
The PseudorandomOracleModel
and Ideal Obfuscation

Aayush Jain1 Huijia Lin2 Ji Luo2 Daniel Wichs3

1 Carnegie Mellon University
aayushjain1728@gmail.com
2University of Washington

{rachel,luoji}@cs.washington.edu
3Northeastern University and NTT Research

wichs@ccs.neu.edu

September 2022

Abstract

We introduce a new idealized model of hash functions, which we refer to as the
pseudorandom oracle (PrO) model. Intuitively, it allows us to model cryptosystems
that use the code of a hash function in a non-black-box way. Formally, we model
hash functions via a combination of a pseudorandom function (PRF) family and an
ideal oracle. A user can initialize the hash function by choosing a PRF key 𝑘 and
the oracle maps it to a public handle ℎ. Given the handle ℎ and some input 𝑥, the
oracle will recover the PRF key 𝑘 and evaluate the PRF on 𝑥. A user who chooses
the PRF key 𝑘 therefore has a complete description of the hash function and can
use its code in non-black-box constructions, while an adversary, who just gets the
handle ℎ, only has black-box access to the hash function via the oracle.

As our main result, we show how to construct ideal obfuscation in the PrO
model, starting from functional encryption (FE), which in turn can be based on
well-studied polynomial hardness assumptions. In contrast, we know that ideal ob-
fuscation cannot be instantiated in the basic random oracle model under any as-
sumptions. We believe our result gives a heuristic justification for the following:
(1) most natural security goals implied by ideal obfuscation are achievable in the
real world; (2) we can construct obfuscation from FE with polynomial security loss.

We also discuss how to interpret our result in the PrO model as a construction
of ideal obfuscation using simple hardware tokens or as a way to bootstrap ideal
obfuscation for PRFs to that for all functions.

i

https://orcid.org/0000-0003-1225-5310

Contents

1 Introduction 1
1.1 Related Works . 7

2 Technical Overview 7
3 Preliminaries 15
4 The Pseudorandom Oracle (PrO) Model 18
5 Ideal Obfuscation 18
6 Construction of Ideal Obfuscation in the PrO Model 18
7 Security Proof of Ideal Obfuscation in the PrO Model 22

7.1 Simulator . 25
7.2 Hybrids over Levels . 25
7.3 Hybrids over Blocks at Each Level . 29
7.4 Choice of Parameters . 31

References 32

ii

1 Introduction

Hash Functions vs. Random Oracles. Hash functions are one of the most important
cryptographic building blocks and are ubiquitous in both theoretical and practical cryp-
tosystem design. The basic security property of hash functions is collision resistance,
and this property already suffices for many applications. However, there is a widespread
belief that good hash functions can satisfy a much wider range of cryptographic security
properties beyond collision resistance. This belief is captured via the random oracle model
(ROM) [BR93], where we model a hash function as a truly random public function and
give the honest users as well as the adversary oracle access to this function. The ran-
dom oracle is an ideal functionality relative to which we can design cryptosystems and
give formal proofs of security. We then take a heuristic leap of faith that such cryptosys-
tems remain secure when we replace the random oracle by a real, well-designed hash
function (like SHA-3). While the second step is heuristic and does not have a formal jus-
tification, it captures the intuition that an adversary cannot meaningfully do anything
with a well-designed hash function beyond treating it as a random oracle. The random
oracle heuristic is immensely popular and successful. Almost all cryptosystems used
in practice, from TLS to Bitcoin, rely on it to justify their security. On the theory side,
we can design contrived examples where the random oracle heuristic fails — specially
designed cryptosystems that are provably secure in the random oracle model, but are in-
secure when instantiated with any real hash function [Bar01,GK03]. But outside of such
specially crafted and contrived counterexamples, the random oracle heuristic gives ex-
tremely strong evidence of security in real life, and there is no known example of it ever
leading to a security flaw in a natural real-life cryptosystem.

Indistinguishability vs. Ideal Obfuscation. A scenario analogous to the one above also
plays out in the upper reaches of cryptomania when it comes to obfuscation [BGI+01]. We
have a standard-model definition of obfuscation security called indistinguishability obfus-
cation (𝑖O) [BGI+01], and as of recently, we even have instantiations under well-studied
assumptions [JLS21,JLS22]. While 𝑖O suffices for some applications, it does not suffice
for many others, or results in exceedingly complex and cumbersome constructions. Sim-
ilarly to hash functions, we believe obfuscators are capable of satisfying a much wider
range of cryptographic security properties beyond 𝑖O. In fact, the evidence of this is
even stronger in the case of obfuscation, due to the fact that any 𝑖O is guaranteed to
be the “best possible obfuscator” [GR07] — if some obfuscator is capable of satisfying
some security property, then 𝑖O must satisfy this property as well.1 Similarly to the ran-
dom oracle model for hash functions, we can define an ideal obfuscation model, where
we model obfuscation as an ideal functionality that only gives the adversary black-box
access to the obfuscated programs.2 Analogously to the ROM, we can construct cryp-
tosystems and formally prove their security in the ideal obfuscation model, which is ex-
traordinarily powerful and gives very simple constructions. Then, we can then make a
heuristic leap of faith that such cryptosystems remains secure when we replace the ideal

1Modulo adding some padding of appropriate size to the programs being obfuscated.
2Ideal obfuscation is similar to the notion of virtual black-box (VBB) obfuscation [BGI+01], except that

we consider it to be an idealized model rather than a security definition. In contrast, VBB was originally
intended as a security definition, which required some artificial choices (restricting adversaries to only
1-bit output) to rule out obvious counterexamples. Nevertheless, the main result of [BGI+01] shows that
even with these restrictions, VBB security is unachievable in its full generality in the plain model.

1 / 36

obfuscator by 𝑖O. Also analogously to the random oracle model, one can come up with
contrived counterexamples (e.g., [BGI+01]) where this heuristic fails. But the intuition is
that it should be secure in almost all natural use cases that come up in real life.

Our Work: Ideal Obfuscation from Ideal Hash Functions. Summarizing the above dis-
cussion, we have the analogy that “collision-resistant hash functions are to random ora-
cles as 𝑖O is to ideal obfuscation”. The main motivating question for this work is

Can we formalize the connection between
ideal hash functions and ideal obfuscation?

As a starting point, we might ask whether it is possible to construct ideal obfuscation
in the random oracle model, under appropriate additional standard-model assumptions.
Such a result would formalize that the ideal obfuscation heuristic is just a special case
of the ROM heuristic. Unfortunately, the work of [CKP15] answered the above question
in the negative and showed that it is impossible to construct ideal obfuscation in the
random oracle model.

Nevertheless, in this work, we re-examine the question of constructing ideal obfus-
cation from ideal hash functions, and show that it is indeed possible! To get around
the previous negative result, we need to tweak our modeling of ideal hash functions.
Instead of the random oracle model, we introduce a new and more flexible idealized
model of hash functions that we call the pseudorandom oracle (PrO) model. We argue
that the PrO model captures the same intuition as the usual ROM, but provides more
technical flexibility. As our main result, we show how to construct ideal obfuscation in
the PrO model. Our construction assumes (single-key, sublinearly succinct) functional
encryption (FE), a strong but standard-model primitive, which can in turn be based on
well-studied polynomial hardness assumptions. We believe that this result formalizes
the following intuition:

Heuristically, assuming we have ideal obfuscation is
tightly connected to heuristically assuming we have ideal hash functions.

As such, confidence in the latter supports confidence in the former. Furthermore, our
construction of ideal obfuscation from FE in the PrO model only incurs a polynomial
security loss. Combined with the fact that FE can be based on well-studied polynomial
assumptions [JLS21,JLS22], we obtain a heuristic obfuscator based on polynomial hard-
ness. In contrast, constructions of 𝑖O from FE in the standard model incur an exponen-
tial security loss.

Next, we first discuss the PrO model in detail and justify why we believe it is a rea-
sonable idealized model for hash functions, similar to the basic ROM. We then discuss
how we interpret our construction of ideal obfuscation in the PrO model, in light of the
fact that ideal obfuscation is impossible in the plain model. Lastly, we give a technical
overview of our construction.

The Pseudorandom Oracle (PrO) Model. Just like the ROM, the PrO model is defined
in terms of a formally specified ideal functionality that all parties (honest users as well
as the adversary) have access to. The ideal functionality for PrO is specified relative
to some real pseudorandom function (PRF) family 𝐻𝑘. The ideal functionality has two
interfaces. The first interface is used to initialize a hash function by providing as input a
PRF key 𝑘: the ideal functionality maps the PRF key 𝑘 to a random handle ℎ and outputs

2 / 36

it. The second interface is used to evaluate the hash function by providing a handle ℎ

and an input 𝑥: the ideal functionality finds the corresponding PRF key 𝑘 for the handle
ℎ and outputs 𝐻𝑘 (𝑥).

A PrO can be used as a basic RO. Consider an honest user who chooses a random PRF
key 𝑘, uses the PrO to get the corresponding handle ℎ, and then discards 𝑘 and publishes
ℎ. In that case, the adversary essentially just get oracle access to the hash function 𝐻𝑘 by
querying the oracle with the handle ℎ. By pseudorandomness of 𝐻𝑘, this is indistinguish-
able from a truly random oracle. However, the PrO also provides additional flexibility
in allowing the honest user who chose 𝑘 to use the code of the hash function 𝐻𝑘 in a
non black-box way (e.g., inside fully homomorphic encryption, functional encryption,
or garbled circuits). In other words, the PrO allows different users of the cryptosystem
to use different descriptions of the same hash function. The first description is given via
the key 𝑘, which specifies the full code of the hash function 𝐻𝑘 and allows evaluating
it in a non-black-box way without making any calls to the oracle. The second descrip-
tion is given via the handle ℎ, which only provides black-box access to the hash function
𝐻𝑘 via oracle queries. The first description is useful for functionality, but provides no
security guarantees — since we only assume PRF security for 𝐻𝑘, if the adversary ever
sees the PRF key 𝑘, all security is lost. The second description is useful for security, but
provides no functionality advantage over the basic ROM. The power of the PrO comes
from the fact that it simultaneously gives us both of these descriptions for the same hash
function and different users can use different descriptions. However, the PrO model is
very conservative about what kind of security guarantees it provides, and proving secu-
rity in the PrO is generally very subtle and requires extreme care. In particular if the
adversary ever receives any information about 𝑘 via the non-black-box use of the hash
function 𝐻𝑘 then all security guarantees are lost! In effect, this means that our analysis
can only make use of PrO security in hybrid games where all information about the key
𝑘 is removed from the view of the adversary. This captures the idea that, although our
overall cryptosystem relies on non-black-box use of the hash function, we can only rely
on PrO security in hybrids where all non-black-box use of the hash function is removed.

Using the PrO. Looking ahead, it is illustrative to examine the role of the PrO in our
construction of ideal obfuscation. For obfuscation, we have two users with different
roles: the “obfuscator” who creates the obfuscated program, and the “evaluator” who gets
the obfuscated program and evaluates it on various inputs. The obfuscator will choose
several PRF keys 𝑘𝑖 and the obfuscated program will contain the keys 𝑘𝑖 inside some
functional encryption (FE) ciphertext. The evaluator will get the FE ciphertext as well as
the corresponding handles ℎ𝑖, which will suffice to evaluate the obfuscated program on
any input. In the security analysis, the adversary plays the role of the evaluator. Although
it does not get keys 𝑘𝑖 directly, it gets an FE ciphertext containing them. To analyze
security, we will need a careful sequence of hybrids where we replace PrO outputs for
the handle ℎ𝑖 by random values in hybrids where the PRF key 𝑘𝑖 is removed from the FE
ciphertext.

Interpreting Our Result on Ideal Obfuscation. Ideal obfuscation cannot be realized
by any real obfuscation scheme, similarly to the fact that a random oracle cannot be
realized by any real hash function. But, also similar to random oracles, ideal obfusca-
tion provides a formal model in which we can design and analyze cryptosystems. Later,
we can instantiate them using a real-life obfuscator based on the intuition that a good

3 / 36

obfuscator is sufficient to achieve what ideal obfuscation achieves in most reasonable
scenarios. This ideal obfuscation heuristic is powerful.

• First, it allows us to reach security goals outside the current scope of standard-
model proofs. The literature already contains an impressive list of such examples:
doubly efficient PIR [BIPW17], fully Homomorphic encryption for RAM [HHWW19],
realizing oblivious transfer using binary erasure channels [AIK+21], input-hiding
obfuscation for evasive functions [BBC+14], virtual-gray-box obfuscation [BC10], public-
coin differing input obfuscation [IPS15], succinct obfuscation and functional en-
cryption for unbounded-input Turing Machines [IPS15], extractable witness en-
cryption and attribute-based encryption for Turing machine and RAM [GKP+13],
counterexamples to the XOR lemma [BIK+22], wiretap-channel coding [IKLS22] etc.
This list will surely continue to grow.

• Second, it enables (conceptually) simple constructions. Consider for instance the
task of building FE. Using ideal obfuscation, we can simply set the secret key for
a function 𝑓 to an obfuscated program that decrypts ciphertexts of a (CCA secure)
public key encryption and then computes the function 𝑓 on the encrypted input.
In contrast, 𝑖O applications typically involve more sophisticated techniques (e.g.,
the punctured program technique [SW14]), in order to overcome the weak security
of 𝑖O, producing cumbersome constructions with complex proofs of security. The
idea obfuscation heuristic gives strong evidence that this is unnecessary in real life.

• Third, for many real-life security goals, such as, obfuscating machine learning
models, protecting software patches, creating cripple-ware where parts of the func-
tionality are redacted, etc, 𝑖O security is insufficient. In these specific natural con-
texts, the virtual-black-box security is plausible (the impossibility of [BGI+01] does
not apply) and can be heuristically instantiated.

When it comes to which concrete obfuscator to use when instantiating the ideal ob-
fuscation heuristic, in the literature, the standard-model 𝑖O construction is typically
used. Our construction of ideal obfuscation in the PrO model, when instantiated with
a real-life hash function, provides an alternative option. The main advantage of our
obfuscator is that it is based on polynomial hardness assumptions, as opposed to subex-
ponential hardness.

Alternate Interpretations: Hardware Tokens, Bootstrapping. Our result can also be
interpreted as constructing ideal obfuscation using hardware tokens: The obfuscator
chooses the PRF key 𝑘, and releases a hardware token that implements the PRF 𝐻𝑘

(acting as the handle in the PrO for providing black-box accesses to 𝐻𝑘) and the ob-
fuscated program that relies on 𝑘. There are several prior works that showed how to
construct obfuscation using hardware tokens [DMMN11,BCG+11,NFR+17]. However, in all
cases, the hardware token is more significantly more complex than just implementing
a PRF. Therefore, we believe our work also provides an interesting new take on how to
construct obfuscation using extremely simple hardware tokens.

Alternately, we can interpret our result as showing that ideal obfuscation for PRFs
implies ideal obfuscation for general functions. Indeed, the PrO model can be thought
of as exactly an ideal obfuscation for a PRF family 𝐻𝑘: the handle ℎ is an ideal obfus-

4 / 36

cated program that implements 𝐻𝑘.3 In the literature, there are several bootstrapping
theorems that transform obfuscation for weak classes of functions to obfuscation for
general functions (e.g., [GGH+13,App14,CLTV15]). In these works, the weak classes are
typically weaker from a complexity theoretic perspective, such as, belonging to NC1 or
TC0, but are expressive enough to hardcode an arbitrary circuit in the function descrip-
tion (e.g., 𝑓 is able to verify that a ciphertext is the correct output ciphertext obtained
by homomorphically evaluate a circuit 𝐶 on some input ciphertexts, and if so decrypts
that ciphertext). In comparison, our bootstrapping theorem starts with obfuscation of a
single PRF family {𝐻𝑘}, which is much simpler.

