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Abstract. The NTRU problem can be viewed as an instance of finding
a short non-zero vector in a lattice, under the promise that it contains an
exceptionally short vector. Further, the lattice under scope has the struc-
ture of a rank-2 module over the ring of integers of a number field. Let
us refer to this problem as the module unique Shortest Vector Problem,
or mod-uSVP for short. We exhibit two reductions that together provide
evidence the NTRU problem is not just a particular case of mod-uSVP,
but representative of it from a computational perspective.

First, we reduce worst-case mod-uSVP to worst-case NTRU. For this, we
rely on an oracle for id-SVP, the problem of finding short non-zero vectors
in ideal lattices. Using the worst-case id-SVP to worst-case NTRU re-
duction from Pellet-Mary and Stehlé [ASIACRYPT’21], this shows that
worst-case NTRU is equivalent to worst-case mod-uSVP.

Second, we give a random self-reduction for mod-uSVP. We put forward
a distribution DuSVP over mod-uSVP instances such that solving mod-
uSVP with a non-negligible probability for samples from DuSVP allows
to solve mod-uSVP in the worst-case. With the first result, this gives
a reduction from worst-case mod-uSVP to an average-case version of
NTRU where the NTRU instance distribution is inherited from DuSVP.
This worst-case to average-case reduction requires an oracle for id-SVP.

1 Introduction

Let K be a number field, OK its ring of integers and ∥ · ∥ the ℓ2-norm in the
complex embedding vector space. A notable example is K = Q[x]/(xd+1) with d
a power of 2: in this case, we haveOK = Z[X]/Φ(X) and ∥a∥ = (d

∑
i |ai|2)1/2 for

all a =
∑

0≤i<d aix
i ∈ K. In the (search) NTRU problem, one is given h ∈ Rq :=

OK/qOK with the promise that there exists a pair (f, g) ∈ O2
K such that gh =

f mod qOK and ∥f∥, ∥g∥ are significantly smaller than
√
q (by a factor γ called

the gap of the NTRU instance, see Definition 2.15 for a formal definition). The
goal is to find a short multiple of the pair (f, g). An efficient algorithm for
the NTRU problem for appropriate parameters would lead to a cryptanalysis
of the seminal NTRU encryption scheme [HPS98], a variant of which appears
among the finalists of the NIST post-quantum cryptography standardization
process [CDH+20].



It was noticed very early that the NTRU problem can be interpreted in
terms of Euclidean lattices [HPS98,CS97]. Indeed, the set Lh := {(a, b)T ∈ K2 :
bh = a mod qOK} forms a (2d)-dimensional lattice, when viewing OK as a d-
dimensional lattice via the embedding map (or, more elementarily for the running
example, using the polynomial expressions). The lattice is described by h, from
which a basis can be computed. This lattice has two peculiar properties. First,
it contains an unusually short non-zero vector (f, g). Indeed, for most h’s, we
have detLh = ∆K · qd, where ∆K refers to the field discriminant; our running
example satisfies ∆K = dd. As a result, one would expect the shortest non-zero
vectors to have ℓ2-norm around q1/2, up to limited factors depending on ∆K

and d; but (f, g)T is much shorter, by assumption. However, this is not quite
an instance of the unique Shortest Vector Problem (uSVP), as Lh does not
contain just one exceptionally short non-zero vector (up to sign), but d linearly
independent short vectors: in our running example, the (xi · f, xi · g)T ’s for
i ∈ [d] are linearly independent and belong to Lh and; in the general case,
a short Z-basis of OK can be used in place of the xi’s. This leads us to the
second peculiarity of the Lh lattice: as it is invariant under multiplication by
elements of OK , it is a rank-2 OK-module. We hence have a rank-2 OK-module
with the promise that it contains an unusually short non-zero vector, i.e., an
unusually dense rank-1 submodule. We call mod-uSVP the problem of finding
a short non-zero vector in rank-2 module containing an unusually short vector.
In this introduction, we call gap of the mod-uSVP instance the ratio between
the root determinant of the lattice (which predicts what would be expected for
the euclidean norm of the shortest vector) and the actual euclidean norm of a
shortest non-zero vector (see Definition 2.12 for a formal definition).

Search NTRU and mod-uSVP actually come with two flavors. The most
natural one, described above, asks to recover a short vector of the corresponding
rank-2 module. This is the variant we implicitly consider in this introduction
when we discuss NTRU and mod-uSVP. As mentioned above, the NTRU and
mod-uSVP lattices not only contain an unexpectedly short vector, but also an
unexpectedly dense rank-1 sublattice. The second variant, which we refer to as
NTRUmod or mod-uSVPmod, asks to recover a basis of this dense submodule.

As seen above, the NTRU problem can be viewed as a special case of a lat-
tice problem. It is however unclear if its instances are representative instances
of some standard lattice problem, or, more precisely, if they are computation-
ally equivalent to general instances of such a problem. In [Pei16, Section 4.4.4],
Peikert sketched a reduction from a decision version of the NTRU problem to
the Ring Learning With Errors (RLWE) problem [SSTX09,LPR10]; this reduc-
tion can be adapted to the search NTRU problem we consider here. Note that
under some parameter constraints, RLWE is computationally equivalent to the
Shortest Independent Vectors Problem for rank-2 modules [LS15,AD17] (mod-
SIVP), which consists in finding 2d linearly independent vectors whose longest
one is not much longer than optimal. Oppositely, in a recent work, Pellet-Mary
and Stehlé [PS21] exhibited a reduction from the Shortest Vector Problem for
lattices corresponding to ideals of OK (id-SVP) to NTRU. Enhanced by the id-
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SVP self-reducibility from [dBDPW20], this leads to a reduction from worst-case
id-SVP to an average-case version of the NTRU problem.

Overall, we see that NTRU sits between id-SVP and mod-SIVP. Interest-
ingly, id-SVP admits algorithms that outperform generic lattice reduction al-
gorithms [LLL82,Sch87] for some parameter ranges [CDW21,PHS19]. As such
a phenomenon is unknown in the case for mod-SIVP, there is potentially quite
some room between id-SVP and mod-SIVP. With this state of affairs, it is un-
clear which of these problems captures the true hardness of NTRU, or if NTRU
lies somewhere strictly in between.

Contributions. We give evidence that the NTRU problem is not just a particu-
lar case of mod-uSVP, but actually representative of it. More precisely, we show
that worst-case NTRU is computationally equivalent to worst-case mod-uSVP,
and that worst-case and an appropriately defined average-case mod-uSVP are
also computationally equivalent, provided we have an oracle for id-SVP in both
cases (and up to reduction losses). Together, these results imply that worst-
case mod-uSVP reduces to average-case NTRU, provided we have an oracle for
id-SVP. Combining this result with the reduction from worst-case id-SVP to
worst-case NTRU from [PS21], this also implies that worst-case NTRU is com-
putationally equivalent to worst-case mod-uSVP, without an id-SVP oracle.

Our first result is a collection of four reductions from the four variants of mod-
uSVP (average case vs worst-case and vector vs module) to the corresponding
four variants of NTRU, relying on an approximate id-SVP oracle. We give below
a simplified version of one of these reductions, in the special case of power-of-
two cyclotomic fields. More details and the other reductions can be found in
Theorem 4.1.

Theorem 1.1 (Simplified version of Theorem 4.1). Let K be a power-
of-two cyclotomic field of degree d. Let γSVP, γ

+, γNTRU > 1. For all q ≥ 2d ·
poly(γ+) and γ− ≥ poly(d) · γNTRU ·

√
γHSVP, (worst-case) mod-uSVPmod with

gap in [γ−, γ+] reduces in polynomial time to (worst-case) NTRUmod with modu-
lus q and gap ≥ γNTRU and (worst-case) id-SVP with approximation factor γSVP.

More concretely, when starting from a mod-uSVP instance for which the
shortest non-zero vectors are ≈ γ times smaller than the root determinant, the
reduction produces an NTRU instance satisfying

√
q/(∥f∥ + ∥g∥) ≈ γO(1), up

to factors depending on field invariants. This transformation can be used to de-
rive a reduction from average-case mod-uSVP to average-case NTRU (where the
NTRU distribution is induced by the mod-uSVP distribution) and a reduction
from worst-case mod-uSVP to worst-case NTRU (and similarly for the variants
searching a dense rank-1 submodule). To achieve this transformation, an id-SVP
oracle is required to find non-zero vectors in ideals within a factor γO(1) from
optimal. Note that for cyclotomic fields, the algorithm from [CDW21] allows to

implement the oracle in quantum polynomial time when γ ≈ 2
√
d. Note also

that [PS21] showed a reduction from worst-case id-SVP to worst-case NTRU,
which is compatible with the reduction from worst-case mod-uSVP to worst-case

3



NTRU (relying on an id-SVP oracle). Combining both, we then obtain a reduc-
tion from worst-case mod-uSVP to worst-case search NTRU which does not rely
on an id-SVP oracle. A drawback of the reduction is that it results in an NTRU
modulus q of the order of ≈ 2d, even for small gap parameters γ. The modulus
can be decreased by allowing the reduction to be more costly. Using lattice re-
duction algorithms [Sch87], one can reach q ≈ γO(1) · βO(d/β) if allowing for a
reduction that runs in time polynomial in d, 2β , log∆K and ζK(2) (where ζK
refers to the Dedekind zeta function). The quantities log∆K and ζK(2) depend
on the number field, and may not be polynomially bounded in the field degree d.
In our running example, we have log∆K = O(d) and ζK(2) = O(1) (see [SS13]).

Second, we exhibit a random self-reducibility property for mod-uSVPmod.
More explicitly, we give a reduction from worst-case mod-uSVPmod for rank-2
modules to an average-case version of itself, whose instances can be sampled from
efficiently. The reduction preserves the gap parameter γ, up to factors depending
on field invariants, and runs in time polynomial in log∆K .

Theorem 1.2 (Simplified version of Theorem 6.1, under ERH). Let K
be a power-of-two cyclotomic field of degree d. For any gap poly(d) < γ ≤ 2O(d),
there exists an efficiently samplable distribution DuSVP

γ over uSVP instances with
gap ≥ γ such that worst-case mod-uSVPmod with gap ≥ γ′ = γ·poly(d) reduces in
polynomial time to average-case mod-uSVPmod for instance distribution DuSVP

γ .

Combined with the first reduction, the above allows to map a worst-case
instance of mod-uSVPmod to an average-case instance of NTRUmod, where the
NTRUmod instance distribution is inherited from the average-case mod-uSVP
distribution. This reduction relies on an id-SVP oracle. Since mod-uSVPmod

and mod-uSVP are computationally equivalent (up to polynomial losses) when
we have an id-SVP oracle, this also provides a reduction from worst-case uSVP
to average-case NTRU. Contrary to the reduction from worst-case uSVP to
worst-case NTRU, we cannot use the result of [PS21] to get rid of the id-SVP
oracle. This is because the average-case distribution of NTRU instances that is
produced by our reduction may not be compatible with the one used in [PS21].

We summarize the known reductions between variants of mod-uSVP and
NTRU in Figure 1. Note that the reductions may not be composable due to
incompatible parameter restrictions or instance distributions.

Technical overview. The NTRU problem is a restriction of mod-uSVPmodules
with a basis of a specific shape. In general, a rank-2 module M is represented by
a pseudo-basis, i.e., two vectors (b1,b2) in K2 and two ideals I1, I2 of OK such
that M = b1I1+b2I2. When the two ideals I1 and I2 are both equal to OK , the
pseudo-basis is a basis, and the module is said to be free (note that a free module
is a module that has at least one basis, but not all of its pseudo-bases will satisfy
I1 = I2 = OK). In the NTRU problem, the instance is a basis (b1,b2) of a free
module contained in O2

K , with b1 = (1, h)T for some h ∈ OK and b2 = (0, q)T

for some integer q which is a parameter of the NTRU problem. Hence, the only
degree of freedom in this basis comes from the choice of h. The NTRU problem
then asks to solve mod-uSVP in this very specific module.
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worst-case
id-SVP

average-case
NTRUmod

decision
NTRU

worst-case
mod-uSVPmod

average-case
mod-uSVPmod

average-case
NTRU

worst-case
mod-uSVP

worst-case
NTRU

Fig. 1. Known reductions between NTRU and mod-uSVP variants. Dashed arrows
require an id-SVP oracle. Blue arrows are proven in [PS21] and red arrows are proven
in this article. The black arrows are folklore.

In the reduction from mod-uSVP to NTRU, we start with an arbitrary
pseudo-basis of an arbitrary module M , and transform it into an NTRU basis.
We then call the NTRU solver on this NTRU instance and lift the solution back
to the original mod-uSVP module. In order to meaningfully lift a short vector
(or a dense rank-1 submodule) back, we require our transformation to preserve
the geometry of the rank-2 module M as much as possible. Our transformation
proceeds in four main steps.

First of all, we transform the input module M ⊂ K2 into an integral module
whose volume is bounded from below and above by quantities depending only
on the parameters of the reduction (NTRU modules are in O2

K and have vol-
ume qd). This is done by scaling M to the desired volume, and then rounding it
to an integral module with a very close geometry. This rounding is performed by
sampling two quasi-orthogonal vectors in the dual of M , and multiplying M on
the left by the matrix whose rows are these two vectors. Multiplication on the
left corresponds to a distortion of the ambient space, but since the two vectors
are quasi orthogonal, this does not change the geometry too much. Also, as the
row vectors of the sampled matrix belong to the dual of M , the resulting module
is integral.

Our second step aims at obtaining the triangular shape of the NTRU basis.
To do so, we compute the Hermite Normal Form of the pseudo-basis. With
some probability, the two coefficients on the first row of the pseudo-basis will
be coprime, leading to an HNF basis with a 1 as a top-left coefficient, exactly
what we need for an NTRU instance. This is where ζK(2) comes into play, as it
closely relates to the probability that two random elements of OK are coprime.

At this point, our pseudo-basis still has coefficient ideals. We remove them
with an id-SVP solver: we compute short x1 and x2 in the ideals I1 and I2,
respectively, and then replace the pseudo-basis ((b1,b2), (I1, I2)) by the basis
(x1b1, x2b2). This step has the effect of slightly sparsifying the module, i.e., it
leads to a rank-2 submodule whose determinant is not much larger. If our gap
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is sufficiently large compared to the approximation factor of the id-SVP solver,
our sparsified module will still contain an unexpectedly short non-zero vector.

We now have a basis of a free module with vectors of the form (1, h′)T and
(0, b)T , with h′ and b in OK . Our last step consists in replacing b by the NTRU
parameter q. This is done by multiplying the second coordinates of both our
basis vectors by q/b. If q/b ≈ 1 (which we can ensure thanks to the id-SVP
solver), then this does not change the geometry of the module too much.

To conclude, the transformation we have described allows us to transform
any module of rank-2 with an unexpectedly short vector into an NTRU module
with roughly the same geometry. The transformation is reversible, hence, we can
lift any short vector or dense module found in the NTRU module back to the
original rank-2 module. Since this transformation is a Karp reduction, it can
be used to reduce average-case variants of mod-uSVP to average-case variants
of NTRU where the NTRU distribution is inherited from the one on the uSVP
instances.

For the random self-reducibility of mod-uSVPmod, we start with an arbitrary
rank-2 moduleM and want to randomize it so that the distribution of the output
module M ′ does not depend on M . Once again, we design the transformation so
that it preserves the geometry of the module, to be able to meaningfully lift any
dense rank-1 submodule of M ′ back to a dense rank-1 submodule of M . For this
reduction, we assume that all our worst-case modules live inK2

R = (K⊗QR)2 and
have fixed volume (which we can always achieve by scaling the module). We also
assume that the ℓ2-norm of their shortest non-zero vectors is exactly 1/γ < 1.
This restriction to modules with a known gap can be waived, by guessing the
gap and sparsifying the module (see Section 6).

Let us explain the main ideas behind the randomization in the simpler case
of K = Q. We have a lattice M ⊂ R2 with volume 1 and shortest non-zero
vector s with ∥s∥ = 1/γ. Up to rotation of the ambient space, we can assume
that s = (1/γ, 0)T . Let us take t ∈ R2 such that (s, t) forms a basis of M . Since
the volume of M is 1, we know that t = (t0, γ)

T for some t0 ∈ R. Up to the
rotation of the ambient space, the quantity t0 is the only degree of freedom.
Note also that the lattice only depends on t0 mod 1/γ. Let πs(t) denote the
quantity t0, i.e., the norm of the orthogonal projection of t onto span(s). This
discussion shows that the lattice M is uniquely determined by the span of its
shortest non-zero vector and the quantity γ · πs(t) mod 1. Hence, to “hide” the
latticeM , it suffices to “hide” these two quantities. Note that we use the vectors s
and t for our reasoning, but we usually do not have access to them: we randomize
our module by performing only operations that can be done on any of the bases
of M (for K2

R instead of R2, we expect that finding the analogue of (s, t) is
difficult).

In order to hide the span of s, one can apply a uniform orthonormal transfor-
mation to the ambient space. To hide the quantity γ ·πs(t) mod 1, we “blur” the
ambient space, by applying to it a transformation that is close to orthogonal, but
not fully so. By appropriately choosing the transformation, one can obliviously
transform the quantity γ · πs(t) into x · γ · πs(t) + y, where x and y are some
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random variables. Recall that this quantity only matters modulo 1. Hence, if the
standard deviation of y is sufficiently large compared to 1, then y mod 1 will be
uniformly distributed and will hide the original value of πs(t). The existence of
a gap ensures that a close-to-orthogonal transformation suffices for this purpose.

This intuition over R2 explains one component of our randomization pro-
cedure, which we call the geometric randomization (see Section 5.2). Another
important part of our randomization, which we call the coefficient randomiza-
tion (Section 5.1), focuses on the coefficient ideals of the pseudo-basis (which
are just Z for lattices). The transformation described above will have the effect
of randomizing the vectors b1 and b2 of a pseudo-basis of our module M , but
will have no impact on the coefficients ideals I1 and I2.

In order to hide those ideals, the first step is to multiply the module M
by some uniformly distributed ideal I, using [dBDPW20]. Our new coefficient
ideals I · I1 and I · I2 will then be uniformly distributed too. This is however
not sufficient to fully hide the ideals, since the quotient (I · I1)/(I · I2) is con-
stant. In order to hide this last quantity, or decouple the ideals, we sparsify the
module with respect to some prime ideal p: concretely, we take a uniformly ran-
dom rank-2 submodule of M among those of index p.5 This process generalizes
lattice sparsification as introduced in [Kho06]. Lattice sparsification is a classic
tool to remove one (or several) annoying vectors in a lattice. Here, the purpose is
different: it has the effect of obliviously multiplying I1 by p while leaving I2 un-
changed (with probability close to 1). By [dBDPW20], the uniform distribution
over bounded-norm prime ideals is close to the uniform distribution over norm-1
ideals (after renormalization of their norm), in the sense that little remains to
be done to obtain the latter distribution. As a result, this sparsification enables
us to (almost) randomize both I1 and I2, independently of one another. The
gap to perfect randomization is handled by carefully studying the distribution
resulting from the geometric and coefficient randomization (Section 5.3).

Summing up, our randomization consists in two main steps: a distortion of
the ambient space, which randomizes the vectors (b1,b2) and a sparsification,
which hides the coefficient ideals I1 and I2 (together with the multiplication of
the module by a random ideal I). Interestingly, we note that these two operations
are similar (though adapted to rank-2 modules) to the ones that were used
in [dBDPW20] to randomize ideal lattices.

The transformation described above allows us to transform an arbitrary mod-
ule M of K2

R into a random module M ′ of K2
R whose distribution is independent

of the input module. One last subtlety to handle in order to have a full worst-case
to average-case reduction is to compute a canonical representation of the mod-
ule M ′. Indeed, the pseudo-basis of the properly distributed module M ′ that we
have at the end of the randomization procedure might leak information about
the input module M . Unfortunately, one cannot compute HNF bases in K2

R (the
HNF gives a canonical representation of rational lattices). In order to obtain a

5 For two rank-2 modules M ′ ⊆ M with pseudo-bases ((b′
1, I

′
1), (b

′
2, I

′
2)) and

((b1, I1), (b2, I2)) respectively, we say that M ′ has index p in M if detK(b′
1,b

′
2) ·

I ′1I
′
2 = p · detK(b1,b2) · I1I2.
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canonical representation of M ′, we then round it to a close module in O2
K for

which we will be able to compute an HNF pseudo-basis. The rounding procedure
is the same as the one described in the reduction from uSVP to NTRU, and the
distribution of the output pseudo-basis only depends on the input module and
not on the specific pseudo-basis that is provided to represent it.

