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Abstract In ASIACRYPT 2017, Rønjom et al. analyzed AES with the yoyo at-
tack. Inspired by their 4-round AES distinguisher, Grassi proposed the mixture
differential cryptanalysis as well as a key recovery attack on 5-round AES, which
was shown to be better than the classical square attack in computation complexity.
After that, Bardeh et al. combined the exchange attack with the 4-round mixture
differential distinguisher of AES, leading to the first secret-key chosen plaintext
distinguisher for 6-round AES. Unlike the attack on 5-round AES, the result of
6-round key-recovery attack on AES has extremely large complexity, which implies
the weakness of mixture difference to a certain extent. Our work aims at evalu-
ating the security of AES-like ciphers against mixture differential cryptanalysis.
We propose a new structure called a boomerang struncture and illustrate that a
differential distinguisher of a boomerang struncture just corresponds to a mixture
differential distinguisher for AES-like ciphers. Based on the boomerang structure,
it is shown that the mixture differential cryptanalysis is not suitable to be applied
to AES-like ciphers with high round number. In specific, we associate the primitive
index with our framework built on the boomerang structure and give the upper
bound for the length of mixture differential distinguisher with probability 1 on
AES-like ciphers. It can be directly deduced from our framework that there is no
mixture differential distinguisher for 6-round AES.

Keywords Mixture differential attacks · Boomerange attacks · AES-like ciphers

1 Introduction

Block ciphers are typical iterative ciphers, which are built by iterating a simple
round function many times to ensure that they behave like random permutations.
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The characteristic that is different from a random permutation can always be
utilized as a secret-key distinguisher or be applied in key recovery. Differential
cryptanalysis and linear cryptanalysis are among the best known cryptanalysis
of block ciphers. The designers of block ciphers always take the security against
these cryptanalysis into consideration. Advanced Encryption Standard (AES) [1]
is the best known and most widely used block cipher which has been proved to be
secure against differential cryptanalysis by “wide trail”. Since the proposal of AES,
evaluating its security is one of the most important problems in cryptanalysis.

Yoyo game cryptanalysis was introduced by Biham et.al for cryptanalysis of
SKIPJACK [2]. In ASIACRYPT 2017, the authors of [3] presented a determinis-
tic 4-round property based on Yoyo game cryptanalysis. With this property, they
achieved a key recovery attack on 5-round AES with data complexity 211.3 and
computational complexity 231. At EUROCRYPT 2017, Grassi presented a new
property of AES called “multiple-of-8” [4], leading to the first secret-key distin-
guisher for 5-round AES. Although the work of [3] and [4] analyzed AES in terms
of key recovery attack and secret-key distinguisher respectively, the core ideas of
them are very similar. After that, the 4-round yoyo property has gained much at-
tention in the literature. The authors of [5] explored the 4-round yoyo property of
AES and re-described it with the notation of subspace trails. A new key-recovery
attack on 5-round AES with 233.6 chosen plaintexts and 233.28 computational cost
was set up in [5]. As presented in [6], the pairs of texts used in [5] were constructed
directly from the chosen plaintexts when attacking 5-round AES, which was dif-
ferent from the yoyo attack. Thus the authors renamed this method as “mixture
differential cryptanalysis”. Later the 4-round mixture differential distinguisher of
AES is widely used in the cryptanalysis. With this distinguisher, the authors of [6]
broke the record for 5-round AES attacks which was held by the classical Square
attack, and the authors of [7] presented a 6-round secret-key distinguisher with 288

complexity. Actually, the 6-round distinguisher in [7] utilized a 5-round mixture
differential distinguisher. In EUROCRYPT 2020 [8], Dunkelman et al. illustrated
the relation between the mixture differential and the boomerang attack. They also
proposed a new variant of boomerang attack called retracing boomerang attack,
which covered the yoyo attack and the mixture differential cryptanalysis [8].

In this paper, we aim at evaluating the security of AES-like ciphers against
mixture differential cryptanalysis. We convert the construction of mixture differ-
ential distinguishers into the problem of searching differential distinguishers for
a new structure called “boomerang structure”. The differential distinguishers u-
tilized in the boomerang structure could be differential distinguishers, truncated
differential distinguishers, and impossible differential distinguishers. Consequent-
ly, we can naturally evaluate the security against mixture differential by existing
analysis methods, for example, characteristic matrix. We also provide the reason
why high order differential cryptanalysis could not combine with the mixture d-
ifferential. By comparing the encryption of reduced round AES-like ciphers with
their boomerang structure, it can be observed that the mixture differential attack
is not suitable for cryptanalysis against AES-like ciphers with high round num-
ber, since the boomerang structure always contains more operations. Our results
show that there are no mixture differential distinguishers for 6-, 7-, 8- and 9-round
AES, Midori64, Midori128, and SKINNY64, respectively, where the bounds for
AES, Midori64, and SKINNY64 are tight.
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In Section 2, we introduce some concepts used in the following paper, including
but not limited to the SPN and AES-like ciphers, mixture differential distinguisher-
s, and some notations. Section 3 investigate the precondition of mixture differential
distinguishers and reviews the previous distinguishers in our new insights. Section
4 evaluates the security of AES-like ciphers against mixture differential. Section 6
concludes this paper.

Throughout the paper we use the following notations. Let Z denote the set
of integers and F2 denote the finite field of two elements. For positive integers
m1,m2, n, the set of all m1 ×m2 matrices over Z is denoted by Zm1×m2 , and the
n-dimensional vector space over F2 is denoted by Fn

2 .

2 Preliminaries

In this section, we briefly introduce SPN ciphers, some basics of mixture differen-
tials and impossible differentials against SPN ciphers.

2.1 SPN and AES-like ciphers

For an SPN block cipher, its intermediate state can typically be loaded into an
n-dimensional vector α = (α0, α1, . . . , αn−1) ∈ Fn×b

2 , where αi ∈ Fb
2 for 0 ≤ i < n.

