
To Be, or Not to Be Stateful:
Post-Quantum Secure Boot using Hash-Based Signatures
Alexander Wagner∗

Fraunhofer AISEC
Garching, Germany

alexander.wagner@aisec.fraunhofer.de

Felix Oberhansl∗
Fraunhofer AISEC
Garching, Germany

felix.oberhansl@aisec.fraunhofer.de

Marc Schink∗
Fraunhofer AISEC
Garching, Germany

marc.schink@aisec.fraunhofer.de

ABSTRACT
While research in post-quantum cryptography (PQC) has gained
significant momentum, it is only slowly adopted for real-world
products. This is largely due to concerns about practicability and
maturity. The secure boot process of embedded devices is one s-
cenario where such restraints can result in fundamental security
problems. In this work, we present a flexible hardware/software
co-design for hash-based signature (HBS) schemes which enables
the move to a post-quantum secure boot today. These signature
schemes stand out due to their straightforward security proofs and
are on the fast track to standardisation. In contrast to previous
works, we exploit the performance intensive similarities of the s-
tateful LMS and XMSS schemes as well as the stateless SPHINCS+
scheme. Thus, we enable designers to use a stateful or stateless
scheme depending on the constraints of each individual application.
To show the feasibility of our approach, we compare our results
with hardware accelerated implementations of classical asymmetric
algorithms. Further, we lay out the usage of different HBS schemes
during the boot process. We compare different schemes, show the
importance of parameter choices, and demonstrate the performance
gain with different levels of hardware acceleration.

KEYWORDS
post-quantum cryptography, hash-based signatures, LMS, XMSS,
SPHINCS+, secure boot, hardware/software co-design
ACM Reference Format:
Alexander Wagner, Felix Oberhansl, and Marc Schink. 2022. To Be, or Not
to Be Stateful: Post-Quantum Secure Boot using Hash-Based Signatures. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The boot process plays an important role to guarantee the security
and trustworthiness of modern electronic devices. The first piece
of software that is executed is stored in read-only memory (ROM).
This boot code is the first step of a process called secure boot which
ensures that only trusted and genuine software is executed from
∗The authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the very beginning. The importance of this role combined with the
inability to update requires foresighted design decisions and care-
fully developed software. This is especially relevant, but not limited,
to the used cryptographic primitives. Today’s state-of-the-art im-
plementations rely on common asymmetric algorithms like RSA
or ECC [23, 27]. Through the development of quantum computers
these algorithms are at risk as attacks based on Shor’s algorithm
may become feasible in the future [33].

In order to prepare for this threat, a process to standardise
quantum-resistant public key cryptographic algorithms was initiat-
ed by the National Institute of Standards and Technology (NIST)
in 2016 [30]. At the end of the third round, NIST selected the state-
less hash-based signature (HBS) scheme SPHINCS+ for standardiza-
tion [29]. It is the only selected algorithm not relying on the security
of structured lattices. Stateless schemes can be used in the same
manner as common digital signature algorithms based on RSA and
ECC. In contrast, stateful schemes require the signer to keep track
of the already used keys as only a limited amount of signatures
can be generated per key pair [25]. Any failure to do so seriously
degrades the security [13]. The advantage of stateful schemes over
stateless schemes is the smaller signature size and faster runtime.
For the two stateful HBS schemes, Leighton-Micali Hash-Based Sig-
nature (LMS) and extended Merkle signature scheme (XMSS), IETF
RFCs are available [14, 26]. Based on these documents, NIST pub-
lished a recommendation for the use of stateful HBSs in 2020 [10].
In 2022, recommendations for deployment of HBSs were published
by the ANSSI and for stateful HBSs by the BSI. The soundness of
HBSs relies only on the properties of the underlying hash functions.
As hash functions are well understood, this makes HBS schemes
a very conservative choice, in particular when compared to other
post-quantum cryptography (PQC) algorithms [5, 24]. Due to this
and their maturity, hybridation is not required [2, 7]. This makes
HBSs a perfect fit for secure boot.

While maturity is not an area of concern for HBS schemes, prac-
ticability is. In case of secure boot, the startup time and accordingly
the signature verification is of major importance. The verification
time of hash-based signatures is mostly determined by the under-
lying hash function. To enable HBS schemes for secure boot, we
propose a hardware/software co-design with minimal additional
hardware overhead. Thus, allowing an immediate drop-in replace-
ment of hash hardware accelerators. For evaluation purposes, we
integrate our hardware accelerator in the OpenTitan . OpenTitan is
a reference design for open source security controller and is based
on a 32-bit RISC-V processor. We use the secure boot process of the
OpenTitan to compare our implementations against the existing
hardware-accelerated signature verifications based on RSA and
ECC. Further, we lay out why a singular focus on either stateful or

https://orcid.org/0000-0003-2853-3063
https://orcid.org/0000-0002-7822-2880
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Alexander Wagner, Felix Oberhansl, and Marc Schink

stateless schemes is a blocker for real world applications. In short,
this is due to the fact that for most products different constraints
are applicable. In the context of the secure boot, this is even more
evident, as the successive boot stages mean that different entities
and their respective constraints are involved. We overcome this
issue with our flexible co-design accelerating stateless as well as
stateful schemes from boot up.

In recent years, stateful schemes were evaluated for a usage in
secure boot [19, 21] or for general purpose usage with efficient
implementations [9, 12, 34, 35]. These implementations range from
software evaluations including comparisons of different schemes [9,
18] to System-on-Chips (SoCs) with different levels of hardware
acceleration [12, 19, 35] and full hardware designs [21, 34].

A flexible HBS solution for secure boot is still missing from state-
of-the-art literature. Specifically, our paper provides the following
contributions:

• A flexible hardware accelerator with support for stateful and
stateless schemes, namely LMS, XMSS and SPHINCS+ (also
referred to as SPX+ in the following)
– Modular design approach to enable different levels of ac-
celeration

– Utilization of algorithmic similarities to achieve low hard-
ware overhead

– Drop-in replacement/extension for generic hash cores
• Evaluation of algorithmic accelerations and trade-offs for
hardware/software co-designs

• Exploration of HBS parameter trade-offs for the secure boot
scenario

• Benchmark results in the context of secure boot with re-
spect to code size, signature and key size, speed and area
requirements

• Rust software implementations for all evaluated algorithms
Our implementations are open source under an Apache 2 license

at https://github.com/Fraunhofer-AISEC/hbs-pq-secure-boot.

2 HASH-BASED SIGNATURE SCHEMES
Hash-based signatures are digital signature schemes that use hash
functions as the main cryptographic primitive.

2.1 Classification of Hash-Based Signature
Schemes

The way how and which of these cryptographic primitives are
combined allows to build either a so-called stateful or stateless HBS
scheme. The usage of a stateful HBS algorithm differs for the signer
compared to common asymmetric cryptographic algorithms. In
essence, the number of signatures that can securely be generated is
limited by the total number of key pairs available. Each key pair
can only be used once and any reuse would result in a security
compromise [13]. Thus, the signer has to keep track of the already
used key pairs, effectively storing a state and updating it after
every signature generation, i.e. stateful [25]. Contrarily the usage
of stateless HBSs is in line with classical asymmetric cryptographic
algorithms.

Aside from stateful and stateless, HBS schemes can be divided
into the two variants, "simple" and "robust", for which different se-
curity arguments in relation to the used hash function can be made.

0b11 FFF

Secret Key

Initial state Final state

Message
Chunks

0b10 FFF

0b01 FFF

0b00 FFF

Public Key

K

Figure 1: TheWinternitz OTSwith the secret key , the com-
pressed public key , and the signature .

The "simple" instantiations have a less conservative security argu-
ment but a better performance. In contrast, "robust" instantiations
meet more conservative security requirements and consequently
require more hash operations. The reader is referred to [10, 15] for
more information on the security arguments and its details.

