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Abstract. The mutual information between the observable device leak-
age and the unknown key is a key metric in the context of side channel
attacks, evaluations, and countermeasures. Estimating this mutual in-
formation has been a problem and was addressed in several recent con-
tributions. We explain why previous work has ended up in a “catch-22”
and we show how to avoid this situation by using a leakage model free
estimation approach based on a recently discovered, consistent mutual
information estimator. Our work demonstrates that mutual information
estimation in the side channel setting can be done extremely efficiently
(even in a multivariate setting), with strong mathematical guarantees,
without the need for an explicit device leakage model, discretisation, or
assumptions about the nature of the device leakage.

1 Introduction

Side channel theory and practice require metrics to describe how “secure” or
“vulnerable” a device, or an implementation is with respect to side channel at-
tacks. Thus suitable metrics are required in the context of measuring the quality
of attacks, the impact of countermeasures, and also the quality of an evaluation.

For instance, the quality of a side channel evaluation depends on how close the
evaluation process, representing the “worst case adversary”comes to the “ideal
adversary” [2]: the worst case adversary utilises an estimated leakage model as
part of their attack strategy; the ideal adversary knows the actual leakage model
of the device.

Previous works relating to evaluations [5] and attacks [10], but also contribu-
tions describing a general framework for considering side channel adversaries [15],
of security proofs [7]) all use the mutual information as their metric of choice.
Clearly, the concept of the mutual information (MI) between (a function of) the
pair of (plaintext input, secret key) and the observable leakage I(L; (X,K)) is
at the heart of side channel theory and practice.

1.1 Significance of MI estimation

The MI between (a function of) the key (and input) and the observed traces
depends on the joint distribution between these variables, which is unknown in



practice. Thus the MI can only be estimated from the available data (i.e. leakage
traces that are obtained from some device holding a secret key). In the side
channel literature, the estimation of the MI has so far always been linked to
entropy estimation via the usual “2H” or “3H” approaches (we review this in
the technical sections of this article), which boils down to estimating the joint
(or conditional) distribution between the variables in question.

Constructing consistent estimators for joint (or conditional) densities of ar-
bitrary distributions is a well studied problem in the context of entropy and MI
estimators. This estimation problem is notoriously hard (when considering arbi-
trary distributions), and [12] shows how badly behaved well known variations of
“plug-in” estimators can be. Clearly this is an unsatisfactory situation for the
use of MI as a metric within the side channel community, because the MI is at
the heart of theory that is highly connected to side channel practice. Further
more, in the context of leakage certification ( [4], a process by which we want
to judge the quality of a profiling adversary) this leads to a catch-22: estimating
the MI itself is a fraught process, and yet we hope to judge the profiling model
quality by an estimated MI.

1.2 Achievements of Previous Work

Previous research by [5] and the follow-on works [3, 4] make some progress here
and provide mathematical reasoning for various MI related estimates, resulting
in bounds for their estimators.

Specifically, [5] propose that to evaluate MI estimates, it is important to dis-
tinguish between assumption errors (they relate to the leakage function captured
by the pdf estimation approach) and estimation errors (they relate to the amount
of data available for pdf estimation). They put forward the observation that a
divergence between the MI and a related metric called perceived information
(PI) reflects assumption errors. Later on [4] experiment with using statistical
moments to demonstrate assumption errors, and introduce the notion of hypo-
thetical information (HI). Most recently, [3] show that the expected empirical
MI, called eHI, is not only an upper bound for the MI, it also converges towards
the true MI. They also show that the expected PI (ePI) is a lower bound for
the MI. These statements hold assuming that they key is uniformly distributed
and that the noise-free leakage of the device is discrete and deterministic. Such
a result is great, and it fits with the known fact that for specific combinations of
variables (either both are discrete, or both are continuous) provably consistent
estimators exist [1]. For the general case, where we work with mixture distribu-
tions of discrete and continuous variables, the situation is more complex.

1.3 The Remaining Gap and Our Contributions

The side channel setting (without simplifying assumptions such as made in pre-
vious work) is exactly such a general case for mutual information estimation: the
device leakage is a function of some (probabilistic) physical process interacting
with discrete variables (input and key) and independent noise (i.e. the physical
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processes that do not interact wit the input and key). Different parts/compo-
nents of a device exhibit different leakage functions, and measurement setups
both discretize measurements and smooth them via post-processing. Thus de-
pending on various factors we may encounter leakage functions that are either
discrete and deterministic in key and inputs (e.g. an data transfer instruction
on a microprocessor leaks the Hamming weight) or that are continuous and
probabilistic in key and inputs (e.g. an arithmetic instruction invokes a complex
multiplier or other arithmetic circuit). This mix of leakage function can even
happen when considering an implementation on a single device.

We offer several contributions:

– We clearly explain the relationships between different mutual information
quantities of interest, and highlight the critical role that discretisation plays
in the context of mutual information estimation. In particular we explain
that besides assumption errors and estimation errors, the use of a biased
estimator is a cause for concern in practical mutual information estimation.

– We prove that the mutual information between the observed leakage and
the key (as well as input) can be computed without the need for density
estimation or discretisation by using a novel estimator that was recently
introduced [6].

