary that can distinguish Games_;,_; from Gamey_p_o
then there exists an adversary that breaks Problem 2 (Definition 21).

— If there exists an adversary that can distinguish Games_;,_3 from Gamey_j,_4
then there exists an adversary that breaks Problem 3 (Definition 23).
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— Gamey_g_4 can conceptually be changed into Games. The advantage of an
adversary in distinguishing theses games is equal to 3/p.

The only part of the original proof that cannot be done for our scheme is
the one that proves the indistinguishability of Games_j_o and Gamey_j_3. In-
deed, [28] proved that Gamey_j_o can be conceptually changed to Gamey_j,_3
with a change of bases and an intermediate game. However, with their change
of bases B,B* to D,D*, the h-th key of our scheme can no longer decrypt
the ciphertext. Thus, the adversary can distinguish the different games as in
one case the h-th key decrypts the challenge ciphertext but not in the other
case. That is because, with the definition of D, D*, some elements of B (resp.
B*) are now linear combination of elements of D (resp. D*). Thus, the set

W(P") N T is no longer equal to @ (the decryption condition) but is equal

to W(Pb). In our proof, we change the way the new dual orthonormal bases
are computed. We define new dual orthonormal bases (D,D*), following the
idea of the last lemma in the original proof. Let 6;,7 < Z, and for i €
[[I,LH set, dz = Ti_lbi -+ GibLH, dL+i = TibL+i; d;k = Tib:, dz-H = 7011): +
7,07, and D = (bo,dy -, dp,dpy1, o, dap,bapsr - bargr), and D* =
(by,dy,--- ,dp,by,dy 1, ,dy, b5 1,--- by 1). This solves the issue raised
by our scheme’s construction and allows us to prove the indistinguishability be-
tween the two games.
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A (Intermediate) assumptions and problems

In this appendix we present the intermediate assumptions and problems used to
prove the security of our schemes in section 4. Their reduction to well known
assumptions is presented in appendix C.3. We start by recalling the DDH as-
sumption on which SXDH relies.

Definition 17. Decistonal Diffie- Hellman assumption in G, (DDH,) [14].
Given an asymmetric bilinear pairing group I' = (p, G1, G, Gr, g1, g2, €), we de-
fine the following distribution: a,b,c < Z,, D = (I 91,92, 9%, 95). We assume
that for any PPT algorithm A, AdvE‘DH1 \) = ‘Pr [A(D, g¢*)] — Pr [A(D, g‘berc)] |
is negligible in the security parameter .

The dual of above assumption is Decisional Diffie-Hellman assumption in Go (de-
noted as DDH5),which is identical to DDH; with the roles of G; and G2 reversed.

Now we present the DS1 and DS2 assumptions used for our first scheme
(section 4.1).

Definition 18. Decistonal subspace assumption in G, (DS1) [14]. Given
an asymmetric bilinear group generator G(.), define the following distribution

I'= (p7 Gla GQaGTagla927€) A g(l)\)a (B7B*) — DUE]I(ZZ),Tl,T27M1,ILL2 <~ Zp7

p1.bY +p2.by p1.by+pabl 71.by 71.by
U = go y U = g , V1 = 01 0,V = 01 )
_ T1.bi+7ebrg _ T1.bi+pusbay
w1 =01 oo, WE = gq )
_ b} bp  bipi b, by b
D*(F,gz ;0 392,09 7"'7g2n791 7"'>glnvula"'7uknu2)a

where k,n are fized positive integers that satisfy 2k < n. We assume that for any
PPT algorithm A, the following is negligible in 1*.
AdVZZ (N) = [PrA(D, 1, -+ ,wy) = 1] = Pr[A(D, wy, - ,v5) = 1|

Lemma 1. If the decisional Diffie Hellman assumption (DDH) in Gy holds,
then the decisional subspace assumption in Gy (DS1) also holds.

For the proof, refer to [14]. The decisional subspace assumption in G is
defined as identical to DS1 with the roles of G; and G reversed. DS2 holds if
DDH in Gs holds. The proof is done as for G;.

In section 4.2, to prove the security of our second WIBE, we used intermediate
problems based on the ones of [28]. Ours are however in the asymmetric pairing
setting and can be reduced to XDLiny, XDLin2 assumptions.

Definition 19. Problem 1 is to guess 3, given (p, Gl,GQ7GT7gl,gg,€,B,B*, es,

{eitico.. n) < Qéjl(l)‘,n), where (G1,Ga,Gr,p, g1, go, €) is an asymmetric bi-
. .. An+2\ ™ * * ok *
linear pairing group, (B, B*) « DuaI(Zp”Jr ), B* = (bg, -+ by, b3y g, bi)
and bt
wb1+7vban
QJ,’}/,Z<—ZP, 6071 :gl ' i
b b, ban ; .
e :géf 1+2bnt1+7ban+1 ei:g?}bl fOT‘Z:2,~-~ ..
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For a probabilistic adversary B, the advantage of B for Problem 1 is defined
as

Advi'(A) = | Pr[B(1*, 0) — 1]o + G5 (1%, n)] — Pr [B(1*,0) — 1|0 + G (1%, n)] |

Lemma 2. For any adversary B, there is a probabilistic machine &£, whose run-
ning time is_essentially the same as that of £, such that for any security param-
eter A, Advg'(\) < AdvPH™ () +5/p.

Definition 20. Problem 1 bis is to guess (3, given (p, G1, G, Gr, g1, go, e,]B,]Bg*,
esn, {ei}ie[[l,n]]) — géjlb(lA,n), where (G1,Go,Gr,p, g1,92,€) is an asymmet-
ric bilinear pairing group, (B,B*) « Dual(Zf,”“‘Q), B* = (by,--- by b3y 1 s
by, 1) and

n wbi+vbant1
w,7, {zi}¢:1 «— ZZ €0,1 = g, "

wbi+337 3oy Zijbngitybant wb;
€11 =01 ! € =9

fori=2--- n. For a probabilistic adversary B, the advantage of B for Problem
1 bis is defined as

Advg P (\) = | Pr [B(1*, 0) — 1|0 + G5 (1%, n)] — Pr [B(1*,0) — 1|0 + G (1%, n)] |

Lemma 3. For any adversary B, there is a probabilistic machine £, whose run-
ning time is essentially the same as that of £, such that for any security param-
eter X, Adv'?(\) < AdvgPHm™t(\) 4+ 5/p.

Definition 21. Problem 2 is to guess 3, given (p, Gy, GQ,GT,9179276,B,B*7

{h}g’i,ei}ieﬂl,nﬂ) +— g}j?(l*,n), where (G1,Go, Gr,p, g1, g2, €) is an asymmetric
bilinear pairing group, (B, B*) Dual(Zé"‘“Q), B=(bg,  ,bn,bani1, ,bant1),
0,7,00,w,0 < Zyp and for i € [1,n]:
3b7+00b3,, 4 8b; +7by, ;+00b3,, 4 bi+ob,y;
ho.i = 95 e 1i= 92 T ey = gy OO

For a probabilistic adversary B, the advantage of B for Problem 2 is defined as
Advis®(A) = | Pr [B(1*, 0) = 1]e < G5 *(1*,n)] — Pr [B(1*,0) — 1|0 « G{*(1*,n)] |
Lemma 4. For any adversary B, there is a probabilistic machine £, whose run-

ning time is essentially the same as that of £, such that for any security param-
eter A\, AdvgZ(\) < AdvPH2(X\) +5/p.

Definition 22. Problem 2 bis is to guess 3, given (p, G1, G2, Gr, g1, g2, e,]f%,]B%*,
{hz’“ei}ie[[l,n]]) — GE? (1%, n), where (G, Gy, Gr,p, g1, g2, €) is an asymmet-

ric bilinear pairing group, (B,B*) < Dual(Z"+?), B = (bo,-- ,bp,bons1, -
b4n+1) and

8,7, 80,w,0 < Zp, {8 = L2}, Z < GL(n,Z,),U =(Z™HT
. B * 5b:+27‘1’:1 5i,jb§n+i
forie[l,n]: hi i = g, J

hii = gngE}:l wi b7y Ty 8 b, e, = g‘l‘lbri'T >, Zi,jbn+i.
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For a probabilistic adversary B, the advantage of B for Problem 2bis is defined
as

Advi>*(A) = | Pr [B(1*,0) = 1o + G5 (1*,n)] — Pr [B(1*, 0) — 1|0  G1**(1*,n)] |

Lemma 5. For any adversary B, there is a probabilistic machine £, whose run-
ning time is essentially the same as that of £, such that for any security param-
eter A, AdvgZ?(\) < AdvEPH"™2()\) +5/p.

Definition 23. Problem 3 is to guess (3, given (}mGhGg,GT,gl,gg7e,B,I@*,
{h27i7ei’fi}ieﬂ17n]]) — g§3(1)\7n)7 where (Gl,GQ,GT,]),QLQQ,@) s an asym-
metric bilinear pairing group, (B, B*) < DuaI(Z;l,"H) and

B= (bO»"' abnvb2n+17"' vb4n+1)a B* = (bzv"' 7b:wb;n+1v"' abjlnqtl)

’ " ’ ” .
T,00,w,W W Kk Kk < Ly, forie[l,n]

* Tb:1+i+50b;n+i * Tb;n+i+60b§n+i
hO,i - g/2 " hl’i - g/2 7

_ wbyypitw bangg K bpgpitk bapgg

€ =0 fi=o .

For a probabilistic adversary B, the advantage of B for Problem 3 is defined as
Advi®(A) = | Pr [B(1*, 0) = 1]o + G5 (1%, n)] — Pr[B(1*,0) — 1] + G{*(1*,n)] |

Lemma 6. For any adversary B, there is a probabilistic machine £, whose run-
ning time is essentially the same as that of B, such that for any security param-
eter X, AdvE3(\) < AdvgPt™2(\) 4+ 7/p.

B Security proofs

In this appendix we give the full security proofs of our schemes.

B.1 Constant size ciphertext WIBE security proof

First we prove the indistinguishability between the security games presented in
section 4.1, by proving following lemmas 7, 8 and 9.

Lemma 7. If there exists a PPT algorithm A such that Adv® — Advy is non-
negligible, then there exists a PPT algorithm B with non-negligible advantage
against DS1 with k =2 and n = 4.

. . by by b b b b
Proof. INIT: Bis given D = (I',95", 95>, 97", 915 97%, 91> w1, w2, p2)

T1b1 _T1b2 T1b1+72b3
) 1

along with t1, t2, distributed either as g7 g2 org Ilbz'”zb“.

» 9
SETUP: B first chooses a random invertible matrix A € Zf,“. It implicitly

sets dual orthonormal bases I, D* to: di = by,ds = ba, (d3,dy) = (b3, by) - A,
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We note that D, D* are properly dlstrlbuted and reveal no information about

A. Notice also that B cannot produce g2 , 924, but these will not be needed to
create normal keys. B chooses random values «, a1, - ,ar € Z,. A is given the
public key

pk = (F, e(gl,gg)o‘dl'dy{,gfl,hl = glll1d2, N g%Ld2).

The master key is msk = (oz,ggr,gg;,al, -~ ap)-

KEY QUERY: msk is known to B, which allows B to respond to all of A’s key
queries by calling the normal key generation algorithm.

CHALLENGE: A sends B a challenge pattern P and two messages (mg, my). B
chooses a random bit b € {0,1} and encrypts m, under P as follows:

ZtEW(P) aq

-
c1=my - (e(ty,95"))% , ca =ty - 1

It gives the ciphertext ct* = (¢, ¢3) to A.

— If (t1,t2) = (g%, ¢7*"2), we have a normal ciphertext with randomness
. bit7ibs 3,
11 e1 = (myp(e(g1,92)%%1%)™ and ¢y = gIl 102 Liew () @ . Thus B has

properly simulated Gameg.