2.2 One-Time Signatures
The foundation for contemporary HBS algorithms are the one-time
signature (OTS) schemes. LMS, XMSS and SPHINCS+ each use vari-
ants of the Winternitz OTS (WOTS). The core idea is to have a
certain amount of function chains, i.e. repeatedly applying a func-
tion 𝐹 to the prior output. For the sake of convenience, we assume
that the function 𝐹 only consists of a single call to a cryptographic
hash function with the prior output as single input. Thus, in the
following we simply use the term hash chain for this specific con-
struct. The working principle of such OTS schemes is depicted in
Figure 1. The starting point of a hash chain is a random value and
corresponds to one OTS secret key . An intermediate value of a
hash chain is an OTS signature . The end point of a hash chain is
an OTS public key. The function 𝐾 is applied to these end points to
generate the compressed OTS public key . For the compression
function 𝐾 , LMS and SPHINCS+ use a tweakable hash function and
XMSS a so-called L-tree. The signing and verifying operations are
inherently similar. To sign or verify a message, its digest is split into
chunks of 𝑙𝑜𝑔2 (𝑤) bits and each chunk is interpreted as value 𝑎. For
signing → and verifying → each hash chain is advanced.
For signing it is advanced by 𝑎 and for verifying by𝑤 − 1−𝑎. In the
case of verification, a signature is valid, if the public key candidate
is equal to the public key.

The function chain length and the chunk bit-size is defined by the
Winternitz parameter𝑤 and 𝑙𝑜𝑔2 (𝑤), respectively. In the example in
Figure 1, the message is split into chunks of 2 bitwhich corresponds
to a Winternitz parameter𝑤 of 4. For more details with respect to
implementation the reader is referred to [11].

2.3 Few-Time Signatures
In contrast to the OTS scheme a few-time signature (FTS) scheme
allows the reuse of a key pair for a few times. The FTS scheme is
only used in the stateless HBS scheme SPHINCS+. As a result the
total tree height of SPHINCS+ can be reduced significantly, making
it applicable in practice [3]. In the context of SPHINCS+, the forest
of random subsets (FORS) scheme is used to sign message digests.
FORS consists of 𝑘 Merkle trees each having a tree height of 𝑎.
To generate the FORS public key all 𝑘 Merkle tree root nodes
are compressed with a hash. A single tree authenticates 𝑡 = 2𝑎

https://github.com/Fraunhofer-AISEC/hbs-pq-secure-boot

Post-Quantum Secure Boot using Hash-Based Signatures Conference’17, July 2017, Washington, DC, USA

FTS
Public Key

Figure 2: Overview of the forest of random subsets scheme
with the secret key , the public key , the signature , and
the authentication path nodes .

OTS
Public Key

MSS
Public Key

K

Figure 3: Merkle signature
scheme.

K

K

K

Figure 4: Generalized Merkle
signature scheme.

FORS secret keys . Thus, the leaves are the hashes of the secret
keys. To generate a signature the message digest is split into 𝑘
𝑎-bit chunks, as shown in Figure 2. Each chunk is interpreted as an
integer which is used as an index to select a secret key as signature
node . This is done for all 𝑘 trees and chunks. The selected nodes
are aggregated together with the respective authentication path
nodes . For verification the signature is used to generate a public
key candidate similar to the WOTS signature verification [15]. To
allow for comparison, the same message is signed in the OTS and
the FORS example, depicted in Figure 1 and Figure 2, respectively.

2.4 Merkle Signature Scheme
With an OTS or FTS scheme, one key pair can be used once or a
few times to sign, respectively. In order to overcome this limitation,
the Merkle signature scheme (MSS) is used, depicted in Figure 3.
It applies a Merkle tree to authenticate multiple OTS public keys.
Every leaf node in the Merkle tree corresponds to a single hashed
OTS public key. The root node of the tree corresponds to the MSS
public key, which is used to authenticate the OTS public keys. A
Merkle tree with a tree heightℎ authenticates 2ℎ OTS key pairs [28].

A MSS signature consists of an OTS signature, introduced in
Section 2.2, and, in the context of HBS, a so called authentication
path. Starting at the bottom of the figure, the OTS public key
is calculated from the signature . Then the authentication path
nodes are used to generate the public key candidate for the re-
spective signature. The signature is valid, if the public key candidate
is equal to the known public key.

With the MSS an OTS can be extended to a many-time signature
(MTS). Such a HBS construct is applicable to real world use cases,
but still impractical for a high number of key pairs, i.e. required
signatures. The tree height ℎ is limited by the runtime of key gen-
eration and signing. To overcome this limitation the generalized

Merkle signature scheme (GMSS) was introduced in [8]. Its core
idea is to build a so-called certification tree with multiple MSSs.
Instead of having a single MSS with a large Merkle tree, it is split
into 𝑑 MSSs each being a smaller Merkle tree. At the top of this
certification tree is the root MSS, which signs its child MSSs. At the
bottom is the leaf MSS, which is used to sign the message.

For SPHINCS+, GMSS is especially relevant, as the total required
tree height ℎ is vast [15]. Different to the exemplary overview in
Figure 4, SPHINCS+ uses a FTS scheme instead of an OTS scheme
in the bottom layer, as explained in Section 2.3.

3 SECURE BOOT
In this section, we describe the different stages and involved entities
of a secure boot process and show how real world applications
benefit from our hardware/software co-design and its flexibility to
support stateful and stateless signature schemes. Further, we derive
parameters for all considered HBS schemes tailored for the secure
boot use case.

A secure boot process consists of multiple stages which are
executed one after the other until the application is started. To
ensure that only genuine software is executed, every boot stage
verifies the next stage before it hands over execution. Each stage is
associated with an individual role belonging to a different entity.
The stages and roles are based on the specification of the boot
process for the OpenTitan project, but apply to most use cases. The
involved roles in the boot process are silicon creator, silicon owner,
and provider.

The silicon creator is responsible for the first stage of the boot
process and thus the root of trust and security for the entire device.
As the software for this boot stage is stored in ROM, it cannot be
updated after the chip production. Thus, foresighted decisions with
respect to the chosen signature scheme and a secure implementation
are of utmost importance. The silicon owner is the entity that uses
the hardware and provides, for example, the kernel or operating
system (OS) for the silicon. This boot stage is usually stored on an
updateable non-volatile memory. The application of the product is
the last stage of the boot process. The provider is responsible for
this boot stage.

Each entity is responsible to provide valid signatures for their
respective boot stages. Thus, the key generation, maintaining the
key material and signing needs to be handled individually by each
entity. Depending on the constraints and capabilities each entity
may decide to use stateful or stateless HBSs.

3.1 To Be, or Not to Be Stateful
Stateful HBS schemes allow for fast verification with small signa-
tures. The drawback of a stateful HBS scheme is the requirement
to maintain its state. Best practices for state management were
evaluated in [25]. In essence, three different approaches were pro-
posed and outlined. Two of them requiring dedicated cryptographic
hardware, like hardware security modules (HSMs), which are ca-
pable of securely synchronizing the state. The third approach uses
a combination of a stateful and a stateless HBS scheme. This ap-
proach does not require any cryptographic hardware, but has the
drawback that the verifier must perform a stateless and a stateful
signature verification. Hence, this is not of general interest for the

Conference’17, July 2017, Washington, DC, USA Alexander Wagner, Felix Oberhansl, and Marc Schink

secure boot use case. In general, state management is expensive and
any implementation must guarantee high assurance. Depending
on the respective application, entities cannot generally bear this
overhead. Thus, the question on whether the HBS scheme should
be stateful or not must be answered differently, depending on the
application, but also the entity. Since every boot stage is controlled
by an individual entity and owner and provider may have differ-
ent constraints with respect to boot time and application security,
some devices need to verify stateful signatures at one stage and
stateless ones at another. Thus, our architecture that supports both
types is the most promising approach to enable the transition to a
post-quantum secure boot using hash-based signatures.

3.2 Choice of Hash-Based Signature
Parameters

The general impact of the HBS parameters are formally described
in [18]. Within the scope of this work, we select the parameters
in accordance with the constraints of secure boot. The SPHINCS+
submission document defines fixed parameter sets. This is in con-
trast to stateful schemes, where parameters can be selected more
freely. In the following section, we provide an overview over the
parameters and set forth the rationale behind our parameter choice.

