
On Squaring Modulo Mersenne Numbers

David Naccache1 and Ofer Yifrach-Stav1

DIÉNS, ÉNS, CNRS, PSL University, Paris, France
45 rue d’Ulm, 75230, Paris cedex 05, France

ofer.friedman@ens.fr, david.naccache@ens.fr

Abstract. During the design of a new primitive inspired by Squash we
accidentally stumbled on the observation described in this note.
Let n be a k-bit Mersenne number whose factors are unknown. Consider
an ℓ-bit secret number x = 2k/2a+b. We observe that there are parameter
configurations where a chunk of the value b2 is leaked even if k < 2ℓ.
This observation does not endanger any known scheme and in particular
not Squash.

1 The observation

During the design of a new lightweight primitive inspired by Squash [3] we acci-
dentally stumbled on the observation described in this short note.

The initial intent was to get an arbitrary input m of k bits whose entropy
is k′ ≤ k and hash m into a k-bit output c where each bit has entropy k′/k. A
good candidate for doing so is modular squaring. In particular, working modulo a
Mersenne number has notable computational advantages. This note shows that
squaring modulo a Mersenne number does not provide this desirable entropy
spreading property, even when m2 > n for some parameter configurations as
some of the bits of c may depend only on specific bits of m.

The way in which this was accidentally discovered is interesting by its own
right. The designed hash function was used as a building-block in an IoT malware
analysis prototype. Packets including metadata and data were fed into a GAN
that had to learn normal protocol behavior. Because part of the hashed data (the
LSBs) consisted of constant system commands while the other part was a random
nonce (the MSBs) to our surprised the GAN declared that part of the hash was...
part of the protocol’s semantics. This happened during the covariance detection
phase where data is input into a filter reacting to the repeated appearance of
sufficiently large patterns in the dataset. Looking into the reason for which this
happened, we discovered the arithmetic phenomenon described in this note.

Let n be a k-bit Mersenne number n = 2k − 1 whose factors are unknown.
Consider an ℓ-bit secret number x = 2k/2a+ b. Although k is prime (and hence
odd) we simplify it here as an even number to avoid managing unbalanced halves.

An attacker is given c = x2 mod n. What can s/he learn about a and b
individually?

We have:

c = x2 = (2k/2a+ b)2 = 2ka2 + 21+k/2ab+ b2 = 21+k/2ab+ a2 + b2 mod n

ofer.friedman@ens.fr
david.naccache@ens.fr


Denoting ∆ = ab and Γ = a2 + b2 we get

c = 21+k/2∆+ Γ mod n

Γ is the modular sum of a k-bit number (b2) and a 2ℓ− k bit number (a2).
We observe that if 2ℓ − k < k, i.e. ℓ < k, then Γ has good chances to be in Z.
Note that even if Γ exceeds n by one or two bits, those will wrap around and
blur only a few LSBs of Γ leaving the remaining bits of Γ mod n identical to
those of Γ in Z.

We now turn to analyzing the effect of adding to Γ the quantity 21+k/2∆.
We start by observing that ∆ is of size size ℓ. We distinguish in ∆ two parts ∆H

(of size k/2) and ∆L (of size ℓ− k/2), i.e. ∆ = 2ℓ−k/2∆H +∆L.
We see that the addition of 21+k/2∆ to Γ will blur the ℓ−k/2 MSBs (because

of ∆L) and the k/2 LSBs (because of the wrapping of ∆H). This will leave k− ℓ
bits of Γ exposed.

Γ is essentially of size 2 log2 b and is nothing but b2 with its 2ℓ − k (size of
a2) LSBs blurred. All in all it appears that c features the bits of b2 between
positions max(k/2, 2ℓ−k) and 3k/2− ℓ which therefore depend only on b which,
in our application, was a constant assortment of commands sent to the device.

It goes without saying that the home-made hash function was replaced by a
standard Squash. This note confirms that the use of moduli of the form 2k ± r
where r is small should always be analyzed carefully as episodically weaknesses
due to this choice arise, e.g. [1] or [2]1.

2 Example

Let n = 21009 − 1 and fix randomly:

a = 00000004 b6b610e6 4e2d3680 139cca0b
b = 13fceaff 599d4f4e fa14b5c7 82d2f55c

05c2c3ee 108fdd03 3f161099 237cb257
24ac47a7 be03b21d d293d5e5 43e83374
47dd3589 960fc891 669477c6 b7498278

Indeed, the quantities c = (b+2509a)2 mod n and b2 coincide in their central
bits as shown in red:

1 Note that while very different, the observation in this note is somewhat reminiscent
of [2] page 10, section 4.2.

2



c = 1887fa50 303e3d1a c6c9b433 0e0087f4
256fbc49 1d4628c7 7c45ca72 bbb65a96
47c964b4 23ff555e 22cbea2f 5e8eaaca
16eeabeb 7e988c3a cb3289e3 3136b061
602e98ff dbd6560e e2d43566 aa9ef7b5
6207638c 656dd780 5110d904 bfc4a799
fe09cce3 01ba1cc 7bc61ac93 ec41c55b
882cad79 cd602f49 ec00aa8f 3a06b

b2 = 184c165b d9601185 a8e14d91 ab8e0cfa
0cac609f 8800030f 0327a865 e25c1d21
957e2e15 cf5a290e 1fdaa07f bb68064c
b5942217 ba885076 f8a3f8ba 440a1061
602e98ff dbd6560e e2d43566 aa9ef7b5
6207638c 656dd780 5110d904 bfc4a799
fe09cce2 fef319ca a5a387bc 1473eb06
7c6fd770 e258cdaf b8f433ae e1907

References

1. N. Borisov, M. Chew, R. Johnson, and D. Wagner. Multiplicative differentials. In
Fast Software Encryption, 9th International Workshop, FSE 2002, Leuven, Belgium,
February 4-6, 2002, Revised Papers, volume 2365 of Lecture Notes in Computer
Science, pages 17–33. Springer, 2002.

2. K. Ouafi and S. Vaudenay. Smashing SQUASH-0. In A. Joux, editor, Advances in
Cryptology - EUROCRYPT 2009, pages 300–312, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

3. A. Shamir. SQUASH – a new MAC with provable security properties for highly con-
strained devices such as RFID tags. In K. Nyberg, editor, Fast Software Encryption,
pages 144–157, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

3


	On Squaring Modulo Mersenne Numbers