—If (tl,tg) — g1'151+72537gf1b2+72b4, c1 = mb'(e(gl,QQ)bltha)ﬁ '6(91,92)7-2})317;&
=my - (e(g1,92)? %)™ and ¢; = g?bﬁﬁbz Liew(p) itT2batTba Yicw (p) i

This ciphertext has an additional term with coefficients in basis b3, by, which
form the vector m2(1, 3,y (py @s)- To compute coefficients in the basis (ds, d4)

we multiply the matrix A™! by the transpose of this vector. Since A is random,
these new coefficients are uniformly random. Thus in this case the ciphertext is
SF (with coefficients in the base D) and B has properly simulated Game;. This
allows B to leverage A’s non-negligible difference in advantage between Gameg
and Game; to achieve a non-negligible advantage against DS1.

Lemma 8. If there exists a PPT algorithm A such that Adv G-1) Advil_j 18
non-negligible, then there exists a PPT algorithm B with non- neglzgible advantage
against DS2 with k =2 and n =4

L b b, b b
Proof. INIT: B is given D = (I, g1 7g1 7g2 092, 05", gy, U1, Ua, i2)
along with t,, t, distributed either as g,' ,g;b or gglb 1+72b3 , gglb;+72bz.

SETUP: B, chooses a random invertible matrix A € Z2*?. Then it implicitly
sets dual orthonormal bases D, D* to: dy = by, do = bo, (d3,ds) = (b3, by) - A
d>1k = b)lka d; = b;a(d;;vdji) = (bga bZ) ) (Ail)—r'

We note that D, D* are properly distributed and reveal no information about
A. B chooses random values o, a1, -+ ,ar, € Zp. A is given the public key

d,.d; _d a1 d ard
)al 179117’7'1:911 27" Lz)'

pk:(Fae(gth "hL:gl
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The master key is msk = (a,g;iz,ggz,al, ceyar).

KEY QUERY: B knows msk and gg 3 , g;i Z, thus can easily call the key generation
algorithm or produce semi-functional keys. It allows B to answer to all A’s key
queries.

— To answer the first j-1 key queries that .4 makes, B runs the semi-functional
key generation algorithm to produce semi-functional keys.
— To answer to the j-th key query for P’, B responds with:

a= (gST)a .tlziez a; .t2_1, b, = t(lli fori € O.

o If ty,ty = gglbl , g;bz, then skp; is a normal key with randomness 77.

bIATobl  Tibfrab) . . .
o If ty, by = git 1720 7122728 then it is a semi-functional key.

— For the remaining key queries, I3 runs the normal key generation algorithm.

CHALLENGE: At some point, A sends B two messages mg, m; and a challenge

pattern P. B chooses a random bit b € {0,1} and encrypts m; under P as

follows: ¢y = my, - (e(u1, g5 ))*, €2 = uy -uQEiEW(P) “

Suppose that B decides not to be honest, and find the nature of the j-th key
by itself. To do so, it creates a ciphertext for a pattern P* such that P/ e, P*.
He tries to decrypt it with skp; to learn if skp; is a normal or a SF key (a
normal key will decrypt correctly while a SF key will with high probability fail
to decrypt). Let’s see that by construction even if skp; is SF it will decrypt

correctly.
T1by+72b5  T1b3+T2b}

Suppose that t1,t2 = (g5 , o ). During decryption, B obtains the
term e (gitzbaJr#z 2iew(p) aib4’ g;’gbg > ez ai—T2b] . g;’2b§ 2iew(P*)no ai). In the ex-

ponent we have o(bs + ba > ey (pry aibs) - 72(b3 30,y (pryai — by) because
P’ ¢, P* implies Z N (W(P*) U ©) = W(P*). The term in the exponent is:
L2 Tot) ZieW(P*) a; —paTo wzieW(P*) a; = 0. Thus it will decrypt, and B will
have no information about the j-th key ’s nature.

In the authorized case, P’ ¢, P. Let’s see that the extra coeflicients in basis
(b3, by) of the ciphertext and the extra coefficients in basis (b3, b)) of the key are
distributed as random vectors in the spans of (d3,dy) and (d3, d}) respectively.
To express them in basis (d3, d4) and (d3, d}) respectively, we multiply them by
AT and A7! respectively. Since the distribution of everything given to A ex-
cept for the j—th key and the challenge ciphertext is independent of the random
matrix A and P? ¢, P, we can conclude that these coefficients are uniformly
random. Thus B has properly simulated Game,_; in this case.

*

If ti,ty = anbI, g;bQ then the coefficients of the semi functional part of the
ciphertext are uniformly random. Thus B has properly simulated Gamey_(;_)
in this case. Therefore B can leverage A’s non-negligible difference in advantage
between these games to obtain a non-negligible advantage against DS2.

Lemma 9. If there exists a PPT algorithm A such that Advi(Q — Advil 18 Mon-
negligible, then there exists a PPT algorithm B with non-negligible advantage
against DS1 with k =1 and n = 4.
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We prove this lemma in two steps, by randomizing each appearance of s in
the ¢y term of the ciphertext, thereby severing its link with the blinding factor.
The end result is a SF encryption of a random message. As a first step, we
consider an intermediary game, called GameQ_Q/, that is exactly like Games_g,
except that in the co term of the challenge ciphertext the coefficient of ds is
changed from being s ZieW(P) a; to a fresh random value in Z,. We denote the

advantage of an algorithm A in this game by Advffl . We first prove the following
lemma.

Lemma 10. If there exists a PPT algorithm A such that Advi‘_Q — Advi‘_Q 18
non-negligible, then there exists a PPT algorithm B with non-negligible advantage
against DS1 with k=1 and n = 4.

Proof. INIT: Bis given D = (I}, g5, 952, got, g, g%, g%, %, w1, 1), along with

t) either equal to g]*® or g[*br72b2,

SETUP: B implicitly sets d; = bs,dy = by, d3 = by;,dy = by, and dT =
b — by d = bl d = b,

This enables B to produce gfl,gf2,9f3,gf4. We note also that D, D* are
properly distributed dual orthonormal bases, and that B can produce gg o gzd 3

and g;lz but does not know gg;. B chooses random values a, a1, ,ar € Zy. It
gives A the public key

ad; -d} aijds aLdQ)

pk:(F7pae(glng) 791117’11:91 ,"',hngl

KEY QUERY: We note that B does not know the full master secret key, but

he knows u; = gg”bH“zb;, e and aq,--- ,ar. This allows him to produce SF

keys as follows: when A requests a key for some pattern Pl, B chooses random

values 'ty € Z,. It sets 7 = pgr and forms the secret key as: @ = (u;)™"" -

’
adl+pzr 3o aidi+tad] b, — o aitty, id
9o , U5 = go .

adi+7d] e ai—rdj+(—r p1)ds+tad]
2

We obtain that a = g . The coefficients of

d3,d} are uniformly random thus it is a SF key.

CHALLENGE: A submits two messages mg, m; and a challenge pattern P. B
chooses b € {0,1} and forms the challenge ciphertext as follows:

* di+sds >, a;
ady-d*\s _ s 2 2 iew(P) @i zdy
)AAA)E ey = gy “t1- 97

c1=my - (e(g1,92
where s,z < Zj.

. sdi+sdy Y, a;+T11d3+zdy 1. .
— If t; is equal to ¢g[*® then ¢y = g, W which is a semi

functional ciphertext and B simulates Games_q.
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sdi+(s 21 ai+72)d2+7'1d3+zd4 . .

—If t; = P28 then ¢ = g W is a semi

functional ciphertext with randomized coefficients for do, thus B simulates
GameQ_Q/.

Therefore, B can leverage A’s non-negligible difference of advantage between
these two games to achieve a non-negligible advantage against DS1.

Note 10. All queried keys shared pq, ps in their randomness. However, as it is
in exponent and “randomized" by other random elements, then for an adversary
it is indistinguishable from a truly random element.

Lemma 11. If there exists a PPT algorithm A such that Advi‘_Q — Advil 18
non-negligible, then there exists a PP T algorithm B with non-negligible advantage
against DS1 with k=1 and n =4

Proof. INIT: Bisgiven D = (I gz*,g2 ,g2 ,91 791 791 791 4wy, l2), along with

t; either equal to g]'®* or g71brT72b2,
SETUP: B 1mp11c1tly sets d1 = b27d2 = b3,d3 = bl,d4 = b4, and dT =
by, dy = by, d3 = b7, d; = bj.

This enables B to produce g1 7g1 ,g1 ,g1 , but not ds. We note also that
D, D* are properly distributed dual orthonormal bases, and that B can produce

d; d; d; d; '
957, 95° and g,* but does not know g, . B chooses random values v ,a1,--- ,ar, €

Zy. Tt computes e(g%*, 5°)* = e(g1, 92)°% % = e(g1,2)*" = e(g1, g2) % 4 It
gives A the public key

pk:(F’p’e(gl’%)adl i 91 Y hy _9a1d2 - 7hL:g?Ld2).

KEY QUERY: We note that B does not know the full master secret key, but
he knows u; ggller“zb , to and ai,--- ,ar. This allows it to produce SF
keys as follov&is. when A requests a key f/or some pattern Pl, B chooses ran-
dom values r ,t4 € Z,. It sets r = por and forms the secret key as: a =
(ul)(a/+rl Dier @i) .95 —H2T d2+t4d4 b — u71’ @i

. ad;+rd; a;—rdi+ a pr4r reg ai)dittad
We obtaln that a=g, Liez pH(a patr w3z ai)ds+tad] and

by = ghhi v imaid . The coefficients of dj, d) are uniformly random thus it is
a SK key.

CHALLENGE: A submits messages mg, m; and challenge pattern P, B chooses
b € {0,1} and forms the challenge ciphertext as follows: s, w, z < Z,,

)adrd{)s’ sdit+wds tl . 2dy

cp = my - (6(91792 =0 91

— If ¢, is equal to g]*®* then ¢; = ggdﬁ'wdrﬂ1 ds+2d4 ig 5 semi functional cipher-

text with the second appearance of s randomised. In this case B simulates
Game, .
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: ditwdy+midgteds . 1 .
— If t; is equal to ¢7*®77™2%2 then ¢, = gESJrTQ) vhwdatmidstzds which is a semi

functional ciphertext with randomised coefficients for d; and ds. Thus in
this case B simulates Games.

Therefore, B can leverage A’s non-negligible difference of advantage between
these two games to achieve a non-negligible advantage against DS1.

Combining lemmas 10 and 11 we obtain lemma 9. Along with lemmas 1, 7
and 8, this completes the proof of theorem 8.

B.2 Second WIBE security proofs

We now prove the security of our pattern-hiding WIBE (section 4.2). We start
by proving indistinguishability between games presented for ¢ = 0, by proving
following lemmas 12, 14, 15 and 16.

Lemma 12. For any adversary A, there exists a probabilistic machine By, whose
running time is essentially the same as that of A, such that for any security pa-

rameter \, Advg‘) )()\) - Advg)()\)’ = Advgib(k)-

Proof. In order to prove lemma 12, we construct a probabilistic machine By
against Problem 1 bis by using any adversary A in a security game (Game, or
Game;) as a black box as follows:

1. By is given a Problem 1 bis instance (p, G1,Ga,Gr, g1, go, €, B, B*, es1,{e;

}ie[[l n]])
2. By plays a role of the challenger in the security game against adversary A.

)abo b by  bari1

3. At the first step of the game, By returns pk = (I, p, e(g1, g2 0, 97°, 91 ,

hi =g, hp = gi") to A.

4. When a key queried is issued, By answers a correct secret key computed by
using B*, i.e. a normal key.

5. When By gets challenge plaintexts mg, m; and pattern P* (with P7 ;é**)
from A), By calculates and returns (cy, cz) such that c; = my-e(gy, go)*b0-bos1
and ¢y = gflbo eg1]] - e;, where eg 1 and e; are from the Problem

i€W (P*),i>2

1 bis instance, s1 < Z, and b{0,1}.

