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Abstract In ASIACRYPT 2017, Rønjom et al. analyzed AES with yoyo attack.
Inspired by their 4-round AES distinguisher, Grassi proposed the mixture differ-
ential cryptanalysis as well as a key recovery attack on 5-round AES, which was
shown to be better than the classical square attack in computation complexity.
After that, Bardeh et al. combined the exchange attack with the 4-round mixture
differential distinguisher of AES, leading to the first secret-key chosen plaintext
distinguisher for 6-round AES. Unlike the attack on 5-round AES, the result of
6-round key-recovery attack on AES has extremely large complexity, which implies
the weakness of mixture difference to a certain extent. Our work aims at evalu-
ating the security of AES-like ciphers against mixture differential cryptanalysis.
We propose a new structure called a boomerang struncture and illustrate that a
differential distinguisher of a boomerang struncture just corresponds to a mixture
differential distinguisher for AES-like ciphers. Based on the boomerang structure,
it is shown that the mixture differential cryptanalysis is not suitable to be applied
to AES-like ciphers with high round number. In specific, we associate the prim-
itive index with our framework built on the boomerang structure and give the
upper bound for the length of mixture differentials with probability 1 on AES-like
ciphers. It can be directly deduced from our framework that there is no mixture
differential distinguisher for 6-round AES.

Keywords Mixture differential attacks · Boomerange attacks · AES-like ciphers

1 Introduction

Block ciphers are typical iterative ciphers, which are built by iterating a simple
round function many times to ensure that they behave like random permutations.
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The characteristic that is different from a random permutation can always be
utilized as a secret-key distinguisher or be applied in key recovery. Differential
cryptanalysis and linear cryptanalysis are among the best known cryptanalysis of
block ciphers. The designers of block ciphers always take the security against these
cryptanalysis into consideration. The Advanced Encryption Standard (AES) [1] is
the best known and most widely used block cipher which has been proved to be
secure against differential cryptanalysis by “wide trail”. Since the proposal of AES,
evaluating its security is one of the most important problems in cryptanalysis.

Yoyo game cryptanalysis was introduced by Biham et.al for cryptanalysis of
SKIPJACK [2]. In ASIACRYPT 2017, the authors of [3] presented a deterministic
4-round property based on Yoyo game cryptanalysis, see Theorem 1 in Section
2.2. With this property, they achieved a key recovery attack on 5-round AES
with data complexity 211.3 and computational complexity 231. At EUROCRYPT
2017, Grassi presented a new property of AES called “multiple-of-8” [4], leading
to the first secret-key distinguisher for 5-round AES. Although the work of [3]
and [4] analyzed AES in terms of key recovery attack and secret-key distinguisher
respectively, the core ideas of them are very similar. After that, the 4-round yoyo
property has gained much attention in the literature. The authors of [5] explored
the 4-round yoyo property of AES and re-described it with the notation of subspace
trails. A new key-recovery attack on 5-round AES with 233.6 chosen plaintexts and
233.28 computational cost was set up in [5]. As presented in [6], the pairs of texts
used in [5] were constructed directly from the chosen plaintexts when attacking 5-
round AES, which was different from the yoyo attack. Thus the authors renamed
this method as “mixture differential cryptanalysis”. Later the 4-round mixture
differential distinguisher of AES is widely used in the cryptanalysis. With this
distinguisher, the authors of [6] broke the record for 5-round AES attacks which
was held by the classical Square attack, and the authors of [7] presented a 6-round
secret-key distinguisher with 288 complexity. Actually, the 6-round distinguisher
in [7] utilized a 5-round mixture differential distinguisher. In EUROCRYPT 2020
[8], Dunkelman et al. illustrated the relation between the mixture differential and
the boomerang attack. They also proposed a new variant of boomerang attack
called retracing boomerang attack, which covered the yoyo attack and the mixture
differential cryptanalysis [8].

In this paper, we aim at evaluating the security of AES-like ciphers against
mixture differential cryptanalysis. We convert the construction of mixture differ-
ential distinguishers into the problem of searching differential distinguishers for
a new structure called “boomerang structure”. The differential distinguishers u-
tilized in the boomerang structure could be differential distinguishers, truncated
differential distinguishers, and impossible differential distinguishers. We also show
the reason why high order differential cryptanalysis could not combine with the
mixture differential. With the boomerang structure, we could reasonably compare
the effect of mixture differential distinguishers with differential cryptanalysis, trun-
cated differential cryptanalysis, and impossible differential cryptanalysis against
an AES-like cipher for the same number of rounds. It is shown that the mixture
differential attack is not suitable for cryptanalysis against AES-like ciphers with
high round number, since the mixture differential distinguisher is always weaker
than truncated differential distinguisher. We illustrate this statement by proving
that for an AES-like cipher with the branch number more than 3, when the round
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number of mixture differential is more than 10, there always exists a truncated
differential covering the same round number with a higher probability.

In Section 2, we introduce some concepts used in the following paper, including
but not limited to the SPN and AES-like ciphers, mixture differential distinguisher-
s, and some notations. Section 3 investigate the precondition of mixture differential
distinguishers and reviews the previous distinguishers in our new insights. Section
4 evaluates the security of AES-like ciphers against mixture differential. Section 5
concludes this paper.

