
Accountable Light Client Systems for PoS Blockchains

Oana Ciobotaru1, Fatemeh Shirazi2, Alistair Stewart1, and Sergey Vasilyev1

1Web3 Foundation
2Heliax AG

September 21, 2022

Abstract

A major challenge for blockchain interoperability is having an on-chain light client protocol that
is both efficient and secure. We present a protocol that provides short proofs about the state of a
decentralised consensus protocol while being able to detect misbehaving parties. To do this naively,
a verifier would need to maintain an updated list of all participants’ public keys which makes the
corresponding proofs long. In general, existing solutions either lack accountability or are not efficient.
We define and design a committee key scheme with short proofs that do not include any of the
individual participants’ public keys in plain. Our committee key scheme, in turn, uses a custom
designed SNARK which has a fast prover time. Moreover, using our committee key scheme, we define
and design an accountable light client system as the main cryptographic core for building bridges
between proof of stake blockchains. Finally, we implement a prototype of our custom SNARK for
which we provide benchmarks.

1 Introduction

Blockchain systems rely on consensus among a large number of participants. Having a large num-
ber of participants is important for decentralisation, which, in turn is the foundation of security for
blockchains. Following consensus of a blockchain can become expensive in terms of networking band-
width, storage and computation. Depending on the consensus type, these challenges can be aggravated
when the size of participants’ set is large or when the participants’ set changes frequently. Light clients
(such as SPV clients in Bitcoin or inter-blockchain bridge components that support interoperability)
are designed to allow resource constrained users to follow consensus of a blockchain with minimal cost.
We are interested in blockchains that use Byzantine agreement type consensus protocols, particularly
proof of stake systems like Polkadot [1], Ethereum or many other systems [2, 3, 4, 5, 6]. These pro-
tocols may have a large number of consensus participants, from 1000s to 100000s, and in such PoS
protocols, the set of participants may change regularly.

Following the consensus protocols in the examples above entails proving that a large subset of a
designated set of participants, which are called validators, signed the same message (e.g. a block
header). All existing approaches have limiting shortcomings as follows: 1) verifying all signatures has
a large communication overhead for large validator sets; 2) verifying a single aggregatable signature,
by computing an aggregate public key from the signer’s public keys, has the shortcoming that any
verifier still needs to know the entire list of public keys and this, again, has expensive communication
if the list changes frequently. 3) verifying a threshold signature has two shortcomings: first, such a
signature does not reveal the set of signers impacting the security of PoS systems; second, it requires
an interactive setup which becomes expensive if the validator set is large or changes frequently.

Our Approach: Committee Key Schemes We introduce a committee key scheme which allows to
succinctly prove that a subset of signers signed a message using a commitment to a list of all the
signers’ public keys. Our primitive is an extension of an aggregatable signature scheme and it allows
us to prove the desired statement, in turn, by proving the correctness of an aggregate public key

1

for the subset of signers. In more detail, the committee key scheme defines a committee key which
is a commitment to all the signers’ public keys. The committee key scheme generates a succinct
proof that a particular subset of the list of public keys signed a message. The proof can be verified
using the committee key. Because of the way the aggregatable signature scheme works, we need to
specify the subset of signers; for this purpose we use a bitvector. More precisely, if the owner of the
mth public key in the list of public keys signed the message, then the mth bit of this bitvector is 1
otherwise is 0. Using the committee key, the proof and the bitvector, a light client can verify that the
corresponding subset of validators to whom the public keys belong (as per our use case) signed the
message. Although the bitvector has length proportional to the number of validators, it is still orders
of magnitude more succinct than giving all the public keys or signatures. Public keys or signatures are
usually 100s of bits long and as a result this scheme reduces the amount of data required by a factor
of 100 times or more. We could instantiate our committee key scheme using any universal SNARK
scheme and suitable commitment scheme. However to avoid long prover times for large validator sets,
we use custom SNARKs. We have implemented this scheme (Section 6) and it gives fast enough proof
times for the use cases we consider: a prover with commodity hardware can generate these custom
SNARK proofs in real time, i.e. as fast as the consensus generates instances of this problem.

Application: Accountable Light Client Systems To understand when and how our scheme described
above is useful and compare it to other approaches, we return to what a light client is used for.
Light clients allow resource constrained devices such as browsers or phones to follow a decentralised
consensus protocol. A blockchain is another resource constrained device on which a light client is
useful. In this case a light client verifier (think smart contracts on Ethereum, for example) allows
building trustless bridges protocols between blockchains. Currently, computation and storage costs on
existing blockchains are much higher than those in a browser on a modern phone. If such a bridge is
responsible for securing assets with high total value, then the corresponding light client system which
defines such a light client verifier must be secure as well as efficient. Our light client system has the
following properties which we explain below: It is accountable, it has asynchronous safety and it is
incremental.

• Our light client system is accountable, i.e. if the light client verifier is misled and the transcript
of its communication is given to the network then one can identify a large number (e.g. 1/3)
of misbehaving consensus participants (i.e., misbehaving validators in our specific case). On
the one hand, identifying misbehaving consensus participants is challenging in the light client
system context when we want to send minimal data to the light client verifier. On the other
hand, identifying misbehaviour is necessary for any proof of stake protocols (including Polka-
dot and Ethereum) whose security relies on identifying and punishing misbehaving consensus
participants.

• Our light client system is asynchronously safe i.e. under the consensus’ honesty assumptions,
our light client verifier cannot be misled even if it has a restricted view of the network e.g. only
connecting to one node, which may be malicious. This is because our light client system inherits
the property of asynchronous safety from the Byzantine agreement protocol of the blockchain.
Such light client systems would not be possible for consensus based on longest chains.

• Our light client system is incremental - i.e its succinct state is incrementally updated - is opti-
mised to make these updates efficiently, which is particularly relevant for the bridge application,
as opposed to trying to optimise verifying consensus decisions from the blockchain genesis.

Bridge security We note that $1.2 billion has been stolen in attacks on insecure bridges during first
8 months of 2022 alone [7, 8]. Of the top 10 crypto thefts of all times, $1.6bn out of $3.4bn come from
bridge attacks [8]. Such bridges may be a weaker point, compared to the security of the blockchains
themselves and they carry a lot of economical value. It therefore makes sense to consider a security
model for the bridges that is as strong as that for the corresponding blockchains. For blockchains that
have accountable safety for consensus, that means having accountable safety for bridges. The most
secure bridges use light clients, e.g. Cosmos’ IBC protocol [9], but efficiency is still an obstacle in
using on-chain light clients in bridges. Our light client system is not only easily implementable on top
of existing blockchains that use BLS signatures but also allows achieving accountability much more
cheaply.

2

Structure The paper is organised as follows. In section 2, we sketch our proposed protocol and
compare it to existing work. In Section 3, we give cryptographic preliminaries necessary for later
sections. In Section 4, we describe in detail the SNARKs for our committee key scheme and prove
their security. In Section 5, we give a model for a light client system and the consensus system it
works with, we provide a light client system instantiation and prove it satisfies the security properties
according to the newly introduced definitions. In Section 6, we describe and give benchmarks for our
custom SNARKs implementations.

2 Our Solution

In this section we present a sketch of our solution for both the committee key scheme and the ac-
countable light client system, then describe the technical challenges and contributions and finish with
an overview of related work.

2.1 Sketch of Committee Key Scheme

Suppose that a prover wants to prove to a verifier that a subset S of some set T of signers have signed
a message. One obvious approach would be using BLS aggregatable signatures with the following
steps:

a. The verifier knows all the public keys {pk i}i∈T of all signers in T .

b. The prover sends the verifier an aggregatable signature σ and a representation of the subset S.

c. The verifier computes the aggregate public key apk =
∑
i∈S pk i of the public keys of signers in

S. Then it verifies the aggregatable signature σ for the aggregate public key apk and it accepts
if the verification succeeds.

However, we can represent a subset S of a list of signers compactly using a bitvector b: the ith signer
in the list is in S if and only if the ith bit of b is 1. Our committee key scheme describes an alternative
approach:

a’. The verifier knows a commitment C to the list of the public keys (pki)i∈T .

b’. The prover sends the verifier an aggregatable signature σ, a bitvector b representing S, an
aggregate public key apk and π, a succinct proof that apk =

∑
i bipk i i.e. that apk is the

aggregate public key for the subset of signers in S given by the bitvector b; all of the public keys
in S are a subset of the list of public keys committed to using C.

c’. The verifier using C, apk and the bitvector b checks if π is valid. It then verifies σ against apk
and accepts if both steps succeed.

With the above committee key scheme, if C and π are constant size, the communication cost becomes
O(1) + |T | bits instead of |T | public keys.

2.2 Light Client Verifier Using Our Committee Key Scheme

Below we sketch how a light client verifier uses our committee key scheme. Beforehand, to provide
context, we describe how a general light client verifier works for the type of consensus systems we are
interested in.

Suppose that a light client verifier wants to know some information infon about the state of a
blockchain at block number n without having to download the entire blockchain. Another entity,
a full node, who knows all the data of the blockchain and is following the consensus, should be able to
convince the light client verifier using a computational proof that infon was indeed decided. Assume
that infon can be proven from a commitment Cn to the state at block number n, e.g. Cn could be
a block hash. To convince the light client verifier that Cn (and, implicitly, infon) was decided, the
full node needs to convince the light client verifier that a threshold number t of validators from the
current validator set signed Cn, where t depends on the type of consensus. Byzantine fault tolerant
based consensus often use t to be over 2/3 of the total number of validators. If the light client verifier
does not know the current validator set, but knows the initial validator set of the blockchain, it needs
to be convinced iteratively of each validator set change. This means that the light client verifier needs

3

to be convinced that a threshold of each validator set signed a message that commits to the next
validator set; and this iterative chain of proofs starts from the initial validator set and ends with the
current validator set.

If one follows the obvious approach described above using BLS aggregation and aims to convince the
light client verifier that infon is decided, then one needs to send O(v) public keys for each validator
set change, where v is the upper bound on the size of the validator set.

Using our succinct committee key scheme however, one requires only a constant size proof and O(v)
bits for each validator set change to convince the light client verifier that infon was decided. Since a
public key or signature typically takes 100s of bits, our approach achieves much smaller proof sizes.
More details our achieved efficiency are available in Section 6.

2.3 Our Custom SNARKs

In the following we discuss how we use custom SNARKs with efficient prover time to implement our
committee key scheme. While we achieved very fast proving time in our SNARKs implementation,
this came at the cost of not using a general purpose SNARK protocol, in turn leading to a more
involved security model and the necessity of additional security proofs. For more details, please see
section 2.3.1 below.

The public inputs for our SNARKs are: an aggregate public key apk , a commitment C to the list of
public keys (pki)i∈T and a bitvector (bi)i∈T succinctly representing a subset S of public keys. Our
SNARKs provers’ output a proof that apk =

∑
i∈T bipki and that C is the commitment to the list of

public keys (pki)i∈T ; however the list itself is a witness for the relations defining our SNARKs and,
hence, the verifiers do not have access to it. This, in turn, ensures that our SNARKs verifiers do not
have to parse or check anything based on such a possibly long list which is an important step towards
our SNARKs verifiers’ efficiency. Moreover, we detail below two further optimisations of our custom
SNARKs.

• Our SNARKs are an instance of commit and prove SNARKs (see section 2.4.3 for more details);
they work as follows. The underlying commitment scheme used for computing the public input
commitment C mentioned above is the same as the (polynomial) commitment scheme used
in the rest of our SNARK(s). Hence, we do not need to add an witness for C to the SNARK
constraint system in the same way we would have to if our commitment scheme were, for example,
to use a hash function. If adding such a witness were required, and implicitly, the respective
constraints for checking a hash inside our custom SNARKs, that would have increased the size of
the constraint system and would have lead to several orders of magnitude increase in our prover
time. The tradeoff for our SNARKs design (i.e., with a commitment as part of the public input)
is that we cannot use an existing SNARK compiler as a black box. Hence, our SNARKs require
us to extend the existing security models and, also, they require specialised security proofs.

• Our constraint system is simple enough such that our custom SNARKs do not require a permu-
tation argument or a lincheck argument which general proving systems need to bind together
gates. In fact, the underlying circuit for our SNARKs can be described as an affine addition gate
with a couple of constraints added in order to avoid the incompleteness of our addition formulae.
Overall, the simplicity of our circuit and our set of constraints implies smaller proof sizes for our
SNARKs and, respectively, faster proving times.

2.3.1 Technical Challenges and Contributions Regarding our Custom SNARKs

In order to define and implement our committee key scheme accountable light client systems and
in order to design the custom SNARKs that support our efficiency results, we had to tackle some
technical challenges and make additional contributions as summarised below.

Extending PLONK Compiler to Mixed Commitment and Vectors NP Relations Firstly, our custom
SNARKs takes inspiration from PLONK [10] in terms design of the proof system used, and of the
circuits and gates. However, our SNARKs also have differences compared to PLONK. PLONK applies
to NP relations that use vectors of field elements for public inputs and witnesses. However we need

4

SNARKs whose defining NP relations also have polynomial commitments (in our case, the committee
key C) as part of their public inputs. Hence, the original PLONK compiler does not suffice; we
therefore extend it with a second step in which we show that under certain conditions (fulfilled by our
light client system), the SNARKs obtained using the original PLONK compiler are also SNARKs for
a mixed type of NP relation containing both vectors and polynomial commitments. The full details
and proofs can be found in Section 4.4 and we believe this compiler extension to be of independent
interest, beyond our concrete use case.

Conditional NP Relations for Efficiency Secondly, we also require the NP relations we work with to
have a well-defined subpredicate which is verified outside the SNARKs we design. In our blockchain
instantiation, any current validator set has to come to a consensus, among other things, on the next
validator set, which is represented by a set of public keys. The validator set computes and signs a pair
of polynomial commitments to the next set of validators’ public keys. Before including a public key in
the set, the validators perform several checks on the proposed public key, such as being in a particular
subgroup of the elliptic curve. This check is not performed by the SNARKs’ constraint system, but
is required for the correctness of the statement the SNARKs prove. This design decision makes our
SNARKs more efficient, but it also means we have to extend the usual definition of NP relations to
conditional NP relations, where in fact, one of the subpredicates that define the conditional relation is
checked outside the SNARKs or ensured due to a well-defined assumption. We introduce the general
notion of conditional NP relation in section 3.4 and describe our concrete conditional NP relations in
section 4.

Hybrid Model SNARKs Thirdly, in line with the two above technical challenges and the solutions
we came up with, we also revisit the existing definitions related to SNARKs [11, 10] and we extend
them by introducing an algorithm which we call PartInput . For our light client system use case, this
allows us to separate the public input for the NP relations that define our custom SNARKs in two: a
part that is computed by the current set of validators on the blockchain in question and the rest of
the public input plus the corresponding SNARK proof are computed by a (possibly malicious) prover
interacting with the light client verifier. Our newly introduced notion of hybrid model SNARK (see
section 3.5) generalises this public input separation concept and its definition is used to prove the
security of our custom SNARKs in section 4.4.

2.4 Related work

2.4.1 Naive Approaches and Their Use in Blockchains

There are a number of approaches commonly used in practice to verifying that a subset of a large set
signed a message.

Verify All Signatures One could verify a signature for each signing validator. This is what partic-
ipants do in protocols like Polkadot [1], with 297 validators (or Kusama with 1000 validators) and
Tendermint [12, 5], which is frequently used with 100 validators). The Tendermint light client sys-
tem, which is accountable and uses the verification of all individual signatures approach, is used in
bridges in the IBC protocol[9]. However this approach becomes prohibitively expensive for a light
client verifier when there are 1000s or 1,000,000s of signatures.

Aggregatable Signatures One could use an aggregatable signature scheme like BLS [13, 14] and
reduce this to verifying one signature, but that requires calculating an aggregate public key. This
aggregate key is different for every subset of signers and needs to be calculated from the public keys.
This is what Ethereum does, which currently has 415,278 validators. However for a light client verifier,
it is expensive to keep a list of 100,000s of public keys updated. As such only full nodes of Ethereum
use this approach and instead light clients verifiers of Ethereum [15] follow signatures of randomly
selected subsets of validators of size 512. This means that the resulting light client system is not
accountable because these 512 validators are only backed by a small fraction of the total stake.

Threshold Signatures Alternatively threshold signature scheme may be used, with one public key
for the entire set of validators. This approach was adopted by Dfinity [16]. Threshold signature
schemes used in practice use secret sharing for the secret key corresponding to the single public key.

5

This gives the schemes two downsides. Firstly, they require a communication-heavy distributed key
generation protocol for the setup which is difficult to scale to large numbers of validators. Indeed,
despite recent progress [17, 16, 18], it is still challenging to implement setup schemes for threshold
signatures across a peer-to-peer network with a large number of participants, which is what many
blockchain related use cases require. Moreover, such a setup may need repeating whenever the signer
set changes. Secondly, for secret sharing based threshold signature schemes, the signature does not
depend on the set of signers and so we cannot tell which subset of the validators signed a signature
i.e. they are not accountable. Dfinity [16] uses a re-shareable BLS threshold signature, where the
threshold public key remains the same even when the validator set changes. Such a signature scheme
provides the light client verifier with a constant size proof, even over many validator set changes, but
means that the proof not only does not identify which of a particular set of validators are misbehaving,
but also we cannot say when this misbehaviour happened i.e. which validator set misbehaved. This
is because the signature would be the same for any threshold subset of any validator set.

It is worth noting that if a protocols has already implemented aggregatable BLS signatures, our
committee key scheme can be used with those without altering the consensus layer. Indeed it may be
easier to alter a protocol that uses individual signatures to one using aggregatable BLS signatures than
to implement threshold signatures from scratch because the latter requires waiting for an interactive
setup before making validator set changes.

2.4.2 Using SNARKs to Roll up Consensus

Celo [4] and Mina [3] blockchains have associated light clients which allow their resource constrained
users to efficiently and securely sync from the beginning of the blockchain to the latest block.

Plumo [19] is the most relevant comparison to our scheme. It also tackles the problem we consider,
i.e., that of proving validator set changes. In more detail, Plumo uses a Groth16 SNARK [11] to
prove that enough validators signed a statement using BLS signatures from a set of the public keys.
In Celo [4], the blockchain that designed and plans to use Plumo, validators may change every epoch
which is about a day long and the Plumo’s SNARK iteratively proves 120 epochs worth of validator
set changes. Since in Celo there are no more than 100 validators in a validator set at any one time, the
respective public keys are used in plain as public input for Plumo’s SNARK, as opposed to a succinct
polynomial commitment in the case of our custom SNARKs. All of the above increase the size of
Plumo’s prover circuit. Since Plumo is designed to help resource constrained light clients sync from
scratch, it is not an impediment that the Plumo SNARK cannot be efficiently generated, i.e., in real
time. In the case of a light client verifier for bridges (i.e., the most resource constrained application),
we expect it to be in sync at all times and, by design, we care only about one validator set change
at a time. Our slimed down and custom SNARK not only can be generated in real time, but, also
due to the use of specialised commitments schemes for public keys, our validator sets can scale up to
much larger sizes as well without impacting the efficiency of our system.

Mina achieves light clients with O(1) sized light client proofs using recursive SNARKs. This requires
some nodes have a large computational overhead to produce these proofs. Also because this requires
verifying consensus with small circuits, they do not use the consensus paradigm discussed above where
a majority of validators sign, and instead use a longest chain rule version of proof of stake [3]. This is
not accountable because, as with Dfinity above, it is not possible to tell from the proof which validators
signed off on a fork, nor when this happened. Another downside is that because the proof only shows
the length of a chain (and its block density), similar to a Bitcoin SPV proof, a light client needs to
be connected to an honest node to tell if a block is in the longest chain. If the client is connected to
a single malicious node, it could be given a proof for a shorter fork and not see any proofs of chains
the fork choice rule would preder.

2.4.3 Commit-and-Prove and Related Approaches

Our custom SNARKs are an instance of the commit-and-prove paradigm [20, 21, 22] which, in turn, is a
generalisation for zero-knowledge proofs/arguments in which the prover proves statements about values
that are committed. In practice, commit-and-prove systems (for short, CP) can be used to compress a
large data structure and then prove something about its content (e.g., polynomial commitments [23],

6

vector commitments [24], accumulators [25]). CP schemes can also be used to decouple the publishing
of commitments to some data from the proof generation: each of these actions may be performed by
different parties or entities [26]. Finally, commitments can be used to make different proof systems
interoperable [27, 28]. Our custom design SNARKs have properties from the first two categories,
however we could not have simply re-used an existing argument system: by designing custom circuits
and SNARKs, we ensured improved efficiency for our use cases.

Another paradigm related to commit-and-prove is called hash-and-prove [29]: for large data struc-
tures or simply data that is expensive to be handled directly by a computationally constrained verifier,
one can hash that data and then create a (succinct) proof for some verifiable computation that uses
the original, large, dataset. The committee key scheme notion that we define in this work has both
similarities to but also differences with regard to this paradigm. The similarities are that, both the
way we instantiate our committee key (i.e., using a polynomial commitment with a trusted universal
setup) and the way we instantiate our aggregate public key, can be generalised as some form of (pos-
sibly deterministic) hash function. One difference is that the setup for the polynomial commitment
is the same as that from which the proving and verification key for our committee key scheme are
computed; thus our version of the hashes and the keys for the committee key scheme are definitely not
independent as in the case of hash-and-commit [29]. Finally, built into our definition of committee key
scheme and its security properties, we make use of a secure aggregatable signature scheme. This, in
turn, allows us to design and prove the security properties of our accountable light client(s). In fact,
to add some intuition to the fact that a committee key scheme is more than just a hash-and-prove
instance, we mention that our committee key scheme inherits an unforgeability property from its ag-
gregatable scheme subcomponent. This is one property that as far as we are aware no hash-and-prove
scheme has.

When proving the security of our arguments, we use an extension of some of the more commonly
employed SNARK definitions; we call this extension “a hybrid model SNARK”. Our notion resembles
the existing notion of SNARKs with online-offline verifiers as described in [29], where the verifier com-
putation is split into two parts: during the offline phase some computation (possibly of commitments)
happens; this computation takes some public inputs as parameters and, when not performed by the
verifier, it may also be performed (in part) by the prover. The online phase is the main computation
performed by the verifier. In the case of our hybrid model SNARKs, however, the input to the offline
counterpart described above (which is what we call the PartInput algorithm) may even be the witness
or a part of the witness for the respective relation. For our custom SNARKs, PartInput produces
part of the public input used by the verifier; since for our use case, PartInput does handle a portion
of the witness, this operation cannot be performed by the verifier for that relation. Moreover, in our
instantiation, PartInput produces computationally binding commitment schemes that are opened by
the prover. Both of these properties are not explicitly part of our general definition for hybrid model
SNARKs, but they are crucial and explicitly assumed and used in proving the security for the result
of our compiler’s second step (see section 4.4).

3 Preliminaries

We assume all algorithms receive an implicit security parameter λ given in unary representation. We
use interchangeably “efficient algorithm” or “PPT algorithm” to mean an algorithm that runs in uni-
form probabilistic polynomial time in the length of its input. Wherever necessary, before the run of
all the algorithms and protocols, we assume the correct parameters for the curves, groups, parings,
the group generators, etc. have been generated and shared with the corresponding parties.