6. After the challenge encryption query, another key query step is executed in
the same manner as step 4.

7. A outputs a bit b. If b = b, By outputs B = 1. Otherwise, By outputs
g =o.
Let’s see that if 8 = 0, then the distribution of (¢1, ¢) in step 5 is the same

as that in Game . If § = 1, the distribution of (¢;,cz) in step 5 is the same as
that in Game;.
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If B =0,
81b0

C2 =0, c €1 H €;

PEW (P*),i>2

_ s1bg  wbi+vybar i
=0 % :

wbi
= .0
1EW (P*),i>2
s1botw > _ bi+vybar 11
o PIEW (P*)
=0
This is the challenge ciphertext in Gamey.
fp=1,
co =gy -epq -1 e
= 7 _ i
IEW (P*),i>2
by w1+ E | zbr g tybar g wb;
=01 9% 11 - ) 1
IEW (P*),i>2
s1bo+w bi+>E | zibrpi+ybar 1
=0

iEW (P*)

Because (z1,-+ ,21) + ZZE\ {OL} and ~ are independently uniform, this is the
challenge ciphertext in Game;.

When 5 = 0, the advantage of A in the above game is equal to that in Gameg,
ie., Advfg)()\), and is also equal to Prg = Pr[By(1*,0) — 1]o + G5 (1*, L)].
Similarly, when 8 = 1, we see that the advantage of A in the above game is equal
to Adv{(}), and is also equal to Pr; = Pr [Bo(1*,0) — 1o + G (1%, L)].
Therefore,

AV (A) = Advy) (V)| = [Pro — Pri| = Adv5¥(A). This completes the proof.

To prove lemma 14, we need the following lemma from [23], that we admit.

Lemma 13. [28] Let C = {(x,v)|x - v # 0} C VXV*, where V is n-dimensional

vector space Zy, and V* its dual. For all (x,v) € C, for all (r,w) € C,

Prix(pU) =r Av(rZ) =w] =1/s,

where Z < GL(n,Zy), p,7 < 7%, U = (Z7)T and s = #C(= (p" — 1)(p" —
n—1
p")-

Lemma 14. For any adversary A, there exists a probabilistic machine By, whose
running time is essentially the same as that of A, such that for any security pa-

rameter A, Advfff(kfl))()\) - Advffk)()\) < Advgkzb (A) +1/p.
Proof. In order to prove lemma 14, we construct a probabilistic machine By,

against Problem 2 bis by using any adversary A in a security game (Gamey_(;_1)
or Games_j) as a black box as follows:

33



. By, is given a Problem 2 bis instance (p, G1, Gz, Gr, g1, g2, ¢, B,B*, {h} ;. e;
}ieﬂl,n]])'

. By, plays a role of the challenger in the security game against adversary A.
. At the first step of the game, B, returns pk = (I, p, e(gy, g2)*t0-%, gbo, gd4r+1
hy =gt by = gi") to A.

. When the s-th key query is issued for predicate P, B;, answers as follows:
— When 1 < s <k —1, By calculates and answers by using B*

ko — ab5+2jezrjb;+zf:1wlb2+l+2f=1"lb§L+z
SKp = gy .

— When s = k, By, calculates and answers skp as follows:{{; < Zy}, .7,
b} *E;
skp = g5 - Hh@&fa
ieT
— When ¢ > k+ 1, By answers a correct secret key computed by using B*,

i.e. normal key.
. When Bj gets challenge plaintexts mg,m; and pattern P* from A, By

calculates and returns (ci,cp) such that ¢; = my - e(gr, g2)*®%0%1 and
cy = gf1b°+s2b“+1 11 - e;, where e; are from the Problem 2 bis in-
€W (P*)

stance, s1,s2 < Zp, and b € {0, 1}.

. After the challenge encryption query, another key query step is executed in
the same manner as step 4.

. A outputs a bit b. If b = b, By, outputs 8 = 1. Otherwise, By outputs
B8 =0.

Let’s see that if 5 = 0, then the distribution of (¢1,¢3) in step 5 and skp

is the same as that in Game,_(,_1) except with probability 1/p. If 3 = 1, the
distribution of (¢1, ¢3) in step 5 and skp is the same as that in Game,_j, except
with probability 1/p.

We consider the joint distribution of ¢; and skp. Ciphertext ¢ generated in step

where s1,s2,w € Zp, t; = >

co = gslbo+82b4L+1 . e
- — 1
1 iEW (P*)
_ gs1bo+82b4L+1 . g“’bi+7 ZJL:1 2iibL4j
1 iew Pt
s1bo+sabar1tw bi+1 Zf=1 > zi by
- PIEW (P*) €W (P*)
=0
s1bo+sabspy1twd, bH—Z]L:l tibryj
—g PEW (P*)
— J1l

_ i+ oand (f,---,t1) « ZL\ {0} are
i (pey P A0 (1 L) » \ {0} ar

independently uniform.
If B8 =0, secret key generated in case b of step 4 or 6 is

* * L *
_ _abg & aby+30,c7 §i0b] +30,c7 2051 &idi b3
skp =gy ° - Ilier hﬁ,; =92
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This is a normal secret key, thus distribution of (c1, ¢2),skp are as in Game,_(;,_1)
(i.e. temporal ciphertext and normal key).
If s =1,

ab} *&;
skp =9y ° [lier hﬁi‘

- go‘bS"'EieI §i0b]+30,c1 Zf:1 SiwigbL i+ et Zfﬂ §idi jb3L 4
- J2

abg+3icr éiébf""zfﬁ by i+ e Ef=1 &idi b3y

=99

where 53]‘ = ZieIgiuiJ and (531, cee ,iL) < Zf)’ \ {0}

Since Z = (U™ )T where Z = (2i,7) and U = (u; ), we should verify the
independence of coefficient vectors t= (t1,-+ ,t;) in ¢ and & = (&1, -+ ,Ty)
in skp. Notice that we can rewrite ¢ and & respectively as 7 U and @ - Z,

where ¥ and @ are vectors such that /; = {% o;fh:erfvie for ¢ € [1, L] and

T, = 7 i€ W(PY) for i € [1,L]. Since TN W (P*) # @ from condition
0  otherwise

on keys and challenge ciphertext, coefficients vectors ¢ and & are (pairwise)-
independently and uniformly distributed under the condition that 7 .z #0
(from lemma 13). Since (x1,---, 1), (t1,--- ,t1) < ZL in Gamey_j, the event
that(z, .-+, @) - (t1,- -, ) = 0 occurs in the game with probability 1/p.

Thus this is a temporal 1 secret key, and the distribution of (c1, ¢2),skp are as
in Gamey_j, except with probability 1/p.

When B = 0, the advantage of A in the above game is equal to that in
Gamey_(j,_1), i.e., Advff(kfl))()\), and is also equal to Prg = Pr [B,(1*, 0) — 1]
0 g(ﬁ’?”(lk, L)} Similarly, when 8 = 1, we see that the advantage of A in the
above game is equal to Advfﬁk)()\), and is also equal to Pry = Pr [Bj, (1%, 0) — 1]
0+ ngb(l)‘, L)] Therefore, Advf_(k_l))()\) - Advf_h)()\)‘ < |Prg—Pry| +
1/p= Advgzb(/\) + 1/p. This completes the proof.

Lemma 15. For any adversary A, AdvfﬁQ)(A) = Advf)()\).

Proof. To prove lemma 15, we will show that distribution (G1, Gs, G, g1, g2, €, D,

I@%, {sk(j)} 1.0l ,C1, C2) in Gamey_g and that in Games are equivalent. For that
Jell,

purpose, we define new bases D, D* as follows: we generate randoms {&; s}, , cnL]

{91‘}1‘:1,~--L and set,dr; = bryi — 25:1 §isbs — 0ibo, di = b; + Zstl &s.i 2+s
for i € [1,L] and djy = by + 25, 0,7 .. We set

D= (b03b17”' 7bL7dL+1a"' 7d2Lab2L+17"' 7b4L+1)?
D* = (d07dla"' adL7bL+17"' ab2L7b2L+13"' ab4L+1)'
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We then easily verify that D and D* are dual orthonormal, and are distributed the

same as the original bases, B, B*. Keys and challenge ciphertext ({sk(j )} nal’
Jjell,
c1,¢2) in Gamey_q are expressed over bases B and B* as

. * (J) p* (J) p* (3) %
sk(J) _ g;b0+zi61 r o+, @) bL+l+ZlL:1 m” b5

)

_ bo b}
c1 = my - e(g1, g2) 00,
sibo+sobary1+s3 >, bi+>F, tibr g
_ IEW (P*)
Co =0,

Then,

: « ) g e ()
k) — g;bO‘*‘Eiez EREDDHEE N VRS DI P

B ga(dsfzle Oudf )+ er rD (= Gndy )AL 2P dy Sk Py,
- J2

_ gad3+2iel T5J>d:+2f:1 igg)d2+z+2f=1 nl(J)d§L+l
- J2

where a}l(j) =—ath - icr ng)ﬁu + xl(j) for [ € [1, L], which are uniformly,
independently distributed since .Z‘l(j ) L.

sibo+sabar41+s3y, b+ 0k tibr g
_ iEW (P*)
C2 =0,
sido+sadar1+s3),  _ di+>k ti(dopi+35 | & sds+0ido)
_ €W (P*)
=9
do+(s1+3 0, ti0)+Fsadart1+s3 > _ - i+ uXk g sd+ S tid
iEeW (P*
= gl

’
o gsld0+52d4L+1+ZiL:1 S5idi+3k tidr
— Jl

SE o ug  iti¢ W(PY)
SE &+ 53 if i € W(PY)

where s/1 = 5 + Z{‘Iltl@l and §; = for k €

I, Z].

which are uniformly, independently distributed since (t1,- - ,#;) + Zﬁ \ {0},
{&i} < Zp.

In the light of the adversary’s view, both (B, B*) and (D, D*) are consistent
with public key pk = (F,6(91,g2)ab°'bgagl170a9?4“1,’11 = g%, hp = gb).

Therefore, {sk(j )} 1.0l and ¢, can be expressed as keys and ciphertext in two
Jelt,
ways, in Games_g over bases (B,B*) and in Games over bases (D, D*). Thus,

Gamey_¢ can be conceptually changed to Games.
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Lemma 16. For any adversary A, Advfi’)(/\) =0.

Proof. The value of b is independent from the adversary’s view in Games. Hence,
By —
Adv”’(\) = 0.

Combining all theses proofs, we obtain that any adversary has no advantage
in winning the security game. Adding to these the fact that Problem 1 bis and
Problem 2 bis hold if XDLin1, XDLin2 hold, we have proven theorem 10 when
t=0.

Finally we prove the indistinguishability between games presented for ¢t = 1,
by proving following lemmas 17, 18, 19, 20, 21 and 22.

Lemma 17. For any adversary A, there exists a probabilistic machine By against
Problem 1, whose running time is essentially the same as that of A, such that

or any security parameter A, \Y — Adv < Adv .
f ' A, [AVE () — Advi (1) < AdvEL(A

To prove lemma 17, we construct a probabilistic machine B; against Problem
1 using an adversary A in a security game (Game, or Game;) as a black box as
follows:

1. Bj is given a Problem 1 instance (p, G1, G2, Gr, g1, g2, e,]BLIE%*, es1, {ei}ie[[2,n]])‘

2. Bj plays a role of the challenger in the security game against adversary A.

3. At the fist step of the game, By provides A a public key pk = (G1, G2, Gr, g1, g2,
p, e(gy, go)*0os gbo, gll)““,hl =gb o hp =P of Game, (and Game;).

4. When a key query is issued for a pattern P, B; answers normal key skp,
that is computed using B* of the Problem 1 instance.