Throughout the paper we use the following notations. Let Z denote the set
of integers and F2 denote the finite field of two elements. For positive integers
m1,m2, n, the set of all m1 ×m2 matrices over Z is denoted by Zm1×m2 , and the
n-dimensional vector space over F2 is denoted by Fn2 .

2 Preliminaries

In this section, we briefly introduce SPN ciphers, some basics of mixture differen-
tials and impossible differentials against SPN ciphers.

2.1 SPN and AES-like ciphers

For an SPN block cipher, its intermediate state can typically be loaded into an
n-dimensional vector α = (α0, α1, . . . , αn−1) ∈ Fn×b2 , where αi ∈ Fb2 for 0 ≤ i < n.
The round function of an SPN cipher is composed of Sub-Bytes layer(SB), Linear
layer(L) and AddKey(AK). The Sub-Bytes layer is formed by concatenating n
parallel S-boxes s over Fb2, and the Linear layer is a linear function over Fn×b2 . The
AddKey operation xor the (n × b)-bit round-key with the intermediate state α.
Overall, the round function of an SPN cipher can be described as R = AK◦L◦SB.

AES-like ciphers are SPN ciphers. In particular, the n-dimensional intermediate
state α of an AES-like cipher is treated as an m1 × m2 matrix over Fb2 where
m1×m2 = n. Thus, for the sake of discussion, the set of AES-like ciphers with the
above framework is denoted by ε(m1,m2, b). The linear layer of an AES-like cipher
consists of a position permutation of cells (SC) and a MixColumn transformation
(MC), i.e., L = MC ◦ SC. For the intermediate state α = (α0, α1, . . . , αn−1), the
position permutation SC permutes the cells of the state as follows:

(α0, α1, . . . , αn)← (αl0 , αl1 , . . . , αln−1
).

In the following paper, we define the index set SC(I) = {li|i ∈ I}, where I ⊂
{0, 1, . . . , n− 1}, and the index set Col(J) = {i|αi belong to the j-th column, j ∈
J}. The MixColumn transformation MC mixes each column by a matrix M . Thus,
the round function of an AES-like cipher can be written as

R = AK ◦MC ◦ SC ◦ SB.

Since the key addition does not influence the value of a difference, we omit AK
when discussing differentials. For an AES-like cipher with round function R, we
denote En as r-round encryption without the last MC in the following paper, i.e.,
En = SC ◦ SB ◦Rn−1 = MC−1 ◦Rn.
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2.2 Yoyo distinguishers and mixture differentials

Before introducing the yoyo distinguisher of AES, we give the definitions of ex-
change words operation and difference pattern as follows.

Definition 1 (Exchange words) Let α, β ∈ Fn×b2 , where α = (α0, α1, . . . ,
αn−1), β = (β0, β1, . . . , βn−1), and I ⊆ {0, 1, . . . , n − 1}. The exchange words
function ρI(α, β) is defined as follow:

ρI(α, β)i =

{
βi, i ∈ I,
αi, otherwise.

For an index set I ⊆ {0, 1, . . . , n−1} we define (α′, β) as an exchange pair of (α, β)
on index I, where α′ = ρI(α, β), β′ = ρI(β, α).

Definition 2 (Difference pattern [3]) Let α, β ∈ Fn×b2 , where α = (α0, α1,
. . . , αn−1), β = (β0, β1, . . . , βn−1). The difference pattern υ(α⊕β) ∈ Fn2 is defined
as follow:

υ(α⊕ β)i =

{
1, αi ⊕ βi 6= 0,
0, αi ⊕ βi = 0.

The main idea of yoyo attacks is to divide the plaintext pairs into different
subsets according to the definition of exchange word operation, and the ciphertext
pairs in each subset has the same difference pattern after rounds of encryption.
It is obvious that for the difference of state pair (α, β) and their exchange pair
(α′, β′), the equality α′⊕β′ = β⊕α always holds. The generic yoyo distinguishers
of SPN ciphers have been illustrated in [3] where authors discussed the relation
of original pairs and their exchange pairs after encryption of Sub-Bytes layer and
Linear layer. As a result, they gave the following lemma.

Lemma 1 [3] Let α, β ∈ Fn×b2 be a plaintext pair of an SPN cipher and S be a
permutation over Fb2. Then

L ◦ S(α)⊕ L ◦ S(β) = L ◦ S(ρI(α, β))⊕ L ◦ S(ρI(β, α))

holds for every I ⊆ {0, 1, . . . , n− 1}.

According to the above lemma, they gave the following theorem, which de-
scribes a generic distinguisher for the 2-round SPN structure.

Theorem 1 [3] Let α, β ∈ Fn×b2 and S be a permutation over Fb2. Then

υ(S ◦ L ◦ S(α)⊕ S ◦ L ◦ S(β)) = υ(S ◦ L ◦ S(ρI(α, β))⊕ S ◦ L ◦ S(ρI(β, α)))

holds for every I ⊆ {0, 1, . . . , n− 1}.

