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Abstract. The mutual information between two variables is a key met-
ric in the context of side channel attacks; in particular it is used to judge
the quality of device leakage models. In practice the mutual informa-
tion can only be estimated, and existing methods in the side channel
community are based on density estimation. Estimating the mutual in-
formation based on estimating distribution densities is a challenge unless
assumptions about the underlying distributions can be made — this is
undesirable in the side channel setting because the underlying distribu-
tions are unknown.
We suggest a radically different approach to the mutual information esti-
mation in the side channel setting based on a recently proposed k-Nearest
Neighbour estimator. We prove that the mutual information between the
key and the observed side channel can be efficiently estimated without
the need for any density estimation, even in multivariate settings, and
we mathematically characterise the impact of some assumptions/restric-
tions of previous work on the estimation process. To complement our
theoretical results, we offer a wide range of experimental results that
compare our proposal with the state of the art estimators used in the
side channel community. Finally we show in experiments the advantages
of our proposed method for judging the quality of leakage models, in
comparison to the existing techniques.

1 Introduction

Side channel theory and practice require metrics to quantify the information
leakage about secret cryptographic keys. The mutual information (MI) is such a
metric, and it appears as part of security proofs in the context of masking, e.g.
[1], in the context of optimal distinguishers, e.g. [2], and as a tool to quantify
the quality of a leakage model, e.g. [3].

Evaluating device security via leakage certification. Attacks that extract
and exploit information leakage are highly configurable, but they always require
the extraction of information of small portions of the secret key from some
observed side channel leakage (they follow a divide-and-conquer principle). The
extraction of key information can be achieved with a wide range of statistical
and machine learning tools: it is well known that the use of an accurate device



leakage model is necessary for optimal information extraction [4]. In order to
understand the worst case security of a device, an evaluator wishes to assess
the ideal adversary, who is in possession of the exact device leakage model, in
relation of a practical adversary, who is in possession of an estimated leakage
model.

In the context of physical side channels such as the power consumption, the
EM emanation, or device timing characteristics, the exact distribution of the
observable side channel is unknown—both adversaries and evaluators can only
work with estimations. An evaluator thus seeks to understand how good their
(estimated) device leakage model is, which is a task that was formalised by Dur-
vaux et al. [3] as leakage certification. In a series of follow on works [5, 6] the
initial approach was refined by introduction of two metrics: the empirical hypo-
thetical information (eHI) that captures the amount of information that could
be extracted if the device followed exactly the so-called empirical distribution
(an estimated probability mass function), and the empirical perceived informa-
tion (ePI) that captures the relationship between a model and some observable
leakage. The idea is that the eHI and ePI used jointly enable to judge a device
leakage model in comparison to the ideal adversary who has access to the true
leakage model: the eHI is shown to be an upper bound for the ideal adversary,
and the ePI represents the best practical adversary. These statements only hold
if all variables are discrete and univariate.

Physical side channels are typically neither discrete nor univariate. The ar-
gument that side channels such as power and EM are measured by digital os-
cilloscopes (i.e. devices that use an analogue to digital converter) misses two
points. Firstly, modern digital oscilloscopes offer sophisticated signal amplifica-
tion and de-noising settings which produce real-valued outputs: assuming that
devices are only used in their most basic setting underestimates real-world adver-
aries. Secondly, implementations that implement masking countermeasures are
often analysed after further software processing, including filtering, and mean-
free product-combining [7], which again create real-valued outputs.

Contributions. Our main results contribute a novel approach for leakage cer-
tification which:

– uses a strongly consistent (thus unbiased) estimator for all leakage functions
that can be observed in practice (discrete, continuous, and even probabilistic
functions),

– naturally extends to the multivariate setting, and
– has the same asymptotic convergence rate as existing estimators (which are

limited to the discrete univariate setting).

More specifically we study the mathematical relationships between different
mutual information quantities (defined in the existing side channel literature) to
highlight the critical and adverse role that discretisation of measurements plays
in the context of estimating the MI. Discretisation of continuous side channel
measurements is necessary in previous work because all MI estimators can only
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work with discrete variables. We show that the mutual information between the
key and the observed traces is the quantity that captures the strength of the
best adversary, and that this quantity can be estimated from the traces with
a recently published estimator by Gao et al. [8]. We provide experiments that
show the non-asymptotic convergence rate of the Gao estimator across different
side channel scenarios. Finally we show that the use of existing metrics like the
eHI and ePI in multivariate settings delivers biased outcomes.

2 Preliminaries

We aim to keep this section as brief as possible, and offer deeper explanations
only for those concepts that our results are based on.

2.1 Notation

Following convention, we represent random variables with upper case letters, and
their realisations with the corresponding lower case letters. We abuse notation
and treat random variables and their corresponding sets synonimously. For two
functions g and h, g ◦ h denotes the composition of the functions.

We denote the probability density function (pdf) and cumulative distribution
function (cdf) of a continuous random variable with f and F respectively. For a
discrete random variable, p will denote its probability mass function (pmf); for
an arbitrary event we use P to denote its probability. Whenever necessary, in a
pdf, cdf or pmf we will make the corresponding random variable explicit in the
subscript (e.g. fX or FX).

For any random variable X, E(X) and resp. EX denote the expectation. For
a real valued variable x, [x] denotes the integral part of the value.

We refer to an estimated quantity by using the sample size n in the subscript,
e.g. In refers to a mutual information estimate obtained from a sample with size
n, fX,n or pX,n denote the estimated pdf or pmf corresponding to a random
variable X using n samples.