The round function of an SPN cipher is composed of Sub-Bytes layer (SB), Linear
layer (L) and AddKey (AK). The Sub-Bytes layer is formed by concatenating n
parallel S-boxes s over Fb

2, and the Linear layer is a linear function over Fn×b
2 . The

AddKey operation xor the (n × b)-bit round-key with the intermediate state α.
Overall, the round function of an SPN cipher can be described as R = AK◦L◦SB.

AES-like ciphers are SPN ciphers. In particular, the n-dimensional intermediate
state α of an AES-like cipher is treated as an m1 × m2 matrix over Fb

2 where
m1×m2 = n. Thus, for the sake of discussion, the set of AES-like ciphers with the
above framework is denoted by ε(m1,m2, b). The linear layer of an AES-like cipher
consists of a position permutation of cells (SC) and a MixColumn transformation
(MC), i.e., L = MC ◦ SC. For the intermediate state α = (α0, α1, . . . , αn−1), the
position permutation SC permutes the cells of the state as follows:

(α0, α1, . . . , αn−1)← (αl0 , αl1 , . . . , αln−1
).

In the following paper, we define the index set SC(I) = {li|i ∈ I}, where I ⊂
{0, 1, . . . , n− 1}, and the index set Col(J) = {i|αi belong to the j-th column, j ∈
J}. The MixColumn transformation MC mixes each column by a matrix M . Thus,
the round function of an AES-like cipher can be written as

R = AK ◦MC ◦ SC ◦ SB.

Since the key addition does not influence the value of a difference, we omit AK
when discussing differential cryptanalysis. For an AES-like cipher with round func-
tion R, we denote En as r-round encryption without the last MC in the following
paper, i.e., En = SC ◦ SB ◦Rn−1 = MC−1 ◦Rn.
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2.2 Yoyo distinguishers and mixture differential

Before introducing the yoyo distinguisher of AES, we give the definitions of ex-
change words operation and difference pattern as follows.

Definition 1 (Exchange words) Let α, β ∈ Fn×b
2 , where α = (α0, α1, . . . ,

αn−1), β = (β0, β1, . . . , βn−1), and I ⊆ {0, 1, . . . , n − 1}. The exchange words
function ρI(α, β) is defined as follow:

ρI(α, β)i =

{
βi, i ∈ I,
αi, otherwise.

For an index set I ⊆ {0, 1, . . . , n − 1} we define (α′, β′) as an exchange pair of
(α, β) on index I, where α′ = ρI(α, β), β′ = ρI(β, α).

Definition 2 (Difference pattern [3]) Let α, β ∈ Fn×b
2 , where α = (α0, α1,

. . . , αn−1), β = (β0, β1, . . . , βn−1). The difference pattern υ(α⊕β) ∈ Fn
2 is defined

as follow:

υ(α⊕ β)i =

{
1, αi ⊕ βi ̸= 0,
0, αi ⊕ βi = 0.

The main idea of yoyo attacks is to divide the plaintext pairs into different
subsets according to the definition of exchange word operation, and the ciphertext
pairs in each subset has the same difference pattern after rounds of encryption.
It is obvious that for the difference of state pair (α, β) and their exchange pair
(α′, β′), the equality α′⊕β′ = β⊕α always holds. The generic yoyo distinguishers
of SPN ciphers have been illustrated in [3] where authors discussed the relation
of original pairs and their exchange pairs after encryption of Sub-Bytes layer and
Linear layer. As a result, they gave the following lemma.

Lemma 1 [3] Let α, β ∈ Fn×b
2 be a plaintext pair of an SPN cipher and S be a

permutation over Fb
2. Then

L ◦ S(α)⊕ L ◦ S(β) = L ◦ S(ρI(α, β))⊕ L ◦ S(ρI(β, α))

holds for every I ⊆ {0, 1, . . . , n− 1}.

According to the above lemma, they gave the following theorem, which de-
scribes a generic distinguisher for the 2-round SPN structure.

Theorem 1 [3] Let α, β ∈ Fn×b
2 and S be a permutation over Fb

2. Then

υ(S ◦ L ◦ S(α)⊕ S ◦ L ◦ S(β)) = υ(S ◦ L ◦ S(ρI(α, β))⊕ S ◦ L ◦ S(ρI(β, α)))

holds for every I ⊆ {0, 1, . . . , n− 1}.

As shown in [3], the 2-round AES can be written as

R2 = (MC ◦ SR) ◦ (SB ◦MC ◦ SR ◦ SB).

The first part of the function (SB ◦ MC ◦ SR ◦ SB) can be divided into four
independent Super S-boxes, and the second part (MC ◦ SR) is a linear function.
Let α, β ∈ F16×8

2 . Then for J ⊂ {0, 1, 2, 3} we have

R2(α)⊕R2(β) = R2(ρI(α, β))⊕R2(ρI(β, α)),
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where I = SR(Col(J)). As a result, the 4-round AES encryption that omit the
first and the last SR, say

R4 = SB ◦MC ◦ SR ◦ SB ◦MC ◦ SR ◦ SB ◦MC ◦ SB,

has the following yoyo property

υ(R4(α)⊕R4(β)) = υ(R4(ρI(α, β))⊕R4(ρI(β, α))), (1)

where I = Col(J), J ⊂ {0, 1, 2, 3}.
Inspired by the 4-round yoyo property, authors in [5] proposed the mixture

differential. The mixture differential cryptanalysis only exchanges the pairs in one
side(output pairs or input pairs), which is different from yoyo attacks.

2.3 Truncated differentials

For a function F : Fn
2 → Fn

2 , the differential probability for an input difference δ
and an output difference ∆ is defined as

Pr[δ
F→△] = |{x ∈ Fn

2 |F (x)⊕ F (x⊕ δ) =△}|
2n

.