Discussion on the PrO Model The motivation behind the usual ROM is providing a
rigorous and well-defined model that capture the intuition that outputs of a good hash
function “appear random”, and enable formal security analysis based on this intuition.
To be well-defined, the ROM completely removed non-black-box access to the hash func-
tion. Intuitively, the PrO model is a new well-defined ideal functionality that captures
the same intuition (as described above, it subsumes the random oracle model), and ad-
ditionally allows us to formally reason about cryptosystems that make non-black box use
of a hash function.

Assume we have a real-world cryptosystem that uses some real hash function, say
SHA-3 with a public seed 𝑘. Some users/components of the cryptosystem will only make
black-box calls to the hash function 𝑆𝐻𝐴3(𝑘, ·), but do not rely on the code otherwise,
while other users/components of the cryptosystemmay use the code of the hash function
𝑆𝐻𝐴3(𝑘, ·) in a non-black-box way. In the usual ROM, we model the former use-case by
replacing all calls to 𝑆𝐻𝐴3(𝑘, ·) with oracle calls to a truly random public oracle, but
do not have any way of capturing the latter use-case. In the PrO model, we can set
𝐻𝑘 (·) = 𝑆𝐻𝐴3(𝑘, ·)4 and replace all black-box calls to 𝑆𝐻𝐴3(𝑘, ·) with oracle calls to
𝐻𝑘 (·)5. Additionally, if the original cryptosystem also used the hash function 𝑆𝐻𝐴3(𝑘, ·)
in a non-black-box way, the PrO models allows parties knowing 𝑘 to make non-black-box
use of 𝐻𝑘, while ensuring that it is consistent with all of the black-box calls to the hash
function, which were replaced by oracle calls.

The above describes why it is reasonable to take any real-world cryptosystem that
relies on black-box and non-black-box use of a hash function such as SHA-3 and model
it in the PrO. We are also be interested in the reverse direction. Like RO, the PrO model
articulates an explicit design paradigm: For a crypto problem Π, to design a good scheme
(or protocol) 𝑃 for Π:

(1) Find a formal definition for Π in the model of computation in which all parties
(including the adversary) share the pseudorandom oracle O.

(2) Devise an efficient scheme 𝑃 for Π in this PrO model.

(3) Prove that 𝑃 satisfies the definition for Π in the PrO model.
3This is yet another reason why the PrO and the ROM are morally equivalent. The ROM essentially

says that good hash functions are good “obfuscated PRFs” since having the full description of a hash
function such as SHA-3 is no better than just having oracle access to a random function.

4Assume that 𝑆𝐻𝐴3(𝑘, ·) is a PRF with key 𝑘, which is a very mild real-world hash function assumption.
5Formally, we model this by letting the pseudorandom oracle publish some handle ℎ corresponding to

the key 𝑘 and we replace all black-box calls to 𝑆𝐻𝐴3(𝑘, ·) with calls to an oracle, where the call provides
the handle ℎ and the oracle translates it back to 𝑘 and evaluates 𝑆𝐻𝐴3(𝑘, ·).

5 / 36

(4) Instantiate the pseudorandom oracle O using a real hash function.
One possible instantiation using 𝑆𝐻𝐴3 is setting 𝐻𝑘 (𝑥) = 𝑆𝐻𝐴3(𝑘, 𝑥), replace the
handle ℎ with (𝑆𝐻𝐴3, 𝑘) and every evaluation call to PrO with an evaluation of
𝑆𝐻𝐴3(𝑘, ·).

In the above PrO paradigm, as well as the traditional RO paradigm, the proof of security
(Step (3)) is in an ideal model, and the last step (Step (4)) is heuristic in nature. There
are known schemes/protocols secure in the ROM, but insecure when instantiated with
any real hash functions, e.g., [Bar01,GK03]. These counterexamples extends to the PrO
model. In addition, our construction of ideal obfuscation is an example that separates
the PrO model and the ROM. Despite these counterexamples, for the same reasons that
apply to the RO paradigm, having a security proof in the PrOmodel maintains significant
benefits. First, schemes that are proven secure in the PrO model are secure against
generic attacks that make only black-box calls to the hash functions. Second, under the
uber heuristic that in natural use-cases, no adversary can effectively make use of the code of
real-world hash functions beyond making black-box calls, we obtain heuristically secure
schemes in the standard model. The uber heuristic is the same as the heuristic backing
the RO paradigm.

Another dimension regards the benefits of having a formal ideal model over ad hoc
heuristics in individual use-cases. The ROM was motivated and guided by heuristic uses
of hash functions that preceded it, such as, the Fiat-Shamir transformation [FS87]. How-
ever, the benefits of having an explicit ideal model go beyond providing partial justifica-
tion to these use-cases. It greatly facilitates future design, as witnessed in the explosion
of cryptosystems designed in the ROM since its introduction [BR93]. In recent years, we
saw heuristic non-black-box uses of hash functions, for instance, in recursive composition
of SNARKs in the ROM [BCCT13], in construction of simulation-secure functional encryp-
tion [DIJ+13], and chosen-ciphertext secure fully homomorphic encryption [CRRV17]. It
is well-motivated to formalize a variant of the ROM able to capture some non-black-box
uses of hash functions. However, such efforts quickly meets the contradiction that one
cannot simultaneously model hash functions as random functions and assume efficient
code representation. As a result, previous heuristic non-black-box uses of hash functions
(as in recursive proof composition) have been deemed less satisfactory than heuristics
justified in the ROMs. The PrO model side-steps the contradiction–the oracle evaluates
pseudorandom functions 𝐻𝑘 (·) that has efficient code representation. However, as dis-
cussed above, security proofs in the PrO model are subtle since we do not assume any
security of 𝐻𝑘 (·) when the key 𝑘 is around. In effect, this means that the PrO model only
allows us to rely on RO-style modeling of 𝐻𝑘 (·) in hybrid games where all non-black-box
use of 𝑘 is removed.

Overall, we believe that the PrO model is a natural and more flexible variant of the
ROM that allows us to formally reason about cryptosystems that make non-black box use
of hash functions, while being “morally analogous” to the ROM. At first, the idea of an
ideal model that captures non-black-box use of hash functions may seem unnatural: if
the cryptosystem makes non-back box use of the hash function, why can’t the adversary?
The PrO model gives a satisfying answer to this. We can only rely in PrO security in
hybrids where all non-black-box use of the hash function has been removed, in which
case it is reasonable to also assume that the adversary only has black-box access.

6 / 36

A Technical Subtlety. Before proceeding to the technical body, we explain a technical sub-
tlety related to the formalization of PrO and its instantiation. There are two options for
modeling the public handle ℎ in PrO: 1) model ℎ as a special symbol that cannot be oper-
ated on (i.e., cannot be viewed as a string and computed on) and can only be used as an
argument in evaluation calls to PrO; 2) model ℎ as a (sufficiently long) randomly chosen
string. The former only permits designing schemes that use ℎ to make black-box calls
of the hash function, whereas the latter allows schemes that may use ℎ in an arbitrary
way. In the former modeling, we can instantiate 𝐻𝑘 (·) = 𝑆𝐻𝐴3(𝑘, ·) and ℎ = (𝑆𝐻𝐴3, 𝑘)
as described above, and all uses of ℎ for black-box calls are replaced with evaluation
𝑆𝐻𝐴(𝑘, 𝑥). In the latter model, the same instantiation may run into unnatural corner
cases: For instance, the scheme may check whether ℎ contains 𝑘 as a substring. This
is not the case in the PrO model where ℎ is a random string, but is the case when ℎ is
instantiated as (𝑆𝐻𝐴3, 𝑘). In this case, we need more care. Instead, we can heuristically
instantiate this by setting 𝐻𝑘 = 𝑆𝐻𝐴3(𝑆𝐻𝐴3(𝑘), ·) and ℎ = (𝑆𝐻𝐴3, 𝑆𝐻𝐴3(𝑘)), and re-
place all oracle calls using an input ℎ with calls to 𝑆𝐻𝐴3(ℎ, ·). “Non-black-box” uses of
ℎ in the scheme becomes non-black-box use of (𝑆𝐻𝐴3, 𝑆𝐻𝐴3(𝑘)). The distinction be-
tween the two models are similar to that between Maurer’s [Mau05] and Shoup’s [Sho97]
generic group model, which is recently studied in the work of [Zha22]. We view these two
formalizations as morally the same. Our construction of ideal obfuscation only uses ℎ

for black-box evaluation calls and can be formalized and proven secure in either model.
In the technical body, we use the second option, as it gives constructions more flexibility.

Organization. We overview our techniques in Section 2. After providing preliminaries
in Section 3, we define the PrO model in Section 4 and ideal obfuscation in Section 5.
We present our construction of ideal obfuscation in Section 6 and prove its security in
Section 7.

1.1 Related Works

We are aware of several prior works that have attempted to rely on random oracle se-
curity of a hash function while simultaneously making non-black-box use of the hash
function. For example, the work of Valiant [Val08] constructs incrementally verifiable
proofs of knowledge and the work of [DIJ+13] constructs simulation-based FE using this
type of approach. However, these works do not define a fully specified formal model in
which one can state the given results, making it difficult to even write down a meaning-
ful theorem. This is in contrast to our PrO model which gives a formally specified ideal
model in which we can state and prove results. On the other hand, the PrO model only
allows very careful non-black-box use of a hash function, where we can only make use
of PrO security in hybrids where all non-black-box use of the hash function is removed.
It does not appear that the constructions of [Val08,DIJ+13] could directly translate into
results in the PrO model.

2 Technical Overview

Now we describe the main ideas behind our construction. The starting idea comes from
the insights made by [BV15,AJ15] and the follow-ups [LPST16,BNPW16,KNT18,KNTY19],
which establish that 𝑖O can realized generically from a seemingly weaker primitive of

7 / 36

a subexponentially secure single-key functional encryption scheme (FE). These results
additionally require the FE scheme to satisfy certain encryption efficiency guarantees.
In the overview below, assume that the FE scheme satisfies adaptive indistinguishability
security and compactness with linear input dependency.6 Refer to Definition 1 for a
definition of a functional encryption scheme.

FE-to-𝒊O Transformation. The idea is a really natural one. In order to obfuscate circuit
𝐶 : {0, 1}𝐷 → {0, 1} we give out an FE ciphertext ct𝜀 encrypting the circuit 𝐶. We think
of this ciphertext as being associated with the root of a complete binary tree of depth 𝐷.
We also give out FE secret keys for each of the 𝐷 levels in the tree, with functions that
themselves compute FE encryptions. By defining such functions carefully, we can ex-
pand any ciphertext ct𝜒 for some prefix 𝜒 ∈ {0, 1}<𝐷 associated with some internal node
in the tree into two ciphertexts ct𝑥| |0, ct𝑥| |1 associated with the children, where each such
child ciphertext carries the information about the circuit 𝐶. Finally, for the ciphertexts
ct𝑥 at the leaf level with 𝑥 ∈ {0, 1}𝐷, we give out FE secret keys that allow one to recover
the output 𝐶(𝑥). This allows an evaluator to compute 𝐶(𝑥) starting from ct𝜀 by going
down the appropriate path in the tree.

In more detail, the obfuscator does the following:

• For 𝑖 ∈ [0, 𝐷], run (pk𝑖, sk𝑖) $← FE.Gen(1𝜆).

• Compute ct𝜀
$← FE.Enc(pk0, info𝜀), where info𝜀 = (𝐶, 𝜀,★) where 𝐶 is the circuit, and

★ indicates a slot that will contain some useful programming information used in
the proof (such as PRF keys) that will be specified later as needed.

• Generate sk𝑓𝑖
$← FE.KeyGen(sk𝑖, 𝑓𝑖) for 𝑖 ∈ [0, 𝐷]. Here the function 𝑓𝑖 for 𝑖 ∈ [0, 𝐷−1]

under normal functioning, takes as input a ciphertext ct𝜒 for 𝜒 ∈ {0, 1}𝑖, encrypting
info𝜒 = (𝐶, 𝜒,★) under pk𝑖 and produces two ciphertexts (ct𝜒∥0, ct𝜒∥1) encrypting
info𝜒∥𝑏 = (𝐶, 𝜒∥𝑏,★) for 𝑏 ∈ {0, 1} respectively under pk𝑖+1. Finally, 𝑓𝐷 takes as input
info𝑥 = (𝐶, 𝑥 ∈ {0, 1}𝐷,★) and outputs 𝐶(𝑥).

The output of the obfuscation is �̂� = {ct𝜀, {sk𝑓𝑖}𝑖∈[0,𝐷]}. In order to evaluate the circuit
�̂� on input 𝑥 ∈ {0, 1}𝐷, one computes ct𝑥 at level 𝐷, and then decrypts it using sk𝑓𝐷 to
compute 𝐶(𝑥). The process of computing ct𝑥 is inductive and proceeds like a binary tree
traversal. Let 𝑥≤𝑖 be the prefix of 𝑥 of length 𝑖. We start by decrypting ct𝜀 using sk𝑓0
to compute (ct0∥ct1). For 𝑖 ∈ [𝐷 − 1], we inductively decrypt ct𝑥≤𝑖 using sk𝑓𝑖 to derive
ct𝑥≤𝑖 ∥0∥ct𝑥≤𝑖 ∥1. We then use ct𝑥≤𝑖+1 to continue this way along the tree.

The scheme described above satisfies polynomial slowdown because of the compact-
ness of FE scheme. Since at every level, ct𝜒 encrypts info𝜒 the running time of each
function 𝑓𝑖 is 𝑂(|info𝜒 | poly(𝜆)) and thus each 𝑓𝑖 is polynomial sized. Although, some bit
of care is needed because we need to ensure that the size of the slots denoted by ★ used
by any ciphertext don’t blow up as the levels increase, the proof is designed in a way that
this happens.

The security proof is slightly tricky. Given the obfuscation, the adversary can produce
at least 2𝐷 intermediate ciphertexts, ct𝜒 for 𝜒 ∈ {0, 1}≤𝐷, each encrypting info𝜒 = (𝐶, 𝜒,★)
containing the circuit that is being obfuscated. If 𝐶0, 𝐶1 are the two equivalent circuits,

6An FE scheme is said to satisfy compactness with linear input dependency, if the size of the encryption
circuit is |𝑥| poly(𝜆), where 𝑥 is the message that is encrypted, and 𝜆 is the security parameter. This is
independent of the function for which the keys are issued.

8 / 36

we would like to show that �̂�0 is indistinguishable to �̂�1. The adversary is given ct𝜀, and
(sk𝑓0 , . . . , sk𝑓𝐷). The adversary can actually compute ct𝜒 for any 𝜒 ∈ {0, 1}≤𝐷 of his choice,
and can do so internally without the reduction knowing at all. Thus, the reduction needs
a strategy to switch every ct𝜒 from containing 𝐶0 to 𝐶1 that the adversary can touch
upon without being able to guess which ciphertexts ct𝜒 will be touched by the adversary.
Therefore to achieve this, the proof works input by input. For every 𝑥 ∈ {0, 1}𝐷, the
reduction switches every ciphertext encountered in the path to 𝑥, and their neighbors to
use 𝐶1 instead of 𝐶0. This will require the use of the slots ★, along with PRF puncturing
and hardwiring intermediate ciphertexts (within the keys/ciphertext ct𝜀) in the path in
the slots containing ★. Thus, going over all 𝑥 ∈ {0, 1}𝐷 introduces at least 2𝐷 hybrids
which result in a subexponential security loss.