The indicator function for a realisation x of X, is denoted as IX=x. We use
N (µ, σ) to denote the Gaussian/normal distribution with mean µ and standard
deviation σ. We use L(0, σ) to denote a Laplacian distribution. We use R to
denote the random variable corresponding to the device noise. The symbols
log and ln denote the logarithm with base 2 and base e respectively. For any d-
dimensional vector (x1, . . . , xd) ∈ Rd the `∞ or max norm is defined as max{|xi| :
i = 1, . . . , d}. Discretised distributions are denoted by putting brackets around
them, e.g. [X].

When working with functions we overload notation, and use the same variable
for both the function, as well as the result of the function, and we may adapt
the inputs to the context, e.g. L(X,K) is a function with image space L, which
is also understood as a random variable, i.e. t is the realisation of L with some
concrete inputs x, k.
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2.2 The side channel setting

In the side channel setting we work with random variables that represent input-
s/intermediates/outputs of cryptographic processes and leakage observations:
we use x ∈ X for the input, which is mapped according to the cryptographic
process via the application of some (cryptographic) target function(s) C and an
(unknown) key k∗ ∈ K to an intermediate y ∈ Y . Implementations process
cryptographic keys in “chunks”, thus K and X have small support.

An adversary is assumed to be able to observe inputs/outputs x ∈ X of
the device and the side channel leakage trace t ∈ T that corresponds to the
execution of a cryptographic algorithm using the input and the key k∗ that is
embedded in the device. A side channel trace is a vector of leakage points. Each
point corresponds to the physical processes that happen inside the device (at
that point in time/step in the execution) and some independent noise R.

Leakage functions. An important, but in the existing literature often ignored,
detail is that the observed leakage T may be either a deterministic or a proba-
bilistic function of multiple variables1. The secret key k∗ ∈ K and the input X
interact via the target function C (a step in the computation of the cryptographic
algorithm) and leak via the (unknown) leakage function L. The leakage function
for a specific step in the execution of an algorithm can be simple (e.g. Ham-
ming weight for a bus transfer), in which case it can be modelled as a discrete
deterministic random variable:

T = L(C(X,K)) +R.

This means that the output of the leakage function is fully defined by inputs
(e.g. key, and plaintext byte), and the same inputs will always give the same
outputs.

But for many steps in an execution the leakage function depends on some
complex interaction between many components in the device, and is influenced
by probabilistic processes (due to glitches, cross talk, couplings, etc.). It is also
possible that the measurement setup itself impacts on the leakage, or that some
post-processing to increase trace quality is used. As a result, leakage functions
are often better understood to be continuous probabilistic random variables.
This means that the output of the function still depends on the inputs, but
supplying the same inputs can lead to different outputs (e.g. glitches impact on
the power consumption).

We model such a probabilistic leakage function by some unknown internal
randomness S. Note that S can be discrete or continuous, and it is different
from R. Unlike R, the random variable S is not independent of (X,K) i.e. the
leakage density function is f(x, k, s). For a target device we can then model the
observed leakage as

T = L(S, C(X,K)) +R.

1 A deterministic function is fully determined by its’ inputs. A probabilistic function
includes an element of chance.
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Previous work on leakage certification has exclusively considered determin-
istic leakage functions, but we consider deterministic and probabilistic leakage
functions in our work. This is important because we do want a mutual infor-
mation estimation process to be strongly consistent for all observable leakage
functions, even if we don’t understand their true nature. Whenever the proba-
bilistic nature of the leakage is not relevant, i.e. a statement holds irrespective of
S and thus irrespective of whether L is discrete and deterministic or continuous
and probabilistic, we drop S in the text for readability.

In the rest of this paper, T should always be understood as continuous (or
a mixture with a continuous component). Whenever estimators require discrete
inputs, we make this explicit by writing [T ] to indicate that discretisation of T
must take place.

2.3 MI definitions and estimation considerations

For general random variables X,Y (with marginal distributions PX , PY and joint
distribution PXY ), the mutual information is defined via the Radon-Nikodym
derivative:

I(X;Y ) =

∫
X×Y

log
dPXY

dPXPY
dPXY .

If either both variables are discrete, or both variables are continuous, the MI
can be expressed via the marginal and joint or conditional entropies, leading to
the well known “2H” and “3H” expressions for MI:

I(X;Y ) = H(X)−H(X|Y ) (1)

= H(X) +H(Y )−H(X,Y ) (2)

If one variable is discrete and one is continuous then the conditional density
in the 2H formula, and the joint density in the 3H formula, may not exist2, and
thus the MI cannot always be derived in general using these formulae.

One workaround for this problem is to discretise the continuous variable, so
that both variables are discrete. However the choice of a discretisation function
is complex and results in biased estimators [10]. The same problem persists when
considering mixture distributions, i.e. when one variable is a mixture of a discrete
and a continuous variable.

Consequently, MI estimators need to cope with different constellations of
random variables (discrete or continuous) and there exist three cases:

– two continuous random variables (referred to as cont. MI)
– two discrete random variables (referred to as discrete MI)
– at least one mixed random variable (referred to as mixed MI)

2 Nair et al. provide a number of conditions that must hold for the conditional density
to exist [9], and if so explain a natural extension which recover the 2H and 3H
expressions.
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The crucial property of any estimator is how well it “approximates” the true
MI. This property is called the convergence of the estimator, and it describes
the behaviour of the estimator when we supply it with more and more samples
from the unknown distribution. There exist different notions of convergence.
The weakest notion is convergence in probability, and estimators that have this
property can be biased. A stronger notion is convergence in mean, which implies
asymptotic unbiasedness.

2.4 Non-parametric MI estimation

In the side channel setting the true distribution of T is unknown; and thus in
some evaluation tasks (such as leakage certification) we do not wish to use esti-
mators that require assumptions about the distributional properties of T . Such
assumption-free estimators are called non-parametric estimators in statistics.