– We provide practical evidence in the channel context that the application
of the estimator [6] is data efficient, computationally efficient, and that it
can also be used elegantly in a multivariate scenario.

Our results thus provide an approach for mutual information estimation
which:

– uses a consistent estimator for all leakage functions that can be observed in
practice (discrete, continuous, deterministic, probabilistic),

– naturally extends to the multivariate setting, and

– has the same asymptotic convergence rate as existing estimators.

We explain our notation and provide a review of basic mathematics of mu-
tual information and mutual information estimation in Sect.2. We describe why
it is important to cater for a variety of leakage functions, including ones that
are probabilistic in the key and inputs in Sect.3; we also explain the relation-
ships between mutual information quantities of interest and why discretisation
in the process of mutual information estimation must be avoided. In Sect. 6.1
we provide the mathematical reasoning for the fact that under mild assumptions
about the noise distribution, it is possible to compute the mutual information
between the observed leakage and the key without the need of an estimated
leakage model. Before providing experimental evidence for the efficiency and
soundness of our proposed mutual information estimation process in Sect. 6, we
discuss implementation aspects of the estimator in Sect. 5.
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2 Notation and Background

Following convention, we represent random variables with upper case letters, and
their realisations with the corresponding lower case letters. We abuse notation
and treat random variables and their corresponding sets synonimously. For two
functions g and h, g ◦ h denotes the composition of the functions.

We denote the probability density function (pdf) and cumulative distribution
function (CDF) of a continuous random variable with f and F respectively. For
a discrete random variable, p will denote its probability mass function (pmf);
for an arbitrary event we use P to denote its probability. Whenever necessary,
in a pdf, CDF or pmf we will make the corresponding random variable explicit
in the subscript (e.g. fX or FX). For any random variable X, E(X) and resp.
EX denote the expectation. For a real valued variable x, [x] denotes the integral
part of the value.

We refer to an estimated quantity by using the sample size n in the subscript,
e.g. In refers to a mutual information estimate obtained from a sample with size
n. The same notation is used to denote estimated pmf or pdf, e.g. fX,n or pX,n

denotes the estimated pdf or pmf corresponding to a random variable X. The
indicator function for x corresponding to a random variable X, is denoted as
IX=x. We will use N (µ, σ) to denote the Gaussian/normal distribution with
mean µ and standard deviation σ. log and ln denote logarithm with base 2 and
base e respectively.

In general, for side-channel setting we will use R to denote the random vari-
able corresponding to the device noise.

2.1 Mutual Information

For general random variables X,Y the mutual information can be defined via
the Radon-Nikodym derivative:

I(X;Y ) =

∫
X×Y

log
dPXY

dPXPY
dPXY .

Another common definition for MI, which is more commonly used in the side
channel literature, is as a reduction in entropy, leading to the so-called “2H” and
“3H” expressions:

I(X;Y ) = H(X)−H(X|Y ) (1)

= H(X) +H(Y )−H(X,Y ) (2)

The conditional entropy term is defined as H(X|Y ) =
∑

y p(Y = y)H(X|Y = y)

when Y is discrete random variable, and as H(X|Y ) =
∫
y
fY (y)H(X|y) when Y

is continuous random variable.
As explained before, in the side channel setting, we are interested in the mu-

tual information between the key and the observed leakage. The distribution of
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the key is typically known (consequently the entropy term corresponding to it
can be directly calculated), but the distribution of the leakage, as well as the
joint or conditional distribution (between key and leakage) is not known. Thus
in side channel practice we have to inevitably estimate the mutual information
(and if using the 2H/3H formulas, the resp. entropy terms). Because side chan-
nel observations can have many points (especially in the context of power and
electro-magnetic emanation we are observing leakage traces), it is practically not
desireable (and sometimes even feasible) to derive the precise statistical charac-
terisation of each point in a leakage trace. As a consequence, we do not wish to
make any distributional assumptions about the leakage (as well as joint/condi-
tional leakage distributions).

2.2 Non-Parametric Mutual Information Estimation

MI estimators need to cope with different constellations of random variables
(discrete or continuous). Consequently there exist three cases:

– two continuous random variables (referred to as cont. MI)
– two discrete random variables (referred to as discrete MI)
– a continuous and a discrete random variable (referred to as mixed MI)

The case of considering two discrete univariate random variables (i.e. discrete
MI) has been solved in the statistical literature [1], which we will discuss below.

There are two principal ways to estimate the mutual information between
two variables. The first option is to estimate the conditional/joint density and
use either the 2H or the 3H formula to compute an MI estimate. The second
option is to select an estimator that does not require the explicit estimation of
the densities but use a nearest neighbour based estimator instead.

There exist a wide range of results for the first option, and recently a number
of new ideas for the second option have emerged as well. The crucial property of
any estimator is how well it “approximates” the true MI. This property is called
the convergence of the estimator. It is defined over a sequence of the estimator
in question, whereby the sequence is given over an increasing number of samples
n.

The strongest notion of convergence of a sequence of estimators {θn : n ∈ N}
of θ is that the estimator converges almost surely (asymptotically, short a.s.) if

P
({
ω : lim

n→∞
θn(ω) = θ(ω)

})
= 1.