5. When B; receives an encryption query with challenge plaintext m and pat-
terns P°, P! from A, By computes the challenge ciphertext (c1,€2) s.t.,

s1abob? s1bo+s2bar 1

c1 =m-e(g1,92) 0 ¢y =g eg1 [ i

_ e

€W (PP)\{1}
where s1, 82 = Zp, b« {0,1} and {b;};,_q 47,11 €61, {€i};—y .. 1, is part of
the Problem 1 instance.

6. When a key query is issued by A after the encryption query, B; executes the
same procedure as that of step 4.

7. A finally outputs bit b. If b=b', By outputs 8 = 1. Otherwise, B; outputs
8 =0.
Now let’s see that the distribution of the view of adversary A in the above-

mentioned game simulated by B; given a Problem 1 instance with 8 € {0,1} is
the same as that in Game, (resp. Game,) if 5 =0 (resp. B =1).
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We will consider the distribution of ¢3. When 8 = 0, ¢o generated in step 5
is

s1bo+s2bar 1
c2 =gy cepr-Jl €
iEW (PP)\{1}
s1bo+sabarp1+wbi+ybarpi1+w b;
— ieWw (PP)\{1}
= gl ,
s1bo+s3 >, _ +s,bar 1
_ iew (Pb)
=0

where s3 = w, 5/2 = sy +7, 51 € Zy are uniformly and independently distributed.

When 8 =1, ¢ generated in step 5 is
s1bo+s2bar 1

co = e _ e;

2= 40 P ey

s1bo+s2bar+1+wbi+2brp1+ybarp1tw >

:gl

!
sibo+sz Y. _ +tbr1+sobar 41
=g iew (Pb)
- J1

_ b;
€W (Pb)\ {1}

where t = z,83 = w,slz = 53 + 7,81 € Z, are uniformly and independently
distributed.
Therefore, the above ¢y, ¢y give a challenge ciphertext in Gamey when 8 = 0
and that in Game; when 8 = 1. Thus,

Adv I (A) — AdvP (A

= ‘Pr [Bl(ﬂ, 0) = llo + gégl(l”\,L)] —Pr [Bl(lL 0) = 1lo + gfl(l)‘,L)} ’
< Advg!'(\).
This complete the proof of lemma 17.
Lemma 18. For any adversary A,
AV ) - AdvE T )] < e
fore =4/p when h =1 and € = 3/p when h > 2.

We start with the case h = 1, i.e. the proof for
4/p.

AV () = AVETTTI (V)] <

We define an intermediate game, Game,/, and will show the equivalence of
the distribution of the views of A in Game; and that in Game;s and those in
Gamey_;_; and in Game,/.

Game, :Game,/ is the same as Game; except that the ¢ of the challenge
ciphertext for (challenge plaintext m and) patterns P°, P is:

s1bo+s3 > _ bi+212,i1 ribryi+sabar 1
_ iew (Pb)
C2 =0
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where 7; < Z, for i € [1,2L], » = (r1,--- ,72r) # 0*/, and all the other vari-
ables are generated as in Game;.

Let’s see that the distribution of (G1, G2, Gr, g1, g2, €, p, B*, B, {sk(j)} c1

jerLe1’
¢2) in Game; and that in Game, are equivalent except with negligible probability.

We will consider the distribution in Game;. We define new dual orthonormal
bases (D, D*) below. Pick F' < GL(2L,Z,), and set

dri1 bri1 dj .y by 1
— _F"_1 . : : = _F‘Fr . .
ds1, b3 dsp b3

D = (bo, - ,br,dp41, -+ ,d3r,bsrq1,- -+ ,bar41) and D* = (by,--- ,by,d} 1,

oo, dyp,bap -+, by ). Then, D, D* are dual orthonormal bases. Notice that
dr i1

then by is equal to F - : , thus can be written as by 1 = fi1dp+1 +
dsr,

fi2drio+ -+ fi2rdsr, with

fi1 fie, o fier
for fo2, o0 faor

fara far2s - fap2n
Challenge ciphertext cs is expressed as

s1bot+ss >, _ b;+tbr 1+s2bar 11
g icW (Pb)
1

sido+szy, _ di+t(fi,1dr+1+f1,2dp42++f1,20dar)+sadar 41
=g iew (Pb)
- J1l

sido+ss > _ di+3%E ridpi+sadanin
=g iew (pPb)
— J1

where 51,892,583 < Zp and r = (r; = tf1;)iep,2L]- Vector 7 is uniformly
distributed in ZI%L \{02L } except for probability 1/p and independent of all the
other variables.

In Gamel, Skp is g;b6+zjez ij;' +ZzL=1 nl'b§L+l — g;dS""ngz Tjd;+ZLL=1 nl'd§L+l,
where 7, {nl}le[[l,L]] < Z,, for every queried key.

In the light of the adversary’s view, (D,D*) is consistent with public key

(G1,Ga, G, g1, 92,€,0,b0,bar 1, g°*,- -, g°*). Moreover, the challenge cipher-
text in Game; can be conceptually changed to that in Game;s except with prob-
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ability 1/p.

Let’s see that the distribution of (G1, G2, Gr, g1, g2, €, p, B*, B, {sk(j)} o’
Jjell,
¢1,¢2) in Gamey_1_; and that in Game,s are equivalent except with probability

3/p.

We will consider the distribution in Games_;_1. We define new dual orthonor-
mal bases (D, D*) as above. Challenge ciphertext ¢y is expressed as

s1bo+ss Y. b+t > bryitu >, bargit+a >, bapgitsebaria

iew (Pb) iew (Pb) iew (PO) iew(Pl)
91
2N 2L
sidotss 3 dit+t X (X figdoi)tu X (X figdo+s)
— — j=1 — j=1
o iew (Pb) iew (Pb) ’ iew (PO) ’
=0
2L
a > ( fijdryj)+sadar 41
— =1
iew(pPl) !
‘Y1
2L
sido+ss >,  di+ > ridpyitsedapi
— i=1
ieW (Pb)
=9
where s1, $2, 3 < Z,, and vector r such that fori € [1,2L],r;, =t _ fii
JEW(P?)
fudl o fiatay, - fia
JEW(PO) JEW(PY)

Vector r # 0%l except with probability 3/p, is uniformly distributed in ZZ%L

\{OQL}, and independent of all the other variables. For the queried keys, the
same as above holds also in Games_1_1.

In the light of the adversary’s view, (ID,D*) is consistent with public key
(G1,Ga,Gr, g1, 92, ¢,p, bg, b4L+1,gf1, e ,gi’L). Moreover, the challenge cipher-
text in Gamey_1_; can be conceptually changed to that in Game;s except with
probability 3/p.

This completes the proof when h = 1.

Now h > 2, i.e. proof for |Adv(y~ "D (\) = AdvG "V (\)| < 3/p.

We define an intermediate game, Game27(h71)74/, and will show the equiv-
alence of the distribution of the views of A in Gamey_(;_1)_4 and that in
Game2_(h_1)_4/ and those in Gamey_j,_; and in Gamez_(h_l)_4/.

Game,_(,_qy_y: Game,_(,_;y_, is the same as Gamey_(j,—1)—4 except that

the ¢ of the challenge ciphertext for (challenge plaintext m and) patterns P°, P*
is:
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L
sibot+sz > bit+ > ribpyitu Y bapyitad YD bapgitsebaria
iew (Pb) iew (PO) iew (Pl)
c2 = gl

where r; « Z, for i € [1,L], 7 = (r1,--- ,7) # 0, and all the other vari-
ables are generated as in Gameg_(h_l)_4.

Let’s see that the distribution of (Gy, G, Gr, g1, ga, €, p, B*, B, {sk(j)} .
Jjel1,
c1,¢2) in Gamey_(j,_1)_4 and that in Game2_(h_1)_4/ are equivalent except with

probability 2/p.

We will consider the distribution in Game,_(;,_1)_4. We define new dual or-
thonormal bases (D,D*) below.

We generate F' < GL(L,Z,), and set

dri1 bri dj iy b1
_ F—l . . — FT .
dor, bor, dyp, by,
D= (b, - ,br,dry1,- - ,dap,bori1,--- ,bar41), and D* = (by, - -- , b7, d},
o, dyp,byp - by, 1). Then D and D* are dual orthonormal bases. Chal-

lenge ciphertext c; is expressed as

sibotss > bi+t > brpitt > bryitu > bapgit@ > bapgitsabania
iew (Pb) iew (PO) iew(pPl) iew (PO) iew (PO)

91

v darti

L
lf'i,jdLﬂ)-*-UE
=

L
sidotss 30 ditt D (Z:lfi,jdLH)th" 2

= - ieW (PO)
iew(Pl)

. iew (Pb) iew (p0)

=0

a Y, dopyitsedarin
iew (PO)

‘91

sidot+ss Y di+>Xl ridiyitu Y dapyita Y depgitsadargr

iew (Pb) iew (PO) iew (PO)

=09

where s1,82,53,u,% < Z, and 7 is defined such that for ¢ € [1,L], r, =

t _ it _ ;. Thus 7 # 0% except with probability 2/p, is
ZjGW(PO) fia ZjeW(Pl) fii # p p y 2/p;

uniformly distributed and independent of all the other variables.

When 1 < j < h — 1, the j-th queried key skp) is go with exponent abf +

* L * * *
D ez Tibi 2 ez ®ibori+3 Ly mebsp = adg Y e ridi 4 er widar gt
L . .

> =1 - d3p ;. where {xj7rj}i,j€[[l,L]] Aty < Zp- When h < j < Q, the
j-th queried key skp(;) is go With exponent abg + ;.7 7;bj + S b =
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* * L *
ady + EjeI ridi 4 3l dypy, Where{rj}je[[l,L]] ’{nl}le[[l,L]] — Ly

In the light of the adversary’s view, (D,D*) is consistent with public key
(G1,Ga,Gr, g1, 92, D, bo,bars1, g°*, -, g°*). Moreover, the challenge cipher-
text in Gamey_(,—1)—4 can be conceptually changed to that in Game27(h71)74f
except with probability 2/p.

Let us see that the distribution of (Gy, G2, G, g1, g2, €, p, B*, B, {sk(j)} nop’
JE[1,
c1,¢2) in Gamey_j_;1 and that in Gamezf(hfl)%/ are equivalent except with

probability 1/p.

We will consider the distribution in Games_j;_1. We define new dual or-
thonormal bases (ID,D*) as above. Challenge ciphertext cg is expressed as

sibo+sz > bi+t >, bryitu > bapgyit+a Y, bapyitsebapga

iew (Pb) iew (Pb) iew (PO) iew (PO)
91
L
sido+ss > di+t > (X dpyj)tu > dopyit+a >, dapqitsadaptn
— — j=1 — —
N iew (Pb) ieW (Pb) ’ iew (PO) iew (PO)
=0
L
sido+ss > di+ Y ?”idL+7:+Zf’:1 dryi+u >, doppit+a Y, dopyitsedargn
— =1 — —
_ iew (pPb) iew (PO) iew (PO)
=01
where s1,2,53,u,4 < Z, and vector r such that for ¢ € [1,L], r; =
ty> _ , fji. Vector  # 0 except with probability 1/p, then is uniformly
JEW(P?®)

distributed in Zﬁ \{OL}, and independent of all the other variables.
For the queried keys, the same as above holds also in Gameg_j,_.

In the light of the adversary’s view, (D,D*) is consistent with public key
(G1,Ga, Gr,91,92,€,0,b0,bar 41, gi’l, e ,gfL). Moreover, the challenge cipher-
text in Gamep_j,—1 can be conceptually changed to that in Game,_(;,_;y_, ex-
cept with probability 1/p.

This completes the proof when h > 2, and thus also the proof of lemma 18.