Discussion. A question arising from our reduction concerns the possibility to
sample an NTRU instance from the distribution obtained at the end of the re-
duction, together with a short secret vector of the corresponding NTRU module.
The difficulty stems from the fact that the output NTRU distribution we obtain
after the reduction is not easy to describe, except as “the distribution obtained
by running the reduction”. The same difficulty also appeared in [PS21], where
it was tackled by running the reduction to sample from the average-case NTRU
distribution (and keeping in mind some quantities generated during the reduc-
tion in order to create a short vector of the output NTRU module). In our case,
we face two additional difficulties when trying to apply the same strategy. First,
we note that even sampling from the NTRU distribution, without asking for a
short vector of the corresponding module, does not seem straightfoward. Since
our mod-uSVP to NTRU reduction requires an id-SVP solver and takes subex-
ponential time if one wants to reach small NTRU modulus q, it does not provide
an efficient sampling algorithm for our final NTRU distribution. Secondly, our
reduction allows us to lift a short vector from the NTRU module back to the
uSVP module, but it is not so clear whether the converse is also possible (i.e.,
starting with a known vector of the uSVP module and obtaining a short vector
of the final NTRU module). This is because of the sparsification step: when we
sparsify a lattice, we can lift a vector from the sparser lattice back to the denser
lattice (this is actually the same vector), but the converse seems more difficult.

Another question we leave open is about the compatibility of our reduction
with those from [PS21]. Our worst-case mod-uSVPmod to average-case NTRUmod

reduction produces a new distribution over NTRU instances. It is unclear whether
this distribution can be used in the search to decision reduction from [PS21]. It
is also unclear how it compares to the one produced by the worst-case id-SVP
to average-case NTRU reduction from [PS21].

It should be noted that the regime where NTRU is provably secure (see [SS13])
is completely distinct from the regime required by our reductions. Indeed, the
regime of [SS13] requires that f and g are slightly larger than

√
q, whereas our

reduction requires f and g to be significantly smaller than
√
q. In other words,

we are in a regime where NTRU is a uSVP instance (and we are trying to show
that in this regime, it is representative of all uSVP instances), whereas [SS13]
works in a regime where an NTRU instance is statistically close to uniform; in
particular, in that regime, the underlying lattice is not a uSVP instance. The
regime of the overstretch-NTRU attacks (including [KF17]) is also distinct from
ours, but in the opposite direction. In these attacks, it is assumed that ∥f∥
and ∥g∥ are poly(d) and q grows; whereas in our case, we have ∥f∥ and ∥g∥ of
the form

√
q/poly(d). Said differently, in those attacks, the short vector is short

in absolute terms, whereas in our case it is short relative to what it would be
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for a random lattice of the same volume. We leave as an open problem to check
whether these two regimes can be made to intersect.

2 Preliminaries

We use standard Landau notations, with underlying constants that are absolute
(e.g., they do not depend on the specfic choice of number field). We consider
column vectors (unless they are explicitly transposed). Vectors and matrices are
respectively denoted in bold lowercase and uppercase fonts. For a vector x ∈ Ck,
we let ∥x∥ denote its Hermitian norm.

We let D(c, s) refer to the normal distribution over R of center c and standard
deviation s > 0. For X a set that is finite or has finite Lebesgue measure, we
let U(X) denote the uniform distribution over X. For two distributions D1, D2

with compatible supports, we let SD(D1, D2) =
∫
|D1(t) − D2(t)|dt/2 refer

to their statistical distance. For D1, D2 with Supp(D1) ⊆ Supp(D2), we let
RD(D1 ∥ D2) =

∫
D1(t)

2/D2(t) dt refer to their Rényi divergence of order 2.
The probability preservation property states that for any event E, the inequality
D1(E) ≥ D2(E)2/RD(D1 ∥ D2) holds.

For a lattice L, we let DL,s,c denote the Gaussian distribution of support L,
standard deviation parameter s and center parameter c ∈ spanL. We will use
the following lemma, to sample discrete (tail-cut) Gaussian distributions. This
lemma is adapted from [GPV08, Theorem 4.1]. A proof of this precise formula-
tion can be found in [PS21, Lemma 2.2].

Lemma 2.1. There exists a polynomial time algorithm that takes as input a
basis B = (b1, . . . ,bn) of an n-dimensional lattice L, a parameter s ≥

√
n ·

maxi ∥bi∥ and a center c ∈ spanL and outputs a sample from a distribu-
tion D̂B,s,c such that

• SD(DL,s,c, D̂B,s,c) ≤ 2−Ω(n);

• for all v← D̂B,s,c, it holds that ∥v − c∥ ≤
√
n · s.

Some results are obtained under the Extended Riemann Hypothesis (ERH).

2.1 Number Fields

Let K be a number field of degree d ≥ 2 and ring of integers OK . Let KR =
K ⊗Q R. We identify any element of K with its canonical embedding vector
σ : x 7→ (σ1(x), · · · , σd(x))

T ∈ Cd. This leads to an identification of KR with
{y ∈ Cd : ∀i ∈ [r1], yi ∈ R and ∀i ∈ [r2], yr1+r2+i = yr1+i}, where r1 and r2
respectively denote the number of real and pairs of complex embeddings. Note
that the set KR is a real vector subspace of dimension d embedded (via σ) in Cd

and that σ(OK) is a full rank lattice in KR. The (absolute) discriminant ∆K is

defined as ∆K = |det(σ(OK))
2|. We have d = O(log∆K), for ∆K growing to

infinity.
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For x ∈ KR, we define x ∈ KR as the element obtained by componentwise
complex conjugation of the canonical embedding vector of x. We extend this
notation to vectors and matrices over KR, and let x† denote xT for any x ∈
Kn

R . We define K and OK as the subsets of KR obtained by applying complex
conjugation to elements of K and OK , respectively. For x,y ∈ Kn

R , we define
⟨x,y⟩KR

= x† · y ∈ KR and ∥x∥ = ∥σ(⟨x,x⟩KR
)∥1/2. The (absolute value of the)

algebraic norm of x ∈ KR is defined as N (x) =
∏

i |σi(x)|. The algebraic norm
of x ∈ Kn

R is defined as N (x) = N (⟨x,x⟩KR
)1/2.

We define K+
R as the subset of KR corresponding to having all yi’s being

positive real numbers. For x ∈ K+
R , we define x1/2 as the element of K+

R obtained
by taking the square-roots of the embeddings.

We let O×K = {x ∈ OK : N (x) = 1} denote the set of units of OK

and LogO×K = {(log |σi(x)|)i : x ∈ O×K} ⊂ Rd denote the log-unit lattice. Note
that spanR(LogO×K) = E := {y ∈ Rd :

∑
yi = 0 ∧ ∀i ∈ [r2], yr1+r2+i = yr1+i},

by Dirichlet’s unit theorem. For ζ ∈ E, we define exp(ζ) as the element of K+
R

whose i-th embedding is exp(ζi), for all i.

In this work, we assume that we know a LLL-reduced [LLL82] Z-basis (ri)i≤d
of OK . We define δK = maxi ∥ri∥∞. We have 1 ≤ δK ≤ ∆

O(1)
K : the left inequality

follows from the fact that ∥r∥∞ ≥ 1 for all r ∈ OK \ {0}, whereas the right
inequality derives from Minkowski’s second theorem and the LLL-reducedness
of the ri’s. In the case of cyclotomic number fields, taking the power basis gives
δK = 1. For x =

∑
i xiri ∈ KR, we define ⌊x⌉ =

∑
i⌊xi⌉ri. We will use the

notation {x} = x−⌊x⌉. We have ∥{x}∥∞ ≤ d · δK , and hence ∥{x}∥ ≤ d3/2 · δK .

We will consider the following distributions over KR. Note that for r ∈ K+
R ,

the distribution of r · x for x ∼ DKR(c, s) is DKR(r · c, (σi(r) · si)i).

Definition 2.2. Let s ∈ Rr1+r2
>0 . We define the normal distribution DKR(c, s) of

center c ∈ KR and standard deviation vector s as the distribution obtained by
independently sampling real numbers (y)i∈[d] with{

yj ∼ D(0, sj) for j ∈ [r1]

yr1+j , yr1+r2+j ∼ D(0, sr1+j) for j ∈ [r2]

and then returning c + y where y ∈ KR is such that σj(y) = yj for j ∈ [r1]
and σr1+j(y) = yr1+j + iyr1+j for j ∈ [r2].

We define χKR as the distribution of (⟨x,x⟩KR
)1/2 for x ∈ K2

R sampled ac-

cording to DKR(0, 1)
2.

For a matrix B ∈ Kn×n
R , we define det(B) = N (detKR(B)). We say that B

is orthogonal if B† · B = I, which implies that det(B) = 1. We let On(KR)
denote the set of orthogonal matrices. If a matrix B ∈ Kn×n

R has KR-linearly
independent columns (i.e., no non-trivial linear combination is zero), then it
admits a QR-factorization B = QR with Q ∈ On(KR) and R ∈ Kn×n

R upper
triangular with diagonal elements in K+

R (see, e.g., [LPSW19, Section 2.3]).
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2.2 Ideals

A fractional ideal (resp. oriented replete ideal) is a subset of K of the form x · I
for some x ∈ K× (resp. x ∈ K×R ) and I ⊆ OK an integral ideal. Unless specified
otherwise, by default, an ideal will refer to an oriented replete ideal. For I ideal
of K, we define the ideal I = {x : x ∈ I} of K. Using the canonical embedding,
any non-zero ideal is identified to a d-dimensional lattice, called ideal lattice.
The algebraic norm of an integral ideal I is N (I) := |OK/I| if it is non-zero
and zero otherwise. This is extended to oriented replete ideals xI with x ∈ K×R
and I an integral ideal by setting N (xI) = N (x) · N (I).

For I1 and I2 integral, the product ideal I1I2 is the ideal spanned by all x1 ·x2

with x1 ∈ I1 and x2 ∈ I2. An integral ideal I is said prime if it cannot be written
as I = I1 · I2 with I1, I2 integral and both distinct from OK . For any B ≥ 0, we
let πK(B) denote the number of prime ideals with algebraic norm ≤ B. Under
the ERH, there exists an absolute constant c such that for any B ≥ (log∆K)c, we
have πK(B) ∈ (B/ logB) · [0.9, 1.1] (see [BS96, Theorem 8.7.4]). If x1I1 and x2I2
are two ideals with I1 and I2 integral, we define their product as (x1I1) ·(x2I2) =
(x1x2)(I1I2). The inverse of an ideal I is I−1 = {x ∈ K×R : xI ⊆ OK}.

We will use algorithms from [dBDPW20] to sample among different classes
of ideals.

Lemma 2.3 (Adapted from [dBDPW20, Lemma 2.2], ERH). There ex-
ists an algorithm A and an absolute constant c such that for any B ≥ (log∆K)c,
algorithm A on input B runs in time poly(logB, d) and returns a prime ideal
uniformly among prime ideals of norm ≤ B.

We will also rely on Algorithm 2.1, which is adapted from [dBDPW20, Theo-
rem 3.3], to sample (essentially) uniformly in the set I1 of norm-1 ideals, in time
polynomial in logB. Note that [dBDPW20] considers norm-1 ideals xI with I
integral and all σi(x)’s being positive integers. This discrepancy is handled by
introducing u at Step 3. The standard deviation in Step 2 and tailcut may seem
arbitrary at first sight: these choices simplify the analysis of the module random-
ization (in Section 5.3). A proof of the following lemma is given in Appendix B.

Algorithm 2.1 Ideal-SampleB
1: Sample p uniformly among prime ideals of norms ≤ B, using Lemma 2.3;
2: Sample ζ ∈ E from the centered normal law with standard deviation d−3/2, condi-

tioned on ∥ζ∥ ≤ 1/d;
3: Sample u uniform in {x ∈ KR, ∀i ∈ [d] : |σi(x)| = 1};
4: Return u · exp(ζ) · p/N 1/d(p).

Lemma 2.4 (Adapted from [dBDPW20, Theorem 3.3], ERH). There
exists an absolute constant c such that for any B ≥ (dd∆k)

c, Ideal-SampleB
runs in time polynomial in logB and its output distribution is within 2−Ω(d)

statistical distance from U(I1).

11



2.3 Modules

A module is a subset of some Km
R of the form M =

∑
i≤k biIi where the Ii’s

are non-zero ideals and the bi’s are KR-linearly independent. This is written
compactly as M = B · I (where B is the matrix whose columns are the bi

and I = (I1, . . . , Ik)). The tuple ((I1,b1), . . . , (Ik,bk)) is called a pseudo-basis
of M and is written compactly as (B, I). The integer k is the rank of M . We
define N (M) = det(B) ·

∏
i≤kN (Ii). Note that for d = m = 1, this matches

the norm of an ideal. Using the canonical embedding, any rank-k module is
identified to a (kd)-dimensional lattice, called module lattice. In particular, we
define det(M) as the determinant of the module lattice. Note that det(M) =

N (M) · ∆k/2
K . The module successive minima λi(M) for i ∈ [kd] are defined

similarly. We will also be interested in the module norm-minimum λN1 (M) =
inf{N (N) : N rank-1 submodule of M}. A rank-1 submodule of M is said dens-
est if it reaches λN1 (M).

The dual of a module M is defined as M∨ = {b∨ ∈ spanKR
(M) : ∀b ∈

M, ⟨b∨,b⟩KR
∈ OK}: note that M∨ is an OK-module, σ(M∨) is the dual lattice

of σ(M) and (B · I)∨ = (B−† · J), where Ji = (Ii)
−1 for all i ≤ k.

For any full-rank module M ⊆ Km, there exists a pseudo-basis (B, I) such
that B ∈ Km×m is lower-triangular with ones on the diagonal. It is called a
Hermite Normal Form of M and can be computed in polynomial time from
any finite set of pairs {(Ii,bi)}i such that M =

∑
i biIi and the bi’s are not

necessarily independent [BP91,Coh96,BFH17].

Definition 2.5. Let M be a module. A submodule N ⊆M is said to be primitive
if it satisfies any of the three equivalent conditions:

• the module N is maximal for the inclusion in the set of submodules of M of
rank at most rank(N);
• there is a module N ′ with M = N+N ′ and rank(M) = rank(N)+rank(N ′);
• we have N = M ∩ spanK(N).

In particular, any densest rank-1 submodule of M is primitive.

A proof that the three conditions are equivalent is provided in Appendix B.
The last statement follows from Condition 1.

The latter lemma allows us to conclude that the module norm-minimum is
reached (see Appendix B for a proof).

Lemma 2.6. For any module M , there exists a rank-1 submodule N of M such
that N (N) = λN1 (M).

The following result provides a lower bound on the probability that a rank-1
module v · OK is primitive in a rank-k module M , when v ∈ M is sampled
from a sufficiently wide Gaussian distribution. Taking M = Ok

K , this provides
in particular a lower bound on the probability that k elements sampled inde-
pendently of a Gaussian distribution in OK are relatively coprime. This result
generalizes [SS13, Lemma 4.4], which proved the result for k = 2 and M = O2

K

12



(with a proof inspired from [Sit10]). The proof for the general case with rank-k
modules is very similar to the special case M = O2

K , hence we postpone it to
Appendix B.4. In this work, we will only use Lemma 2.7 for modules of rank-
2, however, for the sake of re-usability, we state and prove it for modules of
arbitrary ranks.

Lemma 2.7. There exists an absolute polynomial P such that the following
holds. For any δ ≥ 0, degree-d number field K, integer k ≥ 2, rank-k mod-
ule M ⊂ Kk

R, if c ∈ spanKR
(M) and ς > 0 are such that ∥c∥ ≤ δ · ς and

ς ≥ λkd(M) · P (∆
1/d
K , k, d, δ, λkd(M)/λ1(M)), then it holds that

Pr
v←DM,ς,c

(
v · OK is primitive in M

)
≥ 1

4ζK(k)
,

where ζK(·) is the Dedekind zeta function of K and the λi’s refer to the minima
of the lattice σ(M).

2.4 Rank-2 Modules with a Gap

In this work, we are interested in rank-2 modules that contain an unexpectedly
dense rank-1 submodule, i.e., in modules M with λN1 (M) significantly smaller
than

√
N (M). We define the gap of M by

γ(M) =

(
N (M)

1
2

λN1 (M)

) 1
d

.

The following lemma shows that if the gap is sufficiently large, then the densest
rank-1 submodule is unique. A proof may be found in Appendix B.

Lemma 2.8. Let M be a rank-2 module with gap γ > 0 and N a densest rank-1
submodule of M . If N ′ is a rank-1 submodule of M with N (N ′) < γd

√
N (M),

then N ′ ⊆ N .
In particular, for γ > 1, the densest rank-1 submodule is unique and any

vector b ∈M with ∥b∥ < γ · N (M)1/(2d) belongs to it.

In the following, when a rank-2 module M has a gap larger than 1, we will
implicitly use Lemma 2.8 when referring to the densest rank-1 submodule of M .
Most rank-2 modules we will consider will have gap larger than 1.

This can be used to show that we can use the QR-factorization to precisely
describe rank-2 modules (see Appendix B for a proof).

Lemma 2.9. Let M be a rank-2 module with gap γ > 0. Then M can be written
as

N 1
2d (M)

γ
·Q ·

([
1
0

]
· J1 +

[
r
1

]
· γ2 · J2

)
,

where Q ∈ O2(KR), r ∈ KR, J1 and J2 are norm-1 ideals. We call this a QR-
standard-form for M .

13



We note that there are multiple QR-standard forms for any module M , as
units of C can be transferred from the ideal coefficients to the matrix Q. In
the following section, we will be interested in modules with specific distributions
expressed in terms of QR-standard forms. It will then be convenient to define
a module by a (well-distributed) QR-standard form. Note that the modules we
define this way have norm 1.

Definition 2.10. For any Q ∈ O2(KR), γ > 0, r ∈ KR and norm-1 ideals J1, J2,
we define

QRSF-2-Mod(Q, γ, J1, J2, r) =
1

γ
·Q ·

([
1
0

]
· J1 +

[
r
1

]
· γ2 · J2

)
.

We will use the following result on the first and last minimum of the dual of
a rank-2 module with a gap. The proof is provided in Appendix B.

Lemma 2.11. Let M be a rank-2 module in K2
R with gap γ(M) ≥ 1. Then

λ2d(M
∨) ≤ 2

√
d · γ(M) · N (M)−

1
2d

λ1(M
∨)−1 ≤ 2d · γ(M) · N (M)1/(2d) · δK ·∆

1
2d

K .

2.5 Algorithmic Problems

In this section, we define different variants of the unique-SVP problem for rank-2
modules, as well as variants of the NTRU problem. The definitions of the dif-
ferent NTRU problems differ slightly from the ones defined in [PS21]: this is to
emphasize the resemblance between uSVP and NTRU. The difference between
the NTRU definitions in this work and the ones in [PS21] are sufficiently minor
that they can be reduced to one another without difficulty, and we hence opted
to keep the same names.

Definition 2.12 (γ-uSVP instance). Let γ > 0. A γ-uSVP instance consists
in a pseudo-basis (B, I) of a rank-2 module M ⊂ K2 such that M contains a
non-zero vector s with ∥s∥ ≤ γ−1 · N (M)1/(2d).

Note that any module M associated to a γ-uSVP instance contains the rank-
1 submodule sOK whose norm is ≤

√
N (M)/γd. By Lemma 2.8, this implies

that if γ > 1, then the module M has a unique densest rank-1 submodule.

Definition 2.13 ((D, γ, γ′)-uSVPvec and (γ, γ′)-wc-uSVPvec). Let γ ≥ γ′ > 0
and D a distribution over γ-uSVP instances. The (D, γ, γ′) average-case unique
SVP problem for rank-2 modules ((D, γ, γ′)-uSVPvec for short) asks, given as
input a pseudo-basis of some rank-2 module M sampled from D, to compute
a vector s ∈ M \ {0} such that ∥s∥ ≤ N (M)1/(2d)/γ′. The advantage of an
algorithm A against the (D, γ, γ′)-uSVPvec problem is defined as

Adv(A) = Pr
(B,I)←D

(
A((B, I)) = s with

∣∣∣∣ s ∈M \ {0}
∥s∥ ≤ N (M)1/(2d)/γ′

)
,
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where the probability is also taken over the internal randomness of A.
The worst-case variant ((γ, γ′)-wc-uSVPvec) asks to solve this problem for

any γ-uSVP instance (B, I).