In the context of MI estimation based on the 2H/3H formulae, there ex-
ist two fundamentally different families of (non-parametric) entropy estimators:
one family is based on direct density estimators and the other family is based
on k-Nearest Neighbour (k-NN) estimators. Density based estimators directly
estimate the densities in the 2H/3H formulae, whereas the k-NN based estima-
tors estimate the distribution of the k-nn distance as a proxy for the density
itself [11]. The before mentioned limitations (i.e. both variables must either be
discrete or continuous) initially applied to both approaches. However k-NN es-
timators were further developed and, in a series of works starting with [12],
approaches were developed that aim to estimate the MI directly via estimat-
ing the Radon-Nidoym derivative (thus without estimating entropies, but still
requiring that the variables have a global joint density).

A complementary approach based on using deep learning was published in
2018 [13] and suggested to be used for side channel tasks in [14]. However, it was
shown later in [15] that the claimed convergence rates were erroneous.

Ultimately, a recent contribution by Gao et al. [8] made a further signif-
icant step by estimating the Radon-Nikodym derivative whilst requiring only
local joint densities: in other words, their estimator does no longer require the
existance of a joint density for the entire probability space. Their estimator es-
sentially deals with two cases that can occur for the joint distribution: either the
sample (x, y) is discrete (this can be detected by checking the k-nn distance),
then one can use the plug-in estimator for the Radon-Nikodym derivative; or
the sample (x, y) is locally continuous, in which case they estimate the Radon-
Nikodym derivative based on (6). They furthermore show that if either x or y
are mixed, then the continuous case applies. Consequently, their estimator can
deal with any form of mixtures.

Entropy based MI estimation. The most widely applied technique of MI
estimation in side-channel analysis is via entropy estimation e.g. via the 2H
formula:

In(X,Y ) = Hn(X)−Hn(X|Y ). (3)
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In general, the estimation of H(X|Y ) i.e. computing Hn(X|Y ) requires esti-
mating H(X|y) for each Y = y as well as pdf or pmf of Y . In the context of
side-channel analysis one random variable (r.v.), namely Y is discrete, it assumes
finitely many values, and is typically uniformly distributed. Thus, it suffices to
estimate only H(X|Y = y) for each possible value y ∈ Y . In fact, the uniformity
of Y makes 2H estimation a natural choice in side channel analysis. Evidently,
the convergence of the MI estimator based on the 2H approach depends fully on
the convergence of the entropy estimator.

In the side channel literature, based on the simplifying assumption of hav-
ing discrete traces, the study in [16] use an integral estimate [17]. Györfi and
van Meulen [18] showed that the integral estimator of entropy (with histogram
density estimate) is strongly consistent only if the (conditional) distribution sat-
isfies specific conditions. Hall and Morton [19] (again under certain conditions
regarding the distribution) showed that a histogram-based estimator provides
mean-square convergence when the dimension of X is 1 or 2. The family of
integral estimators does not generalise to the multivariate setting (either their
efficiency drops significantly or the convergence guarantee does not extend to
the multivariate setting). In the purely discrete setting, the plug-in estimator
produces the best results in terms of convergence as proven in [20]. This conver-
gence result appears to not be known in the side channel literature, and instead
the eHI was developed as a means to bound the MI.

Defining eHI and ePI. Bronchain et al. [6] put forward the notions of ePI and
eHI (see equations (4) and (5)); these quantities are based on the 2H entropy
estimate for MI. These estimators are based on estimating an empirical pdf,
denoted by ẽn, which is based on the discretized leakage [t] ∈ [T ], and a key
dependent variable Y , and is derived in the form of a histogram (thus this is a
non-parametric estimator).

eHIn(Y ; [T ]) = H([T ]) +
∑

[t]∈[T ]

p[T ]([t]) ·
∑
y∈Y

ẽn(y|[t]) log2 ẽn([t]|y) (4)

ePIn(Y ; [T ]) = H([T ]) +
∑

[t]∈[T ]

p[T ]([t]) ·
∑
y∈Y

pn(y|[t]) log2 ẽn([t]|y) (5)

Bronchain et al. make the common assumption (also used in previous and
related papers like [3, 5, 6]) that the noise distribution is Gaussian (e.g. R ∼
N (µ, σ)). Assuming that the distribution of the key is uniform, Bronchain et
al. [6] show that the eHI converges in probability to the I([T ];Y ) (with Y =
C(X,K)).

The result on the eHIn (of [6]) only provides weaker convergence in proba-
bility and uses the uniformity assumption. Thus we argue that mathematically
it is more appealing to use the plug-in MI estimator of [20] in the purely dis-
crete case, or to use GKOV (because the Gaussian noise assumption implies that
model free MI estimation delivers the desired result).
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Algorithm 1 Non-parametric I(X;Y ) estimation for mixed r.v.s (X,Y )[8]

Require: {xi, yi}ni=1 and tn = t
1: for i = 1, . . . , n do
2: di,xy = tth smallest distance from{dij = max{‖xj − xi‖, ‖yj − yi‖} : i 6= j}
3: if di,xy = 0 then
4: d̃i = |{j : dij = 0}|
5: else
6: d̃i = t
7: end if
8: nx,i = |{j : ‖xj − xi‖ ≤ di,xy}|
9: ny,i = |{j : ‖yj − yi‖ ≤ di,xy}|

10: αi = ψ(d̃i)− log(nx,i + 1)− log(ny,i + 1)
11: end for
12: return 1

n

∑
i αi + log(n)