Table 1: Signature and public key sizes and the reached NIST
security level, in comparison to RSA and ECC, for LMS,
XMSS and SPHINCS+ with SHA-256 as underlying hash func-
tion and an output size of 32 bytes.

Algorithm Parameter Signature Public key NIST
size size security level

LMS ℎ = 15 𝑤 = 4 4.7KiB 32 B 5
ℎ = 15 𝑤 = 16 2.7KiB 32 B 5
ℎ = 15 𝑤 = 256 1.6KiB 32 B 5

XMSS ℎ = 16 𝑤 = 16 2.6KiB 32 B 5
SPX+ 256𝑠 29KiB 64 B 5
RSA 3072 384 B 384 B "
ECC 𝑃 − 256 64 B 64B "

Hash Algorithm. LMS, XMSS and SPHINCS+ have support for
both SHA-2 and SHA-3. Due to the widespread use of SHA-2, we
select the SHA-256 hash function with an untruncated output size
of 32 bytes. This guarantees a level of security equivalent to an ex-
haustive key search for AES-256 [15], thus reaching NIST’s highest
security level five. If Grover’s attack is feasible, this equals a level
of 128 bits in a pre-quantum world. We select for ECC a 256-bit
curve and for RSA 3072-bit integers (Table 1) for comparison with
commonly used asymmetric algorithms.

LMS and XMSS. Due to the nature of stateful HBSs the ability to
sign firmware images is limited to a fixed count, which is defined
once at key generation (Section 2.4). For the secure boot use case
we estimate the required number of firmware updates including a
security margin. We estimate the maximum lifetime of a security
controller to be 40 years and the amount of required updates to at
most two updates each day during its lifetime. This totals to up to
29200 required signatures, where one signature is used for each
firmware update. From this we can derive the required tree height

2 4 8 16 32 64 128 256
Winternitz parameter

0

2

4

6

8

Si
gn

at
ur

e
si

ze
 in

 K
iB

0

1000

2000

3000

4000

F
op

er
at

io
ns

0

200k

400k

600k

800k

C
yc

le
 c

ou
nt

Figure 5: Cycle count estimation for a signature verification
of a WOTS accelerated by our hardware/software co-design
depending on different Winternitz parameters and in com-
parison to the signature size and the required 𝐹 operations.

parameter for LMS to beℎ = 15 and XMSS to beℎ = 16, with respect
to the parameters listed in [10]. For XMSS, theWinternitz parameter
𝑤 is limited to 𝑤 = 16. For LMS, the Winternitz parameter is
𝑊 ∈ [1, 2, 4, 8] , which maps to𝑤 ∈ [2, 4, 16, 256]. The notation of
𝑤 is used for SPHINCS+ and XMSS, so we will use this notation
as well for LMS. As shown in Figure 5, the Winternitz parameter
allows a trade-off between signature size and overall performance.
A higher Winternitz parameter generates smaller signatures, but
has the drawback of worse performance. This is not the case for
𝑤 = 2, as for both𝑤 = 2 and𝑤 = 4 the required hash compress calls
add up to the same count, while the signature for 𝑤 = 2 is larger.
Therefore, the original Winternitz parameter set can be limited
to 𝑤 ∈ [4, 16, 256]. The resulting signature sizes of the selected
parameters for LMS and XMSS are listed in Table 1.

SPHINCS+. In contrast to XMSS and LMS, the SPHINCS+ param-
eters are described with certain sets of parameter combinations.
This is due to the fact, that the stateless property of SPHINCS+ is
a result of carefully combining parameters. Thus, we restrict our
evaluations to the provided parameter sets. The available list of
parameters can be split into the two variants, "small" and "fast",
which are denoted with "s" and "f", respectively. The "small" variant
has the drawbacks of slower key generation and signing. However,
it achieves smaller signature sizes and faster verification. As this is
desirable for the secure boot scenario, we select the "small" variant.
The respective signature and public key size for the selected param-
eter set is listed in Table 1. The "simple" and "robust" construction
that can be used in SPHINCS+ only influence the security proof
and runtime but not signature or public key sizes. They are referred
to as SPX+-s and SPX+-r in the following.

4 HARDWARE/SOFTWARE CO-DESIGN
To ensure the practicability of HBS schemes during runtime, we
propose a flexible hardware/software co-design to enhance the
performance of signature verification. In this chapter we lay out
and evaluate our approach.

4.1 Software implementation
Within the following section, we lay out our design methodology
starting with a peak into the general performance characteristics of
LMSwith𝑤 = 16, XMSS and SPHINCS+. As depicted in Figure 6, we
differentiate the operations of the algorithms into the three classes:
hash chain, authentication path, and unclassified. The unclassified

Post-Quantum Secure Boot using Hash-Based Signatures Conference’17, July 2017, Washington, DC, USA

0 20 40 60 80 100
Duration share of signature verification in %

LMS
XMSS
SPX+

Figure 6: Performance of software implementations impact-
ed by hash chain, merkle tree, and unclassified operations.

part was not further split as it takes up less than 10 % on average.
Hence, it is less important for hardware acceleration. The hash
chain computation is responsible for over 80 % of the overall latency
during a signature verification. Therefore it is the most interesting
part for acceleration by dedicated hardware. The authentication
path takes up to 15 % of performance for SPHINCS+, making it a
possible second target for acceleration.

Hash Hardware Accelerators. In general, hashing dominates the
execution time of the HBS algorithms. Thus, any acceleration with-
in the hash computation has a meaningful impact on the overall
performance. SHA-2/3 hardware cores are found in many micro-
controllers, as the algorithm is frequently required and their per-
mutation logic can be implemented efficiently in hardware. The
usage of such an accelerator shifts the bottleneck from computa-
tion to communication with the accelerator. On our target platform,
the OpenTitan, a SHA-256 compress takes 65 clock cycles, while
writing the data and reading the digest raises the latency to around
1400 clock cycles. For digesting a high amount of data this is irrele-
vant, as the transfer interleaves with computation and the compress
function is executed multiple times. However, for a step within a
hash chain 55 (LMS) to at most 96 bytes (XMSS) are digested at
once. Therefore, a generic hash accelerator is not ideal for usage in
hash chains.

4.2 Hardware Hash-Based Signature
Accelerators

Acceleration that can be achieved with generic hash cores is limited
due to a high communication overhead. Due to the tree and chain
structures in HBS schemes, data structs are often accessed subse-
quently. Dedicated hardware components can manage this data
flow and consequently reduce interaction with the main processor.
Therefore, we propose a set of HBS top modules that support the
computation of a hash chain, the computation of a tree root, or both.
We use the open source SHA-2/HMAC core from the OpenTitan
project as hash backend. Throughout the rest of this paper we refer
to our proposed design as SHA-2+ core.

Winternitz parameter exploration for HW/SW Co-Designs. To as-
sess the impact of our approach, we estimate the resulting cycle
count for an OTS signature verification on our design in Figure 5.
As stated in Section 2, OTS verification consists mainly of advanc-
ing hash chains. The estimation shows that a hash chain module
allows to use higher Winternitz parameters without significantly
degrading the overall performance. As the chain length increases,
the number of required I/O operations reduces, so runtime improves
even if more hash operations are required. This is in direct con-
trast to software implementations where an increase of required 𝐹
operations implies a linear increase in runtime. Interestingly, our

estimate shows that a hardware/software co-design approach en-
ables to reduce the signature size without affecting the performance.
For example, a Winternitz parameter of 𝑤 = 256 can be selected
instead of𝑤 = 16, to cut the OTS signature size into half without a
significant performance regression.

R
eg

is
te

r
in

te
rf

ac
e

TL-UL
FIFO

HMAC

Pad

SHA-256

Round

+

HBS A B H...

...

Figure 7: Block diagram of the SHA-2+ core.

