
A preliminary version of this paper appears in the proceedings of the 28th International Conference on the Theory
and Application of Cryptology and Information Security (ASIACRYPT 2022). This is the full version.

Puncturable Key Wrapping and Its Applications

Matilda Backendal , Felix Günther , and Kenneth G. Paterson

Department of Computer Science, ETH Zurich, Zurich, Switzerland
{mbackendal,kenny.paterson}@inf.ethz.ch, mail@felixguenther.info

September 13, 2022

Abstract

We introduce puncturable key wrapping (PKW), a new cryptographic primitive that supports fine-
grained forward security properties in symmetric key hierarchies. We develop syntax and security
definitions, along with provably secure constructions for PKW from simpler components (AEAD
schemes and puncturable PRFs). We show how PKW can be applied in two distinct scenarios.
First, we show how to use PKW to achieve forward security for TLS 1.3 0-RTT session resumption,
even when the server’s long-term key for generating session tickets gets compromised. This extends
and corrects a recent work of Aviram, Gellert, and Jager (Journal of Cryptology, 2021). Second, we
show how to use PKW to build a protected file storage system with file shredding, wherein a client
can outsource encrypted files to a potentially malicious or corrupted cloud server whilst achieving
strong forward-security guarantees, relying only on local key updates.

1

https://orcid.org/0000-0002-8677-8301
https://orcid.org/0000-0002-8495-6610
https://orcid.org/0000-0002-5145-4489

Contents

1 Introduction 3
1.1 Our Contributions . 3
1.2 Further Related Work . 6

2 Preliminaries 7
2.1 Notation and Conventions . 7
2.2 AEAD . 8

3 Puncturable PRFs 8
3.1 PPRF Security and Relations . 10

4 Puncturable Key Wrapping 11
4.1 PKW Security . 12
4.2 Instantiating PKW from PPRF and AEAD . 15

5 TLS Ticketing 19
5.1 Integration into the TLS 1.3 Handshake . 21
5.2 Security Model . 22
5.3 Security Proof . 22

6 Protected File Storage 25
6.1 PFS Syntax . 25
6.2 Confidentiality and Integrity of PFS . 26
6.3 Instantiating PFS from PKW and AEAD . 28

7 Discussion and Future Work 31

A PPRF Relations 35

B PKW Relations 36

C All-in-One Notions for PKW 39

D TLS Session Resumption: A Formal Violation of Integrity 41

E PFS Instantiation Proofs 43
E.1 Proof of Theorem 7: PFS[PKW,AEAD] is find$-rcpa, via PKW find$-1cpa 43
E.2 Proof of Theorem 8: PFS[PKW,AEAD] is find$-rcpa, via PKW find$-rcpa 46
E.3 Proof of Theorem 9: PFS[PKW,AEAD] is int-ctxt . 48

2

1 Introduction

Key wrapping. Key encryption, or key wrapping, is a mechanism often deployed to build symmetric
key hierarchies: systems in which the confidentiality and integrity of multiple cryptographic keys are
protected by a single (master wrapping) key. The wrapped keys may in turn be used to secure data
at a more fine-grained level, e.g., at the level of individual files, messages, or financial transactions.
This hierarchical approach eases key management: it allows strong but more expensive protection to be
applied to a small number of wrapping keys while limiting the security impact if individual wrapped
keys are exposed. Key wrapping is widely used in practice; specific schemes have been standardized by
NIST in [27]. Formal foundations for key wrapping were established in [51].

As a pertinent example, when using the pre-shared key (PSK) mode of TLS 1.3 [49] for session re-
sumption, new sessions between client and server are protected by independent, symmetric keys (denoted
PSK) established in an earlier session. To reduce storage overhead, servers often use a long-term sym-
metric encryption key to wrap PSKs into so-called tickets. These tickets are sent to the client, thereby
outsourcing the PSK storage from the server to the client.

Another example of key hierarchies is found in cloud storage systems, where service providers encrypt
data before storing it on their servers—so called encryption at rest. The encryption is done to meet
customer demand and regulatory requirements. To ensure good key-hygiene, best practices stipulate
that separate encryption keys be used for separate files (or even parts of large files). To this end, cloud
storage providers use a new data encryption key (DEK) to encrypt each (part of a) file. The DEK is then
wrapped using a key encryption key (KEK) and stored together with the encrypted file. Here, using a
key hierarchy also allows for a form of key rotation, a process in which a key is replaced by a fresh one,
and the encrypted data is updated to be secured under the new key. The technique used by all four of
Amazon Web Services [4], Google Cloud [34], IBM Cloud [38] and Microsoft Azure [46] is to rotate only
the KEK rather than all of the DEKs. This limits the amount of data that needs to be re-encrypted
under the new KEK to just the DEKs that were wrapped under the original KEK, rather than the actual
files themselves. This approach provides an efficient but security-limited form of key rotation [28].

Forward-secure session resumption and puncturable encryption. Aviram, Gellert, and Jager
(AGJ) [1, 2] observed that the key hierarchy induced by the ticketing mechanism in TLS 1.3 PSK
mode can be used to achieve forward security for resumed sessions. By updating the Session Ticket
Encryption Key (STEK) after accepting the ticket of a resumed session, and deleting the corresponding
PSK, the confidentiality of the session is guaranteed even against an attacker who later compromises
the STEK. AGJ formalized this idea with their notion of a forward-secure session resumption protocol.
The per-session forward security enjoyed by such a resumption protocol is reminiscent of the fine-grained
forward security achieved by puncturable encryption [35], and indeed, AGJ make use of puncturable
pseudo-random functions (PPRFs) [13, 17, 40] for their construction. Their innovation naturally begs
the question: Can puncturing be combined with key hierarchies to bring fine-grained forward security
also to other applications? This work provides the affirmative response.

1.1 Our Contributions

We investigate how puncturing can be combined with key wrapping to provide fine-grained forward
security in applications using a symmetric key hierarchy. To this end, we introduce a new cryptographic
primitive that we call puncturable key wrapping (PKW). We provide formal definitions, relations between
security notions, and an efficient, generic construction for PKW. We also show how to use PKW in two
sample applications: TLS ticketing (inspired by [2], but addressing several shortcomings of that work)
and protected file storage. We argue that, while PKW is closely related to existing primitives like PPRFs,
it provides a useful abstraction that more intuitively captures what is needed for achieving fine-grained
forward security in symmetric key hierarchies. This makes building applications conceptually simpler
and less error-prone.1

Puncturable key wrapping. A puncturable key-wrapping scheme provides the basic functionality
needed for a symmetric key hierarchy: algorithms to wrap and unwrap data encryption keys under a
master secret key. Additionally, a puncturing algorithm allows the master secret key to be updated such
that specific wrapped data encryption keys are rendered irrecoverable. Our PKW syntax merges classical
key wrapping/deterministic authenticated encryption [51] with tag-based puncturable encryption [35].

1A broad analogy that readers may find useful: PKW is to PPRFs as AEAD is to block ciphers.

3

\
12

\∗14

PPRF fpr-rro$ fpr-ro$ fpr-1ro$

AEAD ind$-cpa ind$-cpaint-ctxt ind$-cpa

PKW find$-rcpa find$-cpaint-ctxt find$-1cpa

AEAD ind$-cpa int-ctxt ind$-cpa

PFS find$-rcpa int-ctxt find$-rcpa TLSMSKE

?11 ?10

?†∗ 13

+

3

+

5

+

2

+

4

+

8

++

9

+

7?† 6?†

Figure 1: Security notions and relations for PPRFs, puncturable key-wrapping (PKW), protected file
storge (PFS), and TLS ticketing (TLS). Confidentiality/forward security notions are in rounded boxes,
integrity notions in rectangular boxes. Solid lines indicate implications, with numbers referencing the
respective theorem in this paper and a plus + when combining several notions. Barred lines denote
separations, dotted lines trivial implications, and dashed lines non-tight implications. A star ? or dagger †
next to an arrow indicates that the implication holds if puncture invariance (Defs. 5, 8), resp. consistency
(Def. 9) is assumed; a ∗ indicates additional assumptions.

The resulting primitive allows authenticated headers and uses tags to enable fine-grained puncturing
of ciphertexts. The puncturing tags simplify the exposition of PKW and allow for versatile treatments
of the targeted applications: e.g., tags may be chosen via a counter when keeping state or ordering
is required, or as random strings when meta-data privacy is a concern (cf. [6]). This contrasts with
the foundational work on (non-puncturable) key wrapping [51], where randomness needed for secure
wrapping is effectively extracted from the wrapped key in the SIV construction.

We introduce four different security notions for PKW schemes (see Figure 1), three relating to confi-
dentiality (find$-cpa: a classical “real-or-random” notion, find$-rcpa: additionally allowing “real” wrap-
pings, and find$-1cpa: a one-time challenge notion) and one to integrity (of ciphertexts, int-ctxt). They
are developed with an eye towards applications, catering to the needs of key hierarchies found in cloud
storage systems and the TLS ticketing mechanism. Hence, all four are in a multi-key (or multi-user)
setting [5]. The core confidentiality notion, find$-cpa, allows an adversary to obtain, via oracles, “real
or random” wrappings of data encryption keys of its choice; the adversary is tasked with deciding which
it obtains. The adversary can also puncture master keys at tags of its choice and perform corruptions
to obtain current versions of selected master keys (with minimal limitations to prevent trivial wins).
The other two confidentiality notions describe a strengthening resp. a relaxation of find$-cpa: find$-rcpa
additionally allows the adversary to obtain “real” wrappings of encryption keys via a wrapping oracle,
while find$-1cpa allows only one access to the “real or random” wrapping oracle. The integrity notion
int-ctxt asks the adversary to create a fresh valid wrapping, given access to wrapping, unwrapping and
puncturing oracles. For integrity, no corruption capability is needed in our applications, since they do
not aim to uphold integrity guarantees post-corruption; having “multi-entity, forward-secure integrity”
for settings where wrapping keys are distributed, e.g., among several servers, may be an interesting av-
enue for future work, though. For completeness, we also define combined notions for confidentiality and
integrity in Appendix C and show that the combination of the separate notions implies it.

To instantiate our new primitive, we provide a simple and generic construction for a PKW scheme
based on a PPRF and an AEAD scheme. The core idea is to view the master key as the secret key of
a PPRF; wrapping of a selected data encryption key is performed by evaluating the PPRF on the tag
to generate a one-time AEAD key, and then using that AEAD key to encrypt the data encryption key.
PKW puncturing equates to PPRF puncturing. Depending on the precise assumptions made on the
PPRF, we reach our three different levels of confidentiality for the PKW scheme; the integrity notion
requires nothing further of the PPRF. In all cases, standard multi-user notions of AEAD security suffice.
This straightforward construction is just one example of how a PKW scheme can be implemented. Other

4

approaches may result in different properties and trade-offs. For example, using a misuse-resistant AEAD
scheme [51] could further enable batch puncturing of wrappings under the same tag. Full details of our
treatment of PKW can be found in Section 4.

PPRFs. While the precise PPRF security notions we require resemble those in prior work [13, 17, 40,
52], they appear to be, strictly speaking, new. This shows how an application-driven analysis can bring
to the surface new requirements on existing primitives. In Section 3 (see also Figure 1), we explore the
relations between our different PPRF notions and discuss possible instantiations, e.g., using the GGM
construction for PRFs (as adapted to PPRFs in e.g. [40]).

To summarize, we obtain a generic instantiation of PKW, achieving a variety of security notions from
standard primitives (AEAD schemes and PRGs).

Application: Forward-secure session resumption. Equipped with our new primitive, we revisit
the idea of Aviram, Gellert, and Jager (AGJ) [2] for achieving forward security for the zero round-trip
time (0-RTT) data, which can be sent in the pre-shared key mode of TLS 1.3. In this mode, clients rely
on a key established in previous sessions (the so called pre-shared key, PSK) to encrypt and send traffic
data already together with the very first “hello” message to the server. This reduces the latency of the
connection, since the usual TLS handshake happens in parallel with the transmission of this early data
rather than before it, effectively achieving a 0-RTT setup. However, this speed-up comes at the cost of
forward security for the early data.

As observed by AGJ, forward security can be achieved by using puncturing techniques to permanently
remove access to the PSKs of completed sessions. Without the PSK, the early data encrypted with it
remains confidential even against an attacker who observed the network traffic during the session and
compromises the server after session completion. In Section 5, we show how a find$-1cpa-secure PKW
scheme can readily be deployed for TLS ticketing to yield forward-secure TLS 1.3 0-RTT resumption
that is secure in the sense of a multi-stage key exchange (MSKE) protocol [30]; see also Figure 1. Using
PKWs in place of PPRFs (as in AGJ) permits us to take a more generic and abstract viewpoint. This
not only directly facilitates constructions offering differing functionality and security guarantees, but also
enabled us to identify and correct some technical issues arising in the approach of AGJ.

In particular, building TLS ticketing from PKW allows us to seamlessly switch to a more privacy-
friendly approach, addressing an open problem in [2]: by sampling tags randomly, we are able to make
TLS tickets indistinguishable from random, whereas the AGJ proposal uses a counter in the construction,
making their tickets potentially linkable to the time of issuance. Thus our approach can alleviate privacy
concerns for TLS ticketing, e.g., regarding tracking users on the web by passively observing network
traffic.

The integration of a session resumption protocol into the TLS 1.3 resumption handshake is described
in [2, Section 4]. Rephrasing the AGJ proposal in the language of puncturable key wrapping led us
to discover conceptual and technical issues in the security model, the proposed protocol, and the proof
that prevent the proposal of AGJ from being forward secure, as we discuss in Section 5. Specifically,
the security model used in [2] does not reflect the ticketing mechanism of a key exchange protocol in
how pre-shared secrets are sampled, registered with parties, and potentially corrupted. Furthermore, the
proposed protocol encrypts the TLS resumption master secret RMS in the session ticket. Since RMS is
used to derive multiple PSK values, this violates forward security (an adversary learning RMS from one
ticket can use it to decrypt prior sessions using a PSK derived from the same RMS). However, this can
be easily fixed by ticketing the respective PSK instead of RMS. Finally, we identified overlooked steps
and missing underlying assumptions in the AGJ security proof, which were surfaced when applying our
PKW formalism. We address all these points in our treatment of forward-secure session resumption for
TLS 1.3, see Section 5.

Application: Protected file storage. As a second application example, we show in Section 6 how
our new PKW primitive can be used in an encrypted file storage system to give forward security to
deleted files. This application is motivated by the current trust assumptions in cloud storage systems,
where the confidentiality of the stored data rarely extends to the service provider. Indeed, if the master
key in the key hierarchy is managed by the cloud, then the service provider can trivially decrypt any
file. The aim of our protected file storage (PFS) system is to provide strong security guarantees for the
user, even when encrypted files are outsourced to a malicious or corrupted storage system.

Using a PKW scheme, a client can locally encrypt files under separate data encryption keys, wrap
the DEKs with its master key (acting as a KEK) and then outsource both the encrypted files and the

5

wrapped keys to the cloud. In addition to relieving the user of the need to store anything beyond the
master key for the PKW scheme, our PFS system also allows secure shredding of files: by puncturing
the master key such that a specific wrapped DEK is rendered irrecoverable, the file encrypted by the
DEK is made permanently inaccessible, even if the ciphertext is not actually deleted by the cloud storage
provider when the client requests it to be. This means that a motivated attacker with access both to the
encrypted files and the secret key of the user will not be able to compromise the contents of files that
were shredded before the user key was compromised. The system hence provides very strong forward
security guarantees for shredded files. Crucially in our approach, there is no need for the user to trust
the storage provider to actually delete the shredded files, an assumption which would seldom hold in
practice due to the presence of backups for disaster recovery purposes (see, e.g., [34]) or bugs in the
deletion process [48].

An additional feature of our PFS system is that, in line with current industry practice, it supports
key rotation at the KEK level. Key rotation extends the life-time of encrypted data, overcomes usage
limits of encryption through rekeying, and supports forward security in practice. It is also important
given that the PKW schemes we build have a finite puncturing capability; KEK rotation is then used
to restore puncturing capability whenever needed. The multi-key aspect of our PKW security notions
readily supports this key rotation.

As core contributions here, we define a syntax for PFS and security notions capturing confidentiality,
forward security, and integrity of stored files in a PFS scheme. We show how all of these notions can be
achieved by building a PFS scheme from a PKW scheme and an AEAD scheme in a natural and efficient
way. We actually provide two different routes to proving our main results on the forward security of
PFS, as represented in the first and third column in Figure 1. These routes rely on different security
assumptions on the underlying cryptographic components, specifically the PKW scheme used, and result
in security theorems with different tightness properties—using a stronger PKW scheme yields a tighter
proof of security for the PFS scheme. This in turn relates to the properties required of the underlying
PPRF in each of the two routes. While the left, tighter, route requires a PPRF satisfying the strongest
security notion (fpr-rro$) as a basic building block—an assumption which, to the best of our knowledge,
generally relies on a non-tight (complexity-leveraging) reduction to weaker PPRF notions—it asks less
from the building blocks in terms of other properties. Specifically, it avoids the technical requirements of
puncture invariance and consistency which we detail in Section 4 and that not all PPRFs may provide,
yet which are required for the right, less tight route. The two routes hence show that secure PFS schemes
can be constructed from different levels of PKW (and PPRF) schemes; we see this as motivating future
work on efficient PKW (or PPRF) constructions that directly fulfill our strong security notions.

We stress that the aim of our PFS system is to showcase how integrating PKWs into existing sym-
metric key hierarchies can improve security for the cryptographic core of secure file storage systems.
Building a full-blown system is left to future work.

1.2 Further Related Work

The origins of forward security, in the context of key exchange, date back to Günther [36] and Diffie et
al. [24]. A helpful systematization is given by Boyd and Gellert [16].

Green and Miers [35] introduced puncturable (public-key) encryption as a means of achieving fine-
grained forward security. The ideas of [35] were applied to 0-RTT key exchange and session resumption
for TLS 1.3 in [37, 23, 2] as well as symmetric key exchange [3, 15]. The treatment of [15] is for general
key exchange, where both parties share a key to a PPRF and puncture it in a semi-synchronized manner.
By contrast, our approach to achieving forward security for TLS 1.3 PSK resumption mode using session
tickets (in common with [2]) targets the use of puncturable primitives in a “one-sided” setting, where
only the server holds the key and performs puncturing operations.

Puncturing techniques have further been used in the context of searchable encryption [56, 55]. Fine-
grained forward security is also targeted in Derived Unique Keys Per Transaction (DUKPT) [18]: keys
are derived in a tree structure and used in a one-time manner, with the aim of improving security against
side-channel attacks on weakly protected devices, e.g., payment terminals.

The idea of secure outsourced storage is not new. Blaze [9] designed a “Cryptographic File System”
already in 1993 to empower users to encrypt their files, preventing remote file servers used for storage from
gaining plaintext access to user data. A rich body of work followed suit, improving on and expanding
the security guarantees in the direction of, for example, data integrity and file sharing [47], group
collaboration [29], access pattern and metadata hiding [21, 20] and minimizing trust assumptions [45].
There is also a plethora of services running on top of existing storage systems, for example [43, 14]. Key

6

rotation for symmetric encryption is widely used by outsourced storage systems in practice, but was only
recently formally treated, see [28] and follow-up works [44, 41] including work using puncturing [54].

Our approach to secure file storage shares the aim of removing the need to trust the storage provider
for confidentiality, but we specifically focus on adding forward security for individual files. Boneh and
Lipton [12] introduced the idea of using key deletion to revoke access to encrypted files, with an emphasis
on file backup systems. Their proposal uses linear data structures to store keys, but lacks the fine-grained
forward security and key rotation our PFS scheme offers.

A more recent proposal, BurnBox [58], recognizing the difficulty of truly secure file deletion, intro-
duced self-revocable encryption to limit the power of compelled searches of devices. BurnBox achieves
fine-grained forward security for deleted files via a tree-based key hierarchy, storing the root in erasable
storage. It further hides file metadata in a protected lookup table, an approach we also suggest for our
system. On the surface, these properties make BurnBox very similar to our PFS concept. However,
the main goal of BurnBox is not forward security, but the much stronger notion of compelled access
security, which encompasses temporarily revoking file access when device compromise is expected and
further goals such as deletion/revocation obliviousness and timing privacy. This forces BurnBox to use
highly application-specific approaches, rely on secure storage, and compromise on efficiency (e.g., of file
lookups, in favor of privacy). In contrast, our approach is more generic, requires fewer assumptions, and
can directly benefit from optimizations of the underlying PKW or PPRF schemes.

2 Preliminaries

We introduce some notation used in this paper and briefly recap syntax and security of (nonce-based)
authenticated encryption with associated data [50].

2.1 Notation and Conventions

If a is a string then |a| denotes its length in bits. By {0, 1}n we denote the set of all binary strings of
length n. By {0, 1}∗ we denote the set of all binary strings of any length, including the empty string,
which is denoted ε. The symbol ‖ denotes concatenation, and we use a1‖a2‖ · · · ‖an as shorthand for the
concatenation of strings a1, a2, . . . , an.

If S is a finite set, we let x←$ S denote picking an element of S uniformly at random (u.a.r.) and
assigning it to x, and we let |S| denote the size of S. For sets S1,S2, the shorthand S1

∪←− S2 denotes
S1 ← S1 ∪ S2. All sets/spaces associated to cryptographic schemes are assumed non-empty unless
otherwise specified.

By v ← x, we mean that the variable v gets assigned the value x. The shorthand v ,w ← x denotes
v ← x and w ← x for variables v and w . If X is an n-tuple, then by (x1, x2, . . . , xn) ← X we denote
parsing X into its constituents, which are then individually accessible through variables x1, x2, . . . , xn. If
we assign a tuple to a variable through X ← (x1, x2, . . . , xn), then we assume an implicit encoding which
allows the individual elements to be recovered from X by parsing it into its constituents. We let |X|
denote the number of elements in the tuple X. Sometimes we interpret an n-tuple X = (x1, x2, . . . , xn)
as a list and use the shorthand X += xn+1 to denote adding element xn+1 to the list. Formally, this
re-assigns to variable X the n+1-tuple (x1, . . . , xn, xn+1). Similarly, if 1 ≤ i ≤ n = |X| then X −= xi
means that the ith element is removed from the list. If xi is not in the list, the result of X −= xi is the
original, unchanged list X. By X ← () we mean that variable X is initialized to an empty list (0-tuple).
If X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , ym) are two tuples of length n and m respectively, then X‖Y
denotes the n+m-tuple (x1, . . . , xn, y1, . . . , ym).