Why Does the Scheme Fail to Be an Ideal Obfuscation? In an ideal obfuscation scheme,
we require that �̃� can be simulated by a polynomial-time simulator having access only to
an oracle implementing circuit 𝐶. What this means is that the simulator has to come up
with a short ciphertext ct𝜀, that is powerful enough to generate ct𝑥 for every 𝑥 ∈ {0, 1}𝐷
containing the information enough to evaluate 𝐶(𝑥), without having access to the circuit
in the clear and only as an oracle. Assuming hard-to-learn functions exist, this is impos-
sible as the simulator can only query the oracle of the circuit 𝐶 a polynomial number of
times. Indeed, this trivial argument shows that ideal obfuscation cannot exist, which is
also implied by the the work of [BGI+01], which showed that even a more restricted ver-
sion of VBB obfuscation cannot exist.In this work, one of our primary goals is to identify
a reasonable model capturing real world adversaries in which ideal obfuscation is possi-
ble. We take inspiration from the random oracle model [BR93], where there are several
known applications that are known to be impossible in the standard model but can be
constructed in the random oracle model (Such as SNARKs).

A Simplified Intuition Using Random Oracles. From the observation above, one of the
limitations behind proving the above scheme secure is that once the reduction/simulator
produces some ciphertext ct𝜀, this fully specifies all the intermediate ciphertexts in the
tree and all the outputs of the circuit. There is no other place to “program” any infor-
mation.The random oracle might be very useful in solving this issue. Imagine, a world
in which ct𝜀 is set so that, the result of the first decryption is 𝐻 (𝜀) ⊕ [ct0∥ct1] so that
adversary has to query 𝐻 (𝜀) to unmask next layer ciphertexts. Similarly, assume that
result of decrypting ct𝜒 for 𝜒 ∈ {0, 1}≤𝐷−1, is 𝐻 (𝜒) ⊕ [ct𝜒∥0∥ct𝜒∥1].

If the above was hypothetically possible, then, we might be able to come up with a
simulation strategy. The point is that a random oracle gives us two powerful capabilities
that enable simulation of this kind: observability and programmability. As the evaluator
queries 𝐻 (𝜒) for various values of 𝜒, the simulator can keep track of which path the
adversary is taking to evaluate the ciphertext. Secondly, due to programming, one can
undetectably move to a setting where the ciphertext start decrypting to a random value
otp𝜒 as opposed to 𝐻 (𝜒) ⊕ [ct𝜒∥0∥ct𝜒∥1]. Simultaneously, we can program the random
oracle to respond to 𝐻 (𝜒) by answering otp𝜒 ⊕ [ct𝜒∥0∥ct𝜒∥1].

Once this happens, any ct𝜒 can only be accessed by querying the oracle. Then the
hope is that since there are only polynomial queries an adversary can make, we need
to simulate only a polynomial of ciphertexts. In particular the goal would be to replace
ct𝜒 for 𝜒 ∈ {0, 1}≤𝐷−1 by “dummy” ciphertexts independent of the circuit 𝐶, and ct𝑥 for
𝑥 ∈ {0, 1}𝐷 using simulated ciphertexts generated using 𝐶(𝑥). This will yield an ideal

9 / 36

obfuscation scheme with polynomial security.
Unfortunately, at this moment this is just wishful thinking! There is a fundamen-

tal flaw with the idea above which must be addressed before we can materialize this
approach.

Using the PrO Model. The flaw with the idea above is the premise itself. We assumed
that the decryption of ct𝜒 is of the form 𝐻 (𝜒) ⊕ · · · , but this requires the FE scheme to
evaluate the hash function 𝐻. This only makes sense if the functions 𝑓𝑖 in the FE secret
keys depend on the code of the hash function 𝐻, which means that we need 𝐻 to be a real
hash function and not a random oracle! So we have seemingly conflicting requirements,
where we need the code of the hash function to define the scheme syntactically, but we
also need to treat the hash function as an ideal oracle to take advantage of observability
and programmability.

This is where our model comes in. We precisely show that the above approach can
be realized in the PrO model. Let us briefly recall the PrO model (see Definition 5 for a
detailed definition). In this model, there are two oracle algorithms hGen and hEval with
the syntax below.

O(hGen, 𝑘), O(hEval, ℎ, 𝑥),

where O(hGen,★) maps a key 𝑘 into a handle ℎ, and O(hEval, ℎ, 𝑥) maps the handle ℎ

back into its unique key 𝑘 and outputs 𝐻 (𝑘, 𝑥) where 𝐻 (𝑘, ·) is some specific function
family. The map that turns handles into the key and vice-versa is implemented by a
random permutation and can be simulated efficiently using “lazy sampling”. Further, we
require that 𝐻 is a pseudorandom function — given a handle ℎ for a randomly chosen
𝑘, the function O(hEval, ℎ,★) = 𝐻 (𝑘,★) is computationally indistinguishable to a random
function (when 𝑘 is absent from the view of the adversary).

This model provides the right abstraction needed to solve our problem. A random key
𝑘 (corresponding to handle ℎ) can be used inside the FE ciphertext to compute 𝐻 (𝑘, 𝜒) ⊕
[ct𝜒∥0∥ct𝜒∥1]. At the same time, if we could remove 𝑘 from the adversary’s view, we can
still program O(hEval, ℎ,★). Of course, the difficulty is that if the the key 𝑘 is inside the
FE ciphertext then it is part of the adversary’s view. Therefore, we need to come up with
a careful strategy involving a sequence of hybrids where we only program the oracle
O(hEval, ℎ,★) in hybrids where the key 𝑘 is not present. We describe how to do so below.

First Attempt. We now describe our first attempt at the scheme. The scheme will use a
PRG 𝐺 : {0, 1}𝜆 → {0, 1}4𝜆 which will be used derive the randomness used for encrypting
intermediate ciphertexts. Let 𝜆 be the length of PrO hash keys, and the randomness used
to compute FE ciphertexts. To obfuscate a circuit 𝐶, one computes ct𝜀 which encrypts
(𝐶, 𝜀, 𝑘, 𝑠𝜀), where 𝑘 is the hash key for which ℎ is a handle. Further 𝑠𝜀 is a random-
ness that will be used to derive randomness for lower level ciphertexts. The function
key 𝑓0 takes as input (𝐶, 𝜀, 𝑘, 𝑠𝜀) and outputs 𝐻 (𝑘, 𝜀) ⊕ [ct0∥ct1]. Functions 𝑓1, . . . , 𝑓𝐷 are
described analogously. The output of the obfuscation is �̂� = (ℎ, ct𝜀, {sk𝑓𝑖}𝑖∈[0,𝐷−1]). We
give an outline in Figure 1.

Evaluating such an obfuscated circuit is straightforward. The idea is that ct𝜀 encrypts
a PrO hash key 𝑘, that will be used to compute masks 𝐻 (𝑘, 𝜒) of the lower layer cipher-
texts ct𝜒. The evaluator is also provided a corresponding handle ℎ, which can be used to
derive 𝐻 (𝑘, 𝜒) by making oracle calls. Thus, continuing as before one can compute ct𝑥,
which can be used with sk𝑓𝐷 to derive 𝐶(𝑥).

10 / 36

Ideal Obfuscation - First Attempt

Input: Circuit 𝐶, Computation:

• Sample PrO handle and key pair (ℎ, 𝑘).

• Sample 𝑟𝜀, 𝑠𝜀
$← {0, 1}𝜆.

• For 𝑖 ∈ [0, 𝐷], sample (pk𝑖, sk𝑖) $← FE.Gen(1𝜆). Generate sk𝑓𝑖
$←

FE.KeyGen(sk𝑖, 𝑓𝑖) for functions 𝑓𝑖 described below.

• Set ct𝜀 = FE.Enc(pk0, info𝜀; 𝑟𝜀) where info𝜀 = (normal, 𝐶, 𝜀, 𝑘, 𝑠𝜀). Here,
normal indicates normal mode of the ciphertext. In the simulation mode,
it will be switched with sim.

• Output �̂� = (ℎ, ct𝜀, sk𝑓0 , . . . , sk𝑓𝐷).

Function 𝑓𝑖: In the normal mode, the functions 𝑓𝑖 for 𝑖 ∈ [0, 𝐷−1] work as follows.
Let 𝜒 ∈ {0, 1}𝑖. 𝑓𝑖 (info𝜒 = (normal, 𝐶, 𝜒, 𝑘, 𝑠𝜒)) computes the following:

• Expand 𝐺(𝑠𝜒) = (𝑠𝜒∥0∥𝑟𝜒∥0∥𝑠𝜒∥1∥𝜒∥1).

• For 𝑏 ∈ {0, 1} compute ct𝜒∥𝑏 = FE.Enc(pk𝑖+1, info𝜒∥𝑏; 𝑟𝜒∥𝑏) where info𝜒∥𝑏 =

(normal, 𝐶, 𝜒∥𝑏, 𝑘, 𝑠𝜒∥𝑏)).

• Output 𝐻 (𝑘, 𝜒) ⊕ [ct𝜒∥0∥ct𝜒∥1].

Function 𝑓𝐷(info𝑥 = (normal, 𝐶, 𝑥, 𝑘, 𝑠𝑥)) = 𝐶(𝑥).

Figure 1. First Attempt.

11 / 36

For the security proof, unfortunately, while the intuition is clear where we want to
program O(hEval, ℎ,★) to go to a simulation mode, this can’t be done in the scheme. The
point is that in PrO model, O(hEval, ℎ,★) can only be programmed if 𝑘 is not given out
to the adversary. On the other hand, in the scheme 𝑘 appears inside all the intermediate
ciphertexts ct𝜒. Thus it is not clear how to simulate even the first ciphertext ct𝜀 as the key
𝑘 appears in the future ciphertexts. We will have to remove 𝑘 from all the intermediate
ciphertexts at once to appeal to the programmability of O(hEval, ℎ,★). It is not clear how
to do this.

Second Attempt. To deal with this issue, we make a slight change. We will use different
key/handle pairs (ℎ𝑖, 𝑘𝑖) for every layer 𝑖 ∈ [0, 𝐷−1] as opposed to a single pair. The idea is
that a ciphertext ct𝜒 for 𝜒 ∈ {0, 1}𝑑 in layer 𝑑 ∈ [0, 𝐷−1] will only contain {(ℎ𝑖, 𝑘𝑖)}𝑖∈[𝑑,𝐷−1].
In particular, a ciphertext won’t contain keys used in the previous layers. This will enable
to break out of the issue described above. The scheme is described in Figure 2.

Our high-level simulation strategy is inductive with respect to the layers. Suppose we
manage to simulate ciphertexts ct𝜒 where 𝜒≤𝑑 for 𝑑 ∈ [0, 𝐷 − 2] so that they have no
information about (𝑘0, . . . , 𝑘𝑑), we will use this to simulate ct𝜒 for 𝜒 ∈ {0, 1}𝑑+1. The idea
is that 𝑘𝑑 is missing from the view of the adversary within the first 𝑑 layers. This will

Ideal Obfuscation - Second Attempt

Input: Circuit 𝐶, Computation:

• Sample PrO handle and key pairs (ℎ𝑖, 𝑘𝑖) for 𝑖 ∈ [0, 𝐷 − 1].

• Sample 𝑟𝜀, 𝑠𝜀
$← {0, 1}𝜆.

• For 𝑖 ∈ [0, 𝐷], sample (pk𝑖, sk𝑖) $← FE.Gen(1𝜆). Generate sk𝑓𝑖
$←

FE.KeyGen(sk𝑖, 𝑓𝑖) for functions 𝑓𝑖 described below.

• Set ct𝜀 = FE.Enc(pk0, info𝜀; 𝑟𝜀) where info𝜀 = (normal, 𝐶, 𝜀, {𝑘𝑖}𝑖∈[0,𝐷−1] , 𝑠𝜀).
Here, normal indicates normal mode of the ciphertext. In the simulation
mode, it will be switched with sim.

• Output �̂� = ({ℎ𝑖}𝑖∈[0,𝐷−1] , ct𝜀, sk𝑓0 , . . . , sk𝑓𝐷).

Function 𝑓𝑖: In the normal mode, the functions 𝑓𝑖 for 𝑖 ∈ [0, 𝐷−1] work as follows.
Let 𝜒 ∈ {0, 1}𝑖. 𝑓𝑖 (info𝜒 = (normal, 𝐶, 𝜒, {𝑘𝑑}𝑑∈[𝑖,𝐷−1] , 𝑠𝜒)) computes the following:

• Expand 𝐺(𝑠𝜒) = (𝑠𝜒∥0∥𝑟𝜒∥0∥𝑠𝜒∥1∥𝜒∥1).

• For 𝑏 ∈ {0, 1} compute ct𝜒∥𝑏 = FE.Enc(pk𝑖+1, info𝜒∥𝑏; 𝑟𝜒∥𝑏) where info𝜒∥𝑏 =

(normal, 𝐶, 𝜒∥𝑏, {𝑘𝑑}𝑑∈[𝑖+1,𝐷−1] , 𝑠𝜒∥𝑏)).

• Output 𝐻 (𝑘𝑖, 𝜒) ⊕ [ct𝜒∥0∥ct𝜒∥1].

Function 𝑓𝐷(info𝑥 = (normal, 𝐶, 𝑥, 𝑠𝑥)) = 𝐶(𝑥).

Figure 2. Second Attempt.

12 / 36

enable us to program and observe O(hEval, ℎ𝑑, 𝜒) and thus we will have an opportunity
to replace ct𝜒 with a dummy ciphertext.

In order to demonstrate this strategy, we will start from the very top and show how
the first and subsequent iterations look like. Our eventual goal is to generate all the
ciphertexts so that they don’t contain information about the circuit 𝐶. To achieve that
we will first make sure that the ciphertexts don’t contain information about the keys
{𝑘𝑖}𝑖∈[0,𝐷−1] and use that to program the ciphertexts to contain no information about
the circuit 𝐶. At the last layer, we will use the oracle of 𝐶 to simulate ct𝑥. Consider
the ciphertext ct𝜀 which encrypts info𝜀 = (normal, 𝐶, 𝜀, 𝑘0, 𝑠𝜀), where the first component
indicates the “mode”, which is set to normal in real life. We take the following steps at
the very first layer.

• We replace ct𝜀 from encrypting info𝜀 = (normal, 𝐶, 𝜀, 𝑘0, 𝑠𝜀) to encrypting info𝜀 =

(sim, 𝐻 (𝑘0, 𝜀) ⊕ [ct0∥ct1]), thereby changing the mode to sim and hardwiring the
output of the first decryption. The function 𝑓0 is set so that in the simulation mode,
it outputs the hardwired value within the ciphertext. This change is indistinguish-
able due to the security of FE.

• Now, we can move to simulating the response of O(hEval, ℎ0, 𝜀) by truly random
string otp𝜀. This change is indistinguishable because 𝑘0 is hidden from adversary’s
view.

• Then, we start generating ct𝜀 by encrypting (sim, otp𝜀) and simultaneously simulat-
ing the response of O(hEval, ℎ0, 𝜀) by responding otp𝜀 ⊕ [ct0∥ct1].

• Now one can simulate ct0 and ct1 inductively.

In fact, this strategy can be generalized for any layer 𝑖 ∈ [0, 𝐷 − 1]. The simulator only
needs to compute any given ct𝜒 for 𝜒 ∈ {0, 1}𝑖+1, only when asked forO(hEval, ℎ𝑖, 𝜂) where
𝜂 is length 𝑖 prefix of 𝜒. An adversary can only ask for polynomial such queries as
it is polynomial time. In the final layer, when the adversary asks for O(hEval, ℎ𝐷−1, 𝜒)
for 𝜒 ∈ {0, 1}𝐷−1, the challenger responds by answering otp𝜒 ⊕ [ct𝜒∥0∥ct𝜒∥1] where ct𝜒∥𝑏
encrypts (sim, 𝐶(𝜒∥𝑏)). The last key outputs the hardwired value 𝐶(𝑥) in the simulation
mode.