SHA-2+ core. Figure 7 shows our hardware design. The origi-
nal OpenTitan SHA-256 accelerator consists of a SHA-256 back-
end, which can be accessed either transparently or through the
HMAC toplevel, to compute a SHA-256 or a MAC, respectively.
By reusing the SHA-256 logic, we minimize the additional cost for
manufacturers. At synthesis time one of six HBS modules can be
plugged into the design: (i) LMS, (ii) XMSS, (iii) SPX+-s, (iv) SPX+-r,
(v) SPX+-s + LMS, (vi) SPX+-r + XMSS. In theory, these modules
can be fitted for arbitrary hash cores with minor modifications. Our
changes to the original hash accelerator include a chain register
which is connected to the SHA-256’s initial state register, addition-
al control logic to switch between operation modes, and a digest
feedback path into the HBS module. The HBS cores implement the
respective behaviour by means of simple state machines. Our com-
plete design can be directly integrated into any chip that supports
the TileLink Uncached Lightweight (TL-UL) interface.

Combined stateful and stateless accelerators. The rationale for
supporting both stateless and stateful signatures in one design was
laid out in Section 3.1. The obvious choices for combination are LMS
and SPX+-s and XMSS and SPX+-r, as they are respectively "simple"
and "robust" instantiations of HBSs. Figure 8 shows the steps in
a "simple" hash chain (LMS and SPX+-s), a "robust" hash chain in
XMSS, and a "robust" hash chain in SPX+-r. The only difference
between LMS and SPX+-s is that the former uses 23 address bytes,
whereas the latter uses 22 bytes and the initial SHA-256 state. In
theory, both the "simple" and "robust" SPHINCS+ variant would
require to hash a public seed before each hash operation. This
seed is padded such that this compress only needs to be done once
and the resulting SHA-256 state can be reused for subsequent hash
operations. All SPHINCS+ cores support this behaviour. Apart from
that, advancing a simple hash chain requires a single compress with
an incrementing iterator and the output of the previous step. The
differences in SPX+-r and XMSS are more severe. WOTS+ in XMSS
requires to first compute a unique key and mask, where the hash
function acts as a pseudorandom function, and finally to update
the chain digest, for which the hash function acts as a keyed hash
function. The SPX+-r construct omits the calculation of a unique
key. In XMSS, 32 address bytes are required, SPHINCS+ uses 22

Conference’17, July 2017, Washington, DC, USA Alexander Wagner, Felix Oberhansl, and Marc Schink

||

H+1

SEED ADRS

(a) LMS & SPX+-s

||

H

||

H

M

||

H

+1

SEED ADRS

(b) XMSS

||

H

||

H

+1

SEED ADRS

(c) SPX+-r

Figure 8: Schematic depiction for a "simple" hash chain (LMS
& SPX+-s) and a "robust" hash chain in XMSS and SPX+-r.

bytes. Therefore, in straightforward implementations, six compress
iterations are required in XMSS, two each for the mask, key, and
advancing the chain, and three compress iterations are required
in SPHINCS+, two for the mask, and one for advancing the chain.
While the two "robust" instantiations in XMSS and SPHINCS+ do
notmap as good as the two simple instantiations, the buffer registers
and some control logic can be reused.

XMSS precomputation. The amount of compress iterations in
an XMSS WOTS+ hash chain step can be reduced via precomputa-
tion [35]. Three data structures are computed in a step, the mask,
the key, and the data for the chain itself. For all three data structures,
a public seed and an address must be compressed first. Since the
public seed is constant, and the address is constant within a step,
this compress only needs to be done once instead of three times.
The resulting state can be used to overwrite the SHA-256 state
in the subsequent hashes, thus lowering the number of compress
iterations from six to four. This comes at the cost of a buffer register
and overwrite logic for the SHA-256. As SPHINCS+ requires this
behaviour as well, this applies only to the standalone XMSS core.

Accelerating root computation in Merkle trees. In addition to accel-
erating hash chains, we also explore hardware optimizations for the
compute root operation in Merkle trees. We limit this exploration to
the FORS and MSS scheme in SPHINCS+. Due to the usage of multi-
ple tree levels in SPHINCS+, more authentication path calculations
than in LMS and XMSS are required (Figure 6). Further, related work
has shown that hardware features beyond hash chain computation
offer little to no additional benefit for verification in XMSS [35], and
as the performance of SPHINCS+ lacks behind the stateful schemes
in general, it is most relevant for additional acceleration. Therefore
our SPX+-s and SPX+-r modules can be extended with aMerkleTree
submodule. The compute root operation calculates the root of a tree
from a leaf and the respective authentication path. Through all tree
levels, two child nodes are combined to obtain their parent node
with a hash function. In SPX+-s, this corresponds to calculating
one digest by compressing both child nodes with two compress
iterations. For SPX+-r, two compress iterations to obtain a 64 byte
mask are required. Afterwards, the masked data is compressed with-
in two more iterations. The order in which the nodes are hashed
depends on whether the node from the authentication path is a
left or right neighbour. Our core continuously absorbs nodes from
the authentication path, reorders them with the node buffered in
hardware and computes the hash to obtain the parent node. Only

the root node is read from the SHA-2+ core, thus dispensing all but
one read operation.

Synthesis results. In Table 2, we report FPGA and ASIC synthesis
results for all configurations of the SHA-2+ core. As FPGA target,
we chose an Artix-7, synthesis and implementation are done with
default settings in Vivado 2020.2. For ASIC synthesis, we use the
SG13s 130 nm process by IHP and the Cadence Genus synthesis
tool in version 21.10-p002_1. The OpenTitan SHA-256/HMAC core
we use as basis consumes around 56.3 kGE. The SHA-256 logic and
its registers amount to slightly more than 50 % of that. The next
largest blocks are the register interface, the HMAC logic, and the
FIFO, with approx. 20 %, 13 %, and 8 %, respectively. We prove that
integrating a HBS accelerator for LMS can be as cheap as 11 kGE
additional gates, an approximate overhead of 20 %. Extending this
to a design that also supports SPHINCS+ costs an additional 5 kGE,
mainly due to the buffer register for the initial SHA-256 state. Ad-
ditionally integrating the MerkleTree accelerator is comparatively
expensive, as the behaviour differs fundamentally and registers to
parse leafs and buffer a digest are required. The "robust" instances
are more expensive, as mask and key registers are required. Inte-
grating SPX+-r requires no additional sequential logic, but 5 kGE
in combinatorial logic, as the differences in the hash chain step are
more severe. Supporting theMerkleTree computation in the "robust"
variant on top requires even more buffer registers and addition-
al control logic. This becomes even more obvious if a standalone
SPX+-r core is built, as the hash chain core in SPHINCS+ requires
less registers than the XMSS core.

Table 2: Synthesis results for different configurations of the
SHA-2+ core on FPGA on Artix7 and ASIC using the IHP 130
nm process SG13S [17]

FPGA ASIC Overhead

LUTs FFs Area GE (%)(𝑚𝑚2)

SHA2, HMAC 3480 2400 0.319 56,300 -

+ LM-OTS 4400 3080 0.381 67,200 20
+ SPX+-s 5060 3360 0.414 73,000 30

+ MerkleTree-s 5920 4070 0.485 85,600 52

+ WOTS+ 4840 4000 0.464 81,800 45
+ SPX+-r 5950 4000 0.492 86,800 55

+ MerkleTree-r 6210 4170 0.575 101,400 80

+ SPX+-s 4870 3350 0.407 71,800 28
+ MerkleTree-s 5850 4050 0.476 84,000 49

+ SPX+-r 5510 3860 0.458 80,800 44
+ MerkleTree-r 6050 4120 0.560 98,800 75

Our synthesized ASIC can be clocked at 125MHz at most. The
target frequency of the OpenTitan is 100MHz. Even with the most
complex SHA-2+ synthesis configuration the critical path of the
design is still determined by the SHA-256 round logic. The FPGA
synthesis supports this finding, as the length of the critical paths
deteriorates only minimally. On a medium-sized Artix-7 board with
almost 50k LUTs, all our designs can be clocked at 100MHz.