We write y = A(x; r) when algorithm A on input x and randomness r, outputs y. We write y ← A(x)

for the process of picking randomness r at random and setting y = A(x; r). We also write y
$←− S for

sampling y uniformly at random from the set S. We denote by |S| the cardinality of set S. Unless
otherwise stated, when we write that an event holds with some probability, we implicitly mean that
the probability is computed over the randomness of all randomised algorithms involved. We say a
function is negligible in λ and denote it by negl(λ) if that function vanishes faster than the inverse
of any polynomial in λ. We say that a function is overwhelming in λ if it has the form 1− some
function negligible in λ. We also use the notation e.w.n.p. to mean except with negligible probability,
or, equivalently, with overwhelming probability. We denote by poly(λ) an unspecified function which
has a polynomial expression in λ. We generally use boldface font to denote vectors whose components

7

we explicitly make use of in the text and we use italic font to denote the rest of the variables.

We work over finite fields of large characteristic. When we work with polynomials we denote by
F<d[X] the set of all polynomials of degree less than d over the field F. For any integer n ≥ 1, we
denote by [n] the set {1, . . . , n}.

3.1 Pairings

If E is an elliptic curve defined over a prime field Fp of large characteristic p, we denote by E(Fp)
the abelian group containing all the points (x, y) ∈ (Fp)2 that satisfy the elliptic curve equation along
with the point at infinity. Let r be a large prime such that r divides |E(Fp)| and gcd(p, r) = 1. The
embedding degree of E is the smallest integer k such that r divides pk − 1. If k is small we say E is
pairing friendly. We call Fp the base field of E and Fr (i.e., the prime field of characteristic r) the
scalar field of E.

Pairing friendly curves are important to us in this work because they allow us to efficiently construct
and instantiate aggregatable signatures and SNARKs. For a pairing friendly curve E as above, let
G1, G2 and GT be appropriately chosen subgroups of order r in E(Fp), E(Fpl) (for some l ≤ k)1 and
in the multiplicative group F∗pk of the extension field Fpk . The types of pairings we are interested
in this work are mappings e which are secure [30, 31], efficiently computable, they are defined as
e : G1 × G2 → GT for which bilinearity (i.e., e(a · g1, b · g2) = e(g1, g2)a·b, ∀a, b ∈ Zr, ∀g1 ∈ G1,
∀g2 ∈ G2) and non-degeneracy (i.e., if g1 and g2 are generators of G1 and G2, respectively, then
gT = e(g1, g2) is a generator for GT) hold.

Our results in this work hold for a pair of pairing-friendly elliptic curves Einn (the inner curve) and
Eout (the outer curve) such that the base field of Einn equals the scalar field of Eout . In line with
the naming from [32], we call any pair of pairing friendly elliptic curves with such property a pairing-
friendly two-chain. We denote by F the base field of Einn and we call p its characteristic. We denote
by r the characteristic of the scalar field of Einn . We also denote by einn and by eout the efficient,
secure pairings over Einn and Eout , respectively.

We further denote by G1 ,inn , G2 ,inn and GT ,inn the two cyclic source groups and the cyclic target group
for einn and g1 ,inn , g2 ,inn , gT ,inn are uniformly random chosen generators of these three groups. Anal-
ogously, G1 ,out , G2 ,out and GT ,out are the two cyclic source groups and the cyclic target group for eout
and g1 ,out , g2 ,out , gT ,out are uniformly random chosen generators of these three groups. We consider
G1 ,inn , G2 ,inn , G1 ,out , G2 ,out with additive notation for their group operation and we consider GT ,inn

and GT ,out with multiplicative notation. We additionally write [x]1 ,inn = x ·g1 ,inn , [x]2 ,inn = x ·g2 ,inn .
We assume that the curves, groups and fields defined in the last two paragraphs have been generated
using implicit security parameter λ.

Finally, we note that in our implementation we instantiate Einn with BLS12-377 [32] and Eout with
BW6-761 [33].

3.2 Secure Signature Aggregation

An aggregatable signature scheme is a signature scheme that compresses signatures issued using pos-
sibly different signing keys into one signature. Below we give the formal definition of an aggregatable
signature scheme making explicit use of the proofs-of-possession (PoPs) key registration model as
introduced and employed in [34]. This approach both maintains the general formal presentation clear
and simple and allows for an easy transition to the aggregatable signature scheme instantiation used
as part of our main (accountable light client system) construction. In particular, for our instantiation
we use aggregatable BLS signatures that have a very efficient aggregation procedure by adding to-
gether keys and by multiplying together signatures, but they are vulnerable to rogue key attacks [34];
against these attacks one can protect using PoPs. This is in contrast to other aggregation procedures
that do not require PoPs for security but incur a higher computational cost (e.g., due to the use of

1E(Fpl) is the group of all points (x, y) ∈ (Fpl)2 that satisfy the elliptic curve equation of E along with the point at
infinity.

8

multi-scalar multiplication). Moreover, for our concrete use case of accountable light clients, our effi-
cient and simple signature aggregation method results in a simple and more efficient custom argument
scheme (i.e., SNARK), which, in turn, compensates for the cost of having to work with PoPs.

Definition 1. (Aggregatable Signature Scheme) An aggregatable signature scheme consists of the fol-
lowing tuple of algorithms (AS .Setup, AS .GenerateKeypair, AS .VerifyPoP, AS .Sign, AS .AggregateKeys,
AS .AggregateSignatures, AS .Verify) such that for implicit security parameter λ:

• pp ← AS .Setup(auxAS): a setup algorithm that, given an auxiliary parameter auxAS , outputs
public protocol parameters pp.

• ((pk , πPoP), sk) ← AS .GenerateKeypair(pp): a key pair generation algorithm that outputs a
secret key sk, and the corresponding public key pk together with a proof of possession πPoP for
the secret key.

• 0/1 ← AS .VerifyPoP(pp, pk , πPoP): a public key verification algorithm that, given a public key
pk and a proof of possession πPoP , outputs 1 if πPoP is valid for pk and 0 otherwise.

• σ ← AS .Sign(pp, sk ,m): a signing algorithm that, given a secret key sk and a message m ∈
{0, 1}∗, returns a signature σ.

• apk ← AS .AggregateKeys(pp, (pki)
u
i=1): a public key aggregation algorithm that, given a vector

of public keys (pki)
u
i=1, returns an aggregate public key apk.

• asig ← AS .AggregateSignatures(pp, (σi)
u
i=1): a signature aggregation algorithm that, given a

vector of signatures (σi)
u
i=1, returns an aggregate signature asig.

• 0/1 ← AS .Verify(pp, apk ,m, asig): a signature verification algorithm that, given an aggregate
public key apk, a message m ∈ {0, 1}∗, and an aggregate signature σ, returns 1 or 0 to indicate
if the signature is valid.

We say (AS .Setup, AS .GenerateKeypair, AS .VerifyPoP, AS .Sign,
AS .AggregateKeys, AS .AggregateSignatures, AS .Verify) is an aggregatable signature scheme if it sat-
isfies perfect completeness, perfect completeness for aggregation and unforgeability as defined below.

Perfect Completeness An aggregatable signature scheme (AS .Setup, AS .GenerateKeypair , AS .VerifyPoP ,
AS .Sign, AS .AggregateKeys, AS .AggregateSignatures, AS .Verify) has perfect completeness if for any
message m ∈ {0, 1}∗ and any u ∈ N it holds that:

Pr [AS .Verify(pp, apk ,m, asig) = 1 ∧ ∀i ∈ [u] AS .VerifyPoP(pp, pki , πPoP,i) = 1 |
pp ← AS .Setup(auxAS),

((pki, πPoP,i), ski)← AS .GenerateKeypair(pp), i = 1, . . . , u

apk ← AggregateKeys(pp, (pk i)
u
i=1),

σi ← AS .Sign(pp, ski ,m), i = 1, . . . , u,

asig ← AS .AggregateSignatures(pp, (σi)
u
i=1)] = 1.

We note that an aggregatable signature scheme with perfect completeness implies the underlying sig-
nature scheme has perfect completeness.

Perfect Completeness for Aggregation An aggregatable signature scheme (AS .Setup, AS .GenerateKeypair ,
AS .VerifyPoP , AS .Sign, AS .AggregateKeys, AS .AggregateSignatures, AS .Verify) has perfect com-
pleteness for aggregation if, for every adversary A

Pr [AS .Verify(pp, apk ,m, asig) = 1 | pp ← AS .Setup(auxAS),

((pki)
u
i=1,m, (σi)

u
i=1)← A(pp),

∀i ∈ [u],AS .Verify(pp, pki ,m, σi) = 1,

apk ← AS .AggregateKeys(pp, (pk i)
u
i=1),

asig ← AS .AggregateSignatures(pp, (σi)
u
i=1)] = 1.

Unforgeable Aggregatable Signature For an aggregatable signature scheme (AS .Setup, AS .GenerateKeypair ,
AS .VerifyPoP , AS .Sign, AS .AggregateKeys, AS .AggregateSignatures, AS .Verify) the advantage of an
adversary against unforgeability is defined by

9

Adv forge
A (λ) = Pr [Game forge

A (λ) = 1]

where

Game forge
A (λ) :

pp ← AS .Setup(auxAS)

((pk∗, π∗PoP), sk∗)← AS .GenerateKeypair(pp)

Q← ∅

((pki , πPoP,i)
u
i=1,m, asig)← AOSign(pp, (pk∗, π∗PoP))

If pk∗ /∈ {pki}ui=1 ∨m ∈ Q, then return 0

For i ∈ [u]

If AS .VerifyPoP(pp, pki , πPoP,i) = 0 return 0

apk ← AS .AggregateKeys(pp, (pki)
u
i=1)

Return AS .Verify(pp, apk ,m, asig)

and

OSign(mj) :

σj ← AS .Sign(pp, sk∗,mj)

Q← Q ∪ {mj}
Return σj

and AOSign denotes the adversary A with access to oracle OSign.

We say an aggregatable signature scheme is unforgeable if for all efficient adversaries A it holds that
Adv forge

A (λ) ≤ negl(λ).

3.2.1 An Aggregatable Signature Instantiation

In the following, we instantiate the aggregatable signature definition given above with a scheme
inspired by the BLS signature scheme [13] and its follow-up variants [34, 14].

Instantiation 2. (Aggregatable Signatures) In our implementation we call aggregatable signatures
the following instantiation of aggregatable signatures definition. Note that in our implementation we
instantiate Einn with BLS12-377 [32].

• (G1 ,inn , g1 ,inn ,G2 ,inn , g2 ,inn ,GT ,inn , einn ,Hinn ,HPoP) ⊂ pp ← AS .Setup(auxAS), where G1 ,inn ,
g1 ,inn , G2 ,inn , g2 ,inn , GT ,inn , einn were defined in section 3.1 and Hinn : {0, 1}∗ → G2 ,inn and
HPoP : {0, 1}∗ → G2 ,inn are two hash functions. The auxiliary parameter auxAS is such that
there exists N ∈ N, N is the first component of the vector auxAS and there exists a subgroup of
size at least N in the multiplicative group of F, where F is the base field of Einn , but also the size
of the subgroup ∈ O(N).

• (pk , sk , πinn) ← AS .GenerateKeypair(pp), where sk
$←− Z∗r and pk = sk · g1 ,inn ∈ G1 ,inn and

πinn ← sk · HPoP (pk) and r was defined in section 3.1 as the characteristic of the scalar field of
Einn .

• 0/1← AS .VerifyPoP(pp, pk , πinn), where AS .VerifyPoP outputs 1 if

einn(g1 ,inn , πinn) = einn(pk ,HPoP (pk))

holds and 0 otherwise. Note that implicitly, as part of running AS .VerifyPoP, one checks that
pk ∈ G1 ,inn also holds.

• σ ← AS .Sign(pp, sk ,m): where σ = sk ·Hinn(m) ∈ G2 ,inn .

• apk ← AS .AggregateKeys(pp, (pki)
u
i=1), where apk =

∑u
i=1 pki . Note that AS .AggregateKeys

checks whether ((pki)
u
i=1) ∈ Gu1 ,inn(∗) and, if that is not the case, it outputs ⊥; if (∗) holds, the

algorithm AS .AggregateKeys continues with the computations described above.

• asig ← AS .AggregateSignatures(pp, (σi)
u
i=1), where asig =

∑u
i=1 σi.

• 0/1← AS .Verify(pp, apk ,m, asig), where AS .Verify outputs 1 if apk 6= ⊥ and apk ∈ G1 ,inn and
einn(apk ,Hinn(m)) = einn(g1 ,inn , asig); otherwise, it outputs 0.

10

3.3 Committee Key Scheme for Aggregatable Signatures

Bellow we introduce the notion of committee key scheme for aggregatable signatures. This generalises
the notion of aggregatable signature scheme. We will use the notion of committee key scheme and its
instantiation presented in section 4.6 in order to design, instantiate and prove our accountable light
client schemes in section 5.

Definition 3. (Committee Key Scheme for Aggregatable Signatures) Let AS be an aggregatable signa-
ture scheme that fulfils definition 1. A committee key scheme for aggregatable signatures consists of the
following tuple of algorithms (CKS .Setup, CKS .GenerateCommitteeKey, CKS .Prove, CKS .Verify)
such that for implicit security parameter λ:

• (pp, rsvk , rspk) ← CKS .Setup(v): a setup algorithm that, given an upper bound v ∈ N, v =
poly(λ) outputs some public parameters pp and proving and verification keys rspk and rsvk ,
respectively, where pp ← AS .Setup(auxAS), for some auxAS chosen by the aggregated signature
AS.

• ck ← CKS .GenerateCommitteeKey(rspk , (pki)
u
i=1): a committee key generation algorithm that,

given a proving key rspk and a list of public keys, outputs a committee key ck, where u ≤ v.

• π ← CKS .Prove(rspk , ck , (pki)
u
i=1, (biti)

u
i=1): a proving algorithm that, given a proving key rspk ,

a committee key ck, a list of public keys and a bitvector (biti)
u
i=1 ∈ {0, 1}u, outputs a proof π,

where u ≤ v.

• 0/1← CKS .Verify(pp, rsvk , ck ,m, asig , π,bitvector): a verification algorithm that, given public
parameters pp, a verification key rsvk , a committee key ck, a message m, a signature asig, a
proof π and a vector bitvector ∈ {0, 1}∗, outputs 1 if the verification succeeds and 0 otherwise.

We say (CKS .Setup, CKS .GenerateCommitteeKey, CKS .Prove, CKS .Verify) is a committee key
scheme for aggregatable signatures if it satisfies perfect completeness and soundness as defined below.

Perfect Completeness A committee key scheme for aggregatable signatures (CKS .Setup,
CKS .GenerateCommitteeKey , CKS .Prove, CKS .Verify) has perfect completeness if for any message
m ∈ {0, 1}∗, for any vector of public keys (pki)

u
i=1 generated using AS .GenerateKeypair(pp), for any

bitmask (biti)
u
i=1 ∈ {0, 1}u, for any aggregated signature asig , it holds that:

Pr [AS .Verify(pp, apk ,m, asig) = 1 =⇒ CKS .Verify(pp, rsvk , ck ,m, asig , π, (bit i)
u
i=1) = 1|

(pp, rsvk , rspk)← CKS .Setup(v),

ck ← CKS .GenerateCommitteeKey(rspk , (pk i)
u
i=1)),

π ← CKS .Prove(rspk , ck , (pk i)
u
i=1, (biti)

u
i=1),

apk ← AS .AggregateKeys(pp, (pk i)i:biti=1)] = 1

Soundness A committee key scheme for aggregatable signatures (CKS .Setup, CKS .GenerateCommitteeKey ,
CKS .Prove, CKS .Verify) has soundness if for every efficient adversary A it holds that:

Pr [CKS .Verify(pp, rsvk , ck ,m,asig , π, (bit i)
u
i=1) = 1 =⇒ AS .Verify(pp, apk ,m, asig) = 1|

(pp, rsvk , rspk)← CKS .Setup(v),

(pk i)
u
i=1, (bit i)

u
i=1, asig , π,m← A(pp, rsvk , rspk),

ck ← CKS .GenerateCommitteKey(rspk , (pk i)
u
i=1),

apk ← AS .AggregateKeys(pp, (pk i)i:biti=1)] = 1− negl(λ)

Next, we define an additional security property for a committee key scheme for aggregatable signatures,
namely unforgeability.
Unforgeability For a committee key scheme for aggregatable signatures (CKS .Setup,
CKS .GenerateCommitteeKey , CKS .Prove, CKS .Verify) the advantage of an adversary A against

11

unforgeability is defined by Adv forgecomkey
A (λ) = Pr[Game forgecomkey

A (λ) = 1], where

Game forgecomkey
A (λ) :

(pp, rsvk , rspk)← CKS .Setup(v)

((pk∗, π∗PoP), sk∗)← AS .GenerateKeypair(pp)

Q← ∅

((pki , πPoP,i)
u
i=1, (biti)

u
i=1, asig , π,m)← AOSign(pp, rsvk , rspk , (pk∗, π∗PoP))

If (∀i : pk∗ 6= pki ∧ biti = 0) ∨m ∈ Q, then return 0

For i ∈ [u]

If AS .VerifyPoP(pp, pki , πPoP,i) = 0 return 0

ck ← CKS .GenerateCommitteKey(rspk , (pki)
u
i=1)

Return CKS .Verify(pp, rsvk , ck ,m, asig , π, (biti)
u
i=1)

We say a committee key scheme for aggregatable signatures is unforgeable if for all efficient adversaries
A it holds that Adv forgecomkey

A (λ) ≤ negl(λ).

Corollary 4. Let AS be an aggregatable signature scheme that fulfils definition 1. If CKS is a
committee key scheme for aggregatable signatures that fulfils definition 3, then CKS is unforgeable, as
defined above.

Proof. Assume by contradiction there exists an efficient adversary A such that Adv forgecomkey
A (λ) is

non-negligible. Using A and the soundness property of a committee key scheme, one can construct in
a straightforward manner an efficient adversary A′ such that

Adv forge
A′ (λ) ≥ Adv forgecomkey

A (λ)− negl(λ).

This, in turn, implies that Adv forge
A′ is non-negligible which contradicts the unforgeability property of

aggregatable signature scheme AS . Thus, our assumption is false and our statement holds.

3.4 Conditional NP Relations

By R = {(x;w) : p(x,w) = 1} we denote the binary relation such that (x,w) fulfil predicate
p(x,w) = 1. We say R is an NP relation if predicate p can be checked in polynomial time in the
length of both inputs x and w and L(R) = {x | ∃w s.t. (x,w) ∈ R} is an NP language w.r.t. predi-
cate p. In such a case we call x an instance and w a witness.

In order to model a specific property of our NP relations, we introduce further notation which we call
conditional NP relation, we denote it by

Rc = {(x;w) : (p1(x,w) = 1 | c(x,w) = 1) ∧ p2(x,w) = 1}

and we interpret as the NP relation containing the pairs of inputs and witnesses (x,w) such that
c(x,w) = 1, p1(x,w) = 1 and p2(x,w) = 1 hold. However, in order to prove that (x,w) ∈ Rc we
assume/take it as a given that c(x,w) = 1 and we are left to prove only that p1(x,w) = 1 and
p2(x,w) = 1 hold.

We explicitly include in the definition of any NP relation R or Rc the corresponding domain for each
type of public input. The interpretation of such domains is that each type of public input is parsed
by the honest parties (e.g., a SNARK verifier for an NP relation R or Rc) as per the definition of the
respective domain, without additional checks. We assume that all our relations have been generated
using implicit security parameter λ. Finally, if not stated explicitly, when we make a statement about
an NP relation we implicitly mean the statement is about a conditional relation Rc, where c may be
the predicate that always outputs 1.

12

3.5 SNARKs

All three SNARKs we design in this work have access to a structured reference string (srs) of the form
({[τ i]1}di=0 , {[τ i]2}1i=0) where τ is a random (and allegedly secret) value in F and d is bounded by
a polynomial in λ. Such an srs is universal and updatable [35] and, as long as at least one of the
participants that took part in the MPC generating the srs was honest, the srs cannot be used by any
coalition of other MPC participants to prove false statements with more than a negligible probability
of success [35, 36].

Our SNARKs are secure in the algebraic group model (AGM) [37]. If G is a cyclic group of prime order
p, then, informally, we call an algorithm A algebraic if it fulfils the following requirement: whenever
A outputs a group element g ∈ G, it also outputs a representation a = (a1, ..., at) ∈ Ztp such that
g =

∑t
i=1 ai · Bi where (B1, . . . , Bt) are all the G group elements that were given to A during its

execution so far. The AGM lies in between the generic group model (GGM) [38, 39] and the standard
model and, lately, it has been the preferred model for proving security for the most efficient SNARKs
(e.g., PLONK [10], Marlin [40] or Groth16 [11] with its proof in the AGM model presented in [37, 41]).

In the following, we introduce a generalisation of the usual SNARK definition which we call a hybrid
model SNARK. As mentioned in the introduction, this is inspired by the notion of online-offline
SNARKs [29], however, for our use case we need to further refine it as describe below:

Definition 5. (Hybrid Model SNARK) A hybrid model succinct non-interactive argument of knowl-
edge for relation R is a tuple of PPT algorithms (SNARK .Setup,SNARK .KeyGen,SNARK .Prove,
SNARK .Verify ,SNARK .PartInputs) such that for implicit security parameter λ:

• srs ← SNARK .Setup(auxSNARK): a setup algorithm that on input auxiliary parameter auxSNARK

from some domain D outputs a universal structured reference string tuple srs,

• (srspk , srsvk) ← SNARK .KeyGen(srs,R): a key generation algorithm that on input a universal
structured reference string srs and an NP relation R outputs a proving key and a verification
key pair (srspk , srsvk),

• π ← SNARK .Prove(srspk , (x,w),R): a proof generation algorithm that on input a proving key
srspk and a pair (x,w) ∈ R outputs proof π,

• 0/1 ← SNARK .Verify(srsvk , x, π,R): a proof verification algorithm that on input a verification
key srsvk , an instance x and a proof π outputs a bit that signals acceptance (if output is 1) or
rejection (if output is 0)

• (x1, state2)← SNARK .PartInputs(srs, state1,R): a deterministic public inputs generation algo-
rithm that takes as input a universal structured reference string srs, an NP relation R and some
state state1 and outputs some updated state state2 and some partial public input x1,

and satisfies completeness, knowledge soundness with respect to SNARK .PartInputs and succinctness
as defined below:
Perfect Completeness holds if an honest prover will always convince an honest verifier: for all
(x,w) ∈ R and for all auxSNARK ∈ D

Pr [SNARK .Verify(srsvk , x, π,R) = 1 | srs ← SNARK .Setup(auxSNARK),

(srspk , srsvk)← SNARK .KeyGen(srs,R),

π ← SNARK .Prove(srspk , (x,w),R)] = 1.

Notation In the following, we denote by StateR the set of all states state1 such that given some relation
R and any possible srs, for any output x1 of SNARK .PartInputs(srs,R, state1) with state1 ∈ StateR,
we have that there exists x2 and w with (x = (x1, x2), w) ∈ R; we further make the assumption that
StateR 6= ∅.