By ∧ we denote the logical AND operator, and by ∨ inclusive OR. We use ⊥ (bot) as a special symbol
to denote rejection, and it is assumed to not be in {0, 1}∗. Both inputs and outputs to algorithms can be
⊥. We adopt the convention that if any input to an algorithm is ⊥, then its output is ⊥ as well. When
specifying syntax, we sometimes write y/⊥ ← A(·) to explicitly show that the output of algorithm A is
a string y or ⊥. Algorithms may be randomized unless otherwise indicated.

If A is an algorithm, we let y ← AO1,...(x1, . . . ; r) denote running A on inputs x1, . . . and coins r, with
oracle access to O1, . . ., and assigning the output to y. We use the shorthand notation y←$AO1,...(x1, . . .)
to denote picking r at random and letting y ← AO1,...(x1, . . . ; r). An adversary is considered an algorithm.
All algorithms implicitly perform formatting checks on any input they receive and halt and return ⊥ if
the formatting is incorrect.

We use the game-playing framework of [7]. By Pr [G(A)⇒ x] we denote the probability that the
execution of game G with adversary A results in the game outcome taking value x. By true and false

7

we denote the boolean values of true and false. We identify true with the value 1 and false with the
value 0. A ¬ preceding a boolean variable denotes negation. The expression x = y is a boolean which
evaluates to true if x is equal to y, false otherwise. Sometimes the shorthand notation Pr [G(A)] will
be used as an abbreviation for Pr [G(A)⇒ true]. In games, integer variables, strings, set variables and
boolean variables (such as the win flag) are assumed initialized, respectively, to 0, the empty string ε,
the empty set ∅, and false, unless otherwise specified.

All of our security notions are given in a multi-user version [5]. In the games defining the notions,
this is captured by an oracle New which the adversary can call to initialize a new key. We use a counter
u to keep track of the number of initialized keys. All other oracles take as input an index i that indicates
under which key the query should be executed. We assume that the adversary only asks queries with
index 0 < i ≤ u, otherwise the query is aborted with ⊥ as response.

2.2 AEAD

We recall the syntax and security of a nonce-based authenticated encryption with associated data
(AEAD) scheme as defined by Rogaway [50].

Definition 1 (AEAD scheme). An authenticated encryption with associated data scheme, AEAD = (Enc,
Dec), is a pair of algorithms with four associated sets; the secret-key space SK, the nonce space N , the
associated data spaceAD and the message spaceM. Further associated with AEAD is a ciphertext-length
function cl : N→ N. The algorithms of AEAD operate as follows.

� Via C ← Enc(sk,N , ad,M), the deterministic encryption algorithm Enc on input the secret key
sk ∈ SK, a nonce N ∈ N , associated data ad ∈ AD and a message M ∈ M produces a ciphertext
C ∈ {0, 1}cl(|M|).

� Via M/⊥ ← Dec(sk,N , ad,C), the deterministic decryption algorithm Dec on input the secret key
sk ∈ SK, a nonce N ∈ N , associated data ad ∈ AD and a ciphertext C ∈ {0, 1}∗ produces a
message M ∈M or, to indicate failure, the special symbol ⊥.

Correctness of a nonce-based AEAD scheme stipulates that Dec(sk,N , ad,Enc(sk,N , ad,M)) = M for
all sk ∈ SK, N ∈ N , ad ∈ AD and M ∈M.

For security, we consider confidentiality (ind$-cpa) as well as ciphertext integrity (int-ctxt).

Definition 2 (AEAD confidentiality, ind$-cpa). Let AEAD be a nonce-based AEAD scheme and let

game Gind$-cpa
AEAD be defined as in Figure 2. We define the confidentiality (ind$-cpa) advantage of an

adversary A against AEAD as

Advind$-cpa
AEAD (A) = 2

∣∣∣∣Pr
[

Gind$-cpa
AEAD (A)⇒ true

]
− 1

2

∣∣∣∣ .
Definition 3 (AEAD integrity, int-ctxt). Let AEAD be a nonce-based AEAD scheme and let game
Gint-ctxt

AEAD be defined as in Figure 2. We define the integrity (int-ctxt) advantage of an adversary A
against AEAD as

Advint-ctxt
AEAD (A) = Pr

[
Gint-ctxt

AEAD (A)⇒ true
]
.

3 Puncturable PRFs

Puncturable PRFs (PPRFs) were conceived of independently in [13], [17] and [40]. We recall the defi-
nition from Sahai and Waters [52], but restrict our attention to PPRFs with deterministic puncturing
algorithms.

Definition 4 (PPRF). A puncturable pseudorandom function PPRF = (KeyGen,Eval,Punc) is a triple
of algorithms with three associated sets; the secret-key space SK, the domain X and the range Y.

� Via sk←$ KeyGen(), the probabilistic key generation algorithm KeyGen, taking no input, outputs
the secret key sk ∈ SK.

� Via y/⊥ ← Eval(sk, x), the function evaluation algorithm Eval, on input the secret key sk and an
element x ∈ X outputs y ∈ Y or, to indicate failure, ⊥.

8

Game Gind$-cpa
AEAD (A):

1 b←$ {0, 1}; u← 0

2 b∗←$ANew,Ro$()

3 Return b∗ = b

New():

4 u++; sku←$ SK
5 SN,u ← ∅

Ro$(i,N , ad,M):

6 If N ∈ SN,i:
7 Return ⊥
8 SN,i

∪←− {N}
9 C0←$ {0, 1}cl(|M|)

10 C1 ← Enc(ski,N , ad,M)

11 Return Cb

Game Gint-ctxt
AEAD (A):

1 win← false; u← 0

2 ANew,Enc,Dec()

3 Return win

New():

4 u++; sku←$ SK
5 SNadC,u,SN,u ← ∅

Enc(i,N , ad,M):

6 If N ∈ SN,i then return ⊥
7 SN,i

∪←− {N}
8 C ← Enc(ski,N , ad,M)

9 SNadC,i
∪←− {(N , ad,C)}

10 Return C

Dec(i,N , ad,C):

11 M ← Dec(ski,N , ad,C)

12 If M 6= ⊥ ∧ (N , ad,C) /∈ SNadC,i:

13 win← true

14 Return M

Figure 2: Games formalizing confidentiality (ind$-cpa) and integrity of ciphertexts (int-ctxt) of an au-
thenticated encryption scheme with associated data AEAD. Grey code prevents trivial attacks and
ensures that the adversary is nonce-respecting.

� Via sk′ ← Punc(sk, x), the deterministic puncturing algorithm Punc, on input the secret key sk
and an element x ∈ X outputs an updated secret key sk′ ∈ SK.

For correctness we require that for all sk ∈ SK and all x, y ∈ X :

(1) Pr [Eval(sk0, x) 6= ⊥ | sk0←$ KeyGen()] = 1.

(2) If sk′ ← Punc(sk, x) and y 6= x, then Eval(sk, y) = Eval(sk′, y).

(3) If sk′ ← Punc(sk, x), then Eval(sk′, x) = ⊥.

Requirement (1) ensures that for any freshly generated secret key sk0 and for any x ∈ X , Eval(sk0, x)
will not be ⊥. Requirement (2) says that puncturing any secret key sk on x only affects the evaluation
of x. Requirement (3) demands that the evaluation of a punctured point will always be ⊥.

Note that, as a consequence of requirement (3), our definition excludes PPRFs which output an
element in the range Y when evaluated on a punctured point, such as e.g. the privacy-preserving PPRFs
of Boneh et al. [10, 11]. Why, then, do we impose this strict requirement?

While we must clearly demand that the evaluation under the unpunctured secret key of a point x
is different from the evaluation of x under a key which has been punctured on x (for security), the
latter must not necessarily be ⊥. Indeed, in prior work [2, 52] this has not been an requirement in
the definition of PPRFs (neither explicitly in correctness, nor implicitly by security). However, as we
show in Section 5, these weaker definitions do not suffice to provide integrity in applications which use
a PPRF for key derivation. In fact, even the stronger of the two PPRF security notions presented by
Aviram, Gellert and Jager in [2] is too weak and permits a concrete attack on the integrity of the session
resumption protocol which they design for TLS. Hence, to prevent such attacks on our constructions,
we choose to restrict ourselves to PPRFs which output ⊥ after puncturing, and argue that this captures
the intuition that function evaluation on punctured points should “fail”. Since our applications do not
need the PPRF to hide the points on which it was punctured, exclusion of the powerful but inefficient
privacy-preserving PPRFs of [11, 10, 19] is a warranted compromise.

Following [2], we define an additional property of PPRFs called “puncture invariance” which demands
that the scheme is insensitive to the order in which punctures are performed. I.e., the puncturing
operation is commutative with respect to the resulting secret key. As noted in [2], this property enables

9

reductions that change the order of punctures without an adversary later compromising the secret key
noticing; this is necessary for example to have our single-challenge notion (fpr-1ro$) imply our core
PPRF notion (fpr-ro$), as we shall see.

Definition 5 (PPRF puncture invariance). A puncturable pseudorandom function PPRF = (KeyGen,
Eval,Punc) is puncture invariant if for all keys sk ∈ SK and all x0, x1 ∈ X it holds that

Punc(Punc(sk, x0), x1) = Punc(Punc(sk, x1), x0).

3.1 PPRF Security and Relations

We define three security notions for PPRFs, all in the multi-user setting [5], capturing the combined
forward security and pseudorandomness goals, or forward pseudorandomness (fpr) for short. Let us
start with our core forward pseudorandomness notion (fpr-ro$), given in Figure 3. It is an extension of
classical PRF security, where the adversary is given oracle access (Ro$-Eval) either to the real function
evaluated on a hidden key, or a lazily-sampled random function. Forward security is captured through
access to a puncturing oracle (Punc) as well as corruption oracle (Corr), through which the adversary
can obtain secret keys that have been punctured on all challenge points.

Our second, stronger notion, forward pseudorandomness with real evaluations (fpr-rro$), in addition
gives the adversary access to a real evaluation oracle (Eval), capturing that real evaluations do not help
distinguishing challenge outputs (even post-corruption).

In our third, weaker notion, single-challenge forward pseudorandomness (fpr-1ro$), the adversary
only gets a single challenge evaluation under each key. The challenge is obtained from oracle New-
Ro$-Eval, which on input a domain point x returns either the real function evaluation of x under the
(unpunctured) secret key (in the “real” world), or a string drawn u.a.r. from Y (in the “ideal” world).
Additionally the adversary obtains the secret key punctured on x. As usual, the adversary wins if it can
distinguish the real world from the ideal one.

Definition 6 (PPRF security (fpr-ro$, fpr-rro$, fpr-1ro$)). Let PPRF be a puncturable pseudorandom
function. We define the advantage of an adversary A against the forward pseudorandomness X ∈ {fpr-
ro$, fpr-rro$, fpr-1ro$} of PPRF as

AdvXPPRF(A) = 2

∣∣∣∣Pr
[
GX

PPRF(A)⇒ true
]
− 1

2

∣∣∣∣ ,
where game GX

PPRF(A) is given in Figure 3.

Comparison to prior work. Our PPRF notions resemble those in prior work, but also differ in several
ways. For example, fpr-1ro$ is similar to the non-adaptive notion in [52, 2], but restricted to a single
challenge. Through a multi-key hybrid argument [5], their notion implies ours. The adaptive “rand”
notion of [2] most closely corresponds to our fpr-rro$ notion, but our notion provides the adversary
with more flexibility by both allowing multiple real-or-random challenge evaluations under each key
(compared to a single evaluation under the single key in [2]) and giving it access both to a separate
puncturing oracle (the rand experiment only punctures on the single challenge point) and corruption
oracle, thereby allowing multiple key compromises of keys punctured on points chosen by the adversary.
Our middle notion fpr-ro$ is, to the best of our knowledge, new.

PPRF relations. Figure 1 (on page 4) shows the relations between our PPRF security notions. The
trivial implications (dotted lines) immediately arise from restricting the adversary. As an example, fpr-
rro$ implies fpr-ro$ because an adversary against the fpr-rro$ security can simply ignore the Eval-oracle.
Similarly fpr-ro$ implies fpr-1ro$.

In the other direction, fpr-1ro$ implies fpr-ro$ for any puncture-invariant PPRF PPRF. That is,
for any adversary A against the fpr-ro$ security of PPRF, there exists an adversary B running in ap-
proximately the same time as A such that Advfpr-ro$

PPRF (A) ≤ qro$ ·Advfpr-1ro$
PPRF (B), via a standard hybrid

argument, where puncture invariance ensures that reorderings of punctures do not affect simulation of
the later-corrupted secret key. The theorem statement and more details of the proof are in Appendix A.

Via a non-tight reduction, we can also show that fpr-ro$ implies fpr-rro$ for a puncture-invariant
PPRF. This is again via a hybrid argument, which however now involves guessing the input to the chal-
lenge query Ro$-Eval under each key (so-called complexity leveraging [13, 17]), resulting in reduction

10

Game Gfpr-ro$
PPRF (A), Gfpr-rro$

PPRF (A) :

1 b←$ {0, 1}; u← 0; T[·, ·]← ⊥

2 b∗←$ANew, Eval, Corr,Ro$-Eval,Punc
()

3 Return b∗ = b

New():

4 u++; sku←$ KeyGen()

5 Cu, Eu,Pu ← ∅; corru ← false

Eval(i, x):

6 If x ∈ Ci then return ⊥
7 y ← Eval(ski, x)

8 Ei
∪←− {x}

9 Return y

Punc(i, x):

10 ski ← Punc(ski, x)

11 Pi
∪←− {x}

Ro$-Eval(i, x):

12 If x ∈ Ei or corri = true:

13 Return ⊥
14 y1 ← Eval(ski, x)

15 If y1 = ⊥: return ⊥
16 If T[i, x] = ⊥:

17 T[i, x]←$ Y
18 y0 ← T[i, x]

19 Ci
∪←− {x}

20 Return yb

Corr(i):

21 If Ci * Pi:
22 Return ⊥
23 corri ← true

24 Return ski

Game Gfpr-1ro$
PPRF (A):

1 b←$ {0, 1}; u← 0

2 b∗←$ANew-Ro$-Eval()

3 Return b∗ = b

New-Ro$-Eval(x):

4 u++

5 sku←$ KeyGen()

6 y1 ← Eval(sku, x)

7 y0←$ Y
8 sku ← Punc(sku, x)

9 Return (sku, yb)

Figure 3: Left: Games defining real-or-$ (fpr-ro$, without the boxed Eval oracle) and real-and-real-or-$
(fpr-rro$, with A having access to Eval) forward pseudorandomness. Right: Game defining one-time
forward pseudorandomness (fpr-1ro$) PPRF security. Grey code prevents trivial attacks.

loss proportional to the size of the PPRF domain. As above, the proof starts with a hybrid argument
from at most qro$ queries to oracle Ro$-Eval per key to a single. The resulting game can be simulated
by a fpr-ro$ adversary which guesses the input to the Ro$-Eval query under each key such that it can
get the challenge response in advance, and then puncture and corrupt the key. The compromised key
is used to simulate queries to oracle Eval. Because of the guessing step, the loss of the reduction is
proportional to the size of the domain. The details are in Appendix A.

Instantiations from the literature. One, by now folklore, way of building a PPRF is to use the
GGM PRF construction via a tree of pseudorandom-generator (PRG) evaluations [33], extended with a
puncturing algorithm, as first noted by [13, 17, 40]. The core idea to enable puncturing on a domain
point x in a GGM PRF is to update the secret key, removing nodes on the path to x in the PRG tree
and adding all nodes on the co-path from the root to x. For a more in-depth description and argument of
security we refer to [2, 40]. Note that the GGM-based construction is correct and puncture invariant, and
hence, via our established relations, yields an fpr-ro$-secure PPRF. For small domains where complexity
leveraging is acceptable, it further achieves the stronger fpr-rro$ notion. Additionally, for this specific
construction, adaptive security can be achieved with a loss factor that is only quasi-polynomial in the
input length, improving greatly over the exponential loss of complexity leveraging [32]. An alternative
construction for a PPRF with security based on the Strong RSA assumption can be found in [2].

4 Puncturable Key Wrapping

We now present our core cryptographic primitive, puncturable key wrapping (PKW). With puncturable
key wrapping, we merge the notion of key wrapping, originally extensively studied by Rogaway and
Shrimpton [51], with tag-based puncturable encryption [35], adapted to the symmetric setting, to capture
forward security through puncturing. Puncturable key wrapping, beyond the key K to be wrapped, hence
takes a tag T used as a pointer for puncturing, as well as optional associated header data H which is
authenticated along with the wrapped key (akin to associated data in AEAD). In the following, we give
syntax, security, and further notions for this new primitive.

Definition 7 (PKW scheme). A puncturable key-wrapping scheme PKW = (KeyGen,Wrap,Unwrap,
Punc) is a 4-tuple of algorithms with four associated sets; the secret-key space SK, the tag space T ,
the header space H and the wrap-key space K. Associated to the scheme is a ciphertext-length function
cl : N→ N. The algorithms of PKW operate as follows.

11

� Via sk←$ KeyGen(), the probabilistic key generation algorithm KeyGen, taking no input, outputs
a secret key sk ∈ SK.

� Via C/⊥ ← Wrap(sk,T,H ,K), the deterministic wrapping algorithm Wrap on input a secret key
sk ∈ SK, a tag T ∈ T , a header H ∈ H and a key K ∈ K outputs a ciphertext C ∈ {0, 1}cl(|K|) or,
to indicate failure, ⊥.

� Via K/⊥ ← Unwrap(sk,T,H ,C), the deterministic unwrapping algorithm Unwrap on input a secret
key sk ∈ SK, a tag T ∈ T , a header H ∈ H and a ciphertext C ∈ {0, 1}∗ returns a key K ∈ K or,
to indicate failure, ⊥.

� Via sk′ ← Punc(sk,T), the deterministic puncturing algorithm Punc on input a secret key sk ∈ SK
and a tag T ∈ T returns a potentially updated secret key sk′ ∈ SK.

Correctness of a PKW scheme intuitively demands that a wrapped key can be recovered from its wrapping
ciphertext unless the secret key has been punctured on the tag used for the wrapping step, i.e., even
if the secret key has been punctured on other tags. Formally, we require that for all T ∈ T , H ∈ H,
K ∈ K, and all tuples T̄1, T̄2 ∈ T ∗ where T /∈ T̄1 and T /∈ T̄2,

Pr
[
Unwrap(sk\T̄1

,T,H ,Wrap(sk\T̄2
,T,H ,K)) = K | sk←$ KeyGen()

]
= 1.

Here sk\(T1,T2,...,Tn) = Punc(. . . (Punc(Punc(sk,T1),T2), . . .),Tn) is shorthand for the secret key ob-
tained via puncturing sk in order on T1, . . . ,Tn ∈ T .

Analogously to Definition 5 for PPRFs, we also define puncture invariance for PKW schemes, de-
manding that the order of punctures does not affect the resulting secret key.

Definition 8 (PKW puncture invariance). A puncturable key-wrapping scheme PKW = (KeyGen,Wrap,
Unwrap,Punc) is puncture invariant if for all keys sk ∈ SK and all tags T0,T1 ∈ T it holds that

Punc(Punc(sk,T0),T1) = Punc(Punc(sk,T1),T0).

That is, the current state of the secret key only depends on the set of tags on which it has been punctured,
and not on the order in which the punctures were performed.

Additionally, we introduce a property of PKW schemes which we call consistency, inspired by the
definition of consistent puncturable signature schemes in [8]. A consistent PKW scheme is one for which
the output of algorithm Wrap only depends on the tag, header and wrap-key input, and not on the
(puncturing) state of the secret key—except for when the output is ⊥ due to puncturing.

Definition 9 (PKW consistency). A puncturable key wrapping scheme PKW = (KeyGen,Wrap,Unwrap,
Punc) is consistent if for all keys K ∈ K, all headers H ∈ H, all tags (T1, . . . ,Tn) ∈ T ∗ and all
T ∈ T \ {T1, . . . ,Tn} it holds that

Pr
[
Wrap(sk,T,H ,K) = Wrap(sk\(T1,...,Tn),T,H ,K) | sk←$ KeyGen()

]
= 1.

Puncture invariance and consistency guarantee a kind of indifference of the PKW scheme with respect
to puncturing, allowing sequences of punctures and wrappings to be flexibly reordered without affecting
the scheme’s future behavior. As we shall see, these properties are important to consider when deploying
PKW schemes in, and proving the security of, higher-level applications.

4.1 PKW Security

Confidentiality. Following Rogaway and Shrimpton [51], we adopt indistinguishability from random
bits (ind$) as the appropriate notion to model confidentiality for (puncturable) key-wrapping schemes.
Our three confidentiality notions, formalized in Figure 5, capture forward security in the sense that the
confidentiality guarantees hold also after compromise of the secret key, given that it has been appropri-
ately punctured prior to corruption to avoid trivial wins. As before, they are all in the multi-key (or
multi-user) setting [5]. To focus on forward security, we separate confidentiality (with forward security)
and integrity (below) into distinct notions, contrasting with the combined notion in [51]. We give a
combined notion in Appendix C, also capturing CCA-style active attacks, and show that it is equivalent
to the junction of our separate notions.

12

Adversary

Gfind$-rcpa

i

Wrap
C ← Wrap(ski,T,H ,K)

Ro$-Wrap
C1 ← Wrap(ski,T,H ,K)

C0←$ {0, 1}cl(|K|)

Corr

Punc
ski ← Punc(ski,T)

� T is new.