Post-Quantum Secure Boot using Hash-Based Signatures Conference’17, July 2017, Washington, DC, USA

Table 3: State-of-the-art HBS implementations.

Algorithm Approach Area Performance

FPGA MHz ms

[9] LMS SW - 24 110
𝑤 = 16, ℎ = 10 ARM Cortex-M4

[19]

LMS FPGA 968 LUTs

250 6.3
𝑤 = 265, ℎ = 15 517 FFs

2 BRAMs
1 DSP

[9] XMSS SW (rap. verif.) - 24 273
𝑤 = 16, ℎ = 10 ARM Cortex-M4

[35] XMSS HW/SW 2580 Registers 95.2 5.68
𝑤 = 16, ℎ = 10 RISC-V RV32IM 1700 ALMs

[20] SPX+ SW - 24 729256𝑠 − 𝑠𝑖𝑚𝑝𝑙𝑒 ARM Cortex-M4

[20] SPX+ SW - 24 2070256𝑠 − 𝑟𝑜𝑏𝑢𝑠𝑡 ARM Cortex-M4

5 BENCHMARK RESULTS
We evaluate our flexible hardware accelerator in general and with
respect to the secure boot use case defined in Section 3. As the
verification time for hash-based signatures is not constant and de-
pends on the signed message, we evaluate each parameter set and
implementation with 1000 different messages. For a baseline, we
start the comparison with our open source software implementa-
tions of LMS, XMSS and SPHINCS+. Within this comparison all
implementations are written in Rust and are not optimized for the
RISC-V target architecture. We extend this by benchmarking the
implementations accelerated by the available SHA-256 core as well.

5.1 LMS and XMSS
First, we evaluate the performance of signature verification for the
stateful signature schemes LMS and XMSS. For this, we benchmark
the verification in software running on the Ibex processor, acceler-
ated by the general-purpose SHA-256 core, and accelerated by our
SHA-2+ core. The parameters of interest are listed in Table 1. The
results are shown in Figure 9.

For LMS, the relative performance improvements for our ap-
proach differ from the relative ranking of a software implementa-
tion with or without general-purpose SHA-256 core. Our results
show that the benefit to use a hardware/software co-design depends
on the Winternitz parameter as estimated in Figure 5. Instead of
exponentially increasing cycle counts for larger𝑤 , our architecture
is fastest for𝑤 = 16. Signature verification with𝑤 = 256 performs
only 25 % slower than for 𝑤 = 16 and even faster than for 𝑤 = 4.
Overall, signature verification with𝑤 = 4 is slowest and signature
size is largest. Hence, we further restrict the Winternitz parameter
for LMS to𝑤 ∈ [16, 256].

Comparing the XMSS results with the LMS results for 𝑤 = 16
leads to approximately the same relative performance increase.
With our accelerator, the performance of XMSS signature verifica-
tion is increased in comparison to software and the SHA-256 core
by a factor of 12 and 4, respectively. Due to the "robust" construc-
tion, XMSS is slower by a factor of approximately 6. For LMS with

4 16 256

500k

1M

5M

10M

50M

C
yc

le
 c

ou
nt

LMS

Software
SHA-256 core
SHA-2+ core

5

10

50

100

500

El
ap

se
d

tim
e

in
 m

s

16

XMSS

Winternitz parameter w

Figure 9: Signature verification time for 1000 different mes-
sages with LMS and XMSS. Both are implemented in soft-
ware and accelerated by a SHA-256 and SHA-2+ core.

𝑤 = 256, software and the SHA-256 core are outperformed by a
factor of 80 and 20, respectively.

The relationship between different Winternitz parameters and
performance for hardware/software co-design was never reported
in detail. While it is straightforward for standalone hardware or
software implementations (e.g. shown in [19]), co-designs require
to consider costs for data transfers. For our design, the performance
of LMS verification is effectively the same for all𝑤 , while the signa-
ture size is reduced by up to 50 %. For XMSS this can be estimated
to have even a bigger impact as the compression of the OTS public
keys with 𝐾 is performed by an L-tree. Increasing the Winternitz
parameter from𝑤 = 16 to𝑤 = 256 effectively halves the required
node operations within the calculation of the L-tree. As the L-tree
generation is computationally expensive, halving the required oper-
ations impacts the overall performance. Therefore usingWinternitz
parameters 𝑤 > 16 in XMSS would be desirable not only for se-
cure boot, but as the standardisation is quite progressed, parameter
changes are unlikely to happen.

Rapidly Verifiable Signatures. As it can be seen in Figure 9, the
execution of a signature verification is not performed in constant
time. Based on this [6, 31] introduced a general algorithmic opti-
mization applicable for stateful HBSs. The approach does not reduce
the total number of operations in signing and verifying but shifts
computations from the verifier to the signer. The signer searches
for a rapidly verifiable signature by appending a random counter
to the message. If the resulting signature requires the verifier to
perform less 𝐹 operations to reach the final state, i.e. public key (see
Figure 1) in comparison to the original signature, a rapidly verifiable
signature is found. This is repeated for a distinct number of trials.
The random counter that requires the verifier to do the least 𝐹 oper-
ations is used to generate a rapidly verifiable signature. For software
implementations it has been proven that the performance benefits
significantly and thus signer’s additional effort is well spent. In
the following section, we extend our implementations to give an
insight into the impact of this optimization on hardware/software
co-designs. Further, we extend the existing knowledge base by
applying this optimization technique to LMS, as this was not yet
performed.

The results for the rapidly verifiable signatures are plotted in Fig-
ure 10. Performance improvements are evaluated up to a maximum

Conference’17, July 2017, Washington, DC, USA Alexander Wagner, Felix Oberhansl, and Marc Schink

0 5 6 7 8 9

500k

1M

5M

10M

50M

C
yc

le
 c

ou
nt

LMS
w = 16

Software
SHA-256 core
SHA-2+ core

0 5 6 7 8 9

LMS
w = 256

5

10

50

100

500

El
ap

se
d

tim
e

in
 m

s

0 5 6 7 8 9

XMSS
w = 16

Optimization counter 10x

Figure 10: Signature verification time for 1000 differentmes-
sages with LMS and XMSS. Optimization with the rapid-
ly verifiable approach with different optimization counters.
Both algorithms are implemented in software and accelerat-
ed by a SHA-256 and SHA-2+ core.

optimization counter equal to 109. For LMS and XMSS with𝑤 = 16
the relative performance improvement is comparable. For our soft-
ware implementation and the acceleration with the general-purpose
SHA-256 core, the optimization decreases the runtime for signature
verification by approximately 30 %. In contrast, the runtime of the
implementations accelerated by our SHA-2+ core is only decreased
by 10 %. For LMS with 𝑤 = 256 comparable observations can be
made as the software and the SHA-256 variants have a decrease
in runtime by 50 % and the SHA-2+ variant by 30 %. In general, the
optimization reduces the runtime. However, the relative improve-
ment is reduced for our hardware/software co-design. This is due
to the fact that advancing within the hash chains with our design
is not as expensive compared to the rest of the algorithm.

Further, we extend the results reported by [6] for Winternitz
parameters𝑤 > 16with our benchmark results. A largerWinternitz
parameter allows for bigger improvement of the performance. It
can be seen that the benefit of using the rapidly verifiable approach
for LMS and XMSS with𝑤 = 16, accelerated by our SHA-2+ core,
is neglectable and the effort may not be required by the signer.
For larger Winternitz parameters of 𝑤 = 256 it still is a decent
improvement of the performance.