Lemma 19. For any adversary A, there exists a probabilistic machine Ba_1,
whose running time is essentially the same as that of A, such that for any secu-

rity parameter A, Advi‘_h_l()\) - Advi\_h_Q(A) < Advgihi1 (M), where Ba_p—1(.)
= B2—1(h’a )

Proof. We construct a probabilistic adversary By_; against Problem 2 using an
adversary A in a security game (Games_j_; or Gamey_;_») as a black box as
follows:

1. By_1 is given an integer h and (p, G1, Go2, Gr, g1, g2, €, B, B*, {hfﬂ7 ei}ie[[l L]]).
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2. By_1 plays a role of the challenger in the security game against adversary
A.
3. At the first step of the game, By_1 provides A elements for public key
,p,GhGg,GT,gl,gg,e B of Game,_ (h—1)—4 (and Gamey_j_1), where B =
(bg, - ,br, byr+1) is obtained from the Problem 2 instance. A can now cre-
ates pk.

4. When the (-th key query is issued for a pattern P, Bs_; answers as follows:
— When 1 < < h—1, By_; answers keys of temporal 2 form, that are

computed using B* of the Problem 2 instance.
— When ¢ = h, By_1 calculates skp using {hzﬂ'}z‘e[[l L {6 Y0841, 4L

of the Problem 2 instance as follows: § = (n1,--- ,nL) = Z},& « Zy
for i € [1,L]

*EL e, Ly Mb5L 1
R LR
i€

— When ¢ > h + 1, By_; answers normal keys using B* of the Problem 2
instance.
5. When By_; receives an encryption query with challenge plaintext m and
patterns PV, P! from A, By_; computes challenge ciphertext (c;, cz) s.t.

c1 =m-e(gy,gs)*1b0b

cy = g51bo+82b4L+1 H - e 'guZiEVT/(PO) 2 +uZiEW(P1) 2
! iewpry - L
where s1,s2,u, U < Zp,b < {0,1} and {bi}i:072L+1,~~,3L,4L+1’ {ei}ie[[l,L]]
is a part of the Problem 2 instance.
- When a key query is issued by A, By executes the same as in step 4.

7. .A outputs bit b. If b = b, Bo_; outputs 8 = 1. Otherwise, By_; outputs
g =o.
Now let us see that if 5 = 0, then the distribution of the view of adversary A

in the above mentioned game simulated by By_; is the same that in Gamey_j,_1,
and that if 8 = 1 it is the same that in Game,_;,_5. Ciphertext c¢; is

(=]

ud boryit+uy, _ bar i
951bo+82b4L+1 . H ei g iew (P0) ! iew (Pl) !
— 1
! iew(P) !
u _ boryituy, bor i
_ g81b0+82b4L+1 H gwb¢+abL+i g iew (PO) iew (Pl
— J1 — 1 1
ieW (PP?)
s1bo+sabar1+wd bit+o> _ bryitud, _ boryit+uy, _ bar i
=g iew (Pb) iew (pPb) iew (PO) iew (Pl)
- J1l

where s1, 52,w, 0,u, 0 € Z, are uniformly distributed.
Now let us see the value of skp. When 8 =0, skp in case (b) of step 4 or 6 is

*51 Yier,y Mbings  abl 8EbI+E:8ob5 0 Dieqi,n) Mib3L4
H hgi - =9 " |19 " 92
€T i€L
o g"‘bé"‘zjez 5§ib;+zie[[1,L]] ¢'ib§L+i
- J2
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where «, ¢ are uniformly and independently distributed and ¢; = &;dp + n; if
1 € T and ¢; = n; otherwise. Therefore, generated co,skp have the same joint
distribution as in Gamey_j_1. When 8 = 1, skp in case (b) of step 4 or 6 is

abg #€  Doieqi,rn] MbaL g
92 " Iliez P - 92

_ab; £i0b; +Eimbr 1i+E€idobs .y Dieqn) MibaL
=9 Hiez 92 * 92

_ gO‘bSJFZiez 68ibT+3 0, ez 78T i+ e 0] Pibin4a
= 92
where o, §, 7 are uniformly and independently distributed and ¢; = &;00+n; if
1 € T and z; = n; otherwise. Therefore, generated co, skp have the same joint dis-
tribution as in Gamey_j,_o. Thus ‘Advi{hil(/\) — A2_h_2(/\)’ < Advg? . (N).

Ba—p-1

Lemma 20. For any adversary A,

AdvC" D (y) — Advf_h_g)‘ < A+ 5/p.

Proof. We will show that distribution (p, G1, G2, G, g1, g2, ¢, B, B*, {sk(j) }jE[[LQ]]

,C1,¢2) in Games_j,_o and that in Games_j,_3 are equivalent. For that purpose,
we define an intermediate game: Game,_,_, is the same as Gamey_;,_o except
that ¢, of the challenge ciphertext for challenge plaintext m and patterns P°, P!
is:
s1bo+sabar1+>, 5ibi+>_ vibrys ud bopyitadl bar4i
_ iew (Pb) iew (P0) iew (pPl)
C2 =01 91
where {§; € Zp}l.e[[l v < Z% and all the other variables are generated

as in Gamey_j_o. Notice that v is equal to zero at position ¢ such that i ¢
W(P%) A ¢ W(PY).

Let us see that the distribution (p, Gy, Ga,Gr, g1, 92, €, B, B*, {sk(j)} c1

jelQr’
cy) in Gameg_j_o and that in Game,_,_ o are equivalent except with negligible

probability.

Here we cannot do as in the original proof. Indeed, otherwise with the change
of bases B, B* to D, D*, the h-th key can no longer decrypt the ciphertext. Thus,
the adversary can distinguish the different games as in one case the h-th key
decrypts the challenge ciphertext but not in the other case.

That is because, with the definition of D, D*, some elements of B (resp.B* ) are

now linear combination of elements of I (resp.D* ). Thus, the set IX/(Pb) NZis
no longer equal to @ but is equal to W(Pb).
We will consider the distribution in Games_j_s. We define new dual or-

thonormal bases (D,D*), following the idea of the last lemma in the original
proof. For i € [1, L] let 0;,7; < Z,, and set

d; =77"b; + 0;br i, df =7, dpy; = Tibry df ., = —0:bf + 770},
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D: (bO’dl"' 7dL7dL+17"' 7d2L7b2L+1"'b4L+1)7
* % * * * * * *
D* = (b07 157" advaLvdL+1v"' 7d2La 2L+1>" " ab4L+1)'

We then easily verify that D and D* are dual orthonormal. The h-th queried
key and challenge ciphertext (sk(h), 1, c2) in Games_j,_o are expressed over bases
(B,B*) and (D,D*) as

" X X L “
Sk(h) _ g;‘b0+2j61 T+ ez 2ibL ;2010 mbsL

ad3+2jez T.ifid;""z:jgz Zj (Tjd2+j+0.7d;)+zlL:1 nld§L+l

:g2
. gad3+2jez(rﬂ’j+Z.7‘9j)d§+zjez z;m5d} A mdy gy
- J2
s1bo+sabar 1483, _ bi+t> _ bryituy, _ bop iy, _ bar i
_ iew (Pb) ieW (Pb) iew (PO) iew(Pl)
C2 =0,
sido+sedar11+s3 Yy, _ (ridi—0;dr4i)+t>, dy +uds dar 44
_ ie W (Pb) iew (Pb) iew (PO)
=0
ay, dor4i
iew (Pl)
91
sido+sedar1+s3>,  _ Tidi+Y,  _ (t—s30;)dy ;+ud dar 44
_ iew (Pb) iew (Pb) iew (PO)
=01
ay, dar 44
icw (Pl)
91
sbib sdid
c1 = m.e(gr,92)77°" = m.e(g1, g2)* %0

where 7; = r;7; + 2;0;, Z; = z;7; for j € 7 and 7; = w; = 0 otherwise, and

3; =837, v; =t — s30; for i € IX/(PZ’) and §; = v; = 0 otherwise. §;,7;, v, w are
uniformly distributed for the position different of 0 and independent of all the
other variables except with probability ﬁ +2/p.

In the light of the adversary view, both (B,B*) and (D,D*) are consis-
tent with public key pk = (p, G1, G2, Gr, g1, 92,¢,B,B*) and the answered keys

{sk(j )} . Therefore, by using the above result for the distribution of (sk(h), cq,
j

co), {sk(j )} 1.0l and c; can be expressed as keys and ciphertext in two ways,
Jjelt,
in Gamey_j,_o over bases (B,B*) and in Game,_, . over bases (D,D*). Thus,
Gamey_j,_o can be conceptually changed to Game,_; o, except with probability
2
ﬁ + 2/]9.

Now let us see that the distribution (p, G1, G, Gr, g1, g2, ¢, B, B*, {sk(j)} Lol
Jelt,
,c1,¢2) in Gamea_j,_3 and that in Game,_,_, are equivalent except with neg-

ligible probability. As above, we set new bases (ID,D*). The h-th queried key
sk in Games_j_3 is expressed as above in bases B* and D*, and the part of
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the ciphertext ¢; in Games_;,_3 is given as above. ¢o in Games_j,_3 is expressed
over bases B and D as g; with exponent

s1bo + s2bar+1 + s3 Z b+t Z br+i

iEW (PY) €W (PO)
Z brii+tu Z bar+i + 4 Z bar+i
iew (P1) ieW (P0) iew (P1)

= s1do + s2dar+1 + s3 Z (rid; — Oidp4s) + 1 Z Ti_ldL-H'

ieW (PY) iEW (P)
+t Z o +u Z dopyi +1 Z dor i
iEW (PL) i€EW (PO) i€EW (P1)
= s1do + s2dar 1 + s3 Z Tid; — 83 Z Oidrti +1 Z !
iEW (PPY) iEW (PY) i€eW (PO)
dr.i+1 Z TfldLH +u Z doryi + 14 Z dor+i
i€EW (PL) i€W (PO) i€EW (P1)
We can define v the coefficient vector of (dp41, - ,dar) as for i € [1, L]:
ol ifi e W(P°)Ni¢ W(PHYAb=1
o if i € W(PYAi¢ WP )Ab=0
by = d —sabi+ 7 if i € W(P°)Aig¢ W(PYAb=0
N ifi e W(PYANi¢ WP)Ab=1
—s30; + 1 1 Hif i e W(PO) Ni € IX/(Pl)
0 otherwise

and 5; = s37; for i € V_V(Pb). v, {§i}i:17__,7L are uniformly distributed for the
position different of 0 and independent of the other variables except with prob-
ability 3/p .

Similar as above, we see that {sk(j)} 1.0l and ¢, can be expressed as keys
Jjelte
and ciphertext in two ways, in Gamey_j_3 over bases (B, B*) and in Game,_;_

over bases (D, D*). Thus Gamey_j,_3 can be conceptually changed to Game, _,,_/
except with probability ﬁ + 3/p. Combining both, we obtain lemma 20.

Lemma 21. For any adversary A, there exists a probabilistic machine Ba_o,
whose running time is essentially the same as that of A, such that for any secu-
rity parameter \,

AdvZ "3 — AdvT TR < Advg? (V)

where Ba_p_o(.) = Ba_o(h,.).
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Proof. We construct a probabilistic adversary Bs_o against Problem 3 using an
adversary A in a security game (Games_j_3 or Games_j,_4) as a black box as
follows:

1. By_ is given an integer h and a Problem 3 instance, (p, G1, G2, Gr, g1, g2, €, ]ﬁ%,
B*, {h;},iv €i, fi}ZG[[Ln]])

2. By_o plays a role of the challenger in the security game against adversary
A.

3. At the first step of the game, By_j, provides A a public key pk = (p, G1, G2, G,

« b

g1, 92, e(glv g2)ab0b0 ) g?O ) gijl s T 7g?L ) 914L+1 of Game27h73 (and Game27h74)7

obtained from the Problem 3 instance.

4. When the (-th key query is issued for a pattern P, Bs_o answers as follows:

— When 1 < < h—1, By_5 answers keys of temporal 2 form, that are
computed using B* of the Problem 3 instance.