Nearest Neighbour Estimator for MI. Motivated by the need for a non-
parametric MI estimator that applies even to high-dimensional/multivariate
problems, Krasov et al. [12] introduced the idea of using a k nearest neigh-
bour (short k-NN) based estimator (also known as KSG estimator in the wider
statistical literature). Recently, a generalization of the KSG estimator was pro-
posed by Gao, Krishnan, Oh and Vishwanath [8] (that we will refer to as GKOV
estimator), which is applicable to a mixture of continuous and discrete random
variables. The GKOV estimator is defined as

In(X;Y ) =
1

n

n∑
i=1

Îi = log n+
1

n

n∑
i=1

(ψ(k̃i)− log(nx,i + 1)− log(ny,i + 1)). (6)

Here, ψ(u) is the digamma function ψ(u) = d
du lnΓ (u) ≈ lnu− 1

2u . The details of
how to compute the quantities nx,i, ny,i and t̃i can be found in algorithm 1. An
important feature of GKOV estimator at least for the purpose of side channel
analysis, is that the random variables involved in MI can be mixed e.g. one
discrete and the other one continuous.

With a suitable choice of the function kn the GKOV estimator has the same
convergence rate as existing pmf/pdf based mutual information estimators, it
provides strong convergence (covergence in mean, asymptotic unbiasedness) in
all settings, and it can be generalised to multivariate variables.

3 Defining the MI for the Ideal Adversary

Recall that an adversary can observe inputs x ∈ X and traces t ∈ T . The ideal
adversary would possess access to a predictive leakage model that is identical
to the device leakage model L. They would then use this model, applied to an
intermediate step C of the algorithm, giving rise to predictions L(C(X,K)) in a
concrete attack vector. In an evaluation we wish to capture this adversary by
computing a suitable MI metric.
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3.1 Characterising the ideal adversary

The mutual information between the observed traces and the pair (input, key)
measures how much information about the key is contained in the observable
trace. We call this Ik:

Ik = I((X,K);T ). (7)

The cryptographic target function C maps the key and input value to an
intermediate value Y = C(X,K). Consequently, because of the data processing
inequality we know that

Ik ≤ Ic = I(Y, T ). (8)

Equality holds if and only if C is one-to-one. In an attack, the ideal adversary
would have access to the true device leakage model. If the device leakage function
is statistically independent of C then we can utilise the data processing inequality
again and find:

Ik ≤ Ic ≤ Ib = I(L(Y ), T ). (9)

Consequently, the mutual information Ib is an upper bound to the other MI
quantities of interest. From the data processing inequality it would seem that
only if the device leakage was bijective, equality could be achieved. However, in
Sect.4 we will charactise the precise condition under which Ib = Ik, which is
looser than requiring the device leakage to be bijective.

The situation where Ib = Ik is the key comparing two (or more) estimated
leakage models: the closer (in absolute terms) an estimated model is to Ik the
better it captures the leakage characteristics of a device.

3.2 The curse of discretisation

The existing metrics in the side channel community (the eHI and ePI) only have
guarantees if T is a discrete random variable. However, as we argued before, this
assumption cannot be applied in general to observations from side channels such
as power and EM, and it becomes invalid as soon as de-noising and other trace
processing methods are used. We now study the effect of discretisation on the
MI that characterises the ideal adversary.

Discretization divides the range of a continuous random variable X into pos-
sibly an infinite number of intervals. Drawing on [21, cf. Proposition 1] we now
provide a concrete mathematical characterisation for the MI between the a dis-
crete and a discretised continous random variable.

The paper [21] considers two (continuous) random variables X,Y and the
use of a simple partitioning of the space X × Y into rectangles. Typically, such
a partitioning P is a product partitioning i.e. P = I × J where I and J
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are partitioning of X and Y respectively 3. We denote the discretised random
variables obtained from such partitioning as XI , Y J .

We can now show that the MI which is based on the discretised leakage is
smaller or equal to the MI based on the non-discretised leakage.

Proposition 1. Let X,Y be two random variables with pmf pX and pdf fY
respectively. Let P = I×J be the product partitioning of X×Y as described above
(the partitioning I is defined by the discrete X). Then I(X;Y ) ≥ I(XI ;Y J ).

Proof. We assume that the joint distribution exists. As explained in [21, Section
II], for the product partition P we can write that

I(X;Y ) = I(XI ;Y J ) +DP(X;Y )

where DP(X;Y ) is the residual divergence, see [21, cf. Proposition 1] for the
definition. It is shown in [21] that the residual divergence DP(X;Y ) ≥ 0 for any
partition (including the specific partition that is given by a discrete X). Thus
the result follows. ut

With this proposition, it follows immediately that if we consider an adversary
that discretises traces, they loose information:

Ib ≥ Id = I(L(Y ), [T ]). (10)

4 Characterising the best MI

We wish to reason about the MI that characterises the ideal adversary, but this
requires knowledge of the true device leakage L, which is unknown. In this section
we show that if C is bijective, then, Ib = Ik assuming some mild conditions on
R. This equality implies that in many practical cases Ib can be estimated via
Ik and thus it Ib can be established without the need to know or even estimate
L. The result of this section is purely theoretical, but there exists a practical
estimator [8], which we explain and analyse in the side channel setting, in Sect. 5.

In the following proofs we distinguish between the two cases where:

L(C(X,K)) is a discrete function of (X,K), or

L(S, C(X,K)) is a continuous function of (X,K).

The entropy for the ideal adversary Ib = I(T ;L) = H(T )−H(T |L) and the
maximum entropy Ik = I(T ; (X,K)) = H(T ) −H(T |(X,K)) only differ in the
conditional entropy term. Consequently, our overall argument will be based on
establishing under which conditions these two terms are equal, which requires
reasoning about the conditional distributions. A basic assumption in this section
is thus that the conditional entropy exists.