As shown in [3], the 2-round AES can be written as

R2 = (MC ◦ SR) ◦ (SB ◦MC ◦ SR ◦ SB).

The first part of the function (SB ◦ MC ◦ SR ◦ SB) can be divided into four
independent Super S-boxes, and the second part (MC ◦ SR) is a linear function.
Let α, β ∈ F16×8

2 . Then for J ⊂ {0, 1, 2, 3} we have

R2(α)⊕R2(β) = R2(ρI(α, β))⊕R2(ρI(β, α)),
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where I = SR(Col(J)). As a result, the 4-round AES encryption that omit the
first and the last SR, say

R4 = SB ◦MC ◦ SR ◦ SB ◦MC ◦ SR ◦ SB ◦MC ◦ SB,

has the following yoyo property

υ(R4(α)⊕R4(β)) = υ(R4(ρI(α, β))⊕R4(ρI(β, α))), (1)

where I = Col(J), J ⊂ {0, 1, 2, 3}.
Inspired by the 4-round yoyo property, authors in [5] proposed the mixture

differential. The mixture differential cryptanalysis only exchanges the pairs in one
side(output pairs or input pairs), which is different from yoyo attacks.

2.3 Truncated differentials

For a function F : Fn2 → Fn2 , the differential probability for an input difference δ
and an output difference ∆ is defined as

Pr[δ
F→M] =

|{x ∈ Fn2 |F (x)⊕ F (x⊕ δ) =M}|
2n

.

If Pr[δ
F→M] = 0, then the differential trail δ →M is called an impossible differential

of F [9]. For the case that A ⊂ Fn2 and B ⊂ Fn2 , we say

A
F→ B = {δ →M |there exists x ∈ Fn2 , F (x⊕ δ)⊕ F (x) =M, δ ∈ A,M∈ B}

is a truncated differential trail of F . Define

Pr[A
F→ B] = Pr[F (x)⊕ F (x⊕ δ) ∈ B|δ ∈ A]

as the probability of A
F→ B. If Pr[A

F→ B] = 0, then we also say that A
F→ B is

an impossible differential for F .

In EUROCRYPT 2016, Sun et al. associated the primitive index with the
characteristic matrix to bound the length of impossible differentials [10]. The def-
initions of the primitive index and the characteristic matrix of a linear layer P is
as follows.

Definition 3 (Characteristic matrix [10]) For P = (pij) ∈ Fm1×m2

2b , the char-

acteristic matrix of P is defined as P ∗ = (p∗ij) ∈ Zm1×m2 , where p∗ij = 0 if pij = 0
and p∗ij = 1 otherwise.

It is obvious that, if the element with position (i, j) in the characteristic matrix
is positive, then the value of i-th output byte is relate to the j-th input byte. Thus,
if all elements of a characteristic matrix P ∗ is positive, then the encryption with
linear layer P is a full diffusion. As a result, to indicate an encryption is a full
diffusion, Sun et. defined the matrices whose elements are all positive as positive
matrix [10].
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Definition 4 (Primitive index [10]) Let P ∈ Fm×m
2b and P ∗ be the character-

istic matrix of P . Set

ft(x) = xt

gt(x) =


h∑
t=0

x2i t = 2h

h∑
t=0

x2i−1 t = 2h− 1.

Then the minimal integer t that makes ft(P
∗) a positive matrix is called Type

1 primitive index of P , and the minimal integer t such that gt(P
∗) is positive is

called Type 2 primitive index of P .

Remark 1 In the following paper, we denote Type 1 primitive index of P by L1(P ).

3 New insights into mixture differential cryptanalysis

In [5], the authors emphasized the similarity between the truncated differentials
and their 5-round AES distinguisher. In this section, we attempt to indicate the
further relationship between mixture differentials and truncated differentials, and
convert the mixture differential distinguishers into differential distinguishers or
impossible differential distinguishers. As the first thing, we discuss the basic of
mixture differential cryptanalysis.

3.1 The basic of mixture differential cryptanalysis

For a function F : Fn2q → Fn2q and an index set I = {i0, i1, . . . , im}, denote the
component functions about the index set I by FI = (Fi0 , Fi1 , . . . , Fim) where
ij ∈ I and ij < ij+1, 0 ≤ j < m. Similarly, denote the input vector about the
index set I as xI = (xi0 , xi1 , . . . , xim) where ij ∈ I and ij < ij+1, 0 ≤ j <
m. Denote V ar(Fi) as the set of all variables appearing in Fi and V ar(FI) as
the set of all variables appearing in FI . We are concerned with whether an r-
round encryption could be divided into several independent small permutations.
We provide a necessary and sufficient condition for this.

Definition 5 For a permutation F : Fn2q → Fn2q , define the relation RF on the
set of input words {x0, x1, . . . , xn−1} such that (xi, xj) ∈ RF if and only if there
exist Boolean functions Ft0 , Ft1 , . . . , Ftm satisfying two conditions:

(1) xi ∈ V ar(Ft0), xj ∈ V ar(Ftm);
(2) V ar(Ftk) ∩ V ar(Ftk+1) 6= ∅ for 0 ≤ k < m if m > 0.