5.2 SPHINCS+

The performance of the SPHINCS+ signature verification was evalu-
ated similar to the stateful HBS benchmarks in software, accelerated
by a SHA-256 accelerator and by our SHA-2+ core. As presented in
Section 4, our hardware accelerator comes in two different variants
for the acceleration of SPHINCS+. The basic SHA-2+ core acceler-
ating the hash chain calculation and the extended SHA-2++ core
including the MerkleTree module accelerating the compute root cal-
culation in Merkle trees as well. The SHA-2+ core speeds up the
signature verification for "simple" and "robust" by approximately
a factor of 14. Similar to the stateful HBS benchmarks the exe-
cution time varies. The SHA-2++ core improves the performance
compared to a software implementation for "simple" and "robust"
by roughly a factor of 21 and 27, respectively. With respect to the
SHA-2+ core the extended SHA-2++ reduces the latency by 34 %
for "simple" and 45 % for "robust". Considering the relative high

5M

10M

50M

100M

C
yc

le
 c

ou
nt

Simple

Software
SHA-256 core
SHA-2+ core
SHA-2++ core

50

100

500

1000

El
ap

se
d

tim
e

in
 m

s

Robust

Figure 11: Signature verification time for 1000 differentmes-
sages with SPX+-s and SPX+-r implemented in software and
accelerated by a SHA-256, our SHA-2+ core, and our extend-
ed SHA-2+ listed as SHA-2++.

hardware utilizations listed in Section 4 makes the extended core
only suitable for scenarios with strict timing requirements. As our
evaluation in Section 4 has shown, further hardware accelerations
are not suitable as the latency is not heavily influenced by the not
yet accelerated calculations. This makes our SHA-2+ core a very
efficient implementation with low overhead and our SHA-2++ core
more performant with the drawback of higher hardware costs.

Similar to benchmarks with LMS it would be interesting to eval-
uate the impact of a higher Winternitz parameter with𝑤 = 256. As
shown with the LMS benchmarks, the performance can be expected
to be constant. This is due to the fact that FORS, which is the main
design difference, does not depend on the Winternitz parameter.
The update in parameters would reduce the signature size from
29 KiB down to 21 KiB. We did not further investigate𝑤 = 256 for
SPHINCS+ and leave it open for future work.

5.3 Comparison with Related Work
Table 3 summarizes the state of the art relevant to this work. The
reported hardware utilizations do not include the SHA-256, but
only the relative overhead for supporting HBSs. Complete FPGA
implementations such as [1, 4, 21, 34] are out of scope as their use
case differs from ours. The software benchmarks in [6, 9, 20] provide
interesting comparisons, as the performance of the ARMCortex-M4
is similar to that of the Ibex. However, in these works, assembly
optimized SHA-256 functions are used, thus outperforming our
plain Rust implementations. In addition, the authors of [6] use the
rapidly verifiable approach for XMSS to lower verification time,
thus outperforming the straightforward XMSS implementation of
[9] by factor two. The LMS FPGA implementation in [19] supports
the verification in hardware with a compact design. In comparison
to our hardware/software co-design, their verification takes 20 %
longer in terms of absolute latency. The authors of [35] propose
different hardware extensions for XMSS but conclude that any
acceleration beyond the hash chain computation does not lead to
improved performance. A comparison of area utilization is not
applicable, as they use a different FPGA architecture. They highly
optimize their architecture for XMSS and achieve a latency which
is lower by a factor of three.

Post-Quantum Secure Boot using Hash-Based Signatures Conference’17, July 2017, Washington, DC, USA

As stated before, hardware/software co-designs for SPHINCS+
and combined stateful and stateless HBS schemes have not been
reported. The comparison with related work demonstrates that our
designs improves the state-of-the-art in performance of HBSs and
in their adaptability for applications.

5.4 Secure Boot
In this section, we evaluate the applicability of HBSs for a post-
quantum secure boot. To put our results into perspective, we include
the time required to hash an application firmware image into our
comparison. We use the - at time of writing - most recent Git
master version1 of the TockOS kernel as reference firmware [22]
and compile it in release mode, which results into a binary size
of 124 KiB. To take a minimal application into account, we set the
code size to 128 KiB.

We compare both software only and hardware accelerated imple-
mentations. We use available open source Rust implementations for
RSA2 and ECC 3. For comparison with hardware accelerated RSA
and ECC we use the OpenTitan BigNumber accelerator (OTBN).
The results of these comparisons are listed in Table 4.

Table 4: Cycle count [cc] in MCycles of the signature verifi-
cation executed on an Ibex processor and overhead relative
to hashing a 128 KiB firmware.

RSA ECC LMS XMSS SPX+-s SPX+-r
3072 P-256 w=256 w=16 256s 256s

SW 37.0 50.0 30.1 26.6 70.0 172
𝑐𝑐𝑣𝑒𝑟𝑖 𝑓 /𝑐𝑐𝑠𝑤−ℎ𝑎𝑠ℎ 141% 190% 114% 101% 266% 654%

OTBN or SHA-2+ 1.07 0.617 0.524 2.01 4.95 13.2
𝑐𝑐𝑣𝑒𝑟𝑖 𝑓 /𝑐𝑐ℎ𝑤−ℎ𝑎𝑠ℎ 75% 43% 37% 142% 349% 930%

SHA-2++ - - - - 3.26 6.61
𝑐𝑐𝑣𝑒𝑟𝑖 𝑓 /𝑐𝑐ℎ𝑤−ℎ𝑎𝑠ℎ - - - - 230% 465%

In software, stateful HBSs allow for a slightly better performance
for signature verification than ECC or RSA. Using a stateless HBS
would mean a slight performance degradation. For implementations
where the boot timing for classical asymmetric algorithms is not
required to be accelerated, it is also not required for HBSs.

The hardware accelerated LMS implementation exceeds the per-
formance of RSA and ECC run on the OTBN. In a secure boot,
hashing the firmware would be the crucial part, as the verification
time can be reduced to only 37 % of the firmware digest time. For
XMSS, the duration for signature verification doubles in compar-
ison to RSA, but still is in a comparable range of execution time.
For SPHINCS+ the performance degrades for both our accelera-
tor designs in comparison to the classical asymmetric algorithms
performed on the OTBN.

To conclude, the performance of the stateful HBS schemes is
comparable to that of classical asymmetric algorithms accelerat-
ed by the OTBN. It should be noted that the hardware footprint
of our SHA-2+ core is significantly smaller than that of the OTB-
N. The SPHINCS+ variants degrade the performance of signature
1https://github.com/tock/tock/commit/db7cb5fc815ba3c5fa45310dab730b6e5ffa4243
2https://github.com/RustCrypto/RSA
3https://github.com/RustCrypto/elliptic-curves/tree/master/p256

verification. However, our accelerator makes the overhead bear-
able. Digesting the firmware and verification with SPX+-s can be
achieved below 5 MCycles.

Table 5: Code size of our Rust libraries compiled for the Ibex
and optimized for runtime.

LMS XMSS SPX+-s SPX+-r

Size in KiB 4.8 11.5 15.9 (+ 40.1)a 20.8 (+ 40.1)a

a SPHINCS+ with SHA-256 as hash function additionally
requires SHA-512 to reach NIST security level 5 [16, 32]. This
is due to a shortcoming in the initial SPHINCS+ specification.

Code size. In general, the boot ROM size is constrained. Within
the OpenTitan the boot ROM has a size of 32 KiB. To further allow
to evaluate the applicability of HBSs, we list the required code size
for our software libraries in Table 5. All HBS libraries are compiled
with optimizations for runtime.

6 CONCLUSION AND OUTLOOK
In this work, we show that the transition to a post-quantum secure
boot using HBS schemes is feasible for today’s designs. In contrast
to other works, we provide a flexible hardware/software co-design
to support both stateful as well as stateless schemes from boot up.
We demonstrate that by exploiting similarities of LMS or XMSS
and SPHINCS+ low hardware overheads can be achieved. Hence,
making the discussion to choose between stateless and stateful HB-
Ss one indifferent to the underlying hardware. Further, our design
allows to easily incorporate updates with respect to the parameters
without changes to the hardware design.