Definition 2.14 ((D, γ)-uSVPmod and γ-wc-uSVPmod). Let γ > 0 and D a
distribution over γ-uSVP instances. The (D, γ) unique SVP problem for rank-2
modules ((D, γ)-uSVPmod for short) asks, given as input a γ-uSVP module M
sampled from D, to recover a densest rank-1 submodule N ⊂M . The advantage
of an algorithm A against the (D, γ)-uSVPmod problem is defined as

Adv(A) = Pr
(B,I)←D

(
A((B, I)) = N with

∣∣∣∣N ⊂M with rk(N) = 1
N (N) = λN1 (M)

)
,

where the probability is also taken over the internal randomness of A.
The worst-case variant (γ-wc-uSVPmod) asks to solve this problem for any

γ-uSVP instance (B, I).

We can now define the NTRU problems, as special cases of the uSVP variants
above.

Definition 2.15 (NTRU instance). Let q ≥ 2 be an integer, and γ > 0 a
real number. A (γ, q)-NTRU instance is a γ-uSVP instance whose pseudo-basis
is required to be of the form ((b1,OK), (b2,OK)) with b1 = (1, h)T for some
h ∈ OK and b2 = (0, q)T .

Comparison with [PS21]. In [PS21], an NTRU instance consists in the single
element h ∈ Rq, whereas we consider it as a basis of a rank-2 module in this
work. Both formalisms are equivalent, since one can reconstruct the basis of the
rank-2 module from h (and also q, which is a parameter of the problem). A second
difference comes from the fact that [PS21] requires the short vector s = (s1, s2)

T

to satisfy ∥s1∥, ∥s2∥ ≤
√
q/γ, whereas we require that ∥s∥ ≤ √q/γ. This means

that a (γ, q)-NTRU instance for us is a (γ, q)-NTRU instance for [PS21], but the
converse does not hold: a (γ, q)-NTRU instance for [PS21] is only guaranteed to
be a (

√
2 · γ, q)-NTRU instance for us.

Definition 2.16 (NTRU problems). Let q ≥ 2, γ ≥ γ′ > 0 and D a distri-
bution over (γ, q)-NTRU instances. The (D, γ, γ′, q)-NTRUvec problem, (γ, γ′, q)-
wc-NTRUvec problem, (D, γ, q)-NTRUmod problem and (γ, q)-wc-NTRUmod prob-
lem are the restrictions of the uSVP problems to (γ, q)-NTRU instances.

From the definitions of the NTRU and uSVP problems, one can see that the
average case NTRUvec and NTRUmod problems reduce to the worst-case uSVPvec

and uSVPmod problems. In the next sections, we will show that the converse also
holds, provided we have an oracle solving ideal-SVP.

Finally, we also recall the definition of the Hermite shortest vector problem
in ideal lattices (id-HSVP).
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Definition 2.17 (γ-id-HSVP). Let γ ≥
√
d·∆1/(2d)

K . Given as input a fractional
ideal I ⊂ K, the γ-id-HSVP problem asks to find an element x ∈ I \ {0} such
that ∥x∥ ≤ γ · N (I)1/d.

By Minkowski’s theorem, this problem is well-defined for any γ ≥
√
d ·∆1/(2d)

K .

3 New Tools on Module Lattices

In this section, we present new tools to manipulate module lattices. For the sake
of re-usability, we describe them for modules of arbitrary ranks, but we will use
them only in rank 2 in the reductions of the present work. The missing proofs
of this section are available in Appendix C.

3.1 Module Sparsification

An essential ingredient in the module randomization of Section 5 is sparsification.
In this subsection, we extend to modules the definition and some properties of
sparsification over lattices [Kho06].

Definition 3.1. Let M a module, p a prime ideal, b∨ ∈ (M∨/pM∨) \ {0} and
b∨ a lift of b∨ in M∨. The sparsification of M by (b∨, p) is the submodule

M ′ =
{
m ∈M, ⟨b∨,m⟩KR

∈ p
}
.

The submodule M ′ does not depend on the choice of the vector b∨ lifting b∨.

Note that M ⊆ M ′ ⊆ pM , implying that M ′ has the same rank as M . As
showed by the following two lemmas, sparsification increases the module norm
by a factor N (p) and an arbitrary rank-1 submodule of M is not contained in M ′

(except with probability ≤ 1/N (p)).

Lemma 3.2. Let M a module, p a prime ideal and b∨ ∈ (M∨/pM∨) \ {0}.
Let M ′ be the sparsification of M by (b∨, p). Then N (M ′) = N (p) · N (M).

Lemma 3.3. Let M a rank-k module, p a prime ideal and bI a primitive rank-1
submodule of M . Let b∨ be uniformly distributed in (M∨/pM∨) \ {0} and M ′

be the sparsification of M by (b∨, p). Then bpI ⊆M ′ and, except with probabil-
ity 1/N (p)− 1/N (p)k, we have bI ̸⊂M ′.

The following lemma states that a module sparsification can be efficiently
computed. The algorithm generalizes the one for lattice sparsification, detailed,
e.g., in [BSW16].

Lemma 3.4. There exists a polynomial-time algorithm taking as inputs an ar-
bitrary pseudo-basis of M ⊂ Kk

R, a prime ideal p and b∨ ∈ (M∨/pM∨) \ {0}
and computing a pseudo-basis of the sparsification of M by (b∨, p).
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3.2 Module Rounding

In this section, we describe the DualRound algorithm that rounds a rank-k mod-
ule contained in Kk

R into a module contained in Ok
K (with a close geometry), in a

way that does not depend on how the module in Kk
R was represented. We do that

by sampling almost orthogonal vectors in the dual lattice, in a similar fashion to
what was done in [dBDPW20] in the context of ideal lattices. We believe that
this technique of rounding via the dual might have other applications, especially
in situations where one would like to have the analogue of an HNF basis for
lattices with real coefficients.

DualRound is parameterized by a standard deviation parameter ς > 0, a
BKZ block-size β ∈ {2, . . . , kd} and an error bound ε > 0. It starts by com-
puting a short Z-basis of C∨, by using a provable variant of the BKZ algo-
rithm [Sch87,HPS11,GN08,ALNS20]. This offers different runtime-quality trade-
offs. It then uses the discrete Gaussian sampler from Lemma 2.1 with orthogonal
center parameters ti.

Algorithm 3.1 Algorithm DualRoundς,β,ε

Input: A pseudo-basis (B, I) of a rank-k module M ⊂ Kk
R .

1: Compute a Z-basis of M∨;
2: Run BKZ with block-size β on it to obtain a new Z-basis C∨ of M∨;
3: Set R = ε−1

√
kdς;

4: For i ∈ [k], set ti = R · ei, where ei is the i-th canonical unit vector of Kk
R ;

5: For i ∈ [k], sample yi ← D̂C∨,ς,ti ;
6: Return Y = (y1| . . . |yk)

†.

Lemma 3.5. Let (B, I) be a pseudo-basis of a rank-k module M ⊂ Kk
R. Let

β ∈ {2, · · · , kd}, ε > 0, and ς be such that ς ≥ (kd)kd/β+3/2 ·λkd(M
∨). Algorithm

DualRound runs in time polynomial in 2β , log(ς/ε) and the bitsize of its input.
Further, on input (B, I), DualRoundς,β,ε outputs a matrix Y ∈ Mk(KR) such
that

• (Y ·B) · I is contained in Ok
K ;

• Y = R · Ik +E for R = ε−1
√
kdς > 0 and ∥eij∥ ≤ εR for all i, j ∈ [k].

Moreover, if (B′, I′) is another pseudo-basis of M and if Y′ is the output of
DualRound given this pseudo-basis as input, then

SD(Y,Y′) ≤ 2−Ω(kd).

Note that Lemma 3.5 does not necessarily ensure that the matrix Y is invert-
ible, hence the module Y ·B · I might not be of rank k. However, by choosing ε
sufficiently small and using the second condition on Y, one can make sure thatY
is indeed invertible. This is the purpose of Lemma 3.6.

Lemma 3.6. Let Y ∈ Kk×k
R be such that Y = R · Ik + E for some R > 0 and

∥eij∥ ≤ ε ·R for all i, j ∈ [k]. Assume that ε ≤ 1/(2k). Then Y is invertible and
we have Y−1 = R−1 · Ik + E′, with ∥e′ij∥ ≤ (k + 1) · ε · R−1 for all i, j ∈ [k].

Further, it holds that det(Y) ∈ [(1 + (k + 1)(k + 2)ε)−d/2, (1 + 3ε)d/2] ·Rkd.
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4 From uSVP to NTRU

In this section, we prove the following result

Theorem 4.1. Let K be a number field of degree d with ζK(2) = 2o(d) and let
γ+ > 0 (recall that ζK(·) denotes the Dedekind zeta function of K). There exists

q0 = poly(∆
1/d
K , d, δK , γ+) ∈ R≥0 and an algorithm uSVP-to-NTRU such that the

following holds. For any q ≥ q0, γNTRU ≥ γ′NTRU > 1, γHSVP ≥
√
d∆

1/(2d)
K , let

γuSVP = γNTRU ·
√
γHSVP · 16

√
2 · d3/2 · δK

γ′uSVP =
γ′NTRU

γ
3/2
HSVP · 4 · d9/2 · δ2K

.

For any distribution DuSVP over γuSVP-uSVP instances with gap ≤ γ+, let
DNTRU be the distribution uSVP-to-NTRU (DuSVP, q, γHSVP). We have four re-
ductions

• from (DuSVP, γuSVP)-uSVPmod to (DNTRU, γNTRU, q)-NTRUmod;

• from γuSVP-wc-uSVPmod restricted to modules with gap ≤ γ+ to (γNTRU, q)-
wc-NTRUmod;

• from (DuSVP, γuSVP, γ
′
uSVP)-uSVPvec to (DNTRU, γNTRU, γ

′
NTRU, q)-NTRUvec;

• from (γuSVP, γ
′
uSVP)-wc-uSVPvec restricted to modules with gap ≤ γ+ to

(γNTRU, γ
′
NTRU, q)-wc-NTRUvec.

Given access to an oracle solving γHSVP-id-HSVP, the four reductions run

in time polynomial in their input size, in exp( d log(d)
log(2q/q0)

) and in ζK(2).

The outline of the reduction is given in Figure 2. Note that the quantity ζK(2)
may be exponential in d for some number fields (which may impact on the run-
time of the reduction, or even on the applicability of the reduction since we
require ζK(2) = 2o(d)). In the case of power-of-two cyclotomic fields, it was
proven in [SS13, Lemma 4.2] that ζK(2) = O(1). The missing proofs of this
section are available in Appendix D.

4.1 Pre-conditioning the uSVP Instance

In this section, we use algorithm DualRound to pre-process the input module and
control its volume. In order to have the Hermite Normal Form of our integral
module look like an NTRU instance, we slightly modify the geometry of our input
module to make it have what we call the coprime property (see Definition 4.2).
Hence, we describe an algorithm, called PreCond (see Algorithm D.1), which
combines all this and transform any uSVP instance (with a lower bounded gap)
into a new uSVP instance with roughly the same geometry and with all the
properties we will require in Section 4.2.
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Definition 4.2 (Coprime property). We say that a rank-2 module M ⊆ O2
K

has the coprime property if it holds that

{x ∈ OK | ∃ y ∈ OK , (x, y)T ∈M} = OK .

In other words, the module M has the coprime property if the ideal spanned by
the first coordinate of all the vectors of M is equal to OK .

We note that having the coprime property is not very constraining. In fact, any
module can be applied a small distorsion in order to ensure the coprime property.
This is formalized in Lemma 4.3 below.

Lemma 4.3. Let (B, I) be a pseudo-basis of a rank-2 module M ⊂ K2 with gap

γ(M) ≥ 1. There exists some V0 > 0 with V
1/(2d)
0 = poly(∆

1/d
K , d, δK , γ(M))

and an algorithm PreCond such that the following holds. Let β ∈ {2, · · · , 2d}
and V > 0 be such that V 1/(2d) ≥ (2d)2d/β · V 1/(2d)

0 . Then, on input (B, I), V
and β, algorithm PreCond outputs a matrix Y ∈ GL2(K) such that

• if (B, I) is a γuSVP-uSVP instance, then (YB, I) is a γ′uSVP-uSVP instance
for γ′uSVP = γuSVP/(2

√
2);

• the rank-2 module M ′ := YB · I is contained in O2
K ;

• N (M ′) ∈ [1/2d, 2d] · V ;
• M ′ has the coprime property;
• Y = R · I2 + E for some R = V 1/(2d) · N (M)−1/(2d) > 0 and ∥eij∥ ≤ R/5
for all 1 ≤ i, j ≤ 2.

Assume that ζK(2) ≤ 2o(d). Then Algorithm PreCond runs in expected time
polynomial in its input bitsize, in 2β and in ζK(2).

4.2 Transforming a uSVP Instance into an NTRU Instance

As the NTRU modules are free, the second step of our reduction finds a free
module containing our uSVP instance and transforms it into an NTRU instance.
For this purpose, we use the BalanceIdeal algorithm (cf Algorithm D.2) that
takes as input any fractional ideal I and uses a γHSVP-id-HSVP oracle to output
a balanced element x such that ⟨x⟩ contains I but is not much larger than it.

Lemma 4.4. There exists an algorithm BalanceIdeal that takes as input a

fractional ideal I ⊂ K and a parameter γHSVP ≥
√
d · ∆1/(2d)

K , and outputs an
element x ∈ K such that I ⊆ ⟨x⟩ and |σi(x)| ∈ [1 − 1/d, 1 + 1/d] · σ−1 for all
i ≤ d, where σ = γHSVP · d2 · δK · N (I)−1/d.

Moreover, given access to a γHSVP-id-HSVP oracle, it runs in polynomial
time and makes one call to the γHSVP-id-HSVP oracle.

We can now describe our algorithm transforming a uSVP instance into an
NTRU instance: Algorithm 4.1. The operations done by this algorithm are sum-
marised in Figure 2 and proven in Lemma 4.6.
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Algorithm 4.1 Algorithm Conditioned-to-NTRU

Input: A pseudo-basis B1 · I of a rank-2 module in O2
K and some parameters q and

γHSVP

Output: A basis B4 of a free rank-2 module and some auxiliary information aux

1: Compute the HNF pseudo-basis B2 · J of the rank-2 module spanned by B1 · I

Let a = B2[1, 0] # B2 =

(
1 0
a 1

)
2: Sample b← BalanceIdeal(J2, γHSVP)
3: Compute h = ⌊a · q/b⌉

4: Return B4 =

(
1 0
h q

)
and aux = (a, b, J1, J2)

Lemma 4.5. Let γHSVP ≥
√
d∆

1/(2d)
K , q ∈ Z>0 and (B, I) be a pseudo-basis of

a rank-2 module M ⊆ O2
K . Assume that we have access to a γHSVP-id-HSVP

oracle. On input γHSVP, q and (B, I), algorithm Conditioned-to-NTRU runs in
polynomial time in the bitsize of its input and makes one call to the γHSVP-
id-HSVP oracle.

Lemma 4.6. Let γHSVP ≥
√
d · ∆1/(2d)

K , γNTRU > 1 and q ∈ Z>0 be some
parameters. Define

V = γd
HSVP · qd · dd

and γuSVP = γNTRU ·
√
γHSVP · 8 · d3/2 · δK .

Let (B, I) be any γuSVP-uSVP instance in O2
K , with the coprime property

and with norm in [1/22d · V, 22d · V ]. Then on input (B, I), γHSVP, q, the algo-
rithm Conditioned-to-NTRU outputs (B4, aux) such that B4 is a (γNTRU, q)-
NTRU instance.

The aux information output by algorithm Conditioned-to-NTRU will be used
in Algorithms D.4 and D.3 to lift any short vector / dense submodule from the
NTRU instance back to the uSVP instance. The proofs of Lemmas 4.5 and 4.6
are available in Appendices D.4 and D.5 respectively.

4.3 Lifting back Short Vectors and Dense Submodules

In this section, we prove that using the auxiliary information aux produced
by Algorithm Conditioned-to-NTRU, one can lift a short vector or a densest
submodule from the output NTRU instance back to the input uSVP instance.
The proofs of Lemmas 4.7 and 4.8 are available in Appendices D.6 and D.7
respectively.

Lemma 4.7. There exists an algorithm LiftMod such that the following holds.
Let q, γHSVP and (B, I) be as in Lemma 4.6. Let M1 denote the rank-2 module
generated by (B, I), [C, (a, b, J1, J2)] ← Conditioned-to-NTRU((B, I), q, γHSVP)
and let M4 denote the rank-2 free module generated by C.
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Module Pseudo-basis Short vector

M1

 I1 I2(
b11 b12
b21 b22

) s1 =

(
u
v

)
yStep 1

HNF

M2 = M1

 J1 J2(
1 0
a 1

) s2 = s1

y Step 2
Principalization

M3 ⊇M2

 OK OK(
1 0
a b

)  s3 = s2

y Step 3
distorsion
+ rounding

M4

 OK OK(
1 0

⌊a · q/b⌉ q

) s4 =

(
u

v · q/b− u · {a · q/b}

)

Fig. 2. Outline of algorithm Conditioned-to-NTRU.

Let (v, J) be a pseudo-basis of the densest rank-1 submodule of M4. Then,
on input a, b, (C,O2

K) and (v, J), algorithm LiftMod outputs w ∈ K such that
spanK(w) ∩M1 is the densest rank-1 submodule of M1.

Moreover, algorithm LiftMod runs in polynomial time.

Lemma 4.8. There exists an algorithm LiftVec such that the following holds.
Let q, γHSVP and (B, I) be as in Lemma 4.6. Let M1 denote the rank-2 module
generated by (B, I), [C, aux] ← Conditioned-to-NTRU((B, I), q, γHSVP) and let
M4 denote the rank-2 free module generated by C.

Let s ∈ M4. Then, on input aux, γHSVP, (C,O2
K) and s, algorithm LiftVec

outputs a vector t ∈M such that ∥t∥ ≤ ∥s∥ · 68 · γ2
HSVP · d4 · δ2K .

If given access to a γHSVP-id-HSVP oracle, algorithm LiftVec runs in poly-
nomial time and makes 1 call to the oracle.

Combining all the results of this section, one can prove Theorem 4.1.

5 Randomization of Rank-2 Modules with Gaps

A rank-2 module with a gap can, by Lemma 2.9 and the fact that densest
submodules are primitive, be written as M = u · J1 + v · J2 where u · J1 is
a densest rank-1 submodule of M . Informally, the goal of this section is to
randomize u,v, J1, J2 without changing the gap too much. The missing proofs
of this section are available in Appendix E.
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We first describe the average-case distribution we are considering. Note that
the gap parameter γ′ is itself a random variable.

Definition 5.1. Let γ > 0 and B > 2. We define the distribution Dmodule
B,γ over

rank-2 and norm-1 modules by:

Dmodule
B,γ = QRSF-2-Mod(Q, γ′, I1, I2, r),

where

• the matrix Q is uniform in O2(KR);

• the gap parameter γ′ is set as γ′ = γ · N (c/a)1/(2d)/B1/(2d) with (a, c) ∈ K2
R

distributed as χKR × D(0, 1) conditioned on the event that for all i ∈ [d] we
have |σi(a · c)| ≥ 1/d;

• the ideals I1, I2 are uniform in I1 (the set of norm-1 ideals);

• the element r is uniform in KR mod γ′−2 · I1I
−1
2 .

We now state the main theorem of this section, which can be viewed as a
worst-case to average-case reduction for rank-2 modules with a gap.

Theorem 5.2 (ERH). For all B ≥ (dd∆k)
Ω(1) and γ ≥ B1/(2d) there exists a

procedure RandomizeB that runs in time polynomial in logB and the bitsize of
its input, and such that on input a pseudo-basis (B, I) of a rank-2 and norm-1
module M of gap γ outputs a pair ((B′, I′), aux) such that

• the pseudo-basis (B′, I′) spans a rank-2 and norm-1 module M ′;

• any event that holds for Dmodule
B,γ with probability ε ≥ 2−o(d) also holds for M ′

with probability Ω(ε4) over the internal randomness of RandomizeB.

Further, there exists a deterministic algorithm Recover that runs in time
polynomial in the bitsize of its input such that for M ′ as above, if U ′ is a dens-
est rank-1 submodule of M ′, then Recover(U ′, aux) returns the densest rank-1
submodule of M , with probability 1−2−Ω(d) over the randomness of RandomizeB.

We note that the theorem does not state that the output distribution of
RandomizeB is Dmodule

B,γ , but only that they are close in the sense that any event

that holds with sufficient probability for Dmodule
B,γ also holds for the output dis-

tribution of RandomizeB with a polynomially related probability.