While the overall intuition above is really clear, there is an important issue we over-
looked. The issue is that ct𝜒 needs to hardwire strings of length |ct𝜒∥0∥ct𝜒∥1 |. Thus, the
generation time of ct𝜒 grows at least exponentially as 𝐷 increases. To resolve this issue,
we revisit the simulation strategy at the very first layer itself and then leverage the idea
to the all the layers.

Fixing Simulation Efficiency. The observation above suggests that the problem with
the simulation strategy is present in the very first step itself. The ciphertext ct𝜀 cannot
hardwire information otp𝜀 ⊕ [ct0∥ct1]. We will resolve this issue by utilizing a much a
smaller slot for hardwiring.

To demonstrate that, let the length [ct0∥ct1] be denoted by 𝐿ct. We also define a
parameter 𝐵, which will be denote the number of blocks. We will set 𝐵 and 𝐿 so that
𝐵 · 𝐿 = 𝐿ct. The idea then is that instead of sampling one key handle pair for the first
layer (ℎ0, 𝑘0), we will sample 𝐵 pairs {(ℎ0, 𝑗 , 𝑘0, 𝑗)}𝑗∈[𝐵]. We will do this for each layer.
For 𝑖 ∈ [0, 𝐷 − 1] we sample 𝐵 pairs {(ℎ𝑖, 𝑗 , 𝑘𝑖, 𝑗)}𝑖∈[0,𝐷−1], 𝑗∈[𝐵]. Each O(hEval, ℎ𝑖, 𝑗 , 𝜒) is now
required to produce outputs of length 𝐿. This will allow us to switch a real ciphertext

13 / 36

out for a dummy ciphertext via a sequence of hybrids, where in each hybrid we only
hardwire one 𝐿-bit block. In particular, the hybrids look as follows:

• Remove the 𝑗’th key 𝑘𝑖, 𝑗 from the ciphertext and hardwire the 𝑗’th block of the
output in the ciphertext.

• Replace the hard-coded block by a random value and program the PrO to maintain
consistency. Note that we can program the random oracle on handle ℎ𝑖, 𝑗 since the
key 𝑘𝑖, 𝑗 was removed.

• Replace the hard-coded block (and the corresponding output of the PrO) by a pseu-
dorandom value generated using a small PRG seed 𝜎𝑗.

• Include the PRG seed 𝜎𝑗 in the ciphertext and use it to generate the 𝑗’th output
block, removing all hard-coding.

Overall this allows us to only hard-code one 𝐿 bit block and 𝐵 small PRG seeds in the ci-
phertext for a total input size of𝑂(𝐿+𝐵) while generating an output of size𝑂(𝐿·𝐵). While
these are our main ideas, working them out requires a bit of care. We now describe the

Ideal Obfuscation - Final Construction

Input: Circuit 𝐶, Computation:

• Sample PrO handle and key pairs (ℎ𝑖, 𝑗 , 𝑘𝑖, 𝑗) for 𝑖 ∈ [0, 𝐷 − 1] and 𝑗 ∈ [𝐵].

• Sample 𝑟𝜀, 𝑠𝜀
$← {0, 1}𝜆.

• For 𝑖 ∈ [0, 𝐷], sample (pk𝑖, sk𝑖) $← FE.Gen(1𝜆). Generate sk𝑓𝑖
$←

FE.KeyGen(sk𝑖, 𝑓𝑖) for functions 𝑓𝑖 described below.

• Set ct𝜀 = FE.Enc(pk0, info𝜀; 𝑟𝜀) where info𝜀 =

(normal, 𝐶, 𝜀, {𝑘𝑖, 𝑗}𝑖∈[0,𝐷−1], 𝑗∈[𝐵] , 𝑠𝜀). Here, normal indicates normal mode of
the ciphertext. In the simulation mode, it will be switched with sim.

• Output �̂� = ({ℎ𝑖, 𝑗}, ct𝜀, sk𝑓0 , . . . , sk𝑓𝐷).

Function 𝑓𝑖: In the normal mode, the functions 𝑓𝑖 for 𝑖 ∈ [0, 𝐷 − 1] work as
follows. Let 𝜒 ∈ {0, 1}𝑖. 𝑓𝑖 (info𝜒 = (normal, 𝐶, 𝜒, {𝑘𝑑, 𝑗}𝑑∈[𝑖,𝐷−1], 𝑗∈[𝐵] , 𝑠𝜒)) computes
the following:

• Expand 𝐺(𝑠𝜒) = (𝑠𝜒∥0∥𝑟𝜒∥0∥𝑠𝜒∥1∥𝜒∥1).

• For 𝑏 ∈ {0, 1} compute ct𝜒∥𝑏 = FE.Enc(pk𝑖+1, info𝜒∥𝑏; 𝑟𝜒∥𝑏) where info𝜒∥𝑏 =

(normal, 𝐶, 𝜒∥𝑏, {𝑘𝑑, 𝑗}𝑑∈[𝑖+1,𝐷−1], 𝑗∈[𝐵] , 𝑠𝜒∥𝑏)).

• Output otp𝜒 ⊕ [𝑐𝑡𝜒∥0∥ct𝜒∥1] where otp𝜒 = 𝐻 (𝑘𝑖,1, 𝜒)∥ . . . ∥𝐻 (𝑘𝑖,𝐵, 𝜒).

Function 𝑓𝐷(info𝑥 = (normal, 𝐶, 𝑥, 𝑠𝑥)) = 𝐶(𝑥).

Figure 3. Final Construction.

14 / 36

construction in a bit more detail. Then, we describe how the proof will work at the top
layer. The same idea can be extended to simulate all the layers of ciphertexts. In more
detail, instead of computing ct𝜀 as an encryption of (𝐶, 𝜀, {𝑘𝑖}𝑖∈[0,𝐷−1] , 𝑠𝜀), we generate it
as an encryption of (normal, 𝐶, 𝜀, {𝑘𝑖, 𝑗}𝑖∈[0,𝐷−1], 𝑗∈[𝐵] , 𝑠𝜀). The result of the decryption of
ct𝜀 with sk𝑓0 will now compute otp𝜀 ⊕ [ct0∥ct1] where otp𝜀 = 𝐻 (𝑘0,1, 𝜀)∥ . . . ∥𝐻 (𝑘0,𝐵, 𝜀). The
construction is outlined in Figure 3.

• First we remove the key 𝑘0,1 from the ciphertext. To do this, the ciphertext ct𝜀
is “partially simulated” using a new mode hyb. We encrypt (hyb, 𝐶, 𝜀, {𝑘0, 𝑗}𝑗>1,
{𝑘𝑖, 𝑗}𝑖∈[1,𝐷−1], 𝑗∈[𝐵] , 𝑠𝜀,𝛼1). Here 𝛼1 is the first 𝐿 sized block of otp𝜀 ⊕ [ct0∥ct1] where
otp𝜀 = 𝐻 (𝑘0,1, 𝜀)∥ . . . ∥𝐻 (𝑘0,𝐵, 𝜀). The function 𝑓0 is designed so that consistency is
ensured in the outputs. This change is indistinguishable due to the security of FE

• Now that 𝑘0,1 is missing, we program O(hEval, ℎ0,1, 𝜀). We generate 𝛼1 as otp𝜀,1 ⊕
[ct0∥ct1]1 where otp𝜀,1 is truly random. We simultaneously program O(hEval, ℎ0,1, 𝜀)
to output otp𝜀,1 to maintain consistency. This change is undetectable due to the
security of PrO.

• Then, we set 𝛼1 as a random sample otp𝜀,1 and program O(hEval, ℎ0,1, 𝜀) to output
otp𝜀,1 ⊕ [ct0∥ct1]1. The change is identical in distribution.

• Then, we set otp𝜀,1 = 𝐺(𝜎𝜀,1) where 𝐺 is an appropriately expanding PRG and 𝜎𝜀,1 is
a 𝜆 bit string. The change is undetectable due to the security of PRG.

• The point of all this is that now one can encrypt (hyb, 𝐶, 𝜀,𝜎𝜀,1, {𝑘0, 𝑗}𝑗>1, {𝑘𝑖, 𝑗}𝑖∈[1,𝐷−1], 𝑗∈[𝐵] , 𝑠𝜀)
where the function 𝑓0 is designed so that it maintain the consistency of outputs.

• Going this way, and removing {𝑘0, 𝑗}𝑗∈[𝐵] one by one, we can now come up to a stage
where all the keys of the top level are removed and ct𝜀 is computed by encrypt-
ing (hyb, 𝐶, 𝜀, {𝜎𝜀, 𝑗}𝑗∈[𝐵] , {𝑘𝑖, 𝑗}𝑖∈[1,𝐷−1], 𝑗∈[𝐵] , 𝑠𝜀). At this point, we can simply move
to a simulated mode by encrypting (sim, 𝜀, {𝜎𝜀, 𝑗}𝑗∈[𝐵]) and the function 𝑓0 simply
outputs 𝐺(𝜎𝜀,1)∥ . . . ∥𝐺(𝜎𝜀,𝐵). At this point, the oracle query O(hEval, ℎ𝜀, 𝑗 , 𝜀) is pro-
grammed to output 𝐺(𝜎𝜀, 𝑗) ⊕ [ct0∥ct1] 𝑗.

The basic idea described above can be carefully extended to work at all the layers,
simulating a layer at a time. For any 𝜒 ∈ {0, 1}𝑖, we have already established that the only
way to generate ct𝜒 is by querying the oracles O(hEval, ℎ𝑖−1, 𝑗 ,★). Thus, the simulator can
now program ct𝜒. Further, an adversary can only make a polynomial of queries. Thus,
we only need to generate a polynomial number of ciphertexts. Each time the simulator
can essentially plays the same set of hybrids as above to replace each queried ciphertext
to a simulated ciphertext analogous to one described above. This works for all the layers
except the final layer 𝐷. In that case, we use 𝐶(𝑥) to simulate the ciphertext which can
be done because the simulator has access to an oracle implementing 𝐶, and can simulate
the last layer as well by making polynomial calls to 𝐶.

3 Preliminaries

We denote by 𝜆 the security parameter, and use the standard notions ≈,≈s,≡ for compu-
tational indistinguishability, statistical indistinguishability, and identity.

15 / 36

The order of tuples of ordered objects is lexicographical, so (𝑎, 𝑏) ≤ (𝑐, 𝑑) means ei-
ther 𝑎 = 𝑐 and 𝑏 ≤ 𝑑 or 𝑎 < 𝑐, for integers 𝑎, 𝑏, 𝑐, 𝑑.

We write 𝑥∥𝑦 for the concatenation of two strings 𝑥, 𝑦. The empty string is denoted
by 𝜀. Given a string 𝑥 and a length 0 ≤ 𝑖 ≤ |𝑥|, we let 𝑥≤𝑖 be the length-𝑖 prefix of 𝑥. In
the context where strings are canonically split into blocks, [𝑥] 𝑗 denotes the 𝑗th block of 𝑥
for 𝑗 ≥ 1.

For a circuit 𝐶, we write 𝐶[𝑤] for 𝐶 with 𝑤 hardwired into its leading portion of
input.

Pseudorandom Generators and Pseudorandom Functions. We assume that the PRG
seed length is always 𝜆, that its output length ℓout can be freely specified, and that its
running time is ℓout poly(𝜆). Similarly, we assume that the PRF key is uniformly ran-
dom over {0, 1}𝜆, that its input/output lengths ℓin, ℓout can be freely specified, and that its
running time is ℓinℓout poly(𝜆).

Functional Encryption. We base our obfuscation scheme on 1-key functional encryp-
tion, which is weaker than the standard notion:7

Definition 1 (1-key FE [BV15]). A (public-key) 1-key functional encryption scheme (for circuits)
consists of 3 efficient algorithms:

• Gen(1𝜆, 𝑓) takes a circuit 𝑓 : {0, 1}𝑛 → {0, 1}∗ as input. It outputs a pair (pk, sk𝑓) of
public (encryption) key and secret (decryption) key for 𝑓 .

• Enc(pk, 𝑧) takes as input the public key and some plaintext 𝑧 ∈ {0, 1}𝑛. It outputs
a ciphertext ct.

• Dec(sk𝑓 , ct) takes as input the secret key and a ciphertext. It is supposed to com-
pute 𝑓 (𝑧).

The schememust be correct, i.e., for all 𝜆 ∈ ℕ, circuit 𝑓 : {0, 1}𝑛 → {0, 1}∗, input 𝑧 ∈ {0, 1}𝑛,
it holds that

Pr

[
(pk, sk𝑓) $← Gen(1𝜆, 𝑓)

ct $← Enc(pk, 𝑧)
: Dec(sk𝑓 , ct) = 𝑓 (𝑧)

]
= 1.

We require the encryption algorithm to run in time subquadratic in |𝑧| and sublinear
in | 𝑓 |:

Definition 2 (efficiency). A 1-key FE scheme (Gen, Enc, Dec) (Definition 1) has subquadratic-
sublinear efficiency (or sufficiently efficient for the purpose of this work) if Enc runs in time

(𝑛2−2𝜀 + 𝑚1−𝜀) poly(𝜆) for some constant 𝜀 > 0,

where 𝑛 = |𝑧| is the input length of 𝑓 and 𝑚 = | 𝑓 | is the circuit size of 𝑓 .

By a standard result [PF79] in circuit complexity, a circuit of Enc of subquadratic-sublinear
size can be efficiently computed. Hereafter, we will use such a bound for uniform circuit
complexity of Enc.

We need the 1-key FE scheme to be adaptively secure:
7In retrospect, this notion is an interpolation between functional encryption and unary function-

revealing encryption [JP18].

16 / 36

Definition 3 (adaptive security). A 1-key FE scheme (Gen, Enc, Dec) (Definition 1) is adap-
tively secure if Exp01-key ≈ Exp11-key, where Exp𝑏

1-key(1
𝜆) with adversary A proceeds as follows:

• Setup. Launch A(1𝜆), receive a circuit 𝑓 : {0, 1}𝑛 → {0, 1}∗ from A, run

(pk, sk𝑓) $← Gen(1𝜆, 𝑓),

and send (pk, sk𝑓) to A.

• Challenge. A chooses two inputs 𝑧0, 𝑧1 ∈ {0, 1}𝑛. Run ct $← Enc(pk, 𝑧𝑏) and send ct
to A.

• Guess. A outputs a bit 𝑏′ ∈ {0, 1}. The outcome of the experiment is 𝑏′ if 𝑓 (𝑧0) = 𝑓 (𝑧1).
Otherwise, the outcome is set to 0.

There is a long series of works [AJS15,ABSV15,BV15,GS16,LM16,AS16,KNTY19,JLL22] study-
ing the transformations among functional encryption schemes with various security and
efficiency guarantees. It is known [JLL22,Nis22] that standard public-key FE with en-
cryption time 𝑚1−𝜀 poly(𝜆, 𝑛) and weak selective security against one key query implies
standard public-key FE with encryption time 𝑛poly(𝜆) and full adaptive security against
unbounded collusion.8 The latter can be used as a sufficiently efficient and adaptively
secure 1-key FE.

We can assume, without loss of generality (neither efficiency nor security), that Enc
uses a uniformly random 𝜆-bit string as its randomness, by using a PRG with efficiency
stated earlier in this section.

Idealized Model. We will define ideal obfuscation with respect to an idealized model,
and construct such a scheme in a particular idealized model.

Definition 4 (idealized model). In an idealized model with oracle O, all algorithms, in-
cluding adversaries, are given access to O. The oracle is programmable, i.e., security
reductions as well as simulators in simulation-based security notions can provide an al-
ternative implementation of O.