This is also written as θn
a.s.−−→ θ, and one often uses the term strong consistency

in this context. Another strong notion of convergence is that of convergence in

squared mean: limn→∞ E [θn − θ]
2
= 0, or, equivalently, if limn→∞ E

[
θ̂n − θ

]
=

0 and limn→∞ V ar(θ̂n) = 0. The weaker form of convergence is in probability
which holds if for all ε > 0 limn→∞ P ({ω : |θn(ω)− θ(ω)| > ε}) = 0. This is also

written as θn
P−→ θ.
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MI Based on Density Estimation The most widely applied technique of
MI estimation in side-channel analysis is via entropy estimation e.g. via the 2H
formula:

In(X,Y ) = Hn(X)−Hn(X|Y ). (3)

In general the estimation ofH(X|Y ) i.e. computingHn(X|Y ) requires estimating
H(X|y) as well as pdf or pmf of Y . In the context of side-channel analysis one
random variable, namely Y is discrete, it assumes finitely many values, and is
typically uniformly distributed. Thus, it suffices to estimate onlyH(X|Y = y) for
each possible value y ∈ Y . Evidently, the convergence of the MI estimator based
on the 2H approach depends fully on the convergence of the entropy estimator.

There are several relevant plug-in estimators (coping with general distribu-
tions) for entropy that connect to the current practice in side-channel analysis
and leakage certification, namely - the integral estimate and resubstitution es-
timate. Györfi and van Mulen [8] showed that integral estimator is strongly
consistent if the conditional distribution satisfies specific conditions. The resub-
stitution estimator only provides mean-square consistency Hall and Morton [9]
(again under certain conditions regarding the distribution). Both estimators do
not generalise to the multivariate setting (either their efficiency drops signifi-
cantly or the convergence guarantee does not extend to the multivariate setting).

The plug-in estimator produces the best results in terms of consistency when
the random variables are both discrete. For the plug-in pmf estimate pn, the
corresponding entropy and MI estimates are defined as

Hn =
∑
x

pn(x) log pn(x), In(X,Y ) =
∑
x,y

pn(x, y) log2
pn(x, y)

pX,n(x)pY,n(y)
(4)

where pn(x, y) =
1
n

∑n
i=1 IXi=x,Yi=y. Antos and Kontoyiannis [1] showed that if

H(X,Y ) is finite then the plug-in estimator of MI as in Equation (4) is both

strongly consistent and mean square consistent i.e. In
a.s.−−→ I and limn→∞ E[(In−

I)2] = 0.
Bronchain et al. [3] put forward the notions of ePI and eHI as MI estimators.

These quantities are based on the 2H entropy estimate for MI. Instead of using
one of known estimation techniques for entropy, they first compute an empirical
pdf, denoted by ẽn(x|y) (based on discretised leakage x, and a key dependent
variable y) in the form of a histogram. With the empirical pdf, they then define:

eHIn(X;Y ) = H(Y ) +
∑
y∈Y

pY (y) ·
∑
x∈X

ẽn(x|y) log2 ẽ(y|x) (5)

ePIn(X;Y ) = H(Y ) +
∑
y∈Y

pY (y) ·
∑
x∈X

pn(x|y) log2 ẽ(y|x) (6)

Previous papers [3–5]) assume that the noise distribution is Gaussian (e.g.
R ∼ N (µ, σ)), and the device leakage function is deterministic and discrete.
Because the eHI and ePI are defined within the side channel setting, only one of
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the random variables is continuous. With this assumption, Bronchain et al. [3]
show that the eHI converges to the I(L;Y ) (in their notation Y = C(X,K)) and
is a bound for I(L;Y ), thus the eHI is a biased estimator.

Nearest Neighbour Estimator for MI Motivated by the need for a non-
parametric MI estimator that applies even to high-dimensional/multivariate
problems, [11] introduced the idea of using a t nearest neighbour (short t-NN)
based estimator (also known as KSG estimator in the wider statistical litera-
ture). Recently, a generalization of the KSG estimator was proposed by Gao,
Krishnan, Oh and Vishwanath [6] (that we will refer to as GKOV estimator),
which is applicable to a mixture of continuous and discrete random variables.
The GKOV estimator is defined as

In(X;Y ) =
1

n

n∑
i=1

Îi =

n∑
i=1

(ψ(t̃i) + log n− log(nx,i + 1)− log(ny,i + 1)). (7)

Here, ψ(u) is the digamma function ψ(u) = d
du logΓ (u) ≈ lnu− 1

2u . The details
of how to compute the quantities nx,i, nyi

and t̃i can be found in algorithm 1.
The following theorem guarantees the mean square convergence of the GKOV

estimator (defined in equation 7).

Theorem 1 (Convergence of MI estimator [6]). Assume that

– t is chosen to be a function of the sample size n s.t. tn → ∞ and tn log n/n→
0 as n→ ∞

– The set of discrete points {(x, y) : PXY (x, y, 0) > 0} is finite where

PXY (x, y, r) = PXY ({(a, b) ∈ X × Y : ∥a− x∥ ≤ r, ∥b− x∥ ≤ r}

–
∫
X×Y

∣∣∣log dPXY

dPXdPY

∣∣∣ dPXY <∞.