RandomizeB is described in Algorithm 5.6. It consists of two main steps: a co-
efficient randomization (described in Section 5.1), whose purpose is to randomize
the ideal coefficients; and a geometric randomization (described in Section 5.2),
whose purpose is to randomize the pseudo-basis matrix. Section 5.3 compares
the distribution that would ideally be returned by the composition of the coef-
ficient and geometric randomizations, with the distribution of the pseudo-basis
in Definition 5.1. Finally, we complete the proof of Theorem 5.2 in Section 5.4.
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5.1 Coefficient Randomization

In the coefficient randomization step, our aim is to randomize the ideal coeffi-
cients of a good pseudo-basis (i.e., whose first pair corresponds to the densest
rank-1 submodule), given an arbitrary pseudo-basis of a rank-2 module. One
may multiply the whole pseudo-basis by a random ideal, but this only random-
izes the pair of ideal coefficients. More precisely, this leaves the ratio of the
ideal coefficients unchanged. To decouple the ideal coefficients, we use module
sparsification, as described in Section 3. This first step towards coefficient ran-
domization is formally described in Algorithm 5.1. Steps 1 and 3 are respectively
performed using Lemmas 2.3 and 3.4.

Algorithm 5.1 Partial Coefficient Randomization: Partial-CRB
Input: A pseudo-basis of a rank-2 module M .
1: Sample p uniformly among prime ideals of norms ≤ B;
2: Sample b∨ uniformly in (M∨/pM∨) \ {0};
3: Return a pseudo-basis of the sparsification of M by (b∨, p) along with p.

Theorem 5.3 (ERH). Let B ≥ (log∆K)Ω(1). The runtime of Partial-CRB
is polynomial in logB and the bitsize of its input. Let (B, I) be a pseudo-basis of
a rank-2 module M , and let (J1,u), (J2,v) be an arbitrary pseudo-basis of M .
Let M ′ be the rank-2 module spanned by the pseudo-basis output by Partial-CRB
when given (B, I) as input, let b∨ be the element of (M∨/pM∨) \ {0} sampled
in Partial-CRB and let b∨ be a lift of b∨ in M∨.
Then, with probability 1 − (1/B)Ω(1), we have ⟨b∨,u⟩KR

/∈ pJ−11 . In that case,

there exists x ∈ J1J
−1
2 such that

M ′ = u · pJ1 + (v + xu) · J2.

Assume further that γ(M) ≥ B1/(2d) and that u · J1 is the densest rank-1
submodule of M . Then, still when ⟨b∨,u⟩KR

/∈ pJ−11 , we have that γ(M ′) =

γ(M)/N (p)1/(2d) > 1 and u · pJ1 is the densest rank-1 submodule of M ′.

The result follows from Lemmas 5.4 and 5.5, whose proofs are postponed to
Appendix E.

Lemma 5.4. Borrowing the notations of Theorem 5.3, we have

u · pJ1 ⊂M ′ and u · J1 ̸⊂M ′,

with probability 1− (1/B)Ω(1) over the choices of p and b∨.

Lemma 5.5. Borrowing the notations of Theorem 5.3 and assuming that u ·
J1 ̸⊂M ′, there exists x ∈ J1J

−1
2 such that (v + xu) · J2 ⊂M ′.

We now describe the coefficient randomization. Ideally, we would have ac-
cess to a pseudo-basis ((J1,u), (J2,v)) of the module M under scope, for which
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the densest rank-1 submodule is u · J1. We would multiply J1 by a random
ideal and J2 by another random ideal. Unfortunately, given only access to an
arbitrary pseudo-basis ((I1,b1), (I2,b2)) of M , this seems difficult to achieve
obliviously. Instead, we use algorithm Ideal-Sample (Algorithm 2.1) to obtain
a uniform norm-1 ideal I, and multiply M by it. This will obliviously multiply J1
and J2 by I. As this distribution is invariant by ideal multiplication, the ideal
J2I/N (J2)

1/d will be uniform among norm-1 ideals. It remains to obliviously
randomize the first ideal independently of the second one. For this purpose, we
use Partial-CR (Algorithm 5.1), which has the effect of obliviously multiply-
ing the first ideal with a random prime ideal p while leaving the second one
unchanged (with overwhelming probability). Note that multiplying by a ran-
dom prime ideal is the main component of the ideal randomization algorithm
Ideal-Sample. In a sense, this “almost” randomizes J1.

Algorithm 5.2 describes the process on the input basis ((I1,b1), (I2,b2)). The
corresponding randomization performed on the hidden pseudo-basis ((J1,u),
(J2,v)) is described in Algorithm 5.3. Note that there is no need for Algo-
rithm 5.3 to be efficient as its sole purpose is to describe the behavior of Algo-
rithm 5.2 on the hidden pseudo-basis.

In Theorem 5.6, we show that the resulting distributions on the output mod-
ules are statistically close, and describe the evolution of the densest rank-1 sub-
module.

Algorithm 5.2 Real Coefficient Randomization: Real-CRB,B′

Input: A pseudo-basis ((I1,b1), (I2,b2)) of a module M ⊂ K2
R.

1: Let ((I ′1,b
′
1), (I

′
2,b

′
2)), p be the output of Partial-CRB on input ((I1,b1), (I2,b2));

2: Sample q using Ideal-SampleB′ ;
3: Let b′′

i = b′
i/N (p)1/(2d) for i ∈ [2];

4: Return ((qI ′1,b
′′
1 ), (qI

′
2,b

′′
2 )), p, q.

Algorithm 5.3 Ideal Coefficient Randomization: Ideal-CRB
Input: Q ∈ O2(KR), γ > 1, J1, J2 ideals of norm 1, r ∈ KR;
1: Let M = QRSF-2-Mod(Q, γ, J1, J2, r);
2: Let u = 1/γ ·Q · (1, 0)T and v = γ ·Q · (r, 1)T ;
3: Sample p uniformly among prime ideals of norms ≤ B;
4: Sample b∨ in M∨, uniform in M∨/pM∨ conditioned on ⟨b∨,u⟩KR

̸∈ pJ−1
1 ;

5: Find x ∈ J1J2
−1 such that ⟨b∨,v + x · u⟩KR

∈ pJ−1
2 ;

6: Sample J uniformly among norm-1 ideals;
7: Return (Q, γ/N (p)1/(2d), J1J2

−1Jp/N 1/d(p), J, r + x).

Theorem 5.6 (ERH). Assume that B′ ≥ (dd∆K)Ω(1) and B ≥ (log∆K)Ω(1).
The runtime of Real-CRB,B′ is polynomial in log(BB′) and the bitsize of its
input.

Let M = 1
γ ·Q·

([
1
0

]
· J1 +

[
r
1

]
· γ2 · J2

)
⊂ K2

R a module with norm 1, in QR-

standard form. Then the distribution of the module output by Real-CRB,B′ on
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input an arbitrary pseudo-basis of M is within statistical distance (1/B)Ω(1)+2−d

of QRSF-2-Mod(Ideal-CRB(Q, γ, J1, J2, r)).
Assume further that γ ≥ B1/(2d) and let U denote the densest rank-1 sub-

module of M . Let (M ′, p, q) be the output of Real-CRB,B′ on input M . Then,
with probability 1− (1/B)Ω(1), we have that γ(M ′) = γ(M)/N (p)1/(2d) > 1 and
the densest rank-1 submodule of M ′ is

N (p)
1
2d · U · q p

N 1
d (p)

.

5.2 Geometric Randomization

In the geometric module randomization, we will use a distribution Ddistort over
K2×2

R whose purpose is to distort the geometric relationship between the dens-
est rank-1 submodule and the complementing rank-1 submodule of the rank-2
module under scope. We define Ddistort as DKR(0, 1)

2×2 conditioned on the event
that |det(σi(D))| > 1/d holds for all i ∈ [d].

The following lemmas describe useful properties of the distribution Ddistort.

Lemma 5.7. The following properties hold.

• The distribution Ddistort can be sampled from in time polynomial in d.
• The distribution Ddistort is invariant by multiplication on the left and the

right by matrices in O2(KR).

Lemma 5.8. Let D be the distribution over K2×2
R of

Q ·
(
a b
0 c

)
where Q ← U(O2(KR)), a ← χKR and b, c ← DKR(0, 1), conditioned on the
event that for all i ∈ [d] we have |σi(a · c)| ≥ 1/d. Then D = Ddistort.

Let ((J1,u), (J2,v)) be a pseudo-basis of a rank-2 moduleM . Assume that u·
J1 is the densest rank-1 submodule, but that we have access to this pseudo-basis
only indirectly, via an arbitrary pseudo-basis of M . Write

(u|v) = Q ·
(
1 r
0 1

)
,

for some r ∈ KR. The purpose of the geometric randomization is to map r to

some r′ that is uniform modulo J1J
−1
2 , while at the same time not distorting

the module M too much, so that the randomized M still has a gap and its rank-
1 densest submodule is related to u · J1. For this purpose, we multiply M on
the left by a matrix sampled from Ddistort. For the analysis, it is convenient to
take it Gaussian, and to avoid a potentially large distortion, we avoid matrix
samples with small determinant. This corresponds to algorithm Real-GR (Algo-
rithm 5.4). The effect on the hidden pseudo-basis ((J1,u), (J2,v)) is described in
algorithm Ideal-GR (Algorithm 5.5). In Theorem 5.9, we show that the result-
ing module distributions are identical, and describe the evolution of the densest
rank-1 sublattice.
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Algorithm 5.4 Real Geometric Randomization: Real-GR

Input: A pseudo-basis ((I1,b1), (I2,b2)) of a norm-1 module M ⊂ K2
R.

1: Sample D← Ddistort (using Lemma 5.7);

2: (b′
1|b′

2)← det(D)−1/(2d) ·D · (b1|b2);
3: Return ((I1,b

′
1), (I2,b

′
2)),D.

Algorithm 5.5 Ideal Geometric Randomization: Ideal-GR

Input: Q ∈ O2(KR), γ > 1, J1, J2 ideals of norm 1, r ∈ KR;
1: Sample a ← χKR and c ← D(0, 1) conditioned on the event that for all i ∈ [d] we

have |σi(a · c)| ≥ 1/d;
2: Sample b← D(0, 1);
3: Sample Q′ ← U(O2(KR));
4: Set J ′

1 = a/N 1/d(a) · J1 and J ′
2 = c/N 1/d(c) · J2;

5: Set γ′ = γ · N (c/a)1/(2d);
6: Set r′ = (b+ ar)/c;
7: Return (Q′, γ′, J ′

1, J
′
2, r

′).

Theorem 5.9. Algorithm Real-GR runs in polynomial time. Let M = 1
γ · Q ·([

1
0

]
· J1 +

[
r
1

]
· γ2 · J2

)
⊂ K2

R a module with norm 1, in QR-standard-form.

Let M ′ be the module spanned by the output of Real-GR on input an arbitrary
pseudo-basis of M . Then the distribution of M ′ is identical to the distribution
QRSF-2-Mod(Ideal-GR(Q, γ, J1, J2, r)).

Further, if γ > d and U is the densest rank-1 submodule of M , then, with
probability 1 − 2−Ω(d), we have γ(M ′) > 1 and the densest rank-1 submodule

of M ′ is det(D)
−1/(2d) ·D · U , where D is the Gaussian matrix sampled during

the execution of Real-GR.

5.3 On the Ideal-GR ◦ Ideal-CR Distribution

We define a few probability distributions over the inputs of QRSF-2-Mod, which
we will use to show that the operations performed on the available arbitrary
pseudo-basis randomize the rank-2 module, so that the input module is “forgot-
ten” in the output module distribution while at the same time controlling the
evolution of the densest rank-1 submodule.

Definition 5.10. Let B ≥ 2 and γ > 0. We consider the following random
variables, which are assumed independent (unless stated otherwise).

• Q uniform in O2(KR);
• b ∈ KR distributed as DKR(0, 1);
• (a, c) ∈ K2

R distributed as χKR ×DKR(0, 1) conditioned on the event that for
all i ∈ [d] we have |σi(a · c)| ≥ 1/d; we define γ′ = γ · N (c/a)1/(2d)/B1/(2d);
• p uniform among prime ideals of norms ≤ B;
• I1, I2, J uniform in I1 (the set of norm-1 ideals);
• ζ ∈ E sampled from the centered normal law of standard deviation d−3/2,
conditioned on ∥ζ∥ ≤ 1/d;
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• u uniform in {x ∈ KR,∀i ∈ [d] : |σi(x)| = 1};
• r′ uniform in KR mod γ′−2 · I1I

−1
2 .

Let J1, J2 ∈ I1 and r ∈ KR arbitrary. Let x be as in Step 5 of Ideal-CRB,
when given (Q, γ, J1, J2, r) as input and with the variable p of Ideal-CRB being
the random variable above. In order to simplify the notations, we define the
random variable:

I(J1, J2) = N
1
d

( c
a

)
· au

c exp(ζ)
· J1J2−1J

p

N 1
d (p)

∈ I1.

Let r′′(J1, J2) be uniformly distributed in KR mod γ′−2 · I(J1, J2) · J−1.
We define the following distributions of the form (Q̃, γ̃, Ĩ1, Ĩ2, r̃), where the

random variables r̃ is defined modulo γ̃−2 · Ĩ1 · Ĩ2
−1

:

Drand
B,γ :

(
Q, γ

N
(
c
a

) 1
2d

N (p)
1
2d

,
a

N 1
d (a)

J1J2
−1J

p

N 1
d (p)

,
c

N 1
d (c)

· J,
b+ a(r + x)

c

)
,

D
(1)
B,γ :

(
Q, γ

N
(
c
a

) 1
2d

N (p)
1
2d

, N 1
d

( c
a

)
· au
c
· J1J2−1J

p

N 1
d (p)

, J, u
b+ a(r + x)

c

)
,

D
(2)
B,γ :

(
Q, γ ·

N
(
c
a

) 1
2d

N (p)
1
2d

, I(J1, J2), J, u
b+ a(r + x)

c exp(ζ)

)
,

D
(3)
B,γ :

(
Q, γ′, I(J1, J2), J,

B
1
d

N 1
d (p)

· u
b+ a(r + x)

c exp(ζ)

)
,

D
(4)
B,γ : (Q, γ′, I(J1, J2), J, r′′(J1, J2)),

Dtarget
B,γ : (Q, γ′, I1, I2, r′).

Note that Drand
B,γ is the distribution obtained by composing Ideal-CRB (Al-

gorithm 5.3) and Ideal-GR (Algorithm 5.5), on an input of the form (Q0, γ, J1,
J2, r) with (γ, J1, J2, r) as above and Q0 ∈ O2(KR) arbitrary. These algorithms
significantly randomize the QR-standard form, but it still depends on (J1, J2, r).
On the other hand, the distribution Dtarget

B,γ is independent of (J1, J2, r). Our goal
is to show that these two distributions are similar, in the sense that any event
that holds with some probability ε ≥ 2−o(d) for one holds with probability εO(1)

for the other one.
For this purpose, we consider the intermediate (hybrid) distributions of Defi-

nition 5.10. To help the reader, we use two colours in the definition of the succes-
sive distributions. The entries of the tuples that are in red are those that change
compared to the previous distribution. The variables with blue background are
those that depend on (J1, J2, r). The relations between the distributions of Defi-
nition 5.10 are pictorially summarized in Figure 3. The lemmas formally stating
these relations and their proofs are provided in Appendix E. Some of the rela-

tions require B ≥ (dd∆K)Ω(1) or γ ≥ d1/4 ·∆1/(2d)
K .
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Drand
B,γ = D

(1)
B,γ

RD2=O(1)−−−−−−−→ D
(2)
B,γ

RD2=O(1)−−−−−−−→ D
(3)
B,γ

SD=2−Ω(d)

←−−−−−−→ D
(4)
B,γ

SD=2−Ω(d)

←−−−−−−→ Dtarget
B,γ

Fig. 3. The relations between the distributions of Definition 5.10, proved in Lem-

mas E.1, E.2, E.3, E.4 and E.6. Here D
RD2=O(1)−−−−−−−→ D′ means RD(D′ ∥ D) = O(1) and

D
SD=2−Ω(d)

−−−−−−−−→ D′ means SD(D,D′) = 2−Ω(d).

5.4 Full Module Randomization

The full randomization algorithm RandomizeB (Algorithm 5.6) is the composi-
tion of algorithms Real-CR and Real-GR.

Algorithm 5.6 (Real) Full Randomization: RandomizeB

Input: A pseudo-basis (B, I) of a norm-1 module M ⊂ K2
R.

1: Apply Real-CRB,(dd∆K)Ω(1) to (B, I) and let ((B◦, I◦), p, q) be the output;

2: Apply Real-GR to (B◦, I◦) and let ((B′, I′),D) be the output;
3: Return ((B′, I′), aux) with aux = (p, q,D).

Let ((B′, I′), aux) be an output of RandomizeB , and U ′ be a rank-1 submodule
of the module spanned by (B′, I′). We define:

Recover(U ′, aux = (p, q, D)) = (N (p) · det(D))
1
2d ·D−1 · U ′ · q−1p−1.

With these choices of algorithms RandomizeB and Recover, we can finally
prove Theorem 5.2. For this purpose, we show that the module distribution that
is output from the randomization algorithm (on an arbitrary input) and the
distribution Dmodule

B,γ from Definition 5.1 are close in the mixed “SD plus RD”
sense of Figure 3. The full proof is available in Appendix E.1.

6 Random Self-Reducibility of Module uSVP

The main result of this section is the following worst-case to average-case reduc-
tion for uSVPmod.

Theorem 6.1 (ERH). There exist γ0 = (d∆
1/d
K )O(1) and a family of distribu-

tions (DuSVP
γ )γ≥γ0

such that the following properties hold for any γ ≥ γ0:

• if γ ≤ (2d∆
1/d
K )O(1), then DuSVP

γ can be sampled from in time polynomial
in log∆K ;
• with probability 1 − 2−Ω(d), a sample from DuSVP

γ is a pseudo-basis of a

rank-2 module M ⊆ O2
K with gap γ(M) ≥ γ ·

√
d∆K

1/(2d); in particular,
these are γ-uSVP instances;

• there exists a Karp reduction from γ′-wc-uSVPmod to (DuSVP
γ , γ)-uSVPmod,

with γ′ = γ · (d ·∆1/d
K )O(1); the reduction runs in time polynomial in log∆K

and the input bitsize.
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Note that the restriction on γ for the first condition is very mild, as in this
parameter range, uSVPmod can be solved in polynomial time using the LLL
algorithm [LLL82]. We now proceed in two steps. We first define and study the
distribution DuSVP, and then prove Theorem 6.1.

6.1 A Distribution over uSVP Instances

Let γ > 1. The distribution DuSVP
γ is defined as follows:

• sample a module from Dmodule
B,γ′ along with a pseudo-basis (B, I), with B =

(dd∆K)O(1) and γ′ = 2γ ·
√
d∆K

1/(2d) ·
√
dB1/d (see Definition 5.1) and using

Ideal-Sample to sample from I1;
• call DualRoundς,β,ε(B, I) with ς = (2d∆

1/d
K )O(1), β = 2 and ε = 1/(2d)3/2,

and let Y denote the output;
• return HNF(Y ·B, I).

The first two statements of Theorem 6.1 are implied by the following lemmas,
whose proofs can be found in Appendix F.

Lemma 6.2. A sample M from Dmodule
B,γ′ has gap γ(M) ≥ γ′/(

√
dB1/d), with

probability 1− 2−Ω(d).

Using the latter result and Lemma 2.11, we obtain that the assumptions of
Lemma 3.5 are satisfied. This implies that the above sampling algorithm runs in
time polynomial in log∆K . By Lemmas 3.5 and 3.6, the output is a pseudo-basis
of a rank-2 module in O2

K .

Lemma 6.3. Let γ > 2. Let (B, I) be a pseudo-basis of a rank-2 module M with
gap γ. Let Y denote the output of DualRoundς,β,ε(B, I) with ς = γ · (2d)2d+3,
β = 2 and ε = 1/(2d)3/2. Then the module spanned by (Y ·B, I) has gap ≥ γ/2.

The definition of DuSVP
γ and Lemmas 6.2 and 6.3 implies that the modules

whose pseudo-basis are sampled from DuSVP
γ have gap ≥ γ ·

√
d∆K

1/(2d), and
hence are γ-uSVP instances with overwhelming probability.

6.2 Reducing Worst-Case Instances to DuSVP Instances

We first introduce intermediate problems, that will allow us to split the reduction
into several steps.

Definition 6.4. Let γ > 1. A γ-uSVPN instance consists in a pseudo-basis
(B, I) of a rank-2 module M ⊂ K2 such that γ(M) ≥ γ.

Let D a distribution over γ-uSVPN instances. The (D, γ)-uSVPNmod prob-
lem asks, given as input a sample (B, I) from D, to recover a densest rank-1
submodule of the module spanned by (B, I).

The worst-case variant γ-wc-uSVPNmod asks to solve this problem for any γ-
uSVPN instance.