As an example, the standard model is an idealized model with O() = ⊥.

Oracle Circuits. In an idealized model, we may consider circuits containing gates calling
into an oracle, referred to as oracle circuits. Like a usual circuit, the description 𝐶• of an
oracle circuit consists of its gates and wires, with the convention that oracle gates are
just placeholders, i.e., 𝐶• does not specify the behavior of the oracle. The circuit can
be evaluated given an input 𝑥 and an oracle O (with appropriate input/output lengths),
which is denoted by 𝐶O (𝑥).

8In a standard public-key FE, the scheme is set up for a master public/secret key pair not tied to 𝑓 ,
and a key for 𝑓 can be derived separately from the master secret key. Weak selective security means
that the adversary chooses 𝑓 , 𝑧0, 𝑧1 independent of the master public key. Full adaptive security against
unbounded collusion means that the adversary can choose 𝑧0, 𝑧1 and arbitrarily many 𝑓𝑞’s after seeing the
master public key and in an arbitrary interleaving manner.

17 / 36

4 The Pseudorandom Oracle (PrO) Model

We now define the pseudorandom oracle model PrO.

Definition 5 (PrOM). Let 𝐻 be a pseudorandom function. The pseudorandom oracle model
for 𝐻 is the idealized model with the oracle O that internally uses a random permutation

hMap : {0, 1}𝜆 → {0, 1}𝜆

and that responds to the following 2 types of queries:

O(hGen, 𝑘) = hMap(𝑘), O(hEval, ℎ, 𝑡) = 𝐻 (hMap−1(ℎ), 𝑡).

5 Ideal Obfuscation

Here are the opening paragraphs.

Definition 6 ((circuit) obfuscation). A (circuit) obfuscation scheme in an idealized model
with oracleO is an efficient algorithm ObfO (1𝜆, 𝐶) that, given a circuit 𝐶 as input, outputs
an oracle circuit 𝐶•. The schememust be correct, i.e., for all 𝜆 ∈ ℕ, circuit 𝐶 : {0, 1}𝐷 → {0, 1}∗,
input 𝑥 ∈ {0, 1}𝐷, it holds that

Pr
[
𝐶•

$← ObfO (1𝜆, 𝐶) : 𝐶O (𝑥) = 𝐶(𝑥)
]
= 1.

We remark that the scheme can only obfuscate vanilla circuits, which do not use the
idealized model oracle O, yet the oracle O can be used during evaluation. This gap is
necessary to avoid the impossibility results [BGI+01].

Our definition of ideal obfuscation in an idealized model is a special case of the in-
differentiability framework [MRH04]:

Definition 7 (ideal obfuscation). An obfuscation scheme ObfO (Definition 6) is an ideal
obfuscation (with universal simulation) if there exists an efficient simulator S = (S1,S2,S3)
(with shared state) such that for all efficient adversary A = (A1,A2) (with shared state),
its advantage is negligible:

Pr

[
𝐶

$← AO
1 (1𝜆)

𝐶•
$← ObfO (1𝜆, 𝐶)

: AO
2 (𝐶•) = 1

]
− Pr

[
𝐶

$← AS1
1 (1

𝜆)

𝐶•
$← S𝐶

2 (1
𝜆, 1𝐷, 1𝑆)

: AS𝐶
3

2 (𝐶
•) = 1

]
.

Here, 𝐷 = |𝑥| is the input length of 𝐶, and 𝑆 = |𝐶 | is the circuit size of 𝐶.

Definition 7 does not guarantee security when multiple circuits are obfuscated, yet we
remark that the simulator for our construction readily extends to handle multiple cir-
cuits.

6 Construction of Ideal Obfuscation in the PrOModel

Similar to many prior works [AJ15,BV15] building obfuscation from FE, our construction
involves a binary tree of FE ciphertexts, yet its structure is slightly different to take ad-
vantage of the PrO model. The binary tree structure is instructive for understanding the
correctness, as well as the security proof in Section 7, of our construction.

18 / 36

ct𝜀

ct0 ct1

ct00 ct01 ct10 ct11

(ct0∥ct1) ⊕ otp𝜀
(FE decryption result)

(ct00∥ct01) ⊕ otp0 (ct10∥ct11) ⊕ otp1

otp𝜀
(oracle output)

otp0 otp1

ct𝜒 (𝜒 ∈ {0, 1}<𝐷)

ct𝜒∥0 ct𝜒∥1

(ct𝜒∥0∥ct𝜒∥1) ⊕ otp𝜒

otp𝜒

· · · · · ·

ct𝑥 (𝑥 ∈ {0, 1}𝐷)

𝐶(𝑥)· · · · · ·

Figure 4. The binary tree of ciphertexts in Construction 1 (normal behavior).

The obfuscation of a circuit 𝐶 with 𝐷-bit input involves a full binary tree of (𝐷 + 1)
levels, as depicted in Figure 4. Each node is identified by its root-to-node path, each
leaf an input 𝑥 to 𝐶, and each internal node a proper prefix of 𝑥. For each 𝜒 ∈ {0, 1}≤𝐷,
node 𝜒 is associated with ct𝜒 encrypting 𝐶, 𝜒 plus some other information. The behavior
of decrypting ct𝜒 is as follows:

• For an internal node, 𝜒 ∈ {0, 1}<𝐷 is a proper fix of the input, and decrypting ct𝜒
yields its children ct𝜒∥0 and ct𝜒∥1 padded by the one-time pad otp𝜒 associated with 𝜒,
which is the PrOM oracle output.

• For a leaf, 𝜒 = 𝑥 ∈ {0, 1}𝐷 is the input, and decrypting ct𝑥 yields 𝐶(𝑥).

The obfuscated circuit 𝐶• contains the root ciphertext ct𝜀, FE secret keys, and handles of
PrOM. To evaluate 𝐶(𝑥), starting from the root ciphertext ct𝜀, for each proper prefix 𝜒

of 𝑥, we decrypt ct𝜒, unpad the result using otp𝜒, and keep either 𝜒𝜒∥0 or ct𝜒∥1 (depending
on the next bit of 𝑥), until we reach ct𝑥, which we decrypt one last time for 𝐶(𝑥).

19 / 36

Ingredients of Construction 1. Let

• 𝐷 be the input length of the circuit 𝐶 to be obfuscated;

• 𝑆 the circuit size of 𝐶;

• 𝐿 the block length, a parameter to be determined later;

• 𝐵 the number of blocks, a parameter to be determined later;

• 𝐻 : {0, 1}𝜆 × {0, 1}𝐷 → {0, 1}𝐿 the PRF of PrOM;

• 𝐺𝑠𝑟 : {0, 1}𝜆 → {0, 1}4𝜆 the PRG for encryption randomness;

• 𝐺𝑣 : {0, 1}𝜆 → {0, 1}𝐿 the PRG for decryption result simulation;

• (Gen, Enc, Dec) an FE scheme whose Enc uses 𝜆-bit uniform randomness.

We construct an obfuscation scheme in the PrO model for 𝐻:

Construction 1 (obfuscation). ObfO (1𝜆, 𝐶) does the following.

1. It sets up (𝐷 + 1) FE instances:

(pk𝐷, sk𝐷) $← Gen(1𝜆, Eval),

(pk𝑑, sk𝑑) $← Gen(1𝜆, Expand𝑑 [pk𝑑+1]) for 𝑑 = 𝐷 − 1, . . . , 0,

where Expand𝑑 and Eval are defined in Figures 5 and 7.

2. It samples keys of 𝐻 and obtains their handles:

𝑘𝑖, 𝑗
$← {0, 1}𝜆, ℎ𝑖, 𝑗 ← O(hGen, 𝑘𝑖, 𝑗) for 0 ≤ 𝑖 < 𝐷, 1 ≤ 𝑗 ≤ 𝐵.

3. It samples the seed and the encryption randomness for the root ciphertext, sets its
flag and information, and computes ct𝜀:

𝑠𝜀
$← {0, 1}𝜆, 𝑟𝜀

$← {0, 1}𝜆,
flag𝜀 ← normal, info𝜀 ← (𝐶, {𝑘𝑖, 𝑗}0≤𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒),

ct𝜀 ← Enc(pk0, flag𝜀, 𝜀, info𝜀; 𝑟𝜀).

4. It outputs 𝐶• [ct𝜀, {sk𝑑}0≤𝑑≤𝐷, {ℎ𝑖, 𝑗}0≤𝑖<𝐷,1≤ 𝑗≤𝐵], defined in Figure 6, as an obfusca-
tion of 𝐶.

Correctness. 𝐶O in Figure 6 follows the tree structure in Figure 4. Correctness readily
follows by inspecting the branches of Expand𝑑 and Eval in Figure 5 and noting

𝐻 (𝑘𝑑,1, 𝜒𝑑∥0𝐷−𝑑)∥ · · · ∥𝐻 (𝑘𝑑,𝐵, 𝜒𝑑∥0𝐷−𝑑)
= O(hEval, ℎ𝑑,1, 𝜒𝑑∥0𝐷−𝑑)∥ · · · ∥O(hEval, ℎ𝑑,𝐵, 𝜒𝑑∥0𝐷−𝑑).

20 / 36

Expand𝑑 [pk𝑑+1] (flag𝜒, 𝜒, info𝜒) — Function for Level 0 ≤ 𝑑 < 𝐷

Hardwired. pk𝑑+1, public key for level (𝑑 + 1).
Input. flag𝜒 ∈ {normal, hyb, sim}, flag associated with 𝜒;

𝜒 ∈ {0, 1}𝑑, proper prefix of circuit input;
info𝜒, information associated with 𝜒, format varying by flag𝜒.

Output. 
Expand𝑑,normal [pk𝑑+1] (𝜒, info𝜒), if flag𝜒 = normal;

Expand𝑑,hyb [pk𝑑+1] (𝜒, info𝜒),
Expand𝑑,sim(𝜒, info𝜒),

if flag𝜒 = hyb;
if flag𝜒 = sim.

}
Figure 7

Eval(flag𝜒, 𝜒, info𝜒) — Function for Level 𝐷

Input. flag𝜒 ∈ {normal, sim}, flag associated with 𝜒;
𝜒 ∈ {0, 1}𝐷, circuit input;
info𝜒, information associated with 𝜒, format varying by flag𝜒.

Output. {
Evalnormal(𝜒, info𝜒), if flag𝜒 = normal;

Evalsim(𝜒, info𝜒), if flag𝜒 = sim. (Figure 7)

Expand𝑑,normal [pk𝑑+1] (𝜒, info𝜒)

Hardwired. pk𝑑+1, public key for level (𝑑 + 1).
Input. 𝜒 ∈ {0, 1}𝑑, proper prefix of circuit input;

info𝜒 = (𝐶, {𝑘𝑖, 𝑗}𝑑≤𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒):
𝐶, circuit being obfuscated;
𝑘𝑖, 𝑗, keys of 𝐻 for level 𝑑, . . . , 𝐷 − 1;
𝑠𝜒, seed of 𝐺𝑠𝑟 associated with 𝜒.

Output. Computed as follows.
𝑠𝜒∥0∥𝑟𝜒∥0∥𝑠𝜒∥1∥𝑟𝜒∥1 ← 𝐺𝑠𝑟 (𝑠𝜒)
for 𝜂 = 0, 1:

flag𝜒∥𝜂 ← normal
info𝜒∥𝜂 ← (𝐶, {𝑘𝑖, 𝑗}𝑑+1≤𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒∥𝜂)
ct𝜒∥𝜂 ← Enc(pk𝑑+1, flag𝜒∥𝜂, 𝜒∥𝜂, info𝜒∥𝜂)

otp𝜒 ← 𝐻 (𝑘𝑑,1, 𝜒∥0𝐷−𝑑)∥ · · · ∥𝐻 (𝑘𝑑,𝐵, 𝜒∥0𝐷−𝑑)
output 𝑣𝜒 ← (ct𝜒∥0∥ct𝜒∥1) ⊕ otp𝜒

Evalnormal(𝜒, info𝜒)

Input. 𝜒 ∈ {0, 1}𝐷, circuit input;
info𝜒 = (𝐶, 𝑠𝜒):

𝐶, circuit being obfuscated;
𝑠𝜒, unused.

Output. 𝐶(𝜒), computed by evaluating a universal circuit at (𝐶, 𝜒).

Figure 5. The circuits Expand𝑑 and Eval in Construction 1 (branches for correctness).

21 / 36

𝐶O [ct𝜀, {sk𝑑}0≤𝑑≤𝐷, {ℎ𝑖, 𝑗}0≤𝑖<𝐷,1≤ 𝑗≤𝐵] (𝑥)

Hardwired. ct𝜀, root ciphertext;
sk𝑑, secret keys;
ℎ𝑖, 𝑗, handles of PrOM.

Input. 𝑥 ∈ {0, 1}𝐷, circuit input.
Output. Computed as follows.

for 𝑑 = 0, . . . , 𝐷 − 1:
𝜒𝑑 ← 𝑥≤𝑑

𝑣𝜒𝑑
← Dec(sk𝑑, ct𝜒𝑑

)
otp𝜒𝑑

← O(hEval, ℎ𝑑,1, 𝜒𝑑∥0𝐷−𝑑)∥ · · · ∥O(hEval, ℎ𝑑,𝐵, 𝜒𝑑∥0𝐷−𝑑)
ct𝜒𝑑∥0∥ct𝜒𝑑∥1 ← 𝑣𝜒𝑑

⊕ otp𝜒𝑑

output Dec(sk𝐷, ct𝑥)

Figure 6. The circuit 𝐶• in Construction 1.

7 Security Proof of Ideal Obfuscation in the PrOModel

Theorem 1 (¶). Assuming PRF security of 𝐻, PRG security of 𝐺𝑠𝑟, 𝐺𝑣, adaptive security (Def-
inition 3) of (Gen, Enc, Dec), and appropriate choice of 𝐿, 𝐵 (Section 7.4), then Construction 1
is an ideal obfuscation (Definition 7) in the PrO model (Definition 5) for 𝐻.

We specify the simulator in Section 7.1 and prove Theorem 1 in Section 7.2.

Branches for Proof and Hybrid Template. The simulator for Construction 1 and the
proof of Theorem 1 use the branches of Expand𝑑 and Eval defined in Figure 7.

The hybrids as well as the simulator follow a common template shown in Figure 8,
and we define a hybrid by specifying the placeholders in the hybrid. The three phases
of the interaction are as follows:

• S1 (pre-obfuscation PrOM). In this phase, S1 efficiently implements the PrOM using
lazy sampling.

• S2 (creating the obfuscation). In this phase, S2 generates FE keys, samples (“spe-
cial”) PrOM handles and keys used in the obfuscation, generates the root cipher-
text ct𝜀, and outputs the obfuscation. The handles are distinct, but the keys are not
necessarily distinct (to facilitate application of PRF security), and not all handles
correspond to a key. The placeholders specify which handles have a corresponding
key and how ct𝜀 is generated.

• S3 (post-obfuscation PrOM). There are multiple cases, depending on whether the
query is related to the “special” handles and keys:

– For (hGen, 𝑘𝑖, 𝑗), the output is ℎ𝑖, 𝑗, as it should be. Not all 𝑘𝑖, 𝑗 ’s are considered
in all hybrids (specified by the placeholders). Intuitively, this case can happen
only with negligible probability, yet this very fact is proved using the hybrids
and the branch is gradually removed as the proof proceeds.