If Pr[δ
F→△] = 0, then the differential trail δ →△ is called an impossible differential

of F [9]. For the case that A ⊂ Fn
2 and B ⊂ Fn

2 , we say

A
F→ B = {δ →△ |there exists x ∈ Fn

2 , F (x⊕ δ)⊕ F (x) =△, δ ∈ A,△∈ B}

is a truncated differential trail of F . Define

Pr[A
F→ B] = Pr[F (x)⊕ F (x⊕ δ) ∈ B|δ ∈ A]

as the probability of A
F→ B. If Pr[A

F→ B] = 0, then we also say that A
F→ B is

an impossible differential for F .

In EUROCRYPT 2016, Sun et al. associated the primitive index with the
characteristic matrix to bound the length of impossible differentials [10]. The def-
initions of the primitive index and the characteristic matrix of a linear layer P is
as follows.

Definition 3 (Characteristic matrix [10]) For P = (pij) ∈ Fm1×m2

2b , the char-

acteristic matrix of P is defined as P ∗ = (p∗ij) ∈ Zm1×m2 , where p∗ij = 0 if pij = 0
and p∗ij = 1 otherwise.

It is obvious that, if the element with position (i, j) in the characteristic matrix
is positive, then the value of i-th output byte is relate to the j-th input byte. Thus,
if all elements of a characteristic matrix P ∗ is positive, then the encryption with
linear layer P is a full diffusion. As a result, to indicate an encryption is a full
diffusion, Sun et. defined the matrices whose elements are all positive as positive
matrix [10].
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Definition 4 (Primitive index [10]) Let P ∈ Fm×m
2b and P ∗ be the character-

istic matrix of P . Set

ft(x) = xt

gt(x) =


h∑

i=0

x2i t = 2h

h∑
i=0

x2i−1 t = 2h− 1.

Then the minimal integer t that makes ft(P
∗) a positive matrix is called Type

1 primitive index of P , and the minimal integer t such that gt(P
∗) is positive is

called Type 2 primitive index of P .

Remark 1 In the following paper, we denote Type 1 primitive index of P by L1(P ).

3 New insights into mixture differential cryptanalysis

In [5], the authors emphasized the similarity between the truncated differentials
and their 5-round AES distinguisher. In this section, we attempt to indicate the
further relationship between mixture differentials and truncated differentials, and
convert the mixture differential distinguishers into differential distinguishers or
impossible differential distinguishers. As the first thing, we discuss the basic of
mixture differential cryptanalysis.

3.1 The basic of mixture differential cryptanalysis

For a function F : Fn
2q → Fn

2q and an index set I = {i0, i1, . . . , im}, denote the
component functions about the index set I by FI = (Fi0 , Fi1 , . . . , Fim) where
ij ∈ I and ij < ij+1, 0 ≤ j < m. Similarly, denote the input vector about the
index set I as xI = (xi0 , xi1 , . . . , xim) where ij ∈ I and ij < ij+1, 0 ≤ j <
m. Denote V ar(Fi) as the set of all variables appearing in Fi and V ar(FI) as
the set of all variables appearing in FI . We are concerned with whether an r-
round encryption could be divided into several independent small permutations.
We provide a necessary and sufficient condition for this.

Definition 5 For a permutation F : Fn
2q → Fn

2q , define the relation RF on the
set of input words {x0, x1, . . . , xn−1} such that (xi, xj) ∈ RF if and only if there
exist Boolean functions Ft0 , Ft1 , . . . , Ftm satisfying two conditions:

(1) xi ∈ V ar(Ft0), xj ∈ V ar(Ftm);
(2) V ar(Ftk) ∩ V ar(Ftk+1) ̸= ∅ for 0 ≤ k < m if m > 0.

For a permutation F : Fn
2q → Fn

2q , RF is an equivalence relation on the
set {x0, x1, . . . , xn−1} since RF is reflexive, symmetric and transitive. For con-

venience, we denote RF by
F∼. For 0 ≤ j ≤ n − 1, the equivalence class of xj

under
F∼ is denoted by xj . Notice that if V ar(Fi)∩ xj ̸= ∅ with 0 ≤ i, j < n, then

V ar(Fi) ⊂ xj , and so either V ar(Fi) ⊂ xj or V ar(Fi) ∩ xj = ∅. Furthermore,
if (xi, xj) ∈ RF and Ft0 , Ft1 , . . . , Ftm satisfies (2), then V ar(Ftk) ⊂ xi for all
0 ≤ k ≤ m.
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Example 1 For Midori64, the MixColumn matrix is given by

M =

 0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

Let x = (x0, x1, . . . , x15) ∈ F16
24 and F = MC(x). Then

V ar(F0) = {x1, x2, x3} and V ar(F1) = {x0, x2, x3}.

Considering the relation RF , since V ar(F0) = {x1, x2, x3}, we have x1
F∼ x2

F∼ x3.

Furthermore, since V ar(F1) = {x0, x2, x3}, we have x0
F∼ x1

F∼ x2
F∼ x3.

Theorem 2 Let F = (F0, F1, . . . , Fn−1) be a permutation on Fn
2q . Then F can

be divided into m independent permutations if and only if there are at least m
equivalence classes of the set {x0, x1, . . . , xn−1} under the equivalence relation RF .

Proof If F can be divided into m independent permutations given by FJ0
, FJ1

,
. . . , FJm−1

, then {V ar(F (Ji))|0 ≤ i ≤ m− 1} is a partition of {x0, x1, . . . , xn−1}.
It follows that if xa ∈ V ar(FJi

) for 0 ≤ a ≤ n − 1 and 0 ≤ i ≤ m − 1, then
xa ⊂ V ar(FJi

). Thus there are at least m equivalent classes under RF .
Conversely, if xl0 , xl1 , . . . , xlm′−1

be all equivalence classes underRF with m′ ≥
m. For 0 ≤ i ≤ m′ − 1, let Ji = {j|V ar(Fj) ⊂ xli}. Since xli ∩ xlj = ∅ for
0 ≤ i ̸= j ≤ m′− 1, it follows that F can be divided into m independent functions
given by

FJ0
, FJ1

, . . . , FJm−2
, F∪m−1≤i≤m′−1Ji

.