3 In the side channel community, a similar method is often implemented by partitioning
the leakage into intervals, which then define the bins for histogram based estimation
techniques—this is also the method used in Bronchain et al.[6] for the eHI.
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4.1 Characterising the Conditional Distributions

Let L be discrete. We first study the conditional distribution T |L. It is easy
to see that this conditional distribution is completely defined by the distribution
of R:

P(T ≤ t|L = l) = P(L+R ≤ t|L = l) (11)

= P(l +R ≤ t) = P(R ≤ t− l) (12)

= FR(t− l)

Consequently, the pdf fT |L of the conditional variable T |L is given by the
pdf of R.

We now consider the second conditional distribution T |(X,K). Recall that
we assume that Y = C(X,K) is one-to-one. Then the conditional distribution
T |(X,K) is also equal to the distribution of R:

P(T ≤ t|Y = y) = P(L(Y ) +R ≤ t|Y = y) (13)

= P((L(y) +R ≤ t) = P(R ≤ t− L(y)) (14)

= FR(t− L(y))

It follows again that the pdf of T |(X,K) is given by the pdf ofR. This observation
has been formalised before in [22, Corollary 3.].

Let L be continuous. The continuity of L is due to some randomness S that
depends on X,K and the target function C but importantly we still have the
independence between L and R. To derive the distribution of T |L (and then
T |Y ) we need a little bit more machinery than before because L is continuous
(this case is not covered by [22, Corollary 3.]).

The distribution of a function of two random variables (given their joint
distribution) can be derived by a technique that is known as “change of vari-
ables”. The trick works as follows, given two variables (X1, X2) and two func-
tions u1 and u2 such that Y1 = u1(X1, X2) and Y2 = u2(X1, X2), with in-
verses X1 = v1(Y1, Y2) and X2 = v2(Y1, Y2); the joint pdf of (Y1, Y2) is given by

|J | · f(X1,X2). The value |J | is the absolute value of the Jacobian J =
∣∣∣ ∂(v1,v2)∂(x1,x2)

∣∣∣.
Knowledge of the joint distribution (Y1, Y2) enables to derive the distributions
of Y1 (and Y2 respectively) by marginalisation.

We first derive the distribution of T |L. Hence we apply the change of variables
technique to derive the distribution of L+R,L, and choose Y1 = L+R, Y2 = L.
Hence |J | = 1, and this gives fL+R,L = 1·fL,R = 1·fL(l)·fR(r) = fL(l)·fR(t−l).
Cleary the pdf of the marginal distribution fL+R is then given as fR(t−l), which
implies that fT |L=l = fR(t− l).

We then derive the pdf of T |(Y, S) by using exactly the same trick, and this
gives us fR(t− L(y, s)) .
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4.2 Equality of Ib and Ik if H(R) is location independent

Intuitively, it should be expected from the results in the previous subsection
that Ik = Ib (for C one-to-one) if the conditional entropy terms satisfy some
conditions. We formalise the conditions in Prop. 2.

Proposition 2. Suppose R follows a distribution with the location and scaling
parameters µ and σ (> 0) respectively. Let X,K denote the plaintext and key
(both independently drawn and distributed uniformly), and let Y = C(X,K), and
C be one-to-one. If H(R) = ϕ(σ) where ϕ depends only on fR, then Ik = Ib.

Proof. We consider the two cases, for a discrete L and a continuous L separately.
Case 1: Let L be discrete.

First, we derive Ib:

Ib = I(T, L) = H(T )−H(T |L)

= H(T )−
∑
l

pL(l)H(T |L = l)

= H(T )−
∑
l

pL(l)ET |l(− log(fT |l(t|l))

= H(T )−
∑
l

pL(l)ER(− log(fR(t− l)))

The equalities in the first line all follow from standard definitions. The equality
in the second line follows from the well known fact that the entropy is the
expected value of the logarithm of the resp. distribution. The equality in the
third line follows from the characterisation of the conditional distribution from
the previous section.

Second, we derive Ik using Y = C(X,K) (and C being one-to-one):

Ik = I(T, Y ) = H(T )−H(T |Y )

= H(T )−
∑
y

pY (y)H(T |Y = y)

= H(T )−
∑
y

pY (y)ET |y(− log(fT |y(t|y))

= H(T )−
∑
y

pY (y)ER(− log(fR(t− L(y)))

We can see that Ib = Ik iff ER(− log(fR(t − l))) = ER(− log(fR(t − L(y))).
This is the case when the entropy of R does not depend on its location, i.e.
iff H(R) = φ(σ) (the entropy is only a function of the spread σ, but not the
location µ).
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Case 2: Let L be continuous.
First, we derive Ib:

Ib = I(T, L) = H(T )−H(T |L)

= H(T )−
∫
l

fL(l)H(T |L = l)dl

= H(T )−
∫
l

fL(l)ET |l(− log(fT |l(t, l)))dl

= H(T )−
∫
l

fL(l)ER(− log(fR(t− l)))dl

The reasoning for the equalities in the first two lines is identical to the rea-
soning in the discrete case. The equality in the third line is again based on the
characterisation of the conditional distribution that we developed in the previous
subsection.

Second, we derive Ik :

Ik = I(T, (Y, S)) = H(T )−H(T |(Y, S))

= H(T )−
∑
y

pY (y)

∫
s

ET |(y,s)(− log(fT |(y,s)(t, (y, s))))ds

= H(T )−
∑
y

pY (y)

∫
s

ER(− log(fR(t− L(y, s))))ds

The various equalities are all based on the same arguments as in the previ-
ous cases. To take the continuity of L into account, we must also run over the
randomness S in our argument. This does not change the final step however,
which is to observe that iff the differential entropy ER(− log(fR(t − l))) equals
ER(− log(fR(t−L(y, s)))) then we have that Ik = Ib. The equality between the
differential entropies will hold if the entropy of the distribution does not depend
on its location, but only its spread: i.e. iff H(R) = φ(σ).

ut

Note that the r.v. S in Proposition 2 was introduced to define the output
distribution of L. In practice it is implicit to a device and is not required to
estimate it explicitly in the process of leakage certification (or MI estimation).
Proposition 2 can easily be extended for a distribution of R characterized with
only scaling parameter σ > 0.