22 / 36

Expand𝑑,hyb [pk𝑑+1] (𝜒, info𝜒)

Hardwired. pk𝑑+1, public key for level (𝑑 + 1).
Input. 𝜒 ∈ {0, 1}𝑑, proper prefix of circuit input;

info𝜒 = (𝐶, {𝑘𝑖, 𝑗}𝑑<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒,𝛽,
{𝜎𝜒, 𝑗}1≤ 𝑗<𝛽, 𝑤𝜒, {𝑘𝑑, 𝑗}𝛽< 𝑗≤𝐵):

𝐶, circuit being obfuscated;
𝑘𝑖, 𝑗, keys of 𝐻 for level 𝑑 + 1, . . . , 𝐷 − 1;
𝑠𝜒, seed of 𝐺𝑠𝑟 associated with 𝜒;
𝛽, hybrid index;
𝜎𝜒, 𝑗, seeds of 𝐺𝑣 associated with 𝜒 (gradually introduced);
𝑤𝜒, hardwired block of decryption result;
𝑘𝑑, 𝑗, keys of 𝐻 for level 𝑑 (gradually removed).

Output. Computed as follows (difference from Expand𝑑,normal).
𝑠𝜒∥0∥𝑟𝜒∥0∥𝑠𝜒∥1∥𝑟𝜒∥1 ← 𝐺𝑠𝑟 (𝑠𝜒)
for 𝜂 = 0, 1:

flag𝜒∥𝜂 ← normal
info𝜒∥𝜂 ← (𝐶, {𝑘𝑖, 𝑗}𝑑+1≤𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒∥𝜂)
ct𝜒∥𝜂 ← Enc(pk𝑑+1, flag𝜒∥𝜂, 𝜒∥𝜂, info𝜒∥𝜂)

output 𝑣𝜒 ← 𝐺𝑣(𝜎𝜒,1)∥ · · · ∥𝐺𝑣(𝜎𝜒,𝛽−1)∥𝑤𝜒

∥
(
[ct𝜒∥0∥ct𝜒∥1]𝛽+1 ⊕ 𝐻 (𝑘𝑑,𝛽+1, 𝜒∥0𝐷−𝑑)

)
∥ · · ·

∥
(
[ct𝜒∥0∥ct𝜒∥1]𝐵 ⊕ 𝐻 (𝑘𝑑,𝐵, 𝜒∥0𝐷−𝑑)

)
Expand𝑑,sim(𝜒, info𝜒)

Input. 𝜒 ∈ {0, 1}𝑑, proper prefix of circuit input;
info𝜒 = {𝜎𝜒, 𝑗}1≤ 𝑗≤𝐵, seeds of 𝐺𝑣 associated with 𝜒.

Output. 𝑣𝜒 ← 𝐺𝑣(𝜎𝜒,1)∥ · · · ∥𝐺𝑣(𝜎𝜒,𝐵).

Evalsim(𝜒, info𝜒)

Input. 𝜒 ∈ {0, 1}𝐷, circuit input;
info𝜒 = 𝑦𝜒, hardwired circuit output at 𝜒.

Output. 𝑦𝜒.

Figure 7. The circuits Expand𝑑 and Eval in Construction 1 (branches for security proof).

23 / 36

Hybrid Template with Placeholders

Shared State:
Tother, set of (𝑘, ℎ) pairs for hMap, initially ∅, with

Keys(Tother)
def
== { 𝑘 | ∃ℎ such that (𝑘, ℎ) ∈ Tother },

Handles(Tother)
def
== { ℎ | ∃𝑘 such that (𝑘, ℎ) ∈ Tother };

𝐶, circuit being obfuscated, available in S2 and S3;
{ℎ𝑖, 𝑗}0≤𝑖<𝐷,1≤ 𝑗≤𝐵, handles of PrOM in obfuscation, initially ⊥;
{pk𝑑, sk𝑑}0≤𝑑≤𝐷, public and secret keys, initially ⊥;
{𝑘𝑖, 𝑗} , keys of 𝐻 in obfuscation, initially ⊥;
{𝐹𝑖, 𝑗}, 𝐹𝜎, 𝐹𝑟, 𝐹𝑠 , random functions (lazily sampled) for

non-programmed portion of O(hEval, ℎ𝑖, 𝑗 ,★), and 𝜎𝜒, 𝑗, 𝑟𝜒, 𝑠𝜒;
flag𝜒, info𝜒, 𝑟𝜒 , components of

ct𝜒 = Enc(pk|𝜒 |, flag𝜒, 𝜒, info𝜒; 𝑟𝜒), available in S2 and S3.

S1(hGen, 𝑘):
if �ℎ such that (𝑘, ℎ) ∈ Tother:

ℎ
$← {0, 1}𝜆 \

(
Handles(Tother) ∪ {ℎ𝑖, 𝑗}

)
Tother ← Tother ∪ {(𝑘, ℎ)}

output the unique ℎ such that (𝑘, ℎ) ∈ Tother
S1(hEval, ℎ, 𝑡):

if �𝑘 such that (𝑘, ℎ) ∈ Tother:
𝑘

$← {0, 1}𝜆 \ Keys(Tother)
Tother ← Tother ∪ {(𝑘, ℎ)}

output 𝐻 (𝑘, 𝑡) for the unique 𝑘 such that (𝑘, ℎ) ∈ Tother
S2:

generate {pk𝑑, sk𝑑}0≤𝑑≤𝐷 as specified in Construction 1
sample uniformly random distinct ℎ𝑖, 𝑗 from {0, 1}𝜆 \ Handles(Tother)
{𝑘𝑖, 𝑗} $← {0, 1}𝜆

output 𝐶• [ct𝜀, {sk𝑑}0≤𝑑≤𝐷, {ℎ𝑖, 𝑗}0≤𝑖<𝐷,1≤ 𝑗≤𝐵]

S3(hGen, 𝑘):
if 𝑘 = 𝑘𝑖, 𝑗 for “𝑘 ?

= 𝑘𝑖, 𝑗”, range of (𝑖, 𝑗) being tested :
output ℎ𝑖, 𝑗 for the smallest such (𝑖, 𝑗)

else: same as S1(hGen, 𝑘)

S3(hEval, ℎ, 𝑡):
if ℎ = ℎ𝑖, 𝑗:
if 𝑡 = 𝜒∥0𝐷−𝑖 for 𝜒 ∈ {0, 1}𝑖:

“ℎ𝑖, 𝑗 : 𝜒”, response to S3(hEval, ℎ𝑖, 𝑗 , 𝑡 = 𝜒∥0𝐷−𝑖)
else:

“ℎ𝑖, 𝑗 : 𝑡”, response to S3(hEval, ℎ𝑖, 𝑗 , 𝑡 ≠ 𝜒∥0𝐷−𝑖)
else: same as S1(hEval, ℎ, 𝑡)

Figure 8. The hybrid template for the security proof of Construction 1.
24 / 36

– For (hEval, ℎ𝑖, 𝑗 , 𝜒∥0𝐷−𝑖), the output is supposed to unmask Dec(sk|𝜒 |, ct𝜒) and
specified by the placeholders.

– For (hEval, ℎ𝑖, 𝑗 , ·), the output is unrelated to obfuscation and specified by the
placeholders.

– For the other queries (excluded from (hGen, 𝑘𝑖, 𝑗) or unrelated to “special” han-
dles and keys), it is the same as S1.

7.1 Simulator

The simulator is specified in Table 1:

• ct𝜒 is in simulation mode and uses truly random 𝑟𝜒 for Enc;

• no ℎ𝑖, 𝑗 has a corresponding PRF key; and

• ct𝜒 for 𝜒 ≠ 𝜀 is not computed by Expand|𝜒 |−1, but programmed into the PrOM re-
sponses to ℎ|𝜒 |−1, 𝑗 ’s.

Although the template in Figure 8 has 𝐶 (the circuit being obfuscated) as part of its
share state, the template itself does not use 𝐶. The simulator only uses evaluations of 𝐶
in S3 (to generate ct𝜒 for |𝜒 | = 𝐷 on demand), hence adheres to the required syntax of a
simulator in Definition 7.

7.2 Hybrids over Levels

To prove Theorem 1, we consider Hyb𝛿,★
9 for 0 ≤ 𝛿 ≤ 𝐷 specified in Table 2. The main

hybrids are Hyb𝛿,$$’s:

• ct𝜒 for |𝜒 | < 𝛿 is in simulation mode and uses truly random 𝑟𝜒 for Enc;

• ct𝜒 for |𝜒 | = 𝛿 is in normal mode and uses truly random 𝑟𝜒;

• ct𝜒 for |𝜒 | > 𝛿 is in normal mode and uses pseudorandom 𝑟𝜒 expanded from 𝑠𝜒≤𝛿 ;

• ℎ𝑖, 𝑗 for 𝑖 < 𝛿 does not have a corresponding PRF key;

• ℎ𝑖, 𝑗 for 𝑖 ≥ 𝛿 has a corresponding PRF key;

• ct𝜒 for 0 < |𝜒 | ≤ 𝛿 is not computed by Expand|𝜒 |−1, but programmed into the PrOM
responses to ℎ|𝜒 |−1, 𝑗 ’s; and

• ct𝜒 for |𝜒 | > 𝛿 is computed by Expand|𝜒 |−1, not programmed into the PrOM.

The helper hybrids are Hyb𝛿,𝑠’s. Their only difference from the main hybrids is that
(𝑠, 𝑟) expansion starts at level (𝛿 − 1) instead of 𝛿, i.e., ct𝜒 for |𝜒 | ≥ 𝛿 is in normal mode
and uses pseudorandom 𝑟𝜒 expanded from 𝑠𝜒≤𝛿−1 .

The following lemmas hold for Hyb𝛿,★’s:

Lemma 2 (¶). Let Hybreal be the real experiment (implicit in the minuend in Definition 7),
then Hybreal ≈s Hyb0,$$.

9The mnemonic is the form of 𝑠, 𝑟 at level 𝛿 — in Hyb𝛿,$$ they are truly random, and in Hyb𝛿,𝐺($) they
are PRG image.

25 / 36

Table 1. Specification of the simulator (see Figure 8).

{𝑘𝑖, 𝑗} non-existent
{𝐹𝑖, 𝑗} {0, 1}𝐷 → {0, 1}𝐿 for 0 ≤ 𝑖 < 𝐷, 1 ≤ 𝑗 ≤ 𝐵

𝐹𝜎 {0, 1}<𝐷 × {1, . . . , 𝐵} → {0, 1}𝜆
𝐹𝑟 {0, 1}≤𝐷 → {0, 1}𝜆
𝐹𝑠 non-existent

flag𝜒 sim

info𝜒

{
{𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗≤𝐵, if |𝜒 | < 𝐷;
𝐶(𝜒), if |𝜒 | = 𝐷.

𝑟𝜒 𝐹𝑟 (𝜒)
state ↑

S3 ↓ in simulator

𝑘
?
= 𝑘𝑖, 𝑗 non-existent

ℎ𝑖, 𝑗 : 𝜒 𝐺𝑣(𝐹𝜎 (𝜒, 𝑗)) ⊕ [ct𝜒∥0∥ct𝜒∥1] 𝑗
ℎ𝑖, 𝑗 : 𝑡 𝐹𝑖, 𝑗 (𝑡)

Table 2. Specification of Hyb𝛿,★ for 0 ≤ 𝛿 ≤ 𝐷 (see Figure 8).

{𝑘𝑖, 𝑗} 𝛿 ≤ 𝑖 < 𝐷, 1 ≤ 𝑗 ≤ 𝐵

{𝐹𝑖, 𝑗} {0, 1}𝐷 → {0, 1}𝐿 for 0 ≤ 𝑖 < 𝛿, 1 ≤ 𝑗 ≤ 𝐵

𝐹𝜎 {0, 1}<𝛿 × {1, . . . , 𝐵} → {0, 1}𝜆
𝐹𝑟 {0, 1}≤𝛿 → {0, 1}𝜆 {0, 1}≤𝛿−1 → {0, 1}𝜆
𝐹𝑠 {0, 1}𝛿 → {0, 1}𝜆 {0, 1}𝛿−1 → {0, 1}𝜆

▶ |𝜒 | < 𝛿:
flag𝜒 sim
info𝜒 {𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗≤𝐵

𝑟𝜒 𝐹𝑟 (𝜒)
▶ |𝜒 | = 𝛿:

𝑟𝜒 𝐹𝑟 (𝜒) expand from
𝑠𝜒 𝐹𝑠(𝜒) 𝑠𝜒≤𝛿−1 = 𝐹𝑠(𝜒≤𝛿−1)

▶ |𝜒 | ≥ 𝛿:
flag𝜒 normal
info𝜒 (𝐶, {𝑘𝑖, 𝑗} |𝜒 |≤𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒)
(𝑠,𝑟)

expansion 𝑠𝜒∥0∥𝑟𝜒∥0∥𝑠𝜒∥1∥𝑟𝜒∥1 = 𝐺𝑠𝑟 (𝑠𝜒)
state ↑

S3 ↓ in Hyb𝛿,$$ in Hyb𝛿,𝐺($)

𝑘
?
= 𝑘𝑖, 𝑗 𝛿 ≤ 𝑖 < 𝐷, 1 ≤ 𝑗 ≤ 𝐵 (checks for all existent 𝑘𝑖, 𝑗 ’s)

▶ 𝑖 < 𝛿:
ℎ𝑖, 𝑗 : 𝜒 𝐺𝑣(𝐹𝜎 (𝜒, 𝑗)) ⊕ [ct𝜒∥0∥ct𝜒∥1] 𝑗
ℎ𝑖, 𝑗 : 𝑡 𝐹𝑖, 𝑗 (𝑡)
▶ 𝑖 ≥ 𝛿:
ℎ𝑖, 𝑗 : 𝜒 𝐻 (𝑘𝑖, 𝑗 , 𝜒∥0𝐷−𝑖)
ℎ𝑖, 𝑗 : 𝑡 𝐻 (𝑘𝑖, 𝑗 , 𝑡)

26 / 36

Lemma 3 (¶). Hyb𝛿,$$ ≈ Hyb𝛿+1,𝐺($) for all 0 ≤ 𝛿 < 𝐷.

Lemma 4 (¶). Hyb𝛿,𝐺($) ≈ Hyb𝛿,$$ for all 1 ≤ 𝛿 ≤ 𝐷.

Lemma 5 (¶). Let Hybsim be the simulation experiment (implicit in the subtrahend in Defini-
tion 7), then Hyb𝐷,$$ ≈ Hybsim.

Proof (Theorem 1). It follows from a standard hybrid argument over

Hybreal
2≈s Hyb0,$$

3≈ Hyb1,𝐺($)
4≈ Hyb1,$$

3≈ · · · 4≈ Hyb𝐷,$$
5≈ Hybsim,

where the number over each “≈” references the lemma used. □

Lemmas 2, 4, and 5 are straightforward and we prove them below. We present the proof
of Lemma 3 in Section 7.3.

Proof (Lemma 2). Starting from Hybreal, the following modifications are made to reach
Hyb0,$$:

1. Change ℎ𝑖, 𝑗 ’s from being uniformly random to being uniformly random and distinct
over {0, 1}𝜆 \ Handles(Tother).

2. Change 𝑘𝑖, 𝑗 ’s from being uniformly random and distinct over {0, 1}𝜆 \ Keys(Tother)
to being uniformly random. (𝑘𝑖, 𝑗 ’s are still excluded in the sampling of 𝑘’s in S3.)

3. Stop excluding 𝑘𝑖, 𝑗 ’s in the sampling of 𝑘’s in S3.

Hybreal ≈s Hyb0,$$ follows from a standard birthday bound argument. □

Proof (Lemma 4). In Hyb𝛿,𝐺($), all PRG seed 𝑠𝜒 for |𝜒 | = 𝛿 − 1 has been removed from ct𝜒
and it is only used to obtain

𝑠𝜒∥0∥𝑟𝜒∥0∥𝑠𝜒∥1∥𝑟𝜒∥1 = 𝐺𝑠𝑟 (𝑠𝜒).