Algorithm 1 I(X;Y ) estimation for mixed r.v.s (X,Y ) [6]

Require: {xi, yi}ni=1 and tn = t
1: for i = 1, . . . , n do
2: di,xy = tth smallest distance from{dij = max{∥xj − xi∥, ∥yj − yi∥} : i ̸= j}
3: if di,xy = 0 then
4: d̃i = |{j : dij = 0}|
5: else
6: d̃i = t
7: end if
8: nx,i = |{j : ∥xj − xi∥ ≤ di,xy}|
9: nx,i = |{j : ∥yj − yi∥ ≤ di,xy}|
10: αi = ψ(d̃i)− log(nx,i + 1)− log(ny,i + 1)
11: end for
12: return 1

n

∑
i αi + log(n)
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Then, limn→∞ E(In) = I(X,Y ). Additionally, if we assume (tn log n)
2/n → 0

as n→ ∞, then limn→∞ V ar(In) = 0.

With a suitable choice of tn the GKOV estimator has the same convergence
rate as existing pmf/pdf based mutual information estimators.

3 MI in the Side Channel Setting

In the side channel setting we work with random variables that represent input-
s/intermediates/outputs of cryptographic processes and leakage observations:
we use x ∈ X for the input, which is mapped according to the cryptographic
process via the application of some (cryptographic) target function(s) C and an
(unknown) key k∗ ∈ K to an intermediate y ∈ Y . Implementations process
cryptographic keys in “chunks”, thus K is typically of a small size.

An adversary is assumed to be able to observe inputs/outputs x ∈ X of
the device and the side channel leakage trace l ∈ L that corresponds to the
execution of a cryptographic algorithm using the input and the key k∗ that is
embedded in the device. A side channel trace is a vector of leakage points. Each
point corresponds to the physical processes that happen inside the device (at
that point in time/step in the execution) and some independent noise R.

An important detail is that the observed leakage L may be either a determin-
istic or a probabilistic function of multiple variables. The secret key k∗ ∈ K and
the input X interact via the target function C (a step in the computation of the
cryptographic algorithm) and leak via the (unknown) leakage function L. The
leakage function for a specific step in the execution of an algorithm can be simple
(e.g. Hamming weight for a bus transfer), in which case it can be modelled as a
discrete deterministic random variable:

L = L(C(X,K)) +R.

But for many steps in an execution the leakage function depends on some
complex interaction between many components in the device, and is influenced
by probabilistic processes (due to glitches, cross talk, couplings, etc.). It is also
possible that the measurement setup itself impacts on the leakage, and as a re-
sult, leakage functions are often continuous probabilistic random variables. We
model such a probabilistic leakage function by some unknown internal random-
ness S. Note that S can be discrete or continuous, and it is different from R.
Unlike R, the random variable S is not independent of (X,K) i.e. the leakage
density function is f(x, k, s). For a target device we can then model the observed
leakage as

L = L(S, C(X,K)) +R.

Previous work has exclusively considered deterministic leakage functions, but
we consider deterministic and probabilistic leakage functions in our work. This
is important because we do want a mutual information estimation process to be
strongly consistent for all observable leakage functions, even if we don’t under-
stand their true nature.
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Whenever the probabilistic nature of the leakage is not relevant, i.e. a state-
ment holds irrespective of S and thus irrespective of whether L is discrete and
deterministic or continuous and probabilistic, we drop S in the text for readabil-
ity.

3.1 Relationships between MI Quantities

The mutual information between the observed traces and the pair (input, key)
measures how much information about the key is contained in the observable
trace. We call this Imax:

Imax = I((X,K);L). (8)

The cryptographic target function C maps the key and input value to an
intermediate value. Consequently, because of the data processing inequality we
know that

Ic = I(C(X,K), L) ≤ Imax. (9)

Equality holds if and only if C is one-to-one. In an attack, a worst-case adversary
would utilise a power model. In the best case, this model would be exactly the
device leakage mode. If the device leakage is independent of C then we can utilise
the data processing inequality again:

Ib = I(L ◦ C(X,K), L) ≤ Ic ≤ Imax. (10)

Consequently, the mutual information Imax is indeed an upper bound to
other MI quantities of interest: it represents the ability of an ideal adversary.
Finally, we briefly consider the so-called worst case adversary [2]. The worst-
case adversary is a profiling adversary [2] utilising a profiling model Lwca. Thus
the mutual information Iwca = I(Lwca ◦C(X,K), L) characterises the worst-case
adversary, in the sense that if |Iwca − Ib| < |Iwca′ − Ib| then the model Lwca is
closer to L when measured by the MI than Lwca′ .

3.2 The Curse of Discretisation

The discretization of a random variable is often used in the context of estimating
parameters from real data, particularly, when the observed random variable is
continuous and can assume values in (−∞,∞). Discretization divides the range
of a continuous random variable X into possibly an infinite number of intervals.
The quality of the discretization is clearly extremely important for any statis-
tical process that follows on from it: e.g. the number of intervals needs to be
appropriate, but also the width of intervals, which may have to depend on the
shape of the underlying continuous density.