� T is new.
� ski is not corrupted.
� C1 6= ⊥.

� T is new.
� ski is not corrupted.
� C1 6= ⊥.

� All tags used in
Ro$-Wrap queries have
been punctured on.

� All tags used in
Ro$-Wrap queries have
been punctured on.

Require that:

(T,H ,K)

C

(T,H ,K)

Cb

T

ski

Figure 4: Illustration of the adversary’s interactions in the PKW find$-rcpa security game, focusing on
one key ski. (Oracle New generates a new key ski and gives the adversary the ability to query the other
oracles under key ski.) If oracle Wrap is omitted, the illustration for find$-cpa security is obtained.

Our first confidentiality notion, which we call find$-cpa, can be viewed as a form of ind$-cpa security
adapted to the PKW setting. The adversary is given access to a challenge wrapping oracle Ro$-Wrap,
which on input a key index i, a tag T, a header H and a key K chosen by the adversary, returns either an
honest wrapping of K under secret key ski, or a random bit-string of length cl(|K |). Forward security is
captured via a corruption oracle Corr which allows the adversary to compromise the current version of
a secret key ski, given that all tags used in challenge queries under ski must be punctured on at the time
of corruption (via the puncturing oracle Punc). Focusing on fine-grained forward security, we restrict
the adversary to use tags only once for wrapping and call this behavior tag-respecting (akin to a nonce-
respecting adversary in authenticated encryption); this enables puncturing of individual ciphertexts.2

Guided by the envisioned usage of puncturable key-wrapping schemes, our second, stronger confi-
dentiality notion, find$-rcpa, additionally gives the adversary access to real wrappings that it does not
have to puncture on via an additional oracle Wrap. The rationale behind the notion is that although
find$-cpa provides forward security for all wrapped keys which have been punctured on at the time of
compromise, it does not capture the potential leakage from unpunctured ciphertexts which the adversary
gains insight into by corrupting. That is, we would like to ensure that there is a form of independence
across key wrappings produced with distinct tags. This is motivated by what we believe to be realistic
attack scenarios for applications which use a PKW scheme for key management—such as our protected
file storage system (to be defined in Section 6). In such a system, normal usage implies the existence
of some unpunctured ciphertexts (corresponding to non-shredded files) at any given time, and hence
in particular at the time of a key compromise. The idea of find$-rcpa security is that compromising
ciphertexts generated with tags that have not been punctured on, should not give the adversary a higher
advantage in distinguishing challenge ciphertexts from random bits. Figure 4 shows an illustration of
the game and the restrictions on the oracles to prevent trivial attacks.

Lastly, we also introduce a one-time security notion, find$-1cpa, which only provides the adversary
with one challenge output and the punctured secret key, per key. As we will see, together with puncture
invariance and consistency, find$-1cpa turns out to be sufficiently strong to achieve full security in the
applications we are interested in.

Definition 10 (PKW confidentiality (find$-cpa, find$-rcpa, find$-1cpa)). Let PKW be a puncturable
key-wrapping scheme. We define the advantage of an adversary A against the forward indistinguishability
X ∈ {find$-cpa, find$-rcpa, find$-1cpa} of PKW as

AdvXPKW(A) = 2

∣∣∣∣Pr
[
GX

PKW(A)⇒ true
]
− 1

2

∣∣∣∣ ,
2We note that a stronger formalization is possible where tag reuse is allowed: by storing and checking the whole tuple

(T,H ,K) in the sets ST,i instead of only T, one can demand wraps to look random except when this is impossible due
to entirely repeating inputs. This could cater to applications interested in “batch puncturing” [35], i.e., revoking access to
multiple wrapped keys via a single puncturing call. Such stronger notions would also require stronger building blocks, as
we will see below.

13

Game Gfind$-cpa
PKW (A), Gfind$-rcpa

PKW (A) :

1 b←$ {0, 1}; u← 0

2 b∗←ARo-Wrap, Wrap, Punc,Corr,New
()

3 Return b∗ = b

New():

4 u++

5 sku←$ KeyGen()

6 SPT,u,S$T,u,ST,u ← ∅
7 corru ← false

Wrap(i,T,H ,K):

8 If T ∈ ST,i then return ⊥
9 C ←Wrap(ski,T,H ,K)

10 ST,i
∪←− {T}

11 Return C

Ro$-Wrap(i,T,H ,K):

12 If T ∈ ST,i or corri = true:

13 Return ⊥
14 C1 ←Wrap(ski,T,H ,K)

15 If C1 = ⊥ then return ⊥
16 C0←$ {0, 1}cl(|K|)

17 S$T,i
∪←− {T}; ST,i

∪←− {T}
18 Return Cb

Corr(i):

19 If S$T,i * SPT,i:
20 Return ⊥
21 corri ← true

22 Return ski

Punc(i,T):

23 ski ← Punc(ski,T)

24 SPT,i
∪←− {T}

Game Gfind$-1cpa
PKW (A):

1 b←$ {0, 1}; u← 0

2 b∗←$ANew-Ro$-Wrap()

3 Return b∗ = b

New-Ro$-Wrap(T,H ,K):

4 u++

5 sku←$ KeyGen()

6 C1 ←Wrap(sku,T,H ,K)

7 C0←$ {0, 1}cl(|K|)

8 sku ← Punc(sku,T)

9 Return (sku,Cb)

Figure 5: Left and middle: Forward security and privacy find$-cpa (without access to the boxed Wrap
oracle) / find$-rcpa (with access to Wrap) of a puncturable key-wrapping scheme PKW. Right: One-
time privacy and forward security find$-1cpa security of a puncturable key-wrapping scheme PKW.
Grey code prevents trivial attacks and ensures that unique tags are used for wrapping.

where GX
PKW(A) is defined in Figure 5.

Integrity. In addition to the confidentiality notions we also define (multi-key) integrity of ciphertexts
(int-ctxt) for PKW schemes as shown in Figure 6. Here, the adversary is given oracle access to wrapping
(Wrap), unwrapping (Unwrap), and puncturing (Punc). Its goal is to forge a ciphertext (together with
a tag and a header) that was not output by Wrap, or for which the tag was punctured on via Punc, and
that unwraps to something other than the error symbol ⊥. Note that we particularly treat ciphertexts
under punctured tags as valid forgery attempts, even if previously output by Wrap. This ensures that
after puncturing on a tag, no ciphertext with that tag will be accepted any more, which is sometimes
referred to as replay protection. As for the confidentiality notions, we require that the adversary is
tag-respecting.

Definition 11 (PKW integrity (int-ctxt)). Let PKW be a puncturable key-wrapping scheme. We define
the advantage of an adversary A against the integrity of ciphertexts of PKW as

Advint-ctxt
PKW (A) = Pr

[
Gint-ctxt

PKW (A)⇒ true
]
,

where Gint-ctxt
PKW (A) is defined in Figure 6.

Notably, in the integrity setting, forging a valid ciphertext becomes trivial if one would allow the
adversary to compromise the secret key. Forward security hence seems to only make sense in scenarios
where two copies of the key are available simultaneously, one “more punctured” than the other. The
challenge then would be to forge a ciphertext on a punctured tag T using access to the compromised,
more punctured key, such that the ciphertext unwraps under the less punctured key (which has not
been punctured on T). This could be interesting, e.g., in a setting where punctured keys are distributed
across servers. We leave extending puncturing to the distributed setting as future work, but consider the
amalgamation of (forward-secure) confidentiality and integrity in Appendix C.

Relations between PKW notions. We briefly explain how the PKW confidentiality notions are
related. See Figure 1 for an overview of all security notions and their relations. Beginning from strong
to weak: the trivial implications (dotted arrows) arise directly from restricting the adversary. As an

14

Game Gint-ctxt
PKW (A):

1 win← false; u← 0

2 ANew,Wrap,Unwrap,Punc()

3 Return win

New():

4 u++; sku←$ KeyGen()

5 STHC,u,ST,u,SPT,u ← ∅

Punc(i,T):

6 ski ← Punc(ski,T)

7 SPT,i
∪←− {T}

Wrap(i,T,H ,K):

8 If T ∈ ST,i then return ⊥
9 C ←Wrap(ski,T,H ,K)

10 If C = ⊥ then return ⊥
11 STHC,i

∪←− {(T,H ,C)}; ST,i
∪←− {T}

12 Return C

Unwrap(i,T,H ,C):

13 K ← Unwrap(ski,T,H ,C)

14 If K 6= ⊥ and ((T,H ,C) /∈ STHC,i or T ∈ SPT,i):
15 win← true

16 Return K

Figure 6: Integrity of ciphertexts of a puncturable key-wrapping scheme PKW. Grey code prevents
trivial attacks and ensures that tags are not repeated in wrap queries.

example, find$-rcpa implies find$-cpa because an adversary against the find$-rcpa security can simply
ignore the Wrap-oracle.

In the opposite direction the relations are more complex. Generally, find$-1cpa does not imply
find$-cpa. Showing the separation is straightforward: Modify any find$-1cpa secure scheme so that
Wrap outputs a fixed string when receiving an already-punctured tag as input. This makes challenge
wraps on punctured tags—which are available in the find$-cpa game, but not in find$-1cpa—easily
distinguishable. In contrast, for the special case of a PKW scheme that is puncture invariant and
consistent, and additionally for which attempting to wrap using a punctured tag always results in ⊥
(i.e., Wrap(sk\T̄ ,T, ·, ·) = ⊥ if T ∈ T̄ ⊆ PKW.T)3, find$-1cpa implies find$-cpa via a hybrid argument.
We formally prove both relations in Appendix B.

Lastly, assuming a (forward) secure source of pseudorandomness, such as a fpr-ro$ secure PPRF,
find$-rcpa is strictly stronger than find$-cpa. The separation relies on the fact that in the find$-cpa
game, an adversary must puncture on all tags which have been used for wrapping before compromising
the secret key; a restriction which is not imposed on tags queried to oracle Wrap in the find$-rcpa
game. This can be used to construct a scheme which leaks a copy of the original, unpunctured secret
key when punctured only once on a hidden, special tag T̂, which can only be learned by wrapping under
a different, fixed and publicly known tag T0. Tag T̂ is accessible to an adversary in the find$-rcpa game
via oracle Wrap, but not to a find$-cpa adversary. The latter can learn T̂ only through a Ro$-Wrap
call on T0, forcing it to also puncture on T0 and thereby destroying the key copy. We give the details in
Theorem 14, Appendix B.

4.2 Instantiating PKW from PPRF and AEAD

Next, we give a generic construction of a PKW scheme, formalized in Figure 7. The construction uses
an authenticated encryption scheme with associated data AEAD to encrypt (wrap) keys, using a new
AEAD key together with a fixed nonce N0 for each key-wrap. The keys of AEAD are generated by a
pseudorandom function PPRF on input the wrap tag, the key of which is the secret key of the PKW
scheme. This allows AEAD keys to be “forgotten” via puncturing the PPRF key, thereby rendering
the key-wrap ciphertexts unrecoverable. The construction is inspired by, and re-captures, the generic
construction of a “0-RTT session resumption protocol” by Aviram, Gellert, and Jager [2], with the
difference that we use a nonce-based AEAD scheme, following practically deployed schemes like AES-
GCM or ChaCha20-Poly1305, rather than a probabilistic one.

The only technical requirement for our construction is that the range of PPRF matches the key space
of AEAD. The key space of the resulting PKW scheme is the key space of PPRF, the tag space the PPRF
domain, the header space the associated data space of AEAD, and the wrap-key space the message space
of AEAD. The ciphertext-length function cl for PKW is that of AEAD.

The following sequence of results shows that, given certain properties of the underlying PPRF
and AEAD schemes, our construction PKW[PPRF,AEAD] achieves puncture invariance and consistency
(Lemma 1), different levels of forward indistinguishability depending on the underlying PPRF strength
(Theorems 2–4), as well as integrity of ciphertexts (Theorem 5).

3The last assumption is necessary for the reduction to simulate a Ro$-Wrap challenge query on an already punctured
tag in the find$-cpa game.

15

PKW[PPRF,AEAD]:

KeyGen():

1 Return PPRF.KeyGen()

Wrap(skp,T,H ,K):

2 ska ← PPRF.Eval(skp,T)

3 C ← AEAD.Enc(ska,N0,H ,K)

4 Return C

Unwrap(skp,T,H ,C):

5 ska ← PPRF.Eval(skp,T)

6 K ← AEAD.Dec(ska,N0,H ,C)

7 Return K

Punc(skp,T):

8 sk′p ← PPRF.Punc(skp,T)

9 Return sk′p

Figure 7: The PKW[PPRF,AEAD] instantiation of a puncturable key-wrapping scheme based on a punc-
turable pseudorandom function PPRF and a nonce-based AEAD scheme AEAD (with N0 a fixed nonce
in the nonce space of AEAD).

Lemma 1 (PKW[PPRF,AEAD] is puncture invariant and consistent). The puncturable key-wrapping
scheme PKW[PPRF,AEAD] in Figure 7 is consistent (as per Definition 9). Additionally, if PPRF is
puncture invariant (as per Definition 5), then PKW[PPRF,AEAD] is puncture invariant (Definition 8).

Proof. The puncture invariance of PKW[PPRF,AEAD] follows immediately from the puncture invariance
of PPRF. The consistency of PKW[PPRF,AEAD] follows from the correctness of the PPRF and the
determinism of the encryption algorithm of the AEAD scheme. The former ensures the PPRF evaluation
of a point does not change upon puncturing of other points, meaning that the AEAD key derived from
a tag T is unaffected by puncturing on other tags. The latter in turn ensures that the ciphertext only
depends on the inputs to AEAD encryption, none of which are affected by the puncturing of other tags.

To see this, note that by induction, point (2) of PPRF correctness (Def. 4) implies that for all
subsets of elements in the domain (here the tag space of PKW) {T1,T2, . . . ,Tn} ⊂ T and all T ∈
T \ {T1,T2, . . . ,Tn},

Pr [Eval(sk0,T) = Eval(skn,T) | sk0←$ PPRF.KeyGen()] = 1,

where skn is obtained by running ski←$ PPRF.Punc(ski−1,Ti) for i ∈ {1, . . . , n}. Now for consistency
the requirement is precisely that for all H ∈ H and all K ∈ K,

Pr [Wrap(sk0,T,H ,K) = Wrap(skn,T,H ,K) | sk0←$ KeyGen()] = 1,

where skn is again obtained by recursively puncturing sk0 on T1,T2, . . . ,Tn. This is fulfilled for
PKW[PPRF,AEAD], since by definition of the construction KeyGen() := PPRF.KeyGen(), Punc(sk,T) :=
PPRF.Punc(sk,T) and

Wrap(sk0,T,H ,K) := AEAD.Enc(PPRF.Eval(sk0,T),T,H ,K)

= AEAD.Enc(PPRF.Eval(skn,T),T,H ,K) =: Wrap(skn,T,H ,K),

thanks to PPRF correctness.

Theorem 2 (PKW[PPRF,AEAD] is find$-cpa secure). Let PKW[PPRF,AEAD] be the puncturable key-
wrapping scheme in Figure 7. For every adversary A against the find$-cpa-security of PKW[PPRF,AEAD]
making at most qn, qro$, qcorr and qp queries to oracles New, Ro$-Wrap, Corr and Punc, respectively,
there exists adversaries Bpprf and Baead running in approximately the same time as A such that

Advfind$-cpa
PKW[PPRF,AEAD](A) ≤ 2 ·Advfpr-ro$

PPRF (Bpprf) + Advind$-cpa
AEAD (Baead).

Adversary Bpprf makes at most qn, qro$, qcorr , and qp queries to oracles New, Ro$-Eval, Corr, resp.
Punc. Adversary Baead makes at most qro$ queries to oracles New and Ro$.

Proof. We first leverage the fpr-ro$ security of PPRF to replace the AEAD keys by random ones, then
in a second step apply ind$-cpa security of AEAD to argue that wrapped PKW[PPRF,AEAD] ciphertexts
are indistinguishable from random. The first step consists of a game hop from the original find$-cpa
game, abbreviated G0, to a game G1 which replaces the outputs of PPRF by random AEAD keys in the
implementation of oracle Ro$-Wrap. We bound the difference |Pr [G0]− Pr [G1]| by the distinguishing
advantage of an adversary Bpprf against the fpr-ro$ security of PPRF (cf. Definition 6).

16

Adversary Bpprf draws a random bit b′ and acts as the challenger in game G0. When b′ = 1 adversary
Bpprf simulates the “real world” in the PKW game, wrapping the keys output by adversary A. When
b′ = 0, adversary Bpprf simulates the “random world” and returns random strings in the ciphertext space
of the AEAD scheme in response to challenge queries from A. Finally, when adversary A halts and
outputs bit b∗A, adversary Bpprf returns 1 if b∗A = b′ and 0 otherwise.

Let b denote the random bit drawn by the challenger in the fpr-ro$ game. When b = 1, adversary
Bpprf simulates game G0 for A. When b = 0, the simulation corresponds to game G1. This gives

Advfpr-ro$
PPRF (Bpprf) = |Pr [G0]− Pr [G1]| .

It remains to bound Pr [G1(A)]. A straightforward reduction to the multi-key ind$-cpa security of

AEAD gives Pr
[

Gind$-cpa
AEAD (Baead)

]
= Pr [G1(A)] for an adversary Baead which simulates game G1 for

adversary A. Adversary Baead acts as the challenger in the game, except for when adversary A makes
a query to oracle Ro$-Wrap. To respond to such a query Ro$-Wrap(j,T,H ,K), Baead first queries
oracle New to initiate a new AEAD key. Additionally it increments an internal key counter i by one.
It then issues a (single) query Ro$(i,N0,H ,K), requesting the challenge to be under the new key. The
assumption that adversary A is tag-respecting ensures that this is a sound simulation.

Theorem 3 (PKW[PPRF,AEAD] is find$-rcpa secure). Let PKW[PPRF,AEAD] be the puncturable key-
wrapping scheme in Figure 7. For every adversary A against the find$-rcpa-security of PKW[PPRF,AEAD]
making at most qn, qro$, qw qp and at most qcorr queries to oracles New, Ro$-Wrap, Wrap, Punc
and Corr, respectively, there exists adversaries Baead and Bpprf running in approximately the same time
as A such that

Advfind$-rcpa
PKW[PPRF,AEAD](A) ≤ 2 ·Advfpr-rro$

PPRF (Bpprf) + Advind$-cpa
AEAD (Baead).

Adversary Bpprf makes at most qn, qro$, qw , qp, and qcorr queries to oracles New, Ro$-Eval, Eval,
Punc, resp. Corr. Adversary Baead makes at most qro$ queries to oracles New and Ro$.

Proof idea. The proof follows the same strategy as the proof of Theorem 2, with the only difference that
the first game hop (when the PPRF evaluations used as AEAD keys are replaced by random strings) is
bounded by the advantage of an adversary against the fpr-rro$ security (cf. Definition 6) instead of the
fpr-ro$ security of PPRF. Adversary Bpprf uses the real evaluation oracle Eval present in the fpr-rro$
game to simulate queries to oracle Wrap.

Theorem 4 (PKW[PPRF,AEAD] is find$-1cpa secure). Let PKW[PPRF,AEAD] be the puncturable key-
wrapping scheme in Figure 7. For every adversary A against the find$-1cpa-security of PKW[PPRF,AEAD]
making at most qn queries to oracle New-Ro$-Wrap, there exists adversaries Baead and Bpprf running
in approximately the same time as A such that

Advfind$-1cpa
PKW[PPRF,AEAD](A) ≤ 2 ·Advfpr-1ro$

PPRF (Bpprf) + Advind$-cpa
AEAD (Baead).

Adversary Bpprf makes at most qn queries to oracle New-Ro$-Eval. Adversary Baead makes at most qn
queries to oracle New, and at most qn queries to oracle Ro$, of which at most one under each key.

Proof. We first leverage the security of PPRF to replace the AEAD keys used to encrypt the session keys
in the real world by random ones. We bound the difference in success probability of adversary A as a
result of this change by the distinguishing advantage of an adversary Bpprf in the fpr-1ro$ game. (Def. 6)

Let G0 := Gfind$-1cpa
PKW[PPRF,AEAD] and let G1 be a game which is equivalent to G0, except that the AEAD

keys used to encrypt the challenge session keys are drawn uniformly at random, rather than being the
evaluation of PPRF on the tag chosen by A. The games and code of adversaries for the proof are shown
in Figure 8. Adversary Bpprf draws a random bit b′ and uses this to act as the challenger for adversary
A. To simulate the response to a query New-Ro$-Wrap(T,H ,K), adversary Bpprf queries oracle New-
Ro$-Eval on input T to obtain the punctured PPRF key and a real-or-random evaluation on T. If
b′ = 1, it uses the latter as the AEAD key and encrypts K , as would the challenger in game G0 in
the real world. If b′ = 0, adversary Bpprf simulates the ideal world and instead samples a “ciphertext”
u.a.r. in {0, 1}cl(|K|). The PPRF key and the ciphertext are returned to adversary A. When adversary
A halts and outputs bit b∗A, adversary Bpprf returns 1 if b∗A = b′ and 0 otherwise.

Let b denote the random bit drawn by the challenger in the fpr-1ro$ game. With the strategy
described, adversary Bpprf simulates game G0 for A if b = 1, otherwise game G1. Therefore

Advfpr-1ro$
PPRF (Bpprf) =

∣∣Pr [G0(A)]− Pr [G1(A)]
∣∣.