For a permutation F : Fn2q → Fn2q , RF is an equivalence relation on the
set {x0, x1, . . . , xn−1} since RF is reflexive, symmetric and transitive. For con-

venience, we denote RF by
F∼. For 0 ≤ j ≤ n − 1, the equivalence class of xj

under
F∼ is denoted by xj . Notice that if V ar(Fi)∩ xj 6= ∅ with 0 ≤ i, j < n, then

V ar(Fi) ⊂ xj , and so either V ar(Fi) ⊂ xj or V ar(Fi) ∩ xj = ∅. Furthermore,
if (xi, xj) ∈ RF and Ft0 , Ft1 , . . . , Ftm satisfies (2), then V ar(Ftk) ⊂ xi for all
0 ≤ k ≤ m.



Structure Evaluation of AES-like Ciphers 7

Example 1 For Midori64, the MixColumn matrix is given by

M =

 0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

Let x = (x0, x1, . . . , x15) ∈ F16
24 and F = MC(x). Then

V ar(F0) = {x1, x2, x3} and V ar(F1) = {x0, x2, x3}.

Considering the relation RF , since V ar(F0) = {x1, x2, x3}, we have x1
F∼ x2

F∼ x3.

Furthermore, since V ar(F1) = {x0, x2, x3}, we have x0
F∼ x1

F∼ x2
F∼ x3.

Theorem 2 Let F = (F0, F1, . . . , Fn−1) be a permutation on Fn2q . Then F can
be divided into m independent permutations if and only if there are at least m
equivalence classes of the set {x0, x1, . . . , xn−1} under the equivalence relation RF .

Proof If F can be divided into m independent permutations given by FJ0
, FJ1

,
. . . , FJm−1

, then {V ar(F (Ji))|0 ≤ i ≤ m− 1} is a partition of {x0, x1, . . . , xn−1}.
It follows that if xa ∈ V ar(FJi

) for 0 ≤ a ≤ n − 1 and 0 ≤ i ≤ m − 1, then
xa ⊂ V ar(FJi

). Thus there are at least m equivalent classes under RF .
Conversely, if xl0 , xl1 , . . . , xlm′−1

be all equivalence classes underRF with m′ ≥
m. For 0 ≤ i ≤ m′ − 1, let Ji = {j|V ar(Fj) ⊂ xli}. Since xli ∩ xlj = ∅ for
0 ≤ i 6= j ≤ m′− 1, it follows that F can be divided into m independent functions
given by

FJ0
, FJ1

, . . . , FJm−2
, F∪m−1≤i≤m′−1Ji

.

Since F is a permutation, it follows that FJ1
, FJ2

, . . . , FJm−2
, F∪m−1≤i≤m′−1Ji

are
all permutations.

Since the cancellation of an input variable rarely happens during the iteration
of rounds in block ciphers, in the following paper we assume that an input variable
will not be eliminated during the encryption of a block cipher. For example, if
F : Fn2q → Fn2q , x0 ∈ V ar(F0), x0 ∈ V ar(F1) and G : F2

2q → F2q , then x0 ∈
V ar(G(F0, F1)).

Lemma 2 Let F : Fn2q → Fn2q and G : Fn2q → Fn2q be two permutations. If (xi, xj) ∈
RF , then (xi, xj) ∈ RG◦F .

Proof Since (xi, xj) ∈ RF , there exist Ft0 , Ft1 , . . . , Ftm satisfying xi ∈ V ar(Ft0),
xj ∈ V ar(Ftm), and V ar(Ftk) ∩ V ar(Ftk+1) 6= ∅ for 0 ≤ k < m. Since G is
invertible, for every xtk , there exists Glk satisfies xtk ∈ V ar(Glk). Let H = G ◦F .
It is clear that V ar(Ftk) ⊂ V ar(Hlk). Thus (xi, xj) ∈ RG◦F .

Theorem 3 Let F : Fn2q → Fn2q and G : Fn2q → Fn2q be two permutations and
(xi, xj) ∈ RG. Then for every (xl1 , xl0) ∈ RF and (xk1

, xk0
) ∈ RF with xl0 ∈

V ar(Fi) and xk0
∈ V ar(Fj), we have (xl1 , xk1

) ∈ RG◦F .

Proof Since (xi, xj) ∈ RG, there exist Gt0 , Gt1 , . . . , Gtm satisfying xi ∈ V ar(Gt0),
xj ∈ V ar(Gtm), and V ar(Gtk) ∩ V ar(Gtk+1) 6= ∅ for 0 ≤ k < m. Let H =
G ◦ F . Since xi ∈ V ar(Gt0), it follows that V ar(Fi) ⊂ V ar(Ht0). Thus xl0 ∈
V ar(Ht0). Similarly, xk0

∈ V ar(Htm). Because V ar(Gtk) ∩ V ar(Gtk+1) 6= ∅, we
have V ar(Htk) ∩ V ar(Htk+1) 6= ∅. As a result, (xl0 , xk0

) ∈ RG◦F . By Lemma 2,
we have (xl1 , xk1

) ∈ RG◦F .
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For most of AES-like ciphers in ε(4, 4, b), the following result is useful which
immediately follows from Theorem 3.