— When ¢ = h, Bo_ calculates skp using ({hZai}ie[[l o 0 iz 5Lt ar)

of the Problem 3 instance as follows: {03}, 1,1y < Zp,m = (M1, ,71L)
L
— Z,
e LT Jo

i€l

— When ¢ > h+ 1, By_5 answers normal keys using B* of the Problem 3
instance.

5. When By_; receives an encryption query with the challenge plaintext m and
patterns PV, P from A, By o computes the challenge ciphertext (ci,cs)
such that

s1bo+sabart1+s3d>, . b;
iew (Pb)
c2 =g, o 1 =T I S
i€EW (PO) iew(p) "

c1 =m - (e(g1,ga)bobo)s

where s1, 52,83 < Zp,b < {0,1} and ({bi}i:O,QLJrl,---,3L,4L+17 {ei}ie[[l,L]] g
{ei, fi}iep rp) is @ part of the Problem 3 instance.

6. When a key query is issued by A after the encryption query, Bs_o executes
the same procedure as in that of step 4.

7. A finally outputs bit b. If b = b, Bo_o outputs 8 = 1. Otherwise, Bao_»
outputs ﬂ' =0.

Let us see that the distribution of the view of adversary A in the above-
mentioned game simulated by Bs_2 given a Problem 3 instance with 8 € {0,1}
is the same as that in Gamey_;,_3 (resp. Gamey_p,_4) if =10 (resp. 8 =1).
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We consider the joint distribution of ¢y and skp. Ciphertext cs is

s1bo+sebary1+s3 >, . b;
ieW(PY)
g1 = € 11 - fi
€W (PY) ieW(P?1)
! ” ’ ”
sibo+sobary1+s3>, bi+> (wbpyitw bapyi)+>, _ (k bryitk bapyi)
_ ieW (PP) ieW (PO) iew (Pl
=01
’ !’
s1bo+sabarf1+s3y. bi+>  _ Wbty K bryi
_ iew (Pb) ieWw (PO) iew(Pl)
- gl ” »
_ w baptity, _ K bar4i
g iew (P0) iew (Pl)
‘Y1

where s1, So, S3, wl,of , /<;/,/<;” € Zj are uniformly distributed.
Now let’s see the value of skp. When 8 =0, skp is case (b) of step 4 or 6 is

aby+3 ez Uinf+Z7:e[[1,L]] nib3L 4

*&i
92 liez hg;
o go‘baJFZiez Uib:+2ie[1,Lu nib§L+i+ZieI(T§ibz+i+§i50b§L+i)
- J2

_ gabSJFZiez ”ib:+ziez Tgib2+i+2i61 505inib§L+i+ZiEo nib§L+i
— J2

where «, o, 7, 00, {1: } ie(r) are uniformly and independently distributed. There-
fore, generated cs, skp have the same joint distribution as in Games_j_3.

When =1, skp in case (b) of step 4 or 6 is

abg+3 ez b+ 1, Mib3L4s

3
92 : HieI h’,B,i
o g"‘bS"‘Eiez oib]+3 e,y b3t ez (TEib5 L +E€i00b3 L)
- J2

_ ab<’3+2igz ”ib:+2¢ezTgib;L+z:+Ziez5i50nib;L+i+Eieo nibgLH
- J2

where «, 0, 7, 60, {n: }, e[ are uniformly and independently distributed. There-
fore, generated cs,skp have the same joint distribution as in Games_j,_4.

Thus, [AdvZ"3()) — AQ—h—“(A)‘ < AVEE (V).

Ba_p—2

Lemma 22. For any adversary A,

AdvE D) — AdV (V)| < A+ 3/p.
Proof. To prove this lemma, we will show that distribution (pk, {skp }je[[l,Q]] ,C1,

c2) in Gamey__4 and that in Gameg are equivalent. For that purpose, we define
new dual orthonormal bases (D, D*) as follows:
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We generate 0; < Z,, for ¢ € [1, L] and set for i € [1, L]

dop+i = bapy; — 0;b;, d] =b; + 9ib;L+i
D = (bo,--- ,bar,dort1, -+ s d3rn, dary1, -+ s dany),
D* = (b07 di,---,dp, bL+17 T 7b4L+1)
We then easily verify that D and D* are dual orthonormal, and are distributed
the same as the original bases (B, B*).

Keys and challenge ciphertext {skp; }je[[l,Q]] ,c1,¢C2 in Gamey_g_4 are ex-
pressed over bases (B,B*) and (D, D*) as

Kpi — aby+3 ez 1b1+zzez 1b2L+1+Zz 1771 b3
SKpi = ga

_ gadé"‘zlez J(dy—0, by )t e @ldsn iy A5y
- J2
o gadSJerez rid; +Zjez( —r10:)d3, A ] di
- J2

s1bo+sabary1+s3Y, _ bi+ty>, _ bryit+t>  _ brii
o=y ie W (Pb) iew (PO) iew(Pl)
- J1

wy, boryitud>, _ bar i
g ie W (PO) iew (Pl)
‘91

sido+sadar41+ssy.  _ di+t> drii+ty dri;
=g iew (pPb) iew (PO) iew (Pl)
- Jl

wy, _ (dop4i+0:idi)+a . _ (dap4+i+6:d;)
g iew (P0) iew (Pl
1

sidotsadar i1+ i, vidi+t Y _ dryi+ty dryituy, _ dar i
=g iew (PO) iew(Pl) ieWw (PO)
— J1

Yy dar i
iew (pPl)
‘91

abobgs adodfs

c1 =m-e(g1,92) =m-e(g1,92)

where for ¢ € [1, L]:

T =

. {xg_rg‘ai ificZ

0 otherwise
and

0 if i ¢ W(P°) Ai ¢ W(PY)
0;u if i € W(PY)Ai¢ W(P)Ab=1

) i if i e WPYAi¢ WP )Ab=0
53+ ub; if i € WP )Ai¢ WP HYAb=0
53+ Ub; ifi e WP )YAi¢ W(P)Ab=1
s+ (u-+ 0)6; if i € W(P) Ai € W(P)

49



are uniformly, independently (from other variables) distributed since s3, 0,/ <
Zy, except with probability ﬁ + 3/p.

In the light of the adversary’s view, both (B,B*) and (D,D*) are consistent
with public key pk. Therefore, {skp; }je[[l,Qﬂ ,c1,C2 can be expressed as keys

and ciphertext in two ways, in Gamey_g_4 over bases (B,B*) and in Games
over bases (D, D*).

Thus, Gamey_g_4 can be conceptually changed to Games.

Combining all theses proofs, we obtain that any adversary has no advantage
in winning the security game. Adding to these the fact that Problem 1, Problem
2 and Problem 3 hold if XDLin1,XDLin2 hold, we have proven theorem 10 when
t=1.

C Reductions proofs

The appendix presents the reductions proofs of our problems to XDLin ; and
XDLin 5. Reductions of DS1 and DS2 to DDH in respectively Gy, Gy are done in
[14].

C.1 Security reductions for Problems 1 and 1 bis

Proofs of lemmas 2 and 3, can be done as in [28], using the following intermediate
problem (based on the one of [27], Annex B) and lemmas 23, 24, and 25.

Definition 24. Problem 0 is to guess 3, given (p, Gl,GQ,GT791,92,67B,B*,ZJ6,
505,65, 93%) « ggo(l)‘,n), where (G1,Ga,Gr,p, g1,92,€) is an asymmetric

bilinear pairing group, and k,&,p, 7 < Zy,0,0,w Ly, ¥ = k- &, (B,B*) «

Dual(Z2), B* = (b}, b, b})

ob1+oby 6b1+pba+oby * UJbT"FTb;
1 1 =19, .

yO =g ) yl =49
For a probabilistic adversary B, the advantage of B for Problem 0 is defined as
Advi’(A) = | Pr [B(1*, 0) = 1]e + G5 °(1*,n)] — Pr [B(1*,0) — 1]+ G{°(1*,n)] |

Lemma 23. For any adversary D, there is a probabilistic machine £, whose
running time is essentially the same as that of £, such that for any security
parameter X, _

AdvE2 () < AdvEPH™ () 4 5/p.

Proof. Given a XDLinl instance gl,gf,gf,gfg,gf“,gz,gg,g’;,ggg, 95", Y3, where
Y5 = g2 or g7 where z « 7, is chosen randomly, & calculates gp = e(g%, ¢5)
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and sets 4 x 4 matrices IT*, IT as follows:

£001 k 0 0 0
10001 « | —r =€ 0 K¢
= 0k01 AT = 0 ¢ 00
0010 0 0 rx§O

Then, IT.(IT*)" = k¢ - Idy. By using IT, IT*, £ sets
uy = (g§7070a91) (0 0,0 gl) (079?70’91) Uyg = (070a9170)7
= (g§u07070) U2 (92 792 70 g2 ) (07957070) 'U,Z = (0u0795570>

& can compute uq, uz, us, u4, ui, uj from the above XDLinl instance above. Let
bases U = (u;);=1,23.4 of G} and U* = (u})i=123.4 of Gj. £ chooses 1, ¢ + Z,
such that 1 # 0, and sets

v* = (95,9,",0,95") wp = (g1°, 97", 0,Yp)

& generates random linear transformation W = (w; ;)
Z=WT)t= (2i,J)i j=1,... 4 then calculates

4 — GL(4,Zy),

Q=1

b = Z?:l wi jui fori=1,3 b, = 2?21 ziju; fori=1,2,3,4
B* = ( T7b§7b2) B= (b17b27b37b4)a
fr=w), Yp = Z(wp)

& then giVGS (P7Gl,G27GT791792,€aB*,B7yﬁ,f*79§»9§a9(1$€) where ggagfvgfé
are contained in the XDLinl instance, and outputs 3 € {0,1} if D outputs
B .
If we set 7=¢71n, w =7+ Kk"1¢ then x # 0 (since n # 0),
v = (95:97,0,08) = (95" ", 9270 5”5) wi 4 "
FfP=W.v" =W (uj*+us") =g, o

If 3=0,ie Y5 =Yy =g{", then
= (935, 97%,0,9077) = uf +ug
yo =Z wo=2(uf +uf)= 95b1+0b4

Thus, the distribution of (p, Gl,GQ,G’T,gl,gQ,e,R*,B,yo, f*,gg,gf,g‘lsg) is ex-
actly the same as {o|o < G{°(1")} when x # 0 and £ # 0, i.e. except with
probability 2/p.

fp=1ieYg=Y; = gf’ is uniformly distributed in Gy, we set p = 15 — 0.

Then

0,027 = w16 + uf + ug,

= (g7%, 97",
=Z wy =Z - (u16 + uf +ug) = g2 TrProbs,
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Therefore, the distribution of (p, G1,Ga, Gr, g1, g2, ¢, B*, B, y,, f*, gg,gf,gfg) is
exactly the same as {g|g +— gfo(lA)} when k # 0,€ # 0 and p # 0, i.e. except
with probability 3/p.

Therefore, Advh2(\) < AdviPH"™ () +5/p.

Lemma 24. For any adversary C, there is a probabilistic machine D, whose
running time is essentially the same as that of C, such that for any security
parameter A,

AdvET () = Advi’ ().

Proof. Lemma 24. D is given a Problem 0 instance (p, G1, G2, Gr, g1, g2, ¢, B, I@%*,
ys, f7, 95, gf, gfg). D generates random linear transformation W = (w; ;)

— GL(4n+2,2,), Z= W)t = (2i,4); j=1.... anyo> then sets

4,j=1,,4n+2

n dg K n
gl =W (g,0" ") 95° = Z - (g5,0"""")
gtlil W - (0’ b17 04n+1—4) g;ﬁ =Z. (0’ bi704n+1—4)
gfn-H =W (07 b2a04n_4) g‘;:ﬁ—l =Z- (07 b;, 0471—4)
d*n 1 n— d*n * K n—
913 - :W'(07b3704 4) gl2; :Z'(Oab3792704 4)
G = W (0,5, 00410 g Z(0,b7, 00

and

wW . (O, 0i+2,g§, 04n+17(i+2)71) for i € [[2771]]

gt = W (0,07 g5, 04 =D - for i € [n 42, 3]
W - (0,07, g5, 0~ ) for § € [3n +2, 4n]
L[ 20,072, g5, 00 (EY) for i € [2,n]
o =1 Z-(0,01, 65,0 C+01)  for i € [ +2,3n]

Z - (0,0, g5, 0%~y for i € [3n + 2,4n]

Then (DD, D*) are dual orthonormal bases. D can compute D, D* from B,I@*,gg
and gf.