17

Game G0, G1 :

1 b←$ {0, 1}; u← 0

2 b∗←$ANew-Ro$-Wrap(·,·)()

3 Return b∗ = b

New-Ro$-Wrap(T,H ,K):

4 u++

5 sku←$ PPRF.KeyGen()

6 ska ← PPRF.Eval(sku,T)

7 ska←$ PPRF.Y
8 C1 ← AEAD.Enc(ska,N0,H ,K)

9 C0←$ {0, 1}cl(|K|)

10 sku ← PPRF.Punc(sku,T)

11 Return (sku,Cb)

Adversary BNew-Ro$-Eval
pprf ():

1 b′←$ {0, 1}
2 b∗←$ANew-Ro$-Wrap(·,·)()

3 Return b∗ = b′

New-Ro$-Wrap(T,H ,K):

10 (skp, ska)← New-Ro$-Eval(T)

11 C1 ← AEAD.Enc(ska,N0,H ,K)

12 C0←$ {0, 1}cl(|K|)

13 Return (skp,Cb′)

Adversary BNew,Ro$
aead ():

1 i← 0

2 b∗←$ANew-Ro$-Wrap(·,·)()

3 Return b∗

New-Ro$-Wrap(T,H ,K):

14 skp←$ PPRF.KeyGen()

15 skp ← PPRF.Punc(skp,T)

16 i++; New()

17 C ← Ro$(i,N0,H ,K)

18 Return (skp,C)

Figure 8: Games and adversaries for proof of Theorem 4.

Next, we apply confidentiality of AEAD to finish the proof. A straightforward reduction to the

ind$-cpa security of AEAD gives Pr
[

Gind$-cpa
AEAD (Baead)

]
= Pr [G1(A)] for an adversary Baead which simu-

lates game G1 for adversary A. To create the wrap of session key K in query New-Ro$-Wrap(T,H ,K),
adversary Baead calls oracle New to initialize a new AEAD key. It then relays the header H and session
key K from A to oracle Ro$ in the AEAD game under the index of the new AEAD key, letting K take
the place of the message. When adversary A halts and returns b∗, adversary B also halts and returns
b∗. This way, adversary Baead perfectly simulates game G1 for A. Putting the two reductions together
gives the theorem statement.

Note that for all our forward indistinguishability results, one-time multi-user AEAD security suffices,
since the uniqueness of tags means that each AEAD encryption is performed under a new key. If we
wanted to allow tag-reuse to enable batch puncturing (cf. Footnote 2), our PKW[PPRF,AEAD] scheme
would need to be instantiated with a misuse-resistant AEAD scheme [51] to achieve find$-cpa security.
Interestingly, this straightforward modification is insufficient for find$-rcpa security: the reuse of tags
across real and challenge wrap queries creates a key commitment problem which breaks the reduction.
This could potentially be addressed in an idealized model, cf. [39], but we leave this to future work.

Theorem 5 (PKW[PPRF,AEAD] is int-ctxt secure). Let PKW[PPRF,AEAD] be the puncturable key-
wrapping scheme in Figure 7. For every adversary A against the int-ctxt-security of PKW[PPRF,AEAD]
(Def. 11) making at most qw , qu, qp and qn to oracles Wrap, Unwrap, Punc and New, respectively,
there exists adversaries Baead and Bpprf running in approximately the same time as A such that

Advint-ctxt
PKW[PPRF,AEAD](A) ≤ Advfpr-ro$

PPRF (Bpprf) + Advint-ctxt
AEAD (Baead).

Adversary Bpprf makes at most qw + qu, qp, and qn queries to oracles Ro$-Eval, Punc, resp. New.
Adversary Baead makes at most qw + qu, qw , and qu queries to oracles New, Enc, resp. Dec.

Proof. Let game G0 be equivalent to Gint-ctxt
PKW[PPRF,AEAD], with the algorithms of PKW[PPRF,AEAD] im-

plemented directly using the underlying PPRF and AEAD schemes. We begin by modifying the game
to replace the AEAD keys derived by evaluating PPRF by consistent random strings. Any evaluations
on punctured points are replaced with ⊥. Call the resulting game G1. Any advantage change in this
game hop is bounded by the advantage of an adversary Bpprf against the fpr-ro$ security of PPRF. The
reduction works as follows.

Adversary Bpprf simulates games G0 and G1 for adversary A, using its challenge oracle Ro$-Eval
to request AEAD keys when wrapping and unwrapping session keys. It directly relays any queries to
oracles New and Punc from A to its own corresponding oracles. When adversary A halts, adversary
Bpprf checks if A produced a valid forgery during the game (i.e., if the win flag has been set to true). If
so, adversary Bpprf returns 1 to the challenger in the fpr-ro$ game, else 0.

Let b be the hidden bit drawn by the challenger in the PPRF game. Then Bpprf simulates game G0

for A when b = 1 and G1 when b = 0. By rewriting the advantage of adversary Bpprf , conditioning on

18

the value of b, this gives Advfpr-ro$
PPRF (Bpprf) = |Pr [G0(A)]− Pr [G1(A)]|. Adversary Bpprf makes at most

qw + qu queries to oracle Ro$-Eval and qp queries to oracle Punc.

Next, we design an adversary Baead against the multi-key integrity of AEAD such that Advint-ctxt
AEAD (Baead) ≥

Pr [G1(A)⇒ true]. Adversary Baead simulates game G1 for adversary A, using oracle Enc to wrap and
oracle Dec to unwrap. The key index j used by Baead in its oracle queries is determined by the PKW
key index i and tag T in the query by A. Adversary Baead keeps a table T[·, ·], and each time adversary
A makes a wrap or unwrap query under a new pair (i,T), adversary Baead calls oracle New to initialize
a fresh AEAD key and increments j by 1. It stores the index j of the new AEAD key in T[i,T]. In
subsequent queries from A on (i,T), the index in T[i,T] is used to indicate under which AEAD key the
encryption/decryption should be performed. To simulate puncturing, adversary Baead sets T[i,T] to ⊥
when A submits query Punc(i,T). If the check passes, Baead issues query (T[i,T],N0,H , X) to oracle
Enc, resp. Dec.

This way, adversary Baead perfectly simulates game G1 for A. Additionally Baead wins game Gint-ctxt
AEAD

precisely when adversary A submits a valid forgery and wins game G1. To see this, consider the fol-
lowing two possible cases for a query Unwrap(i,N0,H ,C) that makes adversary A win: (1) There
has not been a prior query Wrap(i,N0,H ,K) such that the result was C . (2) There has been a
prior query Wrap(i,N0,H ,K) such that the result was C , and a query Punc(i,T). In case (1),
Dec(T[i,T],N0,H ,C) is a winning query also in game Gint-ctxt

AEAD . In case (2), the AEAD key repre-
sented by index T(i,T) must be ⊥ by definition of game G1, meaning that the query can in fact not be
a successful forgery. Hence this case is void.

This shows that Pr
[
Gint-ctxt

AEAD (Baead)
]
≥ Pr [G1(A)]. Together with the bound on the first game hop,

this gives the theorem statement.

5 TLS Ticketing

Equipped with a secure instantiation of a puncturable key-wrapping scheme, we now turn our attention
to applications and begin with the Transport Layer Security (TLS) protocol. We show how the ticketing
approach taken in its resumption handshake protocol can be instantiated with a PKW scheme, increasing
forward security of resumed sessions.

A TLS connection between clients and servers begins with the establishment of a shared symmetric
key through a so called handshake. For repeated connections, TLS offers a resumption handshake mode
with better performance, which bootstraps security from a pre-shared key (PSK) established in a prior
full handshake. In TLS 1.3 [49], this is referred to as the PSK mode.

In order to enable a resumption handshake, the so-called “resumption master secret” RMS is derived
in a TLS 1.3 handshake and then used to derive (usually multiple) pre-shared keys for later resumptions.
For each such pre-shared key, the TLS 1.3 server sends the client a unique nonce NT , and both derive
the pre-shared key as PSK ← HKDF.Expand(RMS, "tls13 resumption"‖NT) using the HKDF key
derivation function [42]. The client will store all PSKs established, but the server may outsource this
storage to the client, e.g., by encrypting PSK under a long-term symmetric key, the so-called Session
Ticket Encryption Key (STEK), and sending the resulting ciphertext (as the PSK identifier) to the
client. This process of outsourcing the server-side resumption state to the client is commonly referred to
as ticketing [53], and the identifier hence called a ticket.

One issue with TLS ticketing is that the tickets are generally not forward secret: if an attacker
compromises the STEK, it will be able to recover the PSKs encrypted in prior resumption handshakes,
thereby compromising the security of the concerned sessions. While TLS 1.3 allows for ephemeral Diffie–
Hellman secrets to be mixed into the key derivation, the so-called “early” or “zero round-trip time”
(0-RTT) data that a client can send immediately does not enjoy this protection, and hence would be
exposed if the PSK were to be compromised.

Aviram, Gellert, and Jager (AGJ) [2] recently proposed an approach to achieve forward-secure session
ticketing, giving forward security even for 0-RTT data, through what they call “session resumption
protocols.” In this section we revisit their approach and show how their session resumption mechanism
can be viewed more simply through the lens of puncturable key wrapping: First of all, their construction
is mimicked by our instantiation PKW[PPRF,AEAD] of a PKW from a puncturable PRF and an AEAD
scheme, when tags are chosen (and sent as part of the TLS ticket) as counters. More importantly,
capturing TLS ticketing through the PKW scheme PKW[PPRF,AEAD] allows us to seamlessly switch
to a more privacy-friendly variant: by choosing the tags as random values, we make the entire TLS
ticket random-looking. This avoids the potentially traceable counter element in the AGJ [2] ticketing

19

Client Server(holds ticketing key sk)prior full handshake

. . . establish RMS . . . establish RMS

pick unique NT

PSK← HKDF.Expand(RMS, "tls13 resumption"‖NT)

T←$ PKW.T
C ← PKW.Wrap(sk,T, ε,PSK)

ticket← (T,C)T
ic
ke
tG

en

NewSessionTicket : NT , ticket, . . .
(sent TLS-encrypted)

PSK← HKDF.Expand(RMS, "tls13 resumption"‖NT)

store (ticket : PSK) for resumption

PSK resumption handshake
(holds ticket, PSK) (holds sk)

ClientHello : ticket, . . .

(T,C)← ticket

PSK← PKW.Unwrap(sk,T, ε,C)

sk ← PKW.Punc(sk,T)S
er
ve
rR

es
use PSK for handshake . . . use PSK for handshake . . .

Figure 9: Forward-secure TLS 1.3 0-RTT pre-shared key (PSK) resumption handshake using a punc-
turable key-wrapping scheme PKW (bottom part), based on a session ticket generated by the server and
stored by the client in a prior full handshake (upper part, in gray). The boxed sections can be read
as the PKW-based instantiation of a session resumption protocol [2], with tag sampling and wrapping
corresponding to ticket generation (TicketGen) and unwrapping and puncturing corresponding to session
resumption (ServerRes); the PKW key sk plays the role of the STEK.

proposal, thereby addressing privacy concerns for TLS ticketing, e.g., regarding tracking users on the
web by passive network observers (see [57] for a broader discussion).

When rephrasing the AGJ integration of a session resumption protocol into the TLS 1.3 resumption
handshake [2, Section 4.2, 4.3] as puncturable key wrapping, we found conceptual and technical issues
in their proposed protocol, the security model, and the proof. These prevent their proposal from being
(forward-)secure as-is. We rectify this situation through the following corrections:

1. Ticketing the right key. In AGJ, the TLS 1.3 resumption master secret RMS is encrypted in the
session ticket(s). However, RMS is used to derive multiple pre-shared keys PSK for resumption.
Ticketing RMS thus violates the goal of forward security: an adversary learning RMS from one
ticket can use that value to decrypt prior sessions using a PSK derived from the same RMS.

In our protocol integration (cf. Figure 9), we instead ticket PSK, not RMS, following the TLS 1.3
RFC [49, Section 4.6.1].

2. Accurately modeling tickets and corruption. The security model in AGJ does not reflect the tick-
eting mechanism of a key exchange protocol in how pre-shared secrets are sampled, registered
with parties, and possibly corrupted. This leads to their model, strictly speaking, being unable
to capture the ticketing mechanism of TLS resumption.4 Only allowing server-side corruptions,
their model also fails to capture that an adversary might compromise pre-shared secrets stored by
clients.

In our security model, we integrate the protocol’s ticketing mechanism and allow the adversary to
corrupt both the ticketing mechanism keys of servers, as well as stored secrets of clients.

4E.g., when setting up new pre-shared keys, their model takes the identifier psid of the key as an adversary-provided
input, while psid in fact corresponds to the ticket (honestly) output by the protocol’s ticketing mechanism. This means
that their model is actually unable to capture how tickets are generated by (honest) servers.

20

3. Rectifying proof steps. The security proof for the protocol integration of AGJ [2, Theorem 4] only
uses part of the power of their session resumption primitive (i.e., a single challenge where their
primitive provides many), and also misses some preliminary steps (esp. the necessity of puncture
invariance and consistency, which our PKW formalism brings to light).

In our proof, we add these missing steps and show that reducing to the weaker one-time PKW
security suffices for our integration.

4. Making underlying assumptions precise. The AGJ proof makes two undefined assumptions on the
underlying session resumption resp. PPRF scheme. Formally, this leads to an issue with the
security proof of their construction, which in turn enables a theoretical violation of the formal
integrity claims on their protocol. We give the details in Appendix D.

Through our formalism for puncturable key wrapping and PPRFs, we make the necessary assump-
tions (puncture invariance for PKW, resp. demanding ⊥ output after puncturing for PPRFs) visible
and explicit.

Overall, our exposition stays close to the approach by AGJ, focusing on the necessary corrections. We see
this not only as an illustration that puncturable key wrapping is readily applicable to achieve forward-
secure 0-RTT session resumption, but also that this conceptual framework helps to avoid errors when
integrating puncturing techniques into more complex applications.

5.1 Integration into the TLS 1.3 Handshake

The integration of puncturable key wrapping into the TLS 1.3 resumption handshake for achieving
forward-secure 0-RTT resumption is illustrated in Figure 9. When issuing a ticket in a full handshake
(upper part of Figure 9), the server picks a tag T, wraps the to-be-used pre-shared key PSK using
the PKW scheme under that tag, and sends the tag and resulting ciphertext as the ticket. (This
corresponds to the ticket issuing algorithm TicketGen of AGJ in [2, Fig. 4].) Upon resumption (Figure 9,
bottom part), the client will send this ticket to the server, which the server can use to first unwrap PSK
and then puncture on the tag to achieve forward security. (This corresponds to the session resuming
algorithm ServerRes in [2, Fig. 4].) We remark that while in our abstraction, we set the PKW header to
be empty (ε), this field may in practice be used to authenticate further context of the TLS ticket, like
its belonging to a TLS 1.3 handshake or the name of the server.

Enhancing privacy. We note that for fine-grained security when puncturing on a per-ticket level, the
tag T must not repeat. In the generic construction of a session resumption protocol from a PPRF and
AEAD scheme by AGJ [2, Construction 1], a counter takes the place of the tag in our representation,
incremented with every issued ticket. While this ensures uniqueness, it makes subsequently issued tickets
to the same user linkable and leaks the order in which users return to a server, which may lead to privacy
concerns.5

We therefore suggest employing a random tag T, as this makes the overall ticket a random-looking,
single-use string. In case availability of (true) randomness is of concern, this tag may be sampled through
a randomly-seeded PRG chain. Through our unified, tag-based interface for PKW schemes, this switch
to a more privacy-friendly ticket generation is seamless. The only disadvantage is the possibility of
collisions amongst the randomly chosen tags; this requires us to work with a larger tag space, but does
not overly affect efficiency. For example, in the concrete GGM-based construction for PPRFs (and hence
PKWs), the tree-depth grows linearly with the bit-length of the tags and the tag length needs to be
roughly doubled (compared to the counter-based approach of AGJ) to keep the collision probability
small. Moreover, if key wrapping fails during ticket generation (because the secret key has already been
punctured at the chosen tag), the server can simply re-sample the tag.

Ensuring forward security. The careful reader might have observed that in the protocol TLS13wRES
of AGJ [2, Fig. 4], the integration of session resumption into the TLS 1.3 handshake involves generation
of a ticket on the resumption master secret (RMS) RMS (and NT), while in our integration in Figure 9,
the pre-shared key PSK derived from RMS is wrapped, rather than RMS itself. Our choice of ticketing
(or: wrapping) PSK instead of RMS is deliberate: it corrects a weakness in the AGJ TLS13wRES protocol
which results in the loss of forward security and which actually invalidates their proof.

5Sy et al. [57] discuss how tickets, sent in the clear upon resumption, can be exploited for tracking TLS 1.3 users on the
web.

21

To see this, recall that in TLS 1.3, RMS is used in a full handshake to regularly derive multiple
pre-shared keys PSK (using different nonces NT , which RFC 8446 [49] only requires to be unique, not
secret), allowing the client many resumption connections. An attacker that gets hold of one of these
tickets and compromises the server’s ticketing secret key sk (towards breaching forward security), can
then recover RMS. From there it is possible to derive other PSK values ticketed from RMS in the same
original handshake, even if those other PSK tickets have been processed and punctured on—violating
their forward security.

We address this issue by ticketing PSK and not RMS. This actually follows the TLS 1.3 RFC [49,
Section 4.6.1] which notes that the association ought to be “between the ticket value and a secret PSK
derived from the resumption master secret.”

5.2 Security Model

AGJ [2] study the composition of their session resumption protocol with the TLS 1.3 resumption hand-
shake through a multi-stage key exchange (MSKE) model, slightly adapting the model introduced by
Fischlin and Günther [30, 31]. This modeling reflects that the TLS 1.3 resumption handshake establishes
multiple keys with varying security properties. In particular, it allows to capture the intended forward
security of 0-RTT keys when deploying session tickets based on the session resumption protocol by AGJ.

In a multi-stage key exchange model, an attacker can set up new pre-shared secrets (randomly sampled
by a challenger through a NewSecret oracle) and instruct parties to initiate new sessions using those
secrets (via a NewSession oracle). The adversary is given the ability to eavesdrop on and actively
manipulate (via a Send oracle) the exchanged messages between many protocol participants running,
concurrently, multiple executions of the protocol. The attacker is further allowed to compromise the long-
term secrets of participants (via oracle Corrupt) and to reveal the established session key in stages of
sessions of its choice (via Reveal). Security is then defined in the sense of session key indistinguishability:
the attacker should be unable to tell apart the real session key in a not trivially compromised (“fresh”)
session from a random key, obtained through a Test oracle.

We concur with the approach of AGJ [2] to capture the security of forward-secure TLS resumption
as a multi-stage key exchange protocol. However, we observe that their model requires changes to be
able to indeed capture their proposed protocol, and its envisioned forward security. In the following, we
discuss the core changes needed; as the main parts of the model remain unchanged, we only summarize
it on a high level and refer to AGJ [2] for details.

Associating users and long-term keys. Servers issuing tickets require their long-term keys to be
updated during protocol execution and new PSK registrations. The latter aspect is missing in the AGJ
model: Technically, the adversary is not given access to the actual ticket generation mechanism of the
protocol, a feature clearly required to accurately model the protocol.

We accordingly revise the NewSecret oracle (cf. Figure 10) in AGJ to, beyond sampling a new
random pre-shared secret pss, register this key with both involved parties. The latter is done via
an auxiliary algorithm RegisterSecret defined by the protocol which captures how pre-shared secrets
are stored by both participants. Without ticketing, RegisterSecret would plainly store an association
between psid and pss; this is what prior MSKE models on TLS 1.3 captured [30, 25, 31, 26]. For
ticketing, RegisterSecret encodes the ticket generation procedure missing in the AGJ model; Figure 10
defines it for our instantiation via a puncturable key-wrapping scheme PKW.

Corruptions can also compromise clients. Furthermore, the AGJ model did not allow (client)
secret keys to be corrupted (through oracle Corrupt), unnecessarily resulting in a weaker security
model which does not capture the effects of such compromise. To remedy this, we modify the oracle
Corrupt(U) from AGJ to return pssU , allowing the adversary to also comprise client-side stored secrets.
In our instantiation, this corresponds to leaking the PKW secret key srkU of a server U (as before in
AGJ) and leaking the stored tickets and pre-shared secrets pssU [V, psid] = pss of a client U (new).
(Non–forward-secure stages of sessions that used the leaked keys are set to be revealed.)

5.3 Security Proof

With the revised model in place, we now revisit the security proof of AGJ for integration of session
ticketing into TLS 1.3. We will do so for our adapted instantiation based on a PKW scheme PKW, given

22

NewSecret(U, V): // Set up secret between initiator U and responder V

1 pss←$ PSSSPACE // sample at random from pre-shared secret space

2 (psid, skU , skV)← RegisterSecret(U, V, skU , skV , pss)

3 return psid

RegisterSecret(U, V, skU = (pssU , srkU), skV = (pssV , srkV), pss):

1 T←$ PKW.T // sample random puncturing tag for ticket

2 C ← PKW.Wrap(srkV ,T, ε, pss) // wrap pss under V ’s PKW key srkV

3 psid← (T,C) // psid is the ticket; it consists of tag and wrapping ciphertext

4 pssU [V, psid]← pss // add pss to U ’s list of keys shared with V

5 return (psid, (pssU , srkU), (pssV , srkV))

Figure 10: Revised NewSecret oracle and auxiliary algorithm RegisterSecret capturing our TLS tick-
eting instantiation via a puncturable key-wrapping scheme PKW.

in Figure 9. Our exposition follows the proof structure of AGJ (cf. [2, Section 4.3] for its details), but
focuses on highlighting the necessary changes and corrections.

Theorem 6 (TLS 1.3 with PKW ticketing security (informal)). The TLS 1.3 resumption protocol with
session ticketing based on a PKW scheme PKW as depicted in Figure 9 is a secure multi-stage key
exchange (MSKE) protocol (with forward security from the first stage on), if PKW is puncture invariant,
consistent, and forward indistinguishable under a one-time challenge (find$-1cpa), the further involved
hash function H is collision resistant, and the HKDF extraction and expansion steps satisfy PRF security.

Formally, the advantage of a multi-stage adversary A against the protocol in Figure 9 is bounded as:

AdvMSKE
TLS[PKW](A) ≤ 5ns ·

(
Advcoll

H (B1) + nu · nt/u ·
(
Advfind$-1cpa

PKW (B2)

+ Advdual-PRF
HKDF.Extract(B3) + 2 ·AdvPRF

HKDF.Extract(B4) + 9 ·AdvPRF
HKDF.Expand(B5)

))
,

where ns is the maximum number of sessions, nu the maximum number of users, and nt/u the maximum
number of tickets issued by any user in the key exchange game.