The γ≈-wc-uSVPNmod variant is the restriction of γ-wc-uSVPNmod to the γ-
uSVPN instances whose spanned modules M satisfy γ(M) ∈ [γ, γ · (1 + 1/d)].
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Note that worst-case wc-uSVPmod reduces to wc-uSVPNmod as the existence
of a short non-zero vector implies the one of a dense rank-1 module. Similarly,

uSVPNmod reduces to uSVPmod with a loss of a (
√
d∆

1/d
K ) factor in the parameters,

thanks to Minkoswki’s theorem. To prove the third statement of Theorem 6.1,
it hence suffices to reduce wc-uSVPNmod to uSVPNmod for distribution DuSVP

γ . The
result follows from Lemmas 6.5 and 6.7.

The first lemma states that to solve γ-wc-uSVPNmod (in which the gap is only
bounded from below), then it suffices to solve γ≈-wc-uSVPNmod (in which the gap
is almost known). It relies on sparsification.

Lemma 6.5 (ERH). Let γ, γ′ > 1 satisfying γ′ ≥ 2 log(∆K)
O(1/d) ·γ. Then γ′-

wc-uSVPNmod reduces to γ≈-wc-uSVPNmod. The reduction runs in time polynomial
in (log∆K)O(1) and its input bitsize and succeeds with probability Ω(1/(d2 +
log∆K)).

Using the Rényi divergence, it is possible to relate the success probability of
an algorithm towards solving uSVPNmod for samples from DuSVP

γ with the same

probability for DuSVP
γ′ , when γ and γ′ are sufficiently close.

Lemma 6.6. Let γ, γ′, γ′′ > 1 with γ′ ∈ γ · [1, 1+1/d] and γ′′ = γ/(d∆
1/d
K )O(1).

Then any algorithm that solves (DuSVP
γ , γ′′)-uSVPNmod with probability ε also

solves (DuSVP
γ′ , γ′′)-uSVPNmod with probability Ω(ε2).

Equipped with the latter result, we are now able to state the worst-case to
average case component of the reduction.

Lemma 6.7 (ERH). Let γ, γ′, γ′′ > 1 with γ′ = γ · (d∆1/d
K )O(1) and γ′′ =

γ/(d∆
1/d
K )O(1) . Then there is a reduction from γ≈-wc-uSVPNmod to (DuSVP

γ′ , γ′′)-

uSVPNmod. The reduction runs in time polynomial in log∆K and the input bitsize,
and if the (DuSVP

γ′ , γ′′)-uSVPNmod oracle succeeds with probability ε ≥ 2−o(d), then

the reduction succeeds with probability εO(1).
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FS10. C. Fieker and D. Stehlé. Short bases of lattices over number fields. In
ANTS, 2010.

GAL13. M. Gil, F. Alajaji, and T. Linder. Rényi divergence measures for commonly
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module lattices. In ASIACRYPT, 2019.

31

https://www.ntru.org/
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A Properties of the Rényi Divergence

We will use the following result that bounds the Rényi divergence between two
zero-centered normal distributions over KR. It follows from standard divergence
bounds on Gaussians such as in [GAL13, Table 2] (note that in this work the
Rényi divergence is the logarithm of ours).

Lemma A.1. Let a, b ∈ K+
R . Let a = (σi(a))i∈[r1+r2] and b = (σi(b))i∈[r1+r2].

If 2bi − ai > 0 for all i ∈ [r1 + r2], then we have

RD(DKR(0,a) ∥ DKR(0,b)) ≤ N
(

b2

a(2b− a)

) 1
2

.

We will also use the following technical lemma on the Rényi divergence of a
product of random variables.

Lemma A.2. Let X,Y be independent random variables in R with probability
distributions DX , DY . Assume that DX is non-zero over R (whereas Y can even
be discrete). Then

RD(X · Y ∥ X) ≤
(
Ey∼DY

(
RD(X · y ∥ X)

) 1
2

)2
.

Proof. Let D′ be the distribution probability of X · Y . We have, for all t ∈ R:

D′(t) =

∫
y

DY (y)DX

( t
y

)
dy .

This implies that:

RD(X · Y ∥ X) =

∫
t

1

DX(t)

(∫
y

DY (y)DX

( t
y

)
dy

)2

dt

=

∫
y1,y2

DY (y1)DY (y2)

∫
t

DX

(
t
y1

)
DX

(
t
y2

)
DX(t)

dtdy1 dy2 .

By the Cauchy-Schwartz inequality, we have

(∫
t

DX

(
t
y1

)
DX

(
t
y2

)
DX(t)

dt

)2

≤
∫
t

(
DX

(
t
y1

))2
DX(t)

dt ·
∫
t

(
DX

(
t
y2

))2
DX(t)

dt

= RD(X · y1 ∥ X) · RD(X · y2 ∥ X).

Overall, we obtain that

RD(X · Y ∥ X) ≤
(∫

y

DY (y)
(
RD(X · y ∥ X)

) 1
2

dy

)2

,

which completes the proof. ⊓⊔
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B Missing proofs from Section 2

B.1 Proof of Lemma 2.4

Let ζ ′ ∈ E sampled from the centered normal law with standard deviation d−3/2,
z′ = exp(ζ ′). We use the notations from [dBDPW20] and instantiate [dBDPW20,
Theorem 3.3] with s = d−3/2, ε = 2−d, N = 1 and

k =
Θ(d log d) + log

(
Vol(Pic0K)

)
log d

.

By the log-unit lattice smoothing analysis from [dBDPW20, Appendix B.1],
the condition on N in [dBDPW20, Theorem 3.3] is satisfied. Now, note that
the bound on Vol(Pic0K) in [dBDPW20, Lemma 2.3] implies that k ≤ O(d +
log∆K/ log d). Therefore, our lower bound on B implies the one in [dBDPW20,
Theorem 3.3]. By [dBDPW20, Theorem 3.3], we deduce that the distribution
of the projection of z′ · p/N 1/d(p) into Pic0K is within 2−d statistical distance
from U(Pic0K), implying by Gaussian tail-bounds that the distribution of exp(ζ) ·
p/N 1/d(p) is within 2−Ω(d) statistical distance from U(Pic0K). The proof can be
completed by using [dBDPW20, Lemma 2.7]. ⊓⊔

B.2 Equivalence of the Conditions in Definition 2.5

Assume that N is maximal for the inclusion. Let m = rank(M) and k = rank(N)
and write N =

∑
i∈[k] ciJi. By [FS10, Theorem 4], there exists a pseudo-basis

(bi, Ii)i∈[m] of M such that spani∈[k](biIi) = spani∈[k](ciJi) = span(N). By
maximality of N this implies that N =

∑
i∈[k] bi · Ii. Taking N ′ =

∑
i>k bi · Ii

allows to conclude that M = N +N ′ and rank(M) = rank(N) + rank(N ′).
Now, assume that there is a module N ′ with M = N +N ′ and rank(M) =

rank(N) + rank(N ′). As N ⊆M , we have N ⊆M ∩ spanK(N). Further, by the
rank equality, we must have N ′ ∩ spanK(N) = {0}. Then we have

N ⊆M ∩ spanK(N) = (N +N ′) ∩ spanK(N) = N ∩ spanK(N) ⊆ N.

Finally, assume thatN = M∩spanK(N). Let P with rank(P ) = rank(N) and
N ⊆ P . We have that spanK(N) ⊆ spanK(P ), and hence spanK(N) = spanK(P )
by equality of the dimensions. Then we have

N ⊆ P ⊆M ∩ spanK(P ) = M ∩ spanK(N) = N.

This completes the equivalency proof. ⊓⊔

B.3 Proof of Lemma 2.6

Let k denote the rank of M . By Minkowski’s theorem, there exists a non-
zero vector in M of ℓ2-norm ≤

√
kd · (detM)1/(kd). By considering the rank-

1 module that it spans, we obtain that λN1 (M) ≤ (kd)d/2 · (detM)1/k. Now,
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by using Minkowski’s theorem again, we obtain that all rank-1 submodules
of norm ≤ (kd)d/2 · (detM)1/k contain a non-zero vector of M of ℓ2-norm ≤√
kd ·∆1/(2d)

K · (detM)1/(kd). By discreteness of M , the non-zero vectors {si}i≥1
of M with ℓ2-norm ≤

√
kd ·∆1/(2d)

K · (detM)1/(kd) form a finite set. Now, we can
consider all the maximal rank-1 submodules ofM containing at least one of these
vectors. By Condition 3 of Definition 2.5, two maximal rank-1 submodules of M
containing the same vector si must be equal, hence there are only finitely many
such submodules. This allows us to conclude that the infimum corresponding
to λN1 (M) is over a finite set and must be reached. ⊓⊔

B.4 Proof of Lemma 2.7

We first recall the lemma statement.

Lemma B.1. There exists an absolute polynomial P such that the following
holds. For any number field K of degree d, integer k ≥ 2, rank-k module M ⊂ Kk

R
and real number δ ≥ 0, if c ∈ spanKR

(M) and ς ∈ R>0 are such that ∥c∥ ≤ δ · ς
and ς ≥ λkd(M) · P (∆

1/d
K , k, d, δ, λkd(M)/λ1(M)), then it holds that

Pr
v←DM,ς,c

(
v · OK is primitive in M

)
≥ 1

4ζK(k)
,

where ζK(·) is the Dedekind zeta function of the number field K.

Before proving the lemma, we recall some facts regarding the Dedekind zeta
function (see, e.g., [Neu99, Chapter 7] for more details). First, let us define the
Möbius function of a field K. It is defined over integral ideals of OK by

µK

(
r∏

i=1

peii

)
:=

1 if r = 0
(−1)r if e1 = · · · = er = 1
0 otherwise

where the pi’s are distinct prime ideals. For any s > 1, the two following equa-
tions holds, where the sums are over integral ideals of OK :

ζK(s) =
∑

a⊆OK

1

N (a)s

ζK(s)−1 =
∑

a⊆OK

µK(a)

N (a)s
.

The Dedekind zeta function is well-defined for any s > 1 (i.e., the sums above
are absolutely converging for s > 1).

Lemma B.2. Let H(N) := |{a ⊆ OK ideal | N (a) ≤ N}|, for N ≥ 0. For
any s > 1 and number field K, it holds that H(N) ≤ ζK(s) ·Ns.

Proof. This follows from ζK(s) ≥
∑

a ,N (a)≤N
1

N (a)s ≥ H(N)/Ns. ⊓⊔
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Lemma B.3. For any s ≥ 3/2 and degree-d number field K, it holds that
ζK(s) ≤ 22d.

Proof. We use the Euler product form of the Dedekind zeta function

ζK(s) =
∏

p⊂OK
p prime

1

1−N (p)−s

=
∏
p∈Z

p prime

∏
p|pOK

p prime

1

1−N (p)−s

≤
∏
p∈Z

p prime

∏
p|pOK

p prime

1

1− p−s

≤
∏
p∈Z

p prime

( 1

1− p−s

)d
≤ ζQ(s)

d ≤ ζQ(3/2)
d ≤ 4d,

where we used the fact that ζQ(3/2) ≈ 2.6 ≤ 4. ⊓⊔

Finally, we will use the following notations and facts regarding Gaussian
distributions. We let ρς,c(x) = exp

(
−π∥x− c∥2/ς2

)
. We also write DM,ς,c(x)

the probability that the Gaussian distribution DM,ς,c outputs the vector x, i.e.,
DM,ς,c(x) = ρς,c(x)/ρς,c(M):

• From [Ban93, Lemma 1.5], we know that for any rank-n lattice L and c >
1/
√
2π, we have ρς,c({v ∈ L | ∥v − c∥ > c ·

√
n · ς}) ≤ 2Cn · ρς(L), where

C = c ·
√
2πe · e−π·c2 < 1.

• From [MR07, Lemma 3.3], we know that for any ε > 0 and rank-n lattice L,
the smoothing parameter of L satisfies ηε(L) ≤

√
ln(2n(1 + 1/ε))/π ·λn(L).

• Finally, from the proof of [MR07, Lemma 4.4], we know that if ς ≥ ηε(L),
then it holds that ρς,c(L) ∈ [1− ε, 1 + ε] · ςn/det(L).

Proof (Lemma 2.7). We follow the same proof structure as in [SS13, Lemma 4.4].
Let us fix some number field K of degree d, integer k ≥ 2, rank-k module
M ⊂ Kk

R and real number δ ≥ 0. Let

ς0 = 245 ·∆7/(2d)
K · k8 · d4 · (k2 · d2 + δ3) · λ1(M)−3 · λkd(M)4.

Observe that ς0 = λkd(M) · P (∆
1/d
K , k, d, δ, λkd(M)/λ1(M)) for some absolute

polynomial P . We will prove that the lemma holds for this polynomial P .

Let us then fix some ς and c ∈ spanKR
(M) such that ∥c∥ ≤ δ · ς and ς ≥ ς0.

We define the following quantities.
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ε = 2−2kd−5

B1 =
ςd√

∆K · λkd(M)d ·max
(
ε−1/k, (2 ln(2/ε))d

)
B2 =

(
2 ·
√
kd · ς + ∥c∥

)d ·√∆K · λ1(M)−d.

With these notations, we are ready to bound from below the probability that
a Gaussian element in M is primitive. To do so, observe that for v ∈ M , the
rank-1 module vOK is not primitive in M if an only if there exists some prime
ideal p such that v ∈ p ·M . Indeed, let us define I = {x ∈ K |x · v ∈ OK}.
One can check that I is a fractional ideal with OK ⊆ I. Moreover, by definition
of a primitive submodule, we have I = OK if and only if v · OK is a primitive
submodule of M . Let a = I−1, which is an integral ideal. By definition of I
and a, we have that v ∈ a ·M . If v · OK is not primitive, then a ̸= OK so there
exists p|a, and it holds that v ∈ p ·M . Reciprocally, if v ∈ p ·M for some prime
ideal p, then v · p−1 ⊂M , so I ̸= OK and v · OK is not primitive in M .

From this observation, we can rewrite

Pr
v←DM,ς,c

(
v · OK is primitive in M

)
= DM,ς,c

(
M \

⋃
p prime

pM
)

≥ DT
M,ς,c

(
M \

⋃
p prime

pM
)
,

with DT
M,ς,c being the truncated Gaussian function, defined as DT

M,ς,c(v) =

DM,ς,c(v) if v ̸= 0 and ∥v − c∥ ≤ 2 ·
√
kd, and DT

M,ς,c(v) = 0 otherwise (note

that DT
M,ς,c does not sum to 1 and is not a probability distribution).

Let us then focus on p := DT
M,ς,c

(
M \

⋃
p prime pM

)
. Observe that for any

distinct prime ideals p1, . . . , pt, it holds that ∩i≤t(pi ·M) = (
∏

i≤t pi) ·M . Hence,
from the inclusion-exclusion principle, we obtain

p =
∑

a⊆OK

µK(a) ·DT
M,ς,c

(
a ·M

)
=

∑
a⊆OK

N (a)≤B2

µK(a) ·DT
M,ς,c

(
a ·M

)
,

where the sums are above the integral ideals a ⊆ OK and B2 was defined at the
start of the proof. The second equality comes from the fact that if N (a) > B2,
then a ·M does not contain any non-zero vector shorter than 2

√
kd · ς + ∥c∥

(since otherwise M = a−1 · (a · M) would contain a non-zero vector smaller

than (2
√
kd · ς + ∥c∥) · N (a)−1/d ·∆1/(2d)

K < λ1(M), contradicting the definition
of λ1(M)). This implies that a ·M does not contain any non-zero vector in the
ball {v | ∥v − c∥ ≤ 2

√
kd · ς}, hence DT

M,ς,c(a ·M) = 0.
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Combining this with the equation recalled before the proof relating the
Dedekind zeta function and the Möbius function, we obtain

|p− ζK(k)−1| ≤
∑

a⊆OK

N (a)≤B1

∣∣∣DT
M,ς,c(a ·M)−N (a)−k

∣∣∣
+

∑
a⊆OK

B1<N (a)≤B2

DT
M,ς,c(a ·M) +

∑
a⊆OK

N (a)>B1

N (a)−k

Note that by definition of B1 and B2, it holds that B1 ≤ B2. We will bound
each one of the three sums above by ζK(k)−1/4, which will prove the result.

Let us start with the first sum. Let a be an integral ideal with N (a) ≤ B1. We
know that λkd(a·M) ≤ λ∞1 (a)·λkd(M) (since multiplying kd linearly independent
vectors fromM by a shortest vector of a provides kd linearly independent vectors

of aM). Moreover, since N (a) ≤ B1, we know that λ∞1 (a) ≤ B
1/d
1 ·∆1/(2d)

K . By
definition of B1 and ε, we have

ς ≥ B
1
d
1 ·∆

1
2d

K · λkd(M) · 2ln(2/ε) ≥ λkd(aM) · 2ln(2/ε) ≥ ηε(aM).

Since ς ≥ ηε(aM), we know that ρς,c(a ·M) ∈ [1 − ε, 1 + ε] · ςkd/ det(aM).
From [Ban93, Lemma 1.5] (recalled above) with c = 2, we also know that
ρς,c({v ∈ aM | ∥v − c∥ > 2 ·

√
kd · ς}) ≤ ε · ρς(aM) ≤ 2ε · ςkd/ det(aM).

Recall also that by definition of B1, we have ς ≥ ∆
1/(2d)
K · N (a)1/d · λkd(M) ·

ε−1/(kd). Hence, we obtain that ρς,c(0) ≤ ε·ςkd/ det(aM). Combining everything,
this implies that

ρς,c

(
a ·M \ {v |v = 0 or ∥v − c∥ > 2 ·

√
kd · ς}

)
∈ [1− 4ε, 1 + ε] · ςkd

det(aM)
.

By definition of DT
M,ς,c, this implies that

DT
M,ς,c(a ·M) ∈

[1− 4ε

1 + ε
,
1 + ε

1− ε

]
· det(M)

det(aM)
⊂ [1− 5ε, 1 + 4ε] · 1

N (a)k
,

where we used the identities det(M) = ∆
k/2
K · N (M) and det(aM) = ∆

k/2
K ·

N (aM). This concludes the upper bound on the first sum∑
a⊆OK

N (a)≤B1

∣∣∣DT
M,ς,c(a ·M)−N (a)−k

∣∣∣ ≤ 5ε ·
∑

a⊆OK

N (a)≤B1

1

N (a)k
≤ 5εζK(k) ≤ 1

4ζK(k)
,

by definition of ε, and using Lemma B.3 to assert that ζK(k)2 ≤ 24d ≤ 22kd.

Let us now consider the second sum. Let a be an integral ideal with B1 <
N (a) ≤ B2. Let us define I = ⌈(N (a)/B1)

1/d⌉−1 · a. This is a fractional ideal
with N (I) ∈ [1/2d, 1] · B1. Moreover, we have a ⊆ I, hence DT

M,ς,c(a ·M) ≤
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DT
M,ς,c(I ·M), where we let DT

M,ς,c(v) := ρς,c(v)/ρς,c(M) for any v ∈ KR, even
those not in M (note that since I is a fractional ideal, then I ·M needs not be
contained in M). Observe that everything we did above when N (a) ≤ B1 can
be adapted to a fractional ideal I of norm N (I) ≤ B1. Hence, we have (using
the analysis for the first sum):

DT
M,ς,c(I ·M) ≤ (1 + 4ε) · 1

N (I)k
≤ 2kd+1

Bk
1

.

We can hence bound the second sum from above by∑
a⊆OK

B1<N (a)≤B2

DT
M,ς,c(a ·M) ≤ |{a ⊆ OK | N (a) ≤ B2}| · 2kd+1

Bk
1

≤ ζK(s0) ·Bs0
2 · 2kd+1

Bk
1

≤ B
−(k−s0)
1 ·

(
ζK(s0) · 2kd+1 · (B2/B1)

s0
)
,

where we used Lemma B.2 for the second inequality, with some s0 ∈ (1, k). Let
us choose s0 = max(3/2, k/2). This choice of s0 ensures that s0 ∈ [3/2, k) and
that s0/(k − s0) ≤ 3 and k/(k − s0) ≤ 4 for any k ≥ 2. Using Lemma B.3, the
definitions of s0, B1, B2 and the lower bound on ς, one can check that this is
≤ 1/4 · ζK(k)−1.

We are finally left with the last sum. Recall that H(N) denotes the number
of integral ideals of norm ≤ N . With this notation, we can rewrite

∑
a⊆OK

N (a)>B1

N (a)−k =
∑

N>B1

H(N)−H(N − 1)

Nk
≤
∑

N>B1

H(N) ·
( 1

Nk
− 1

(N + 1)k

)
.