Note 11. Here we directly give (D,D*) in exponent of g1, go respectively, as we
cannot compute them directly.

It computes:

n— i 5 n—(i _
951 =W - (ys, 0" ") g; = W - (0,072, 7% 0#n= (27

for i = 2,--- ,n. D then gives (p, Gy, Ga,Gr, g1, 92, €, D, I@)*“qﬁ’l, {gi}ie[[l n]]) to
C, and outputs 3° € {0,1} if C outputs 5. We can see that

’ ’ ’ ’ ’ ’
_ wdity danga _ wdi+T dpyp1+y danta _ o wd; .
9o,1 = 91 911 =9 g9, =9 fori=2---,n
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where w' = 6,7 = o and 7 = p which are distributed uniformly in Z,,. Therefore
the distribution of (p, G, G2, G, g1, g2,¢,D,D%, g4 4, {gi}ie[[l,n]]) is exactly the

same as {,Q|,Q — ggl(ﬂ,n)}.

Combining lemmas 23 and 24 we have proven lemma 2. To complete the
proof of lemma 3, we prove lemma 25.

Lemma 25. For any adversary B, there is a probabilistic machine A, whose
running time is essentially the same as that of B, such that for any security
parameter A, Advi " (\) = Advit()) .

Proof. Lemma, 25. Let B be an adversary against Problem 1 bis, that wins with
non negligible advantage. We construct A an adversary against Problem 1.

A is given a Problem 1 instance (p, G1, Go, Gr, ¢1, g2, e, B, B*, es.1, {ei}i=27w )

He picks 21,22, , zn < Z, randomly and sets
—1 n .
dn+1 =2z bn+1 + Zj:Q zjbn+j dn+i = zlbn+i for ¢ = 2, R )
* _ * * 1= ¥ .
d, 1 =z1b, dy, =z b, ,—zb, fori=2---n

Finally, A sets dual orthonormal bases

D = <b05b17”' 7bn)dn+17dn+2a"' 7d2n7b2n+1a"' 7b4n+1)
* * * * * * *
I@* = (bg, b1, by dy s dyy by D)
* * * * *
D* = (d(]v"' ,dn,d2n+1,--- ﬂd4n+1)'

esq, {ei}i:l,_ . are expressed in bases B,B* as

b b b b b ; .
€01 = gtld 1+7bant1 e = g;J 1+2bnp1+vban 41 - g(iubI for i — 2, n.
and can be expressed in bases D, D* as
_ wditvydanit  wditzzidng1—2 307 5 Zjdngj+ydanta  wd;
f0,1*91 ,f1,1*91 s fi=g

fori=2,---,n.

A gives (p,G1,G2,Gr, 91,92,€,D,D%, f51,{f;};—5 .. ,) to B as a Problem 1
bis instance, and outputs 8 € {0,1} if B outputs 3.
By construction, the distribution of (p, G1, G2, Gr, g1, 92,¢,D,D*, fg 1, {fi}i=a.. ,,)

is exactly the same as {Q\g «— Git (1’\,n)}.

Combining lemmas 25 and 2 we prove lemma 3.

C.2 Security reductions for Problems 2 and 2 bis

Proofs of lemmas 4 and 5 can be done as in [28], using following intermediate
problem (based on the one of [27], Annex B), and lemmas 26, 27 and 28.
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Definition 25. Problem 0’ is to guess 3, given (p, Gy, Go, G, g1, g2, e,I@%, B, y3,
f,gf,gg,ggg) — g};O'(lk,n), where (G1,Go, Gr,p, g1,92,€) is an asymmetric
bilinear pairing group, and k,§,p, T < Zy,6,0,w < Ly, b = k- §, (B, B*) «
Dual(Z2), B = (b1, b, ba), yj = 5" 77",y = go PRI, = gpbriTee,

For a probabzllstzc adversary B, the advantage of B for Problem 0’ is defined as

AdvEY (\) = ‘ Pr [3(1*, 0) = 1|0« gg’o’(ﬂ,n)] —Pr [5(1*, 0) = 1|0 « GFo' (1%, n)] ]

Lemma 26. For any adversary D, there is a probabilistic machine £, whose
running time is essentially the same as that of £, such that for any security
parameter X,

AdvEY (M) < AdvXPE™2(X) + 5/p.

Proof. Given a XDLin2 instance gl,g§,91,91 , 97 7g2,g§,927gz , 957, Y3, where
Y5 = gg+" or g5 where z <— Z, is chosen randomly, £ calculates gy = e(gl,gZ).
5 sets 4 x 4 matrices IT*, IT as follows:

£001 k 0 00
« 10001 | =k =€ 0 K¢
= 0k01 AT = 0 £ 00
0010 0 0 rx§O

Then, IT.(IT*)" = k¢ - Idy. By using IT, IT*, £ sets

u>1k = (95,0,0792)7 u; = (0 O 0 92) (0,95,0792) UZ = (O 0 9270)7
ﬂ%&w%w=w,mﬁgl &ﬁ&%urwof%)

& can computes uj,us, ul, u;, u1,us from the above XDLin2 instance above.
Let bases U = (u;);eq1,4) of Gt and U* = (u])equ,q) of G3. € chooses 1, ¢ + Zy,
such that 7 # 0, and sets

— * 6
v = (g(lb’gl 77’079;7%)7 w[ﬂ = (92579‘27”70,}/3)

& generates random linear transformation W = (wm)i’je[[m]] «— GL4,Zy),

=W = (2i,7); j=eqn 47> then calculates b; = Z?lei,jui for i = 1,3,
b = ijl z ju; for i € [1,4], B = (b1, bs, bs), B* = (b7, b5,b5,b)), f =W -v,
Y5 =272 - wp.

5 then giVQS (pv Gla G27GT,Q1792, B,B,B*, yzv fmg}l{aggagg&) Where g;ggé

contained in the XDLin2 instance, and outputs 3 € {0,1} if D outputs /3 .

are

If we set 7=¢ 1y, w=7+r"1¢ then x # 0 (since n # 0),

v=(97,91",0,7%) = (9" ", 9, 7,0,07") = u§ + u3
FoW v =W (uf +uj) = it

o4



If 3=0,ie Y5 =Yy =gi", then

* 1 S * *
wO = (92£7g§7’€’ 0)92+0) = ulé + u40’

Vo= Z-wi = Z - (u’ +ui”) = (9b; + ob).

Therefore, the distribution of (p7G1,GQ7GT,91,92,€,E,B*,y87 7, gi‘,g%,ggg) is
exactly the same as {Q|Q — Q(‘)Dol(lA)} when « # 0 and £ # 0, i.e. except with
probability 2/p.

fp=1ie Yg=Y = gg’ is uniformly distributed in G2, we set p = 15 — 0.

Then

_ (9¢ Stptoy _ o %8 *p
wT*(.gQ 7ggH70392 )*UT + uy +’UJIJ

yi = Z - wi = Z(ui’ +u” +uj’) = (6b] + pb; + ab}).
Therefore7 the distribution of (pa Gla G27 GT7 91,92, €, I@7 B*a y}j’ f7 gf? 957 ggf) is
exactly the same as {Q|Q — g{’o’(ﬂ)} when k # 0,£ # 0 and p # 0, i.e. except
with probability 3/p.

Therefore, Advgol()\) < AdvEPH"2(\) 4+ 5/p.

Lemma 27. For any adversary C, there is a probabilistic machine D, whose
running time is essentially the same as that of C, such that for any security
parameter \,

AdvE2(A) = AdvE? (A).

Proof. D is given a Problem 0’ instance (p, G1, Go, Gr, g1, g2, €, B, B*, y5. fo 97, gg,

ggg) and generates random linear transformation W = (w; ;), jela) ¢ GL(4,Z,),
TN . .

Z =W )= (21.]); jep,a then sets for i € [1,n]:

K (dn d; n
g;io :W(gl704 +1)7 ‘ 922 :Z(g§704 +1) ‘
giiz =W - (0’ 04(7,71)’ b17 04(n71)’ 0)’ g;il - 7. (0, 04(171)’ b;, 04(n72), 0)

gl = W (0,04070), by, 040, 0), g5t = Z - (0,04071), b3, 040, )

gl = W (0,040,040, 0), g+ = Z- (0,040, 5,040, 0)
g = W (0,01071) by, 040, 0), g5 = Z - (0,01071), b}, 040, 0)

s

dan dy,
gyt = W (04 g, 95" = Z - (0%, g5)

Note 12. Again we cannot give directly (D, D*) that is why we give them in the
exponent of g; and go respectively.

Then D = (d;)ic[o,4n+1] and D* = (d} )ic[0,4n+1] are dual orthonormal bases.
Then, D sets, for ¢ € [1,n],

Phi = (W 1T (0,011, 45,0179, 0)
=W (0,017Y, f,01*70), 0)
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D can compute D = (do, -+ ,dn,dops1, + ,dgny1) from I@B,B,g’f,gg. D then

gives (p, G1, Ga, Gr, g1, go, €, D, D*, {pg i,gi} : ]]) to C, and outputs 8 € {0,1}
’ i€[1l,n
if C outputs 3.

. od; +ody, . od:+pd: ,+tods,
We can see that for i € [1,n], py; = g, i+odante P = 9o iHPdnritodang:
wdi+71dn i
9i =9 :
Therefore the distribution of (p, G1,Go, Gr, g1, g2, e, D, D*, {pgi,gi} [[ ]]) is
’ i€ln

exactly the same as {p|p — Qgg(l’\)}.

Combining lemmas 26 and 27 we prove lemma 4. To complete the proof of
lemma 5, we prove lemma 28.

Lemma 28. For any adversary B, there is a probabilistic machine A, whose
running time is essentially the same as that of B, such that for any security
parameter X, Advi"(\) = AdvZ()) .

Proof. Let B be an adversary against Problem 2 bis, that wins with non negli-
gible advantage. We construct 4 an adversary against Problem 2.

Alis given a Problem 2 instance (p, G1, Ga, Gr, g1, g2, €, B, B*, {hs., ei}ie[l n]])'
A generates U = (u; ;) «+ GL(n,Z,) and calculates Z = (z; ;) = (U~1)". Then
A calculates {d,11, - ,d2,} and {d}, 1, -+ ,d5,} from {b,41, -, by} and
{b:z-&-la -+, b5, } respectively as

ditj =D i Zi,jbnis ntj = > i Wb

for j € [1,n]. Then, bpq; = Z;;l Ui jlntj, by = Z?:I zi,jd;:_H fori € [1,n]
since UZT = I,,. A picks 7; = 1;1b3, 1+ +7i,b}, and for i € [1,n] we have

) 6bF +60bs5, 4T odi 4> Tidy, L
* i i 3n+i _ i j=1 3n+j
hoi-95" = 9o =g
h,{ . g;’ _ ggb: +Tb"+i+6gb§n+i+’l‘i _ gjd:-‘-‘l’ Z?:l ziqjd;:«#j"’_z‘?:l Fidgn,+j
N
_ whitob,y  wdito 30T U jdny
€ =0 =0

where 7; = r; ; if i # j and ¥ = r; ; + do otherwise.