Since F is a permutation, it follows that FJ1
, FJ2

, . . . , FJm−2
, F∪m−1≤i≤m′−1Ji

are
all permutations.

Since the cancellation of an input variable rarely happens during the iteration
of rounds in block ciphers, in the following paper we assume that an input variable
will not be eliminated during the encryption of a block cipher. For example, if
F : Fn

2q → Fn
2q , x0 ∈ V ar(F0), x0 ∈ V ar(F1) and G : F2

2q → F2q , then x0 ∈
V ar(G(F0, F1)).

Lemma 2 Let F : Fn
2q → Fn

2q and G : Fn
2q → Fn

2q be two permutations. If (xi, xj) ∈
RF , then (xi, xj) ∈ RG◦F .

Proof Since (xi, xj) ∈ RF , there exist Ft0 , Ft1 , . . . , Ftm satisfying xi ∈ V ar(Ft0),
xj ∈ V ar(Ftm), and V ar(Ftk) ∩ V ar(Ftk+1) ̸= ∅ for 0 ≤ k < m. Since G is
invertible, for every xtk , there exists Glk satisfies xtk ∈ V ar(Glk). Let H = G ◦F .
It is clear that V ar(Ftk) ⊂ V ar(Hlk). Thus (xi, xj) ∈ RG◦F .

Theorem 3 Let F : Fn
2q → Fn

2q and G : Fn
2q → Fn

2q be two permutations and
(xi, xj) ∈ RG. Then for every (xl1 , xl0) ∈ RF and (xk1

, xk0
) ∈ RF with xl0 ∈

V ar(Fi) and xk0
∈ V ar(Fj), we have (xl1 , xk1

) ∈ RG◦F .

Proof Since (xi, xj) ∈ RG, there exist Gt0 , Gt1 , . . . , Gtm satisfying xi ∈ V ar(Gt0),
xj ∈ V ar(Gtm), and V ar(Gtk) ∩ V ar(Gtk+1) ̸= ∅ for 0 ≤ k < m. Let H =
G ◦ F . Since xi ∈ V ar(Gt0), it follows that V ar(Fi) ⊂ V ar(Ht0). Thus xl0 ∈
V ar(Ht0). Similarly, xk0

∈ V ar(Htm). Because V ar(Gtk) ∩ V ar(Gtk+1) ̸= ∅, we
have V ar(Htk) ∩ V ar(Htk+1) ̸= ∅. As a result, (xl0 , xk0

) ∈ RG◦F . By Lemma 2,
we have (xl1 , xk1

) ∈ RG◦F .
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For most of AES-like ciphers in ε(4, 4, b), the following result is useful which
immediately follows from Theorem 3.

Corollary 1 Let R = MC ◦SC ◦SB be the round function of an AES-like cipher
which belongs to ε(4, 4, b). If the linear layer satisfies the following two conditions:

(1) the MixColumn matrix M could not be transformed into the following form

M =
(
A O
O B

)
where A is an n0 × n1 matrix and B is an n2 × n3 matrix with n0 + n2 =
n1 + n3 = 4 by changing column positions and row positions,

(2) #{i|SC−1(Col({j})) ∩ Col({i}) ̸= ∅, 0 ≤ i < 4} > 2 for every 0 ≤ j < 4,
that is to say, the words in each column are shifted from more than 2 different
columns.

then the 2-round encryption R2 could not be divided into more than one indepen-
dent functions.

Proof Let x = (x0, x1, . . . x15) ∈ F16
2b , and y = R(x). Then R2(x) = R(y).

Without loss of generality, we assume that y0, y1, y2, y3 are input words that
are shifted to the j-th column after SC. Since condition 1 implies that all 4

input words of MC belong to the same equivalence class under
MC∼ , it follows

that y0
R∼ y1

R∼ y2
R∼ y3. Assume y0, y1, y2, y3 are shifted from columns in-

dexed by I = {i|SC(Col({j})) ∩ Col({i}) ̸= ∅}. Then we deduce from The-
orem 3 that elements in {xi|i ∈ SC−1(Col(I))} are in the same equivalence

class under
R2

∼ . From Condition 2 we know that |I| > 2 which implies that

#{xi|i ∈ SC−1(Col(I))} ≥ 12. Thus, every equivalence class of
R2

∼ has more
than 12 elements. Since there are only 16 input words for R2, there is only one

equivalence class under
R2

∼ .

For a generic AES-like cipher in ε(m1,m2, b) with m1 × m2 = n and round
function R, it is clear that Rt is a permutation on Fn

2b for a positive integer t. Let
us denote the least positive integer t such that the input set {x0, x1, . . . , xn−1} has
only one equivalence class under

F∼ with F = Rt by L2(R). Set κ = L2(R). Then
it follows from Theorem 2 that Rκ could not be divided into more than one inde-
pendent permutations. Assume Rκ−1 can be divided into m independent functions
where m > 1. Because the nonlinear layer SB works on words individually, the
function SB ◦Rκ−1 can also be divided into m independent functions. Thus, the
κ-round encryption Rκ can be written as Rκ = G◦F , where G is a linear function
and F = SB ◦Rκ−1 can be divided into m independent permutations given by

FJ0
(xI0), FJ1

(xI1), . . . , FJm−1
(xIm−1

).

Based on this representation, we give the following theorem.

Theorem 4 Let K ⊂ {0, 1, . . .m − 1}, I =
∪

i∈K Ii, p0, p1 ∈ Fn
2b and p′0 =

ρI(p0, p1), p′1 = ρI(p1, p0). Then

Rκ(p0)⊕Rκ(p1) = Rκ(p′0)⊕Rκ(p′1).
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Proof The κ-round encryption Rκ can be rewritten as

Rκ(x) = G ◦ F (x) = G ◦ (FJ0
(xI0), FJ1

(xI1), . . . , FJm−1
(xIm−1

)).