Theorem 1 (Estimation of Ib via Ik). If the entropy of the noise distribution
(of a device) is location independent then Ib = I(T ;L◦C(X,K)) can be computed
via Ik = I(T ; (X,K)).

We note that the noise condition covers all distributions that so far have
been observed in practice or that have been assumed in comprehensive studies
such as [2]. In particular, the noise condition applies to distributions such as
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the Normal distribution, Laplace distribution, Cauchy distribution etc. Subse-
quently, we provide two specific applications of our theorem to the most widely
used noise assumptions in the side channel literature, and we then explain that
our result also applies in the multivariate setting.

4.3 Multivariate Analysis

No assumptions were necessary in the previous section regarding the dimension-
ality of T , thus our analysis naturally applies also to situations where multiple
trace points are considered jointly. Working with joint distributions is also of in-
terest when considering countermeasures, such as masking, where intermediate
values are split up into multiple shares.

Consider a simple two share setting, where for an intermediate value we just
have one additional random variable, denoted by M . Because the mask is part of
the target function, and is chosen independently of all other quantities, it does
not change our analysis from before.

5 Practical MI Estimation Using the GKOV Method

The recently proposed GKOV estimator [8] is convergent in mean and thus is
asymptotically unbiased for all combinations of random variables. In contrast to
previous nearest neighbour estimators, the number of nearest neighbours that
are considered in the estimator is now a function of the sample size n (thus
denoted as tn), rather than a constant. The estimator is also efficient for mul-
tivariate settings. Hence, depending on the scenario that is considered in an
evaluation, the GKOV estimator can be calculated for each point in a leak-
age trace independently of all other points (univariate setting), or over multiple
points (multivariate setting).

5.1 Fast implementation of Alg.1

For our C++ implementation of MI estimation, we used the popular machine
learning library mlpack. The library offers several in-built distance metrics in-
cluding the option of providing a custom distance metric. From the available
options of efficient nearest neighbour search algorithms we used VPTree and
BallTree. Note that the search algorithm may depend on the choice of dis-
tance metric. For example, the `∞ metric is not compatible with the KDTree

search algorithm. This is not a limitation of mlpack but a consequence of the
mathematical requirements of a specific search algorithm.

For calculating distances of each sample point from all other points which
is necessary beyond the NN search, we have used OpenMP to parallelize the
computation. Note that the OpenMP library can also be used by mlpack if it is
available on the system. A particular observation on this part of our experiment
is that for multidimensional leakage, computing the `∞ norm with an unrolled
loop is more efficient than using the looped version or the mlpack library function
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(a) HW leakage, with L noise

(b) Nonlinear leakage with N noise

tn = log(n): , tn = log2
10(n): , I(T, (X,K)):

Fig. 1: Convergence experiments for different choices of tn.

for the same. For example, with the dimension m = 2, computing the `∞ norm
as

max( abs(data(i,0)-data(j,0)), abs(data(i,1)-data(j,1)) );

is more efficient than using the library function

arma::norm(data.row(i)-data.row(j), "inf");

For all experiments we have used an Intel(R) Core(TM) i7-8700 CPU 3.20GHz
system having 6 CPU cores and Ubuntu operating system.

5.2 Establishing Practical Choices for tn

The parameter tn, which is a function of the number of side channel observa-
tions n, is chosen by observing the convergence of the sequences tn log n/n and
(tn log n)2/n (the sequences can be found in the main theorem statement of [8]).

15



In our experiments we selected tn equal to log n and log2
10 n. Figure 1 shows some

representative experimental results for the GKOV estimator as implemented via
(Alg. 1) in different situations. To create these plots, we performed a number
of simulations where we varied both device leakage functions and noise distri-
butions. Each simulation is performed multiple times, and we show the average
over the outcomes. To provide a baseline for comparison, we also calculated the
MI in all scenarions, which was possible because in simulations we know all
distribution parameters.

The results in Fig. 1 illustrate that for both choices of function tn, the con-
vergence rate is similar, with a small advantage for tn = log(n). In the remaining
practical experiments, we will thus show results for tn = log n.

It is important to bear in mind that unlike a plug-in (histogram) estimator
that requires data dependent parameter tuning, the choice of the parameter tn
can be pre-determined based only on the sample size n. Furthermore the choice
of tn only affects the rate of convergence, i.e. the efficiency of the estimation
unlike histogram based estimators, where a wrong choice can lead to bias.

A final observation is that the GKOV estimator approaches the true MI
from below. There is no formal proof for this in [8], but in all our experiments
we observed this behaviour. This implies that if an MI quantity is close to zero,
then the GKOV estimator will take negative values, until enough samples are
available and it crosses the zero line and is positive. This behaviour is not a
sign of any bias, and recall that [8] shows the asymptotic unbiasedness of their
estimator.

5.3 Multivariate setting

The computational cost for estimating the mutual information in a multivariate
setting using a histogram method (pdf estimation method) is high and a known
problem. For finding a “good” binning strategy one may need to compute In for
range of values of the tuple (b1, b2, . . . , bm) ∈ Zm, where bi denotes the number
of bins along each dimension. This naturally increases the cost of estimating the
mutual information using a histogram method.