Proof summary. The proof structure follows that of AGJ [2, Theorem 5], adapted to our PKW instan-
tiation and revising some steps based on the TLS 1.3 analysis by Dowling et al. [26]. It proceeds via a
series of game hops, starting with the original multi-stage key exchange game for the protocol in Figure 9,
G0 = GMSKE

TLS[PKW].

1. G0 → G1: Hybrid argument.
The first hop, as in AGJ [2], restricts the adversary A to a single Test query, fixing the test session
in advance at a guessing loss of 5 ·ns, accounting for the 5 stages and up to ns sessions. The hybrid
is detailed in [26, Appendix A].

2. G1 → G2: Hash collisions.
The next hop rules out hash collisions, reducing to the hash function H’s collision resistance and
inducing the additive term Advcoll

H (B1), as in AGJ.

3. G2 → G3: Guessing the involved server identity V and ticket index psid.
Beyond guessing the ticket (index) used in the (single) test session, as done in AGJ, in this game
hop we also need to guess the server V involved in the test session. The latter is missing in AGJ,
but crucially needed; in particular to be able to simulate ticket issuing by that server V before the
test session’s participants are known. This guessing results in a combined loss of nu · nt/u.

4. G3 → G4: Replacing the test session ticket.
This is the core game hop involving the ticketing mechanism’s security (i.e., session resumption
protocol security in AGJ, and the PKW scheme’s forward indistinguishability in our instantiation),
and also where our corrections to the security model become most visible.

In the AGJ proof (Game 4 and reduction B2 in [2, Proof of Theorem 4]), this game is defined to
replace the server’s ticket resumption (ServerRes) in both the tested session and its intended partner
session. However, the latter is not known and—more importantly—only server sessions execute

23

ServerRes while clients use the stored pre-shared secret directly. The reduction B2 then obtains
several (µ) resumption tickets through its game, but only uses the first ticket as the challenge for
the tested session; the handling of further ticket issuing by the involved server is missing.

We rectify this proof step, applying the PKW scheme’s forward indistinguishability find$-1cpa
(one-time instead of many-challenge), puncture invariance (invoked but not defined for session
resumption protocols in AGJ), as well as consistency (a missing aspect in AGJ). Our Game G4

consists of replacing wrapped key C inside the ticket ticket used in the test session by a uniformly
random string. We reduce the advantage difference of A induced by this change to the PKW
scheme’s find$-1cpa security via the following reduction B2:

(a) Our reduction B2 embeds the find$-1cpa PKW instance at the guessed server V , not sampling
that server’s PKW secret key in the reduction itself anymore.

(b) At the outset of the game, B2 issues a single challenge query New-Ro$-Wrap(T, ε,K) (for
a single user) for uniformly random tag T and key K , with empty header H = ε. Key K will
later be embedded as the pre-shared secret into the test session. In return, the reduction B2

obtains a real-or-random challenge wrapping Cb which will serve as part of the ticket ticket
(resp., the ticket identifier, psid) in the test session, as well as the corrupted secret key sk,
punctured on T.

(c) The reduction now uses sk in place of the guessed server V ’s PKW key, in particular to issue
further tickets itself. Consistency and puncture invariance ensure that the resulting tickets
and puncturing (revealed via a potential later compromise of V ’s key) are consistent despite
the challenge ticket being computed ahead of time in the prior step.

(d) When the test session’s ticket is issued via NewSession (guessed in the prior game hop), the
reduction B2 embeds K as the PSK and (T,Cb) as the ticket ticket (and ticket identifier psid)
in the test session (as well as its partner, when that becomes known).

(e) The reduction B2 outputs whether A wins in the key exchange game as its own guess for the
challenge bit b. Depending on b, it simulates either G3 or G4, meaning that A’s advantage
difference between the two is bounded by Advfind$-1cpa

PKW (B2).

Observe that as a result of Game G4, the ticket ticket sent in the tested session is now decoupled
from the used pre-shared secret PSK in that session: both are independently drawn, uniformly
random values. This will allow us to, from here, proceed via a sequence of PRF security game hops
(as in the AGJ proof) to establish key indistinguishability of the derived session keys. We follow
the notation of AGJ and Dowling et al. [26] for these final steps and highlight only the relevant
changes compared to AGJ.

5. G4 → G5: Omitted: In our instantiation, we wrap the PSK directly, so the game hop in which AGJ
move from PSK being derived from RMS to PSK being uniformly random becomes unnecessary.
Recall that the AGJ protocol integration issued tickets on the TLS resumption master secret RMS
instead of the pre-shared key PSK, and that we correct this to ensure that forward security is
actually achieved. Formally, the previous game hop makes the test session’s ticket and PSK inde-
pendent, which would not be the case if RMS was wrapped in the ticket: an adversary could have
server V issue two tickets on RMS, one used for the test session, then compromise V ’s secret key
and decrypt the other ticket to reveal RMS and from that, distinguish the tested key from random.
This attack violates the claimed forward security of session keys in AGJ.

6. G5 → G17: Replacing derived keys with random keys, one at a time.
From the independent and random pre-shared key PSK, we can now derive the session keys in
the TLS resumption protocol through a sequence of twelve PRF (or dual-PRF6) game hops. For
readability, we summarize the 2, resp. 9, advantage terms for PRF security of HKDF.Extract, resp.
HKDF.Expand, under combined reductions B4, resp. B5.

6In place of the rather ad-hoc “HMAC(0, $)-$” assumption on HKDF.Extract deployed in AGJ [2], originating from [31],
we use the dual-PRF assumption also used in [26] to indicate PRF security of HKDF.Extract when keyed through the second
input.

24

6 Protected File Storage

Motivated by the ubiquitous outsourcing of data storage by private individuals and companies alike,
we now turn our focus to our second application, file storage, and show how a PKW scheme can be
used to provide (forward) security for remotely stored sensitive data. To this end, we design a protected
file storage (PFS) system, which provides an interface for local encryption, decryption, and secure file
shredding to a privacy-concerned user. The system is inspired by the internals of cloud storage services
like AWS [4], Google Cloud [34], IBM Cloud [38] and Microsoft Azure [46], but the final primitive is
oblivious to the actual relationship between data owner and storage provider: in a PFS system, all trust
lies with the holder of the secret key. This means that our system can cater both to users who wish to
maintain control over the security of their data (and therefore retain the hold of the secret key) while
offloading storage, and to storage providers who perform data encryption as a service.

The PFS interface is aimed at the former case, and hence hides internals of the system such as the
key hierarchy to minimize the risk of involuntary misuse by an end user. However, it is still designed
to support commonplace attributes of cloud storage systems, such as functionality for key rotation, as
well as additionally providing fine-grained forward security for deleted files. This makes our approach
conformable for use also by cloud service providers who wish to enhance the security guarantees in their
existing systems.

6.1 PFS Syntax

We envision a PFS system to be utilized by a user who holds a set of (plaintext) files that they wish
to protect and outsource the storage of to some storage service (e.g. a cloud). The user generates
a local secret key sk via the setup algorithm Setup(). They can then encrypt and decrypt files via
algorithms EncFile and DecFile, where encrypted files are associated with an identifier id, a header h,
and a ciphertext C , of which the user stores h and C under the “filename” id at the storage service.
(The user may keep a local look-up table mapping human-readable filenames to identifiers id, or decide
to offload this table as yet another protected file to the storage service, too. In the latter case, the
user only needs to store the identifier of the mapping file.) To shred a file, it suffices to locally run the
algorithm ShredFile(sk, id) on the file identifier to be shredded. This will ensure that the corresponding
file is irrecoverable (forward secure) from this point on; remote deletion at the service provider is not
required to ensure its forward security. Finally, a user may rotate its secret key (e.g., for regulatory
purposes or to refresh the key once its usage limit has been reached), which is done through calling a
RotKey algorithm, taking the current list of file identifiers and headers as input and updating them with
new headers to be replaced at the storage provider. Formally, a PFS scheme has the following syntax.

Definition 12 (PFS scheme). A protected file storage scheme PFS = (Setup,EncFile,DecFile,ShredFile,
RotKey) is a 5-tuple of algorithms with four associated sets; the secret key space SK, the file space F ,
the file identifier space I, and the header space H. Associated to the PFS is a ciphertext-length function
cl : N→ N.

� Via sk←$ Setup(), the probabilistic setup algorithm Setup, taking no input, produces a secret key
sk ∈ SK.

� Via (id,h,C)/⊥←$ EncFile(sk,F), the randomized file encryption algorithm EncFile on input the
secret key sk ∈ SK and a plaintext file F ∈ F produces a file identifier id ∈ I, a header h ∈ H and
a ciphertext C ∈ {0, 1}cl(|F|) or, to indicate failure, ⊥.

� Via F/⊥ ← DecFile(sk, id,h,C), the deterministic file decryption algorithm DecFile on input the
key sk ∈ SK, a file header h ∈ H, and a ciphertext C ∈ {0, 1}∗ returns a file plaintext F ∈ F or,
to indicate failure, ⊥.

� Via sk′ ← ShredFile(sk, id), the deterministic file shredding algorithm ShredFile on input the secret
key sk ∈ SK and a file identifier id ∈ I returns the updated secret key sk′ ∈ SK.

� Via (sk′, (h′1, . . . ,h
′
`))/(sk

′,⊥)←$ RotKey(sk, ((id1,h1), . . . , (id`,h`))), the randomized key-rotation
algorithm RotKey on input the secret key sk ∈ SK and a list of file identifier-header pairs (id1,
h1), . . . , (id`,h`) ∈ (I × H)∗ returns the potentially updated secret key sk′ ∈ SK and a sequence
of updated headers (h′1, . . . ,h

′
`) ∈ H∗ or, to indicate failure, ⊥.

25

Game Gfind$-rcpa
PFS (A):

1 b←$ {0, 1}; sk←$ Setup()

2 R← (); Q ← ()

3 S$id ← ∅; corr← false

4 b∗←ARo-Enc,Enc,Shred,RotKey,Corr()

5 Return b∗ = b

Ro$-Enc(F):

6 If corr = true then return ⊥
7 (id1, h1,C1)←$ EncFile(sk,F)

8 If (id1, h1,C1) = ⊥:

9 Return ⊥
10 id0←$ I; h0←$H
11 C0←$ {0, 1}cl(|F|)

12 R += (idb, hb)

13 S$id
∪←− {idb}

14 Return (idb,hb,Cb)

Enc(F):

15 (id, h,C)←$ EncFile(sk,F)

16 Q += (id, h)

17 Return (id,h,C)

Shred(id):

18 sk ← ShredFile(sk, id)

19 R−= (id, ∗); Q −= (id, ∗); S$id ← S$id \ {id}

RotKey():

20 ((id1,h1), . . . , (id|R|, h|R|))← R

21 ((id|R|+1, h|R|+1), . . . , (id|R|+|Q|, h|R|+|Q|))← Q

22 If b = 0:

23 For i = 1 to |R| do h′i←$H
24 (sk, (h′|R|+1, . . . , h

′
|R|+|Q|))←$ RotKey(sk,Q)

25 If (h′|R|+1, . . . , h
′
|R|+|Q|) = ⊥ then return ⊥

26 If b = 1:

27 (sk, (h′1, . . . , h
′
|R|+|Q|))←$ RotKey(sk,R‖Q)

28 If (h′1, . . . , h
′
|R|+|Q|) = ⊥ then return ⊥

29 R← ((id1, h
′
1), . . . , (id|R|, h

′
|R|))

30 Q ← ((id|R|+1, h
′
|R|+1), . . . , (id|R|+|Q|,h

′
|R|+|Q|))

31 corr← false

32 Return R‖Q

Corr():

33 If S$id 6= ∅ then return ⊥
34 corr← true

35 Return sk

Figure 11: Confidentiality and forward security (find$-rcpa) game for a protected file storage scheme
PFS. Grey code prevents trivial attacks. Lists R and Q keep track of file identifiers and headers currently
in the system for the sake of key rotation. We write L−= (id, ∗) to denote removing all tuples of which
the first element equals id from a list L.

Correctness. The functionality that we require from a protected file storage system is that non-
shredded files can be correctly decrypted, even after key rotations. Somewhat more formally, we call a
PFS scheme correct if decryption of a file ciphertext works with overwhelming probability, even after
multiple key rotations, as long as the header has been updated in each key rotation and the file has not
been shredded at any point.

We note that although one could in theory “delete” files from the system by omitting them as input
when rotating the key, the intention is for the entire list of current file identifiers and headers to be used
as input to RotKey. For forward security, the shredding algorithm should be used.

6.2 Confidentiality and Integrity of PFS

Confidentiality and forward security. A protected file storage scheme should provide confidentiality
of the stored files, including their metadata (file identifiers and headers), as well as forward security when
files have been shredded. Additionally, key rotation should allow the scheme to recover from corruption,
ensuring security of newly encrypted files.

We capture this form of confidentiality through the notion of forward indistinguishability from random
bits under real and chosen-plaintext attack (find$-rcpa). In the find$-rcpa security game, given in
Figure 11, the adversary is asked to distinguish real from random outputs of a challenge real or $

encryption oracle Ro$-Enc. We emphasize that indistinguishability here encompasses both the file
ciphertext and metadata (i.e., identifier and header), encoding a strong form of privacy. The game
further allows the adversary to shred files (via the oracle Shred) and to rotate keys (via RotKey),
leading to an update of the headers of all non-shredded files. We encode forward security via a Corr
oracle, through which the adversary may ultimately learn the user’s current secret key, provided that it
shredded all challenge files (to prevent trivial distinguishing attacks) and does not make further challenge
queries on that key. Furthermore, we allow new challenge queries after a successful key rotation, which
captures security being regained after key rotation in which the adversary remained passive, a form
of post-compromise security [22]. In order to capture potential leakage from unshredded files in the
system which a real-world adversary would gain access to when corrupting a user’s secret key, the game

26

Game Gint-ctxt
PFS (A):

1 sk←$ Setup()

2 S ← ∅; win← false

3 AEnc,Dec,Shred,RotKey()

4 Return win

Enc(F):

5 (id, h,C)←$ EncFile(sk,F)

6 S ∪←− {(id, h,C)}
7 Return (id, h,C)

Dec(id, h,C):

8 F ← DecFile(sk, id, h,C)

9 If (id,h,C) /∈ S and F 6= ⊥:

10 win← true

11 Return F

Shred(id):

12 sk ← ShredFile(sk, id)

13 S ← S \ {(id, ∗, ∗)} // Remove trivial attack prevention
when correctness no longer applies.

RotKey(((id1,h1), . . . , (id`, h`))):

14 (sk, (h′1, . . . , h
′
`))←$ RotKey(sk, ((id1, h1), . . . , (id`, h`)))

15 If (h′1, . . . , h
′
`) = ⊥ then return ⊥

16 Snew ← ∅
17 For (id,h,C) ∈ S do:

18 If ∃i ∈ {1, . . . , `} s.t. (id, h) = (idi,hi):

19 Snew
∪←− {(idi, h′i,C)}

20 S ← Snew
21 Return ((id1, h

′
1), . . . , (id`, h

′
`))

Figure 12: Integrity of ciphertexts game for a protected file storage scheme PFS. Grey code prevents
trivial attacks.

additionally includes a real encryption oracle Enc, which provides the adversary with honest encryptions
of plaintexts of its choice that do not need to be shredded prior to corruption.

Definition 13 (PFS confidentiality (find$-rcpa)). Let PFS be a protected file storage scheme and

Gfind$-rcpa
PFS be the game defined in Figure 11. We define the advantage of an adversary A against the

find$-rcpa security of PFS as

Advfind$-rcpa
PFS (A) = 2

∣∣∣∣Pr
[

Gfind$-rcpa
PFS (A)⇒ true

]
− 1

2

∣∣∣∣ .
Integrity. In addition to confidentiality and privacy, a PFS scheme should also provide integrity of
ciphertexts for the files in the system. We define this notion via the game in Figure 12. The adversary’s
goal here is to come up with a file tuple (id,h,C) that was not output by the encryption oracle Enc,
or has been shredded (using oracle Shred), yet successfully decrypts (in the decryption oracle Dec).
The game further provides access to a key rotation oracle RotKey; in contrast to the find$-rcpa game,
this is strengthened to take adversarially-chosen file identifiers and headers as input. This captures that
a malicious storage service might inject forged identifiers and headers into a user’s storage or omit files
from key rotation.

Definition 14 (PFS integrity (int-ctxt)). Let PFS be a protected file storage scheme and Gint-ctxt
PFS be

the game defined in Figure 12. We define the advantage of an adversary A against the int-ctxt security
of PFS as

Advint-ctxt
PFS (A) = Pr

[
Gint-ctxt

PFS (A)⇒ true
]
.

On human-friendly filenames. The file identifiers generated by a PFS system are required to be
indistinguishable from random bits in order to give maximum metadata privacy against a curious cloud
service provider. This security guarantee comes with the drawback that filenames are not freely choosable
by the user, which can make file management less intuitive. As mentioned above, a potential remedy
to this is to let the application layer running on top of the PFS system maintain an internal mapping
between user-specified filenames and the file identifiers generated by the system. The mapping can be
made forward-secure if it is placed in a special file and encrypted by the PFS system. Whenever a file in
the PFS is shredded, the file id of the shredded file and the corresponding filename in the mapping file is
deleted and the mapping encrypted anew. The old version of the mapping file can then be shredded, so
that the plaintext filename of the shredded file is hidden even in the event of a future key compromise.

We remark that this kind of naive solution is directly supported by the PFS system as presented. If
one would wish to achieve the same functionality in a more efficient way, the system could be tailored
to treat the mapping file differently from other files in the system. For example, by using a special
separate key to encrypt the mapping file, forward security could be achieved for filenames of shredded

27

Setup():

1 sk←$ PKW.KeyGen()

2 Return sk

EncFile(sk,F):

3 K ←$ {0, 1}k ; id←$ {0, 1}t

4 h← PKW.Wrap(sk, id, ε,K)

5 If h = ⊥ then return ⊥
6 N ←$ {0, 1}n

7 C ← AEAD.Enc(K,N , ε,F)

8 Return (id, h,N‖C)

DecFile(sk, id, h,N‖C):

9 K ← PKW.Unwrap(sk, id, ε, h)

10 F ← AEAD.Dec(K,N , ε,C)

11 Return F

ShredFile(sk, id):

12 sk′ ← PKW.Punc(sk, id)

13 Return sk′

RotKey(skold, (id1, h1), . . . , (id`,h`)):

14 sknew←$ PKW.KeyGen()

15 For i = 1 to ` do:

16 Ki ← PKW.Unwrap(skold, idi, ε, hi)

17 h′i ← PKW.Wrap(sknew, idi, ε,Ki)

18 If h′i = ⊥ then return (skold,⊥)

19 Return (sknew, (id1, h
′
1), . . . , (id`, h

′
`))

Figure 13: Construction of a protected file storage scheme PFS[PKW,AEAD] from a puncturable key-
wrapping scheme PKW and an AEAD scheme AEAD. The PKW scheme has wrap-key space {0, 1}k
and tag space {0, 1}t. The AEAD scheme has key space {0, 1}k and nonce space {0, 1}n. Hence, for the
resulting PFS scheme, I = {0, 1}t, H = {0, 1}PKW.cl(k), and PFS.cl(|F|) = n + AEAD.cl(|F|).

files by updating the key in a step-wise fashion (e.g. using ratcheting techniques), rather than by using
the shredding algorithm of the PFS system.

6.3 Instantiating PFS from PKW and AEAD

We now construct a generic PFS scheme PFS[PKW,AEAD] from a puncturable key-wrapping scheme PKW,
which will handle the key management, and an authenticated encryption scheme with associated data AEAD,
handling the actual file encryption. The construction, formalized in Figure 13, works as follows.

Setup generates a PKW key sk, which—for reference to cloud storage and its key-wrapping functionality—
we refer to as the key encryption key (KEK).

EncFile first samples an AEAD “data encryption key” (DEK) and a file identifier id at random, and
wraps DEK under the KEK into a file header h, using id as tag.7 It then AEAD-encrypts the file
plaintext under DEK and a random8 nonce N into a ciphertext C ; N‖C constitutes the PFS file
ciphertext.

DecFile inverts file encryption by first unwrapping the DEK from the header and then using it to decrypt
the file ciphertext.

ShredFile punctures the KEK sk on a file identifier id, using the PKW puncturing algorithm. This
effectively prevents future unwrapping of the DEK wrapped with tag id, and hence file decryptions
of files with this identifier.

RotKey first unwraps the DEKs in all headers it is handed, then samples a fresh KEK to re-wrap them.
The PKW tags are re-used in this process, ensuring that encrypted files keep their identifiers across
key rotations.

Security from puncturable key wrapping. The following theorems state that the construction
meets the security goals for a protected file storage system. We establish confidentiality in Theorems 7

7Our construction leaves the PKW header empty. In practice, this field may be used to authenticate control data of the
DEK, such as expiration date or permitted usage.

8Our construction only uses a single AEAD nonce N per any one data encryption key DEK, which would allow using
a fixed nonce. We still sample a random nonce to enable file updates/re-encryption as a potential extension to our
construction.

28

and 8 and integrity in Theorem 9. Notably, our two confidentiality results follow different paths: Theo-
rem 7 employs weak one-time (find$-1cpa) PKW security in a hybrid together with puncture invariance
and consistency to establish confidentiality for our PFS scheme. Theorem 8 in contrast shows our con-
struction achieves the same goal in a tight manner if the underlying PKW scheme meets the stronger
find$-rcpa notion. While the latter notion is currently only known to be achievable from strong (fpr-
rro$) PPRF security, the route of Theorem 8 may still be interesting as it does not require puncture
invariance and consistency, properties which we expect schemes with non-perfect correctness (e.g., em-
ploying Bloom filters), would not achieve. We state the theorems and provide proof sketches below. For
the full proofs, see Appendix E.