Take I = I0 as an example. Since the exchange operation only exchanges the words
indexed by I0, we have

F (p′0)⊕ F (p′1)

=(FJ0
(p1I0), FJ1

(p0I1) . . . , FJm−1
(p0Im−1

))⊕ (FJ0
(p0I0), FJ1

(p1I1) . . . , FJm−1
(p1Im−1

))

=F (p0)⊕ F (p1).

Since G is a linear function, it follows that

G ◦ F (p′0)⊕G ◦ F (p′1) = G(F (p′0)⊕G(F (p′1)) = G ◦ F (p0)⊕G ◦ F (p1).

This completes the proof.

Now we are going to illustrate the idea of constructing mixture differential
distinguishers using the property given by Theorem 4. We know that for an input
pair (p0, p1) and its exchanged pair (p′0, p′1), the equality

Rκ(p0)⊕Rκ(p1) = Rκ(p′0)⊕Rκ(p′1)

holds. For an integer a ≥ 0, let c0 = Rκ+a(p0), c1 = Rκ+a(p1), c′0 = Rκ+a(p′0), c′1 =
Rκ+a(p′1) and γ = Rκ(p0)⊕Rκ(p′0) = Rκ(p1)⊕Rκ(p′1). Then we have

c′0 = Ra(Rκ(p′0)) = Ra(γ ⊕Rκ(p0)) = Ra(γ ⊕R−a(c0)).

Similarly, we have
c′1 = Ra(γ ⊕R−a(c1)).

We define the encryption Ra(γ ⊕R−a(x)) as follow.

Definition 6 (Boomerang structure) Let n be an integer not less than κ. The
function Bn = Rn−κ ◦ AC ◦ R−(n−κ) is called the boomerang structure of Rn,
where AC represents constant addition operation.

Let n be an integer not less than κ. For a ciphertext pair (c0, c1), and its
plaintext pairs (p0, p1) where p0 = R−n(c0) and p1 = R−n(c1), let (p′0, p′1) be
the exchange pair of (p0, p1) and (c′0, c′1) = (Rn(p′0), Rn(p′1)). Then

c′0 = Rn−κ ◦AC ◦R−(n−κ)(c0),

c′1 = Rn−κ ◦AC ◦R−(n−κ)(c1).

It can be seen that if there is a differential trail or an impossible differential distin-
guisher of boomerang structure Bn = Rn−κ ◦AC ◦R−(n−κ), then the propagation
of difference c0 ⊕ c1 → c′0 ⊕ c′1 also has the same probability, i.e.,

Pr[Bn(x⊕ α)⊕Bn(x) = β] = Pr[c′0 ⊕ c′1 = β | c0 ⊕ c1 = α],

and

Pr[Bn(x)⊕Bn(x⊕ δ) ∈ B | δ ∈ A] = Pr[c′0 ⊕ c′1 ∈ B | c0 ⊕ c1 ∈ A]
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It can be seen that there is a one-to-one correspondence between mixture differen-
tial distinguishers of Rn and differential distinguishers of the boomerang structure
Bn. Then, we convert the mixture differential distinguisher construction of Rn into
searching differential distinguishers of the boomerang structure Bn. Note that for
different pair (c0, c1), the constant γ is different, which implies that the constant
in AC is continually changing. Although the value of constant does not influence
the propagation of difference, we could not analyze the boomerang structure with
high order differential cryptanalysis since the constant is not fixed.

3.2 Previous distinguishers in the new framework

In the following of this paper, we denote the boomerang structure of r-round
AES-like cipher as Br. We are going to review the previous mixture differential
distinguishers from the point of view of boomerang structure. First of all, we divide
the mixture differential distinguishers into three types.

(1) Type 1: distinguishers utilizing impossible differentials in boomerang structure;
(2) Type 2: distinguishers utilizing truncated differentials in boomerang structure;
(3) Type 3: distinguishers utilizing traditional differentials in boomerang structure.

For the AES round function R = MC ◦ SR ◦ SB, we have L2(R) = 2. Denote
F = SR ◦ SB ◦MC. Then we review the AES distinguishers proposed in [3, 5, 7]
in the view of boomerang structure.

Type 2 distinguisher for 4-round AES [5]. The boomerang structure of
4-round AES is

B4 = SR ◦ SB ◦MC ◦ SR ◦ SB ◦AC ◦ SB−1 ◦ SR−1 ◦MC−1 ◦ SB−1 ◦ SR−1.

Since SR and SB are commutative, B4 can be writed as

B4 = SR ◦ SB ◦MC ◦ SB ◦AC ◦ SB−1 ◦MC−1 ◦ SB−1 ◦ SR−1.

It can be seen that there is a truncated differential distinguisher with probability
1 for B4 given by

Pr[υ(SR(x⊕ x′)] = υ(SR−1(B4(x)⊕B4(x
′)))] = 1,

where x, x′ ∈ F16
28 . This distinguisher corresponds to the 4-round mixture differ-

ential distinguisher described by Equation (1). Moreover, it can also be extended
to a series of Type 1 distinguishers, which are usually used to filter wrong key
guesses.

Type 2 distinguisher for 5-round AES [7]. The 6-round AES distinguisher
proposed in [7] is based on a Type 2 distinguisher for 5-round AES. The truncated
differential distinguisher utilized in this Type 2 distinguisher is

Pr[υ(SR(B5(x)⊕B5(x
′))) ≤ 1|υ(SR(xi ⊕ x′

i)) ≤ 1] = 2−56,where x, x′ ∈ F16
28 ,

We describe the truncated difference for B5 used in this distinguisher in Fig. 1.
Type 1 distinguisher for 5,6-round AES [3]. In [3], the authors presented

Type 1 mixture differential distinguishers for 5-round and 6-round AES respec-
tively. The boomerang structure of 5-round AES is

B5 = F 2 ◦ SB ◦AC ◦ SB−1 ◦ F−2.
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Fig. 3: An impossible differential distinguisher for boomerang structure of 6-round
AES

The impossible differential distinguisher utilized in the 5-round Type 1 distinguish-
er is presented by Fig. 2. This distinguisher only covers the following encryption