In contrast the estimator by Gao et al.[8] does elegantly generalise to multiple
points because its’ only configuration parameter is the function tn (based on the
sample size). This is a significant advantage over previous t–NN estimators. The
only remaining computational challenge is measuring the distance of all sample
points Lj from the sample point Li where j 6= i for each i. A number of efficient
algorithms for finding nearest neighbours are part of common machine learning
libraries in both C/C++ and Python, and our implementation, as explained
before, takes advantage of an existing machine learning library.

We will include a range of multivariate experiments in the next section, where
we include estimators from previous work.
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5.4 The adverse effect of discretisation

Having established a suitable practical configuration for the GKOV estimator,
we now use it to demonstrate the information loss that is incurred by the dis-
cretisation of traces with some practical experiments. The first experiment is
based on simulated traces, which are generated based on non-linear device leak-
age with Laplacian noise. The second experiment is similar, but we generate the
traces based on a linear device leakage model and use Gaussian noise. For each
experiment, we estimate the MI using GKOV for both the traces as they are
generated, and for the traces after discretisation. Figures 2 and 3 show the out-
comes: in both cases the MI between the discretised traces and the key is smaller
than the MI between the traces and the key: I([T ]; (X,K)) < I(T ; (X,K)).

6 Experiments: MI Estimation considering One Discrete
and One Continuous Random Variable

We now examine, in a range of practical experiments, the behaviour of the GKOV
estimator in comparison to the behaviour of the eHI and ePI. Like in previous
work, we use simulations to produce fully controlled experiments, so that the
mutual information can both be calculated as well as estimated. Simulations
also enable to make experiments scalable in terms of using different device leak-
age functions, types of noise, noise parameters, etc. and to efficiently examine
multivariate settings.

6.1 Simulation setup

In all experiments we consider a single bijective target function, which is the
AES SubBytes mapping, y = C(c, k) = SubBytes(x⊕ k). In our simulations, we
vary the device leakage model as well as the type and magnitude of the noise
distribution, and we consider univariate and multivariate analyses.

In the univariate simulations we utilise as device leakage functions:

HW: L = HW(Y ) (Hamming weight of Y ),
HD: L = HD(Y, C−1(Y )) (Hamming distance between Y and C(Y )),
non-linear: L = DES-Sbox (6LSB(Y )) (The first DES Sbox applied to the 6

least significant bits of Y ), and
wHW: L =

∑
i wti · Yi (Weighted Hamming weight: a weighted linear function

of the bits of Y ).

The noise R follows either a Gaussian(N (0, σ)), a Laplacian(Lap(0, σ)) or a
discerete-Laplacian(Dlap(0, σ)) distribution. In our experiments we considered
σ ∈ [2.8, 10]

In the multivariate simulations the simulated trace points are either based
on either HW or HD leakage of some bits of Y . For instance, the bivariate sim-
ulations are based on (HW (4LSB(Y ), HW (4MSB(Y )) or
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Fig. 2: MI, nonlinear leakage, with Laplacian noise

Fig. 3: MI, linear leakage, with Gaussian noise
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HW (4LSB(Y ), HD(4MSB(Y )) and the independent noise (R1, R2) is consid-
ered from the set (N , Lap) by taking σ = 4.

In order to compute the eHI, and the ePI, with use the scripts that were
provided by the authors of [6]. It is important to bear in mind that the ePI and
eHI are only defined for use with two discrete random variables, and the scripts
of [6] include a step where traces are discretised.

We are able to compute the exact MI because we know all distributions, and
always include the exact MI as a black reference line in the plots.

Experimental results. We ran a large number of experiments that combine
different device leakage functions and different noise distributions in a univariate
and various multivariate settings. They all produced the same conclusions, and
thus we include a subset of experiments in Figures 4-7 that are representative
of the outcomes.

The experiments clearly demonstrate that the GKOV estimator quickly con-
verges to the true mutual information value, irrespective of the dimensionality
of the leakage. In stark contrast, the eHI, as explained in the previous work is
a biased upper bound, and the bias increases dramatically with the number of
dimensions, which is in line with the follow up to Bronchain et al. in [23]. We
were unable to run ePI, eHI and the histogram based estimator for four shares —
their requirement to explicitely build a multivariate pmf makes any higher order
analysis computationally extremely expensive. But our experiments for GKOV
on four dimensions again demonstrated quick convergence to the true MI value.

For completeness we also included the convergence of the histogram-based
plug-in estimator: which is proven to have a weaker form of convergence in [20].
We can see that its performance is particularly bad, and it also appears to show
bias (which is expected given Paninski [10]).

7 Leakage Certification

The question that inspired much work on MI estimation in the side channel
community was the question how can an evaluator know, if a leakage model that
they intend to use in an attack is a good model? And consequently, given two
models, how do they compare?

We now revisit this question in a set of controlled experiments. For this
we define leakage models L′ in relation to some “true device leakage” L that
incorporate progressively less information of L. We achieve this by loosing some
bits of the intermediate value, and then we apply the same leakage function.
Precisely, we consider the following models:

– the model 6LSB is based on using just the six least significant bits of Y ,
– the models 4LSB and 4MSB are based on using the four least or most

significant bits of Y .

The intermediate Y is the output of the AES SubBytes operation, thus it has
8 bits. Clearly, the 6LSB model should be a better predictor than the 4LSB or
the 4MSB model.
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Fig. 4: Estimator behaviour, HD leakage, with Gaussian noise

Fig. 5: Estimator behaviour, Non-linear leakage, with Gaussian noise
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Fig. 6: Estimator behaviour, (HW, HD) leakage, with Gaussian noise

Fig. 7: Estimator behaviour, (HW, HW, HD) leakage, with Gaussian noise
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7.1 Leakage certification using eHI and ePI.