Corollary 1 Let R = MC ◦SC ◦SB be the round function of an AES-like cipher
which belongs to ε(4, 4, b). If the linear layer satisfies the following two conditions:

(1) the MixColumn matrix M could not be transformed into the following form

M =
(
A O
O B

)
where A is an n0 × n1 matrix and B is an n2 × n3 matrix with n0 + n2 =
n1 + n3 = 4 by changing column positions and row positions,

(2) #{i|SC−1(Col({j})) ∩ Col({i}) 6= ∅, 0 ≤ i < 4} > 2 for every 0 ≤ j < 4,
that is to say, the words in each column are shifted from more than 2 different
columns.

then the 2-round encryption R2 could not be divided into more than one indepen-
dent functions.

Proof Let x = (x0, x1, . . . x15) ∈ F16
2b , and y = R(x). Then R2(x) = R(y). Without

loss of generality, we assume that y0, y1, y2, y3 are input words that be shifted to the
j-th column after SC. Condition 1 implies that all 4 input words of MC are belong

to the same equivalence class under
MC∼ , it follows that y0

R∼ y1
R∼ y2

R∼ y3. Assume
y0, y1, y2, y3 are shifted from columns indexed by I = {i|SC(Col({j}))∩Col({i}) 6=
∅}, then we can deduce from Theorem3 that elements in {xi|i ∈ SC−1(Col(I))}
are belong to the same equivalence class under

R2

∼ . From Condition 2 we know that
|I| > 2 which implies that #{xi|i ∈ SC−1(Col(I))} ≥ 12. Thus, every equivalence

class of
R2

∼ has more than 12 elements. Since there are only 16 input words for R2,

there is only 1 equivalence class under
R2

∼ .

For a generic AES-like cipher in ε(m1,m2, b) with m1 × m2 = n and round
function R, it is clear that Rt is a permutation on Fn2b for a positive integer t. Let
us denote the least positive integer t such that the input set {x0, x1, . . . , xn−1} has

only one equivalence class under
F∼ with F = Rt by L2(R). Set κ = L2(R). Then

it follows from Theorem 2 that Rκ could not be divided into more than one inde-
pendent permutations. Assume Rκ−1 can be divided into m independent functions
where m > 1. Because the nonlinear layer SB works on words individually, the
function SB ◦Rκ−1 can also be divided into m independent functions. Thus, the
κ-round encryption Rκ can be written as Rκ = G◦F , where G is a linear function
and F = SB ◦Rκ−1 can be divided into m independent permutations given by

FJ0
(xI0), FJ1

(xI1), . . . , FJm−1
(xIm−1

).

Based on this representation, we give the following theorem.

Theorem 4 Let K ⊂ {0, 1, . . .m − 1}, I =
⋃
i∈K Ii, p

0, p1 ∈ Fn2b and p′0 =

ρI(p0, p1), p′1 = ρI(p1, p0). Then

Rκ(p0)⊕Rκ(p1) = Rκ(p′0)⊕Rκ(p′1).
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Proof The κ-round encryption Rκ can be rewritten as

Rκ(x) = G ◦ F (x) = G ◦ (FJ0
(xI0), FJ1

(xI1), . . . , FJm−1
(xIm−1

)).

Take I = I0 as an example. Since the exchange operation only exchanges the words
indexed by I0, we have

F (p′0)⊕ F (p′1)

=(FJ0
(p1I0), FJ1

(p0I1) . . . , FJm−1
(p0Im−1

))⊕ (FJ0
(p0I0), FJ1

(p1I1) . . . , FJm−1
(p1Im−1

))

=F (p0)⊕ F (p1).

Since G is a linear function, it follows that

G ◦ F (p′0)⊕G ◦ F (p′1) = G(F (p′0)⊕G(F (p′1)) = G ◦ F (p0)⊕G ◦ F (p1).

This completes the proof.

Now we are going to illustrate the idea of constructing mixture differential
distinguishers using the property given by Theorem 4. We know that for an input
pair (p0, p1) and its exchanged pair (p′0, p′1), the equality

Rκ(p0)⊕Rκ(p1) = Rκ(p′0)⊕Rκ(p′1)

holds. For an integer a ≥ 0, let c0 = Rκ+a(p0), c1 = Rκ+a(p1), c′0 = Rκ+a(p′0), c′1 =
Rκ+a(p′1) and γ = Rκ(p0)⊕Rκ(p′0) = Rκ(p1)⊕Rκ(p′1). Then we have

c′0 = Ra(Rκ(p′0)) = Ra(γ ⊕Rκ(p0)) = Ra(γ ⊕R−a(c0)).

Similarly, we have
c′1 = Ra(γ ⊕R−a(c1)).

We define the encryption Ra(γ ⊕R−a(x)) as follow.