Theorem 7 (PFS[PKW,AEAD] is find$-rcpa secure, via PKW find$-1cpa). Let PFS[PKW,AEAD] be
the PFS construction in Figure 13 with file identifier space I = {0, 1}t. If PKW is puncture invari-
ant and consistent (Definitions 8 and 9), then for every adversary A against the find$-rcpa security
(Definition 13) of PFS[PKW,AEAD] making at most qro$, qe, resp. m− 1 queries in total to its oracles
Ro$-Enc, Enc, and RotKey, and at most qs queries to oracle Shred between each query to the key
rotation oracle RotKey, there exists adversaries Bpkw and Baead running in approximately the same time
as A such that

Advfind$-rcpa
PFS[PKW,AEAD](A) ≤ 2qro$

(
(2qs + qe + qro$ − 1)

2t
+m ·Advfind$-1cpa

PKW (Bpkw)+m ·Advind$-cpa
AEAD (Baead)

)
.

Adversary Bpkw makes at most m queries to oracle New-Ro$-Wrap. Adversary Baead makes one query
each to its oracles New and Ro$.

Proof idea. (For full proof, see Appendix E.1.)The proof proceeds by a series of six game hops, starting

with game G0 = Gfind$-rcpa
PFS[PKW,AEAD]. Let Advi(A) := 2

∣∣Pr [Gi(A)]− 1
2

∣∣ for i ∈ {0, . . . , 6}. By key phase

we denote the period between two consecutive key rotation queries.

G0 → G1: We begin by excluding, via a bad event [7], that the (real- or ideal-world) challenge file
identifier coincides with one already shredded in the current key phase, since the output of wrapping with
such an identifier as tag is undefined and hence possibly distinguishable from the ideal-world behavior.
The probability of this happening is upper-bounded by 2qro$ · qs2t .

G1 → G2: We reduce the qro$ Ro$-Enc challenge queries to a single one via a hybrid argument, yielding
an adversary A′ making a single query to Ro$-Enc and at most qe + qro$ − 1 queries to Enc, such that
Adv1(A) = qro$ ·Adv2(A′).

G2 → G3: Next, we exclude that PKW tags used for the (at most qe + qro$ − 1) real encryption queries
prior to the challenge query collide with the (single) challenge tag, a bad event occurring with probability
at most qe+qro$−1

2t .

G3 → G4: The challenger now guesses in which of the at most m key phases the challenge encryption
occurs; silencing the output otherwise loses a factor of m.

G4 → G5: We can now apply the find$-1cpa security of PKW through a reduction Bpkw to replace the
header in the challenge encryption by a random string. This step requires PKW’s puncture invariance
and consistency to reorder the challenge PKW wrap in the reduction; the latter makes at most m queries
to oracle New-Ro$-Wrap and yields |Pr [G4]− Pr [G5]| ≤ Advfind$-1cpa

PKW (Bpkw).

G5 → G6: Finally, we replace the challenge file ciphertext with a random string via a reduction Baead
to the AEAD scheme’s ind$-cpa security, which yields |Pr [G5]− Pr [G6]| ≤ Advind$-cpa

AEAD (Baead). After
this step, Adv6(A) = 0.

Theorem 8 (PFS[PKW,AEAD] is find$-rcpa secure, via PKW find$-rcpa). Let PFS[PKW,AEAD] be the
PFS construction in Figure 13 with file identifier space I = {0, 1}t. For every adversary A against the
find$-rcpa security (Definition 13) of PFS[PKW,AEAD] making at most qro$, qe, qcorr , resp. qrk queries
in total to its oracles Ro$-Enc, Enc, Corr and RotKey, and at most qs queries to oracle Shred
between each query to oracle RotKey, there exists adversaries Bpkw and Baead running in approximately
the same time as A such that

Advfind$-rcpa
PFS[PKW,AEAD](A) ≤ 2 ·

(
2qro$qs

2t
+

(qe + qro$)2

2t+1
+ Advfind$-rcpa

PKW (Bpkw) + Advind$-cpa
AEAD (Baead)

)
.

29

Adversary Bpkw makes at most qrk + 1, qro$(qrk + 1), qe(qrk + 1), qcorr and qrk · qs queries to oracles
New, Ro$-Wrap, Wrap, Corr and Punc, respectively. Adversary Baead makes at most qro$ queries
each to its oracles New and Ro$.

Proof idea. (For full proof, see Appendix E.2.) The proof does four game hops, starting from G0 =

Gfind$-rcpa
PFS[PKW,AEAD], using similar notation as in the proof of Theorem 7. The core difference to Theorem 7 is

that the find$-rcpa security of the PKW scheme allows us to directly simulate the many challenge (and
interleaved encryption) queries, without the need for reordering and a hybrid-argument reduction to a
single challenge.

G0 → G1: We first exclude real- and ideal-world challenge file identifiers colliding with shredded ones,
yielding the term 2qro$qs

2t as in the proof of Theorem 7.

G1 → G2: We next exclude any collisions of sampled file identifiers among (real and challenge) encryption

queries. By the birthday bound, such collisions happen with probability at most (qe+qro$)2

2t+1 .

G2 → G3: We can now replace challenge headers by random strings through a reduction Bpkw to the
find$-rcpa security of PKW which makes at most qro$ + qro$ · qrk , resp. qe + qe · qrk queries to oracle
Ro$-Wrap resp. Wrap to simulate oracles Ro$-Enc and RotKey, resp. Enc and RotKey. This
yields |Pr [G2]− Pr [G3]| ≤ Advfind$-rcpa

PKW (Bpkw).

G3 → G4: Finally, we can replace file ciphertexts with random strings as in the proof of Theorem 7,
completing the bound with |Pr [G3]− Pr [G4]| ≤ Advind$-cpa

AEAD (Baead), as afterwards Adv4(A) = 0.

Theorem 9 (PFS[PKW,AEAD] is int-ctxt secure). Let PFS[PKW,AEAD] be the PFS construction in
Figure 13 with file identifier space I = {0, 1}t. For every adversary A against the int-ctxt security of
PFS[PKW,AEAD], making at most qe queries to oracle Enc, there exist adversaries Bpkw, Cpkw and Baead
running in approximately the same time as A such that

Advint-ctxt
PFS[PKW,AEAD](A) ≤ q2

e

2t+1
+ Advint-ctxt

PKW (Bpkw) + Advfind$-cpa
PKW (Cpkw) + Advint-ctxt

AEAD (Baead),

where t is the bit length of the file identifiers.
Let qe, qd, qs and qrk be the maximum number of queries by adversary A to oracle Enc, Dec, Shred

and RotKey, respectively. Furthermore let h be the maximum number of file identifier and header pairs
in any one query to oracle RotKey. Then adversary Bpkw makes at most qrk +1 queries to oracle New,
qe +h ·qrk queries to oracle Wrap, qd +h ·qrk queries to oracle Unwrap and qs queries to oracle Punc
in game Gint-ctxt

PKW . Adversary Cpkw makes at most qrk + 1 queries to oracle New, qe + h · qrk queries to

oracle Ro$-Wrap and qs queries to oracle Punc in game Gfind$-cpa
PKW . Adversary Baead makes at most qe

calls to oracle New, qe calls to oracle Enc and qd calls to oracle Dec in game Gint-ctxt
AEAD .

Proof idea. (For full proof, see Appendix E.3.) The proof has three game hops, starting from G0 =
Gint-ctxt

PFS[PKW,AEAD].

G0 → G1: First, we exclude tag collisions in the underlying PKW scheme to remove the need to handle
encryption queries with coinciding file identifiers. The probability of such is upper bounded via the

birthday bound by
q2
e

2t+1 .

G1 → G2: Next, we apply integrity of ciphertexts of the PKW scheme to ensure that in any tuple
(id,h,C) which successfully decrypts, the file identifier and header (id,h) were honestly generated by
the wrap algorithm of the PKW scheme in a previous encryption query. Since (id,h) fully determines
the data encryption key9, this means that all forgery attempts occur under an AEAD key which has
been wrapped by the PKW scheme during a preceding encryption query. Via a reduction Bpkw, this step

is bounded by Advint-ctxt
PKW (Bpkw).

G2 → G3: In the last game hop we reduce to PKW find$-cpa security to replace all headers by random
strings, introducing the bound Advfind$-cpa

PKW (Cpkw). The DEKs used for file encryption and decryption are

9The construction PFS[PKW,AEAD] leaves the PKW header field empty, hence (id,h) determines the wrapped K via
the determinism of PKW.Unwrap.

30

thus independent from the headers, and by construction they are sampled u.a.r. by the file encryption
algorithm.

The adversary’s advantage in game G3 is finally bounded by the advantage Advint-ctxt
AEAD (Baead) of a

reduction to the multi-key integrity of AEAD.

7 Discussion and Future Work

Our approach to PKW integrates a flexible tag-based approach [35] with classical key wrapping [51].
We build PKW generically from PPRF and AEAD, focusing on applications which require fine-grained
forward security. For applications where batch puncturing might be useful, deploying nonce-misuse
resistant AEAD would allow tags to be reused, achieving a stronger version of our main find$-cpa
security notion. Interestingly, proving the (even stronger) find$-rcpa security of such an instantiation
runs into a key commitment problem; whether resolving this needs idealized models (cf. [39]) or can be
done in the standard model is an interesting open problem.

We introduced several new definitions for PPRFs, motivated by their use in constructing PKW
schemes and realizing our target applications. Making a full investigation of how these notions relate to
existing definitions, and how they can be efficiently realized, would be of foundational interest.

Our PKWs and the PPRFs they are built from are not private [11]; we could potentially obtain
improved privacy after client compromise for our PFS system if they were, cf. [58]. Finding practically
efficient private PPRFs and building private PKW schemes from them is an open problem whose solution
would have immediate applications.

Our work on TLS session resumption assumes the server’s key is held and operated on by a single
server. Yet distributed server environments are common in TLS deployments, to reduce latency and
improve scalability. It would be useful to extend our work to this setting. The challenge is to maintain
appropriate synchronization amongst the punctured keys held by the servers.

The applications we treat in this work are a sample from the set of possible use-cases for PKW. They
already demonstrate that it is a useful abstraction. Examining further potential applications where
puncturable key wrapping can be integrated, such as in symmetric key exchange [15] and DUKPT [18],
would be interesting future work.

Acknowledgments

We thank the anonymous reviewers for their helpful comments. Felix Günther has been supported in
part by Research Fellowship grant GU 1859/1-1 of the German Research Foundation (DFG).

References

[1] Nimrod Aviram, Kai Gellert, and Tibor Jager. Session resumption protocols and efficient forward
security for TLS 1.3 0-RTT. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part II, volume 11477 of LNCS, pages 117–150. Springer, Heidelberg, May 2019.

[2] Nimrod Aviram, Kai Gellert, and Tibor Jager. Session resumption protocols and efficient forward
security for TLS 1.3 0-RTT. Journal of Cryptology, 34(3):20, July 2021.

[3] Gildas Avoine, Sébastien Canard, and Löıc Ferreira. Symmetric-key authenticated key exchange
(SAKE) with perfect forward secrecy. In Stanislaw Jarecki, editor, CT-RSA 2020, volume 12006 of
LNCS, pages 199–224. Springer, Heidelberg, February 2020.

[4] AWS. Protecting data using client-side encryption. http://docs.aws.amazon.com/AmazonS3/

latest/dev/UsingClientSideEncryption.html.

[5] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-user setting:
Security proofs and improvements. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of
LNCS, pages 259–274. Springer, Heidelberg, May 2000.

[6] Mihir Bellare, Ruth Ng, and Björn Tackmann. Nonces are noticed: AEAD revisited. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages
235–265. Springer, Heidelberg, August 2019.

31

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html

[7] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages
409–426. Springer, Heidelberg, May / June 2006.

[8] Mihir Bellare, Igors Stepanovs, and Brent Waters. New negative results on differing-inputs obfus-
cation. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 792–821. Springer, Heidelberg, May 2016.

[9] Matt Blaze. A cryptographic file system for UNIX. In Dorothy E. Denning, Raymond Pyle, Ravi
Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS 93, pages 9–16. ACM Press,
November 1993.

[10] Dan Boneh, Sam Kim, and Hart William Montgomery. Private puncturable PRFs from standard
lattice assumptions. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part I, volume 10210 of LNCS, pages 415–445. Springer, Heidelberg, April / May 2017.

[11] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions privately. In Serge
Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages 494–524. Springer, Heidelberg, March
2017.

[12] Dan Boneh and Richard J. Lipton. A revocable backup system. In USENIX Security 96. USENIX
Association, July 1996.

[13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages
280–300. Springer, Heidelberg, December 2013.

[14] Boxcryptor. Boxcryptor security for your cloud. https://www.boxcryptor.com/.

[15] Colin Boyd, Gareth T. Davies, Bor de Kock, Kai Gellert, Tibor Jager, and Lise Millerjord. Sym-
metric key exchange with full forward security and robust synchronization. In Mehdi Tibouchi
and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of LNCS, pages 681–710.
Springer, Heidelberg, December 2021.

[16] Colin Boyd and Kai Gellert. A modern view on forward security. Comput. J., 64(4):639–652, 2021.

[17] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions.
In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519. Springer, Heidelberg,
March 2014.

[18] Eric Brier and Thomas Peyrin. A forward-secure symmetric-key derivation protocol - how to improve
classical DUKPT. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 250–
267. Springer, Heidelberg, December 2010.

[19] Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC1 from LWE. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of
LNCS, pages 446–476. Springer, Heidelberg, April / May 2017.

[20] Weikeng Chen, Thang Hoang, Jorge Guajardo, and Attila A. Yavuz. Titanium: A metadata-hiding
file-sharing system with malicious security. In NDSS 2022. The Internet Society, 2022.

[21] Weikeng Chen and Raluca Ada Popa. Metal: A metadata-hiding file-sharing system. In NDSS 2020.
The Internet Society, February 2020.

[22] Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. On post-compromise security. In
Michael Hicks and Boris Köpf, editors, CSF 2016 Computer Security Foundations Symposium, pages
164–178. IEEE Computer Society Press, 2016.

[23] David Derler, Tibor Jager, Daniel Slamanig, and Christoph Striecks. Bloom filter encryption and
applications to efficient forward-secret 0-RTT key exchange. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 425–455. Springer,
Heidelberg, April / May 2018.

[24] Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. Authentication and authenticated
key exchanges. Designs, Codes and Cryptography, 2(2):107–125, June 1992.

32

https://www.boxcryptor.com/

[25] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic analysis of
the TLS 1.3 handshake protocol candidates. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, ACM CCS 2015, pages 1197–1210. ACM Press, October 2015.

[26] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic analysis of
the TLS 1.3 handshake protocol. Journal of Cryptology, 34(4):37, October 2021.

[27] Morris Dworkin. Recommendation for block cipher modes of operation: Methods for key wrapping.
NIST Special Publication SP 800-38F, 2012.

[28] Adam Everspaugh, Kenneth G. Paterson, Thomas Ristenpart, and Samuel Scott. Key rotation for
authenticated encryption. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part III,
volume 10403 of LNCS, pages 98–129. Springer, Heidelberg, August 2017.

[29] Ariel J. Feldman, William P. Zeller, Michael J. Freedman, and Edward W. Felten. Sporc: Group
collaboration using untrusted cloud resources. In OSDI 20210, 2010.

[30] Marc Fischlin and Felix Günther. Multi-stage key exchange and the case of Google’s QUIC protocol.
In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages 1193–1204. ACM
Press, November 2014.

[31] Marc Fischlin and Felix Günther. Replay attacks on zero round-trip time: The case of the TLS 1.3
handshake candidates. In EuroS&P 2017, pages 60–75. IEEE, April 2017.

[32] Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and Vanishree Rao. Adaptive secu-
rity of constrained PRFs. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II,
volume 8874 of LNCS, pages 82–101. Springer, Heidelberg, December 2014.

[33] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (extended
abstract). In 25th FOCS, pages 464–479. IEEE Computer Society Press, October 1984.

[34] Google. Encryption at rest in Google Cloud. https://cloud.google.com/security/encryption/
default-encryption.

[35] Matthew D. Green and Ian Miers. Forward secure asynchronous messaging from puncturable encryp-
tion. In 2015 IEEE Symposium on Security and Privacy, pages 305–320. IEEE Computer Society
Press, May 2015.

[36] Christoph G. Günther. An identity-based key-exchange protocol. In Jean-Jacques Quisquater and
Joos Vandewalle, editors, EUROCRYPT’89, volume 434 of LNCS, pages 29–37. Springer, Heidel-
berg, April 1990.

[37] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 0-RTT key exchange with full forward
secrecy. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part III,
volume 10212 of LNCS, pages 519–548. Springer, Heidelberg, April / May 2017.

[38] IBM. Protecting data with envelope encryption. https://cloud.ibm.com/docs/key-protect?

topic=key-protect-envelope-encryption.

[39] Joseph Jaeger and Nirvan Tyagi. Handling adaptive compromise for practical encryption schemes.
In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of
LNCS, pages 3–32. Springer, Heidelberg, August 2020.

[40] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable
pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti
Yung, editors, ACM CCS 2013, pages 669–684. ACM Press, November 2013.

[41] Michael Klooß, Anja Lehmann, and Andy Rupp. (R)CCA secure updatable encryption with integrity
protection. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476
of LNCS, pages 68–99. Springer, Heidelberg, May 2019.

[42] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In Tal Rabin,
editor, CRYPTO 2010, volume 6223 of LNCS, pages 631–648. Springer, Heidelberg, August 2010.

33

https://cloud.google.com/security/encryption/default-encryption
https://cloud.google.com/security/encryption/default-encryption
https://cloud.ibm.com/docs/key-protect?topic=key-protect-envelope-encryption
https://cloud.ibm.com/docs/key-protect?topic=key-protect-envelope-encryption

[43] Billy Lau, Simon P. Chung, Chengyu Song, Yeongjin Jang, Wenke Lee, and Alexandra Boldyreva.
Mimesis aegis: A mimicry privacy shield-A system’s approach to data privacy on public cloud. In
Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014, pages 33–48. USENIX Association,
August 2014.

[44] Anja Lehmann and Björn Tackmann. Updatable encryption with post-compromise security. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of
LNCS, pages 685–716. Springer, Heidelberg, April / May 2018.

[45] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi, Mike Dahlin, and
Michael Walfish. Depot: Cloud storage with minimal trust. ACM Trans. Comput. Syst., 29(4), dec
2011.

[46] Microsoft. Azure Data Encryption at rest. https://docs.microsoft.com/en-us/azure/

security/fundamentals/encryption-atrest.

[47] E. Miller, D. Long, W. Freeman, and B. Reed. Strong security for distributed file systems. In Con-
ference Proceedings of the 2001 IEEE International Performance, Computing, and Communications
Conference, pages 34–40, 2001.

[48] Shaun Nichols. Dropbox: Oops, yeah, we didn’t actually delete all your files this bug kept them
in the cloud. https://www.theregister.com/2017/01/24/dropbox_brings_old_files_back_

from_dead/, 2017.

[49] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (Proposed
Standard), August 2018.

[50] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi Atluri, editor,
ACM CCS 2002, pages 98–107. ACM Press, November 2002.

[51] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-wrap problem.
In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 373–390. Springer,
Heidelberg, May / June 2006.

[52] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press, May / June
2014.

[53] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig. Transport Layer Security (TLS) Session Re-
sumption without Server-Side State. RFC 5077 (Proposed Standard), January 2008. Obsoleted by
RFC 8446, updated by RFC 8447.

[54] Daniel Slamanig and Christoph Striecks. Puncture ’em all: Updatable encryption with no-directional
key updates and expiring ciphertexts. Cryptology ePrint Archive, Report 2021/268, 2021. https:

//eprint.iacr.org/2021/268.

[55] Shi-Feng Sun, Ron Steinfeld, Shangqi Lai, Xingliang Yuan, Amin Sakzad, Joseph K. Liu, Surya
Nepal, and Dawu Gu. Practical non-interactive searchable encryption with forward and backward
privacy. In NDSS 2021. The Internet Society, February 2021.

[56] Shifeng Sun, Xingliang Yuan, Joseph K. Liu, Ron Steinfeld, Amin Sakzad, Viet Vo, and Surya
Nepal. Practical backward-secure searchable encryption from symmetric puncturable encryption.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018,
pages 763–780. ACM Press, October 2018.

[57] Erik Sy, Christian Burkert, Hannes Federrath, and Mathias Fischer. Tracking users across the web
via TLS session resumption. In ACSAC 2018, pages 289–299. ACM, 2018.

[58] Nirvan Tyagi, Muhammad Haris Mughees, Thomas Ristenpart, and Ian Miers. BurnBox: Self-
revocable encryption in a world of compelled access. In William Enck and Adrienne Porter Felt,
editors, USENIX Security 2018, pages 445–461. USENIX Association, August 2018.

34

https://docs.microsoft.com/en-us/azure/security/fundamentals/encryption-atrest
https://docs.microsoft.com/en-us/azure/security/fundamentals/encryption-atrest
https://www.theregister.com/2017/01/24/dropbox_brings_old_files_back_from_dead/
https://www.theregister.com/2017/01/24/dropbox_brings_old_files_back_from_dead/
https://eprint.iacr.org/2021/268
https://eprint.iacr.org/2021/268

A PPRF Relations

Theorem 10 (PPRF: fpr-1ro$ =⇒ fpr-ro$). Let PPRF = (KeyGen,Eval,Punc) be a PPRF scheme. If
PPRF is puncture invariant (Definition 5), then for every adversary A against the fpr-ro$ security of
PPRF making at most qro$ distinct queries to oracle Ro$-Eval under each key, and at most qn to oracle
New, there exists an adversary B running in approximately the same time as A, such that

Advfpr-ro$
PPRF (A) ≤ qro$ ·Advfpr-1ro$

PPRF (B).

Adversary B makes at most qn queries to oracle New-Ro$-Eval.