Regarding the parameter sets that should be chosen for secure
boot with HBSs, we come to the following conclusions: As NIST
views both "simple" and "robust" constructs as secure [10] we recom-
mend the usage of LMS and SPHINCS+-s, due to their advantageous
performance. Our design demonstrates that both can be implement-
ed with a minimal hardware footprint. The synergy between LMS
and SPHINCS+-s makes them ideal for a flexible architecture. Al-
though, it should be noted that the small differences between the
OTS in LMS and SPHINCS+-s make the design more complicated
than it needs to be. For XMSS and SPHINCS+-r this is even more
obvious. From an implementers perspective, a uniform approach
for all "simple" and all "robust" HBS constructs would be desirable.
We established that our architecture allows to choose𝑤 = 256 for
LMS without a significant performance penalty. Due to the small
signature size, this is our Winternitz parameter of choice.

We would like to highlight that our design is suited for fast
transition, as well as being a starting point for further research, in
particular for designs and parameter explorations of SPHINCS+.
NIST even requested public feedback for new SPHINCS+ param-
eter sets [29]. While their focus is a lower number of maximum
signatures, we suggest to revisit higher Winternitz parameters. As
shown in this work, on hardware/software co-designs this does
not degrade the performance but reduces the signature size. With
this paper we put forward that hardware/software co-designs are

Conference’17, July 2017, Washington, DC, USA Alexander Wagner, Felix Oberhansl, and Marc Schink

the most relevant solution for problems like secure boot. Software
only implementations will not be suitable for embedded devices
due to timing requirements and full hardware implementations
are very expensive in terms of overhead and cost. Dedicated hard-
ware/software co-designs for SPHINCS+ are largely unexplored.
With our flexible HBS design for secure boot we hope to motivate
more research in this direction.

Acknowledgements. This work was partly funded by the German
Ministry of Education, Research and Technology in the context
of the project Aquorypt (reference number 16KIS1018). We thank
Chris Gourley, Yongkui Han, Steve Rich, Chris Shenefiel, and Chi-
rag Shroff from CISCO Systems, Inc. for the valuable discussions
and feedback, especially on LMS.

REFERENCES
[1] Dorian Amiet, Lukas Leuenberger, Andreas Curiger, and Paul Zbinden. 2020.

FPGA-based SPHINCS+ Implementations: Mind the Glitch. In 2020 23rd Euromicro
Conference on Digital System Design (DSD). IEEE, Kranj, Slovenia, 229–237. https:
//doi.org/10.1109/DSD51259.2020.00046

[2] ANSSI. 2022. ANSSI views on the Post-Quantum Cryptography transition. Re-
trieved April 6, 2022 from https://www.ssi.gouv.fr/en/publication/anssi-views-
on-the-post-quantum-cryptography-transition/

[3] Daniel J. Bernstein, DairaHopwood, AndreasHülsing, Tanja Lange, RubenNieder-
hagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko
Wilcox-O’Hearn. 2015. SPHINCS: Practical Stateless Hash-Based Signatures.
In Advances in Cryptology – EUROCRYPT 2015, Elisabeth Oswald and Marc Fis-
chlin (Eds.). Vol. 9056. Springer Berlin Heidelberg, Berlin, Heidelberg, 368–397.
https://doi.org/10.1007/978-3-662-46800-5_15 Series Title: Lecture Notes in
Computer Science.

[4] Quentin Berthet, Andres Upegui, Laurent Gantel, Alexandre Duc, and Giuli-
a Traverso. 2021. An Area-Efficient SPHINCS+ Post-Quantum Signature Co-
processor. In 2021 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW) (2021-06). IEEE, Portland, OR, USA, 180–187. https:
//doi.org/10.1109/IPDPSW52791.2021.00034

[5] Ward Beullens. 2022. Breaking Rainbow Takes a Weekend on a Laptop. https:
//eprint.iacr.org/2022/214

[6] Joppe W. Bos, Andreas Hülsing, Joost Renes, and Christine van Vredendaal.
2020. Rapidly Verifiable XMSS Signatures. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2021, 1 (Dec. 2020), 137–168. https://doi.org/
10.46586/tches.v2021.i1.137-168

[7] BSI. 2022. BSI – Technische Richtlinie: Kryptographische Verfahren:
Empfehlungen und Schluessellaengen. Retrieved April 6, 2022
from https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/
TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile

[8] Johannes Buchmann, Erik Dahmen, Elena Klintsevich, Katsuyuki Okeya, and
Camille Vuillaume. 2007. Merkle Signatures with Virtually Unlimited Signature
Capacity. In Applied Cryptography and Network Security, Jonathan Katz and
Moti Yung (Eds.). Vol. 4521. Springer Berlin Heidelberg, Berlin, Heidelberg, 31–
45. https://doi.org/10.1007/978-3-540-72738-5_3 Series Title: Lecture Notes in
Computer Science.

[9] Fabio Campos, Tim Kohlstadt, Steffen Reith, and Marc Stöttinger. 2020. LMS vs
XMSS: Comparison of Stateful Hash-Based Signature Schemes on ARM Cortex-
M4. In Progress in Cryptology - AFRICACRYPT 2020, Abderrahmane Nitaj and
Amr Youssef (Eds.). Vol. 12174. Springer International Publishing, Cham, 258–
277. https://doi.org/10.1007/978-3-030-51938-4_13 Series Title: Lecture Notes
in Computer Science.

[10] David A. Cooper, Daniel C. Apon, Quynh H. Dang, Michael S. Davidson, Morris J.
Dworkin, and Carl A. Miller. 2020. Recommendation for Stateful Hash-Based
Signature Schemes. https://doi.org/10.6028/NIST.SP.800-208

[11] C. Dods, N. P. Smart, andM. Stam. 2005. Hash Based Digital Signature Schemes. In
Cryptography and Coding (2005), Nigel P. Smart (Ed.). Springer, Berlin, Heidelberg,
96–115. https://doi.org/10.1007/11586821_8

[12] Santosh Ghosh, Rafael Misoczki, and Manoj R Sastry. 2019. Lightweight
Post-Quantum-Secure Digital Signature Approach for IoT Motes. https:
//eprint.iacr.org/2019/122

[13] Leon Groot Bruinderink and Andreas Hülsing. 2018. “Oops, I Did It Again” –
Security of One-Time Signatures Under Two-Message Attacks. In Selected Areas
in Cryptography – SAC 2017, Carlisle Adams and Jan Camenisch (Eds.). Vol. 10719.
Springer International Publishing, Cham, 299–322. https://doi.org/10.1007/978-
3-319-72565-9_15 Series Title: Lecture Notes in Computer Science.

[14] A. Huelsing, D. Butin, S. Gazdag, J. Rijneveld, and A. Mohaisen. 2018. XMSS: eX-
tended Merkle Signature Scheme. https://datatracker.ietf .org/doc/html/rfc8391.

[15] A. Hülsing, D. J. Bernstein, C. Dobraunig, M. Eichlseder, S. Fluhrer, S.-L. Gazdag,
P. Kampanakis, S. Kolbl, T. Lange, M. M. Lauridsen, F. Mendel, R. Niederhagen, C.
Rechberger, J. Rijneveld, P. Schwabe, J.-P. Aumasson, B.Westerbaan, , andW. Beul-
lens. 2020. SPHINCS+ - Submission to the NIST post-quantum project, v.3. https:
//csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions.

[16] A. Hülsing, D. J. Bernstein, C. Dobraunig, M. Eichlseder, S. Fluhrer, S.-L.
Gazdag, P. Kampanakis, S. Kolbl, T. Lange, M. M. Lauridsen, F. Mendel,
R. Niederhagen, C. Rechberger, J. Rijneveld, P. Schwabe, J.-P. Aumas-
son, B. Westerbaan, , and W. Beullens. 2021. SPHINS+ round 3 pre-
sentation. https://csrc.nist.gov/CSRC/media/Presentations/sphincs-round-3-
presentation/images-media/session-1-sphincs-plus-hulsing.pdf.

[17] IHP. [n. d.]. SiGe-BiCMOS- und Siliziumphotonik-Technologien. Retrieved
March 14, 2022 from https://www.ihp-microelectronics.com/de/leistungen/
forschungs-und-prototyping-service/mpw-prototyping-service/sigec-bicmos-
technologien

[18] Panos Kampanakis and Scott Fluhrer. 2017. LMS vs XMSS: Comparion of two
Hash-Based Signature Standards. https://eprint.iacr.org/2017/349

[19] Panos Kampanakis, Peter Panburana, Michael Curcio, and Chirag Shroff. 2021.
Post-quantum Hash-Based Signatures for Secure Boot. In Silicon Valley Cyber-
security Conference, Younghee Park, Divyesh Jadav, and Thomas Austin (Eds.).
Springer International Publishing, Cham, 71–86.