Let us prove that the last sum above is absolutely converging (in order to
prove that our transformation was valid). Using Lemma B.2 with s = 1.5, we
know that HN ≤ ζK(1.5) · N1.5, where the quantity ζK(1.5) depends on the
number field but is fixed when N tends to infinity. Hence, the quantity inside
the sum is bounded by O(N1.5 ·Nk−1/N2k) = O(1/Nk−0.5) = O(1/N1.5) since
k ≥ 2. We conclude that the sum is converging absolutely as desired.

Let us now compute an upper bound on this sum. Since N ≥ B1 ≥ k,
we know that (N + 1)k − Nk ≤ k2 · Nk−1. Applying Lemma B.2 again with
s = s0 ∈ (1, k), we obtain∑

N>B1

H(N) ·
( 1

Nk
− 1

(N + 1)k

)
≤ ζK(s0) ·

∑
N>B1

k2 ·Ns0+k−1

N2k

≤ ζK(s0) · k2 ·
∫ +∞

⌊B1⌋
x−(k+1−s0)dx

= ζK(s0) · k2 · (k − s0)
−1 · ⌊B1⌋−(k−s0)

39



Using s0 = max(3/2, k/2) again, the definitions of B1, the lower bound on ς and
Lemma B.3, one can check that

∑
a⊆OK

N (a)>B1

N (a)−k ≤ 1/4 · ζK(k)−1 as desired.

⊓⊔

B.5 Proof of Lemma 2.8

Let ((I1,b1), (I2,b2)) be a pseudo-basis of M and write N = s1J1 and N ′ =
s2J2. There exists Z ∈ K2×2 such that S = BZ. Assume by contradiction that
spanK(N ′) ̸= spanK(N). In that case, the matrix Z has rank 2, the vectors s1
and s2 are KR-linearly independent and M ′ = s1J1+ s2J2 is a submodule of M .
By using a QR-factorization S = QR, one sees that det(S) = N (r11)N (r22)
and N (M ′) ≤ N (N)N (N ′). We hence obtain:

N (M) ≤ N (M ′) ≤ N (N)N (N ′) <

√
N (M)

γd

(
γd
√
N (M)

)
= N (M),

which gives a contradiction. We thus have that spanK(N ′) = spanK(N). Defini-
tion 2.5 allows us to conclude that N ′ ⊆ N .

Assume now that γ > 1. Then the first statement implies that the densest
rank-1 submodule N is unique. Let b ∈ M with 0 < ∥b∥ < γ · N (M)1/(2d).
Then bOK is a rank-1 submodule of M and

N (bOK) ≤ ∥b∥d < γd ·
√
N (M).

By the above, we must have bOK ⊆ N , which is equivalent to b ∈ N . ⊓⊔

B.6 Proof of Lemma 2.9

Let N be a densest rank-1 submodule of M . By Definition 2.5, there exists
a rank-1 submodule N ′ such that M = N + N ′. Equivalently, we obtain a
pseudo-basis ((I1,b1), (I2,b2)) of M such that N = b1I1. Wlog, we may assume
that N (I1) = N (I2) = 1, by multiplying bi by N−1/d(Ii) for i ∈ [2]. Let
Q ∈ O2(KR) and R ∈ K2×2

R upper triangular such that B = QR. Let D be the
diagonal matrix with d1 = r11/N 1/d(r11) and d2 = r22/N 1/d(r22) as diagonal
coefficients. Let J1 = d1I1, J2 = d2I2 and

B′ =
N 1

2d (M)

γ
·Q ·R ·

( γ

N 1
2d (M)

D−1
)
.

It now suffices to prove that ((J1,b
′
1), (J2,b

′
2)) is a pseudo-basis of M of the

desired form, i.e., to check that R′ = R · (γ/N 1/(2d)(M))D−1 has diagonal
coefficients equal to 1 and γ. We have r′ii = N 1/d(rii)(γ/N 1/(2d)(M)) for i ∈
[2], by construction. The fact that N (r11) = λN1 (M) gives that r′11 = 1. The
equality N (M) = det(B′) provides the result. ⊓⊔
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B.7 Proof of Lemma 2.11

From Banaszczyk’s transference theorem [Ban93], we know that 1 ≤ λ2d(M
∨) ·

λ1(M) ≤ 2d. We also know that λ1(M)d ≥
√
d · λN1 (M), since for any vec-

tor v ∈ K2
R it holds that ∥v∥ ≥

√
d · N (v · OK)1/d (by applying the in-

equality of arithmetic and geometric means to the squares of the coordinates
of ⟨v,v⟩KR). Further, from the definition of the gap of a module M , we know
that λN1 (M) = N (M)1/2/γ(M)d. Combining these relations provides the upper
bound on λ2d(M

∨).
In order to get the upper bound on λ1(M

∨)−1, we use the inequality 1 ≤
λ2d(M) · λ1(M

∨). Hence, it suffices to bound λ2d(M) from above. To do so, we
use Lemma 2.9. We know that there exist d Z-linearly independent vectors in J1
of norms ≤

√
d ·∆1/(2d)

K · δK , and similarly in J2. Hence, from the representation
of M in Lemma 2.9, we obtain 2d linearly independent vectors in M of norms

≤ (γ(M) ·
√
d+ d/γ(M)) · N (M)1/(2d) ·∆1/(2d)

K · δK (where we reduced the last
d vectors using the first d ones). Since γ(M) ≥ 1, this implies than λkd(M) ≤
2d · γ(M) · N (M)1/(2d) ·∆1/(2d)

K · δK . ⊓⊔

C Missing proofs from Section 3

C.1 Proof of Lemma 3.2

The fact that b∨ ̸= 0 implies that the map m 7→ ⟨b∨,m⟩KR
is a surjective

homomorphism from M to OK/p whose kernel is M ′. This gives the following
exact sequence of OK-modules:

0→M ′ →M → OK/p→ 0.

Now, note that OK/p is isomorphic to the finite field of size N (p). The exact
sequence and the finiteness of OK/p imply that N (M ′) = N (M) · |OK/p|. The
proof is completed by noting that |OK/p| = N (p). ⊓⊔

C.2 Proof of Lemma 3.3

The fact that p·M ⊂M ′ implies that bpI ⊂M ′. We now prove the second prop-
erty. As bI is primitive, there exists a pseudo-basis (B, I) of M such that b1 = b
and I1 = I (see Definition 2.5). We start by noting that ⟨M∨,u⟩KR

· I = OK .

Indeed, as (B, I) is a pseudo-basis of M , we have that (B−† ·J) is a pseudo-basis
of M∨, with Ji = (Ii)

−1 for all i. Therefore:

⟨M∨,b⟩KR
· I =

∑
i

〈
b−†i ,b1

〉
KR
· OK = OK .

The fact that ⟨M∨,b⟩KR
·I = OK implies that the scalar product with b is a

surjective homomorphism M∨ → I−1. This induces a surjective homomorphism
M∨/pM∨ → I−1/pI−1. Because of their respective ranks as OK-modules, the
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cardinality of I−1/pI−1 is N (p) and the cardinality of M∨/pM∨ is N (p)k. La-
grange’s theorem (for groups) then implies that every element of I−1/pI−1 has
exactly N (p)k/N (p) = N (p)k−1 pre-images in M∨/pM∨ by this application. In
particular, the zero element of I−1/pI−1 has N (p)k−1 pre-images, including 0.
Since b∨ is uniform in (M∨/pM∨) \ {0}, this implies that the probability that
⟨b∨,b⟩KR

∈ pI−1 is (N (p)k−1 − 1)/N (p)k = 1/N (p)− 1/N (p)k over the choice

of b∨.
To complete the proof, note that ⟨b∨,b⟩KR

/∈ pI−1 is equivalent to bI ̸⊂M ′,
by definition of M ′. ⊓⊔

C.3 Proof of Lemma 3.4

Let (B, I) be a pseudo-basis of M with integral coefficient ideals Ii. As seen in
Section 2.3, the pair (B−†, J) is a pseudo-basis of M∨, where Ji = (Ii)

−1 for
all i. Take u ∈ J such that B−† · u is a representative of b∨ in M∨. We have:

M ′ =
{
B · v : v ∈ I and

(
B−† · u

)† ·B · v ∈ p
}

=
{
B · v : v ∈ I and ⟨u,v⟩KR

∈ p
}
.

Let us define

N =
{
v ∈ I : ⟨u,v⟩KR

= 0
}

and N ′ =
{
v ∈ I : ⟨u,v⟩KR

∈ p
}
.

We use the Z-basis (ri)i∈[d] of OK to identify N with a Z-lattice corresponding
to the orthogonal of an integer vector. A basis of this lattice can be computed
in polynomial-time, and the basis vectors provide a set (ni)i∈[kd] of (non K-

linearly independent) vectors in Ok
K such that N =

∑
i niOK . The module N ′

is the rank-k module generated by the pseudo-basis

N ′ =

kd∑
i=1

niOK +

k∑
i=1

eip,

where ei is the i-th canonical unit vector. From the pairs {(OK ,ni)}i and
{(p, ei)}i, we compute a Hermite Normal Form (B′, I′) of the integral mod-
ule N ′. By definition of N ′, the pair (B ·B′, I′) is a pseudo-basis of M ′. ⊓⊔

C.4 Proof of Lemma 3.5

In Step 2, we use one of the provable variants of the BKZ algorithm men-
tioned above, which allows us to obtain a basis C of M∨ such that maxi ∥ci∥ ≤
(kd)kd/β+1 · λkd(M

∨) in time polynomial in the bitsize of the input basis of M∨

and in 2β . Note that these analyses of the algorithm under scope only prove that
the algorithm solves (kd)kd/β-SVP (i.e., outputs one short non-zero vector) and
do not mention the approximation factor obtained for SIVP (the Shortest Inde-
pendent Vector Problem). Hence, to obtain an upper bound on maxi ∥ci∥, we
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also use the polynomial-time reduction from (
√
nγ)-SIVP to γ-SVP for lattices

of rank-n (see [Ste15, Page 1]), together with the fact that one can transform
any set of n short linearly independent vectors of norm ≤ B in a rank-n lat-
tice L into a basis of L with vectors of norms ≤

√
n · B. Now, we observe that

ς ≥
√
kd ·maxi ∥ci∥, hence we can apply Lemma 2.1. This means in particular

that the vectors yi can be sampled in polynomial time, which completes the
runtime analysis.

Let us now prove that the matrix Y satisfies the conditions of the theorem.
First of all, note that since the vectors yi are in M∨, then for all v ∈M we have
Y ·v ∈ Ok

K , which proves the first point. For the second point, recall that we use

a tail-cut distribution D̂C∨,ς,ti , hence, it holds that ∥yi − ti∥ ≤
√
kd · ς = ε ·R,

as desired.
Finally, recall from Lemma 2.1 that the distribution D̂C∨,ς,ti (which might

depend on C∨ and hence on (B, I)) is within statistical distance at most 2−Ω(kd)

from the Gaussian distribution DM∨,ς,ti , which is independent of the known
basis of M∨. Hence, the distribution of Y is within statistical distance at most
k·2−Ω(kd) = 2−Ω(kd) from a distribution independent of the choice of the pseudo-
basis (B, I). ⊓⊔

C.5 Proof of Lemma 3.6

Wlog, we prove the result for R = 1. Note that the operator norm of E satis-
fies ∥E∥ ≤ kε < 1. Therefore, the matrix

∑
i≥0(−E)i is well-defined, and satis-

fies Y−1 =
∑

i≥0(−E)i. We have Y−1 = Ik + E′ with E′ = −E +
∑

i≥2(−E)i.

Using the operator norm again, we obtain that ∥e′ij +eij∥ ≤ (kε)2/(1−kε) ≤ kε
for all i, j ∈ [k], by using assumption tha kε ≤ 1/2. This proves the first state-
ment.

By Hadamard’s inequality, we have

det(Y) ≤
(√

(1 + ε)2 + (k − 1)ε2
)d

det
(
Y−1

)
≤
(√

(1 + ε′)2 + (k − 1)ε′2
)d

,

with ε′ = (k + 1)ε. Simplifying the expressions using the facts that ε′ ≤ 1 and
kε ≤ 1/2 leads to the second statement. ⊓⊔

D Missing proofs from Section 4

D.1 Proof of Theorem 4.1

Theorem 4.1 is a direct corollary of the following more complete statement.

Theorem D.1. Let K be a number field of degree d with ζK(2) = 2o(d) and let
γ+ > 0. There exist three algorithms uSVP-to-NTRU, LiftVec’ and LiftMod’

and q0 = poly(∆
1/d
K , d, δK , γ+) ∈ R≥0 such that the following holds.

For any q ≥ q0, γNTRU > 1, γHSVP ≥
√
d∆

1/(2d)
K and (B, I) pseudo-basis of

a rank-2 module M ⊂ K2 with γ(M) ≤ γ+, we have
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• Algorithm uSVP-to-NTRU takes as input (B, I), q and γHSVP and outputs a
pseudo-basis (B′,O2

K) of a rank 2 free module M ′ ⊂ O2
K , together with some

auxiliary information aux. If (B, I) is a γuSVP-uSVP instance with

γuSVP = γNTRU ·
√
γHSVP · 16

√
2 · d3/2 · δK ,

then (B′,O2
K) is a (γNTRU,q)-NTRU instance. If given access to a γHSVP-

id-HSVP oracle, it runs in time polynomial in its input bitsize, in ζK(2) and

in exp( d log(d)
log(2q/q0)

) and makes one call to the oracle.

• Algorithm LiftVec’ takes as input a non-zero vector v′ ∈ M ′ and the aux-
iliary information aux. It outputs a non-zero vector s ∈M such that

∥s∥ ≤ 4 · γ3/2
HSVP · d

9/2 · δ2K ·
∥s′∥

N (M ′)1/(2d)
· N (M)1/(2d).

If given access to a γHSVP-id-HSVP oracle, it runs in polynomial time and
makes one call to the oracle.

• Algorithm LiftMod’ takes as input a pseudo-basis of a rank-1 densest sub-
module N ′ of M ′ and the auxiliary information aux and outputs a pseudo-
basis of a rank-1 densest submodule N of M . It runs in polynomial time.

Proof. Let V0 = poly(∆
1/d
K , d, δK , γ+) be as in Lemma 4.3 (defined using γ+

instead of γ(M)). Define

q0 =
V

1/d
0 · 4d
γHSVP

.

One can check that q0 is indeed poly(∆
1/d
K , d, δK , γ+) as desired. We prove that

the theorem holds for this choice of q0.

Algorithm uSVP-to-NTRU. On input (B, I), q and γHSVP, uSVP-to-NTRU sets

V = γd
HSVP ·qd ·dd and β =

⌈ 2d log(2d)

log
(√

q/q0
)
+log(2d)

⌉
. It then runs Algorithm PreCond

on input (B, I), V and β, to obtain a matrix Y ∈ GL2(K).
From the definition of q0, V and β, one can check that V 1/(2d) ≥ (2d)2d/β ·

V
1/(2d)
0 . Moreover, we have γ(M) ≤ γ+ by assumption, hence we can apply

Lemma 4.3. This implies in particular that the call to the PreCond algorithm
runs in time polynomial in the input bitsize, in 2β = 2O(d log(d)/ log(2q/q0)) and in
ζK(2).

Algorithm uSVP-to-NTRU then runs the Algorithm Conditioned-to-NTRU on
input (YB, I), q and γHSVP. It obtains a basis B′ of a free module M ′ and some
auxiliary information aux’. Algorithm uSVP-to-NTRU finally outputs (B′,O2

K)
and aux = (aux′,Y, γHSVP,B

′).
We know from Lemma 4.5 that the call to Conditioned-to-NTRU can be done

in polynomial time, with one call to the γHSVP-id-HSVP oracle. This concludes
the proof on the run time of Algorithm uSVP-to-NTRU.

Let us assume now that (B, I) was a γuSVP-uSVP instance, for γuSVP as in
the theorem. We know from Lemma 4.3 that (YB, I) is a γuSVP/(2

√
2)-uSVP
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instance. Moreover, still from Lemma 4.3, we know that the module spanned
by (YB, I) is a rank-2 module in O2

K , with the coprime property and such
that N (M ′) ∈ [1/2d, 2d] · V . Hence we can apply Lemma 4.6 and conclude that
(B′,O2

K) is a γNTRU instance as desired (note that V and γuSVP/(2
√
2) have

the desired shape for applying Lemma 4.6). This proves the first point of our
theorem.

Algorithm LiftVec’. On input s′ ∈ M ′ and aux = (aux’, Y, γHSVP, B
′), Al-

gorithm LiftVec’ runs LiftVec(aux′, γHSVP,B
′, s′) and gets a vector t. It then

outputs Y−1 · t. By Lemma 4.8, we know that the call to LiftVec can be per-
formed in polynomial time, with one call to the id-HSVP oracle. This proves the
run time of LiftVec’.

By Lemma 4.7 again, we know that ∥t∥ ≤ ∥s′∥ · γ2
HSVP · d4 · δ2K . From the

shape of Y and Lemma 3.6 instantiated with ε = 1/5, we obtain

∥Y−1 · t∥ ≤ 4N (M)1/(2d)

V 1/(2d)
· ∥t∥ ≤ 4 · γ3/2

HSVP · d
9/2 · δ2K ·

∥s′∥
√
q
· N (M)1/(2d).

Using the fact thatN (M ′) = q2d provides the desired upper bound on the output
size. Note also that by construction, Y−1 · t is indeed a non-zero vector in M .

Algorithm LiftMod’. Let us call M̃ the intermediate module (Y ·B)·I computed
by Algorithm uSVP-to-NTRU.

On input a pseudo-basis (v′, J ′) of a densest rank-1 module of M ′ and aux =
(aux′,Y, γHSVP,B

′), Algorithm LiftMod’ runs LiftMod(aux′,B′, (v′, J ′)) and
gets a vector w. It then computes J such that span(w) ∩ M̃ = w · J , sets
v = Y−1 ·w and outputs the pseudo basis (v, J).

From Lemma 4.7, we know that algorithm LiftMod’ runs in polynomial
time. Moreover, since (v′, J ′) was a densest submodule of M ′, we know that
w · J is a densest submodule of the module M̃ . Recall that we proved that
M̃ is a γuSVP/(2

√
2)-uSVP instance, hence we have N (w · J)1/d = λN1 (M̃) ≤

2
√
2/γuSVP · N (M̃)1/(2d). From the special shape of Y, one can prove that

N (Y−1 · w) ≤ 4d · R−d · N (w), with R = V 1/(2d) · N (M)−1/(2d). Hence, we
obtain

N (v · J)1/d ≤ 4 · 2
√
2

R · γuSVP
· N (M̃)1/(2d) ≤ 16

γuSVP
· N (M)1/(2d),

where we used the definition of R and the fact thatN (M̃) ≤ 2d ·V by Lemma 4.3.
Since γuSVP > 16, we conclude that v · J is a rank-1 submodule of M with
N (v · J) < N (M)1/2 and so from Lemma 2.8, we conclude that v · J is indeed
the densest submodule of M .

D.2 Proof of Lemma 4.3

The algorithm PreCond is as follows.
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Algorithm D.1 Algorithm PreCond

Input: A pseudo-basis (B, I) of a rank-2 module M ⊆ K2, a parameter V > 0 and a
block-size β ∈ [2, 2d]

Output: A matrix Y ∈ GL2(K)
1: Set ς = V 1/(2d) · (5

√
2d)−1 · N (M)−1/(2d)

2: repeat
3: Sample Y := (y1,y2)

T ← DualRound((B, I), ς, β, 1/5)
4: until y1 · OK is a primitive submodule of M∨

5: Return Y

Proof. Let P be the polynomial from Lemma 2.7 and define

V
1
2d
0 = 10

√
2·d·γ(M)·

(
P
(
∆

1/d
K , 2, d, 5

√
2d, 4d3/2 ·γ(M)2 ·δK ·∆1/(2d)

K

)
+(2d)3/2

)
.

We will prove that the lemma holds for this choice of V0. Note that V
1/(2d)
0 is

indeed poly(∆
1/d
K , d, δK , γ(M)) as desired.

Let us first observe that, by using the lower bound on V , the definition of ς
and V0 and Lemma 2.11, one can prove that the lower bound ς ≥ (2d)2d/β+3/2 ·
λ2d(σ(M

∨)) required in Lemma 3.5 is satisfied.
Applying Lemma 3.5, we know that the calls to Algorithm DualRound will

take a time polynomial in the input bitsize and in 2β . To estimate the number of
such calls, let us use Lemma 2.7. The definition of V0 ensures that ς ≥ λ2d(M

∨) ·
P (∆

1/d
K , 2, d, ∥t1∥/ς, λkd(M

∨)/λ1(M
∨)) as required by Lemma 2.7. Hence, we

know that Pry←DM∨,ς,t1
(y · OK is primitive in M∨) ≥ 1/(4ζK(2)). Using the

fact that SD(DM∨,ς,t1 , D̂M∨,ς,t1) ≤ 2−Ω(d) we conclude that the probability to
exit the while loop is at least 1/(4ζK(2))−2−Ω(d) ≥ ζK(2)−O(1) at every iteration
of the algorithm. This proves the expected run time of the algorithm.