Proof. The proof consists of a standard hybrid argument across qro$ +1 games H0-Hqro$, where game Hj

works as Gfpr-ro$
PPRF , except that instead of answering all Ro$-Eval queries with real evaluations or random

strings depending on a secret bit, in game Hj the first j queries under each key are answered with strings
drawn u.a.r. in the range and the remaining queries are answered with real PPRF evaluations. Adversary
B simulates game Hj for A by storing any puncturing queries prior to the jth Ro$-Eval query for each
key, and after relaying the jth query to oracle New-Ro$-Eval, puncturing the key it receives in return
on the stored points. Puncture invariance ensures that the potential reordering of punctures (due to the
automatic puncturing by oracle New-Ro$-Eval on the challenge point) does not affect the distribution
of the secret key and hence that corruption queries can be perfectly simulated. We also rely on PPRF
correctness to ensure that the response to the Ro$-Eval query is correctly distributed. When A halts
and outputs a bit b∗, adversary B also halts and outputs b∗. This way, adversary B perfectly simulates
the hybrid games for A and achieves the claimed advantage bound.

Theorem 11 (PPRF: fpr-ro$ =⇒ fpr-rro$). Let PPRF = (KeyGen,Eval,Punc) be a PPRF scheme
with domain X and range Y. If PPRF is puncture invariant (Definition 5), then for every adversary A
against the fpr-rro$ security of PPRF making at most qro$ distinct queries to oracle Ro$-Eval under
each key, and at most qn to oracle New, there exists an adversary B running in approximately the same
time as A, such that

Advfpr-rro$
PPRF (A) ≤ qro$qn · |X | ·Advfpr-ro$

PPRF (B).

Adversary B makes only a single query each to oracles New and Ro$-Eval.

Proof. First, we reduce the multi-key fpr-rro$ security to a single-key version via a standard hybrid
argument. Let G0 be the original fpr-rro$ security game, and let G1 be identical to G0, except that
there is no New-oracle. Instead the (single) key is drawn by the challenger at the start of the game, and
all oracle queries are answered with respect to this key. We construct an adversary B1 such that

Adv0(A) ≤ qn ·Adv1(B1), (1)

where going forward we let Advi(D) := 2
∣∣Pr [Gi(D)]− 1

2

∣∣ for any adversary D and i ∈ N. The hybrid

works across qn+1 games H0-Hqn , where game Hj is identical to Gfpr-rro$
PPRF , except that instead of picking

a random bit b which determines if Ro$-Eval-queries are answered with real or random responses, in
game Hj all queries made to the first j keys are answered with real PPRF evaluations and the queries
under the rest of the qn keys are answered with a string drawn u.a.r. from Y. Adversary B1 samples an
index ` in {1, . . . , qro$} and simulates game H` for A, acting as the challenger, except that it forwards
queries under key j to the oracles in game G1. When adversary A halts and outputs a bit b∗, so does
B1. This gives Equation (1).

Next, via another hybrid argument, we hop to game G2 in which the adversary can only make a single
challenge query to oracle Ro$-Eval. The argument uses a series of qro$ + 1 games H′0-H′qro$. Here game
H′j is identical to G1, except that instead of answering all Ro$-Eval queries with real evaluations or
random strings depending on a secret bit, in game Hj the first j queries are answered with strings drawn
u.a.r. in the range and the remaining queries are answered with real PPRF evaluations. We construct
an adversary B2 which draws an index ` u.a.r. from {1, . . . , qro$} and acts as the challenger in game H′`,
except that it uses its Ro$-Eval to respond to the `th Ro$-Eval query from B1. When B1 halts and
outputs b∗, then B2 halts and returns b∗ as well. This gives

Adv1(B1) ≤ qro$ ·Adv2(B2). (2)

Lastly, we construct an adversary B against the fpr-rro$ security of PPRF such that

Adv2(B2) ≤ |X | ·Advfpr-ro$
PPRF (B). (3)

35

The reduction relies on guessing the adaptive Ro$-Eval-query of adversary B2 in advance. Let b denote
the hidden bit drawn by the challenger in game G2. We construct adversary B as follows. Adversary B
begins by querying oracle New to generate a secret key for the game. It then draws a challenge point x̃
u.a.r. from the PPRF domain X and queries oracle Ro$-Eval on x̃, followed by a Punc-query on the
same point, after which it corrupts the secret key. Given that PPRF is puncture invariant, this enables
B to simulate the responses to any Eval-queries from B2 using the corrupted secret key, except on x̃. If
adversary B2 queries x̃ to the simulated Eval-oracle, then adversary B halts and returns a random bit
b′ as its output. Otherwise it continues to simulate game G2 until adversary B2 halts and returns its
Ro$-Eval challenge point x∗. If x∗ 6= x̃, then adversary B halts and outputs a random bit b′. If x∗ = x̃,
then adversary B returns the response it received from the Ro$-Eval on x̃ and continues to simulate
game G2. When adversary B2 halts and returns bit b∗, adversary B also halts and returns b′ := b∗.

We analyze the advantage of adversary B. Let E1 denote the event that adversary B2 does not query
x̃ to Eval and let E2 denote that both E1 occurred and that B2 picks x∗ = x̃ as its challenge query. Let
qe denote the number of distinct Eval queries issued by B2. Then

Pr [E2] = Pr [E1] · Pr
[
x∗ = x̃

∣∣E1

]
=

(
1− qe
|X |

)
· 1

|X | − qe
=

1

|X |
,

since x̃ is sampled u.a.r. from X and is unknown to adversary B2 (and hence independent from any
queries made by B2). Adversary B’s simulation of game G2 is perfect conditioned on event E2, so

Adv2(B2) = 2
∣∣Pr
[
b∗ = b

∣∣E2

]
− 1

2

∣∣. Now, Pr
[

Gfpr-ro$
PPRF (B)

∣∣E2

]
= Pr

[
b′ = b

∣∣E2

]
= 1/2 by definition

of adversary B, since it outputs a random bit as its guess in the complement of event E2. Putting this
together, we see that

Advfpr-ro$
PPRF (B) = 2

∣∣∣∣Pr
[
b′ = b

∣∣E2

]
· Pr [E2] + Pr

[
b′ = b

∣∣E2

]
· Pr

[
E2

]
− 1

2

∣∣∣∣
= 2

∣∣∣∣Pr
[
b′ = b

∣∣E2

]
· 1

|X |
+

1

2
· |X | − 1

|X |
− 1

2

∣∣∣∣
=

1

|X |
· 2
∣∣∣∣Pr
[
b′ = b

∣∣E2

]
− 1

2

∣∣∣∣ =
1

|X |
·Adv2(B2),

proving the claimed bound in Equation (3). Putting together Equations (1)-(3) gives the bound in the
theorem statement.

B PKW Relations

First, we show that our “one challenge” notion find$-1cpa is in general weaker than the multi-challenge
notion find$-cpa. That is, there exists a PKW scheme which is find$-1cpa secure, but not find$-cpa
secure.

Theorem 12 (PKW: find$-1cpa 6=⇒ find$-cpa). Assume there exists a find$-1cpa secure PKW scheme
PKW with ciphertext length function cl. Then there exists a PKW scheme PKW′ with ciphertext function
cl which is find$-1cpa secure, but not find$-cpa secure.

Proof. We modify scheme PKW to let the secret key include a set of tags, initially empty, to which Punc
adds any tag that was punctured on. We further let Wrap(sk,T,H ,K) output 0cl(K) when attempting
to wrap key K with a (so-remembered) punctured tag. Note that this is not a problem for correctness,
since it only applies to unpunctured tags. Otherwise the new scheme PKW′ is identical to PKW. The
construction is given in Figure 14.

The find$-1cpa security of PKW′ directly reduces to that of PKW, as the game never calls algorithm
Wrap after Punc. To violate find$-cpa security, an adversary A can query Punc on an arbitrary tag T,
then Ro$-Wrap using the same tag T and an arbitrary header H and key K . The latter will always
output 0cl(K) if the hidden bit is 1, otherwise C 6= 0cl(K) with overwhelming probability (1 − 1

2cl(|K|)).

Hence, Advfind$-cpa
PKW′ (A) = 1− 1

2cl(|K|) .

Next, we show that under certain restrictions—namely that the PKW scheme is puncture invariant,
consistent and outputs ⊥ on punctured tags—find$-1cpa implies find$-cpa security.

36

KeyGen′() :

1 sk ← PKW.KeyGen()

2 P ← ∅; sk′ ← (sk,P)

3 Return sk′

Wrap′(sk′,T,H ,K) :

4 (sk,P)← sk′

5 If T ∈ P then return 0cl(|K|)

6 C ← PKW.Wrap(sk,T,H ,K)

7 Return C

Unwrap′(sk′,T,H ,C) :

8 (sk,P)← sk′

9 Return PKW.Unwrap(sk,T,H ,C)

Punc′(sk′,T) :

10 (sk,P)← sk′

11 sk ← PKW.Punc(sk,T)

12 P ∪←− {T}
13 Return (sk,P)

Figure 14: Construction of PKW scheme PKW′ for Theorem 12. The construction is parameterized by
PKW = (KeyGen,Wrap,Unwrap,Punc) with ciphertext-length function cl.

Theorem 13 (PKW: find$-1cpa =⇒ find$-cpa). Let PKW = (KeyGen,Wrap,Unwrap,Punc) be a
puncture-invariant and consistent PKW scheme, for which Wrap(sk,T, ·, ·) outputs ⊥ if sk has been
previously punctured on T. Then for every adversary A against the find$-cpa security of PKW making
at most qro$ distinct queries to oracle Ro$-Wrap under each key, and at most qn, qp and qcorr queries
to oracles New, Punc and Corr, respectively, there exists an adversary B running in approximately
the same time as A and making at most qn queries to its oracle New-Ro$-Wrap, such that

Advfind$-cpa
PKW (A) ≤ qro$ ·Advfind$-1cpa

PKW (B).

Proof. We show this implication via a hybrid argument over A’s Ro$-Wrap queries per user key, yielding
the factor qro$. Each hybrid step is reduced to the find$-1cpa security of PKW through a reduction B,
which relays a single Ro$-Wrap per key to the New-Ro$-Wrap in find$-1cpa, and responds to all
other queries with random resp. real wrappings. As the New-Ro$-Wrap does not allow the secret key
to be punctured prior to the challenge wrap, B saves puncturing calls and performs them after receiving
the challenge ciphertext and accompanying key. The soundness of this reordering relies on the puncture
invariance and consistency of PKW. If A happens to puncture a key on a tag T and then ask Ro$-Wrap
on the same tag T, B simulates the latter output with ⊥, relying on the assumption that Wrap(sk,T, ·,
·) outputs ⊥ after puncturing sk on T. (Note that this final assumption is what enables this reduction,
in contrast to the general separation in Theorem 12.)

Lastly, we show that access to real wraps in addition to the real-or-random challenge wraps results
in a strictly stronger security notion for PKW schemes.

Theorem 14 (PKW: find$-cpa 6=⇒ find$-rcpa). Assume there exists a find$-cpa secure PKW scheme
PKW with tag space T = {0, 1}t and a fpr-ro$ secure PPRF PF with domain and range X = Y = {0, 1}t,
for some positive integer t. Then there exists a PKW scheme PKW′ which is find$-cpa secure, but not
find$-rcpa secure.

Proof. Let PKW = (KeyGen,Wrap,Unwrap,Punc) be a PKW scheme with secret key space SK, tag space
T = {0, 1}t, header space H wrap-key space K = {0, 1}k and ciphertext-length function cl : N→ N. Let
PF = (KeyGen,Eval,Punc) be a PPRF with key space SKf , domain and range X = Y = {0, 1}t. Let
PKW′ = (KeyGen′,Wrap′,Unwrap′,Punc′) be constructed from PKW as shown in Figure 15.

Construction idea. The idea of the separating example is to extend secret key sk′ of PKW′ to,
beyond the secret key sk of PKW and a secret key skf for the PPRF PF, additionally include a copy
of the original, unpunctured secret key sk0, which can be used to distinguish a real challenge from a
random one in the find$-rcpa game. To ensure that the scheme is still find$-cpa secure, the puncturing
algorithm of PKW′ removes the copy of the unpunctured secret key from sk′ if PKW′.Punc is called
on any other input than a specific tag T̂ := PF.Eval(skf , 0

t). To enable the attack on the find$-rcpa
security of PKW′, algorithm PKW′.Wrap′(sk′,T,H ,K) is modified to prepend PF.Eval(skf ,T) to the

usual ciphertext produced by PKW.Wrap, allowing T̂ to be learned from a wrap on tag T0 = 0t.

Attack on find$-rcpa security. We begin by showing that PKW′ is not find$-rcpa secure. For this
we present the strategy of an adversary A which achieves advantage

Advfind$-rcpa
PKW′ (A) ≥

(
1−Advfpr-ro$

PF (B)− 1

2t

)(
1− 1

2cl(k)

)
,

37

KeyGen′() :

1 sk0←$ PKW.KeyGen()

2 skf ←$ PF.KeyGen()

3 p← 0

4 sk′ ← (sk0, skf , sk0, p)

5 Return sk′

Wrap′(sk′,T,H ,K) :

6 (sk, skf , sk0, p)← sk′

7 Ĉ ← PF.Eval(skf ,T)

8 If Ĉ = ⊥ then return ⊥
9 C ← PKW.Wrap(sk,T,H ,K)

10 Return Ĉ‖C

Unwrap′(sk′,T,H ,C ′) :

11 (sk, skf , sk0, p)← sk′

12 Ĉ‖C ← C ′ // |Ĉ| = t

13 K ← PKW.Unwrap(sk,T,H ,C)

14 Return K

Punc′(sk′,T) :

15 (sk, skf , sk0, p)← sk′

16 sk ← PKWPunc(sk,T)

17 If T 6= PF.Eval(skf , 0
t) or p = 1:

18 sk0 ← ⊥
19 skf ← PF.Punc(skf ,T)

20 Return (sk, skf , sk0, 1)

Figure 15: Construction of PKW scheme PKW′ for Theorem 14. The construction is parameterized by
PKW = (KeyGen,Wrap,Unwrap,Punc) with tag space {0, 1}t and PF = (KeyGen,Eval,Punc) with domain
and range X = Y = {0, 1}t.

where adversary B is a simple distinguisher which checks if the probability that PF.Eval(skf , 0
t) = 0t

deviates from 1
2t . (E.g. by running “If Ro$-Eval(0t) = 0t then return 1, else return 0”.)

Adversary A works as follows. First, it queries oracle New() to initialize key sk′1. It then issues
query T̂‖C1 ← Wrap(1, 0t,H1,K1) for an arbitrary header H1 and wrap key K1. Next, it queries
Ĉ‖C2 ← Ro$-Wrap(1, T̂,H2,K2) for another (not necessarily different) arbitrary header H2 and key
K2 and then punctures sk′1 on T̂ by calling Punc(1, T̂). After this, it may corrupt key sk′1 using oracle
Corr(1). By definition of PKW′, this strategy ensures that the copy sk0 of the original, unpunctured
secret key is still part of sk′1. A may then use sk0 to reproduce the challenge ciphertext by locally
running PKW.Wrap(sk0, T̂,H2,K2) and comparing the result to C2. If they are the same, A halts and
returns 1, otherwise 0.

Before analyzing the advantage of A, we note that some care has to be taken if T̂ happens to be
equal to 0t, since the adversary is required to be tag-respecting, meaning that the game will replace the
challenge response with ⊥ if the tag is repeated. Hence the attack fails in the low-probability event bad
that T̂1 = 0t. This occurs with probability Pr [bad] ≤ Advfpr-ro$

PF (B) + 1
2t , where B is defined as above.

Let b denote the secret bit drawn by the challenger in the game. The strategy described gives
Pr
[
A ⇒ 1

∣∣ b = 1,¬bad
]

= 1 and Pr
[
A ⇒ 1

∣∣ b = 0,¬bad
]

= 1
2cl(k) , since the challenge ciphertext C2 is

drawn uniformly at random from {0, 1}cl(k) if b = 0. This gives the claimed lower bound on the advantage
of A.

Proving the find$-cpa security of PKW′. Next, we show that PKW′ is find$-cpa secure, given that
PKW is find$-cpa secure and PF is fpr-ro$ secure. For every adversary A making at most qn and qro$

queries to oracle New and Ro$-Wrap, respectively, we design adversaries Bpkw and Bpprf , running in
approximately the same time as A and making at most qro$ queries to oracle Ro$-Wrap and Ro$-Eval,
respectively, such that

Advfind$-cpa
PKW′ (A) ≤ 2 ·Advfpr-ro$

PF (Bpprf) + 2 · 2qn
2t

+ Advfind$-cpa
PKW (Bpkw). (4)

The proof proceeds by a series of game hops. In the first hop from game G0 := Gfind$-cpa
PKW′ to game

G1, the result of all PPRF evaluations are replaced by consistent random strings. We design Bpprf such

that |Pr [G0]− Pr [G1]| ≤ Advfpr-ro$
PF (Bpprf), as follows. Adversary Bpprf simulates game G0 for A by

drawing a bit b′ and using the oracles in the fpr-ro$ game to act as the challenger in game G0 would
with secret bit b′, except that PPRF evaluations under key i on tag T are replaced by the response to a
query Ro$-Eval(i,T). When A halts and outputs b∗A, Bpprf halts and returns 1 if b′ = b∗A, else 0. Let b
denote the random bit drawn by the challenger in the fpr-ro$ game, then adversary Bpprf simulates game
G0 for A when b = 1 and game G1 when b = 0. Because the same restriction on Corr queries exists in
both games, the simulation is sound.

In the second hop, we exclude the possibility that A corrupts a key which still includes the copy
of the corresponding unpunctured key. That is, for each key index i ∈ {1, . . . , qn}, we let badi be the
event that either (1) A guessed the (by now uniformly random) special tag T̂i in its first query to oracle

38

Ro$-Wrap or (2) that T̂i = 0t and adversary A learns this in its first Ro$-Wrap query. The probability
of each of these events is 1

2t , since T̂i is drawn u.a.r. in {0, 1}t for each i, giving Pr [badi] ≤ 2
2t . Let

bad = bad1 ∨ . . . ∨ badqn , then by the union bound Pr [bad] ≤ 2qn
2t . Let games G1 and G2 be identical-

until-bad, such that in game G2 the unpunctured copy of the secret key is overwritten by ⊥ before a
corruption query is responded to if bad has occured. This ensures that in game G2, unpunctured copy
of the secret key is never given out to adversary A. By the fundamental lemma of game-playing [7], this
gives |Pr [G1]− Pr [G2]| ≤ Pr [bad] ≤ 2qn

2t .

Lastly, we construct an adversary Bpkw such that 2 ·
∣∣Pr [G2(A)]− 1

2

∣∣ ≤ Advfind$-cpa
PKW (Bpkw). The

reduction is straightforward: adversary Bpkw relays any queries from A to its own corresponding oracles,
and supplements the responses with consistent random strings (e.g. prepended to challenge ciphertexts)
where needed. To simulate a corruption query on key index i, Bpkw queries oracle Corr(i) to obtain
the current PKW key ski. It also generates a PPRF key skf,i and punctures it on any tags which A
has queried oracle Punc on. It then returns (ski, skf,i,⊥, p) to adversary A. The previous game hop
ensures that this is a sound simulation, as the corruption oracle in game G2 always returns a key where
the third component is ⊥. When A halts and returns b∗, Bpkw also halts and returns b∗. This gives the
claimed advantage bound.

Putting everything together yields Equation (4).

C All-in-One Notions for PKW

In [51], Rogaway and Shrimpton give a combined confidentiality and integrity notion for key-wrapping
schemes, which they call “DAE security” (deterministic authenticated encryption). They show that such
a combined notion is equivalent to two separate notions in their setting, as well as for authenticated
encryption in general. Here, we translate this result to the PKW setting and formally confirm that a
similar equivalence holds also for our notions capturing forward security.

In Figure 16, we provide a combined confidentiality and integrity notion for PKW schemes. The
games Gfind$int and Gfind$int-r capture the amalgamation of find$-cpa security (with real wrappings)
and integrity of ciphertexts. The notions can be viewed as extensions of find$-cpa and find$-rcpa, where
the adversary additionally gets access to an unwrapping oracle, which in the real world returns honestly
unwrapped keys (from tags, headers, and ciphertexts chosen by the adversary) and in the ideal world
always returns ⊥. We name the new oracle “real-or-bot unwrap”: Ro⊥-Unwrap. To exclude trivial
attacks, queries to Ro⊥-Unwrap are only permitted under keys which have not (yet) been compromised
through a query to oracle Corr.

The advantage of an adversary against the find$int (find$int-r) security of a PKW scheme is defined
as usual.

Definition 15 (PKW confidentiality + integrity (find$int, find$int-r)). Let PKW be a puncturable key-
wrapping scheme. We define the advantage of an adversary A against the forward indistinguishability
and integrity X ∈ {find$int, find$int-r} of PKW as

AdvXPKW(A) = 2

∣∣∣∣Pr
[
GX

PKW(A)⇒ true
]
− 1

2

∣∣∣∣ ,
where GX

PKW(A) is defined in Figure 16.