Knowledge-soundness with respect to SNARK .PartInputs holds if there exists a PPT extractor E
such that for all PPT adversaries A, for all auxSNARK ∈ D and for all state1 ∈ StateR

Pr [(x = (x1, x2), w) ∈ R ∧ 1← SNARK .Verify(srsvk , x = (x1, x2), π,R) |
srs ← SNARK .Setup(auxSNARK), (srspk , srsvk)← SNARK .KeyGen(srs,R),

(x1, state2)← SNARK .PartInput(srs, state1,R), (x2, π)← A(srs, state2,R), w ← EA(srs, state2 ,R)]

13

is overwhelming in λ, where by EA we denote the extractor E that has access to all of A’s messages
during the protocol with the honest verifier.
Succinctness holds if the size of the proof π is poly(λ) and SNARK .Verify runs in time poly(λ+ |x|).

Firstly, note that if one chooses x1, state1 and state2 to be the empty strings in the definition of
SNARK .PartInput and in relation to the knowledge soundness property, one obtains a more standard
SNARK definition. Secondly, R is not a component of the vector auxSNARK so even if SNARK .Setup
has auxSNARK as parameter, it is universal, i.e., it can be used to derive proving and verification keys
for circuits of any size up to a polynomial in the security parameter λ, independently of any specific
NP relation. Moreover, for the SNARKs we design, the size of the key used by the honest verifier is
much smaller than the size of the honest prover’s key. We have made the separation clear between
the two keys to be able to better capture this special case; however, a potential adversarial prover
has access to the complete srs key. Thirdly, as mentioned the SNARKs that we design in this work
are secure in the AGM model. This means that we limit our adversaries to AGM adversaries only
and by EA we denote the extractor E that has access to all of A’s messages during the protocol with
the honest verifier: the messages include the coefficients of the linear combinations of group elements
used by the AGM adversary at any step in order to output new group elements at the next step
in the protocol. Moreover, the auxiliary input (i.e., state2) is required to be drawn from a “benign
distribution” or else extraction may be impossible [42, 43]. Finally, in the SNARK definition above
we did not include the notion of zero-knowledge since it is not required in the rest of the paper.

3.6 Ranged Polynomial Protocols and Polynomial Commitments

In order to prove the security of the SNARKs designed in this work we use a SNARK compiler inspired
by the one provided in lemma 4.7 from PLONK [10]. In more detail, for each of our three conditional
NP relations we describe a ranged polynomial protocol and then we use our compiler to obtain three
SNARKs secure in the AGM. We remind the definition of ranged polynomial protocols in appendix A.
Moreover, we also make use of KZG polynomial commitments [23], in particular their batched version
and their security definitions as described in section 3 from PLONK. For brevity, and since we do
not make any alterations to the definition of batched KZG commitments, we do not repeat it in this
initial version of our work but invite the reader to review them, if necessary, by following the reference
provided.

3.7 Lagrange Bases

In order to design the SNARKs presented in this work, it is more convenient to represent the polyno-
mials we work with over the Lagrange base rather than the monomial base. Formally, for the finite
field F defined in section 3.1 we denote by H a subgroup of the multiplicative group of F such that
n = |H| is a large power of 2. Let ω be an n-th root of unity in F such that ω is a generator of H.
Then, we call the following polynomial base {Li(X)}0≤i≤n−1 a Lagrange base, where ∀i, 0 ≤ i ≤ n−1,
Li(X) is the unique polynomial in F<n[X] such that Li(ω

i) = 1 and Li(ω
j) = 0, ∀j 6= i.

Independent of the notion of Lagrange bases, but related to n we define block also a power of 2 such
that block < n. We use block when defining one of our conditional NP relations in section 4. In the
following we assume n = poly(λ) and block = Θ(λ) and |F| = 2Θ(λ).

4 Custom SNARKs for Public Keys Aggregation Proofs

In the following, we construct three related SNARKS, each of them allowing a prover to convince
an efficient verifier that an alleged aggregated public key has indeed been computed correctly as an
aggregate of a vector of public keys for which two succinct commitments (one to the vector of x affine
coordinates and the other to the vector of y affine coordinates, respectively) are publicly known. The
differences between the three constructions stem from whether a bitmask (also called a bitvector) with
one bit associated to each public key (necessary to signal the inclusion or omission of the respective
public key w.r.t. the aggregate key) is part of the verifier’s public input or is part of the witness. For
the former case, we describe, in fact, two distinct SNARKs: a basic accountable SNARK (the bitmask
is represented as a sequence of {0, 1} field elements) and a packed accountable SNARK (the bitmask
is partitioned into equal blocks of consecutive binary bits, and, in turn, each block is represented as

14

a field element). For the latter case, we describe a counting SNARK. Each of our three SNARKs
implements a conditional NP relation bearing the same name as the SNARK it implements. Note
that the names “basic accountable” (for short, “basic”), “packed accountable” (for short, “packed”)
and “counting” do not refer to the security of the respective SNARK but they summarise properties
of the underlying sets of constraints that define the SNARKs, and, hence their use case. In par-
ticular, we use the basic accountable and the packed accountable SNARKs for building accountable
light client systems and we use the counting SNARK for building non-accountable light client systems.

In order to compile our desired SNARKs we proceed as follows:

• We start by defining three conditional NP relations based only on vectors. These relations
capture the specific constraints we are interested in. We denote these NP relations by Rincl

ba (i.e.,
basic accountable), Rincl

pa (packed accountable) and Rincl
c (counting). (See sections 4.1, 4.2 and

4.3, respectively, for full details.)

• We design three ranged polynomial protocols for the above three relations. (Again, see sections
4.1, 4.2 and 4.3, respectively, for full details.). The definition of ranged polynomial protocols
originates in [10] and, for convenience, we remind it to the reader in appendix A.

• We define and use a two-steps PLONK-based compiler that allows us to compile the three ranged
polynomial protocols into the desired SNARKs for a novel type of conditional NP relations which
include trusted inputs and, in particular, trusted polynomial commitments as part of the public
inputs. In more detail, we compile three SNARKs for three mixed polynomial commitments and
vector based relations which we denote by Rincl

ba,com , Rincl
pa,com and Rincl

c,com , respectively. These are

the direct counterparts of pure vector based relations Rincl
ba , Rincl

pa and Rincl
c . (See section 4.4

for full details. For completeness, we also include in appendix B the full rolled-out SNARK
implementing Rincl

pa,com .)

• We include a detailed comparison between the original PLONK and our SNARKs. (See sec-
tion 4.5.)

• We conclude this section with an instantiation for committee key scheme for aggregatable sig-
natures which uses, in turn, our SNARKS compiled in section 4.4 and our instantiation for BLS
aggregatable signatures from section 3.2.1. (See section 4.6 for full details.)

In more detail, as motivated in the introduction and in section 3.1, we define all our conditional NP
relations for our three SNARKs over F which is the base field of the curve Einn . Moreover, our cor-
responding SNARKs provers’ circuits are naturally defined as well over F as the scalar field of Eout .
In particular, the vector of public keys, which is part of the public input for all of our three relations,
and is denoted by pk = (pk0 , . . . , pkn−2), is a vector of pairs with each component in F. Note that
this vector has size n− 1 where n has been defined in section 3.7. For the basic accountable and the
counting conditional NP relations, we denote the n components bitmask by bit = (bit0 , . . . , bitn−1)
(meaning that each component belongs to the set {0, 1} ⊂ F), while the packed accountable condi-
tional NP relation is defined using the compacted bitmask b′ = (b′0 , . . . , b

′
n

block
−1) of n

block
field elements,

each of which is block binary bits long (block has been defined in section 3.7). Intuitively, each of
the binary bits in the bit representation of these field elements signals the inclusion (or exclusion) of
the index-wise corresponding public keys into the aggregated public key apk . Note that, in fact, the
last bit of field element b′ n

block
−1 as well as the n-th component bitn−1 do not correspond to any public

key, but, as will become clear in the following, they have been included for easier design of constraints.

Notation-wise, we denote by H the multiplicative subgroup of F generated by ω as defined in section
3.7. We additionally denote by incl(a0, . . . , an−2) the inclusion predicate that checks if (a0, . . . , an−2) ∈
Gn−1

1 ,inn . Moreover let h = (hx , hy) be some fixed, publicly known element in Einn \ G1 ,inn . (See full
version of this work for how to handle the special case Einn = G1 ,inn .) We denote by (ax, ay) the affine
representation in x and y coordinates of a ∈ Einn and by ⊕ the point addition in affine coordinates on
the elliptic curve Einn . We denote by [s]P the scalar multiplication by scalar s ∈ F of point P ∈ Einn .
We denote by B = {0, 1} ⊂ F.

Finally, as mentioned in section 3.4, the interpretation of adding explicit domains to public inputs in
the definition of conditional NP relations is that the honest parties (in our case, both the polynomial
protocol verifiers and the SNARKs verifiers as defined in this section below) parse the public inputs
according to the specified domains without any further checks. Any checks or computations that the

15

honest parties perform regarding the public inputs are explicitly described as part of the protocols
followed by the honest parties.

4.1 Basic Accountable Ranged Polynomial Protocol

We start by describing our conditional basic accountable relation Rincl
ba and the corresponding H-

ranged polynomial protocol Pba. Both n and the domains used in the explicit definitions of our
conditional NP relations depend implicitly on the security parameter λ, hence Rincl

ba as well implicitly
depends on λ. However, for brevity, here and in the rest of the paper we choose to omit the security
parameter λ whenever we refer to any of the conditional NP relations for which we build our SNARKs

Conditional Basic Accountable Relation Rincl
ba

Rincl
ba ={(pk ∈ (F2)n−1,bit ∈ Bn, apk ∈ F2;) : apk =

n−2∑
i=0

[biti] · pki | pk ∈ Gn−1
1 ,inn}

where pk = (pk0 , . . . , pkn−2) and bit = (bit0 , . . . , bitn−1). Throughout this section we are going to
use the following polynomials and polynomial identities:

Polynomials as Computed by Honest Parties

b(X) =

n−1∑
i=0

biti · Li(X)

pkx(X) =

n−2∑
i=0

pkxi · Li(X)

pky(X) =

n−2∑
i=0

pkyi · Li(X)

kaccx(X) =

n−1∑
i=0

kaccxi · Li(X)

kaccy(X) =

n−1∑
i=0

kaccyi · Li(X),

where (pkx0 , . . . , pkxn−2) and (pky0 , . . . , pkyn−2) are computed such that ∀i ∈ {0, . . . , n − 2}, pki is
interpreted as a pair (pkxi , pkyi) with its components in F; we also have (kaccx0 , kaccy0) = (hx , hy)
and (kaccxi+1 , kaccyi+1) = (kaccxi , kaccyi)⊕ biti(pkxi , pkyi), ∀i < n− 1. Note that in the last relation
biti is not interpreted as a field element anymore but as a binary bit.

Polynomial Identities

id1(X) = (X − ωn−1) · [b(X) · ((kaccx(X)− pkx(X))2 · (kaccx(X) + pkx(X) + kaccx(ω ·X))−

− (pky(X)− kaccy(X))2) + (1− b(X)) · (kaccy(ω ·X)− kaccy(X))]

id2(X) = (X − ωn−1) · [b(X) · ((kaccx(X)− pkx(X)) · (kaccy(ω ·X) + kaccy(X))−
− (pky(X)− kaccy(X)) · (kaccx(ω ·X)− kaccx(X))) + (1− b(X)) · (kaccx(ω ·X)− kaccx(X))]

id3(X) = (kaccx(X)− hx) · L0(X) + (kaccx(X)− (h⊕ apk)x) · Ln−1(X)

id4(X) = (kaccy(X)− hy) · L0(X) + (kaccy(X)− (h⊕ apk)y) · Ln−1(X)

id5(X) = b(X)(1− b(X)).

Note that polynomial identity id5(X) is not needed for defining ranged polynomial protocols for Rincl
ba ,

however it is included here to ease presentation and for proofs consistency for the ranged polynomial
protocols in the following two sections.

H-ranged Polynomial Protocol for Conditional Packed Accountable Relation Rincl
ba

16

In the following, we describe H-ranged polynomial protocol Pba for conditional relation Rincl
ba . Proto-

col Pba describes the interaction of three parties, the prover Ppoly, the verifier Vpoly and the trusted
third party I in accordance to Definition 25 from section A.

Protocol Pba

Ppoly and Vpoly know public input bit ∈ Bn, pk ∈ (F2)n−1 and apk ∈ (F)2 which are interpreted as
per their respective domains.

1. Vpoly computes b(X), pkx(X), pky(X).

2. Ppoly sends polynomials kaccx(X) and kaccy(X) to I.

3. Vpoly asks I to check whether the following polynomial relations hold over range H

idi(X) = 0, ∀i ∈ [4].

4. Vpoly accepts if I’s checks verify.

We show that protocol Pba is an H-ranged polynomial protocol for conditional relation Rincl
ba . For

this, we first prove that:

Claim 6. Assume that ∀i < n − 1 such that bit i = 1, pki = (pkxi, pkyi) ∈ G1 ,inn . If polynomial
identities idi(X) = 0, ∀i ∈ [5], hold over range H and and the polynomial b(X) has been constructed
via interpolation on H such that b(ωi) = bit i, ∀i < n then
bit i ∈ B = {0, 1} ⊂ F, ∀i < n
(kaccx0, kaccy0) = (hx, hy),
(kaccxn−1, kaccyn−1) = (hx, hy)⊕ (apkx, apky),
(kaccxi+1, kaccyi+1) = (kaccxi, kaccyi) ⊕ bit i(pkxi, pkyi), ∀i < n − 1, where in the last relation biti
should not be interpreted as a field element but as a binary bit.

Proof. Everything but the last property in the claim is easy to derive from polynomial identities
id3(X) = 0, id4(X) = 0, id5(X) = 0 holding over H.

In order to prove the remaining property, we remind the incomplete addition formulae for curve points
in affine coordinates, over elliptic curve in short Weierstrasse form and state:

Observation: Suppose that bit ∈ {0, 1}, (x1, y1) is a point on an elliptic curve in short Weierstrasse
form, and, if bit = 1, so is (x2, y2). We claim that the following equations:

bit((x1 − x2)2(x1 + x2 + x3)− (y2 − y1)2) + (1− bit)(y3 − y1) = 0 (∗)
bit((x1 − x2)(y3 + y1)− (y2 − y1)(x3 − x1)) + (1− bit)(x3 − x1) = 0 (∗∗)

hold if and only if one of the following three conditions hold

1. bit = 1 and (x1, y1)⊕ (x2, y2) = (x3, y3) and x1 6= x2

2. bit = 0 and (x3, y3) = (x1, y1)

3. bit = 1 and (x1, y1) = (x2, y2)2.

It is easy to see that each of the conditions 1,2,3 above implies equations (∗) and (∗∗). For the impli-
cation in the opposite direction, if we assume that (∗) and (∗∗) hold, then

Case a: For bit = 0, the first term of each equation (∗) and (∗∗) vanishes, leaving us with y3− y1 = 0
and x3 − x1 = 0 which are equivalent to condition 2.

Case b: For bit = 1 and x1 = x2, by simple substitution in (∗) and (∗∗), we obtain y1 = y2, i.e.,
condition 3.

2Note that under condition 3, (x3, y3) can be any point whatsoever, maybe not even on the curve. The same holds true
for (x2, y2) under the condition 2.

17

Case c: For bit = 1 and x1 6= x2, then we can substitute

β =
y2 − y1

x2 − x1

into equations (∗) and (∗∗), leaving us with

x1 + x2 + x3 = β2 and y3 + y1 = β(x3 − x1).

which are the usual formulae for short Weierstrass form addition of affine coordinate points when
x1 6= x2 so this is equivalent to condition 1.

We apply the above Observation by noticing that if id1(X) and id2(X) hold over H, then (∗) and
(∗∗) hold with (x1, y1) substituted by (kaccxi, kaccyi), (x2, y2) substituted by (pkxi, pkyi), (x3, y3)
substituted by (kaccxi+1, kaccyi+1) and bit substituted by bit i for 0 ≤ i ≤ n − 2, where biti should
not be interpreted as a field element but as binary bit. Moreover, since (kaccx0, kaccy0) = (hx, hy) ∈
Einn \ G1 ,inn and if (pkxi, pkyi) ∈ G1 ,inn whenever bit i = 1, then ∀i < n − 1 equations (∗) and (∗∗)
obtained after the substitution defined above are equivalent to either condition 1 or condition 2, but
never condition 3, so the result of the sum (i.e., (kaccxi+1, kaccyi+1), 0 ≤ i ≤ n− 2) is, by induction,
at each step a well-defined point on the curve and this concludes our proof.

Corollary 7. Assume ∀i < n − 1 such that bit i = 1, pki = (pkxi, pkyi) ∈ G1 ,inn . If the polynomial
identities idi(X) = 0, ∀i ∈ [4], hold over range H and biti ∈ B, ∀i < n−1 and b(X) =

∑n−1
i=0 biti ·Li(X)

then:
(kaccx0, kaccy0) = (hx, hy),
(kaccxn−1, kaccyn−1) = (hx, hy)⊕ (apkx, apky),
(kaccxi+1, kaccyi+1) = (kaccxi, kaccyi) ⊕ biti(pkxi, pkyi), ∀i < n − 1, where in the last relation biti
should not be interpreted as a field element but as a binary bit.

Proof. The proof follows trivially from the more general result stated by Claim 6.

Lemma 8. Pba as described above is an H-ranged polynomial protocol for conditional relation Rincl
ba .

Proof. It is easy to see that perfect completeness holds. Indeed, if (bit,pk, apk) ∈ Rincl
ba holds,

meaning that bit ∈ Bn and pk ∈ Gn−1
1 ,inn and apk =

∑n−2
i=0 [biti] ·pki hold, then it is easy to see that the

honest prover Ppoly in Pba will convince the honest verifier Vpoly in Pba to accept with probability 1.
Regarding knowledge-soundness, if the verifier Vpoly in Pba accepts, then the extractor E does not
have to do anything as the relation Rincl

ba does not have a witness. However, we have to prove that
if pk ∈ Gn−1

1 ,inn and the verifier in Pba accepts, then (bit,pk, apk) ∈ Rincl
ba holds, which given our

definition for conditional relation is equivalent to proving that apk =
∑n−2
i=0 [biti] · pki holds. This is

indeed the case due to Corollary 7.

4.2 Packed Accountable Ranged Polynomial Protocol

In the following, we denote by F|block| the subset of field elements in F that can be represented using
at most block bits, i.e., the set {0, . . . , 2block−1}, where block has been defined in section 3.7.
Our conditional packed accountable relation Rincl

pa and the corresponding H-ranged polynomial pro-
tocol Ppa are defined as follows:

Conditional Packed Accountable Relation Rincl
pa

Rincl
pa ={(pk ∈ (F2)n−1,b′ ∈ F

n
block
|block|, apk ∈ F2; bit) : apk =

n−2∑
i=0

[biti] · pki | pk ∈ Gn−1
1 ,inn ∧

∧ bit ∈ Bn ∧ b′j =

block−1∑
i=0

2i · bitblock·j+i , ∀j <
n

block
}

where b′ = (b′0, . . . , b
′
n

block
−1).

We define new polynomials and polynomial identities:

18

New Polynomials as Computed by Honest Parties

aux(X) =

n−1∑
i=0

auxi · Li(X)

ca(X) =

n−1∑
i=0

ca,i · Li(X)

acca(X) =

n−1∑
i=0

acca,i · Li(X)

where auxi = 1 ∈ F if i is divisible with block and auxi = 0 ∈ F otherwise, ∀i < n
and ca,i = 2k · rj , k = i mod block, j = i ÷ block, ∀i < n (r ∈ F is introduced in protocol Ppa)
and acca,i are components of the vector (0, bit0 · ca,0, bit0 · ca,0 + bit1 · ca,1, . . . ,

∑n−2
i=0 bit i · ca,i), where

bit0 , . . . , bitn−1 represent the first n bits (however, we interpret them as elements in B) of the con-
catenation of the binary representation of b′0 , . . . , b

′
n

block
−1 .3 Note that with this definition of vector

(bit0 , . . . , bitn−1), the definition of b(X) remains the same as in section 4.1.

New Polynomial Identities

id6(X) = ca(ω ·X)− ca(X) · (2 + (
r

2block−1
− 2) · aux(ω ·X))− (1− r

n
block) · Ln−1(X).

id7(X) = acca(ω ·X)− acca(X)− b(X) · ca(X) + sum · Ln−1(X),

where sum is a field element known to both Ppoly and Vpoly and will be defined below.

H-ranged Polynomial Protocol for Conditional Packed Accountable Relation Rincl
pa

In the following, we describe H-ranged polynomial protocol Ppa for conditional relation Rincl
pa .

Protocol Ppa

Ppoly and Vpoly know public inputs b′ ∈ F
n

block
|block| and pk ∈ (F2)n−1 and apk ∈ F2 which are interpreted

as per their respective domains.

1. Vpoly computes pkx(X), pky(X) and aux(X).

2. Ppoly sends polynomials b(X), kaccx(X) and kaccy(X) to I.

3. Vpoly replies with a random value r chosen from F.

4. Vpoly computes sum as
∑ n

block
−1

j=0 b′j · rj .4

5. Ppoly sends polynomials ca(X) and acca(X) to I.

6. Vpoly asks I to check whether the following polynomial relations hold over range H:

idi(X) = 0, ∀i ∈ [7].

7. Vpoly accepts if I’s checks verify.

We show that protocol Ppa is an H-ranged polynomial protocol for conditional relation Rincl
pa . First,

we prove the following:

3As part of a correct public input for relation Rincl
pa , each field element in the set {b′0 , . . . , b′ n

block
−1
} is at most block binary

bits long. If any such field element has fewer than block bits, then the honest prover will pad it with 0s starting from the
most significant bit up to a total individual length of block bits.

4Note that if b′j =
∑block−1
k=0 2k · bitblock·j+k , ∀j < n

block
and biti ∈ B, ∀i < n, then

∑n−1
i=0 2i mod block · ri÷block · biti =∑ n

block
−1

j=0 (
∑block−1
i=0 2k · bitblock·j+k) · rj =

∑ n
block
−1

j=0 b′j · rj .

19

Claim 9. If the polynomial identities id6(X) = 0, id7(X) = 0 hold over range H, then, e.w.n.p. ,
we have ca,i = 2i mod block · ri÷block, ∀i < n and sum =

∑n−1
i=0 bi · ca,i, where bi = b(ωi), ∀i < n. If,

additionally, identity id5(X) = 0 holds over H, r has been randomly chosen in F, sum =
∑ n

block
−1

j=0 b′jr
j

(as computed by Vpoly) and biti ∈ B, ∀i < n and b′j =
∑block−1
k=0 2k · bitblock·j+k , ∀0 ≤ j ≤ n

block
− 1

(due to the input (b′0, . . . , b
′ n
block
−1) being interpreted by the verifier Vpoly as in F

n
block
|block|), then e.w.n.p. ,

bi = biti ,∀i < n.

Proof. To prove the first part of the claim, assume by contradiction that ca,0 = k 6= 1. Then, by
induction, since id6(X) = 0 on H,

ca,i = k · 2i mod block · ri÷block, ∀0 < i < n.

Additionally, the property

ca,0 = ca,n−1 · (2 + (
r

2block−1
− 2) · 1) + (1− r

n
block) (1)

holds (again, from id6(X) = 0 on H). However, substituting ca,0 = k and ca,n−1 = k · 2block−1 · r
n

block
−1

in (1), we obtain k = k ·2block−1 ·r
n

block
−1 · r

2block−1 +1−r
n

block which is equivalent to k(1−r
n

block) = 1−r
n

block ,
and, due to Schwartz-Zippel Lemma and the fact that degree n is negligibly smaller compared to the
size of F, this implies e.w.n.p. k = 1 thus contradiction, so the values ca,i have indeed the claimed
form.
Next, by expanding id7(X) = 0 over H, the following holds

acca,1 = acca,0 + b0 · ca,0
acca,2 = acca,1 + b1 · ca,1

. . .

acca,n−1 = acca,n−2 + bn−2 · ca,n−2

acca,0 = acca,n−1 + bn−1 · ca,n−1 − sum.