Consequently, also the consistency of an entropy estimate of a quantized ran-
dom variable depends strongly on the method used for quantization. If a mutual
information estimate is defined via the 2H formula, then also this estimate highly
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depends on the discretisation. For example, when X is a continuous real valued
random variable and [X] defines the corresponding quantised random variable,
Rényi showed [14] early on that the entropy of the sequence [qX] satisfies

lim
q→∞

(H([qX])− log2 q) = H(X)

where 1/q is the step-size. Clearly this early result demonstrates that the en-
tropy of the discretised random variable is larger than the entropy of the real
valued random variable, especially if q is not large. In the computation of the
mutual information with the 2H formula, the difference between two entropies
can potentially be smaller or larger than the true mutual information. Which in-
evitably, and irrespective of the number of available observations, leads to biased
estimators for the mutual information. The paper by Paninski [12] demonstrates
that even bias corrected estimators are still surprisingly biased in some situ-
ations. Bronchain et al.’s work is exactly the type of discrete estimator that
Paninski discussed, and their eHI (5) estimator is exactly such a biased esti-
mator. Bronchain et al. use the eHI as an upper bound for the true mutual
information: eHI ≥ I(L; (X,K)). Such a bound is indeed useful in the absence
of a consistent estimator of I(L;Y ). However, when a consistent estimator of
I(L;Y ) is available one can simply use it to estimate the mutual information.

Crucially, in the context of leakage certification, where model quality is
judged by a mutual information estimate, using a biased estimator implies that
convergence to the true mutual information is simply impossible. This is neither
an issue with the profiling model (i.e. this is not an assumption error) nor is it
an estimation error [4], it is simply a property of the estimator that is based
on discretisation. Thus to judge the model quality for a worst case adversary
Iwca = Lwca ◦ C(X,K) it is important to avoid discretisation so as to avoid
arriving at a biased estimate.

4 Model Free MI Estimation

In this section we show that Ib(L◦C(X,K), L) = Imax under mild conditions on
L (and for bijective C): the best MI (the one that corresponds to the knowledge
of the true leakage function, and the target intermediate value) is equal to the
MI between the discrete inputs (key and data) and the observed leakage. This
equality implies that in many practical cases the “best” MI can be calculated
without the need for estimating the distribution of the device leakage L.

4.1 Determining the Conditional Distribution L|L

The observed leakage from a traget device is modeled as L = Z + R, where Z
can be either:

Z = L(C(X,K)),deterministic in(X,K)

Z = L(S, C(X,K)),probabilistic in(X,K).
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Note that S can be discrete or continuous, and it is different from R. Unlike
R, the r.v. S is not independent of (X,K). Independent of the nature of Z, we can
show that the the distribution of L|Z is fully determined by the distribution of
R, simply because R is independent of Z. The formal argument for a continuous
Z is slightly more complex.

Z is deterministic and discrete. The pdf fL|Z of the conditional variable L|Z
can easily be derived:

P(L ≤ ℓ|Z = z) = FR(ℓ− z)

=

∫
ℓ

dFR(ℓ− z) =

∫
ℓ

fR(ℓ− z)dℓ (11)

For example, when R ∼ N (0, σ) which is an assumption often made in SCA,
L|Z = z ∼ N (z, σ).

Z is continuous and probabilistic. The conditional pdf is given as

fL|Z(l|z) =
fLZ(l, z)

fZ(z)
.

To derive the joint distribution fLU , we use a standard trick and define the
transformation L = Z +R,U = Z and obtain

fLU (l, u) =
fRZ(r, z)∣∣∣ ∂(l,u)∂(r,z)

∣∣∣ = fR(r)fZ(z) = fR(l−z)fZ(z) =⇒ f(l, z) = fR(l−z)fZ(z)

(12)

since the Jacobian
∣∣∣ ∂(l,u)∂(r,z)

∣∣∣ = 1, and fRZ(r, z) = fR(r)fZ(z) due to the inde-

pendence of R and Z. Thus from equation 12 (and recalling that Z = U) we
obtain

fL|Z(l|z) = fR(l − z)

4.2 Computing the MI Does Not Require Any Model

Now we can prove that under suitable noise distributions (and assuming that C
is bijective) Ib = Imax. The MIs I(L;Y ) where Y = C(K,X), and I(L;Z) where
Z = L(Y ) can be written as

I(L;Y ) = H(L)−H(L|Y ) (13)

I(L;Z) = H(L)−H(L|Z) (14)

Proposition 1. Suppose R follows a distribution D with the location and scaling
parameters µ and σ (> 0) respectively i.e. R ∼ D(µ, σ), and H(R) = φ(σ)
where φ is a function determined by the form of fR. Then I(L; (X,K, S)) =
I(L;L(S, C(X,K))) where S is the r.v. quantifying the internal randomness of
the target device.
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Proof. We again consider the two cases: first L being deterministic, and second
L being probabilistic.

First, we assume that Z is discrete and deterministic Z = L ◦ C(X,K):

I(L;Z) = H(L)−H(L|Z) = H(L)−
∑
z

pZ(z)H(L|Z = z) (15)

= H(L)−
∑
z

pZ(z)EL|z(− log(fR(l − z))

= H(L)−
∑
z

pZ(z)φ(σ) = H(L)− φ(σ)

When Z is continuous (but still deterministic), the sum (over z) is replaced by∫
z
and the pmf p(z) is replaced with pdf f(z) in Equation (15). More precisely,

we have

I(L;Z) = H(L)−
∫
z

f(z)E(− log(fL|Z(l|z))dz (16)

= H(L)−
∫
z

f(z)E(− log(fR(l − z))dz = H(L)− φ(σ).