[20] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. 2018.
PQM4: Post-quantum crypto library for the ARMCortex-M4. https://github.com/
mupq/pqm4.

[21] Vinay B. Y. Kumar, Naina Gupta, Anupam Chattopadhyay, Michael Kasper,
Christoph Krauß, and Ruben Niederhagen. 2020. Post-Quantum Secure Boot.
In 2020 Design, Automation Test in Europe Conference Exhibition (DATE). IEEE,
Grenoble, France, 1582–1585. https://doi.org/10.23919/DATE48585.2020.9116252

[22] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto,
Prabal Dutta, and Philip Levis. 2017. Multiprogramming a 64kB Computer
Safely and Efficiently. In Proceedings of the 26th Symposium on Operating Systems
Principles (Shanghai, China) (SOSP’17). ACM, New York, NY, USA, 234–251.
https://doi.org/10.1145/3132747.3132786

[23] lowRISC. 2022. OpenTitan Documentation. Retrieved April 7, 2022 from
https://docs.opentitan.org/

[24] MATZOV. 2022. Report on the Security of LWE: Improved Dual Lattice Attack.
https://doi.org/10.5281/zenodo.6493704

[25] David McGrew, Panos Kampanakis, Scott Fluhrer, Stefan-Lukas Gazdag, Denis
Butin, and Johannes Buchmann. 2016. State Management for Hash-Based Signa-
tures. In Security Standardisation Research, Lidong Chen, David McGrew, and
Chris Mitchell (Eds.). Vol. 10074. Springer International Publishing, Cham, 244–
260. https://doi.org/10.1007/978-3-319-49100-4_11 Series Title: Lecture Notes
in Computer Science.

[26] D. McGrew and S. Fluhrer M. Curcio. 2019. Leighton-Micali Hash-Based Signa-
tures. https://datatracker.ietf .org/doc/html/rfc8554.

[27] MCUboot. 2022. MCUboot Documentation. Retrieved April 7, 2022 from
https://docs.mcuboot.com/

[28] Ralph C. Merkle. 1990. A Certified Digital Signature. In Advances in Cryptology
— CRYPTO’ 89 Proceedings, Gilles Brassard (Ed.). Vol. 435. Springer New York,
New York, NY, 218–238. https://doi.org/10.1007/0-387-34805-0_21 Series Title:
Lecture Notes in Computer Science.

[29] Dustin Moody, Gorjan Alagic, Daniel C Apon, David A Cooper, Quynh H Dang,
John M Kelsey, Yi-Kai Liu, Carl A Miller, Rene C Peralta, Ray A Perlner, Angela Y
Robinson, Daniel C Smith-Tone, and Jacob Alperin-Sheriff. 2022. Status report on
the third round of the NIST post-quantum cryptography standardization process.
, NIST IR 8413 pages. https://doi.org/10.6028/NIST.IR.8413

[30] NIST. 2016. Submission Requirements and Evaluation Criteria for the Post-
Quantum Cryptography Standardization Process. https://csrc.nist.gov/CSRC/
media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-
final-dec-2016.pdf.

[31] Lucas Pandolfo Perin, Gustavo Zambonin, Douglas Marcelino Beppler Mar-
tins, Ricardo Custódio, and Jean Everson Martina. 2018. Tuning the Winter-
nitz hash-based digital signature scheme. In 2018 IEEE Symposium on Com-
puters and Communications (ISCC). IEEE, Natal, Brazil, 00537–00542. https:
//doi.org/10.1109/ISCC.2018.8538642

[32] Ray Perlner, John Kelsey, and David Cooper. 2022. Breaking Category Five
SPHINCS+ with SHA-256. https://eprint.iacr.org/2022/1061

[33] Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. , 1484–1509 pages. https://
doi.org/10.1137/S0097539795293172 arXiv:quant-ph/9508027

[34] Jan Philipp Thoma and Tim Guneysu. 2021. A Configurable Hardware Imple-
mentation of XMSS. https://eprint.iacr.org/2021/352

[35] Wen Wang, Bernhard Jungk, Julian Wälde, Shuwen Deng, Naina Gupta, Jakub
Szefer, and Ruben Niederhagen. 2020. XMSS and Embedded Systems. In Selected
Areas in Cryptography – SAC 2019, Kenneth G. Paterson and Douglas Stebila
(Eds.). Springer International Publishing, Cham, 523–550.

https://doi.org/10.1109/DSD51259.2020.00046
https://doi.org/10.1109/DSD51259.2020.00046
https://www.ssi.gouv.fr/en/publication/anssi-views-on-the-post-quantum-cryptography-transition/
https://www.ssi.gouv.fr/en/publication/anssi-views-on-the-post-quantum-cryptography-transition/
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1109/IPDPSW52791.2021.00034
https://doi.org/10.1109/IPDPSW52791.2021.00034
https://eprint.iacr.org/2022/214
https://eprint.iacr.org/2022/214
https://doi.org/10.46586/tches.v2021.i1.137-168
https://doi.org/10.46586/tches.v2021.i1.137-168
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile
https://doi.org/10.1007/978-3-540-72738-5_3
https://doi.org/10.1007/978-3-030-51938-4_13
https://doi.org/10.6028/NIST.SP.800-208
https://doi.org/10.1007/11586821_8
https://eprint.iacr.org/2019/122
https://eprint.iacr.org/2019/122
https://doi.org/10.1007/978-3-319-72565-9_15
https://doi.org/10.1007/978-3-319-72565-9_15
https://datatracker.ietf.org/doc/html/rfc8391
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/CSRC/media/Presentations/sphincs-round-3-presentation/images-media/session-1-sphincs-plus-hulsing.pdf
https://csrc.nist.gov/CSRC/media/Presentations/sphincs-round-3-presentation/images-media/session-1-sphincs-plus-hulsing.pdf
https://www.ihp-microelectronics.com/de/leistungen/forschungs-und-prototyping-service/mpw-prototyping-service/sigec-bicmos-technologien
https://www.ihp-microelectronics.com/de/leistungen/forschungs-und-prototyping-service/mpw-prototyping-service/sigec-bicmos-technologien
https://www.ihp-microelectronics.com/de/leistungen/forschungs-und-prototyping-service/mpw-prototyping-service/sigec-bicmos-technologien
https://eprint.iacr.org/2017/349
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://doi.org/10.23919/DATE48585.2020.9116252
https://doi.org/10.1145/3132747.3132786
https://docs.opentitan.org/
https://doi.org/10.5281/zenodo.6493704
https://doi.org/10.1007/978-3-319-49100-4_11
https://datatracker.ietf.org/doc/html/rfc8554
https://docs.mcuboot.com/
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.6028/NIST.IR.8413
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1109/ISCC.2018.8538642
https://doi.org/10.1109/ISCC.2018.8538642
https://eprint.iacr.org/2022/1061
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://arxiv.org/abs/quant-ph/9508027
https://eprint.iacr.org/2021/352

	Abstract
	1 Introduction
	2 Hash-Based Signature Schemes
	2.1 Classification of Hash-Based Signature Schemes
	2.2 One-Time Signatures
	2.3 Few-Time Signatures
	2.4 Merkle Signature Scheme

	3 Secure Boot
	3.1 To Be, or Not to Be Stateful
	3.2 Choice of Hash-Based Signature Parameters

	4 Hardware/Software Co-Design
	4.1 Software implementation
	4.2 Hardware Hash-Based Signature Accelerators

	5 Benchmark Results
	5.1 lms and xmss
	5.2 SPHINCS+
	5.3 Comparison with Related Work
	5.4 Secure Boot

	6 Conclusion and Outlook
	References