By summing together the LHS and, respectively, the RHS of the equalities above and reducing the
equal terms, we obtain sum =

∑n−1
i=0 bi · ca,i.

For the second part of the claim, since id5(X) = 0 holds over H then bi = b(ωi) ∈ B, ∀i ≤ n − 1.
Finally, from verifier’s computation and from the first part of the claim we have

n
block
−1∑

j=0

b′jr
j = sum =

n−1∑
i=0

bi · ca,i =

n−1∑
i=0

bi · 2i mod block · ri÷block =

=

n
block
−1∑

j=0

(

block−1∑
k=0

2k · bblock·j+k) · rj =

n
block
−1∑

j=0

b′′j r
j , (2)

where ∀j, b′′j are field elements equal to the binary representation that uses contiguous blocks of
block components from the bitmask (b0, . . . , bn−1). Since both the LHS and the RHS of relation (2)
represent two ways of computing sum as an inner product of a vector of field elements (on one hand,
(b′0 , . . . , b

′
n

block
−1), on the other hand, (b′′0 , . . . , b

′′
n

block
−1)) with the vector (1, r, . . . , r

n
block
−1), where r

has been chosen at random, by the small exponents test [44], we obtain that e.w.n.p. b′′j = b′j ,∀0 ≤
j ≤ n

block
− 1. Finally, if we equate the bit representation in F (i.e., using field elements from B) of

field elements b′′j and b′j ,∀0 ≤ j ≤ n
block
− 1 and remember that, by verifier’s check or by construction,

respectively, each such field element has no more that block binary bits, we can conclude that e.w.n.p.
bi = biti ,∀i < n.

Lemma 10. Ppa as described above is an H-ranged polynomial protocol for conditional relation Rincl
pa .

Proof. It is easy to see that perfect completeness holds. Indeed, if (b′,pk, apk ,bit) ∈ Rincl
pa , meaning

that pk ∈ Gn−1
1 ,inn and bit ∈ Bn and apk =

∑n−2
i=0 [biti] · pki and b′j =

∑block−1
i=0 2i · bitblock·j+i , ∀j < n

block

hold then it is easy to see that the honest prover Ppoly in Ppa will convince the honest verifier Vpoly
in Ppa to accept with probability 1.

20

Regarding knowledge-soundness, if the verifier Vpoly in Ppa accepts, then the extractor E sets (bit0, . . . , bitn−1)
as the vector of evaluations over H of polynomial b(X) sent by Ppoly to I. Next, we prove that if
(pk0 , . . . , pkn−2) ∈ Gn−1

1 ,inn and the verifier in Ppa accepts, then

((b′0 , . . . , b
′
n

block
−1), (pk0 , . . . , pkn−2), apk , (bit0, . . . , bitn−1)) ∈ Rincl

pa ,

which is equivalent to proving that apk =
∑n−2
i=0 [biti] · pki and bit ∈ Bn and

b′j =

block−1∑
i=0

2i · bitblock·j+i ,∀j <
n

block
.

According to Claim 9 and Corollary 7 this indeed holds e.w.n.p.

4.3 Counting Ranged Polynomial Protocol

In the following relation, apk is the aggregated public key of at least s and at most s+ 1 public keys.
Hence we interpret s as a threshold on the number of public keys included in the aggregated public
key. Since bitn−1 as the last component of the bitmask witness does not correspond to any public key
and we have to account for the fact that bitn−1 may be 1 ∈ F, relation Rincl

c includes the off-by-one
constraint

∑n−1
i=0 biti = s+ 1.

Conditional Counting Relation Rincl
c

Rincl
c ={(pk ∈ (F2)n−1, s ∈ F2, apk ∈ F2; bit) : apk =

n−2∑
i=0

[biti] · pki | pk ∈ Gn−1
1 ,inn ∧

∧ bit ∈ Bn ∧
n−1∑
i=0

biti = s+ 1}

The new polynomials and polynomial identities required in this section are:

New Polynomial as Computed by Honest Parties

accvt(X) =

n−1∑
i=0

accvt,i · Li(X),

where accvt,i are the components of the vector (0, bit0 , bit0 + bit1 , . . . ,
∑n−2
i=0 biti), ∀i < n.

New Polynomial Identities

id8(X) = accvt(ω ·X)− accvt(X)− b(X) + (s+ 1) · Ln−1(X),

H-ranged Polynomial Protocol for Conditional Counting Relation Rincl
c

Protocol Pc

Ppoly and Vpoly know public input s ∈ F2, pk ∈ (F2)n−1 and apk ∈ F2 which are interpreted as per
their respective domains.

1. Vpoly computes pkx(X), pky(X).

2. Ppoly sends polynomials b(X), kaccx(X), kaccy(X), accvt(X) to I.

3. Vpoly asks I to check whether the following polynomial relations hold over range H:

idi(X) = 0,∀i ∈ [5] and id8(X) = 0.

4. Vpoly accepts if all of I’s checks verify.

We show that protocol Pc is an H-ranged polynomial protocol for conditional relation Rincl
c .

21

Lemma 11. Pc as described above is an H-ranged polynomial protocol for conditional relation Rincl
c .

Proof. It is easy to see that perfect completeness holds. Indeed, if (bit,pk, apk) ∈ Rincl
c holds,

meaning that bit ∈ Bn and pk ∈ Gn−1
1 ,inn and apk =

∑n−2
i=0 [biti] · pki and

∑n−1
i=0 biti = s+ 1 hold, then

it is easy to see that the honest prover Ppoly in Pc will convince the honest verifier Vpoly in Pc to
accept with probability 1.
Regarding knowledge-soundness, if the verifier Vpoly in Pc accepts, then we construct the extractor
E in the following way. Using the polynomial b(X) which was part of the messages from Ppoly to I
and evaluating it at the elements of the set H, E obtains evaluation vector bit = (b(1), . . . , b(ωn−1))
which, in the following, we denote as (bit0, . . . , bitn−1) ∈ Fn.
Next, we show that if (pk0 , . . . , pkn−2) ∈ Gn−1

1 ,inn holds and the verifier in Pc accepts, then

((pk0 , . . . , pkn−2), s, apk , (bit0 , . . . , bitn−1)) ∈ Rincl
c ,

which is equivalent to proving that apk =
∑n−2
i=0 [biti] · pki and bit ∈ Bn and

∑n−1
i=0 biti = s+ 1. First,

since id8(X) = 0 holds over H, we can expand that as follows:

accvt,1 = accvt,0 + bit0

accvt,2 = accvt,1 + bit1

. . .

accvt,n−1 = accvt,n−2 + bitn−2

accvt,0 = accvt,n−1 + bitn−1 − (s+ 1).

By summing together the LHS and, respectively, the RHS of the equalities above and reducing the
equal terms, we obtain s+ 1 =

∑n−1
i=0 bit i.

Second, since it holds over H that idi(X) = 0, ∀i ∈ [5] and b(ωi) = biti , ∀i < n (by the definition of
E), the properties concluded in Claim 6 hold. Combining the two proof steps above, we obtain the
desired conclusion.

4.4 Two-Steps PLONK-Based Compiler for Hybrid Model SNARKs with Mixed
Inputs

In the following we present a two-steps PLONK-based compilation technique from ranged polynomial
protocols for conditional NP relations (formal definition in appendix A) to hybrid model SNARKs as
per definition 5 such that the conditional NP relations that define the SNARKs we compile in the
second step contain both (polynomial) commitments and vectors of field elements as public inputs.
For completeness and as an example, in appendix B we give the full rolled-out hybrid model SNARK
protocol Ph

pa for relationRincl
pa,com , where we define Ph

pa andRincl
pa,com in Step 2 of our compiler below. By

using just the first step of our compiler which is equivalent (modulo some more clarifications necessary
for our use cases) to the original PLONK compiler, one would not be able to obtain SNARKs with
mixed public inputs consisting of both vectors of field elements and also (polynomial) commitments.
In turn, this type of NP relations with mixed inputs is crucial for designing and proving the security
of our accountable light clients in section 5.

Step 1 (PLONK compiler - from polynomial protocols to SNARKs):

Our first step applies the PLONK compiler [10]. More precisely, we compile the information theoretical
ranged polynomial protocols Pba, Ppa and Pc for relations Rincl

ba , Rincl
pa and Rincl

c respectively (as
defined in sections 4.1, 4.2, 4.3) into computationally secure protocols against AGM adversaries.
The resulting protocols are, in fact, SNARKs. In order to keep in sync with PLONK notation, we
denote the resulting SNARK protocols by P∗ba, P∗pa and P∗c , respectively. In fact, we can define this
compilation step in a general way, for any ranged polynomial protocols for relations (as per definition
in appendix A). In order to do that we need:

• The batched version of KZG polynomial commitments [23] described in section 3 of PLONK [10].5

5In fact, one can replace the use of KZG polynomial commitments with any binding polynomial commitment that has
knowledge-soundness, including non-homomorphic polynomial commitments, such as FRI-based polynomial commitments

22

• A general compilation technique: such a technique has been already defined in lemma 4.7 of
PLONK; combined with lemma 4.5 from PLONK this technique can be applied with minor
adaptations (this includes the corresponding technical measures) to the notion of ranged poly-
nomial protocols as defined in appendix A.

• So far, both the ranged polynomial protocols for relations and the protocols resulted after the
first compilation step have been explicitly defined as interactive protocols. In order to obtain
the non-interactive version of the latter (essentially the N in SNARK) one has to apply the
Fiat-Shamir transform [47], [48], [49].

Let R be a (conditional) NP relation, let PR be a ranged polynomial protocol for relation R and let
P∗R be the SNARK compiled from PR using the PLONK compiler (as summarised above). Going
into more detail, the above compilation technique requires the SNARK prover of P∗R to compute
polynomial commitments to all polynomials that the prover Ppoly in PR sent to the ideal party
I. Analogously, it requires the SNARK verifier of P∗R to compute polynomial commitments to all
pre-processed polynomials6 as well polynomial commitments to polynomials the verifier Vpoly in PR
sent to the ideal party I. Then, the SNARK prover sends the SNARK verifier openings to all the
polynomial commitments computed by him as well as the polynomial commitments computed by the
SNARK verifier. The SNARK prover additionally sends the corresponding batched proofs for poly-
nomial commitment openings. In turn, the SNARK verifier accepts or rejects based on the result of
the verification of the batched polynomial commitment scheme.

A more efficient compilation technique exists which reduces the number of polynomial commitments
and alleged polynomial commitments openings (i.e., both group elements and field elements) sent by
the SNARK prover to the SNARK verifier; this, in turn, reduces the size of the SNARK proof. This
technique is called linearisation and is described, at a high level, after Lemma 4.7 in PLONK. The
existing description however covers only the SNARK prover side and it does not detail the SNARK
verifier side so in the following we cover that.

By functionality, the vectors that are handled by the the verifier Vpoly are of two types: pre-processed
vectors and public input vectors. These two types of vectors are used by Vpoly to obtain, via inter-
polation over the range on which the respective range polynomial protocol is defined, pre-processed
polynomials (as used in the definition 25, e.g., polynomial aux(X) used in section 4.2) and public-
inputs-derived polynomials (e.g., polynomials pkx(X) and pky(X) used in sections 4.1, 4.2, 4.3 and
polynomial b(X) used in section 4.1). The efficient linearisation technique allows the SNARK ver-
ifier to reduce the number of polynomial commitments it has to compute compared to the general
PLONK compiler in the following way. Instead of having to compute polynomial commitments to all
polynomials Vpoly sends to I (including any corresponding pre-processed polynomials), the SNARK
verifier computes polynomial evaluations at one or multiple random points (as per the linearisation
step specific requirements) for all the polynomials that are either easy to evaluate (e.g., polynomial
aux(X) used in section 4.2) or all the polynomials that are obtained from vectors that do not take
up a large amount of memory (e.g., polynomial b(X) used in section 4.1). For the rest of the poly-
nomials (e.g., pkx (X) and pky(X)), the SNARK verifier computes polynomial commitments as before.

We note we can apply all the techniques mentioned above, including the combined prover-and-verifier-
side linearisation to compile our three ranged polynomial protocols Pba, Ppa and Pc into the cor-
responding SNARKs P∗ba, P∗pa and P∗c , respectively. To conclude this step, we formally state in
appendix A, lemma 26 under which condition and how efficiently one can compile ranged polynomial
protocols for conditional NP relations (where the public inputs are interpreted as vector of field ele-
ments) into hybrid model SNARKs by using only the original PLONK compiler.

Step 2 (Mixed Vector and Commitments as Input for NP Relations and Associated
SNARKs):

(e.g., RedShift [45]). If the optimisation gained from PLONK linearisation technique is a goal, then, with minimal changes
one can use any homomorphic polynomial commitment, e.g., the discrete logarithm based polynomial commitment from
Halo [46].

6This is a one-time computation that is reused by the SNARK verifier for all SNARK proofs over the same circuit.

23

The type of NP relations we have worked with so far as well as the more general PLONK NP relation
([10], section 8.2), do not have the result of cryptographic operations as part of their public input but
rather the public inputs are interpreted by honest parties as vectors of field elements. In the following,
we show that the SNARKs we have compiled using Step 1 can become, under certain trust assumption,
SNARKs for an additional type of NP relation that specifically contains polynomial commitments as
part of the input. As detailed in section 5, interpreting our already compiled SNARKs as SNARKs
for this additional type of NP relation is essential for modelling and achieving the security properties
for our accountable light client systems.

In order to define Step 2 of our compiler, we need first to introduce some notation. To start with,
assume a conditional NP relation Rcvec (according to the notion introduced in section 3.4) of the form:

Rcvec = {(input1 ∈ D1, input2 ∈ D2; witness1) :

p1(input1, input2,witness1) = 1 | c(input1) = 1 ∧
∧ p2(input1, input2,witness1) = 1},

where input1 is a set of public input vectors that should be parsed (but not checked) by the honest
parties as belonging to some domain D1. Analogously, for the set of public input vectors input2 and
their respective domain D2. Finally, witness1 is a set of witness vectors and c and p1 and p2 are
predicates. Let Pvec be a ranged polynomial protocol for relation Rcvec . Note that since the condition
predicate c applies only to a part of the public input for relation Rcvec (i.e., input1), we can apply
lemma 26 and Step 1 of our compiler to polynomial protocol Pvec .

Next, we make the following assumptions which we call hybrid model assumptions:

• (HMA.1.) The verifier Vpoly in Pvec computes polynomials Q1 ,input1(X), . . . ,Qm,input1(X)
which depend deterministically on input1 and sends them to I.

• (HMA.2.) The verifier Vpoly in Pvec does not use input1 in any further computation of any
other polynomials or values its sends to I.

• (HMA.3.) By evaluating Q1 ,input1(X), . . . ,Qm,input1(X) over the range on which the ranged
polynomial protocol Pvec is defined one obtains (using some efficiently computable and deter-
ministic transformations) the set of vectors input1.

Let us denote by P∗vec the hybrid model SNARK obtained after compiling Pvec using Step 1 of our
compiler. Due to assumption (HMA.1.) and according to Step 1 of our compiler, the SNARK verifier
in P∗vec computes

Com1 = Com(Q1 ,input1), . . . ,Comm = Com(Qm,input1)

which are KZG polynomial commitments to Q1 ,input1(X), . . . ,Qm,input1(X). For brevity, we denote
the vector (Com1 , . . . ,Comm) by Com(input1) and we denote by C the set of all KZG polynomial
commitments or vectors of such polynomial commitments.

Let us also define the relation:

Rcvec,com = {C ∈ C, input2 ∈ D2; witness1,witness2) :

p1(witness2, input2,witness1) = 1 | c(witness2) = 1 ∧
∧ p2(witness2, input2,witness1) = 1 ∧
∧ C = Com(witness2)}

Let us finally define the algorithm SNARK .PartInput for some srs, state1 ⊇ witness2 and R =
Rcvec,com as follows:

24

SNARK .PartInput(srs, state1 ⊇ input1,Rcvec,com)

If c(input1) = 0

Return

Else

Compute via interpolation on the range for Pvec polynomials Q1 ,input1(X), . . . ,Qm,input1(X).

C = (Com(Q1,input1(X)), . . . ,Com(Qm,input1(X)))

state2 = state1 ∪ {C}
Return(state2 ,C)

With the above notation, our compiler’s Step 2 is:
The alleged hybrid model SNARK Ph

vec for relation Rcvec,com is defined as:

• SNARK .Setup and SNARK .KeyGen are the same as for relation Rcvec .

• The algorithm SNARK .PartInput for relation Rcvec (see lemma 26 in appendix A) is replaced
with SNARK .PartInput for relation Rcvec,com as described above.

• The algorithm SNARK .Prover for relationRcvec,com is identical with the algorithm SNARK .Prover
for relation Rcvec (as compiled using Step 1) with the appropriate re-interpretation of the public
inputs and witness.

• The algorithm SNARK .Verifier for relationRcvec,com is identical with the algorithm SNARK .Verifier
for relation Rcvec (as compiled using Step 1) with the appropriate re-interpretation of the public
inputs and such that SNARK .Verifier for Rcvec,com does not compute the polynomial commit-
ments to the polynomials defined by the assumption (HMA.1.).

Lemma 12. Let Pvec be a ranged polynomial protocol for relation Rcvec defined above and let P∗vec be
the hybrid model SNARK for relation Rcvec secure in the AGM obtained by compiling Pvec using our
compiler’s Step 1. If the hybrid model assumptions (HMA.1.) - (HMA.3.) hold w.r.t. protocol Pvec

and StateRvec,com 6= ∅ then Ph
vec as compiled using our compiler’s Step 2 is a hybrid model SNARK

for relation Rcvec,com secure also in the AGM.

Proof. Let EKZG and E be the extractors from the knowledge-soundness definitions for the KZG batch
polynomial commitment scheme (as in definition 3.1, section 3 in [10]) and the hybrid model SNARK
P∗R for relation Rcvec (as per definition 5), respectively. Let A be an adversary against knowledge
soundness in the hybrid model w.r.t. Ph

vec and relation Rcvec,com and let auxSNARK ∈ D and let
state1 ∈ StateRvec,com ; let (C, state2) = SNARK .PartInput(srs, state1 ,Rcvec,com). By the definition of
SNARK .PartInput for Ph

vec , there exists input1 such that C = Com(input1) and c(input1) = 1.
We denote by (input2, π) the output of A(srs, state2 ,Rcvec,com) and let A1 be the part of A that sends
openings and batched proofs for the polynomial commitments in C.

On the one hand, if the verifier SNARK .Verifier(srsvk , (C, input2), π,Rcvec,com) in Ph
vec accepts, then

the KZG verifier corresponding to A1 also accepts. When such an event takes place, then, e.w.n.p.
EKZG extracts polynomials Q′1(X), . . . , Q′m(X) that represent witnesses for the vector C of commit-
ments and the alleged openings of A1. Because the KZG polynomial commitment scheme is binding
and by the definition of SNARK .PartInput for Ph

vec , we obtain that Q′1(X) = Q1(X), . . . , Q′m(X) =
Qm(X). Since per (HMA.3.), the set {Q1(X), . . . , Qm(X)} evaluates to input1 over the range over
which Pvec was defined, e.w.n.p. the witness polynomials extracted by EKZG evaluate to input1.

On the other hand, if the verifier SNARK .Verifier(srsvk , (C, input2), π,Rcvec,com) in Ph
vec accepts,

then the verifier SNARK .Verifier(srsvk , (input1, input2), π,Rcvec) in P∗vec also accepts. In turn, this
acceptance together with the fact that P∗vec has knowledge-soundness as per definition 5, it implies
the extractor E e.w.n.p. extracts witness1 such that

(input1, input2,witness1) ∈ Rcvec (o).

By the definition of SNARK .PartInput for Ph
vec and the way input1 was defined, it holds that

c(input1) = 1. Due to (o) and by the definition of relation Rcvec , the predicates: p1(input1, input2,

25

witness1) = 1 and p2(input1, input2,witness1) = 1 hold. If we let witness2 = input1, then it is
clear that

(C = Com(input1), input2,witness1, input1) ∈ Rcvec,com ,
so using EKZG and E we can build an extractor for any knowledge-soundness adversary A for alleged
hybrid model SNARK Ph

vec for relation Rcvec,com , which concludes the proof.

To conclude this step and the detailed compiler presentation we note that it is straightforward to
apply the technique described above to our SNARKs Ph

ba, Ph
pa and Ph

c compiled in Step 2 and obtain
relations Rincl

ba,com , Rincl
pa,com and Rincl

c,com that fulfil lemma 12.7 For completeness, we include these three
conditional NP relations below. We remind the reader that these NP relations depend on λ, but, for
brevity, we have omitted it from the following definitions.

Rincl
ba,com = {(C ∈ C,bit ∈ Bn, apk ∈ F2; pk) : apk =

n−2∑
i=0

[biti] · pki | pk ∈ Gn−1
1 ,inn ∧

∧ C = Com(pk)}

Rincl
pa,com = {(C ∈ C,b′ ∈ F

n
block
|block|, apk ∈ F2; pk,bit) : apk =

n−2∑
i=0

[biti] · pki | pk ∈ Gn−1
1 ,inn ∧

∧ bit ∈ Bn ∧ b′j =

block−1∑
i=0

2i · bitblock·j+i , ∀j <
n

block
∧ C = Com(pk)}

Rincl
c,com = {(C ∈ C, s ∈ F2, apk ∈ F2; pk,bit) : apk =

n−2∑
i=0

[biti] · pki | pk ∈ Gn−1
1 ,inn ∧

∧ bit ∈ Bn ∧
n−1∑
i=0

biti = s+ 1 ∧C = Com(pk)}

4.5 Comparison between PLONK and our SNARKs

In the following, we briefly look at the differences between PLONK universal SNARK and the SNARKs
designed in this work. We observe that while the NP relation that defines PLONK is more general, the
relations that define our SNARKs are bespoke as we are only interested in efficiently proving public
key aggregation. Because our relations are so bespoke, it turns out we do not require the full func-
tionality that PLONK has to offer, and, in particular, our SNARKs do not require any permutation
argument.

A second difference is that while PLONK’s circuit is defined by a number of selector polynomials
(which are a type of pre-processed polynomials) and a PLONK verifier needs to perform a one-time
expensive computation of the polynomial commitments to those selector polynomials, our SNARK
verifiers are able to avoid such a pre-processing phase. Indeed, in the case of Ph

a (which is the only one
of our three SNARKs that has a polynomial, namely aux (X), that defines its circuit), our respective
SNARK verifier does not need to compute a commitment to its only “selector polynomial” as, due to
its structure, aux (X) can be directly and efficiently evaluated by our SNARK verifier itself.

A third difference is that using our two-steps compiler, our SNARKs verifiers are able to efficiently
handle input vectors of length O(n), where the degree of the polynomials committed to by our SNARK
provers is also O(n). Our SNARKs verifiers achieve efficiency by offloading the expensive polynomial
commitment computation involving the public inputs to a trusted third party.