Definition 6 (Boomerang structure) Let n be an integer not less than κ. The
function Bn = Rn−κ ◦ AC ◦ R−(n−κ) is called the boomerang structure of Rn,
where AC represents constant addition operation.

6
Let n be an integer not less than κ. For a ciphertext pair (c0, c1), and its

plaintext pairs (p0, p1) where p0 = R−(n)(c0) and p1 = R−(n)(c1), let (p′0, p′1) be
the exchange pair of (p0, p1) and (c′0, c′1) = (Rn(p′0), Rn(p′1)). Then

c′0 = Rn−κ ◦AC ◦R−(n−κ)(c0),

c′1 = Rn−κ ◦AC ◦R−(n−κ)(c1).

It can be seen that if there is a differential trail or an impossible differential
of boomerang structure Bn = Rn−κ ◦ AC ◦ R−(n−κ), then the propagation of
difference c0 ⊕ c1 → c′0 ⊕ c′1 also has the same probability, i.e.,

Pr[Bn(x⊕ α)⊕Bn(x) = β] = Pr[c′0 ⊕ c′1 = β | c0 ⊕ c1 = α],

and

Pr[Bn(x)⊕Bn(x⊕ δ) ∈ B | δ ∈ A] = Pr[c′0 ⊕ c′1 ∈ B | c0 ⊕ c1 ∈ A]
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Since the output pair (c0, c1) is alternative, this property can be easily used in
cryptanalysis. Thus, based on this observation, we convert the mixture differen-
tial distinguisher construction of Rr+a into searching differential distinguishers
of boomerang structure E. Note that for different pair (c0, c1), the constant γ is
different, which implies that the constant in AC is continually changing. Although
the value of constant does not influence the propagation of difference, we could not
analyze the boomerang structure with high order differential cryptanalysis since
the constant is not fixed.

3.2 Previous distinguishers in the new framework

In the following of this paper, we denote the boomerang structure of r-round
AES-like cipher as Br. We are going to review the previous mixture differential
distinguishers from the point of view of boomerang structure. First of all, we divide
the mixture differential distinguishers into three types.

(1) Type 1: distinguishers utilizing impossible differentials in boomerang structure;
(2) Type 2: distinguishers utilizing truncated differentials in boomerang structure;
(3) Type 3: distinguishers utilizing traditional differentials in boomerang structure.

For the AES round function R = MC ◦ SR ◦ SB, we have L2(R) = 2. Thus,
the boomerang structure of 4-round AES is

B4 = SR ◦ SB ◦MC ◦ SR ◦ SB ◦AC ◦ SB−1 ◦ SR−1 ◦MC−1 ◦ SB−1 ◦ SR−1.

Since SR and SB are commutative, B4 can be writed as

B4 = SR ◦ SB ◦MC ◦ SB ◦AC ◦ SB−1 ◦MC−1 ◦ SB−1 ◦ SR−1.

It can be seen that there is a truncated differential distinguisher with probability
1 for B4 given by

Pr[υ(SR(x⊕ x′)] = υ(SR−1(B4(x)⊕B4(x′)))] = 1,

where x, x′ ∈ F16
28 . This distinguisher is utilized in the 4-round Type 2 distinguisher

described by Equation (1). Moreover, it can also be extended to a series of Type
1 distinguishers, which are usually used to filter wrong key guesses. In [7], the
6-round distinguisher is based on a Type2 distinguisher for 5-round AES. We
describe the truncated difference for B5 used in this distinguisher in Fig.1. In [3],
the authors presented Type 1 mixture differential distinguishers for 5-round and
6-round AES respectively. The boomerang structure of 5-round AES is

B5 = F ◦ F ◦ SB ◦AC ◦ SB−1 ◦ F−1 ◦ F−1,

where F = SR ◦SB ◦MC. The impossible differential distinguisher utilized in the
5-round Type 1 distinguisher is presented by Fig.2. This distinguisher only covers
the following encryption

E′5 = F ◦ SB ◦AC ◦ SB−1 ◦ F−1 ◦ F−1,

and the distinguisher can be described as

Pr[υ(SR(E′5(x)⊕ E′5(x′))) ≤ 2|wt(xi ⊕ x′i) ≤ 2] = 0
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MC+SR MC+SR

1
2

Fig. 1: Truncated differential for boomerang structure of 5-round AES
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Fig. 2: Impossible differential for boomerang structure of 5-round AES
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0

InvF

1

MC

1

SR

1

InvSR

1

InvF

1

Fig. 3: Impossible differential for boomerang structure of 6-round AES

for x, x′ ∈ F16
28 and 0 ≤ i < 4. The 6-round Type 1 distinguisher of AES does not

cover the whole boomerang structure either. Let

E′6 = F ◦ SB ◦AC ◦ SB−1 ◦ F−1 ◦ F−1 ◦ F−1.

The impossible differential of E′6 utilized in 6-round Type 1 distinguisher is

Pr[υ(SR(E′6(x)⊕ E′6(x′))) ≤ 2|υ(SR(xi ⊕ x′i)) ≤ 2] = 0,where x, x′ ∈ F16
28 .
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which is presented in Fig3.