E′
5 = F ◦ SB ◦AC ◦ SB−1 ◦ F−2,

and the distinguisher can be described as

Pr[υ(SR(E′
5(x)⊕ E′

5(x
′))) ≤ 2|wt(xi ⊕ x′

i) ≤ 2] = 0

for x, x′ ∈ F16
28 and 0 ≤ i < 4. The 6-round Type 1 distinguisher of AES does not

cover the whole boomerang structure either. Let

E′
6 = F ◦ SB ◦AC ◦ SB−1 ◦ F−3.
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The impossible differential distinguisher of E′
6 utilized in the 6-round Type 1

distinguisher is

Pr[υ(SR(E′
6(x)⊕ E′

6(x
′))) ≤ 2|υ(SR(xi ⊕ x′

i)) ≤ 2] = 0,where x, x′ ∈ F16
28 ,

which is presented in Fig. 3.
It is difficult to apply these distinguishers to distinguish AES, since they do not

cover the whole boomerang structure, and the difficulty lies in that the difference
pattern of intermediate state is unknown. Take Algorithm 4 in [3] as an example.
Algorithm 4 in [3] combines the imposible differential distniguisher persented in
Fig. 2 with a truncated differential distinguisher whose probability is 2−13.4 to a
5-round AES distinguisher which we think is worng. The theoretical explanation
is given as follows.

Denote the truncated differential and the impossible differential utilized in the
algorithm as

Pr[A
F→ B] = 2−13.4,

Pr[B
B4◦F−1

−−−−−→ C] = 0,

where F = SR ◦MC ◦ SB and |C| = 2116.6. The algorithm generates a set of
random pairs Ω with |Ω| = 213.4. For every (p0, p1) ∈ Ω, it generates a set of pairs
Λ(p0, p1) by swapping bytes of their ciphertexts (mixture pair construction), and
|Λ(p0, p1)| = 211.4. Then

Pr[F (p′0)⊕ F (p′1) /∈ C|F (p0)⊕ F (p1) ∈ B] = 1

for every (p′0, p
′
1) ∈ Λ(p0, p1) since F (p0) ⊕ F (p1) → F (p′0) ⊕ F (p′1) follows the

impossible differential Pr[B
B4◦F−1

−−−−−→ C] = 0. For a set of random pairs ∆, since
|C| = 2116.6, we have

Pr[x0 ⊕ x1 /∈ C|(x0, x1) ∈ ∆] = 1− 2−11.4.

Define a pair (p0, p1) satisfying F (p0) ⊕ F (p1) ∈ B as a right pair, and others as
wrong pairs. The algorithm judges a cipher as a 5-round AES encryption if it finds
a right pair (p0, p1) by checking F (p′0)⊕ F (p′1) /∈ C for every (p′0, p

′
1) ∈ Λ(p0, p1).

For AES, a right pair (p0, p1),

Pr[F (p′0)⊕ F (p′1) /∈ C for every (p′0, p
′
1) ∈ Λ(p0, p1)] = 1,

which means it must be judged as a right pair. For a wrong pair, since Λ(p0, p1)
can be regarded as a set of random pairs, we have

Pr[F (p′0)⊕ F (p′1) /∈ C for every (p′0, p
′
1) ∈ Λ(p0, p1)]

=(1− 2−11.4)2
11.4

≈ e−1 ≈ 0.368.

Since there are nearly 213.4 wrong pairs to be checked, the probability that at least

a wrong pair is judged as a right pair is 1 − (1 − 0.368)2
13.4

≈ 1. Similarly, for a
random permutation, every Λ(p0, p1) can be regarded as a set of random pairs,
and thus the probability that at least a pair (p0, p1) is judged as a right pair is

1−(1−0.368)2
13.4

≈ 1, which means the probability that a random permutation is



Structure Evaluation of AES-like Ciphers 13

judged as 5-round AES is 1. To verify our analysis, we apply Algorithm 4 in [3] on
some block ciphers, including full round AES128, Midori128, SIMON128 [11] and
Spring128 [12]. All these block ciphers are identified as 6-round AES. The code of
this experiment is presented at https://github.com/BLOCKCIPHERS702702.

As a result, we mainly focus on the distinguishers covering the whole boomerang
structure.

4 Security evaluation of AES-like ciphers against mixture differential

In this section, we are going to evaluate the security of AES-like cipher against
the three types of distinguishers, especially the security against Type 1 and Type
2 distinguishers.

4.1 Security evaluation against Type 1 distinguisher

In the previous mixture differential cryptanalysis against AES, the 4-round Type
2 distinguisher with probability 1 played a very important role. The following
proposition illustrate the relation between this kind of distinguishers and Type 1
distinguisher.

Proposition 1 For a boomerang structure, if there is a deterministic truncated
difference, then there exists an impossible difference.

According to Proposition 1, if there is no impossible difference for a boomerang
structure, there is no deterministic truncated difference either. As a result, if we can
give an upper bound on the round number r for Type 1 distinguisher, then we know
there is no r-round Type 2 distinguisher with probability 1. In [3], the upper bound
of impossible differential distinguishers is well studied using “primitive index” and
the characteristic matrix. Based on these methods, we give the following theorem.

Theorem 5 For an AES-like cipher with the round function R = MC ◦SC ◦SB,
let F = SC◦SB◦MC, P = MC−1◦SC−1, and r = L1(P ). There is no impossible
differential distinguisher for F r ◦ SB ◦AC ◦ SB ◦ F−r.

Proof Let m be the length of input vectors. For a vector α = (α0, α1, . . . , αm−1),
denote H(α) = #{αi|αi ̸= 0}. It follows from Lemma 1 in [3] that for α ̸= 0
and H(α) = 1, there exists a vector β = (β0, β1, . . . , βm−1) such that H(β) = m
and α → β is a possible differential distinguisher for F r. Thus, for any α, α′

and corresponding β, β′ satisfying H(α) = H(α′) = 1, H(β) = H(β′) = m,
since υ(β) = υ(β′), we have α → α′ is a possible differential distinguisher for
F r ◦ SB ◦ F−r. Notice that H(α) = H(α′) = 1, by Theorem 1 in [3], there is no
impossible differential distinguisher for F r ◦ SB ◦AC ◦ SB ◦ F−r.