Moreover, while PLONK does not incorporate trusted inputs, one can easily apply the Step 2 of our
compiler to PLONK. In particular, one could imagine a situation where a PLONK verifier is relying
on a trusted party to compute some or all of the polynomial commitments to the circuit’s selector
polynomials. This is equivalent to our hybrid model SNARK definition applied to PLONK. The ben-
efit is that by delegating such a computation, the PLONK verifier becomes more efficient.

7Note that due to our specific application and the proof-of-stake blockchain context in which we make use of our custom
SNARKs, the assumption/requirement that StateRvec,com 6= ∅ for Rvec,com ∈ {Rincl

ba,com ,R
incl
pa,com ,Rincl

c,com} is fulfilled.

26

Finally, looking ahead at our light client system instantiation in section 5.3, due to the inductive
structure of the soundness proof (theorem 22), the efficiency of using a hybrid model SNARK has
an even greater impact for the light client system verifier than that compared to verifying multiple
instances of PLONK for the same circuit: while for the latter the PLONK verifier has to compute
commitments to selector polynomial only once anyway, in the case of the former, the commitments to
public inputs may differ at very step hence a trusted third party relives a higher computation burden
from the light client verifier overall.

4.6 An Instantiation for Committee Key Scheme for Aggregatable Signatures

Given the SNARKs compiler described in section 4.4 and its application to the conditional NP relations
mentioned at the end of that section, we are ready to present an instantiation for committee key scheme
for aggregatable signatures (see section 3.3 for the definition of this notion) as used in this work (i.e.
in section 5.3). We instantiate u and v introduced in section 3.3 as follows: let u = n−1, where n was
defined in section 3.7 and we let v ∈ N, n − 1 ≤ v, v = poly(λ), where by v we denote the maximum
number of validators that the scheme allows.

Instantiation 13. (Committee Key Scheme for Aggregatable Signatures) In our implementation we
call committee key scheme for aggregatable signatures the following instantiation of definition 3, where
R ∈ {Rincl

ba,com ,Rincl
pa,com} as defined in the end of section 4.4:

• CKSR.Setup(v) calls the following algorithms
(G1 ,inn , g1 ,inn ,G2 ,inn , g2 ,inn ,GT ,inn , einn ,Hinn ,HPoP) ⊂ pp ← AS .Setup(auxAS = v + 1) which is
part of instantiation 2 with the additional specification that auxAS = v+1 and using the notation
detailed in section 3.2.1,
srs = ([1]1 ,out , [τ]1 ,out , [τ

2]1 ,out , . . . , [τ
3v]1 ,out , [1]2 ,out , [τ]2 ,out) ← SNARK .Setup(auxSNARK =

(v, 3v)),

(rspk , rsvk) =

= (([1]1 ,out , [τ]1 ,out , [τ
2]1 ,out , . . . , [τ

3v]1 ,out), ([1]1 ,out , [1]2 ,out , [τ]2 ,out))← SNARK .KeyGen(srs,R)

• ck = ([pkx]1 ,out , [pky]1 ,out)← CKSR.GenerateCommitteeKey(rspk , (pki)
n−1
i=1), where

pkx = (pkx1 , . . . , pkxn−1) and pky = (pky1 , . . . , pkyn−1) such that ∀i ∈ {1, . . . , n − 1}, pki =
(pkxi , pkyi) ∈ F2 and the polynomials pkx(X) =

∑n−2
i=0 pkxi+1 ·Li(X) and pky(X) =

∑n−2
i=0 pkyi+1 ·

Li(X) and, finally, [pkx]1 ,out = pkx(τ) · [1]1 ,out and [pky]1 ,out = pky(τ) · [1]1 ,out . Note that
CKSR.GenerateCommitteeKey first checks whether (pki)

n−1
i=1 ∈ Gn−1

1 ,inn(∗); if that is not the case
it outputs ⊥; if (∗) holds, the algorithm CKSR.GenerateCommitteeKey continues with the com-
putations described above.

• π = (πSNARK , apk)← CKSR.Prove(rspk , ck , (pki)
n−1
i=1 , (biti)

n−1
i=1) where CKSR.Prove calls

apk =
∑n−1
i=1 biti · pki ← AS .AggregateKeys(pp, (pki)i:biti=1) as defined in instantiation 2 and

πSNARK ← SNARK .Prove(rspk , (x,w),R), for R ∈ {Rincl
ba,com ,Rincl

pa,com}
where (x = (ck , (biti)

n−1
i=1 ||0, apk), w = (pk i)

n−1
i=1) for R = Rincl

ba,com and

(x = (ck ,b′, apk), w = ((pk i)
n−1
i=1 , (biti)

n−1
i=1 ||0) for R = Rincl

pa,com , where b′ is the vector of field
elements formed from blocks of size block of bits from vector (biti)

n−1
i=1 ||0 and block is the highest

power of 2 smaller than the size of a field element in F.

• 0/1← CKSR.Verify(pp, rsvk , ck ,m, asig , π,bitvector) parses π to retrieve πSNARK and apk and
it calls AS .Verify(pp, apk ,m, asig) as defined in instantiation 2 and it also calls
SNARK .Verify(rsvk , x, πSNARK ,R) (where πSNARK , x and R are as defined in the paragraph
above with the only difference that (biti)

n−1
i=1 represents the first n− 1 bits of bitvector, padded

with 0s, if not sufficiently many exist in bitvector); it outputs 1 if both algorithms output 1 and
it outputs 0 otherwise.

Theorem 14. Given the hybrid model SNARK scheme secure for relation R ∈ {Rincl
ba,com ,Rincl

pa,com}
as obtained using our two-step compiler in section 4.4 and the aggregatable signature scheme AS as
per instantiation 2 (which fulfils definition 1) with the additional specification that auxAS = v + 1
and choosing v = n − 1, if we assume that an efficient adversary (against the soundness of) CKSR
outputs public keys only from the source group G1 ,inn , then the committee key scheme CKSR as per
instantiation 13 is secure with respect to definition 3.

For details of the proof, please see Appendix C.

27

5 An Accountable Light Client System

In this section, we give a model for the consensus systems that our light client system can be applied
to and we define security properties for light client systems, and, in particular accountable light
client systems. Moreover, we present generic pseudocode for light client systems and prove that our
implementation fulfils the security properties that we associate with this notion.

5.1 Informal Model and context

First, we informally describe our model, then we formalise it in 5.2. There is a consensus system
which we assume is a blockchain protocol. We consider consensus systems that make decisions based
on signatures from a subset of validators, where the validator set may change periodically. Our model
has the following entities:

Full nodes - a full node maintains a view of the consensus decisions and stores the current state of
the blockchain. A full node obtains both by running the consensus protocol correctly starting from
the genesis state of the blockchain.

Validator - a validator is a full node which the consensus protocol decides it belongs to a validator set.
Once elected, validators take part in the consensus protocol and, in turn, their signatures determine
what the consensus decides upon.

Light Client Verifier - a light client verifier is a node that does not keep the full state of the blockchain,
but rather obtains (ideally short) proofs of parts of the blockchain state they are interested in; light
client verifiers do this by being in communication with e.g., full nodes. In the optimistic scenario,
where we have no adversary, the light client verifier can connect to a single full node and the full node
should be able to convince the light client verifier of anything that the latter in interested in and the
consensus system has agreed upon.

Adversary The adversary controls a number of full nodes and validators. They are interested in
convincing the light client verifier of things that may be in contradiction to what other (honest)
nodes see as decided. The adversary, via the parties it controls, can try to double spend on the same
blockchain or on another blockchain via a bridge. In the accountable case (which is the one we are
interested in), the adversarial parties would like to ensure that if an attack is discovered, the honest
validators and not the adversarial ones are to be blamed and punished. In the pessimistic scenario, a
light client verifier may only be connected to the adversary. In this scenario, we also assume that all
full nodes, including honest validators are only connected to the adversary.

Validator Sets As briefly mentioned above, the consensus protocol decides which entities are val-
idators; the validators, in turn, agree on the consensus. The consensus protocol designates the next
validator set which, in turn, is represented by the set of the corresponding entities’ public keys.

5.1.1 Informal Security properties

We next informally describe the security properties that our light client system should satisfy.

Completeness: If a full node sees that some fact was decided by the consensus, they can produce a
proof that would convince a light client verifier of this fact.

Soundness: If, from some honest full nodes point of view, at least 1/3 of the validators in the val-
idator set at any time are honest, then the light client verifier cannot be convinced of something
incompatible with something the honest full node saw as decided.

For short, completeness and soundness mean, respectively, that in the optimistic scenario, a full node
can always convince a light client verifier of some fact it sees as decided, and, in the pessimistic sce-
nario, the adversary cannot convince the light client verifier of something that was not decided. Please
note the a crucial part of the overall security model for the above two security definitions is that at
any one point there are enough (e.g. a majority of) honest participants during consensus. Let us call

28

this property (∗).

If we relax property (∗) which may not hold at all times, we require two security properties based
on accountability. Accountability means that if a light client verifier was convinced of an incorrect
statement (in relation to what has been decided on the blockchain so far), then one can detect the
misbehaving validators that contributed to that. We can separate this into two properties:
Accountability Completeness: If the light client verifier is convinced via a wrong proof of some-
thing which is incompatible with something a full node sees as decided, and then the light client verifier
forwards the wrong proof to the full node, that full node can detect that some validators misbehaved.

Accountability Soundness: If a full node is given a light client proof of something that is in-
compatible with something it sees as decided, then, when the full node detects that some validators
misbehaved, indeed none of those validators are honest.

5.1.2 Consensus system model

Messages For a full node to prove to a light client verifier that something has been decided, in
the end it will prove that a message was signed by a quorum of validators from some validator set.
Typically this message will not directly include the information the full node wants to convince the
light client that it has been decided (during consensus), but the message will be a commitment to
that information; hence, the full node can also include an opening of this commitment.

Our formal model will not mention blockchains, but it is useful to remember that in blockchain based
consensus systems, often the message is a blockhash, which is a binding commitment to multiple types
of data:

1. the block header

2. all previous block headers, through parent hashes in block headers

3. the blocks themselves (whose hash is in the header)

We define the required data of a message to be the data that the message is a binding commitment
to and which all full nodes should know. We assume that if a full node sees a message as decided, it
must have the corresponding required data. The required data of messages can overlap among each
other and the full node would not need to store them separately, e.g. two block hashes for blocks in
the same chain may have required data that overlap for a prefix of blocks in the chain, which may be
many gigabytes of data.

Consensus decisions, validator sets, epochs and consensus views A message is decided if sufficient
signatures corresponding to validators in the current validator set sign it. However the validator set
may change.

We define an epoch as a period of time in which the validator set cannot change. During each epoch,
the consensus determines the validator set for the next epoch.

We assume that the validator set size is bounded by some known constant v. Some threshold t of
validators are required to sign a message such that it is considered decided. t may be a function of
the size of the validator set of a given epoch, e.g. more than 2/3 of the validators. We assume that
the message itself indicates what epoch it belongs to, and only signatures from validators chosen for
that epoch count for whether a message has been decided or not.

Each full node maintains a consensus view, i.e., its view of the protocol. The consensus view records
the view of the validator set for each epoch, the messages that have been decided and the signatures
on those messages. It also includes the required data for each decided message.

A well-defined function of the consensus view defines its validity. Full nodes should maintain only a
valid consensus view, and must not include in their consensus view messages that would make the
respective view invalid.

29

Incompatible Messages There are some pairs of decisions that a consensus protocol cannot decide
together without breaking validity. If the protocol ensures that honest validators do not sign messages
corresponding to both decisions, then we can make signing such pairs of messages punishable.

Unfortunately the messages themselves need not be enough to judge their incompatibility. For example
we would not want two block hashes to be decided if one is for a block of height 100 and the other
is for a block of height 101, and the block of height 100 was not the parent of the block of height
101. However, if incompatibility is a function of the required data of one or both messages, then,
because messages are binding commitments to their required data, this is still unambiguous for a pair
of messages.

5.1.3 Network Model

When we need to assume a network model, the one we use is that all parties communicate only to
the adversary, who may forward messages from one party to another when the adversary wants or
not at all. Both our assumptions and our soundness and accountability soundness security definitions
assume this networking model.

The proof of our security properties works in general for asynchronously safe protocols. These have
a number of safety properties which hold with asynchronous networking. Asynchronous networking
means that the adversary decides when a message is delivered but must deliver all messages eventually.
For safety properties, those which have a statement that holds always or never, this is equivalent to
our network model.

5.2 A Formal Model for Consensus-based Accountable Light Client Design

We need the following fundamental notions:

• some number k of epochs with ids 1, . . . , k;

• for each epoch id i, 1 ≤ i ≤ k, the validators on the blockchain may agree on a subset of the set
of possible consensus messages Mi;

• associated with each consensus message m there may exist some required data dm ∈ D for some
set D; when such a dm exists, m is a binding commitment to dm;

• a secure aggregatable signature scheme AS as defined in section 3.2.

Building on the above notions, we also define a valid consensus view.

Definition 15. (Consensus view) A consensus view C for a set of epochs with ids i, ∀i ∈ [k], for
some k, contains for each epoch id i:

• a set PKi of public keys (we may also consider a list of public keys and weights, e.g. proportional
to stake, but we focus here on the equal weight case for simplicity).

• a set {(m,Signers, σ) | m ∈ Mi,Signers ⊆ PKi} where σ is a signature (or an aggregatable
signature) on m and the public key(s) of the signer(s) are Signers.

• some required data dm associated with each message m, such that m is a binding commitment to
dm. Note that some required data associated with different messages may overlap.

In addition to the components mentioned above, a consensus view C contains also a genesis state
genstate; as a concrete example, genstate may contain the set of public keys PK1 for the first epoch
and their proofs of possession. For each of the notions contained in some epoch of C as well as for
genstate, we say they belong to C and we simply denote that by “∈ C”.

In the following, we assume that all algorithms processing messages use a common efficient represen-
tation that implicitly includes for each of them an epoch id; this epoch id is retrieved using a function
epoch id .

Definition 16. (Deciding a consensus message) Given a consensus view C, we say a message m ∈Mi

is decided in C if C contains valid signatures from at least some threshold t (e.g., more than 2/3)
signers corresponding to public keys in PKi or, equivalently, a valid aggregatable signature of t signers
over m. Additionally, we denote by (m, dm) ∈decided C the fact that m ∈ C, ∃ dm ∈ C ∩D, dm is the
associated required data of m and m has been decided in C.

30

Definition 17. (Valid consensus view) We assume the following three functions used for validation
are efficiently computable and they are defined as:

• VerifyData : ∪ki=1Mi ×D → {1, 0} such that it checks the validity of m given the required data
dm ;

• HistoricVerifyData : {genstate} × (∪ki=1Mi ×D)n × (∪ki=1PKi)
q → {1, 0} such that it checks the

validity of genstate, some set of n consensus messages and their required data and some set of q
public keys;

• Incompatible : ∪ki=1(Mi×Mi)×D → {0, 1} which given messages m1, m2 and potential required
data dm1 for m1 checks the incompatibility.

Let m1, . . . ,mn be all the distinct consensus messages contained in C. Let pk1 , . . . , pkq be all the public
keys, including repetitions, contained in PKi , ∀i ∈ [k]. We say the consensus view C is valid if:

• ∃ dmi ∈ D ∩ C such that VerifyData(mi, dmi) = 1, ∀1 ≤ i ≤ n.

• HistoricVerifyData(genstate,m1, dm1 , . . . ,mn, dmn , pk1 , . . . , pkq) = 1.

• There exists no pair (i, j), 1 ≤ i, j ≤ k, i 6= j such that Incompatible(mi,mj , dmi) = 1 or
Incompatible(mj ,mi, dmj) = 1.

• We require that all consensus messages in C are decided according to definition 16.

We conclude this subsection by defining what we mean by honest validator.

Definition 18. (Honest validator) An honest full node of a blockchain is one that runs the protocol
correctly starting from the genesis state of the blockchain. It maintains a valid consensus view of the
system. A full node is a validator if they produced a public key that is in the set PKi in some epoch i
in some consensus view. An honest validator is an honest full node that is also a validator.

5.2.1 General light client properties

Next we define a light client system.

Definition 19. (Light client system) Let R be a (conditional) NP relation. A light client system
involves two parties - prover and light client (also called light client verifier) - and it implements the
following algorithms:

• ppLC ← LC .Setup(R): a setup algorithm that takes the security parameter λ and a (conditional)
NP relation R and outputs public parameters ppLC .

• π ← LC .GenerateProof (ppLC , C,m,R): a proof generation algorithm that takes a valid consen-
sus view C, a message m decided in consensus view C and a (conditional) NP relation R and
generates a proof π.

• acc/rej ← LC .VerifyProof (ppLC ,LC .seed , π,m,R): a proof verification algorithm that takes as
input a genesis summary LC .seed (whose properties are detailed in definition 20), a light client
proof π and a message m and returns acc if π is a valid proof for m and rej otherwise.

We call the tuple (LC .Setup, LC .GenerateProof , LC .VerifyProof) a light client system if it fulfils
perfect completeness and soundness as defined below.

Perfect Completeness We say (LC .Setup, LC .GenerateProof , LC .VerifyProof) has perfect com-
pleteness if for any valid consensus view C and for any consensus message m decided in C we have
that

Pr [LC .VerifyProof (ppLC ,LC .seed , π,m,R) = acc | ppLC ← LC .Setup(R),

π ← LC .GenerateProof (ppLC , C,m,R)] = 1

Soundness We say (LC .Setup, LC .GenerateProof , LC .VerifyProof) has soundness if, for every effi-
cient malicious prover A,

Pr [LC .VerifyProof (ppLC ,LC .seed , π,m,R) = acc | ppLC ← LC .Setup(R),

pp ← Parse(ppLC), (π,m,C)← AHonestValidator (pp,R),

CheckValidConsensus(C) = 1,

NoHonestSigning(m,OGenerateKeypair) = 1,

HonestThreshold(t′,OGenerateKeypair , C) = 1] = negl(λ);

31

where the predicate CheckValidConsensus(C) checks if C is valid w.r.t. definition 17 and outputs 1 in
that case (and 0 otherwise);

NoHonestSigning(m,OGenerateKeypair) checks that there exists no public key in Qkeys|pk (with
Qkeys|pk the restriction of Qkeys to the public keys and OGenerateKeypair defined below) that signed
m; it outputs 1 in that case (and 0 otherwise); AHonestValidator represents the adversary A interacting
with honest validators. HonestThreshold(t′,OGenerateKeypair , C) checks that at least t′ of the public
keys in each PKi of C (for every epoch i in C), are part of Qkeys and outputs 1 in that case (and
0 otherwise). Finally, we make the assumption that HonestValidator , in turn, makes oracle calls to
OGenerateKeypair(pp), and pp as the public parameters of aggregated signature scheme AS are part
of ppLC , where

OGenerateKeypair(pp) :

((pk , πPoP), sk)← AS .GenerateKeypair(pp)

Qkeys ← Qkeys ∪ {((pk , πPoP), sk)}
Output ((pk , πPoP), sk).

Finally, we define the genesis summary and its properties with respect to a light client system.

Definition 20. (Genesis summary) Light client verifiers have access to a genesis summary LC .seed,
which is a well defined deterministic function of the genesis state genstate.

5.2.2 Accountable Light Client Properties

In the following, we extend our model above to include also the case that in at least one of the epochs
less than t′ of the validators are honest. We provide the definition for an accountable light client system
which subsumes the light client system definition given above. We remark that an accountable light
client system subsumes a light client system.

Definition 21. (Accountable light client system) Let R be a (conditional) NP relation. An account-
able light client system implements algorithms (LC .Setup, LC .GenerateProof , LC .VerifyProof ,
LC .DetectMisbehaviour, LC .VerifyMisbehaviour) where LC .Setup, LC .GenerateProof and LC .VerifyProof
are defined as in 19 and

(i, S,bit, σ,m′′,m′)← LC .DetectMisbehaviour(ppLC , π,m,C,R)

is an algorithm such that it takes a proof π for message m, a consensus view C and a (conditional)
NP relation R; it outputs an epoch id i, a subset of misbehaving signers S ⊆ PKi in the same epoch
as messages m′′ and m′, with m′ decided in C and m′′ signed with signature σ and using bitmask bit
against the set PKi and

acc/rej ← LC .VerifyMisbehaviour(ppLC , i, S,bit, σ,m′′,m′, C,R)

is an algorithm which takes the input of LC .DetectMisbehaviour together with a consensus view C and
a (conditional) NP relation R and checks if indeed misbehaviour took place such that completeness,
soundness, accountability and accountability soundness hold, where completeness and soundness are
identical to definition 19 and accountability and accountability soundness are defined below.

Accountability We say (LC .Setup, LC .GenerateProof , LC .VerifyProof ,
LC .DetectMisbehaviour , LC .VerifyMisbehaviour) achieves accountability if for every efficient adver-
sary A it holds that:

Pr [LC .VerifyMisbehaviour(ppLC ,LC .DetectMisbehaviour(ppLC , π,m,C,R), C,R) = acc |
ppLC ← LC .Setup(R), (π,m,C)← A(ppLC ,R),

LC .VerifyProof (ppLC ,LC .seed , π,m,R) = acc,CheckValidConsensus(C) = 1,

∃ (m′, dm′) ∈decided C, Incompatible(m′,m, dm′) = 1, epoch id(m) = epoch id(m′)] = 1− negl(λ)

Accountability Soundness We say (LC .Setup, LC .GenerateProof , LC .VerifyProof ,
LC .DetectMisbehaviour , LC .VerifyMisbehaviour) achieves accountability soundness if for every effi-

32

cient adversary A it holds that:

Pr [LC .VerifyMisbehaviour(ppLC , i, S,bit, σ,m′′,m′, C,R) = acc |

(i, S,bit, σ,m′′,m′, C)← Gameaccountability−soundness(λ,R),

CheckValidConsensus(C) = 1,

AtLeastOneHonest(S,OGenerateKeypair) = 1] = negl(λ)

where by AOSpecialSign,OGenerateKeypair we denote the adversary A having oracle access to oracles
OGenerateKeypair as defined in section 5.2.1 and OSpecialSign (as defined below) and by
AtLeastOneHonest(S,OGenerateKeypair) we denote the predicate outputting 1 if there exists at least
one public key in S∩Qkeys|pk , where the set Qkeys was defined in the description of OGenerateKeypair ;
we also have the following game definition

Gameaccountability−soundness(λ,R) :

QD := ∅
Qkeys := ∅
ppLC ← LC .Setup(R)

pp ← Parse(ppLC)

(i, S,bit, σ,m′′,m′, C)← AOSpecialSign,OGenerateKeypair (pp)

Return (i, S,bit, σ,m′′,m′, C)

and

OSpecialSign(m, dm, pk) :

If VerifyData(m, dm) = 0 then Abort

If @ πPoP , sk s.t. ((pk , πPoP), sk) ∈ Qkeys then Abort

For every (maux , dmaux) ∈ QD s.t. epoch id(maux) = epoch id(m)

If Incompatible(maux ,m, dmaux) = 1 ∨ Incompatible(m,maux , dm) = 1 then Abort

For sk s.t. ((pk , πPoP), sk) ∈ Qkeys

QD ← QD ∪ {(m, dm)}
σ ← AS .Sign(pp, sk ,m)

Return σ

Note that as defined above, OSpecialSign has read but not write access to the state of OGenerateKeypair .
Moreover, we implicitly assume that AS .GenerateKeypair generates keys such that the private keys
do not repeat so two users will not receive the same pair of keys (or, if they do, this happens with
negligible probability). We note that, for example, for instantiation 2 this is the case.