Now we consider the term H(L|(X,K, S)) ( in I(L; (X,K, S)) ) which is defined
as

H(L|(X,K, S)) =
∑
x,k

∫
s

f(x, k, s)E[− log f(l|(x, k, s))]ds (17)

As before, using the transformation of random variables (and the corresponding
Jacobian) we have

f(l|(x, k, s)) = fR(l − v) (18)

where L(s, C(x, k)) = v and L is continuously differentiable function.

Thus we get

I(L; (X,K, S)) = H(L)−H(L|(X,K, S))

= H(L)−
∑
x,k

∫
s

f(x, k, s)E[− log f(l|(x, k, s))]ds (19)

= H(L)−
∑
x,k

∫
s

f(x, k, s)E[− log(f(l − v)]ds

= H(L)− φ(σ)
∑
x,k

∫
s

f(x, k, s)ds = H(L)− φ(σ)

The integral
∫
s
in Equation (19) is replaced by

∑
s when S (and consequently

Z) is discrete. ⊓⊔
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Remark 1. We emphasize that the entropy assumption in Proposition 1 encom-
passes many distributions e.g. Normal distribution, Laplace distribution, Cauchy
distribution etc. The distributions characterized by this assumption are also
most commonly used in side-channel analysis experiments in literature e.g. [10].
Proposition 1 can easily be extended for a distribution of R characterized with
only scaling parameter σ > 0, which is done in the following proposition.

Proposition 2. Suppose, R follows a distribution D with scaling parameter σ >
0. Then I(L;Z) = I(L; (X,K, S)).

Proof. The proof follows the same way as in proof of Proposition 1.

Proposition 2 covers the general exponential distribution of R (with pdf f(x) =
σe−σx when x ≥ 0 and f(x) = 0 otherwise).

Note that the r.v. S in Proposition 1 and Proposition 2 was introduced to
define the output distribution of L. In practice it is implicit to a device and is
not required in the process of leakage certification (or MI estimation). Thus, we
have the following result.

Theorem 2 (Model Independent MI Estimation). If the entropy of the
noise distribution (of a device) is location independent then I(L;L◦C(X,K)) can
be computed (or estimated) without any hypothetical (leakage) model, by simply
computing (or estimating) I(L; (X,K)).

Proof. Follows from the proof of Proposition 1 and Proposition 2. ⊓⊔

A special case of Proposition 1 is when noise distribution is Gaussian, and
we use this special case to provide a supporting concrete example.

4.3 Model Free MI Estimation under Hamming Weight Leakage

We illustrate the result of Theorem 2 with the commonly used device leakage
function - Hamming weight (HW), where L(u) = HW(u). Suppose, we use a
m-bit cryptographic Sbox as the C i.e. Y = C(x, k) = Sbox(x ⊕ k) and the
underlying noise distribution follows N (0, σ). Then, L will follow a mixture of
Gaussian with pdf

m∑
i=0

1

2m

(
m

i

)
1

σ
√
2π
e−

(x−i)2

2σ2 .

For any given value j = C(x ⊕ k), L|(Y = j) has pdf 1
σ
√
2π
e−

(ℓ−hj)
2

2σ2 where

j = 0, 1, . . . ,m and hj = HW(j). So, the entropy of H(L|Y = j) = 1
2 log(2πeσ

2).
Hence,

I(L;Y ) = H(L)−
∑
j

P(Y = j)H(L|Y = j) = H(L)− 1

2
log(2πeσ2).
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On the other hand H(L|HW(Y ) = i) also has pdf f(ℓ|i) = 1
σ
√
2π
e−

(ℓ−i)2

2σ2 . Thus,

∑
i

P(HW(Y ) = i)EL|i[− log f(ℓ|i)] = 1

2
log(2πeσ2)

m∑
i=0

1

2m

(
m

i

)
=

1

2
log(2πeσ2)

Hence, we will have

I(L;HW◦C(X,K)) = H(L)−
∑
i

P(HW(Y ) = i)EL|i[− log f(ℓ|i)] = I(L; C(X,K)).

Remark 2. The above example is in fact a special case of the analysis provided
in [13]. Our result (Theorem 2) is much more general than the earlier work
of [13], because it can be applied to any noise distribution whose entropy is
location independent. In Section 6.1 we provide further experimental evidence
by simulating the above example for Gaussian and Laplacian noise distributions.

4.4 Multivariate Analysis

No assumptions were necessary in the previous section regarding the dimension-
ality of L, thus our analysis naturally applies also to situations where multiple
trace points are considered jointly. Working with joint distributions is also of in-
terest when considering countermeasures, such as masking, where intermediate
values are split up into multiple shares.

Consider a simple two share setting, where for an intermediate value we just
have one additional random variable, denoted by M . From the data processing
inequality we know that

I(L; (X,K,M)) ≥ I(L; C(X,K,M)) ≥ I(L;L ◦ C(X,K,M)). (20)

Because the mask is part of the target function, and is chosen independently of
all other quantities, it does not change our analysis from before.