In Hyb𝛿,$$, the left-hand side is replaced by true randomness. The two hybrids are oth-
erwise identical, and their indistinguishability follows from the PRG security of 𝐺𝑠𝑟.

The reduction is a hybrid argument over all 𝑠𝜒 for 𝜒 ∈ {0, 1}𝛿−1 such that at least one of
𝑠𝜒∥0, 𝑟𝜒∥0, 𝑠𝜒∥1, and 𝑟𝜒∥1 is used (to create ct𝜒∥0 and ct𝜒∥1) to respond to S3(hEval, ℎ𝛿−1, 𝑗 ,★).
Since there are only polynomially queries from an efficient adversary, the reduction only
incurs a polynomial loss of security. Hereafter, the same trick implicitly applies to the
reduction implied by any other proof of this paper. □

Proof (Lemma 5). The only difference between Hyb𝐷,$$ (Table 2 with 𝛿 = 𝐷) and Hybsim
(Table 1) is the plaintext encrypted under ct𝜒 for |𝜒 | = 𝐷:

(flag𝜒, 𝜒, info𝜒) = (normal, 𝜒, (𝐶, 𝑠𝜒)) in Hyb𝐷,$$,

(flag𝜒, 𝜒, info𝜒) = (sim, 𝜒, 𝐶(𝜒)) in Hybsim.

In both hybrids, ct𝜒 ’s for |𝜒 | = 𝐷 are all encrypted using true randomness (that is not used
elsewhere) under the public key pk𝐷. Since the secret key sk𝐷 is for the function Eval and

Eval(normal, 𝜒, (𝐶, 𝑠𝜒)) = Evalnormal(𝜒, (𝐶, 𝑠𝜒))
= 𝐶(𝜒)
= Evalsim(𝜒, 𝐶(𝜒)) = Eval(sim, 𝜒, 𝐶(𝜒)),

Hyb𝐷,$$ ≈ Hybsim reduces to the adaptive security of 1-key FE. □

27 / 36

Table 3. Specification of Hyb𝛿,𝛽,★ for 0 ≤ 𝛿 < 𝐷, 1 ≤ 𝛽 ≤ 𝐵 (see Figure 8).

{𝑘𝑖, 𝑗} 𝑖=𝛿:𝛽≤ 𝑗≤𝐵
𝛿<𝑖<𝐷: 1≤ 𝑗≤𝐵

𝑖=𝛿:𝛽+1≤ 𝑗≤𝐵
𝛿<𝑖<𝐷: 1≤ 𝑗≤𝐵

{𝐹𝑖, 𝑗} {0,1}𝐷

−1𝑚𝑢→{0,1}𝐿
for 0≤𝑖<𝛿: 1≤ 𝑗≤𝐵

𝑖=𝛿: 1≤ 𝑗<𝛽
0≤𝑖<𝛿: 1≤ 𝑗≤𝐵

𝑖=𝛿: 1≤ 𝑗<𝛽+1

𝐹𝜎
({0,1}<𝛿×{1,...,𝐵})
−1𝑚𝑢∪({0,1}𝛿×{1,...,𝛽−1})

→ {0, 1}𝜆 {0, 1}𝜆 ← ({0,1}<𝛿×{1,...,𝐵})
−1𝑚𝑢∪({0,1}𝛿×{1,...,𝛽})

𝐹𝑟 {0, 1}≤𝛿 → {0, 1}𝜆
𝐹𝑠 {0, 1}𝛿 → {0, 1}𝜆

▶ |𝜒 | < 𝛿:
flag𝜒 sim
info𝜒 {𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗≤𝐵

𝑟𝜒 𝐹𝑟 (𝜒)
▶ |𝜒 | = 𝛿:

𝑟𝜒 𝐹𝑟 (𝜒)
𝑠𝜒 𝐹𝑠(𝜒)

𝑤𝜒 [ct𝜒∥0∥ct𝜒∥1]𝛽 ⊕ 𝐻 (𝑘𝛿,𝛽, 𝜒∥0𝐷−𝛿)
[ct𝜒∥0∥ct𝜒∥1]𝛽
−1𝑚𝑢⊕𝐹𝛿,𝛽 (𝜒∥0𝐷−𝛿)

𝐹𝛿,𝛽 (𝜒∥0𝐷−𝛿) 𝐺𝑣(𝐹𝜎 (𝜒,𝛽))
flag𝜒 hyb

info𝜒
(𝐶, {𝑘𝑖, 𝑗}𝛿<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒,𝛽,
{𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗<𝛽, 𝑤𝜒 , {𝑘𝛿, 𝑗}𝛽< 𝑗≤𝐵)

▶ |𝜒 | > 𝛿:
flag𝜒 normal
info𝜒 (𝐶, {𝑘𝑖, 𝑗} |𝜒 |≤𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒)
(𝑠,𝑟)

expansion 𝑠𝜒∥0∥𝑟𝜒∥0∥𝑠𝜒∥1∥𝑟𝜒∥1 = 𝐺𝑠𝑟 (𝑠𝜒)
state ↑

S3 ↓ in Hyb𝛿,𝛽,1 in Hyb𝛿,𝛽,2 in Hyb𝛿,𝛽,3 in Hyb𝛿,𝛽,4 in Hyb𝛿,𝛽,5

𝑘
?
= 𝑘𝑖, 𝑗

𝛿<𝑖<𝐷: 1≤ 𝑗≤𝐵
𝑖=𝛿:𝛽≤ 𝑗≤𝐵

𝛿<𝑖<𝐷: 1≤ 𝑗≤𝐵
𝑖=𝛿:𝛽+1≤ 𝑗≤𝐵

▶ 𝑖 < 𝛿:
ℎ𝑖, 𝑗 : 𝜒 𝐺𝑣(𝐹𝜎 (𝜒, 𝑗)) ⊕ [ct𝜒∥0∥ct𝜒∥1] 𝑗
ℎ𝑖, 𝑗 : 𝑡 𝐹𝑖, 𝑗 (𝑡)
▶ 𝑖 = 𝛿 and 𝑗 < 𝛽:
ℎ𝛿, 𝑗 : 𝜒 𝐺𝑣(𝐹𝜎 (𝜒, 𝑗)) ⊕ [ct𝜒∥0∥ct𝜒∥1] 𝑗
ℎ𝛿, 𝑗 : 𝑡 𝐹𝛿, 𝑗 (𝑡)
▶ 𝑖 = 𝛿 and 𝑗 = 𝛽:

ℎ𝛿,𝛽 : 𝜒 𝐻 (𝑘𝛿,𝛽, 𝜒∥0𝐷−𝛿) 𝐹𝛿,𝛽 (𝜒∥0𝐷−𝛿)
𝐹𝛿,𝛽 (𝜒∥0𝐷−𝛿)
−1𝑚𝑢⊕[ct𝜒∥0∥ct𝜒∥1]𝛽

𝐺𝑣 (𝐹𝜎 (𝜒,𝛽))
−1𝑚𝑢⊕[ct𝜒∥0∥ct𝜒∥1]𝛽

ℎ𝛿,𝛽 : 𝑡 𝐻 (𝑘𝛿,𝛽, 𝑡) 𝐹𝛿,𝛽 (𝑡) 𝐹𝛿,𝛽 (𝑡) 𝐹𝛿,𝛽 (𝑡)
▶ 𝑖 = 𝛿 and 𝑗 > 𝛽:
ℎ𝛿, 𝑗 : 𝜒 𝐻 (𝑘𝛿, 𝑗 , 𝜒∥0𝐷−𝛿)
ℎ𝛿, 𝑗 : 𝑡 𝐻 (𝑘𝛿, 𝑗 , 𝑡)
▶ 𝑖 > 𝛿:
ℎ𝑖, 𝑗 : 𝜒 𝐻 (𝑘𝑖, 𝑗 , 𝜒∥0𝐷−𝑖)
ℎ𝑖, 𝑗 : 𝑡 𝐻 (𝑘𝑖, 𝑗 , 𝑡)

28 / 36

7.3 Hybrids over Blocks at Each Level

To prove Lemma 3, we consider Hyb𝛿,𝛽,★ for 0 ≤ 𝛿 < 𝐷, 1 ≤ 𝛽 ≤ 𝐵 specified in Table 3. In
these hybrids, ct𝜒 ’s at level |𝜒 | ≠ 𝛿 and responses to S3(hEval, ℎ𝑖, 𝑗 ,★) at level 𝑖 ≠ 𝛿 remain
the same as in Hyb𝛿,$$. We focus on the changes at level 𝛿.

Recall that the decryption result is the one-time-padded child ciphertexts, which (at
each level, and in particular, level 𝛿) are split into 𝐵 blocks, the one-time pad of each
block corresponding to a handle ℎ𝛿, 𝑗. In Hyb𝛿,𝛽,1, the first (𝛽 − 1) blocks have been
switched to pseudorandom, and those blocks of the child ciphertexts, at level (𝛿 + 1),
are hardwired into the responses to S3(hEval, ℎ𝛿, 𝑗 ,★) so that correctness is maintained.
The 𝛽th block is hardwired into the level-𝛿 ciphertext, which is set to the block of the
child ciphertexts padded using 𝑘𝛿,𝛽. The last (𝐵 − 𝛽) blocks are computed in the same
way as in Hyb𝛿,$$, from 𝜒, 𝑠𝜒, and 𝑘𝑖, 𝑗 ’s for 𝛿 < 𝑖 < 𝐷 and 1 ≤ 𝑗 ≤ 𝐵. The handles ℎ𝛿, 𝑗 for
1 ≤ 𝑗 < 𝛽 do not have a corresponding PRF key, whereas ℎ𝛿, 𝑗 for 𝛽 ≤ 𝑗 ≤ 𝐵 do.

Moving from Hyb𝛿,𝛽,1 to Hyb𝛿,𝛽+1,1:

• Hyb𝛿,𝛽,2 no longer checks 𝑘
?
= 𝑘𝛿,𝛽 in S3(hGen, 𝑘).

• Hyb𝛿,𝛽,3 replaces 𝐻 (𝑘𝛿,𝛽,★), thus S3(hEval, ℎ𝛿,𝛽,★), by random function 𝐹𝛿,𝛽.

• Hyb𝛿,𝛽,4 makes the 𝛽th block of the decryption result random and programs the 𝛽th

block of the child ciphertexts into S3(hEval, ℎ𝛿,𝛽,★).

• Hyb𝛿,𝛽,5 makes the 𝛽th block of the decryption result pseudorandom.

• Hyb𝛿,𝛽+1,1 collects the PRG seed for the 𝛽th block and recycles the hardwiring space
for the (𝛽 + 1)st block.

The following lemmas hold for Hyb𝛿,𝛽,★’s:

Lemma 6 (¶). Hyb𝛿,$$ ≈ Hyb𝛿,1,1 for all 0 ≤ 𝛿 < 𝐷.

Lemma 7 (¶). For all 0 ≤ 𝛿 < 𝐷 and 1 ≤ 𝛽 ≤ 𝐵,

Hyb𝛿,𝛽,1 ≈ Hyb𝛿,𝛽,2 ≈ Hyb𝛿,𝛽,3 ≡ Hyb𝛿,𝛽,4 ≈ Hyb𝛿,𝛽,5.

Lemma 8 (¶). Hyb𝛿,𝛽,5 ≈ Hyb𝛿,𝛽+1,1 for all 0 ≤ 𝛿 < 𝐷 and 1 ≤ 𝛽 < 𝐵.

Lemma 9 (¶). Hyb𝛿,𝐵,5 ≈ Hyb𝛿+1,𝐺($) for all 0 ≤ 𝛿 < 𝐷.

Proof (Lemma 3). It follows from a standard hybrid argument over

Hyb𝛿,$$
6≈ Hyb𝛿,1,1

7≈ Hyb𝛿,1,5
8≈ Hyb𝛿,2,1

≈
7

Hyb𝛿,2,5 ≈8 · · · ≈7 Hyb𝛿,𝐵,5 ≈9 Hyb𝛿+1,𝐺($) ,

where the number over or under each “≈” references the lemma used. □

It remains to prove Lemmas 6, 7, 8, and 9.

Proof (Lemma 6). The only difference between Hyb𝛿,$$ (Table 2) and Hyb𝛿,1,1 (Table 3) is
the plaintext encrypted under ct𝜒 for |𝜒 | = 𝛿:

(flag𝜒, 𝜒, info𝜒) = (normal, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿≤𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒)) in Hyb𝛿,$$,

29 / 36

(flag𝜒, 𝜒, info𝜒) = (hyb, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒,

𝛽︷︸︸︷
1 ,

∅︸︷︷︸
{𝜎𝜒, 𝑗 }1≤ 𝑗<1

, [ct𝜒∥0∥ct𝜒∥1]1 ⊕ 𝐻 (𝑘𝛿,1, 𝜒∥0𝐷−𝛿)︸ ︷︷ ︸
𝑤𝜒

, {𝑘𝛿, 𝑗}1< 𝑗≤𝐵))

in Hyb𝛿,1,1.

In both hybrids, ct𝜒 ’s for |𝜒 | = 𝛿 are encrypted using true randomness (that is not used
elsewhere) under pk𝛿, and sk𝛿 is for the function Expand𝛿. As

Expand𝛿 (normal, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿≤𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒))
= (ct𝜒∥0∥ct𝜒∥1) ⊕ (𝐻 (𝑘𝛿,1, 𝜒∥0𝐷−𝛿)∥ · · · ∥𝐻 (𝑘𝛿,𝐵, 𝜒∥0𝐷−𝛿))
= ([ct𝜒∥0∥ct𝜒∥1]1 ⊕ 𝐻 (𝑘𝛿,1, 𝜒∥0𝐷−𝛿))
∥([ct𝜒∥0∥ct𝜒∥1]2 ⊕ 𝐻 (𝑘𝛿,2, 𝜒∥0𝐷−𝛿))∥ · · ·
∥ ([ct𝜒∥0∥ct𝜒∥1]𝐵 ⊕ 𝐻 (𝑘𝛿,𝐵, 𝜒∥0𝐷−𝛿))

= Expand𝛿 (hyb, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒, 1,
∅, [ct𝜒∥0∥ct𝜒∥1]1 ⊕ 𝐻 (𝑘𝛿,1, 𝜒∥0𝐷−𝛿), {𝑘𝛿, 𝑗}1< 𝑗≤𝐵)),

Hyb𝛿,$$ ≈ Hyb𝛿,1,1 reduces to the adaptive security of 1-key FE. □

Proof (Lemma 7). For Hyb𝛿,𝛽,1 ≈ Hyb𝛿,𝛽,2, the two are identical until (“bad event”) the ad-
versary queries S3(hGen, 𝑘𝛿,𝛽). Prior to the bad event, the only interaction of the ad-
versary with 𝑘𝛿,𝛽 amounts to querying its evaluations at various points. For appropriate
choice of 𝐵 (Section 7.4), the bad event can happen only with negligible probability due
to the PRF security of 𝐻. Therefore, the two hybrids are indistinguishable.