5.3 Accountable Light Client Systems Instantiations

We motivate our light client model from 5.2 by detailing below instantiations for a light client system
that is accountable light client system. Both are compatible with proof-of-stake based blockchains
and, in particular, Polkadot.

5.3.1 Conventions and Assumptions

Before listing our light client systems’ algorithms, we make several notational conventions:

• We use boldface font for denoting vectors. Furthermore, whenever necessary to avoid confusion,
we denote by Veci(k) the k-th component of vector Veci.

• In the following, unless otherwise stated, when we useR, we mean one of the conditional relations
from the set {Rincl

ba,com ,Rincl
pa,com}.

33

• Given a valid consensus view C over i epochs, we assume there is a well-defined order on the set
PKj of public keys included in C, ∀j ∈ [i]; hence, in the following, we rename this set by pkj,
∀j ∈ [i] and interpret it as a vector. Moreover, we instantiate honestly generated keys in pkj

with keys generated using AS .GenerateKeypair as described in instantiation 2.

• We remind the reader that by Com(pk) we denote the set of two computationally binding
polynomial commitments to the polynomials obtained by interpolating the x components of
pk and, respectively, the y components of pk over a range H of size at least v + 1, where
v is some maximum number of validators that the system allows. In our instantiations for
(accountable) light client systems, we use the KZG polynomial commitments, but, as mentioned
also in section 4.4, the general results stated in this section hold for any binding polynomial
commitments with a knowledge-soundness property.

• We assume there is a fixed upper bound v on the number of validators in each epoch and we use
v in the description of our algorithms. At the same time, for compatibility with the SNARKs
that we build for relations Rincl

ba,com , Rincl
pa,com and Rincl

c,com as defined in 4.4, when specifically using
our instantiation 13 of CKSR or when proving our results in this section, we let v equal n − 1,
where n was defined in section 3.7.

• Parse and Transform denote functions performing the respective operations on the (accountable)
light client algorithms’ input in order to obtain the necessary components. Parse and Transform
may additionally depend on the (conditional) relation R under consideration. If that is the
case, we explicitly include R. In particular, Parse and Transform functions which are part of
LC .DetectMisbehaviour work only for R ∈ {Rincl

ba,com ,Rincl
pa,com}.

• The accountable light client systems use functions fx (deriving the public inputs), fthreshold
(deriving the Hamming weight), HammingWeight (deriving the Hamming weight from consensus
view elements) and fbit (deriving the bitmask corresponding to public keys that signed a given
message). Before providing these functions’ definitions, we make the convention that, whenever
used as parameters/input to these functions, bit, apk , b′ and s have the meaning and definition
provided in section 4.

fx(Com(pk),bit, s, apk ,R) =

{
(Com(pk),bit, apk) if R = Rincl

ba,com

(Com(pk),b′, apk) if R = Rincl
pa,com

HammingWeight∗(vec) = HammingWeight(vec1, . . . ,vec|vec|−1)

fthreshold(x,R) =

HammingWeight∗(bit) if R = Rincl
ba,com∑ v+1

|block|−1

j=1 HammingWeight(b′j) + HammingWeight∗(b′ v+1
|block|

) if R = Rincl
pa,com

fbit(C,m, v) = ((biti(k))vk=1|| 0, σi),

where i = epoch id(m) and ∀ k = 1, . . . , v, if there exists σ ∈ C ∧ AS .Verify(pp,pki(k),m, σ) = 1,
we set biti(k) = 1 and σi(k) = σ, otherwise, we set biti(k) = 0 and σi(k) = .

Note that for each of our relations Rincl
ba,com and Rincl

pa,com , apk and Com(pk) are public inputs

and pk is a witness. Moreover, for these relations Rincl
ba,com and Rincl

pa,com , we build an accountable
light client system.

• We make the following instantiations: genstate is the set of public keys in pk1 and their alleged
proofs of possession; LC .seed = Com(pk1).

5.3.2 The Algorithms

The setup algorithm used by the accountable light client system is:

• LC .Setup(R)

(pp, rspk , rsvk)← CKSR.Setup(v)

Return (pp, rspk , rsvk)

34

The four algorithms that are part of the accountable light client system are:

• LC .VerifyProof (pp, rsvk ,LC .seed , π,m,R)

i = epochid(m)

(Π,Σ) = Parse(π);

For j = 1, . . . , i

(xj, πSNARK ,j) = Π(j); (comj ,bitj, apkj) = Parse(xj,R)

If LC .seed 6= com1

Return rej

For j = 1, . . . , i

If j < i

mj = (j, comj+1)

Else

mj = m

thresholdj = fthreshold(xj,R)

If (CKSR.Verify(pp, rsvk , comj ,mj ,Σ(j), (πSNARK ,j, apkj),bitj) = 0) ∨ (thresholdj < t)

Return rej

Return acc

• LC .GenerateProof (pp, rspk , C,m,R)

Π = (); Σ = ()

i = epochid(m)

For j = 1, . . . , i

If j < i

mj = (j,Com(pkj+1))

Else

mj = m

(bitj, σj) = fbit(C,mj , v)

Σ(j)← AS .AggregateSignatures(pp, (σj(k))vk=1)

(πSNARK ,j , apkj)← CKSR.Prove(rspk,Com(pkj), (pkj(k))vk=1, (bitj(k))vk=1)

xj = fx(Com(pkj),bitj, s, apkj ,R)

Π(j) = (xj, πSNARK ,j)

Return (Π,Σ)

• LC .VerifyMisbehaviour(pp, i, S,bit, σ,m′′,m′, C)

apk = AS .AggregateKeys(pp, (bit(k) · pki(k))vk=1)

(bit′,) = fbit(C,m
′, v)

Compute Sm′′ = {pki(k) | bit(k) = 1, k ∈ [v]}
Compute Sm′ = {pki(k) | bit′(k) = 1, k ∈ [v]}
If (AS .Verify(pp, apk ,m′′, σ) = 1) ∧ (Sm′′ ∩ Sm′ = S) ∧ (|Sm′ | ≥ t) ∧ (|Sm′′ | ≥ t) ∧
∧ ((m ′, dm′) ∈decided C) ∧
∧ (i = epochid(m′′) = epochid(m′)) ∧ (Incompatible(m ′′,m ′, dm′) = 1)

Return acc

Else

Return rej

35

• LC .DetectMisbehaviour(pp, rsvk , π,m,C,R)

(Π,Σ) = Parse(π)

i = epochid(m)

index = i

m′′ = m

For j = 1, . . . , i

(xj, πSNARK ,j) = Π(j); (apkj , comj) = Parse(xj)

If (LC .VerifyProof (pp, rsvk ,LC .seed , π,m,R) = 1) ∧ (∃ min 2 ≤ j ≤ i, comj 6= Com(pkj))

m′′ = (j − 1, comj); m
′ = (j − 1,Com(pkj)); index = j − 1

ElseIf (LC .VerifyProof (pp, rsvk ,LC .seed , π,m,R) = 1) ∧ (∀ 2 ≤ j ≤ i, comj = Com(pkj)) ∧
∧ (∃ (aux , daux) ∈decided C) ∧ Incompatible(aux ,m′′, daux) = 1)

m′ = aux

Else Return

bit = Transform(Parse(xindex ,R),R)

Compute Sm′′ = {pkindex(k) | bit(k) = 1, k ∈ [v]}
(bit′,) = fbit(C,m

′, v)

Compute Sm′ = {pkindex(k) | bit′(k) = 1, k ∈ [v]}
Return (index , Sm′′ ∩ Sm′ ,bit,Σ(index),m′′,m′)

5.3.3 Assumptions and Security Proofs

We complete our instantiation by proving the security properties of our light client and accountable
light client systems according to definitions introduced in sections 5.2.1 and 5.2.2. However, before-
hand, we present the assumptions we use, of which there are six classes, i.e., there are assumptions
about honest validators’ behaviour (B), about consensus (C), about parameters (P), about instantia-
tion of primitives (S), about genesis state (G) and assumptions about light client integration (I).

The assumptions about honest validators’ behaviour are:

• (B.1.) An honest validator never signs a message m unless it knows some required data dm such
that VerifyData(m, dm) = 1 holds.

• (B.2.) An honest validator never signs a message m such that VerifyData(m, dm) = 1 holds if
they have previously signedm′ such that VerifyData(m′, dm′) = 1 holds and Incompatible(m,m′, dm) =
1 or Incompatible(m′,m, dm′) = 1 hold.

• (B.3.) An honest validator does not sign any message in Mi unless they have a valid consensus
view C (with Mi ⊂ C) for which their public key is in pki with pki ∈ C.

The assumptions about consensus are:

• (C.1.) The adversary interacting with honest validators should not except with negligible prob-
ability be able to produce both: (i) a valid consensus view C in which at least t′ validators in
every epoch are honest that decides some message m with dm such that VerifyData(m, dm) =
1 and (ii) a valid consensus view C′ with the same genesis state as C (in particular, with
the same pk1 ⊂ genstate) which decides some message m′ in the same epoch as m, with
Incompatible(m, dm,m

′) = 1.

• (C.2.) The adversary interacting with honest validators should not except with negligible prob-
ability be able to produce both: (i) a valid consensus view C in which at least t′ validators in
every epoch are honest and (ii) a valid consensus view C′ with the same genesis state as C (in
particular, with the same pk1 ⊂ genstate) in which there is some epoch i that C and C′ both
reach with pki 6= pk′i.

The assumptions about parameters are:

• (P.1.) 2t− v > 0

• (P.2.) t+ t′ > v

36

The assumption about instantiation of primitives is:

• (S.1.) We instantiate the aggregatable signature scheme AS such that the oracle OSign in defini-
tion 1 (in particular in the unforgeability property definition), is replaced with OSpecialSign. It
is easy to see that if AS is an aggregatable signature scheme secure according to definition 1, then
AS is also an aggregatable signature with oracle OSign replaced by OSpecialSign in definition 1.

The assumptions about genesis state are:

• (G.1.) In a valid consensus view, HistoricVerifyData checks, among others, that ∀pk ∈ pk1 ⊂
genstate, it holds that pk ∈ G1 ,inn and that the proofs of possession for each of the public keys
in pk1 pass the verification in AS .VerifyPoP .

• (G.2.) We assume that all honest full nodes and validators have access to the same genesis state
genstate even when the genesis state is generated by a potential adversary.

Before the last class of assumptions, we add two notational conventions in the form of two functions:

• NextEpochKeys(m, dm) returns ⊥ or a list of public keys; if epochid(m) = i, these keys are
supposed to be the public keys of epoch i+ 1.

• IsCommitment(m) returns 0 or 1; IsCommitment(m) = 1 iff there exists some i such that
m = (i,Com(pki+1)).

Finally, we make the following light client integration assumptions, i.e., these are assumptions that
apply to our specific light client instantiation:

• (I.1.) If m and m′ are such that epochid(m) = epochid(m′) and NextEpochKeys(m, dm) 6= ⊥ and
IsCommitment(m′) = 1 and m′ 6= (epochid(m),Com(NextEpochKeys(m, dm))) then

Incompatible(m,m′, dm) = 1.

• (I.2.) If epochid(m) = i and NextEpochKeys(m, dm) = pki+1, then ValidateData(m, dm) must
call AS .VerifyPoP(pp, pk , πPOP) for each pk ∈ pki+1 and some data πPOP ∈ dm and also check
that pk ∈ G1,inn ; if any of these checks fails, then ValidateData(m, dm) fails.

• (I.3.) An honest validator with a valid consensus view C, does not sign a message m′ with
IsCommitment(m′) = 1 unless there exists a message m decided in C and its required data dm
(i.e., ValidateData(m, dm) = 1) such that

m′ = (epochid(m),Com(NextEpochKeys(m, dm))).

• (I.4.) If HistoricVerifyData outputs 1 and there exist a message m ∈ C that has been decided
in epoch i, then for all 1 ≤ j < i, (j,Com(pkj+1)) was decided in epoch j.

• (I.5.) If HistoricVerifyData outputs 1 and a message m′ has been decided in C such that
IsCommitment(m′) = 1, then there exist m, dm ∈ C with ValidateData(m, dm) = 1, m decided
in C and epochid(m) = epochid(m′) such that

pkepochid (m)+1 = NextEpochKeys(m, dm).

We are now ready to state and prove the security properties of our (accountable) light client systems.

Theorem 22. If AS is the secure aggregatable signature scheme defined in instantiation 2 and if
CKSR is the secure committee key scheme defined in instantiation 13, then, together with the assump-
tions stated at the beginning of section 5.3.3 and for R ∈ {Rincl

ba,com ,Rincl
pa,com}, the tuple (LC .Setup,

LC .GenerateProof , LC .VerifyProof) as instantiated in section 5.3.2 is a light client system.

Proof. Perfect Completeness: Let m be a message decided in some epoch i of a valid consensus view
C. Since C is a valid consensus view, this implies HistoricVerifyData outputs 1. Adding that m has
been decided in epoch i and using assumption (I.4.), we have that for each previous epoch 1 ≤ j < i,
(j,Com(pkj+1)) was decided in epoch j; we denote this as property (∗). Since

IsCommitment(j,Com(pkj+1)) = 1, ∀j ∈ [i− 1]

holds and using assumptions (I.5.), (I.2.) and (G.1.), we conclude the proofs of possession for each
of the public keys in pkj, j ∈ [i] pass the verification AS .VerifyPoP (property (∗∗)) and, as a conse-
quence, each of the public keys in pkj, j ∈ [i] belong to G1 ,inn (property (∗ ∗ ∗)). The main fact we

37

have to show (with the notation used in the description of LC .VerifyProof), is that the following two
predicates hold:

AS .Verify(pp, apkj ,mj ,Σ(j)) = 1, ∀j ∈ [i] (1)

and
thresholdj ≥ t,∀j ∈ [i] (2).

Indeed, (1) holds due to perfect completeness for aggregation for secure signature scheme instantiation
AS which applies because: (a) for every epoch j ∈ [i], as computed by LC .GenerateProof , each of
the individual signatures aggregated into Σ(j) passes AS .Verify , (b) the aggregation Σ(j) is com-
puted correctly as per LC .GenerateProof , (c) the proofs of possession have been checked for each of
the public keys in pkj, ∀j ∈ [i] (see property (∗∗)), and, finally, (d) the aggregation of public keys
denoted by apkj , ∀ j ∈ [i], has been computed correctly as (bitj(k) ·pkj(k))vk=1 due to property (∗∗∗)
and the perfect completeness of the SNARK scheme for relation R invoked by the instantiation of
CKSR.Prove.
Moreover, due to definition of fthreshold and the fact that mj = (j,Com(pkj+1)), ∀j ∈ [i − 1] and,
respectively, mi = m have been decided in their respective epochs as per (∗), we have that (2) holds.

Finally, using (1), letting ckj = comj = Com(pkj+1), ∀ j ∈ [i] and since πSNARK ,j , apkj and ckj , ∀ j ∈
[i] are honestly computed as described by LC .GenerateProof and invoking the perfect completeness
property of the CKSR committee key scheme, we obtain that

CKSR.Verify(pp, rsvk ,Com(pkj+1),mj ,Σ(j), (πSNARK ,j , apkj),bitj) = 1,∀j ∈ [i] (3).

In turn, the fact that (2) and (3) hold with probability 1 immediately implies

LC .VerifyProof (ppLC ,LC .seed ,LC .GenerateProof (ppLC , C,m,R),m,R) = acc

with probability 1 (q.e.d.).

Soundness: We prove the proposed instantiation has soundness in Theorem 28, appendix D.

Theorem 23. If AS is the secure aggregatable signature scheme defined in instantiation 2 and if
CKSR is the secure committee key scheme defined in instantiation 13, then, together with the assump-
tions stated at the beginning of section 5.3.3 and for R ∈ {Rincl

ba,com ,Rincl
pa,com}, the tuple (LC .Setup,

LC .GenerateProof , LC .VerifyProof , LC .DetectMisbehaviour, LC .VerifyMisbehaviour) as instanti-
ated in section 5.3.2 is an accountable light client system.

Proof. Due to theorem 22, the tuple (LC .Setup, LC .GenerateProof , LC .VerifyProof , LC .DetectMisbehaviour ,
LC .VerifyMisbehaviour) as instantiated in section 5.3.2 is already a light client system. It is only left
to show that both accountability and accountability soundness also hold.
Accountability: Let A be an efficient adversary that on input ppLC and R outputs π, m and C. It is
easy to see that if the descriptions of LC .DetectMisbehaviour and LC .VerifyMisbehaviour are followed
honestly, then the predicate Sm′′ ∩ Sm′ = S checked in the end of LC .VerifyMisbehaviour is fulfilled.
Moreover, due to the satisfied predicate

LC .VerifyProof (pp, rsvk ,LC .seed , π,m,R) = 1 (1)

it holds that all mj , j ∈ [i] (as defined in LC .VerifyProof) are decided in C. Due to the way m′

and m′′ are computed by LC .DetectMisbehaviour from the messages (mj)
i
j=1, this implies |Sm′ | ≥ t,

|Sm′′ | ≥ t and (m ′, dm′) ∈decided C and

Incompatible(m ′′,m ′, dm′) = 1.

We are only left to show that

AS .Verify(pp, apk ,m′′, σ) = 1 (∗)

holds with overwhelming probability. Indeed, since (1) holds then, for every epoch j ∈ [i] it holds that

CKSR.Verify(pp, rsvk , comj ,mj ,Σ(j), (πj, apkj),bitj) = 1 (2).

38

In particular, (2) holds for j = index . Due to soundness property of the committee key scheme
CKSR, since comindex = Com(pkindex) by the definition of index and LC .DetectMisbehaviour , since
apkindex = AS .AggregateKeys(pp, (bitindex(k)·pkindex(k))vk=1) as computed by LC .DetectMisbehaviour ,
since alsom′′ = mindex (withmj , ∀j ∈ [i] defined in LC .VerifyProof and index defined in LC .DetectMisbehaviour)
and, finally, since Σ(index) = σ, as defined in LC .DetectMisbehaviour , it follows that (∗) holds with
overwhelming probability (q.e.d.).

Accountability Soundness: Let A be an efficient adversary with oracle access to OSpecialSign and
OGenerateKeypair . If LC .VerifyMisbehaviour(pp, i, S,bit, σ,m′′,m′, C) outputs acc (∗), its checks
together with completeness for aggregation imply

AS .Verify(pp, σ′,m′, apkS) = 1 (∗∗),

where

σi(j) =

{
sig if ∃ sig ∈ C,AS .Verify(pp, sig ,m′,pki(j))

otherwise

bS(j) =

{
1 if pki(j) ∈ S
0 otherwise

σ′ ← AS .AggregateSignatures(pp, (bS(j) · σi(j))
v
j=1),

apkS ← AS .AggregateKeys(pp, (bS(j) · pki(j))
v
j=1),

Additionally, since (∗) holds and for apk as defined in LC .VerifyMisbehaviour , we obtain

AS .Verify(pp, σ,m′′, apk) = 1 (∗∗′).

Since CheckValidConsensus(C) = 1 holds and m′ has been decided in epoch i of C and dm′ is the
required data associated with m′, due to assumptions (I.5.), (I.4.) and (I.2.) we have that dm′ contains
correct proofs of possession for all keys in pki (∗ ∗ ∗).
We assume by contradiction that AtLeastOneHonest(S,OGenerateKeypair) = 1 holds with more
than negligible probability. This is equivalent to assuming that ∃ pk∗ ∈ S ∩ Qkeys|pk (∗ ∗ ∗∗)
holds with more than negligible probability. Note that since the following check (which is part of
LC .VerifyMisbehaviour) passes:

Sm′′ ∩ Sm′ = S,

any pk ∈ S is aggregated into apk and also into apkS ; this includes pk∗. Since the aggregate sig-
nature instantiation AS is unforgeable (see definition 1 plus the assumption (S.1.)), due to (∗∗),
(∗∗′), (∗ ∗ ∗) and (∗ ∗ ∗∗) we have that, with more than negligible probability, both m′ and m′′

have been signed by the oracle OSpecialSign. However, this comes in contradiction with the fact that
Incompatible(m′,m′′, dm′) = 1 which is ensured as part of the checks concluding that LC .VerifyMisbehaviour
outputs acc. Hence, our assumption is false and S ∩ Qkeys|pk = ∅, so the probability defined in the
accountability soundness property is indeed negligible.

Corollary 24. In an accountable light client system, the number of misbehaving validators output by
LC .DetectMisbehaviour is |S| and |S| > 0.

Proof. Due to theorem 5.3.3, and, in particular, the accountability property, we know that given a valid
consensus view C, a verifying light client proof π for a message m′′ and given the existence in C of a
message m′ incompatible with m′′, we have that the number of validators that LC .DetectMisbehaviour
is able to catch is at least |S|. Moreover, due to the accountability soundness property of an account-
able light client system, we know that any public key output by LC .DetectMisbehaviour , e.w.n.p. ,
belongs to a misbehaving validator. Finally, using the accountability property and, in particular, since
LC .VerifyMisbehaviour accepts with overwhelming probability the output of an honest party running
LC .DetectMisbehaviour , it holds that:

|S| = |Sm′ ∩ Sm′′ | = |Sm′ |+ |Sm′′ | − |Sm′ ∪ Sm′′ | ≥ t+ t− v > 0

The last inequality holds due to assumption (P.1.) and this concludes the proof.

39

6 Implementation

We implemented and benchmarked the protocol. The implementation allows us to evaluate the perfor-
mance of our protocol and serve as prototype for future deployment. The implementation is available
at https://github.com/w3f/apk-proofs. It is written in Rust and uses the Arkworks library.

Table 1 gives the prover and verifier time for the three schemes (basic accountable, packed accountable
and counting, see Section 3) with v = n− 1 = 210 − 1, v = n− 1 = 216 − 1 and v = n− 1 = 220 − 1
signers. The benchmarks were run on commodity hardware, with an i7 ? and 16GB RAM. We remind
the reader that by v we denote the maximum number of validators in our system and that n was
defined in section 3.7.

These signer numbers are approximately the range of the number of validators that we were aim-
ing our implementation at e.g. the Kusama blockchain (https://kusama.network/) has 1000 val-
idators which is also the number that Polkadot is aiming for, and Ethereum 2 has about 348,000
validators and it has been suggested that there will be no more than 219 (make citation out of
https://ethresear.ch/t/simplified-active-validator-cap-and-rotation-proposal/9022).

At v = n − 1 = 1023, the prover can generate a proof in any scheme in well under a second, which
is short enough to generate a proof for every block in most prominent blockchain protocols. Even
for v = n − 1 = 220 − 1, the prover time is under 6.4 minutes, which is the time for an Ethereum 2
epoch, the time that validators finalise the chain. For verification time, the basic accountable scheme
is slower, considerably so for larger signer numbers.

Table 2 gives the number of operations the prover and verifier use. Table 3 gives the proof constituents
and also the total proof and input sizes in bits. The basic accountable scheme’s verifier performance
at large numbers is so slow because it includes O(n) field operations, which dominate the running
time, however at 1023 signers it gives the smallest size. The packed accountable scheme, which
includes O(n/λ) field operations, fairs better on the benchmarks, having similar verification time than
the counting scheme which has sublinear verification time, even at 220 − 1 signers. The prover is
considerably slower for the latter two schemes because it needs to do additional operations. At larger
signer sizes, the proof size for the accountable schemes is dominated by the bitfield.