It is important to bear in mind that I(L; (X,K,M)) ≥ I(L; (X,K)). Conse-
quently an evaluator, who may have access to the masks, can accurately compute
the mutual information between the observed (multivariate) leakage and the vari-
ables X,K,M . This mutual information quantity again represents a best case.
In practice leakage from shares is often exploited by adversaries via a further
processing of the traces, which can only lead to a smaller mutual information
value (based on the data processing inequality).

5 MI Estimation Using tn-NN Method

The recently proposed GKOV estimator [6] is a strongly consistent for general
mixtures, that is, it can be used for the estimation of the MI between any com-
bination (including discrete/continuous) of random variables. Their estimator is

14



based on the nearest neighbour principle, and it does not require any explicit
density estimation. In contrast to previous nearest neighbour estimators, the t
(from t-NN estimator) value in the GKOV estimator is now a function of the
sample size n (thus denoted as tn), rather than a constant.

5.1 Fast implementation of Alg.1

In practice, the In(L, Y ) is computed for L ∈ Rm where m ≥ 1. Depending on
the scenario that is considered in an evaluation, the mutual information estimate
is calculated for each point in a leakage trace independently of all other points
(univariate setting), or over multiple points (multivariate setting).

The computational cost for estimating the mutual information in a multi-
variate setting using a histogram method (pdf estimation method) is high and
a known problem. For finding a “good” binning strategy one may need to com-
pute In for range of values of the tuple (b1, b2, . . . , bm) ∈ Zm, where bi denotes
the number of bins along each dimension. This naturally increases the cost of
estimating the mutual information using a histogram method.

In contrast the tn–NN estimator by Gao et al. does elegantly generalise
to multiple points because it’s only configuration parameter is the function tn
(based on the sample size). This is a significant advantage over previous t–NN
estimators. The only remaining computational challenge is measuring the dis-
tance of all sample points Lj from the sample point Li where j ̸= i for each i. A
number of efficient algorithms for finding nearest neighbours are part of common
machine learning libraries in both C/C++ and Python.

For our C++ implementation of MI estimation, we used the popular machine
learning library mlpack. The library offers several in-built distance metrics in-
cluding the option of providing a custom distance metric. From the available
options of efficient nearest neighbour search algorithms we used VPTree and
BallTree. Note that the search algorithm may depend on the choice of dis-
tance metric. For example, the ℓ∞ metric is not compatible with the KDTree

search algorithm. This is not a limitation of mlpack but a consequence of the
mathematical requirements of a specific search algorithm.

For calculating distances of each sample point from all other points which
is necessary beyond the NN search, we have used OpenMP to parallelize the
computation. Note that the OpenMP library can also be used by mlpack if it is
available on the system. A particular observation on this part of our experiment
is that for multidimensional leakage, computing the ℓ∞ norm with an unrolled
loop is more efficient than using the looped version or the mlpack library function
for the same. For example, with the dimension m = 2, computing the ℓ∞ norm
as

max( abs(data(i,0)-data(j,0)), abs(data(i,1)-data(j,1)) );

is more efficient than using the library function

arma::norm(data.row(i)-data.row(j), "inf");

For all experiments we have used an Intel(R) Core(TM) i7-8700 CPU 3.20GHz
system having 6 CPU cores and Ubuntu operating system.
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5.2 Establishing Practical Choices for tn

The parameter tn, which is a function of the number of side channel observa-
tions n, can be chosen by observing the convergence of the sequences tn log n/n
and (tn log n)

2/n (in theorem 1). In our experiments we selected tn equal to
log n and log210 n. Figures 1 & 2 show the convergence behaviour of the tn–NN
estimator (Alg. 1) in different situations. To create these plots, we performed
a number of simulations. Each simulation fixes a simple, practically relevant,
device leakage function L (Figure 1 considers Hamming weight for two plots, a
weighted linear combination of the bits of the Sbox output for the other plot.
While Figure 2 have taken a non-linear leakage model of Sbox output for differ-
ent noise distributions), an algorithmic target C which is always the AES Sbox,
and some defined noise (Gaussian or Laplace). Thus each simulation randomly
creates leakage samples, and then uses Alg. 1 with two different choices for tn
to estimate the MI. Each simulation is repeatedly executed, thus the y-axis rep-
resents averages of calculated mutual information estimates. Because we fully
specify the leakage function and the noise distribution, we can also compute the
true mutual information via numerical integration. Figures 1 & 2 thus show both
the behaviour of the estimator w.r.t. the choice of tn (log n performs better over-
all, and in particular for lower n) and simultaneously, it shows that it converges
to the true mutual information. In the remaining practical experiments, we will
set tn = log n.

Fig. 1. Experiment: convergence rate of tn–NN estimator for different choices of tn for
cases related to linear leakage models. Here Î denotes the estimated MI, and L and N
denotes Laplace and Normal distribution respectively.
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Fig. 2. Experiment: convergence rate of tn–NN estimator for different choices of tn
related to nonlinear leakage model. Here Î denotes the estimated MI, and L and N
denotes Laplace and Normal distribution respectively.