Theorem 6 For an AES-like cipher with the round function R = MC ◦SC ◦SB
and P = MC−1 ◦SC−1, let r = L1(P ) +L2(R). There is no Type 1 distinguisher
for more than r-round encryption.
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Proof Let F = SC ◦SB◦MC and κ = L2(R). The boomerang structure of (r+1)-
round encryption is Br = Fκ ◦ SB ◦ AC ◦ SB ◦ F−κ. By Theorem 5, there is no
impossible differential distinguisher for Br. Thus, there is no Type 1 distinguisher
for more than r-round encryption.

The following corollary immediately follows from Theorem 6.

Corollary 2 For an AES-like cipher with the round function R and the linear
layer P . Let r = L1(P )+L2(R). There is no Type 2 distinguisher with probability
1 for r-round encryption Er. For an AES-like cipher with round function R =
MC ◦SC ◦SB. Let P = MC−1 ◦SC−1 and r = L1(P )+L2(R). There is no Type
1 distinguisher for more than r-round encryption.

For AES, since L1(P ) = 2, L2(R) = 2, it can be deduced from Corollary 2 that
there is no Type 2 distinguisher with probability 1 for 5-round AES.

4.2 Security evaluation against Type 2 distinguisher

The point of constructing a Type 2 distinguisher for an AES-like cipher is searching
a truncated differential for its boomerang structure.

For an AES-like cipher E belonging to ε(4, 4, b), let R = MC ◦ SR ◦ SB be
the round function. Based on Corollary 1, we give a reasonable assumption that
L2(R) = 2 which is the worst possible situation. Let F = SC ◦ SB ◦MC. Then,
for an integer n ≥ 3, the boomerang structure of this n-round encryption is

Bn = Fn−3 ◦ SB ◦AC ◦ SB−1 ◦ F−(n−3). (2)

Besides, the n-round encryption function En of the cipher can be written as

En = Fn−3 ◦ SC ◦ SB ◦R2.

The above two equations split Bn and En into two parts respectively, where the
second part of Bn and En are both Fn−3. Let us focus on the first parts of Bn and
En. Generally speaking, as the increasing of n, F−(n−3) in the first parts of Bn

consists of more operations than R2 in the first part of En. Thus, it is expected
that it should be more difficult to search differential distinguishers for Bn than En.
That is also to say the mixture differential distinguisher should always be weaker
than the truncated differential distinguisher against AES-like ciphers with a high
round number. In the following we give specific bounds on the round number of
Type 2 distinguisher for some well-known AES-like ciphers.

Recall that the truncated differential distinguishers for Bn are in one-to-one
correspondence with mixture differential distinguishers for En. Thus, to give a
bound on the round number n that there is no mixture differential distinguishers
for En is equivalent to bound the round number n that there is no mixture differ-
ential distinguishers for Bn. At the state of the art, there are two frameworks to
construct truncated differentials: employing multiple differentials [13] and adopt-
ing the branch property of linear layer (byte-wise truncated differential) [14]. We
analyze the truncated differential distinguishers for Bn using the two frameworks.

First, we investigate multiple differentials for Bn to give a security evaluation
of E described as above for Type 2 mixture differential distinguishers.
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Proposition 2 Let B be the branch number of MC and N be the minimum active
S-boxes for differential trails of F 3 ◦ SB. If SR shifts the words in every column
into four different columns, then N ≥ B2.

Proof Note that there are three Mixcolumns in F 3◦SB. Let αi = (αi
0, α

i
1, . . . , α

i
15)

and βi = (βi
0, β

i
1, . . . , β

i
15) be the input difference and output difference of the i-th

MC. Without loss of generality, assume that (α1
0, α

1
4, α

1
8, α

1
12) is one active column

of α1. Since α1 = SR◦SB◦MC(α0), the active bytes in (α1
0, α

1
4, α

1
8, α

1
12) are shifted

from different columns of α0. Denote ai as the number of active columns for αi.
It follows that

a0 ≥ υ(α1
0, α

1
4, α

1
8, α

1
12).

Similarly, the active bytes in (β1
0 , β

1
4 , β

1
8 , β

1
12) will be shifted to different columns,

and so a2 ≥ υ(β1
0 , β

1
4 , β

1
8 , β

1
12). Thus we have

a0 + a2 ≥ υ(α1
0, α

1
4, α

1
8, α

1
12) + υ(β1

0 , β
1
4 , β

1
8 , β

1
12) ≥ B.

This implies that the minimum active S-boxes for every differential trail satisfies
N ≥ a0 × B + a2 × B ≥ B2.

In the following, we denote the minimal number of active S-boxes in a differ-
ential trail of Bn by Ls(Bn).

Theorem 7 Let p be the maximal differential probability of S-boxes in Bn. Denote
t = Ls(Bn). If p

t ≤ 2−16×b, then there is no multiple differential for Bn.

Proof Let A,B ⊂ F16×b be the input and output differences of Bn, respectively.
Let N = |B|. Then the probability of multiple differentials satisfies

Pr[A→ B] ≤ max
α∈A

Pr[α→ B] ≤ N × max
α∈A,β∈B

Pr[α→ β] ≤ N × pt.

For the random case, the probability that an output difference falls in B is given by
Prand = N×2−16×b. Thus, if pt ≤ 2−16×b, then Pr[A→ B] ≤ Prand, which means
the truncated difference A → B is indistinguishable from random permutations.
Since A and B are arbitrary, there is no multiple difference for Bn.

Applying Proposition 2 to AES, we have Ls(B6) > B2 = 25. Since the maxi-
mal differential probability of AES S-box is 2−6, the following corollary could be
deduced from Theorem 7.