Scheme v = 210 − 1 v = 216 − 1 v = 220 − 1
prover verifier prover verifier prover verifier

Basic Accountable 587.376ms 27.388ms 20.587s 36.452ms 258.417s 146.006ms
Packed Accountable 544.614ms 16.565ms 28.398s 36.908ms 398.030s 25.867ms
Counting 510.316ms 15.758ms 28.461s 26.089ms 357.939s 27.270ms

Table 1: Proof and verifier times for the different schemes and different numbers of signers

Scheme Prover operations Verifier operations
Basic Accountable 12× FFT (N) + FFT (4N) + 9ME(N) 2P + 11E +O(n)F
Packed Accountable 18× FFT (N) + FFT (4N) + 12ME(N) 2P + 16E +O(n/λ+ log(n))F
Counting 13× FFT (N) + FFT (4N) + 11ME(N) 2P + 14E +O(log(n))F

Table 2: Expensive prover and verifier operations. FFT (M) is an FFT of size M. ME(M) is a multi-
exponentiation (or multi-scalar multiplication) of size M . P is a pairing, E is a single exponentiation
(scalar multiplication) and F is a field operation.

7 Acknowledgements

We thank Handan Kilinc Alper and Dario Fiore for useful comments and feedback and for reviewing
drafts of this work.

40

https://github.com/w3f/apk-proofs
https://kusama.network/
https://ethresear.ch/t/simplified-active-validator-cap-and-rotation-proposal/9022

Scheme Proof Input Actual proof + input size in bits
v = 210 − 1 v = 216 − 1 v = 220 − 1

Basic Accountable 5G1,out + 5F 2G1,out + 1G1,inn + n bits 9088 73600 1056640
Packed Accountable 8G1,out + 8F 2G1,out + 1G1,inn + n bits 12544 77056 1060096
Counting 7G1,out + 7F 2G1,out + 1G1,inn 10368 10368 10368

Table 3: Proof and input constituents and total proof and input size for the implementation.

References

[1] J. Burdges, A. Cevallos, P. Czaban, R. Habermeier, S. Hosseini, F. Lama, H. K. Alper, X. Luo,
F. Shirazi, A. Stewart, and G. Wood, “Overview of polkadot and its design considerations,” 2020.
https://arxiv.org/abs/2005.13456.

[2] T. D. Team, “The internet computer for geeks,” 2022. https://internetcomputer.org/

whitepaper.pdf.

[3] J. Bonneau, I. Meckler, V. Rao, and E. Shapiro, “Coda: Decentralized cryptocurrency at scale.”
Cryptology ePrint Archive, Report 2020/352, 2020.

[4] cLabs Team, “The celo protocol: A multi-asset cryptographic protocol for decentralized social
payments.” https://celo.org/papers/whitepaper.

[5] E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on bft consensus,” 2018. https:

//arxiv.org/abs/1807.04938.

[6] J. Kwon and E. Buchman, “Cosmos whitepaper: A network of distributed ledgers.” https:

//v1.cosmos.network/resources/whitepaper.

[7] “Over $1 billion stolen from bridges so far in 2022 as harmony’s horizon bridge be-
comes latest victim in $100 million hack,” 2022. https://hub.elliptic.co/analysis/

over-1-billion-stolen-from-bridges-so-far-in-2022-as-harmony-s-horizon-bridge-becomes-latest-victim-in-100-million-hack/.

[8] “Nomad loses $156 million in seventh major crypto bridge ex-
ploit of 2022,” 2022. https://hub.elliptic.co/analysis/

nomad-loses-156-million-in-seventh-major-crypto-bridge-exploit-of-2022/.

[9] C. Goes, “The interblockchain communication protocol: An overview,” 2020. https://arxiv.

org/abs/2006.15918.

[10] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permutations over lagrange-bases
for oecumenical noninteractive arguments of knowledge.” Cryptology ePrint Archive, Report
2019/953, 2019. https://eprint.iacr.org/2019/953.

[11] J. Groth, “On the size of pairing-based non-interactive arguments,” in Advances in Cryptology –
EUROCRYPT 2016, pp. 305–326, 2016.

[12] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of blockchains.” Thesis, Univer-
sity of Guelph, 2016. https://atrium.lib.uoguelph.ca/xmlui/handle/10214/9769.

[13] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil pairing,” in Advances in
Cryptology — ASIACRYPT 2001, pp. 514–532, 2001.

[14] D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures for smaller blockchains,” in
Advances in Cryptology - ASIACRYPT 2018, pp. 435–464, 2018.

[15] “Minimal light client,” 2021. Commit of 14th Sept 2021, https://github.com/ethereum/

annotated-spec/blob/master/altair/sync-protocol.md.

[16] J. Groth, “Non-interactive distributed key generation and key resharing.” Cryptology ePrint
Archive, Report 2021/339, 2021. https://ia.cr/2021/339.

[17] K. Gurkan, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern, and A. Tomescu, “Aggregatable
distributed key generation.” Cryptology ePrint Archive, Paper 2021/005, 2021. https://eprint.
iacr.org/2021/005.

[18] C. Gentry, S. Halevi, and V. Lyubashevsky, “Practical non-interactive publicly verifiable secret
sharing with thousands of parties.” Cryptology ePrint Archive, Paper 2021/1397, 2021. https:

//eprint.iacr.org/2021/1397.

41

https://arxiv.org/abs/2005.13456
https://internetcomputer.org/whitepaper.pdf
https://internetcomputer.org/whitepaper.pdf
https://celo.org/papers/whitepaper
https://arxiv.org/abs/1807.04938
https://arxiv.org/abs/1807.04938
https://v1.cosmos.network/resources/whitepaper
https://v1.cosmos.network/resources/whitepaper
https://hub.elliptic.co/analysis/over-1-billion-stolen-from-bridges-so-far-in-2022-as-harmony-s-horizon-bridge-becomes-latest-victim-in-100-million-hack/
https://hub.elliptic.co/analysis/over-1-billion-stolen-from-bridges-so-far-in-2022-as-harmony-s-horizon-bridge-becomes-latest-victim-in-100-million-hack/
https://hub.elliptic.co/analysis/nomad-loses-156-million-in-seventh-major-crypto-bridge-exploit-of-2022/
https://hub.elliptic.co/analysis/nomad-loses-156-million-in-seventh-major-crypto-bridge-exploit-of-2022/
https://arxiv.org/abs/2006.15918
https://arxiv.org/abs/2006.15918
https://eprint.iacr.org/2019/953
https://atrium.lib.uoguelph.ca/xmlui/handle/10214/9769
https://github.com/ethereum/annotated-spec/blob/master/altair/sync-protocol.md
https://github.com/ethereum/annotated-spec/blob/master/altair/sync-protocol.md
https://ia.cr/2021/339
https://eprint.iacr.org/2021/005
https://eprint.iacr.org/2021/005
https://eprint.iacr.org/2021/1397
https://eprint.iacr.org/2021/1397

[19] A. Gabizon, K. Gurkan, P. Jovanovic, G. Konstantopoulos, A. Oines, M. Olszewski, M. Straka,
E. Tromer, and P. Vesely, “Plumo: Towards scalable interoperable blockchains using ultralight
validation systems.” 3rd ZKStandards Workshop, 2020. https://docs.zkproof.org/pages/

standards/accepted-workshop3/proposal-plumo_celolightclient.pdf.

[20] J. Kilian, “Uses of randomness in algorithms and protocols.” PhD Thesis, 1990. https://core.

ac.uk/download/pdf/4425126.pdf.

[21] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai, “Universally composable two-party and
multi-party secure computation,” in Proceedings of the Thiry-Fourth Annual ACM Symposium
on Theory of Computing (STOC’02), pp. 494–503, 2002.

[22] D. Benarroch, M. Campanelli, D. Fiore, J. Kim, J. Lee, H. Oh, and A. Querol, “Proposal:
Commit-and-prove zero-knowledge proof systems and extensions,” 2021. https://docs.zkproof.
org/pages/standards/accepted-workshop4/proposal-commit.pdf.

[23] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commitments to polynomials and
their applications,” in Advances in Cryptology - ASIACRYPT 2010, pp. 177–194, 2010.

[24] D. Catalano and D. Fiore, “Vector commitments and their applications,” in Public-Key Cryptog-
raphy – PKC 2013, pp. 55–72, 2013.

[25] J. Benaloh and M. de Mare, “One-way accumulators: A decentralized alternative to digital
signatures,” in Advances in Cryptology — EUROCRYPT ’93, pp. 274–285, 1994.

[26] “ZKProof Community Reference. Version 0.3. Ed. by D. Benarroch, L. Brandao, M. Maller, and
E. Tromer.,” 2022. https://docs.zkproof.org/reference.

[27] M. Campanelli, D. Fiore, and A. Querol, “Legosnark: Modular design and composition of succinct
zero-knowledge proofs,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (CCS’19), pp. 2075–2092, 2019.

[28] S. Agrawal, C. Ganesh, and P. Mohassel, “Non-interactive zero-knowledge proofs for composite
statements,” in Advances in Cryptology – CRYPTO 2018, pp. 643–673, 2018.

[29] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss, O. Ohrimenko, and B. Parno, “Hash first, argue
later: Adaptive verifiable computations on outsourced data,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security(CCS’16, pp. 1304–1316, 2016.

[30] S. Yonezawa, “Pairing-friendly curves,” 2020. https://tools.ietf.org/id/

draft-yonezawa-pairing-friendly-curves-02.html.

[31] S. Galbraith, K. Paterson, and N. Smart, “Pairings for cryptographers.” Cryptology ePrint
Archive, Report 2006/165, 2006. https://ia.cr/2006/165.

[32] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu, “Zexe: Enabling decentralized
private computation,” in 2020 IEEE Symposium on Security and Privacy (SP), pp. 947–964,
2020.

[33] Y. E. Housni and A. Guillevic, “Optimized and secure pairing-friendly elliptic curves suitable
for one layer proof composition.” Cryptology ePrint Archive, Report 2020/351, 2020. https:

//eprint.iacr.org/2020/351.pdf.

[34] T. Ristenpart and S. Yilek, “The power of proofs-of-possession: Securing multiparty signatures
against rogue-key attacks,” in Advances in Cryptology - EUROCRYPT 2007, pp. 228–245, 2007.

[35] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers, “Updatable and universal com-
mon reference strings with applications to zk-snarks,” in Advances in Cryptology – CRYPTO
2018, pp. 698–728, 2018.

[36] S. Bowe, A. Gabizon, and I. Miers, “Scalable multi-party computation for zk-snark parameters
in the random beacon model.” Cryptology ePrint Archive, Report 2017/1050, 2017. https:

//eprint.iacr.org/2017/1050.

[37] G. Fuchsbauer, E. Kiltz, and J. Loss, “The algebraic group model and its applications,” in
Advances in Cryptology – CRYPTO 2018, pp. 33–62, 2018.

[38] V. Shoup, “Lower bounds for discrete logarithms and related problems,” in Advances in Cryp-
tology — EUROCRYPT ’97, pp. 256–266, 1997.

[39] U. Maurer, “Abstract models of computation in cryptography,” in Cryptography and Coding,
pp. 1–12, 2005.

42

https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-plumo_celolightclient.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-plumo_celolightclient.pdf
https://core.ac.uk/download/pdf/4425126.pdf
https://core.ac.uk/download/pdf/4425126.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop4/proposal-commit.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop4/proposal-commit.pdf
https://docs.zkproof.org/reference
https://tools.ietf.org/id/draft-yonezawa-pairing-friendly-curves-02.html
https://tools.ietf.org/id/draft-yonezawa-pairing-friendly-curves-02.html
https://ia.cr/2006/165
https://eprint.iacr.org/2020/351.pdf
https://eprint.iacr.org/2020/351.pdf
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2017/1050

[40] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward, “Marlin: Preprocessing zksnarks
with universal and updatable srs,” in Advances in Cryptology – EUROCRYPT 2020, pp. 738–768,
2020.

[41] K. Baghery, M. Kohlweiss, J. Siim, and M. Volkhov, “Another look at extraction and ran-
domization of groth’s zk-snark.” Cryptology ePrint Archive, Report 2020/811, 2020. https:

//ia.cr/2020/811.

[42] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen, “On the existence of extractable one-way
functions,” in Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing
(STOC ’14), pp. 505–514, 2014.

[43] E. Boyle and R. Pass, “Limits of extractability assumptions with distributional auxiliary input,”
in Advances in Cryptology – ASIACRYPT 2015, pp. 236–261, 2015.

[44] M. Bellare, J. A. Garay, and T. Rabin, “Fast batch verification for modular exponentiation and
digital signatures.” Cryptology ePrint Archive, Report 1998/007, 1998. https://eprint.iacr.

org/1998/007.

[45] A. Kattis, K. Panarin, and A. Vlasov, “Redshift: Transparent snarks from list polynomial com-
mitment iops.” Cryptology ePrint Archive, Report 2019/1400, 2019. https://ia.cr/2019/1400.

[46] S. Bowe, J. Grigg, and D. Hopwood, “Recursive proof composition without a trusted setup.”
Cryptology ePrint Archive, Report 2019/1021, 2019. https://ia.cr/2019/1021.

[47] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identification and signature
problems,” in Advances in Cryptology — CRYPTO’ 86, pp. 186–194, 1987.

[48] D. Pointcheval and J. Stern, “Security proofs for signature schemes,” in Advances in Cryptology
— EUROCRYPT ’96, pp. 387–398, 1996.

[49] C. Ganesh, H. Khoshakhlagh, M. Kohlweiss, A. Nitulescu, and M. Zajac, “What makes fiat–
shamir zksnarks (updatable srs) simulation extractable?.” Cryptology ePrint Archive, Paper
2021/511, 2021. https://eprint.iacr.org/2021/511.

A Appendix A - Ranged Polynomial Protocols for Conditional NP
Relations

In the following, we keep the convention that all algorithms receive an implicit security parameter
λ. The definition below is a natural extension of the notions of polynomial protocols and polynomial
protocols for relations from section 4 of PLONK [10] to polynomial protocols over ranges for conditional
NP relations with additional refinements required by our specific use case; these refinements are
incorporated into steps 4, 5 and 6 as follows:

Definition 25. (Polynomial Protocols over Ranges for Conditional Relations) Assume three parties,
a prover Ppoly, a verifier Vpoly and a trusted party I. Let Rc be a conditional NP relation and let x
be a public input both of which have been given to Ppoly and Vpoly by an InitGen efficient algorithm.
For positive integers d, D, t, l, u, e and for set S ⊂ F, an S-ranged (d,D, t, l, u, e)-polynomial protocol
PRc for relation Rc is a multi-round protocol between Ppoly, Vpoly and I such that:

1. The protocol PRc definition includes a set of pre-processed polynomials g1(X), . . . , gl(X) ∈
F<d[X].

2. The messages of Ppoly are sent to I and are of the form f(X) for f(X) ∈ F<d[X].

If Ppoly sends a message not of this form, the protocol is aborted.

3. The messages from Vpoly to Ppoly are random coins.

4. Vpoly may perform arithmetic computations using input x and the random coins used in the
communication with Ppoly. Let (res1 , . . . , resu) be the results of those computations which Vpoly
sends to I.

5. Using vectors which are part of input x and/or other ad-hoc vectors which Vpoly deems use-
ful, Vpoly may compute interpolation polynomials s1(X), . . . , se(X) over domain S such that
s1(X), . . . , se(X) ∈ F<d[X]. Vpoly sends s1(X), . . . , se(X) to I.

43

https://ia.cr/2020/811
https://ia.cr/2020/811
https://eprint.iacr.org/1998/007
https://eprint.iacr.org/1998/007
https://ia.cr/2019/1400
https://ia.cr/2019/1021
https://eprint.iacr.org/2021/511

6. At the end of the protocol, suppose f1(X), . . . , ft(X) are the polynomials that were sent from
Ppoly to I. Vpoly may ask I if certain polynomial identities hold between

{f1(X), . . . , ft(X), g1(X), . . . , gl(X), s1(X), . . . , se(X)}

over set S (i.e., if by evaluating all the polynomials that define the identity at each of the field
elements from S we obtain a true statement). Each such identity is of the form

F (X) := G(X,h1(v1(X)), ..., hM (vM (X))) ≡ 0,

for some hi(X) ∈ {f1(X), ..., ft(X), g1(X), ..., gl(X), s1(X), . . . , se(X)},
G(X,X1, . . . , XM) ∈ F[X,X1, ..., XM], v1(X), ..., vM (X) ∈ F<d[X] such that F (X) ∈ F<D[X]
for every choice of f1(X), . . . , ft(X) made by Ppoly when following the protocol correctly. Note
that some of the coefficients in the identities above may be from the set {res1 , . . . , resu}.

7. After receiving the answers from I regarding the polynomial identities, Vpoly outputs acc if all
identities hold over set S, and outputs rej otherwise.

Additionally, the following properties hold:

Perfect Completeness: If Ppoly follows the protocol correctly and uses a witness ω with (x, ω) ∈ Rc,
Vpoly accepts with probability one.
Knowledge Soundness: There exists an efficient algorithm E, that given access to the messages of
Ppoly to I it outputs ω such that, for any strategy of Ppoly, the probability of Vpoly outputting acc at
the end of the protocol and, simultaneously, (x, ω) ∈ Rc is overwhelming in λ.

Our definition for polynomial protocols over ranges does not include a zero-knowledge property as it
is not required in our current work.

Given the definition for polynomial protocols over ranges for conditional relations as detailed above,
we are now ready to state the following result. The proof follows with only minor changes from that
of lemmas 4.5. and 4.7. from [10].

Lemma 26. (Compilation of Ranged Polynomial Protocols for Conditional NP Relations into Hybrid
Model SNARKs using PLONK) Let PRc be a public coin S-ranged (d,D, t, l, u, e)-polynomial protocol
for relation Rc where only one identity is checked by Vpoly and predicate c from the definition of Rc
needs to be fulfilled only by a part x1 of the public input of the relation Rc. Then one can construct
a hybrid model SNARK protocol P∗Rc for relation PRc with SNARK .PartInput as defined below and
with P∗Rc secure in the AGM under the 2d-DLOG assumption8 such that:

1. The prover P in P∗Rc requires e(PRc) G1 ,out -exponentiations where e(PRc) is define analo-
gously as in PLONK (see preamble of section 4.2.), however it additionally takes into account
polynomials s1(X), . . . , se(X).

2. The total prover communication consists of t+ t∗(PRc) + 1 G1 ,out -elements and M F-elements,
where t∗(PRc) is defined identically as in PLONK (see preamble of section 4.2.).

3. The verifier V in P∗Rc requires t + t∗(PRc) + 1 G1 ,out -exponentiations, two pairings and one
evaluation of the polynomial G, and, additionally, the verifier in P∗Rc computes e polynomial
commitments to polynomials in the set {s1(X), . . . , se(X)}.

4. The algorithm for computing partial inputs is defined as

SNARK .PartInput(srs, state1 ⊇ x1,Rc)
If c(x1) = 0

Return

Else

Return(state1 , x1)

8Definition 2.1. in PLONK [10] formally describes the 2d-DLOG assumption.

44

B Appendix B - Rolled out Protocol Ph
pa for Conditional NP Relation

Rincl
pa,com

We give below the full rolled-out hybrid model protocol Ph
pa for conditional NP relation Rincl

pa,com .
This is obtained by applying our two-steps compiler from section 4.4 to polynomial protocol Ppa. In
order to obtain the non-interactive version (i.e., the N from SNARK) we have additionally applied
the Fiat-Shamir transform. In the following, by transcript at a certain point in time we denote the
concatenation of the global constant, verification key, trusted public input, other public input and the
proof elements created by the prover up to that point in time. H is a hash function, H : {0, 1} → F
and it emulates the random oracle. In the following, ⊕ is the addition operation on Einn in affine
coordinates. Note that in our implementation we instantiate Einn with BLS12-377 [32] and Eout with
BW6-761 [33], while we choose block to be 256 as this is the largest power of 2 smaller than the size of a
field element in F (i.e., the base field for BLS12-377 which is the same as the scalar field of BW6-761).
Finally, n has been defined as per section 3.7, i.e., n is a large enough power of 2; moreover, we let
v = n−1 and we let N = n. This, in turn, ensures that N has been chosen according to the properties
stated in instantiation 2, in particular when defining AS .Setup.

Public Parameters:
(G1 ,inn , g1 ,inn ,G2 ,inn , g2 ,inn ,GT ,inn , einn ,Hinn ,HPoP) ⊂ pp ← AS .Setup(auxAS = n)

Global constant: h ∈ Einn \G1 ,inn

Trusted Setup: srs ← SNARK .Setup(auxSNARK = (n, 3n− 3)),
where srs = ([1]1 ,out , [τ]1 ,out , [τ

2]1 ,out , . . . , [τ
3n−3]1 ,out , [1]2 ,out , [τ]2 ,out)

Proving and Verifying Key Generation: (srspk , srsvk)← SNARK .KeyGen(srs,Rincl
pa,com),

where (srspk , srsvk) = (([1]1 ,out , [τ]1 ,out , [τ
2]1 ,out , . . . , [τ

3n−3]1 ,out), ([1]1 ,out , [1]2 ,out , [τ]2 ,out))

Partial Input: (x1, state2)← SNARK .PartInput(srs, state1 ⊇ (pk0 , . . . , pkn−2),Rincl
pa,com),

where if (pk0 , . . . , pkn−2)) /∈ Gn−1
1 ,inn , SNARK .PartInput(srs, state1 ,Rincl

pa,com) outputs the empty string,
otherwise SNARK .PartInput outputs x1 = ([pkx]1 ,out , [pky]1 ,out) and state2 = state1 ∪ {x1}, where
∀i ∈ {0, . . . , n − 2}, pki as an element of the curve Einn has the affine representation (pkxi , pkyi).
The polynomials pkx(X) and pky(X) are computed as pkx(X) =

∑n−2
i=0 pkxi · Li(X) and pky(X) =∑n−2

i=0 pkyi · Li(X) and finally, the polynomial commitments are computed as [pkx]1 ,out = pkx(τ) ·
[1]1 ,out and [pky]1 ,out = pky(τ) · [1]1 ,out .

Public input: x1 = ([pkx]1 ,out , [pky]1 ,out), x2 = ((b′0 , . . . , b
′
n

block
−1), apk)

Witness: w = ((pk0 , . . . , pkn−2), (bit0, . . . , bitn−1))

Prover’s Algorithm: π ← SNARK .Prove(srspk , ((x1, x2), w),Rincl
pa,com), where

Step 1:
Compute the affine representation h = (hx, hy) and apk ⊕ h = ((apk ⊕ h)x, (apk ⊕ h)y).

Compute pkx = (pkx0 , . . . , pkxn−2) and pky = (pky0 , . . . , pkyn−2) s. t. ∀i ∈ {0, . . . , n− 2}, pki as an
element of the curve Einn has the affine representation (pkxi , pkyi).

Let (kaccx0, kaccy0) = (hx, hy) and compute (kaccxi+1, kaccyi+1) = (kaccxi, kaccyi)⊕biti(pkxi, pkyi),
∀i < n− 1.