We recall briefly, that the eHI metric was proven to be an upper bound for
I(T, Y ). The ePI metric was designed to capture the relationship between a
leakage model L′ and the true device leakage model L. The idea is then that an
evaluator can judge the quality of L′ by computing the eHI and then relating
this to the ePI (which depends on L′). A better model should should have an
ePI that is closer to the eHI. Thus, we would expect that the ePI(T, 6LSB) is
closer to the eHI(T, Y ) than the ePI(T, 4LSB) or the ePI(T, 4MSB).

In the papers that originally define and discuss the eHI and ePI, experiments
were provided that confirm that the eHI is always larger than the ePI and that
the true MI sits somewhere in the middle. But these experiments were based
on univariate discrete leakage. We want to challenge the eHI and ePI estimators
in a multivariate setting, and thus look at leakage certification outcomes when
considering two bivariate scenarios: one in which both points leak the HW and
one where one point leaks the HW and one point leaks the HD (we provided the
detailed description in Sect. 6.1 before).

With this in mind we examine the outcomes of our first bi-variate simulation
that is based on two points leaking the HW: this is given in Fig. 8. The ePI that
is furthest away from the eHI is ePI(T, 6LSB(Y )) which is not what we should
be seeing. The second bi-variate simulation is based on two points where one
leaks the HW and one leads the HD: this is given in Fig. 9. We see once more
that the model that uses the most information is not closest to the eHI. We also
have the exact MI value plotted as a black line. The bias of eHI is once more
noticeable.

7.2 Leakage certification using GKOV.

The idea that a better model should exploit more information implies that the
mutual information between the model and the traces should be higher: given
two models L′ and L′′, L′ is a better model than L′′ if |Ik − I(T, L′)| < |Ik −
I(T, L′′)|. The GKOV estimator seems the ideal tool to estimate the respective
MI quantities.

We now look at the scenarios from the previous subsections and compute
the respective MI quantities between the different models using the GKOV es-
timator. We plot the exact MI as a black line. Figure 10 shows that the GKOV
estimator approaches the exact MI as expected from the theoretical convergence
proof as well as our previous experiments, confirming once more that it is a
consistent estimator. Consequently Ik = I(L, (X,K)) as estimated by GKOV is
then the baseline for comparison. We can see in Fig. 10 that the models stack up
as they should: the 6LSB model is better than the 4LSB models. The experi-
ment using two points that leak slightly differently confirm these observations:
the GKOV estimator converges quickly to the exact MI and the MI estimates
for the different models appear in the order that they should. In particular,
when the we set the second component in the bivariate experiment to HD (and
thereby introduce a further discrepancy to the the model prediction which is
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Fig. 8: Experiment: leakage certification using eHI and ePI for bi-variate (HW-
HW) leakage with Gaussian noise.

Fig. 9: Experiment: leakage certification for eHI and ePI bi-variate (HW-HD)
leakage with Gaussian noise.
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based on HW) we see that also the 4 bit models can be further discriminated.
Summarising, leakage certification with the GKOV estimator delivers clear and
correct results.

Using real data. Finally, we use the data set that was acquired from executing
a two-share AES SubBytes implementation. The implementation runs on an
ARM Cortex M3 processor core from NXP. We use a custom measurement board,
which provides good measurements. We use our scope in a basic setting to avoid
any trace processing (de-noising) and extract discrete measurements, where each
point is represented by 8 bits. This means that eHI and ePI can work on naturally
discrete traces, which is what they were designed for. However, we apply them
to two trace points at a time, thus we do the analysis in a bivariate setting.

The purpose of this experiment is to confirm with a real world dataset that
we should expect ePI, and eHI to show a bias in a multivariate setting (even
though it is discrete) and therefore potentially misleading outcomes. Figure 12
shows the result of this experiment. We notice that, e.g. between the sample
points 100 and 150, there are a number of points where eHI outcome indicates
leakage, where GKOV and ePI do not.

8 Conclusions

The estimation of the mutual information between two or more variables is re-
quired in the context of assessing practical implementations with respect to their
information leakage. In the past years, progress was made in the side channel
community to deal with the hazards of non-parametric MI estimation, which
lead to the introduction of the notions of eHI and ePI. More progress has been
made in the machine learning community, which has lead to the introduction of
a non-parametric MI estimator, GKOV, that is convergent and asymptotically
unbiased even when applied to mixtures.

Our paper shows that the GKOV estimator is an ideal tool in the side channel
setting: we proved that the density free maximum MI between the traces and
an intermediate I(T, Y ) = I(T, (X,K)) (if Y = C(X,K), and C is one-to-one)
is equal to the MI that characterises the ideal adversary I(T, L(Y )). The ideal
adversary is the adversary who knows the device leakage function L (it is an
ideal adversary because such knowledge does not exist in practice). Thus the
information leakage for a worst case side channel attack can be estimated via
I(T, (X,K)) in theory, and using the GKOV estimator in practice.

Our main results also show that the bias of eHI and ePI increases quickly
when using them in a multivariate setting. This is in addition to the fact that
the computational effort to compute the eHI and ePI increases exponetially and
therefore at present any form of higher multivariate analysis is computationally
infeasible. We challenge the eHI and ePI also in the leakage certification setting
and find that comparing models using GKOV is advantageous.
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Fig. 10: Experiment: leakage certification for bi-variate (HW-HW) leakage with
Gaussian noise.

Fig. 11: Experiment: leakage certification for bi-variate (HW-HD) leakage with
Gaussian noise.
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Fig. 12: Experiment: comparison of estimators using bi-variate discrete real de-
vice leakage
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