Corollary 3 Let B6 = F 3 ◦ SB ◦ AC ◦ SB−1 ◦ F−3 be the boomerang structure
of 6-round AES, where F = SC ◦ SB ◦MC. Then there is no multiple difference
for B6.

For the boomerang structure of SKINNY64 and the Midori family, Proposition
2 could not give an accurate value of Ls(Bn), where Bn is described as in (2).
Therefore, we construct MILP (Mixed-Integer Linear Programming) models based
on Algorithm 1 to get Ls(Bn) for these ciphers. The notation l(MC)(x0, x1, . . . x7)
involved in Algorithm 1 denotes the inequalities whose solution characterizes the
branching property function of Mixcolumn for AES-like ciphers. It is worth noting
that there are two Sub-Bytes layers right next to each other without a linear layer
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Algorithm 1 Construct an MILP modelM for Ls(F
n ◦ SB ◦ F−n)

1: for r = 0 to n do
2: M.var ← (xr

0, x
r
1, . . . , x

r
15)

3: M.var ← (yr0 , y
r
1 , . . . , y

r
15)

4: end for
5: M.con← xn = y0

6: for r = 0 to n− 1 do
7: for i = 0 to 3 do
8: M.con← l(MC)(xr+1

Col(i)
, xr

SC(Col(i))
)

9: M.con← l(MC)(yr
Col(i)

, yr+1
SC(Col(i))

)

10: end for
11: end for
12: Ns =

∑n
r=0

∑15
i=0 x

r
i +

∑n
r=1

∑15
i=0 y

r
i

13: M.obj ←Min{Ns}

in between. In this case, these Sub-Byte layers can be combined into a new Sub-
Bytes layer which is formed by concatenating 16 parallel unknown S-boxes, which
means

Fn−3 ◦ SB ◦AC ◦ SB−1 ◦ F−(n−3) = Fn−3 ◦ S′ ◦ F−(n−3),

where S′ = SB ◦ AC ◦ SB−1. As a result, for the purpose of a more accurate
estimate, let Ls(Bn) be the minimum active S-box of Fn−3 ◦ S′ ◦ F−(n−3). By
utilizing the MILP solver (Gurobi), we can get Ls(Bn) for SKINNY64 and the
Midori family. Since Midori64 and Midori128 share the same linear layer, Ls(Bn)
of these two ciphers are the same. For the Midori family, we have Ls(B7) = 39 and
Ls(B8) = 55. The maximal probabilities of Midori64 S-box and Midori128 S-box
are 2−2 and 2−3, respectively. Since 2−2×39 < 2−64, it follows from Theorem 7
that the round number of a multiple differential distinguisher of Midori64 is less
than 7. Similarly, since 2−3×55 < 2−128, it follows from Theorem 7 that the round
number of a multiple differential distinguisher against Midori128 is less than 8.
For SKINNY64, since the maximal differential probability of S-box is 2−2 and
Ls(B8) = 43, it follows from Theorem 7 that the round number of a multiple
differential distinguisher is less than 8. These results are presented in Table 1.

Table 1: Bounds for the round number of multiple differential distinguishers against
the boomerang structure Bn

Ciphers Cell size Max probability of S-box Round number
(b) (p) (n)

AES 8 2−6 < 6
Midori64 4 2−2 < 7
Midori128 4 2−3 < 8
SKINNY64 4 2−2 < 8

Second, for the security evaluation against Type 2 distinguishers by exploiting
the branch property, we use the MILP modeling technique. The details of building
MILP models to search the truncated differentials adopting the branch property
of a linear layer please refer to 15. Results on AES, Midori64, Midori128, and
SKINNY64 are given in Table 2.
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Table 2: Bounds for the round number of byte-wise truncated differences against
the boomerang structure Bn

Ciphers Round number n
AES < 6

Midori64 < 7
Midori128 < 7
SKINNY64 < 9

Combining Tables 1 and 2, it can be seen that there is no Type 2 distinguisher
for 6-round AES, 7-round Midori64, 8-round Midori128, and 9-round SKINNY64.
We remark that the bounds of AES, Midori64, and SKINNY64 are tight since
there are Type 2 distinguishers for 5-round AES (see [3]), 6-round Midori64 (see
Appendix) and 8-round SKINNY64 (see Appendix).

5 Discussion

For the related-key mixture differential distinguisher, since the key structures also
should be taken into consideration, it is much more challenging to give a security
evaluation against the mixture differential. Since the mixture differential is a vari-
ant of boomerang attack [8], according to the excellent results about related-key
boomerang attack [16–18] in recent years, we think that the bound for the mixture
differential can be higher than the single-key situation.

From the view of the algebraic normal form of an encryption function, in
the related-key situation, the Boolean function about a reduced-round encryption
should be F (x, k) : Fn×b

2 × Fm
2 → Fn×b

2 rather than F (x) : Fn×b
2 → Fn×b

2 , where
k represents key variables. The difficulty of the related-key mixture differential
lies in how to construct (x, y) ∈ Fn×b

2 × Fn×b
2 satisfying F (x, k) ⊕ F (x, k ⊕ δ) =

F (y, k)⊕ F (y, k ⊕ δ) according to δ ∈ Fm
2 , which corresponds to Lemma 1.

6 Conclusions

This paper studies the security evaluation of AES-like ciphers against mixture
differential cryptanalysis. The boomerang structure, which associates the mixture
differential distinguishers with other types of differential distinguishers, is first
proposed. Based on the boomerang structure, an upper bound on the number of
rounds for an AES-like cipher to resist mixture differential cryptanalysis could be
estimated. It is shown that there are no mixture difference distinguishers for 6-,
7-, 8- and 9-round AES, Midori64, Midori128, and SKINNY64, respectively.

Appendix

The truncated differential distinguishers of 6-round Midori64 and 8-round SKIN-
NY64 searched by MILP modeling technique are presented in Fig. 4 and Fig. 5,
respectively.
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Data availability

The datasets supporting the conclusions of this article are included within the
article and its additional files. The code supporting the conclusions of this article
is available in https://github.com/BLOCKCIPHERS702702.
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