It is difficult to apply these distinguishers to distinguish AES, since they do not
cover the whole boomerang structure, and the difficulty lies in that the difference
pattern of intermediate state is unknown. Take Algorithm 4 in [3] as an example.
Recall that this algorithm uses a truncated differential to figure out the difference
pattern of intermediate states. Thus the algorithm combines an impossible differ-
ential with a truncated differential whose probability is less than 1, which makes
the 5-round distinguisher invalid. As a result, the probability that a wrong pair is

judged as a right pair is (1−2−11.4)2
11.4

≈ e−1 ≈ 0.368. Since there are nearly 213.4

wrong pairs to be checked, the probability that at least a wrong pair is judged as a

right pair is 1−(1−0.368)2
13.4

≈ 1, which means the probability that a random per-
mutation is judged as AES is 1. To verify our deduction, we apply Algorithm 4 on
some block ciphers, including full round AES128, Midori128, SIMON128 [11] and
Spring128 [12]. All these block ciphers are identified as 6-round AES. The code of
the experiments are presented at https://github.com/BLOCKCIPHERS702702. It
is also difficult to apply the distinguishers that do not cover the whole boomerang
structure to key-recovery attack against AES. As a result, we mainly focus on the
distinguishers covering the whole boomerang structure.

4 Security evaluation of AES-like ciphers against mixture differential

In this section, we are going to evaluate the security of AES-like cipher against
the three types of distinguishers, especially the security against Type 1 and Type
2 distinguishers.

4.1 Security evaluation against Type 1 distinguisher

In the previous mixture differential cryptanalysis against AES, the 4-round Type
2 distinguisher with probability 1 played a very important role. The following
proposition illustrate the relation between this kind of distinguishers and Type 1
distinguisher.

Proposition 1 For a boomerang structure, if there is a deterministic truncated
difference, then there exists an impossible difference.

According to Proposition 1, if there is no impossible difference for a boomerang
structure, there is no deterministic truncated difference either. As a result, if we can
give the upper bound of round number r for Type 1 distinguisher, then we know
there is no r-round Type 2 distinguisher with probability 1. In [3], the upper bound
of impossible differential distinguisher is well studied using “primitive index” and
the characteristic matrix. Based on these methods, we give the following theorem.

Theorem 5 For an AES-like cipher with the round function R = MC ◦SC ◦SB,
let F = SC◦SB◦MC, P = MC−1◦SC−1, and r = L1(P ). There is no impossible
differential distinguisher for F r ◦ SB ◦AC ◦ SB ◦ F−r.
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Proof Let m be the length of input vectors. For a vector α = (α0, α1, . . . , αm−1),
denote H(α) = #{αi|αi 6= 0}. It follows from Lemma 1 in [3] that for α 6= 0 with
H(α) = 1, there exists a vector β = (β0, β1, . . . , βm−1) such that H(β) = m and
α→ β is a possible differential for F r. Thus, for any α, α′ and corresponding β, β′

satisfying H(α) = H(α′) = 1, H(β) = H(β′) = m. Since υ(β) = υ(β′), we have
α→ α′ is a possible differential for F r ◦SB ◦F−r. Notice that H(α) = H(α′) = 1,
by the Theorem 1 in [3], there is no impossible differential for F r ◦SB ◦AC ◦SB ◦
F−r.

Theorem 6 For an AES-like cipher with the round function R = MC ◦SC ◦SB
and P = MC−1 ◦SC−1, let r = L1(P ) +L2(R). There is no Type 1 distinguisher
for more than r-round encryption.

Proof Let F = SC ◦SB◦MC and κ = L2(R). The boomerang structure of (r+1)-
round encryption is Br = Fκ ◦ SB ◦ AC ◦ SB ◦ F−κ. By Theorem 5, there is no
impossible differential for Br. Thus, there is no Type 1 distinguisher for more than
r-round encryption.

The following corollary immediately follows from Theorem 6.

Corollary 2 For an AES-like cipher with the round function R and the linear
layer P . Let r = L1(P ) +L2(R). There is no Type 2 distinguisher with probability
1 for r-round encryption Er. For an AES-like cipher with round function R =
MC ◦SC ◦SB. Let P = MC−1 ◦SC−1 and r = L1(P ) +L2(R). There is no Type
1 distinguisher for more than r-round encryption.

For AES, since L1(P ) = 2, L2(R) = 2, it can be deduced from Corollary2 that
there is no Type 2 distinguisher with probability 1 for 5-round AES.

4.2 Security evaluation against Type 2 distinguisher

The point of constructing a Type 2 distinguisher for AES-like ciphers is searching
a truncated differential for boomerang structure. At the state of the art, there
are following two frameworks to construct truncated differentials: adopting the
branch property of linear layer [13] and employing multiple differentials [14]. The
truncated differentials adopting branch property of linear layer can be searched by
automatic search method easily [15]. We analysis the security of AES-like ciphers
against these two kind of distinguishers respectively.