Hyb𝛿,𝛽,2 ≈ Hyb𝛿,𝛽,3 reduces to the PRF security of 𝐻, because in Hyb𝛿,𝛽,2, the PRF key
𝑘𝛿,𝛽 is only used for evaluating at various points (thanks to removing 𝑘

?
= 𝑘𝛿,𝛽 in the pre-

vious step).
Hyb𝛿,𝛽,3 ≡ Hyb𝛿,𝛽,4 is the perfect secrecy of one-time pad.
Hyb𝛿,𝛽,4 ≈ Hyb𝛿,𝛽,5 reduces to the PRG security of 𝐺𝑣. □

Proof (Lemma 8). The only difference between Hyb𝛿,𝛽,5 and Hyb𝛿,𝛽+1,1 is the plaintext en-
crypted under ct𝜒 for |𝜒 | = 𝛿:

(flag𝜒, 𝜒, info𝜒) = (hyb, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒,𝛽,

{𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗<𝛽,

↷

𝐺𝑣(𝐹𝜎 (𝜒,𝛽)),
{𝑘𝛿, 𝑗}𝛽< 𝑗≤𝐵)) in Hyb𝛿,𝛽,5,

(flag𝜒, 𝜒, info𝜒) = (hyb, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒,𝛽 + 1,
{𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗<𝛽+1,
[ct𝜒∥0∥ct𝜒∥1]𝛽 ⊕ 𝐻 (𝑘𝛿,𝛽+1, 𝜒∥0𝐷−1),

↷ {𝑘𝛿, 𝑗}𝛽+1< 𝑗≤𝐵)) in Hyb𝛿,𝛽+1,1.

In both hybrids, ct𝜒 ’s for |𝜒 | = 𝛿 are encrypted using true randomness (that is not used
elsewhere) under pk𝛿, and sk𝛿 is for the function Expand𝛿. It suffices to verify

Expand𝛿 (hyb, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒,𝛽,

{𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗<𝛽, 𝐺𝑣(𝐹𝜎 (𝜒,𝛽)), {𝑘𝛿, 𝑗}𝛽< 𝑗≤𝐵))

30 / 36

= 𝐺𝑣(𝐹𝜎 (𝜒, 1))∥ · · · ∥𝐺𝑣(𝐹𝜎 (𝜒,𝛽 − 1))
∥𝐺𝑣(𝐹𝜎 (𝜒,𝛽))∥([ct𝜒∥0∥ct𝜒∥1]𝛽+1 ⊕ 𝐻 (𝑘𝛿,𝛽+1, 𝜒∥0𝐷−𝛿))
∥([ct𝜒∥0∥ct𝜒∥1]𝛽+2 ⊕ 𝐻 (𝑘𝛿,𝛽+2, 𝜒∥0𝐷−𝛿))∥ · · ·
∥ ([ct𝜒∥0∥ct𝜒∥1]𝐵 ⊕ 𝐻 (𝑘𝛿,𝐵, 𝜒∥0𝐷−𝛿))

= Expand𝛿 (hyb, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒,𝛽 + 1,
{𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗<𝛽+1,
[ct𝜒∥0∥ct𝜒∥1]𝛽+1 ⊕ 𝐻 (𝑘𝛿,𝛽+1, 𝜒∥0𝐷−𝛿),
{𝑘𝛿, 𝑗}𝛽+1< 𝑗≤𝐵)),

and Hyb𝛿,𝛽,5 ≈ Hyb𝛿,𝛽+1,1 reduces to the adaptive security of 1-key FE. □

Proof (Lemma 9). The only difference between Hyb𝛿,𝐵,5 (Table 3) and Hyb𝛿+1,𝐺($) (Table 2)
is the plaintext encrypted under ct𝜒 for |𝜒 | = 𝛿:

(flag𝜒, 𝜒, info𝜒) = (hyb, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒, 𝐵,

{𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗<𝐵, 𝐺𝑣(𝐹𝜎 (𝜒, 𝐵))︸ ︷︷ ︸
𝑤𝜒

, ∅︸︷︷︸
{𝑘𝛿, 𝑗 }𝐵< 𝑗≤𝐵

)) in Hyb𝛿,𝐵,5,

(flag𝜒, 𝜒, info𝜒) = (sim, 𝜒, {𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗≤𝐵) in Hyb𝛿+1,𝐺($) .

In both hybrids, ct𝜒 ’s for |𝜒 | = 𝛿 are encrypted using true randomness (that is not used
elsewhere) under pk𝛿, and sk𝛿 is for the function Expand𝛿. It holds that

Expand𝛿 (hyb, 𝜒, (𝐶, {𝑘𝑖, 𝑗}𝛿<𝑖<𝐷,1≤ 𝑗≤𝐵, 𝑠𝜒, 𝐵,

{𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗<𝐵, 𝐺𝑣(𝐹𝜎 (𝜒, 𝐵)),∅))
= 𝐺𝑣(𝐹𝜎 (𝜒, 1))∥ · · · ∥𝐺𝑣(𝐹𝜎 (𝜒, 𝐵 − 1))∥𝐺𝑣(𝐹𝜎 (𝜒, 𝐵))
= Expand𝛿 (sim, 𝜒, {𝐹𝜎 (𝜒, 𝑗)}1≤ 𝑗≤𝐵),

so Hyb𝛿,𝐵,5 ≈ Hyb𝛿+1,𝐺($) reduces to the adaptive security of 1-key FE. □

7.4 Choice of Parameters

We will set 𝐿 = 𝐵. Let 𝑛, 𝑚 be the length of plaintexts and circuits in 1-key FE. Expand𝑑

and Eval (Figures 5 and 7) have

• a universal circuit for circuits up to size 𝑆,

• 2 copies of Enc of 1-key FE,

• 𝐵 copies of 𝐻,

• 𝐵 copies of 𝐺𝑣, and

• other components of size poly(𝜆) or subsumed by the above.

Suppose the encryption circuit is of size at most (𝑛2−2𝜀 + 𝑚1−𝜀)𝜆𝑒1 for some constant
𝑒1 > 0 and 0 < 𝜀 < 1/2.10 We have (below, |·| is the bit length of everything)

𝑛 = |flag| + |𝜒 | + |𝐶 | + 𝐷𝐵|𝑘| + |𝑠| + |𝛽 | + 𝐵|𝜎 | + |𝑤| ≤ 𝑆𝐷𝐵𝜆𝑒2

10This derivation assumes 𝜆 ≥ 2 and 𝑛, 𝑚 ≥ 1. We also assume 1 ≤ 𝐷, 𝑆, 𝐿, 𝐵 ≤ 2𝜆.

31 / 36

for some constant 𝑒2 > 0. For representing the circuit, we need

𝑚 = Ω(𝑆 log 𝑆) + 2(𝑛2−2𝜀 + 𝑚1−𝜀)𝜆𝑒1 + 𝐵𝐿poly(𝜆) log 𝐿 + poly(𝜆),

for which we require

𝑚 ≥ (𝑆2𝐷2𝐵2 + 𝑚1−𝜀)𝜆𝑒3

for a certain constant 𝑒3 > 0. For sufficiently long one-time pads, we also need

2(𝑛2−2𝜀 + 𝑚1−𝜀)𝜆𝑒1 ≤ 𝐿𝐵 = 𝐵2.

To satisfy these constraints, it suffices to set

𝐿 = 𝐵 = 2𝑚(1−𝜀)/2𝜆𝑒1+𝑒2 , 𝑚 = (5𝑆2𝐷2𝜆2𝑒1+2𝑒2+𝑒3)1/𝜀 .

References

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan.
From selective to adaptive security in functional encryption. In Rosario Gen-
naro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216
of LNCS, pages 657–677. Springer, Heidelberg, August 2015.

[AIK+21] Shweta Agrawal, Yuval Ishai, Eyal Kushilevitz, Varun Narayanan, Manoj
Prabhakaran, Vinod M. Prabhakaran, and Alon Rosen. Secure compu-
tation from one-way noisy communication, or: Anti-correlation via anti-
concentration. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part II, volume 12826 of LNCS, pages 124–154, Virtual Event, August 2021.
Springer, Heidelberg.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation
from compact functional encryption. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–326.
Springer, Heidelberg, August 2015.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability
obfuscation from functional encryption for simple functions. Cryptology
ePrint Archive, Report 2015/730, 2015. https://eprint.iacr.org/2015/
730.

[App14] Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom func-
tions. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II,
volume 8874 of LNCS, pages 162–172. Springer, Heidelberg, December 2014.

[AS16] Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for tur-
ing machines. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I,
volume 9562 of LNCS, pages 125–153. Springer, Heidelberg, January 2016.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd
FOCS, pages 106–115. IEEE Computer Society Press, October 2001.

32 / 36

https://eprint.iacr.org/2015/730
https://eprint.iacr.org/2015/730

[BBC+14] Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer Paneth,
and Amit Sahai. Obfuscation for evasive functions. In Yehuda Lindell, editor,
TCC 2014, volume 8349 of LNCS, pages 26–51. Springer, Heidelberg, February
2014.

[BC10] Nir Bitansky and Ran Canetti. On strong simulation and composable point
obfuscation. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
520–537. Springer, Heidelberg, August 2010.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive
composition and bootstrapping for SNARKS and proof-carrying data. In Dan
Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC,
pages 111–120. ACM Press, June 2013.

[BCG+11] Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman Kalai,
and Guy N. Rothblum. Program obfuscation with leaky hardware. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073
of LNCS, pages 722–739. Springer, Heidelberg, December 2011.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sa-
hai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating pro-
grams. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18.
Springer, Heidelberg, August 2001.

[BIK+22] Saikrishna Badrinarayanan, Yuval Ishai, Dakshita Khurana, Amit Sahai, and
Daniel Wichs. Refuting the dream XOR lemma via ideal obfuscation and re-
settable MPC. In Dana Dachman-Soled, editor, 3rd Conference on Information-
Theoretic Cryptography (ITC 2022), volume 230 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 10:1–10:21, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[BIPW17] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access
a database both locally and privately? In Yael Kalai and Leonid Reyzin,
editors, TCC 2017, Part II, volume 10678 of LNCS, pages 662–693. Springer,
Heidelberg, November 2017.

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From
cryptomania to obfustopia through secret-key functional encryption. In
Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986
of LNCS, pages 391–418. Springer, Heidelberg, October / November 2016.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning, Raymond
Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS
93, pages 62–73. ACM Press, November 1993.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation
from functional encryption. In Venkatesan Guruswami, editor, 56th FOCS,
pages 171–190. IEEE Computer Society Press, October 2015.

33 / 36

[CKP15] Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On obfuscation with ran-
dom oracles. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015,
Part II, volume 9015 of LNCS, pages 456–467. Springer, Heidelberg, March
2015.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Ob-
fuscation of probabilistic circuits and applications. In Yevgeniy Dodis and
Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages
468–497. Springer, Heidelberg, March 2015.

[CRRV17] Ran Canetti, Srinivasan Raghuraman, Silas Richelson, and Vinod Vaikun-
tanathan. Chosen-ciphertext secure fully homomorphic encryption. In
Serge Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages 213–240.
Springer, Heidelberg, March 2017.

[DIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer
Paneth, and Giuseppe Persiano. On the achievability of simulation-based
security for functional encryption. In Ran Canetti and Juan A. Garay, ed-
itors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 519–535. Springer,
Heidelberg, August 2013.

[DMMN11] Nico Döttling, Thilo Mie, Jörn Müller-Quade, and Tobias Nilges. Basing ob-
fuscation on simple tamper-proof hardware assumptions. Cryptology ePrint
Archive, Report 2011/675, 2011. https://eprint.iacr.org/2011/675.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg, Au-
gust 1987.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. Candidate indistinguishability obfuscation and functional en-
cryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer Society
Press, October 2013.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-
Shamir paradigm. In 44th FOCS, pages 102–115. IEEE Computer Society Press,
October 2003.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikun-
tanathan, and Nickolai Zeldovich. How to run turing machines on encrypted
data. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 536–553. Springer, Heidelberg, August 2013.

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In
Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 194–213.
Springer, Heidelberg, February 2007.

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional
encryption with polynomial loss. In Martin Hirt and Adam D. Smith, editors,
TCC 2016-B, Part II, volume 9986 of LNCS, pages 419–442. Springer, Heidel-
berg, October / November 2016.

34 / 36

https://eprint.iacr.org/2011/675

[HHWW19] Ariel Hamlin, Justin Holmgren, Mor Weiss, and Daniel Wichs. On the plau-
sibility of fully homomorphic encryption for RAMs. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS,
pages 589–619. Springer, Heidelberg, August 2019.

[IKLS22] Yuval Ishai, Alexis Korb, Paul Lou, and Amit Sahai. Beyond the Csiszár-
Körner bound: Best-possible wiretap coding via obfuscation. In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508
of LNCS, pages 573–602. Springer, Heidelberg, August 2022.

[IPS15] Yuval Ishai, Omkant Pandey, and Amit Sahai. Public-coin differing-inputs
obfuscation and its applications. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, TCC 2015, Part II, volume 9015 of LNCS, pages 668–697. Springer, Hei-
delberg, March 2015.

[JLL22] Aayush Jain, Huijia Lin, and Ji Luo. Personal communication, 2022.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from well-founded assumptions. In Samir Khuller and Virginia Vassilevska
Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory
of Computing, Virtual Event, Italy, June 21-25, 2021, pages 60–73. ACM, 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from LPN over 𝔽𝑝, DLIN, and PRGs in 𝑁𝐶0. In Orr Dunkelman and Stefan
Dziembowski, editors, EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages
670–699. Springer, Heidelberg, May / June 2022.

[JP18] Marc Joye and Alain Passelègue. Function-revealing encryption - definitions
and constructions. In Dario Catalano and Roberto De Prisco, editors, SCN
18, volume 11035 of LNCS, pages 527–543. Springer, Heidelberg, September
2018.

[KNT18] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Obfustopia built on
secret-key functional encryption. In Jesper Buus Nielsen and Vincent Rij-
men, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 603–
648. Springer, Heidelberg, April / May 2018.

[KNTY19] Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka, and Takashi Yamakawa.
Adaptively secure and succinct functional encryption: Improving security
and efficiency, simultaneously. In Alexandra Boldyreva and Daniele Mic-
ciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 521–551.
Springer, Heidelberg, August 2019.

[LM16] Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance in
functional encryption. In Martin Hirt and Adam D. Smith, editors, TCC 2016-
B, Part II, volume 9986 of LNCS, pages 443–468. Springer, Heidelberg, Octo-
ber / November 2016.

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability
obfuscation with non-trivial efficiency. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615
of LNCS, pages 447–462. Springer, Heidelberg, March 2016.

35 / 36

[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography (invited
paper). In Nigel P. Smart, editor, 10th IMA International Conference on Cryp-
tography and Coding, volume 3796 of LNCS, pages 1–12. Springer, Heidelberg,
December 2005.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability,
impossibility results on reductions, and applications to the random oracle
methodology. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages
21–39. Springer, Heidelberg, February 2004.

[NFR+17] Kartik Nayak, Christopher W. Fletcher, Ling Ren, Nishanth Chandran,
Satya V. Lokam, Elaine Shi, and Vipul Goyal. HOP: Hardware makes ob-
fuscation practical. In NDSS 2017. The Internet Society, February / March
2017.

[Nis22] Ryo Nishimaki. Personal communication, 2022.

[PF79] Nicholas John Pippenger and Michael John Fischer. Relations among com-
plexity measures. J. ACM, 26(2):361–381, apr 1979.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266.
Springer, Heidelberg, May 1997.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th ACM STOC,
pages 475–484. ACM Press, May / June 2014.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge
imply time/space efficiency. In Ran Canetti, editor, TCC 2008, volume 4948
of LNCS, pages 1–18. Springer, Heidelberg, March 2008.

[Zha22] Mark Zhandry. To label, or not to label (in generic groups). In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume 13509
of LNCS, pages 66–96. Springer, Heidelberg, August 2022.

36 / 36

	Introduction
	Related Works

	Technical Overview
	Preliminaries
	The Pseudorandom Oracle (PrO) Model
	Ideal Obfuscation
	Construction of Ideal Obfuscation in the PrO Model
	Security Proof of Ideal Obfuscation in the PrO Model
	Simulator
	Hybrids over Levels
	Hybrids over Blocks at Each Level
	Choice of Parameters

	References