Let D = (b07b17"' 7bnadn+1;"' ad2n7/\b2n+].a"' 7b4n+1)a D* = (bay T7 )
b:w :7,+1,"' 7d§n7d;n+1a"' 7bzn+1) and D= <d07"' 7dn7d2n+17"' 7d4n+1)-

A gives (p,G1,Ga,Gr, g1, 92, e, D, D, {h;;ai’ri}ie[[l n]]) to B as a Problem 2
bis instance, and outputs 8 € {0,1} if B outputs 3.

By construction, the distribution of (p, G1, Go, Gr, g1, g2, €, D, D*, {h?ﬁ,m ri}ie[[l n]])
is exactly the same as {g\g — gg’%(lk, n)}

Combining lemmas 28 and 4 we prove lemma 5.
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C.3 Security reduction for Problem 3

To prove lemma 6 we use the following experiment and lemmas 29 and 30, as in
[28] (Annex B).

Definition 26. Ezperiment 3-a (o =0,1,2). We define the Exp-3-« instance
generator, denoted GE*P=3(1* n), where, (G1,Gsa,Gr, g1,g2,¢€,p) i5 an asym-
metric bilinear prime order group, (B,B*) < Dual(Z,"*?) are dual orthonormal
bases,

B= (bO»"' abnvb3n+la"' vb4n+l)a B* = (b8,~~ 7b:wb§n+lv"' abZn+1)7

’ ’ " ’ " .
7,7 ,00,W ,W K,k < Ly, and for i € [1,n]

’ !’
* Tb:+i+6ob§n+i * Tb:+i+7— b;n+i+50b§n+i * T b;'n+i+60b§n+i
h’O,i = 9/2 . 1,0 = 9/2 . h2,i =92
_ wbppitw bangs Kk bupitr bangs
€ =0 fi=a

return (leGQvGT791792767P7B7:®*7 {h’z,ia €, 'fi}ieﬂl,’ﬂ]])'

For a probabilistic adversary B, we define 3 experiments Exp%fo‘ (¢ =0,1,2)
as follows: a) C is given o « GE=P=3(1* n). b) Output B« B(1*, ).

Lemma 29. For any adversary B, for any security parameter \,
|Pr [Exply °(\) — 1] — Pr[Expy '(A) — 1] | < 1/p.

Proof. Let 6 <« Z,. If we set, for i € [1,n], donti = bongi — Obyys, dy, 1 =
b, ; + 0b, ., then

’7
* Tb;+i+50b§n+i _ Td:l+i+7— d;n+i+50df§n+i
hO;Z o .912 " o 92/ "
_ whbppitw bopyi . O dpypitw dongg
€ =0 =9

o H/bn+i+k&“bzn+i o fi/dn+i+w//d2n+z‘
fi=a =9

where 7 = —oT, O =w +60w and & =x + 0;@”, which are independently
and uniformly distributed since G,w,, K Z,, except for the case 7 = 0. That
is, the joint distribution for Exp.3-0 and that for Exp.3-1 are equivalent except
with probability 1/p.

Lemma 30. For any adversary B, there is a probabilistic machine C, whose
running time is essentially the same as that of B, such that for any security

parameter \,

||Pr [Bzpy '(A) = 1] — Pr [Bapy 2(A) — 1]| — Adv{*(A) | < 1/p.

o7



Proof. To prove lemma 30, we construct a probabilistic machine C against Prob-
lem 2 using a machine B distinguishing the experiment Exp%_1 from Exp?l,’g_2 as a

black box as follows: C is given a Problem 2 instance (p, G1, G2, Gr, g1, g2, €, B, B*,
{hgvi’ei}ie[u n]]), and sets f, = mb; + moe; for i € [1,n],

D: <b05b2n+17"' ;b3nabn+17"' 7b2n7b17"' 7bn7b3n+1»"' 7b4n+1)7
* 1k * * * * * 3ok *
D* = (b07b2n+1v"' 7b3n’bn+17"' 7b2n7b17"' 7bn’b3n+17"' ab4n+1)7

D = (do, - dn,dzni1, - dans1) = (bo,bani1, - 030, bang1s -+ s bani1)

D* = (dév e ’d;kw d§n+1’ e adZn+1) = (bé, b;nJrlv U vb§n7 b§n+17 T 7b2n+1)
_ where C can calculate D and D* from a part of the Problem 2 instance, i.e.
(B, B*), while C cannot calculate a part of the basis D, i.e., (dy 11, - , dap), from

the Problem 2 instance. C gives (G1, Gz, G, g1, g2, €, p, D, D*, {h}; ;, €:, £}
to B, and receives 5’ € {0,1}. C then outputs ﬁl. Then,

ie[[l,n]])

5bf+50b* . ods Jr(S()d* .
x i 3nti 2n+i 3n+i
ho,z‘ ) =99
Sb*4+7b* , Sobt. . . rd* . 4+8dE . +SodE. .

x i n+i0003, i nti 2nti 3n+i

h’l,i =92 =92
wb;+0bnyi odyitwdani;

€ =0 =9
.f _ mbitnzoe; _ _maodpyit(ni+n20)danti

i = 91 =9

where 6, 7,w,o,n1 + now and 720 are independently and uniformly distributed
in Z,, since 9, T,w, 0,n1,n2 + Z, except for the case o = 0.
The above (le G27 GTv g1,92,¢, P, ]D)a ]D)*7 {hz;,ia €, fi}ie[[l,n]])

tribution as the output of the generator GZ™?~3(1*,n) (resp. GEZ™P73(1*, n))
when =1 (resp. § = 0) except with probability 1/p. This completes the proof
of lemma 30.

has the same dis-

Now let’s prove lemma 6.

Proof. Problem 3 is the hybrid of Experiment 3 — 0,3 — 1 and 3 — 2, i.e.,
Advg(\) = |Pr [Exp%_o()\) —1] = Pr [Exp?l’;_g()\) — 1]|. Therefore, from lem-
mas 30, 29 and 4, there exist probabilistic machines C, £, whose running time
are essentially the same as that of B, such that for any security parameter ),

Advi®(N) = [Pr [Expy °(A) — 1] — Pr [Expy 2(A) — 1]|
< |[Pr[Exp °(A) = 1] — Pr [Expy "(A) — 1]] + |Pr [Expg ' (A) — 1]

—Pr [Expy 2(N) = 1] < AdvE?(N) +2/p < AdvEPH"2 () + 7/p.

This completes the proof of lemma 6.

58



D Anonymity

Within the broadcast encryption setting, the anonymity property, introduced
in [6], further requests to hide the used user set, and is useful in some practical
cases. In this appendix, we prove that our generic construction of (Aug) BE from
a pattern hiding WIBE gives us an anonymous scheme.

Anonymous Broadcast encryption.

Definition 27. Anonymous BE scheme (ANO-BE) [6, 26]

We say that a BE scheme is adaptively anonymous (or satisfies ANO-BE se-
curity) if all polynomial time adaptive adversaries A have at most negligible
advantage in the game presented in Figure 14, where A’s advantage is defined
as

AdvANO-BE () — ’Pr [b’ - b} - 1/2’ :

SETUP: challenger C runs Setup(1*,1") to generate pk and msk, and gives pk to .A.

KEY QUERY: A issues queries to C for index ¢ € [N]. C returns sk; < KeyGen(msk, 7).

CHALLENGE: A selects two messages mo,m; and two distinct sets S°, S* C [N] of
users. We impose the restriction that A has not issued key queries for any 4
such that + € S°Ai ¢ S* or i € S* Ai ¢ S° Further, if there exists an
i€ S°N ST for which A has queried the key, then we require that mp = m;. A
passes mg, m; and S°, S* to C. The latter picks b € {0, 1} random and computes
ct* « Encrypt(pk, S®, m,) which is returned to A.

KEY QUERY: A continues to make queries for index ¢ € [N] with the restriction that
igS°ANi¢ StoricS®Aie St and if mg # my then i ¢ S°N St

GUESS: A outputs its guess b € {0, 1} for b, and wins the game if b = b.

Fig.14. ANO-BE security game.

Note 13. Many BE schemes require the encryption set S to be publicly given as
an input of decryption algorithm. Otherwise even authorized users will not be
able to decrypt. However, anonymous schemes does not need the encryption set
description as an input for the decryption algorithm.

Our first generic construction gives us a broadcast encryption scheme from
a WIBE. Let us show that if the underlying WIBE is also pattern-hiding, then
the obtained BE is anonymous.

Theorem 11. If WIBE satisfies adaptive (resp. selective) pattern hiding secu-
rity, then the obtained BE scheme is adaptive (resp. selective) anonymous.

Proof. Let B be an adversary against anonymous security, that wins with non
negligible advantage. In Figure 15 we construct .4, an adversary against pattern
hiding security that uses B and wins with non negligible advantage. Let C be a
challenfe3’s queries satisfy the game constraints, then all A’s queries have the
same property. Thus A’s simulation is perfect, and the advantage of A is the
same as B’s. This concludes the proof.
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SETUP: C runs Setup(1*,1V) — (msk, pk) and sends pk to A, who sends it to B.

KEY QUERY: B chooses i € [N], sends it to .A who creates the pattern P’ such that
for j € [1,N], P} = 1if i = j and P} = 0 otherwise. A sends P’ to C who runs
KeyDer(msk, P*) — skpi. A receives skp: and sends it to B as sk;.

CHALLENGE: B chooses message m, two sets Sp, S1 and sends them to A who creates
patterns P°, P' s.t. for j € [1,N], P} = x if j € So, P} = 0 otherwise, and
le = if j € 51, le = 0 otherwise. m, P°, P! are sent to C. If for any queried
P! during previous step, P* €, P° A P* ¢, P' or P' ¢, P° AP’ ¢, P', C
aborts. Otherwise, it chooses b < {0,1} and runs ct* <+ Encrypt(pk, P’,m). C
sends ct* to A, who sends it to B.

KEY QUERY: B and A proceeds as in the first KEY QUERY step. If P* ¢, P°AP" ¢, P!
or P' ¢, P° A P ¢, P, C aborts, otherwise it runs KeyDer(msk, P*) — skp.:.
skp: is sent to A, who sends it to B as sk;.

GUESS: B outputs its guess b to A, who outputs it as its guess.

Fig. 15. Construction of pattern hiding adversary from anonymous BE adversary.

State of art. In the anonymous BE setting, the Libert et al. scheme (26]) is
the best known option so far, even if [25] proposes a slight improvement regard-
ing the ciphertext size. The main practical problem with both constructions is
however that each user has to try each element of the ciphertext to find the one
he/she can truly decrypt. In 2014, [4] proposed a generic construction of anony-
mous BT from anonymous BE, and an instantiation based on [26]’s anonymous
BE scheme.

Notice that [26] said that achieving shorter than linear size for ciphertext is im-
possible when considering the used users set description as part of the ciphertext.
With our second WIBE and our generic constructions, setting L = N + 1, we
obtain a new anonymous broadcast encryption scheme. Our scheme does not
improve the efficiency of the Libert et al. scheme [26], which is the best known
so far. In particular, their scheme has pk and sk; sizes in respectively O(N)
and O(1) while in our scheme the same parameters have sizes in O(N?) and
O(N) respectively. Regarding security, their scheme achieves the stronger CCA
security in the standard model while we only reach a CPA security. However,
in Libert et al.’s scheme, each user has to try each element of the ciphertext to
find the one he can truly decrypt, while this is not necessary in our construction.

Anonymous Augmented Broadcast encryption. As notice in section 77,
the AugBE scheme obtained from our second WIBE instantiation is actually the
first known anonymous AugBE. Eventually, the derivation of our anonymous
AugBE to an anonymous BT scheme is quite direct from the generic construc-
tion given in [10]. A formal definition of an anonymous BT scheme is quite
straightforward from the one of anonymous AugBE and can be found in e.g., [4].
The only existing anonymous BT is the one of [4], which is based on the anony-
mous BE scheme of [26]: it directly inherit advantages and drawbacks compare
to our resulting scheme.
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