For an AES-like cipher belonging to ε(4, 4, b), let R be the round function.
Based on Corollary 1, we give a reasonable assumption that L2(R) = 2 which is
the worst situation. Let F = SC ◦ SB ◦MC. Then, for an integer n ≥ 3, the
boomerang structure of this n-round encryption is

Bn = Fn−3 ◦ SB ◦AC ◦ SB−1 ◦ F 3−n

and the n-round encryption can be rewritten as

En = Fn−3 ◦ SC ◦ SB ◦R2.

These equations split the Bn and En into two parts respectively, where the second
part of Bn and En are both Fn−3. We remark that a truncated differential distin-
guisher for Bn is equal to a mixture differential distinguisher. It can be seen that
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with the increasing of n, it is more difficult to search differential distinguishers
for Bn than En since F 3−n consists of much more operations than R2. To give a
bound on n that multiple differences exist, we propose the following proposition.

Proposition 2 Let R = MC ◦ SR ◦ SB be the round function of an AES-like
cipher belonging to ε(4, 4, b). Assume that SR shifts the words in every column
into 4 different columns, and the branch number of MC is B. Denote N the least
active S-boxes for differential trails of F 3 ◦ SB. Then N ≥ B2 .

Proof Note that there are 3 Mixcolumns in F 3 ◦ SB. Let αi = (αi0, α
i
1, . . . , α

i
15)

and βi = (βi0, β
i
1, . . . , β

i
15) be the input difference and output difference of the i-th

MC. Without loss of generality, assume that (α1
0, α

1
4, α

1
8, α

1
12) is one active column

of α1. Since α1 = SR ◦ SB ◦MC(α0), the active S-boxes in (α1
0, α

1
4, α

1
8, α

1
12) are

shifted from different columns of α0. Denote ai as the number of active column
for αi. It follows that

a0 ≥ υ(α1
0, α

1
4, α

1
8, α

1
12).

Similarly, the active S-boxes in (β1
0 , β

1
4 , β

1
8 , β

1
12) will be shifted to different columns,

and so a2 ≥ υ(β1
0 , β

1
4 , β

1
8 , β

1
12). Thus we have

a0 + a2 ≥ υ(α1
0, α

1
4, α

1
8, α

1
12) + υ(β1

0 , β
1
4 , β

1
8 , β

1
12) ≥ B.

This implies that the number of active S-boxes for every differential trail satisfies
N ≥ a0 × B + a2 × B ≥ B2.

It can be deduced from Proposition 2 that, for

E6 = F 3 ◦ SB ◦AC ◦ SB−1 ◦ F−3,

there are more than 2 × B2 active S-boxes for every differential trail. Now, we
can illustrate the security of E6 against multiple difference. Let A,B be the set
of input and output differences of E6, respectively. Let N1 = |A| and N2 = |B|.
Then the probability of multiple difference satisfies

P (A→ B) =
∑

α∈A,β∈B

P (α→ β) ≤ N1 ×N2 × p2×B
2

where p is the max differential probability of S-box. For the random case, the
probability that output difference falls in B is Prand = N2 × 2−16×b. Since N1 ≤
216×b, it follows that if p2×B

2

≤ 2−32×b, then we have

P (A→ B) ≤ N1 ×N2 × p2×B
2

≤ N2 × 2−16×b = Prand,

which means the truncated difference A→ B can not be a distinguisher. Since A
and B are arbitrary, there is no multiple difference for E6. Similarly, for E10, the
number of active S-boxes for every differential trail satisfies N ≥ 4×B2. It follows

that if p4×B
2

≤ 232×b, then there is no multiple difference for E10. We apply these
analysis on some block ciphers, and the results are presented in Table 1, where
the bound n in Table 1 means there is no n round multiple difference.

We also apply the MILP (Mixed-Integer Linear Programming) method that
exploits the branch property on AES-like ciphers. That is modeling the branch
property of Mixcolumn to MILP problem, and so we can search distinguishers by
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Table 1: Bound of multiple differences for boomerang structure

Ciphers Cell Branch Max probability Bound of
size(b) number(B) of S-box(p) multiple difference(n)

AES 8 5 2−6 6
Midori64 4 4 2−2 10
Midori128 8 4 2−2 16

Table 2: Bound of truncated differences for boomerang structure based on MILP

Ciphers Bound of truncated differences
AES 6

Midori64 7
Midori128 7

Skinny 9

automatic search tools. The detail of building MILP models is presented in 15.
We only focus on the least round number that no distinguisher could be found.
Results on AES, Midori64, Midori128 and Skinny are given in Table 2.

We remark that from Tables 1 and 2, it can be seen that there is no mixture
differential distinguish for 6-round AES. Thus, there is no need to find a mixture
differential distinguish for 6-round AES in practice.

5 Conclusions

This paper studies the security evaluation of AES-like ciphers against mixture
differential cryptanalysis. The boomerang structure which associates the mixture
differential distinguishers with other types of differential distinguishers is firstly
proposed. Based on the boomerang structure, an upperbound on the number of
rounds for an AES-like cipher to resist mixture differential cryptanalysis could be
estimated. It is shown that there is no mixture difference distinguishers for 6-, 10-,
16- and 9-round AES, Midori64, Midori128 and Skinny, respectively.
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