A practically relevant observation is that, unlike a plug-in (histogram) es-
timator that requires data dependent parameter tuning, the choice of the pa-
rameter tn can be pre-determined based only on the sample size n. Furthermore
the choice of tn only affects the rate of convergence, i.e. the efficiency of the
estimation unlike histogram based estimators, where a wrong choice can lead to
bias.

6 Experimental Evaluation and Comparison

We now provide a range of experiments, which are based on highly controlled
experiments with simulated leakage, as well as experiments were we sampled real
leakage traces from a micro-processor. The purpose of these experiments are to
provide a comparison with the tn-NN estimator that we propose as a better tool
for mutual information estimation, with the commonly used alternatives from
the side channel literature.

6.1 Experiments Based on Simulated Leakage

Like in the simulations before, we fix a cryptographic target function (the AES
SubBytes operation), as well as some simple but practically relevant leakage
models (Hamming weight , a linear combination of bits and a nonlinear com-
bination of bits), alongside some noise distributions for the experiments in the
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Fig. 3. Experiment: comparison of estimators for the simulated linear leakage AES
SubBytes. Here Î denotes the estimated MI, and L and N denotes Laplace and Normal
distribution respectively.

following. We show two experiments that correspond to a “naive Sbox”, i.e. no
masking is considered, and one experiment where the Sbox inputs and outputs
are represented by two shares. The mutual information in the latter case is then
defined bi-variate (i.e. in the respective mutual information quantities L is a vec-
tor consisting of two leakage points). All plots are based on repeatedly running
an experiment, and thus the y-axis represents an average mutual information
value.

The calculation of the tn–NN estimator, as well as the classical histogram-
based plugin estimator, is based on our own implementation (we described this
before). For the computations of the eHI and the ePI, we use the Python scripts
that were provided by the authors of [3]. We show the mutual information esti-
mates for the tn–NN estimator for the continuous leakage (as it is produced by
our simulation), as well as for the discretised leakage. The discretised leakage is
also the input for the eHI and ePI estimates: we ensured that the discretisation
for the tn–NN estimator produces the same distribution as the discretisation
that is used as part of the eHI and ePI computation. Because in a simulated
setting with simple leakage functions we know all the involved distributions, we
are able to plot the true mutual information (it is just above zero), which we
derive via numerical integration.

The experiments clearly demonstrate that the tn–NN estimator quickly con-
verges to the true mutual information value (even when dealing with the discre-
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Fig. 4. Experiment: comparison of estimators for the simulated nonlinear leakage AES
SubBytes. Here Î denotes the estimated MI, and L and N denotes Laplace and Normal
distribution respectively.

tised form of the leakage), whereas the eHI, as explained in the previous work is
a biased upper bound. The bias of eHI in our experiments appears to be small in
the univariate experiments, but larger in the bi-variate experiment. The conver-
gence of the histogram-based plug-in estimator is particularly bad, and it also
appears to show bias. When considering all three experiments with respect to
the bias of the (non tn–NN) estimators, it should be clear that the problem is not
just that there is bias, but that the bias can have different magnitudes depending
on the leakage characteristics and the dimensionality of the leakage. This means
that in practice we cannot know, unless we fully understand the leakage and how
it interacts with our chosen estimator, what kind of bias we should expect. In
practice, we want to apply this type of mutual information estimation for a trace
with hundreds of thousands of trace points, where each of them corresponds to
slightly different leakage functions. Consequently, mutual information “traces”
cannot be soundly interpreted unless an unbiased estimator has been applied.

6.2 Experiments Based on Real Leakage

We complement our experiments based on simulations with two experiments
based on real power traces. The traces were acquired from a setup based on
an ARM Cortex M3 micro-processor. We take measurements directly from the
supply voltage of the core, without any further processing, thus they are suitable
for the eHI, ePI, as well as the tn–NN estimator.
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The traces are sampled from running parts of an AES implementation (writ-
ten in Thumb Assembly language). The first experiment samples the leakage
from a key addition i.e. the computation x ⊕ k, followed by a table lookup op-
eration, which represent the execution of AES SubBytes S(x ⊕ k). The second
experiment relates to the same basic operations, but now each operand is split
up into two shares, thus representing a simple two share masked implementation.
We capture here only the salient table look-up operation.

Figures 5 and 6 shows the results of running four different mutual information
estimators: a histogram based estimator based on [8], eHI, ePI, and the tn–NN
estimator. Both plots show in fact averages of mutual information estimates: we
ran each estimator multiple times.

Both experiments show how dramatically biased the straightforward his-
togram based mutual information estimate turns out. The ePI and eHI estimates
are consistently larger than the tn–NN estimate, which is expected as they are
also known to be positively biased. The plot for the unmasked implementation,
which contains also contains the key addition, also nicely demonstrates that for
a bijective target function C, we see indeed that Ic = Imax because the eHI and
the tn–NN estimator track each other nicely.

Fig. 5. Experiment: comparison of estimators for the leakage of a naive AES SubBytes
implementation. Here Î denotes the estimated MI.
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Fig. 6. Experiment: comparison of estimators for the leakage of an AES implementa-
tions based on two shares
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