The fact that Y = R · I2 + E with ∥eij∥ ≤ R/5 and that M ′ := YB · I
is included in O2

K follows from Lemma 3.5 (instantiated with ε = 1/5). Since
ε = 1/5 ≤ 1/4, we can also use Lemma 3.6. This implies in particular that
det(Y) ∈ [1/2d, 2d] · R2d, where R = 5 ·

√
2d · ς = V 1/(2d) · N (M)−1/(2d) by

definition of ς. This proves that Y is invertible, and so M ′ is indeed a rank-2
module. This also proves that N (M ′) = det(Y) · N (M) ∈ [1/2d, 2d] · V .

Let us now show that if (B, I) was a γuSVP-uSVP instance, then (YB, I) is
a γ′uSVP-uSVP instance. Let s ∈M be a short vector such that ∥s∥ ≤ 1/γuSVP ·
N (M)1/(2d) (such a short vector exists if (B, I) is a γuSVP-uSVP instance). Define
s′ = Y · s, which is a vector of M ′. We have

∥s′∥ ≤ R · ∥s∥+ ∥E · s∥ ≤ 2R · ∥s∥ ≤ 2R · γ−1uSVP · N (M)1/(2d).

Recall that N (M ′) = det(Y) · N (M) ≥ 1/2d · R2d · N (M). This finally implies
that ∥s′∥ ≤ 2

√
2 · γ−1uSVP · N (M ′)1/(2d), and so (YB, I) is indeed a γ′uSVP-uSVP

instance.
It finally remains to show that the module M ′ has the coprime property. This

is implied by the fact that y1 ·OK is primitive inM∨. Indeed, by definition ofM ′,
we have that {x ∈ OK | ∃ y ∈ OK s.t. (x, y)T ∈ M ′} = {⟨y1, z⟩KR | z ∈ M}.
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One can see from the definition that this set is an ideal of OK . Assume by
contradiction that it is not equal to OK and let p be a prime ideal dividing
it. Then it holds that y1 · p−1 ⊂ M∨. But this is a rank-1 submodule of M∨

containing strictly the rank-1 module y1 · OK , contradicting the assumption
that y1 · OK is primitive in M∨. Hence, we conclude that M ′ has the coprime
property. ⊓⊔

D.3 Proof of Lemma 4.3

The algorithm BalanceIdeal is as follows.

Algorithm D.2 Algorithm BalanceIdeal

Input: A Z-basis of a fractional ideal I ⊂ K and a parameter γHSVP ≥ 1
Output: An element x ∈ K

Using a γHSVP-id-HSVP oracle to get short linearly independent vectors of I−1

1: Call a γHSVP-id-HSVP solver on I−1 to get y ∈ I−1

2: Let B = (yr1, · · · , yrd) (this is a Z-basis of ⟨y⟩)
Using the short vectors to find a balanced element in I−1 by solving CVP

3: Let σ = γHSVP · d2 · δK · N (I)−1/d and t = (σ, · · · , σ)
4: Write t =

∑
i ti · yri, with ti ∈ R

5: Define s =
∑

i⌊ti⌉ · yri
6: Return x = s−1

Proof. One can check that all the steps of the algorithm, except for the one call
to the γHSVP-HSVP oracle, can be performed in polynomial time.

Let us then prove correction, and start with I ⊆ ⟨x⟩. We know that s ∈ ⟨y⟩,
by definition of s. Since y ∈ I−1, it holds that ⟨s⟩ ⊆ I−1, which implies I ⊆
⟨s⟩−1 = ⟨x⟩ as desired (provided that s ̸= 0, which we will show below).

Let us know look at how balanced are the coordinates of s (and x). We have

∥s− t∥∞ ≤
∑
i

1/2 · ∥yri∥∞

≤ 1/2 ·
∑
i

∥y∥∞ · ∥ri∥∞

≤ d/2 · ∥y∥ · δK
≤ 1/(2d) · σ,

where we used in the last inequality the fact that y is the output of the γHSVP-
id-HSVP solver on I−1, and hence ∥y∥ ≤ γHSVP · N (I)−1/d. Since σi(s) is the
i-th coordinate of s and all the coordinates of t are equal to σ, this implies that
|σi(s)| ∈ [σ · (1− 1/(2d)), σ · (1+ 1/(2d))] (and in particular σi(s) ̸= 0 for all i’s,
so s is invertible). Using the facts that σi(x) = σi(s)

−1 and the convexity of the
function x 7→ 1/x over [1/2, 2] conclude the proof. ⊓⊔
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D.4 Proof of Lemma 4.5

We know from preliminaries (cf Section 2.3) that the HNF basis of a module
can be computed in polynomial time. From Lemma 4.4 we know that the algo-
rithm BalanceIdeal runs in polynomial time and make one call to the γHSVP

oracle. Note that the input ideal J2 is indeed fractional (and even integral) since

M ⊂ O2
K and that γHSVP ≥

√
d∆

1/(2d)
K hence we can indeed run algorithm

BalanceIdeal. Finally, the multiplications and rounding in the third step of the
algorithm can be performed in polynomial time too. ⊓⊔

D.5 Proof of Lemma 4.6

Let us fix some δ, γHSVP, γNTRU and q as in the theorem and define V and γuSVP

accordingly.
Let (B, I) be the input pseudo-basis, spanning a rank-2 module M1 ⊂ O2

K

with N (M1) ∈ [1/22d, 22d] · V , with the coprime property, and which we know
contains a non-zero vector s1 = (u, v)T ∈ M1 such that ∥s1∥ ≤ 1/γuSVP ·
N (M1)

1/(2d). We will see step by step how the module M1 is modified by the
algorithm, and what happens to its short non-zero vectors. This is summarized
on Figure 2.

First step: HNF. After the HNF computation, we have a new pseudo-basis of
the form  J1 J2(

1 0
a 1

)
for some a ∈ K and J1, J2 ⊂ K (cf Section 2.3). This pseudo-basis generates
a rank-2 module M2 which is the same as the input module M1. Hence, M2

contains a short non-zero vector s2 := s1.
Since our module M2 is integral, we know that both ideals J1 and J2 are

integral. Also, since module M2 = M1 has the coprime property, we know that
J1 = OK . Finally, because of the shape of the pseudo-basis, it holds that N (J1) ·
N (J2) = N (M2) = N (M1), which yields N (J2) ≥ N (M1).

Second step: from pseudo-basis to basis. Let M3 be the free module generated
by the pseudo-basis  OK OK(

1 0
a b

) ,

where b ← BalanceIdeal(J2, γHSVP). Since J2 ⊆ ⟨b⟩ by Lemma 4.4 and J1 =
OK , we conclude that M2 ⊆M3. Hence, the short vector s3 := s2 is still in M3.

Before moving to the next step, let us have a closer look at b. We know
from Lemma 4.4 that |σi(b)| ∈ [1 − 1/d, 1 + 1/d] · σ−1 for all i ≤ d, with σ =
γHSVP · d2 · δK · N (J2)

−1/d. Using the lower bound on N (J2) that we computed
above, this shows that σ ≤ γHSVP · d2 · δK · N (M1)

−1/d.
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Third step: transforming b into q. Let M4 be the free module generated by the
pseudo-basis  OK OK(

1 0
h q

) ,

where h = ⌊a·q/b⌉. This is the basis output by Algorithm Conditioned-to-NTRU.
The new module M4 does not contain M1 anymore, however we will show that
its geometry is close to the one of M3, so that it has a short non-zero vector if
M3 does.

Recall thatM3 contains a short vector s3 = (u, v)T such that ∥s3∥ ≤ 1/γuSVP·
N (M1)

1/(2d). Let x ∈ OK be such that s3 = u · (1, a)T + x · (0, b)T . Define
s4 = u · (1, h)T + x · (0, q)T ∈ M4 \ {0}. Unrolling the definition of h and using
the equation u · a+ x · b = v, one can rewrite s4 = (u, v · q/b−u · {a · q/b})T . We
can upper bound the euclidean norm of s4 as follows

∥s4∥ ≤ ∥u∥+ ∥v∥ · ∥q/b∥∞ + ∥u∥ · ∥{a · q/b}∥∞
≤ γ−1uSVP · N (M1)

1/(2d) ·
(
1 + q · 2σ + dδK

)
≤ γ−1uSVP · N (M1)

1/(2d) ·
(
q · 2σ + 2 · dδK

)
≤ 2γ−1uSVP · d · δK ·

(
N (M1)

1/(2d) + q · d · γHSVP · N (M1)
−1/(2d))

≤ 1/γNTRU ·
√
q,

where in the last step we used the fact that N (M1)
1/(2d) ∈ [1/2, 2] · V 1/(2d) and

the definitions of V and γuSVP. We conclude that the pseudo-basis output by
Algorithm Conditioned-to-NTRU is indeed a γNTRU-NTRU instance, as desired.

⊓⊔

D.6 Proof of Lemma 4.7

Algorithm LiftMod is as follows.

Algorithm D.3 Algorithm LiftMod

Input: Two elements a, b ∈ K, an NTRU instance ((c1, c2),O2
K) and a pseudo-basis

(v, J) of a rank-1 module in K2.
Output: A vector w ∈ K2

1: Compute x, y ∈ K such that v = x · c1 + y · c2
2: Define w = x · (1, a)T + y · (0, b)T
3: Return w

Proof. The run time follows from inspection of the algorithm.
Let s1 be a shortest vector of M1. Since γuSVP > 1, we know from Lemma 2.8

that s1 belongs to the densest rank-1 submodule of M1, i.e., the densest sub-
module of M1 is equal to spanK(s1) ∩M1.

Let us use the notations M1,M2,M3 and M4 as in Figure 2 (and in the proof
of Lemma 4.6). Recall from the proof of Lemma 4.6 that s1 is still a vector of
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the rank-2 module M3 spanned by (1, a)T , (0, b)T . Let u, r ∈ OK be such that
s1 = u · (1, a)T + r · (0, b)T . Recall again from the proof of Lemma 4.6 that
s4 = u · c1 + r · c2 is an unexpectedly short vector of the output NTRU module
M4. More precisely, we proved that ∥s4∥ ≤ 1/γNTRU · N (M4)

1/(2d).
Using Lemma 2.8 again and the fact that γNTRU > 1, we know that s4

belongs to the densest submodule of M4. Since (v, J) is a pseudo-basis of this
densest submodule, it should be that v and s4 are K-colinear, i.e., there exists
z ∈ K such that v = z · s4 = zu · c1 + zr · c2.

Hence, the elements x, y computed in the algorithms are equal to zu and
zr respectively. This proves that w = x · (1, a)T + y · (0, b)T = z · s1. Hence,
spanK(w) = spanK(s1) and the densest submodule of M is spanK(w) ∩M1.

⊓⊔

D.7 Proof of Lemma 4.8

Algorithm LiftVec is as follows.

Algorithm D.4 Algorithm LiftVec

Input: Some auxiliary information aux = (a, b, J1, J2) , a parameter γHSVP, an NTRU
instance ((c1, c2),O2

K) and a vector s ∈ C · O2
K

Output: A vector w ∈ K2

1: Compute x, y ∈ OK such that s = x · c1 + y · c2
2: Run z ← BalanceIdeal(⟨b⟩ · J−1

1 · J−1
2 , γHSVP)

3: Compute t = z−1 ·
(
x · (1, a)T + y · (0, b)T

)
4: Return t

Proof. The running-time follows from inspection of the algorithm and from
Lemma 4.4.

Let us show that the output t of the algorithm is indeed in the module M1.
Let us keep the notationsM1,M2,M3 andM4 from Figure 2. In particular,M1 =
M2 is the module generated by the pseudo-basis ((1, a)T , (0, b)T ), (J1, ⟨b−1⟩ ·J2).

From Lemma 4.4, we know that ⟨b⟩ ·J−11 ·J
−1
2 ⊆ ⟨z⟩, i.e., z−1 ∈ J1 ·J2 · ⟨b−1⟩.

Using the fact that J1 and J2 · ⟨b−1⟩ are both integral (recall that J2 ⊆ ⟨b⟩ and
that M1 is in O2

K), this implies that z−1 ∈ J1 ∩ J2 · ⟨b−1⟩. Since x, y ∈ OK , we
conclude that t = z−1 · x · (1, a)T + z−1 · y · (0, b)T is in M1 as desired.

Let us now upper bound the size of t. Let us write s = (s1, s2)
T and express

the coordinates of t in terms of s1 and s2. From the equation s = x · (1, ⌊a ·
q/b⌉)T + y · (0, q)T , we obtain x = s1 and s2 = x⌊a · q/b⌉+ yq. This implies that

t = z−1 ·
(
s1, b/q · (s2 + s1 · {a · q/b})

)T
. From this, we can upper bound

∥t∥ ≤ ∥z−1∥∞ · ∥s∥ ·
(
1 + ∥b/q∥∞ · (1 + dδK)

)
.

Recall from the proof of Lemma 4.6 that for all i ≤ d, we have |σi(b)| ∈
[1− 1/d, 1 + 1/d] · σ−1, with σ = γHSVP · d2 · δK · N (J2)

−1/d. Hence,

∥b/q∥∞ ≤
2 · N (J2)

1/d

γHSVP · d2 · δK · q
and |N (b)| ≥ N (J2)

(2γHSVP · d2 · δK)d
.
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From Lemma 4.4, we similarly know that |σi(z)| ∈ [1− 1/d, 1+1/d] ·σ−1z for
all i ≤ d, where σz = γHSVP · d2 · δK · N (J1 · J2 · ⟨b−1⟩)1/d. Hence we obtain

∥z−1∥∞ ≤ 2 · γHSVP · d2 · δK · N (J1 · J2 · ⟨b−1⟩)1/d ≤ 4 · γ2
HSVP · d4 · δ2K ,

where we used the fact that J1 = OK thanks to the coprime property of M1.
Finally, recall that N (J2) = N (M1) ≤ 22d · V , with V 1/d = q · γHSVP · d.

Combining everything provides the desired upper bound on ∥t∥. ⊓⊔

E Missing proofs from Section 5

E.1 Proof of Theorem 5.2

Note that the assumptions on B and γ in the theorem statement enable the
use of all theorems and lemmas from Sections 5.1, 5.2 and 5.3. The runtime
statement follows from the runtime statements in Theorems 5.6 and 5.9. By
using Theorems 5.6 and 5.9, we also obtain that the pseudo-basis output by
Randomize spans a rank-2 and norm-1 module.

Let M ′ be the module spanned by the output (B′, I′) of Randomize, when
given as input a module with gap γ. By Theorems 5.6 and 5.9, the distribu-
tion of M ′′ (over the internal randomness of Randomize) is within statistical
distance 2−Ω(d) from QRSF-2-Mod(Drand

B,γ ), where Drand
B,γ is as defined in Defini-

tion 5.10. Now, we apply QRSF-2-Mod to all the distributions of Definition 5.10.
By the probability preservation properties of the statistical distance and Rényi
divergence, and by Lemmas E.1, E.2, E.3, E.4 and E.6, any event that occurs
with probability ε ≥ 2−Ω(d) for QRSF-2-Mod(Dtarget

B,γ ) also holds with proba-

bility Ω(ε4) for QRSF-2-Mod(Drand
B,γ ). By observing that QRSF-2-Mod(Drand

B,γ ) is

exactly Dmodule
B,γ , we obtain that any event that holds for Dmodule

B,γ with prob-

ability ε ≥ 2−o(d) also holds for M ′ with probability Ω(ε4) over the internal
randomness of Randomize.

We now analyze Recover. Let M be the module spanned by (B, I). Let U
be its densest rank-1 submodule. Let ((B′, I′), aux) be an output of Randomize
when given (B, I) as input, and U ′ be a densest rank-1 submodule of M ′. By
Theorems 5.6 and 5.9, we have that with probability 1− 2−Ω(d), the module M ′

has gap larger than 1 and its densest rank-1 submodule is

U ′ = (N (p) · det(D))
− 1

2d ·D · U · qp.

This completes the proof. ⊓⊔

E.2 Proof of Theorem 5.3

Assume that u · J1 ̸⊂ M ′ , which holds with probability 1 − (1/B)Ω(1) by
Lemma 5.4. We fix x as in Lemma 5.5. Let M ′′ = u · pJ1 + (v + xu) · J2.
By Lemmas 5.4 and 5.5, we have that M ′′ ⊆ M ′. By construction, the norm
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of M ′′ is N (p) · N (M), which is equal to N (M ′) by Lemma 3.2, leading to the
equality M ′ = M ′′. This completes the proof of the first statement.

Assume that we have M ′ = u · pJ1 + (v + xu) · J2 and γ(M) ≥ B1/(2d),
and that u · J1 is the densest rank-1 submodule of M . As u · pJ1 is a rank-1
submodule of M ′, we have:

γ(M ′) ≥

( √
N (M ′)

N (u · pJ1)

) 1
d

=
1

N (p)
1
2d

(√
N (M)

N (u · J1)

) 1
d

=
γ(M)

N (p)
1
2d

.

As N (p) ≤ B, we obtain that γ(M ′) ≥ γ(M)/B1/(2d) > 1. By Lemma 2.8, we
know that M ′ has a unique densest rank-1 submodule. Now, using the equalities
above and the inequalities γ(M) ≥ B1/(2d) and N (p) ≤ B, we have

N (u · pJ1) = N (p)
1
2 · N (M ′)

1
2

γ(M)d
≤ N (M ′)

1
2 .

Lemma 2.8 then implies that u·pJ1 is contained in the densest rank-1 submodule
ofM ′. By primitivity (see Definition 2.5), we conclude that it is the densest rank-
1 submodule of M ′. ⊓⊔

E.3 Proof of Lemma 5.4

As upJ1 is a primitive rank-1 submodule of M , we can use Lemma 3.3. It implies
that the result holds, except with probability 1/N (p)− 1/N (p)2 over the choice
of b∨.

The overall probability (including over the choice of p) that u ·J1 ⊂M ′ holds
satisfies:∑
N (p)≤B

Pr(p) · Pr
(
⟨b∨,u⟩KR

∈ pJ−11 | p
)
=

1

πK(B)

∑
N (p)≤B

(
1

N (p)
− 1

N (p)2

)
≤ 1

πK(B)

∑
p≤B

∑
p|p

1

N (p)

≤ d

πK(B)

∑
p≤B

1

p
,

where the sums indexed by p are over the prime ideals of OK and the sums
indexed by p are over the prime integers. The last inequality comes from the
facts that there are at most d ideals p over p, and each of them has norm ≥ p.
As
∑

p≤B 1/p = log logB+O(1) (see, e.g., [Apo98, Theorem 4.2]) and πK(B) =

Θ(B/ logB), we obtain that the probability above is ≤ (1/B)Ω(1). ⊓⊔

E.4 Proof of Lemma 5.5

Let j ∈ J1 with ju /∈ M ′. Since ⟨b∨, ju⟩KR
belongs to OK \ p (by definition

of j), we can take a representative a ∈ OK of its inverse in OK/p. We define y =
−⟨b∨,v⟩KR

· a ∈ J−12 . By construction, we have ⟨b∨,v + jyu⟩KR
∈ pJ−12 . This

implies that (v + jyu) · J2 ⊂M ′. Setting x = jy provides the result. ⊓⊔
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E.5 Proof of Theorem 5.6

The run-time bound follows from Theorem 5.3 and Lemma 2.4. Now, we write

M =
1

γ
·Q ·

([
1
0

]
· J1 +

[
r
1

]
· γ2 · J2

)
= u · J1 + v · J2.

Let p,b∨ and q refer to the random variables sampled during the execution of
Real-CR and let b∨ be a representative of b∨ in M∨. By Theorem 5.3, we have
⟨b∨,u⟩KR

/∈ pJ−11 with probability 1 − (1/B)Ω(1). In the following, we assume
that this holds. We also replace the distribution of q by the uniform distribu-
tion over norm-1 ideals. By Lemma 2.4, these two distributions are within 2−d

statistical distance from one another. These two assumptions account for the
statistical distance upper bound in the theorem statement.