Compute polynomials

b(X) =

n−1∑
i=0

biti · Li(X),

45

kaccx(X) =

n−1∑
i=0

kaccxi · Li(X),

kaccy(X) =

n−1∑
i=0

kaccyi · Li(X),

pkx(X) =

n−2∑
i=0

pkxi · Li(X),

pky(X) =

n−2∑
i=0

pkyi · Li(X).

Compute [b]1 ,out = b(τ) · [1]1 ,out , [kaccx]1 ,out = kaccx(τ) · [1]1 ,out , [kaccy]1 ,out = kaccy(τ) · [1]1 ,out .

The first output of the prover is ([b]1 ,out , [kaccx]1 ,out , [kaccy]1 ,out).

Step 2:
Compute the sum challenge r = H(transcript).

Compute sum =
∑ n

block
−1

j=0 b′jr
j .

Compute: r
2block−1 , r

n
block .

Compute polynomials

c(X) =

n−1∑
i=0

ci · Li(X),

where ci = 2i mod block · ri÷block, 0 ≤ i ≤ n− 1.

acc(X) =

n−1∑
i=0

acci · Li(X),

where acc0 = 0 and acci =
∑i−1
j=0 bitj · cj , 0 < i ≤ n− 1.

aux(X) =

n−1∑
i=0

auxi · Li(X),

where auxi = 1 if i is divisible with block and auxi = 0 otherwise, ∀i < n

Compute [c]1 ,out = c(τ) · [1]1 ,out , [acc]1 ,out = acc(τ) · [1]1 ,out .

The second output of the prover is ([c]1 ,out , [acc]1 ,out).

Step 3:
Compute the quotient challenge α = H(transcript).

46

Compute the polynomial t(X) of degree at most 3 · n− 3 where

t(X)(Xn − 1) =

(X − ωn−1) · [b(X) · ((kaccx(X)− pkx(X))2 · (kaccx(X) + pkx(X) + kaccx(ω ·X))− (pky(X)− kaccy(X))2)+

+ (1− b(X)) · (kaccy(ω ·X)− kaccy(X))]+

+ α(X − ωn−1) · [b(X) · ((kaccx(X)− pkx(X)) · (kaccy(ω ·X) + kaccy(X))− (pky(X)− kaccy(X))·
· (kaccx(ω ·X)− kaccx(X))) + (1− b(X)) · (kaccx(ω ·X)− kaccx(X))]+

+ α2 · [b(X) · (1− b(X))]+

+ α3 · [c(ω ·X)− c(X) · (2 + (
r

2block−1
− 2) · aux(ω ·X))− (1− r

n
block) · Ln−1(X)]+

+ α4 · [(kaccx(X)− hx) · L0(X) + (kaccx(X)− (h+ apk)x) · Ln−1(X)]+

+ α5 · [(kaccy(X)− hy) · L0(X) + (kaccy(X)− (h+ apk)y) · Ln−1(X)]+

+ α6 · [acc(ω ·X)− acc(X)− b(X) · c(X) + sum · Ln−1(X)] .

Compute [t]1 ,out = t(τ) · [1]1 ,out .

The third output of the prover is [t]1 ,out .

Step 4:
Compute evaluation challenge ζ = H(transcript).

Compute evaluations: pkx = pkx(ζ), pky = pky(ζ), b = b(ζ), kaccx = kaccx(ζ), kaccy = kaccy(ζ),
c = c(ζ), acc = acc(ζ), t = t(ζ).

Compute linearisation polynomial:

r(X) = (ζ − ωn−1)·[b̄ · (kaccx− pkx)2 · kaccx(X) + (1− b̄) · kaccy(X)]+

+ α · (ζ − ωn−1) · [b̄ · ((kaccx− pkx) · kaccy(X)− (pky − kaccy) · kaccx(X)) + (1− b̄) · kaccx(X)]+

+ α3 · c(X)+

+ α6 · acc(X).

Compute evaluation of linearisation polynomial rω = r(ω · ζ).

The fourth output of the prover is (pkx, pky, b, kaccx, kaccy, c, acc, rω).

Step 5:
Compute opening challenge ν = H(transcript).

Compute first opening proof polynomial

Wζ(X) =
1

X − ζ (t(X)− t̄+

+ ν(pkx(X)− pkx)+

+ ν2(·pky(X)− pky)+

+ ν3(b(X)− b̄)+

+ ν4(kaccx(X)− kaccx)+

+ ν5(kaccy(X)− kaccy)+

+ ν6(c(X)− c̄)+

+ ν7(acc(X)− acc))

and second opening proof polynomial

47

Wζ·ω(X) =
1

X − ζ · ω (r(X)− rω).

Compute [Wζ]1 ,out = Wζ(τ) · [1]1 ,out and [Wζ·ω]1 ,out = Wζ·ω(τ) · [1]1 ,out .

The fifth output of the prover is ([Wζ]1 ,out , [Wζ·ω]1 ,out).

Compute the multipoint evaluation challenge u = H(transcript).

Return π = ([b]1 ,out , [kaccx]1 ,out , [kaccy]1 ,out , [c]1 ,out , [acc]1 ,out , [t]1 ,out , [Wζ]1 ,out , [Wζ·ω]1 ,out , pkx,
pky, b, kaccx, kaccy, c, acc, rω)

Verifier’s Algorithm: 0/1← SNARK .Verify(srsvk , (x1, x2), π,Rincl
pa,com), where

Step 1:
Compute the affine representation h = (hx, hy) and apk ⊕ h = ((apk ⊕ h)x, (apk ⊕ h)y).

Step 2:
Validate proof elements ([b]1 ,out , [kaccx]1 ,out , [kaccy]1 ,out , [c]1 ,out , [acc]1 ,out , [t]1 ,out , [Wζ]1 ,out , [Wζ·ω]1 ,out)
∈ G8

1 ,out .

Step 3:
Validate proof elements (pkx, pky, b, kaccx, kaccy, c, acc, rω) ∈ F8.

Step 4:
Compute challenges (r, α, ζ, ν, u) as in the prover P SNARK

pa,com description from the common input, trusted
public input, public input and respective necessary parts of the transcript using elements of πpa .

Step 5:

Compute: sum =
∑ n

block
−1

j=0 b′jr
j .

Compute: r
2block−1 , r

n
block .

Step 6:
Compute polynomial evaluations ζn − 1 and auxω = aux(ω · ζ)9 and Lagrange basis polynomials

L0(ζ) = ζn−1
n·(ζ−1)

and Ln−1(ζ) = (ζn−1)·ωn−1

n·(ζ−ωn−1)
.

Step 710:
Compute quotient polynomial evaluation

t̄ =
rω + [b̄((kaccx− pkx)2 · (kaccx+ pkx)− (pky − kaccy)2)− (1− b̄) · kaccy] · (ζ − ωn−1)

ζn − 1
+

+
α · [b̄ · ((kaccx− pkx) · kaccy + (pky − kaccy) · kaccx)− (1− b̄) · kaccx] · (ζ − ωn−1)

ζn − 1
+

+
α2 · b̄ · (1− b̄)

ζn − 1
+

−α
3 · [(1− r

n
block) · Ln−1(ζ)]

ζn − 1
− α3 · c̄ · (2 + (

r

2block−1
− 2)) · auxω+

9We have aux(ω · ζ) = 1 if (ω · ζ)
n

block = 1 and aux(ω · ζ) = 1
block

· ζn−1

(ω·ζ)
n

block−1
otherwise.

10This step can be optimised in obvious ways in order to reduce the number of field operations necessary to compute t̄.
We choose to include the non-compact formula in this write-up such that the reader is able to follow the linearisation process
to a larger extent than via a more compact formula.

48

+
α4 · [(kaccx− hx) · L0(ζ) + (kaccx− (h+ apk)x) · Ln−1(ζ)]

ζn − 1
+

+
α5 · [(kaccy − hy) · L0(ζ) + (kaccy − (h+ apk)y) · Ln−1(ζ)]

ζn − 1
+

+
α6 · [−acc− b̄ · c̄+ sum · Ln−1(ζ)]

ζn − 1
.

Step 8:
Compute full batched polynomial commitment [F]1 ,out .

[F]1 ,out =[t]1 ,out + ν · [pkx]1 ,out + ν2 · [pky]1 ,out + ν3 · [b]1 ,out +

+ (u · (ζ − ωn−1) · (b̄ · ((kaccx− pkx)2 + α · (pky − kaccy)) + α · (1− b̄)) + ν4) · [kaccx]1 ,out +

+ (u · (ζ − ωn−1)(α · b̄(kaccx− pkx) + (1− b̄)) + ν5) · [kaccy]1 ,out +

+ (u · α3 + ν6) · [c]1 ,out +

+ (u · α6 + ν7) · [acc]1 ,out .

Step 9:
Compute group-encoded batch evaluation [E]1 ,out

[E]1 ,out = (t̄+ ν · pkx+ ν2 · pky + ν3 · b̄+ ν4 · kaccx+ ν5 · kaccy + ν6 · c̄+ ν7 · acc+ u · rw) · [1]1 ,out

Step 10:
Batch validate all evaluations by checking that the following holds

eout([Wζ]1 ,out+u·[Wζ·ω]1 ,out , [τ]2 ,out) = eout(ζ·[Wζ]1 ,out+u·ζ·ω·[Wζ·ω]1 ,out+[F]1 ,out−[E]1 ,out , [1]2 ,out).

C Appendix C - Postponed Security Proof for Committee Key Scheme
Instantiation

Theorem 27. Given the hybrid model SNARK scheme secure for relation R ∈ {Rincl
ba,com ,Rincl

pa,com}
as obtained using our two-step compiler in section 4.4 and the aggregatable signature scheme AS as
per instantiation 2 (which fulfils definition 1), with the additional specification that auxAS = v + 1
and choosing v = n − 1, if we assume that an efficient adversary (against soundness of) CKSR
outputs public keys only from the source group G1 ,inn , then the committee key scheme CKSR as per
instantiation 13 is secure with respect to definition 3.

Proof. We prove below the statement only for Rincl
ba,com . The statement can be proven analogously for

Rincl
pa,com .

In order to prove perfect completeness for CKSR instantiation 13 using a hybrid model SNARK
secure for relation Rincl

ba,com , we note that if AS .Verify(pp, apk ,m, asig) = 1 holds, then due to the
instantiation for CKSRincl

ba,com
.Verify , we have that

CKSRincl
ba,com

.Verify(pp, rsvk , ck ,m, asig , (πSNARK , apk), (biti)
n−1
i=1) = 1

iff, in turn,

SNARK .Verify(rsvk , (ck , (biti)
n−1
i=1 ||0, apk), πSNARK ,Rincl

ba,com) = 1 (1)

holds. Using the fact that the keys srs and (rspk , rsvk) for our hybrid model SNARK were gener-
ated correctly using SNARK .Setup(v, 3v) and respectively SNARK .KeyGen(srs,Rincl

ba,com), also since
(pki)

n−1
i=1 ∈ Gn−1

1 ,inn as honestly generated by AS .GenerateKeypair , then

(x = (ck , (biti)
n−1
i=1 ||0, apk), w = (pk i)

n−1
i=1) ∈ Rincl

ba,com

49

(because apk =
∑n−1
i=1 biti ·pki due to instantiation 2 and ck was honestly generated as Com((pki)

n−1
i=1)

as a pair of binding polynomial commitments to the x and y coordinates of the keys in w, respectively)
and, finally, adding that the proof πSNARK was generated correctly as

πSNARK ← SNARK .Prove(rspk , (x,w),Rincl
ba,com),

then, by the perfect completeness property of the hybrid model SNARK for relation Rincl
ba,com , we can

conclude (1).

The proof for the soundness property is described below. LetA be an efficient adversary that, whenever
it outputs a vector of public keys (pki)

n−1
i=1 , the respective vector belongs to the set Gn−1

1 ,inn . Assuming
that the following holds

CKSRincl
ba,com

.Verify(pp, rsvk , ck ,m, asig , π = (πSNARK , apk ′), (biti)
n−1
i=1) = 1,

then, according to instantiation for CKSRincl
ba,com

, it implies that both

AS .Verify(pp, apk ′,m, asig) = 1 (2)

and
SNARK .Verify(rsvk , (ck , (biti)

n−1
i=1 ||0, apk ′), πSNARK ,Rincl

ba,com) = 1 (3)

hold where apk ′ was parsed from π. Since ck was generated correctly as the pair of binding polynomial
commitments Com((pki)

n−1)
i=1 using the vector (pki)

n−1
i=1 output by the adversary A (which, as per

adversary definition, belongs to Gn−1
1 ,inn) and due to the knowledge soundness property of the SNARK

scheme secure for relation Rincl
ba,com , the knowledge soundness and the computational binding property

of the polynomial commitment scheme (since for our CKSR instantiation we use the KZG commitment
scheme), it implies that, with overwhelming probability (x = (ck , (biti)

n−1
i=1 , apk ′), w = (pk i)

n−1
i=1) ∈

Rincl
ba,com . From this, in turn, by the definition of relation Rincl

ba,com , we obtain that apk ′ =
∑n−1
i=1 biti ·pki .

Moreover, by the instantiation of aggregatable signature scheme AS , we have that
∑n−1
i=1 biti · pki =

AS .AggregateKeys(pp, (pki)i:biti=1) and, as per soundness challenge definition, it holds that apk ←
AS .AggregateKeys(pp, (pki)i:biti=1). Hence apk ′ = apk . Finally, due to (2), we conclude that

AS .Verify(pp, apk ,m, asig) = 1

holds with overwhelming probability (q.e.d.).

D Appendix D - Postponed Security Proof for Light Client Soundness

In this appendix we prove the following theorem:

Theorem 28. If AS is the secure aggregatable signature scheme defined in instantiation 2 and if
CKSR is the secure committee key scheme defined in instantiation 13, then, together with the assump-
tions stated at the beginning of section 5.3.3 and for R ∈ {Rincl

ba,com ,Rincl
pa,com}, the tuple (LC .Setup,

LC .GenerateProof , LC .VerifyProof) as instantiated in section 5.3.2 has soundness as formalised in
definition 19.

In order to do that, we first state and prove the following:

Proposition 29. Given an efficient adversary A as defined in the soundness game (definition 19)
and let (π,m,C) be its corresponding output. Let i = epoch id(m). Assuming that

LC .VerifyProof (ppLC ,LC .seed ,m,R) = acc

and CheckValidConsensus(C) = 1 and HonestThreshold(t′,OGenerateKeypair , C) = 1 (i.e., the light
client proof π is accepted, C is a valid consensus view as per definition 17 and for each epoch k in C,
PKk contains at least t′ honest validators), then:

• Statement A(j): for j < i, assuming further that comj = Com(pkj), then there exists some
honest validator whose key is in pkj such that it signed mj = (j,Com(pkj+1)), except with
negligible probability.

50

• Statement B(j): For j < i, if an honest validator whose key is in pkj signed mj with epochid(mj) =
j and IsCommitment(mj) = 1 then mj = (j,Com(pkj+1)).

Proof. (Proposition) We prove the proposition above by induction. Moreover, we prove the proposi-
tion only for R = Rincl

ba,com . The proposition can be proven analogously for R = Rincl
pa,com . Proving the

base case, namely that A(1) holds under the assumption G.1. and proving that A(j) holds if B(j− 1)
holds follows a very similar proof structure hence we give complete details only for the latter and add
only the differences for the former. We complete the induction step by proving that if A(j) holds then
B(j) holds.

First proof of the induction step: Assume that statement B(j− 1) holds. We have to prove that A(j)
holds. Due to the assumption that the light client proof π is accepted and due to the definition of step
j in algorithm LC .VerifyProof , we have that properties (1) and (2) as described below hold, except
with negligible probability, where

(CKSR.Verify(pp, rsvk , comj ,mj ,Σ(j), (πSNARK ,j, apkj),bitj) = 1) (1)

and
(thresholdj ≥ t) (2)

Due to instantiation 13, (1), in turn, is equivalent to properties (3) and (4) holding, except with
negligible probability, where:

AS .Verify(pp, apkj ,mj ,Σ(j)) = 1 (3)

and
SNARK .Verify(rsvk , (comj ,bitj||0, apk), πSNARK ,R) = 1 (4)

By the knowledge soundness property of the hybrid model SNARK for relation R and algorithm
SNARK .PartInputs defined in section 4.4 (where c(pkj) = incl(pkj) = 1 iff pkj ∈ Gn−1

1 ,inn holds) and

since (4) holds and since pkj ∈ Gn−1
1 ,inn holds as a consequence of the fact that the proofs of possession for

each of the public keys in pkj pass the verification in AS .VerifyPoP (which, in turn, holds since B(j−1)
holds plus due to integration assumptions I.1.- I.3. and the definition of IsCommitment), it means that,
extractor E (as described in definition 3.5) can extract w such that (xj = (comj ,bitj||0, apkj), w =
pk′) ∈ R, except with negligible probability. In particular, this means apkj =

∑n−1
k=1 bitj(k) · pk′(k)

and Com(pk′) = comj . By the computational binding of the KZG commitment used in defining comj

and by the fact that comj = Com(pkj) by assumption (i), we obtain that pk′ = pkj, hence

apkj =

n−1∑
k=1

bitj(k) · pkj(k) (5)

which, in turn, by the definition of aggregatable signature scheme instantiation AS 2 is equivalent to

apkj = AS .AggregateKeys(pp, (pkj(k))n−1
k=1) (6)

Next, we look at (2) which is equivalent to HammingWeight∗(bitj) ≥ t (7); (7) together with the fact
that there are at least t′ honest validators in pk (implied by HonestThreshold(t′,OGenerateKeypair , C) =
1) and the assumption P.2. that t + t′ ≥ v = n − 1, we obtain that there exists at least an honest
validator in pkj whose public key is aggregated into apkj . We denote this as property (8).

Finally, it is clear that due to (3), (6), (8) and since the proofs of possession for each of the public
keys in pkj pass the verification in AS.VerifyPoP (in turn, since B(j−1) holds and due to integration
assumptions I.1.- I.3. and the definition of IsCommitment), the statement A(j) becomes equivalent to
showing that the advantage Advmultiforge

Asound
(λ) in the following game is negligible (9), where, in general,

Advmultiforge
A (λ) = Pr [Gamemultiforge

A (λ) = 1]

51

and

Gamemultiforge
A (λ) :

pp ← AS .Setup(auxAS)

((pk∗k, π
∗
k,PoP), sk∗k)t

′
k=1 ← AS .GenerateKeypair(pp)

Q← ∅

((pkk , πk,PoP)uk=1,m, asig)← AOMSign(pp, (pk∗k , π
∗
k,PoP)t

′
k=1)

If ∃ k ∈ [t′], pk∗k /∈ {pki}ui=1 ∨ (m, pk∗k) ∈ Q, then return 0

For i ∈ [u]

If AS .VerifyPoP(pp, pki , πPoP,i) = 0 return 0

apk ← AS .AggregateKeys(pp, (pki)
u
i=1)

Return AS .Verify(pp, apk ,m, asig)

and

OMSign(mk, pk∗) :

If pk∗ ∈ Qkeys|pk

σj ← AS .Sign(pp, sk∗,mk)

Q← Q ∪ {(mk, pk∗)}
return σk

Else

return

and Asound is defined such that asig = Σ(j), m = mj , apk = apkj and the public keys output by
Asound are the non-zero public keys from the vector (bitj(k) · pkj(k))n−1

k=1 .

We prove statement (9) by contradiction: if we assume the advantage Advmultiforge
Asound

(λ) is non-negligible,

then, using a standard hybrid argument and reducing the game Gamemultiforge
A (λ) to the game Game forge

A (λ)
as per definition 1, the advantage Adv forge

Asound
(λ) is also non-negligible; however, this, in turn, contra-

dicts the fact that the instantiation AS is an unforgeable aggregatable signature scheme, hence our
proof for A(j) is complete.

Observation: In the case of the proof for A(1), the only difference is that the proofs of possession
for each of the public keys in pk1 pass the verification in AS .VerifyPoP by assumption G.1. By the
definition of aggregatable signature scheme AS , as the consequence, pk1 ∈ Gn−1

1 ,inn .

Second proof of the induction step: Assume that statement A(j) holds. Assume by contradiction
that B(j) does not hold, i.e., an honest validator HVal whose key is in pkj signed mj such that
IsCommitment(mj) = 1 and mj 6= (j,Com(pkj+1)) (we call this property (10)),
Due to assumption I.3, HVal does not sign mj unless HVal has a valid consensus view C′ deciding a
message m′ with required data dm′ and mj = (j,Com(NextEpochKeys(m′, dm′)) (we call this property
(11)). By (10) and (11) and the fact that the commitment scheme used to compute Com(·) is binding,
we obtain:

NextEpochKeys(m′, rm′) 6= pkj+1 (12).

By assumptions I.3. and I.4, there exists in epoch j of valid consensus view C some decided message m′j
with epoch id(m′j) = j and m′j = Com(pkj+1). Then, by assumption I.1, m′j and m′ are incompatible.
This, in turn, contradicts assumption C.1. combined with assumption G.2. since C and C′ decided
in epoch j messages m′j and m′, respectively. Hence our initial assumption is false and B(j) is proven
to hold.

Proof. (Theorem) Given an efficient adversary A as defined in the soundness game (definition 19) and
let (π,m,C) be its corresponding output. Let i = epoch id(m). Assuming that

LC .VerifyProof (ppLC ,LC .seed ,m,R) = acc

52

and CheckValidConsensus(C) = 1 and HonestThreshold(t′,OGenerateKeypair , C) = 1, then, using
proposition 29, we obtain that statement B(i−1) holds. Then, letting mi = m and with an analogous
reasoning used for proving the induction step, namely that A(j) holds when B(j) holds (please see
proof above) we are able to conclude that m was signed by an honest validator only with negligible
probability (q.e.d).

53

	Introduction
	Our Solution
	Sketch of Committee Key Scheme
	Light Client Verifier Using Our Committee Key Scheme
	Our Custom SNARKs
	Technical Challenges and Contributions Regarding our Custom SNARKs

	Related work
	Naive Approaches and Their Use in Blockchains
	Using SNARKs to Roll up Consensus
	Commit-and-Prove and Related Approaches

	Preliminaries
	Pairings
	Secure Signature Aggregation
	An Aggregatable Signature Instantiation

	Committee Key Scheme for Aggregatable Signatures
	Conditional NP Relations
	SNARKs
	Ranged Polynomial Protocols and Polynomial Commitments
	Lagrange Bases

	Custom SNARKs for Public Keys Aggregation Proofs
	Basic Accountable Ranged Polynomial Protocol
	Packed Accountable Ranged Polynomial Protocol
	Counting Ranged Polynomial Protocol
	Two-Steps PLONK-Based Compiler for Hybrid Model SNARKs with Mixed Inputs
	Comparison between PLONK and our SNARKs
	An Instantiation for Committee Key Scheme for Aggregatable Signatures

	An Accountable Light Client System
	Informal Model and context
	Informal Security properties
	Consensus system model
	Network Model

	A Formal Model for Consensus-based Accountable Light Client Design
	General light client properties
	Accountable Light Client Properties

	Accountable Light Client Systems Instantiations
	Conventions and Assumptions
	The Algorithms
	Assumptions and Security Proofs

	Implementation
	Acknowledgements
	References
	Appendix A - Ranged Polynomial Protocols for Conditional NP Relations
	Appendix B - Rolled out Protocol Ppah for Conditional NP Relation Rinclpa,com
	Appendix C - Postponed Security Proof for Committee Key Scheme Instantiation
	Appendix D - Postponed Security Proof for Light Client Soundness