Let x ∈ J1J2
−1 as in Theorem 5.3. We have ⟨b∨,v + xu⟩KR

∈ pJ−12 . For
any choice of x such that the latter holds, the module M ′ corresponding to the
output of Real-CR is, by Theorem 5.3:

M ′ =
1

N (p)
1
2d

· (u · J1pq+ v′ · J2q) ,

where v′ = v + xu. Note that the QR-factorization of the matrix [u|v′] is:

[u|v′] = Q ·
( 1

γ γ · (r + x)

0 γ

)
.

We define the norm-1 ideal J = J2q. We have:

M ′ =
1

γ · N (p)
1
2d

·Q ·
([

1
0

]
· J1J2−1Jp+ γ2 ·

[
r + x
1

]
· J
)

=
1√
γ′
·Q ·

([
1
0

]
· J1J2−1J

p

N 1
d (p)

+ γ′2 ·
[
r + x
1

]
· J
)
,

where γ′ = γ/N (p)1/(2d). As the ideal q is distributed uniformly over the set of
norm-1 ideals, so is J . This implies that the distribution of M ′ matches that of
QRSF-2-Mod(Ideal-CRB(Q, γ, J1, J2, r)).

Still assuming that we have ⟨b∨,u⟩KR
/∈ pJ−11 , Theorem 5.3 gives us that the

densest rank-1 submodule of M ′ is:

1

N (p)
1
2d

· 1
γ
u · J1pq =

N (p)
1
2d

γ
·Q ·

[
1
0

]
· J1q

p

N 1
d (p)

.

This completes the proof of the theorem. ⊓⊔

E.6 Proof of Lemma 5.7

For the first statement, we prove that for D0 ∈ R2×2 sampled from D(0, 1)2×2,
we have |detD0| ≥ 1/d with probability 1 − O((log d)/d). As Ddistort consists
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in ≤ d independent copies of the latter distribution, the probability of accepting
a sample from DKR(0, 1)

2×2 when rejecting to Ddistort is at least 1/d
O(1).

Observe that D0 = ∥d1∥·∥d∗2∥, where d1 ∼ D(0, 1)2 is the first column of D0

and d∗2 is the projection of the second column orthogonally to the first. As D0

is invariant under rotations, conditioned on d1, the vector d∗2 is distributed as
a sample from D(0, 1) multiplied with a unit vector orthogonal to d1. For these
reasons, it suffices to show that with probability O((log d)/d), the product of
two iid samples x, y from D(0, 1) has magnitude ≥ 1/d. We have

Pr
x,y←D(0,1)

[|xy| < 1/d] ≤ O(1/d) + 4 · Pr
x,y←D(0,1)

[xy < 1/d ∧ x, y ∈ [1/d, 1]]

≤ O(1/d) + c · Pr
x,y←U([1/d,1])

[xy < 1/d] ,

for some constant c. The latter is O((log d)/d), allowing to complete the proof
of the first statement.

The second statement comes from the invariances of the determinant and
vector Gaussian distribution under multiplication by an orthogonal matrix. ⊓⊔

E.7 Proof of Lemma 5.8

We first show that without the conditioning, the matrix D from the lemma
statement is distributed from DKR(0, 1)

2×2. Let us write D = [d1|d2]. Then d1

is the product of a uniform unit vector and an element sampled from χKR . It is
hence distributed as a Gaussian vector. Now, as the Gaussian vector distribution
is invariant by multiplication by an orthogonal matrix, the distribution of d2 =
Q · (b, c)T is DKR(0, 1)

2, independently of Q and a.
To complete the proof, note that the conditioning is with respect to the event

“∀i : |det(σi(D))| ≥ 1/d”, for both D and Ddistort. ⊓⊔

E.8 Proof of Theorem 5.9

The runtime claim follows from Lemma 5.8. Now, let D← Ddistort be the matrix
sampled in Step 1 of Real-GR. The matrix D ·Q is also distributed from Ddistort,

by Lemma 5.7. By Lemma 5.8 we can write DQ = Q′ ·
(
a b
0 c

)
with Q′ ←

U(O2(KR)), a ← χKR and b, c ← D(0, 1), conditioned on the event that for all
i ∈ [d] we have |σi(a · c)| ≥ 1/d. We can then write:

D ·M = Q′ ·
(
a b
0 c

)
·
(
1 r
0 1

)
·
[
1/γ · J1
γ · J2

]
= Q′ ·

(
a b+ ar + b
0 c

)
·
[
1/γ · J1
γ · J2

]
.

Using the equality detD = N (ab), we obtain:

M ′ = |detD|−
1
2d ·D ·M = Q′ ·

(
1 r′

0 1

)
·
[
1/γ′ · J ′1
γ′ · J ′2

]
,
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where r′ = (b + ar)/c, γ′ = N (c/a)1/(2d) · γ, J ′1 = (a/N 1/d(a))J1 and J ′2 =
(c/N 1/d(c))J2. This proves the equality of distributions.

We now study γ(M ′). For this, by the above, we can consider Ideal-GR.
Thanks to the conditioning on the distribution of (a, c), we have:

γ′ = N
( c
a

) 1
2d · γ =

N (ac)
1
2d

N (a)
1
d

γ ≥ 1√
d · N (a)

1
d

γ.

Now, note that without the conditioning, the coefficient a would be normally
distributed, and the Gaussian tailbound would imply that N (a)1/d ≤

√
d with

probability 1 − 2−Ω(d). As the rejection occurs with probability at most 1 −
1/dO(1) over the choice of (a, c) Gaussian, we still have that N (a)1/d ≤

√
d with

probability 1 − 2−Ω(d) for (a, c) distributed as in Ideal-GR. Overall, we obtain
that γ′ ≥ γ/d with probability 1−2−Ω(d). Using to the QR-standard form of M ′

with J ′1 and J ′2 of norm 1, we obtain that γ(M ′) ≥ γ′ > 1. By Lemma 2.8,
the module M ′ has a unique rank-1 densest submodule. The QR-standard form
leads us to consider the following rank-1 submodule of M ′:

U ′ =
1

γ′
·Q′ ·

[
1
0

]
· J ′1 = |detD|−1/(2d) ·D · U.

It satisfiesN (U ′) = 1/γ′d ≤ γ(M ′)d. By Lemma 2.8, it is contained in the unique
densest rank-1 submodule of M . By primitivity, we have equality. ⊓⊔

E.9 Relations between the distributions of Definition 5.10

Let us first recall the definitions of the considered distributions.

Drand
B,γ :

(
Q, γ

N
(
c
a

) 1
2d

N (p)
1
2d

,
a

N 1
d (a)

J1J2
−1J

p

N 1
d (p)

,
c

N 1
d (c)

· J,
b+ a(r + x)

c

)
,

D
(1)
B,γ :

(
Q, γ

N
(
c
a

) 1
2d

N (p)
1
2d

, N 1
d

( c
a

)
· au
c
· J1J2−1J

p

N 1
d (p)

, J, u
b+ a(r + x)

c

)
,

D
(2)
B,γ :

(
Q, γ ·

N
(
c
a

) 1
2d

N (p)
1
2d

, I(J1, J2), J, u
b+ a(r + x)

c exp(ζ)

)
,

D
(3)
B,γ :

(
Q, γ′, I(J1, J2), J,

B
1
d

N 1
d (p)

· u
b+ a(r + x)

c exp(ζ)

)
,

D
(4)
B,γ : (Q, γ′, I(J1, J2), J, r′′(J1, J2)),

Dtarget
B,γ : (Q, γ′, I1, I2, r′).

Where B, γ, J1, J1 and the random variables Q, a, b, c, x, p, I1, I2, I(·, ·), J, ζ,
u, r′, r′′ are defined in Definition 5.10.
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Lemma E.1. For any B ≥ 2, γ > 0, r ∈ KR and J1, J2 ∈ I1, we have

Drand
B,γ (J1, J2, r) = D

(1)
B,γ(J1, J2, r).

Proof. Let

A =
(
Q, γ

N
(
c
a

) 1
2d

N (p)
1
2d

,
a

N 1
d (a)

J1J2
−1J

p

N 1
d (p)

,
c

N 1
d (c)

· J, b+ a(r + x)

c

)
be a sample from Drand

B,γ (J1, J2, r). As the distribution U(I1) is invariant by

multiplication by a norm-1 ideal, the random variable J ′ = c/N 1/d(c) · J is
uniformly distributed in I1 (over the randomness of J , which is statistically
independent of all other random variables). We have

A =
(
Q, γ

N
(
c
a

) 1
2d

N (p)
1
2d

, N 1
d

( c
a

)
· a
c
· J1J2−1J ′

p

N 1
d (p)

, J ′,
b+ a(r + x)

c

)
.

Now let u be uniform in {x ∈ KR,∀i ∈ [d] : |σi(x)| = 1}, and c′ = cu. As
the distribution DKR(0, 1) is invariant by multiplication by an element in this
set, and the conditioning on (a, c) translates identically to (a, c′), the random
variable (a, c′) follows the same distribution as the random variable (a, c) (which
is statistically independent of all other random variables). We have

A =
(
Q, γ

N
(

c′

a

) 1
2d

N (p)
1
2d

, N 1
d

( c
a

)
· au
c′
· J1J2−1J ′

p

N 1
d (p)

, J ′, u
b+ a(r + x)

c′

)
.

We recognize the distribution D
(1)
B,γ(J1, J2, r). ⊓⊔

Lemma E.2. For any B ≥ 2, γ > 0, r ∈ KR and J1, J2 ∈ I1, we have:

RD
(
D

(2)
B,γ(J1, J2, r)

∥∥∥ D
(1)
B,γ(J1, J2, r)

)
= O(1).

Proof. The result follows from the fact that N (c · exp(ζ)) = N (c), the data
processing inequality and the bound:

RD(c · exp(ζ) ∥ c) = O(1).

The rest of the proof is devoted to establishing the latter.
Let ζ ∈ E fixed with ∥ζ∥∞ ≤ 1/d. When d ≥ 2, we have that 2− exp(ζi) > 0

for all i. Therefore, by Lemma A.1 and the fact that N (exp(ζ)) = 1, we have:

RD(DKR(0, exp(ζ)) ∥ DKR(0, 1)) = N (2− exp(ζ))−
1
2 .

As |ζi| ≤ 1/d holds for all i, each embedding coefficient of |(2 − exp(ζ))| is ≤
1− 1/d. We hence obtain that

N (2− exp(ζ))−
1
2 ≤ (1− 1/d)

− d
2 = O(1).
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To complete the proof, let us consider ζ as a random variable again. We use
Lemma A.2 with KR in place of R (which is fine, by the multiplicativity property
of the Rényi divergence), to obtain:

RD(c · exp(ζ) ∥ c) ≤ Eζ

(
RD(DKR(0, exp(ζ)) ∥ DKR(0, 1))

1
2

)2
.

By the analysis above, the latter upper bound is O(1). ⊓⊔

Lemma E.3 (ERH). For any B ≥ (log∆K)Ω(1), γ > 0, r ∈ KR and J1, J2 ∈
I1, we have:

RD
(
D

(3)
B,γ(J1, J2, r)

∥∥∥ D
(2)
B,γ(J1, J2, r)

)
= O(1).

Proof. Note that D(3) is obtained from D(2) by replacing all occurrences of c
by c ·N 1/d(p)/B1/d. The result then follows from the data processing inequality
and the bound:

RD

(
c · N

1
d (p)

B
1
d

∥∥∥∥∥ c

)
= O(1)

The rest of the proof is devoted to proving the latter.
Let us fix a p of norm ≤ B, this implies that 2 − N 1/d(p)/B

1
d > 0 so by

Lemma A.1 we have

RD

(
c · N

1
d (p)

B
1
d

∥∥∥∥∥ c

)
≤ N

(
N 1

d (p)

B
1
d

·

(
2− N

1
d (p)

B
1
d

))− 1
2

≤
(

B

N (p)

) 1
2

.

Now, we consider p as a random variable again. Thanks to the above, we have:

Ep

RD

(
c · N

1
d (p)

B
1
d

∥∥∥∥∥ c

) 1
2

 ≤ B
1
4

πK(B)

∑
N (p)≤B

1

N (p)
1
4

.

Abel’s summation formula gives (see, e.g., [Apo98, Theorem 4.2]):

∑
N (p)≤B

1

N (p)
1
4

=
πK(B)

B
1
4

+
1

4

∫ B

2

πK(t)t−
5
4 dt

≤1.1 B
3
4

logB
+ 1.1

∫ B

B0

t−1/4

log(t)
dt+

∫ B0

2

πK(t)t−
5
4 dt ,

where B0 = (log∆K)Ω(1) is such that for B ≥ B0 we have πK(B) ≤ 1.1B/ logB
(see Section 2). The last term in the upper bound is ≤ 2−1/4πK(B0) ≤ B0.
Assuming that B ≥ B2

0 , the latter is ≤ B1/2. Overall, we obtain that

∑
N (p)≤B

1

N (p)
1
4

≤ 5
B

3
4

log(B)
.
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Using the lower bound πK(B) ≥ 0.9B/ logB from Section 2, we then obtain
that

Ep

RD

(
c · N

1
d (p)

B
1
d

∥∥∥∥∥ c

) 1
2

 ≤ O(1).

Finally, Lemma A.2 allows us to conclude. ⊓⊔

Lemma E.4. For B ≥ 2, γ ≥ d1/4∆
1/(2d)
K , r ∈ KR and J1, J2 ∈ I1, we have:

SD
(
D

(3)
B,γ(J1, J2, r), D

4
B,γ(J1, J2)

)
≤ 2−Ω(d).

To prove Lemma E.4, we will use the following result on the closeness to
uniformity of a Gaussian distribution over KR, when it is folded modulo an ideal
lattice.

Lemma E.5 (Adapted from [PRS17, Lemma 6.9]). Let I an ideal, s ∈ K+
R

and s = (σi(s))i∈[r1+r2]. If N (s) ≥ ∆K · N (I), then we have:

SD (DKR(0,a) mod I,U(KR mod I)) ≤ 2−Ω(d).

Proof (Lemma E.4). We consider the following sample from D
(3)
B,γ(J1, J2, r):(

Q, γ′, I(J1, J2), J, B
1
d · u b+ a(r + x)

c exp(ζ)N 1
d (p)

)
.

Note that b ∼ DKR(0, 1) is independent of all other variables and occurs only once
in the sample above. Let b′ = B1/d · sb/(c exp(ζ)N 1/d(p)). Over the randomness
of b (and assuming all other random variables are fixed), it is distributed as
DKR(0, B

1/d/(|c| exp(ζ)N 1/d(p))). We now consider the folding of b′ modulo the
ideal I ′ := γ′−2I(J1, J2) · J−1. Lemma E.5 implies that if

B

N (c)N (p)
≥ ∆K · N (I ′),

then SD(c′ mod I ′,U(KR mod I ′) ≤ 2−Ω(d), leading to the result. It hence suf-
fices to prove the premise.

As I(J1, J2), J ∈ I1 and N (p) ≤ B, using the definition of γ′, it suffices that
we have γ2d ≥ ∆KN (a). By the Gaussian tail bound, we have N (a) ≤ dd/2 with
probability 1− 2−Ω(d), which suffices for our purposes. ⊓⊔

Lemma E.6. For B ≥ (dd∆k)
Ω(1), γ > 0 and J1, J2 ∈ I1, we have:

SD
(
D

(4)
B,γ(J1, J2), D

target
B,γ

)
≤ 2−Ω(d).

Proof. By Lemma 2.4, the distribution of p
N 1/d(p)

·u exp(−ζ) is within statistical

distance 2−Ω(d) from U(I1). The latter distribution being invariant by multi-
plication by norm-1 ideals, we obtain that the distribution of I(J1, J2) is at
statistical distance 2−Ω(d) from U(I1), over the random choices of p, s and ζ. As
they are independent of Q, γ′ and J , and as the distribution of the last tuple
entry is a function of the others, we obtain the result. ⊓⊔
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F Missing proofs from Section 6

F.1 Proof of Lemma 6.2

Using the notations from Definition 5.1, the gap of the module M is equal to
γ(M) = γ′N (c/a)1/(2d)/B1/(2d). Now, by the conditioning on the pair (a, c), we
have N (c) ≥ 1/(ddN (a)). Also, by the Gaussian tail bound, we have ∥a∥ ≤

√
d

with probability 1 − 2−Ω(d). The inequality N (a) ≤ ∥a∥/
√
d then leads to the

result. ⊓⊔

F.2 Proof of Lemma 6.3

Let us write (B, I) = Q·((1, 0)T ·1/γJ1+(r, 1)T ·γJ2) andY = R·(I+(2d)−3/2 ·E)
with R as define in DualRound (Algorithm 3.1) and ∥eij∥ ≤ 1 for all i, j ∈ [2]
(see Lemma 3.5). We consider the QR-factorization of Q−1 ·Y ·Q:

Q−1 ·Y ·Q = R ·Q′ ·
[
x y
0 z

]
,

for some x, y, z ∈ KR. In particular, we have that N (x) is the algebraic norm
of the first column of I2 + E′, where E′ = Q−1 · E ·Q satisfies

∥∥e′ij∥∥∞ ≤ √2d
for i, j ∈ [2]. This implies that N (x) ≤ 1 + 1/(2d). In the same vein as in the
proof of Theorem 5.9, this implies that

N
(
Y · U

)
≤ Rd ·

(
1 +

1

2d

)d · N (U) ≤ Rd ·
√
e · N (U),

where U = Q · (1, 0)T · 1/γJ1. The result then follows from Lemma 3.6 and the
fact that N (Y ·M) = det(Y) · N (M). ⊓⊔

F.3 Proof of Lemma 6.5

Wlog, we may assume that the gap of the γ′-wc-uSVPNmod instance (B, I) satis-
fies γ′ ≤ 2d∆

O(1/d)
K , as otherwise the problem can be solved in polynomial time

using LLL [LLL82]. We cover the interval [2 log(∆K)
O(1/d) · γ, 2d∆O(1/d)

K ] by at
most O(d2 + log∆K) intervals of the form γ · [(1 + 1/(3d))i, (1 + 1/(3d))i+1],
and guess uniformly the i for which contains the gap of the module M spanned
by (B, I). The guess is correct with probability Ω(1/(d2 + log∆K)) and, in the
following, we only analyze what happens when this occurs.

The next step is to find a prime ideal p such that N (p)1/(2d) ∈ γ′ · [(1 +

1/(3d))i−1, (1 + 1/(3d))i]. As γ′ ≥ 2 log(∆K)
O(1/d)

, we can use Lemma 2.3 to
sample p uniformly among the prime ideals with norms ≤ (1 + 1/(3d))di. By
the estimates on πK stated in Section 2, the value N (p)1/(2d) belongs to the
appropriate interval with probability Ω(1). We assume this is the case. Note
that we then have that γ′/N (p) ∈ γ · [1, 1 + 1/d].

We then sample b∨ uniformly in (M∨/pM∨)\{0}, and sparsifyM by (b∨, p),
using Lemma 3.4. By Lemmas 3.2 and 3.3, the gap of the sparsified module M ′
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is γ′/N (p), with probability Ω(1), and the pseudo-basis of M ′ is a valid γ≈-
wc-uSVPNmod instance. Finally, note that when the latter event occurs, if U is
the densest rank-1 submodule of M , then pU is the densest rank-1 submodule
of M ′ (as in the proof of Theorem 5.6). This completes the description and the
analysis of the reduction. ⊓⊔

F.4 Proof of Lemma 6.6

By Lemma 6.2, samples from DuSVP
γ and DuSVP

γ′ are indeed γ-uSVPN instances.

Now, note thatDuSVP
γ′ is obtained fromDuSVP

γ by replacing all the occurences

of c by c · (γ′/γ)2 in Definition 5.1. The result then follows from the data pro-
cessing inequality and the bound:

RD
(
c
∥∥ c · (γ′/γ)2

)
= O(1)

The rest of the proof is devoted to proving the latter. We have γ′/γ ≥ 1, implying
that 2(γ′/γ)2 − 1 ≥ 1. By Lemma A.1 this implies that

RD
(
c
∥∥ c · (γ′/γ)2

)
≤ N

(
(γ′/γ)4

2(γ′/γ)2 − 1

)1/2

≤ (1 + 1/d)
2d

= O(1).

⊓⊔

F.5 Proof of Lemma 6.7

The reduction first runs algorithm RandomizeB from Theorem 5.2. It then calls
DualRoundς,β,ε and HNF. The parameters B, ς, β and ε are set exactly as in the

sampling algorithm for DuSVP. It then calls the (DuSVP
γ′ , γ′′)-uSVPNmod oracle

and pulls the returned rank-1 submodule back to a rank-1 submodule of the
input module, using the Y matrix from DualRound and the aux output from
Randomize.

The runtime bound comes from Theorem 5.2 and Lemma 3.5. Correctness
follows from Theorem 5.2, Lemmas 6.3 and Lemma 6.6. ⊓⊔
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