Next, in Theorems 15 and 16, we show that the combination of confidentiality (Definition 10) and
integrity of ciphertexts (Definition 11) of PKW schemes as separate properties is equivalent to find$int-r
security, as expected. In the forward direction (find$-rcpa + int-ctxt =⇒ find$int-r, shown in Theo-
rem 15), the reduction to PKW int-ctxt security induces a loss proportional to the number of new key
queries made by the adversary in the find$int-r game. The loss stems from the find$int-r game including
a corruption oracle Corr to capture forward-secure confidentiality, whereas the integrity game does not
have such a corruption oracle. This is not a problem in the single-key setting, since find$int-r does
not permit unwrapping queries after key compromise. Hence the integrity adversary in the reduction
can abort the game if it receives a query to oracle Corr, since successful forgeries are excluded from
occurring after a corruption query. However, in the multi-key setting, a Corr query does not prevent
a later forgery under a different key. Since the integrity adversary does not know in advance under
which key the first successful forgery will occur, it needs to treat all keys as challenge keys and relay
wraps and unwraps to the oracles in the integrity game. This creates a key-commitment problem which
prevents the reduction from simply sampling a fresh key when forced to respond to a key-corruption

39

Game Gfind$int
PKW (A) Gfind$int-r

PKW (A) :

1 b←$ {0, 1}; u← 0

2 b∗←ARo-Wrap, Wrap, Punc,Corr,New
()

3 Return b∗ = b

New():

4 u++

5 sku←$ KeyGen()

6 SPT,u,S$T,u,ST,u,STHC,u ← ∅
7 corru ← false

Ro$-Wrap(i,T,H ,K):

8 If T ∈ ST,i or corri:

9 Return ⊥
10 C1 ←Wrap(ski,T,H ,K)

11 If C1 = ⊥ then return ⊥
12 C0←$ {0, 1}cl(|K|)

13 S$T,i
∪←− {T}; ST,i

∪←− {T}
14 STHC,i

∪←− {(T,H ,C)}
15 Return Cb

Wrap(i,T,H ,K):

16 If T ∈ ST,i then return ⊥
17 C ←Wrap(ski,T,H ,K)

18 ST,i
∪←− {T}; STHC,i

∪←− {(T,H ,C)}
19 Return C

Ro⊥-Unwrap(i,T,H ,C):

20 If ((T,H ,C) ∈ STHC,i and T /∈ SPT,i) or corri:

21 Return ⊥
22 K1 ← Unwrap(ski,T,H ,C)

23 K0 ← ⊥
24 Return Kb

Corr(i):

25 If S$T,i * SPT,i then return ⊥
26 corri ← true

27 Return ski

Punc(i,T):

28 ski ← Punc(ski,T)

29 SPT,i
∪←− {T}

Figure 16: Forward indistinguishability and integrity find$int / find$int-r of a puncturable key-wrapping
scheme PKW. The code in boxes is executed in Gfind$int-r

PKW , but not in Gfind$int
PKW .

Grey code prevents trivial attacks and ensures that the queries are tag-respecting.

query. To circumvent this, the reduction to the int-ctxt notion guesses the key index under which the
first successful forgery is made, resulting in the aforementioned loss.

Theorem 15 says that scheme PKW is find$int-r (or find$int) secure, given that it is find$-rcpa (or
find$-cpa) and int-ctxt secure.

Theorem 15 (PKW: find$-rcpa/find$-cpa + int-ctxt =⇒ find$int-r/find$int). Let PKW = (KeyGen,
Wrap,Unwrap,Punc) be a PKW scheme. Then for every adversary A (and every A′) against the find$int-r
(or find$int) security of PKW making at most qn to oracle New, there exist adversaries B and C (B′ and
C′) running in approximately the same time and using the same resources10 as A (or A′, respectively) ,
such that

Advfind$int-r
PKW (A) ≤ 2qn ·Advint-ctxt

PKW (B) + Advfind$-rcpa
PKW (C) and

Advfind$int
PKW (A′) ≤ 2qn ·Advint-ctxt

PKW (B′) + Advfind$-cpa
PKW (C′).

Proof. The result for find$int security holds analogously by simply ignoring any mention of oracle Wrap
in the final step of the proof; hence we focus on find$int-r. The proof has one game hop, starting
from G0 = Gfind$int-r

PKW . Let Advi(A) := 2
∣∣Pr [Gi(A)⇒ true]− 1

2

∣∣ for i ∈ {0, 1}.

G0 → G1: In G1, we set a flag bad ← true if K1 6= ⊥ in any Ro⊥-Unwrap query, and if bad is set
overwrite K1 ← ⊥. All Ro⊥-Unwrap queries are hence replied to with ⊥, independent of the secret
bit b. Since the games are identical-until-bad, |Pr [G0(A)] − Pr [G1(A)] ≤ Pr [bad] for all adversaries
A.

We bound Pr [bad] ≤ qn ·Advint-ctxt
PKW (B) by an adversary B which simulates G0 for A as the chal-

lenger (sampling a challenge bit b′). Initially, B guesses the key index i under which the first query to
Ro⊥-Unwrap is made which sets bad. If the guess for i turns out to be wrong, B aborts, introducing
a loss in the number of keys qn. For all key indices j 6= i, B generates skj and answers all oracle queries
itself. For key index i, it relays Wrap and Punc queries to the corresponding oracles in the int-ctxt
game. If b′ = 1, it forwards Ro$-Wrap queries to oracle Wrap. Otherwise B samples a random cipher-
text of the correct length and returns it to A. In simulating oracle Ro⊥-Unwrap, adversary B forwards
the query to its Unwrap oracle. If A tries to corrupt key ski by querying oracle Corr(i), then B aborts
the simulation.

10The exact number of queries made by each is evident from the proof.

40

Adversary B perfectly simulates game G0 for A when targeting key index i with its first forgery,
unless A tries to compromise key ski. However bad can only occur for key index i if ski has not been
compromised (i.e., if corri = false). If event bad occurs and B guessed key index i correctly, then
adversary A has successfully forged a valid ciphertext and submitted it to oracle Ro⊥-Unwrap, and
since B forwards all such queries to its challenger, B has consequently set the win flag to true in game
Gint-ctxt

PKW . Hence Pr [bad] ≤ qn ·Advint-ctxt
PKW (B). This gives Adv0 ≤ 2qn ·Advint-ctxt

PKW (B) + Adv1.

G1: The advantage of any adversaryA in game G1 can now be bounded by the advantage Advfind$-rcpa
PKW (C)

of an adversary C against the find$-rcpa security of PKW. The reduction is straightforward: C simply
relays all queries to oracles Ro$-Wrap, Wrap, Punc and Corr to its own corresponding oracles. It
responds to all Ro⊥-Unwrap queries with ⊥. When A halts and outputs a bit b∗, C halts and returns
b∗ to its challenger. This way C perfectly simulates game G1 for A and Adv1(A) ≤ Advfind$-rcpa

PKW (C).

Next, we complete the equivalence by showing that find$int-r (or find$int) security implies find$-
rcpa (or find$int) and int-ctxt security.

Theorem 16 (PKW: find$int-r/find$int =⇒ find$-rcpa/find$-cpa + int-ctxt). Let PKW = (KeyGen,
Wrap,Unwrap,Punc) be a PKW scheme. Then for any adversaries A1, A2, A3 against the find$-rcpa,
find$-cpa, or int-ctxt security of PKW, there exist adversaries B1, B2, B3 and B′3 running in approxi-
mately the same time and using the same resources as A1, A2, and A3, respectively, such that

Advfind$-rcpa
PKW (A1) ≤ Advfind$int-r

PKW (B1),

Advfind$-cpa
PKW (A2) ≤ Advfind$int

PKW (B2), resp.

Advint-ctxt
PKW (A3) ≤ Advfind$int

PKW (B3) ≤ Advfind$int-r
PKW (B′3).

Proof. The first two results are trivial, as the reductions B1 and B2 against the find$int-r/find$int security
of scheme PKW can simply ignore the Ro⊥-Unwrap to simulate the find$-rcpa/find$-cpa game.

For integrity, we do a single game hop, from G0 = Gint-ctxt
PKW to a game G1 where the Wrap returns

randomly sampled ciphertexts and the Unwrap never sets the win flag and always returns ⊥ on all
queries. By definition, Advint-ctxt

PKW = Pr [G0(A3)]. Further, Pr [G1(A3)] = 0, since A3 cannot trigger a
win anymore.

It remains to bound |Pr [G0(A3)]− Pr [G1(A3)]|, which we do by a straightforward reduction B3 to
find$int security. Adversary B3 simulates oracles New and Punc by relaying queries to the corresponding
oracle in the find$int game, while relaying Wrap queries to its Ro$-Wrap oracle and Unwrap queries
to its Ro⊥-Unwrap oracle. This way, B3 simulates game G0 for A3 when the hidden bit b in game
Gfind$int

PKW is 1, and G1 when b = 0. Thus |Pr [G0(A3)] − Pr [G1(A3)] | ≤ Advfind$int
PKW (B3), as required.

Trivially also Advfind$int
PKW (B3) ≤ Advfind$int-r

PKW (B′3), by simply ignoring the Wrap oracle.

D TLS Session Resumption: A Formal Violation of Integrity

We demonstrate how an omitted property in the definition of a PPRF in [2] leads to an issue with the
integrity of their session resumption protocol. We stress that this issue can be easily fixed through an
added assumption (or, as we propose, via stronger correctness requirements of a PPRF). We therefore
view the resulting, theoretical attack in their formal model mainly as showcasing the need for careful
definitions, and showing how suitable abstractions (such as PKW schemes in this case) can help simplify
security proofs to avoid issues like this one.

The formal attack. Figure 17 shows an attack on the formal 0-RTT-SR security [2, Section 2.1] of
the session resumption protocol Resumption as defined in [2, Section 3.2]. The attack is possible because
the PPRF definition presented in AGJ is too weak and allows the PPRF to output a predictable point
in the range instead of ⊥ after puncturing. It additionally highlights a bug in the proof of Theorem 3
in [2]: In the hop from game 2 to game 3, the PPRF evaluation on a specific point ν is replaced by
a fixed value, regardless of whether the point is then later punctured on. This can easily be fixed by
adapting the output to be ⊥, if a stronger PPRF definition is used, which explicitly demands that the
output of Eval is ⊥ after puncturing, as we do.

41

Adversary ADec,Test,Corr(t1, t2, . . . , tµ):

// ti = (i,Ci) where i is an integer and Ci = AEAD.Enc(F′.Eval(skp, i),Ki, i)

1 K∗ ← 0k // Arbitrary session key

2 C∗←$ AEAD.Enc(0out`,K∗, 1)

3 t∗ ← (1,C∗)

4 K1 ← Dec(t1) // Now skp is punctured on 1

5 K ← Test(t∗)

// If b = 1 then K = ServerRes((skp, µ), (1,C∗))
= AEAD.Dec(F′.Eval(skp, 1),C∗, 1)
= AEAD.Dec(0out`,C∗, 1) = K∗ by AEAD correctness

// If b = 0 then K is a random element in S
6 If K = K∗ then return 1

7 Return 0

Figure 17: Attack showcasing the integrity issue in the generic construction of a session resumption
protocol by [2].

The attack makes use of a specifically crafted PPRF which fulfills the “rand” security requirement
of AGJ [2, Definition 7]. It is constructed as follows. Let F = (KeyGen,Eval,Punc) be a rand secure
PPRF with domain X = {0, 1}in` and range Y = {0, 1}out`, that fulfills our correctness requirements on
PPRFs (Def. 4, point (4)).11 Let F′ = (KeyGen,Eval′,Punc) be identical to F, except that the evaluation
algorithm Eval′ is modified to return 0out` whenever Eval would return ⊥. That is, for a secret key sk
and a point x ∈ X , Eval′(sk, x) := 0out` if Eval(sk, x) = ⊥, otherwise Eval′(sk, x) := Eval(sk, x).

We show that F′ is rand secure by a reduction to the fpr-rro$ security of F. That is, for all adversaries
A there exists an adversary B such that

Advrand
F′ (A) ≤ Advfpr-rro$

F (B).

Adversary B simulates game rand for adversary A, using the oracles in the fpr-rro$ game to act as
the challenger. Since the rand game uses the original, unpunctured secret key for all evaluations, the
difference between F and F′ will not be visible to the adversary during the game, so no adaptations are
necessary to account for this. Adversary B uses the final output bit b∗ of A as its own guess of the secret
bit in game fpr-rro$.

Conditioned on the challenge point returned by A in the first stage being a valid challenge (i.e. not
used in a prior query to the evaluation oracle), adversary B perfectly simulates the rand game for A
with secret bit b, where b is the secret bit in the fpr-rro$ game. Let Q denote the set of points queried
to oracle Eval by A. Then

Pr
[
Grand

F′ ⇒ true
]

= Pr [b∗ = brand ∧ x∗ /∈ Q]

≤ Pr
[
b∗ = brand

∣∣x∗ /∈ Q] ≤ Pr [b∗ = b] = Pr
[

Gfpr-rro$
F (B)⇒ true

]
.

Next we explain the attack on the 0-RTT-SR security of session resumption protocol Resumption[F′,
AEAD] = (Setup,TicketGen,ServerRes) built from F′ and a randomized AEAD scheme AEAD, as per the
construction by AGJ [2, Section 3.2]. Let S = {0, 1}k be the session key space of Resumption. Let
sk = (skp,n) denote the secret key drawn during setup. The attack, spelled out in Figure 17, makes
use of oracles Dec(t) (running ServerRes to decrypt ticket t and return the resulting session key) and
Test(t) (running ServerRes to decrypt ticket t and return the resulting session key if the secret bit in
the game is 1, else a random session key from S). If b = 1 then the attack succeeds with probability 1.
If b = 0 then Pr [K = K∗] = 1

2k since K is drawn uniformly at random in S by the challenger. Hence

Adv0-RTT-SR
Resumption,µ(A) = 2

∣∣∣∣Pr
[
G0-RTT-SR

Resumption,µ(A)⇒ 1
]
− 1

2

∣∣∣∣ = 1− 1

2k
.

11That is, in particular F.Eval(sk, x) always returns ⊥ if sk has been punctured on x.

42

E PFS Instantiation Proofs

E.1 Proof of Theorem 7: PFS[PKW,AEAD] is find$-rcpa, via PKW find$-1cpa

The proof proceeds by a series of game hops, starting with game G0, which is equivalent to Gfind$-rcpa
PFS[PKW,AEAD],

and ending in game G6, where the distribution of the output components of the challenge oracle Ro$-Enc
is independent of the challenge bit b. For any adversary A, we define Advi(A) := 2

∣∣Pr [Gi(A)]− 1
2

∣∣
for i ∈ {0, . . . , 6}. Hence Advfind$-rcpa

PFS[PKW,AEAD](A) = Adv0(A).

G0 → G1: In the first game hop, file identifiers for challenge encryptions are prevented from being
drawn from the set of already shredded identifiers, both in the ideal world (within the game) and in the
real world (within the PFS[PKW,AEAD] construction). Without this exclusion, the output from oracle
Ro$-Enc in the real world is undefined if the file id has been previously shredded (since the output of
PKW wrapping using a previously punctured-on tag is undefined), whereas in the ideal world nothing
prevents a file id from appearing again after being shredded.

Let bad1 be the event that in any of the at most qro$ many queries to oracle Ro$-Enc, the ideal or
the real world file identifier (id0, id1) is drawn to be one of the at most qs many shredded file identifiers
under the current secret key. Let game G1 be equivalent to game G0 unless bad1 occurs. If bad1 occurs,
the Ro$-Enc query, and all subsequent queries, are responded to by ⊥. Then |Pr [G0]− Pr [G1]| ≤
Pr [bad1] ≤ 2qro$ · qs2t , since two identifiers are drawn u.a.r. from {0, 1}t in each of the qro$ queries, each
of which has a probability of hitting one of the shredded identifiers of at most qs/2

t. Hence, for all
adversaries A:

Adv0(A) ≤ 4qro$ ·
qs
2t

+ Adv1(A), (5)

where the additional factor 2 stems from the scaling in the advantage definition.

G1 → G2: In the second game hop, the adversary is limited to making a single challenge encryption
query. That is, game G2 is identical to game G1, except that the adversary is restricted to making
at most one query to the challenge oracle Ro$-Enc. By applying a hybrid argument where the single
challenge query in game G2 is used to move step-wise from game H0 := G1 with all challenge queries
responded to with random bits (i.e. secret bit b = 0) to game Hqro$:= G1 with all challenges responded
to with real encryptions (secret bit b = 1), we obtain for all adversaries A

Adv1(A) = qro$ ·Adv2(A′) (6)

for an adversary A′ making at most one Ro$-Wrap query, at most qe + qro$ − 1 queries to Enc and at
most m− 1 queries to oracle RotKey in game G2. The reduction works as follows.

Adversary A′ draws an index i ∈ {1, 2, . . . , qro$} u.a.r. and simulates hybrid game Hi−1 or Hi for
A using the oracles in G2. Enc, Shred and Corr queries are relayed by A′ to its own corresponding
oracles. For queries to oracle Ro$-Enc, the first i− 1 are responded to using the real encryption oracle
of A′, the ith query is relayed to the Ro$-Enc of A′ and the remaining are responded to with random
strings from the appropriate spaces. This way A′ simulates Hi−1 if it is in the ideal world in G2 and
Hi if it is in the real world. In order for the simulation to be perfect, adversary A′ queries oracle Enc
also when generating the random responses to challenge queries by A, to check that the result is not ⊥.
It then replaces the result by random before returning it to adversary A. For this reason, and because
adversary A′ makes only a single query to its Ro$-Enc challenge oracle (in contrast to up to qro$ many
by A), the lists R and Q kept by the game will be different in the simulation than in the original game.
Hence adversary A′ needs to do its own bookkeeping and modify the output of oracle RotKey before
returning it to A. Specifically, headers in Q generated to simulate real challenge encryptions need to be
moved to the beginning of R, and entries in Q generated for random challenges to check that the result
is not ⊥ need to be removed altogether. The file identifiers and new headers of the random challenges
generated by A′ need to be added to the end of R. This is easy thanks to the file identifiers which are
unchanged by the key rotation. Note also that in order for the simulation to be perfect despite the input
to the key rotation algorithm being different than in the original game, we rely on the fact that in our
construction the new secret key is independent of the input to algorithm RotKey.

In game G2, we may assume w.l.o.g. that adversary A′ makes exactly one query to oracle Ro$-Wrap,
as without any challenge query the secret bit is completely independent from the game.

G2 → G3: In this game hop, the file identifiers (tags for the PKW scheme) generated by real encryption
queries prior to the challenge query are excluded from coinciding with the file id of the challenge encryp-
tion. Let bad2 be the event that such a collision occurs, and let G3 function like G2, except that the file

43

id of the challenge encryption is drawn already at the start of the game and saved until the adversary
makes the query to Ro$-Enc. Since it is drawn uniformly at random, this makes no difference for the
distribution, but it allows the game to check whether the bad event occurs. If bad2 happens in game
G3, the current and all subsequent queries are responded to by ⊥.

Since games G2 and G3 are identical-until-bad, we have

|Pr [G2]− Pr [G3]| ≤ Pr [bad2] ≤ qe + qro$ − 1

2t
,

where the bound on the probability of bad2 is due to there being at most qe + qro$ − 1 real encryption
queries after the hybrid, in each of which the file id is drawn independently and u.a.r. from {0, 1}t,
making the probability of hitting the file id of the challenge 2−t for each. Thus, for any adversary A,

Adv2(A) = 2 · qe + qro$ − 1

2t
+ Adv3(A). (7)

G3 → G4: The next game hop consists of guessing under which KEK the adversary will make its
challenge query. That is, in game G4, the challenger keeps a counter k which tracks the current key
phase. The counter is initialized to 1 at the start of the game and incremented by one each time the
adversary successfully calls oracle RotKey and updates the KEK. Additionally, during the setup of
the game the challenger guesses the key phase during which the challenge encryption query will occur
by drawing an integer ω ∈ {1, 2, . . . ,m} u.a.r. When the adversary makes its single query to oracle
Ro$-Enc, the challenger checks if ω = k, i.e. if the guess was correct. If yes, the game continues as in
game G3. If the guess is incorrect, the challenger responds to the challenge query and all future queries
by ⊥. Additionally, if k = ω and the adversary calls oracles Corr or RotKey before oracle Ro$-Enc,
the triggering query and all following are responded to with ⊥. Note that such a query indicates that
the guess was incorrect, since challenge queries are disallowed after a key compromise in the current key
phase. Let E denote the event that the guess is correct, i.e. that k = ω at the time of the challenge query.
Then Pr [E] = 1

m , so for any adversary A,

Pr [G4(A)] = Pr
[
G4(A)

∣∣E] · Pr [E] + Pr
[
G4(A)

∣∣¬E] · Pr [¬E]

=
1

m

(
Pr
[
G3(A)

∣∣E]+
m− 1

2

)
.

Here Pr
[
G4(A)

∣∣E] = Pr
[
G3(A)

∣∣E] since the games are identical when event E occurs. Further,

Pr
[
G4(A)

∣∣¬E] = 1
2 since the secret bit b in the game is completely hidden from the adversary when

E does not occur, so the output of A is independent of b. The outcome of game G3 is independent of
event E, so Pr

[
G3(A)

∣∣E] = Pr [G3(A)]. Therefore

Adv4(A) := 2

∣∣∣∣Pr [G4(A)⇒ true]− 1

2

∣∣∣∣
= 2

∣∣∣∣ 1

m

(
Pr [G3(A)] +

m− 1

2

)
− 1

2

∣∣∣∣
=

1

m
· 2
∣∣∣∣Pr [G3(A)] +

m− 1

2
− m

2

∣∣∣∣ =
1

m
·Adv3(A).

This shows that
Adv3(A) = m ·Adv4(A), (8)

for any adversary A.

G4 → G5: In this game hop, the wrapped DEK in the “real” challenge query is replaced by a random
string, so that the headers of the challenge in game G5 with hidden bit b = 0 and with b = 1 are
distributed identically. That is, game G5 is identical to G4 when b = 0, but when b = 1 the header
output in response to the single Ro$-Enc query is replaced by a random string of the appropriate length.
We bound the difference in success probability by the advantage of an adversary Bpkw against the find$-
1cpa security of PKW. That is, for all adversaries A, we construct B such that

|Pr [G4(A)]− Pr [G5(A)]| ≤ Advfind$-1cpa
PKW (Bpkw).

44

Reduction. The reduction works as follows. Adversary Bpkw acts as the challenger in game G4,
and begins by sampling a bit b′ and a key phase guess ω ∈ {1, . . . ,m} uniformly at random. It
also initializes a key phase counter k to 1. It then runs adversary A, simulating access to oracles
Ro$-Enc,Enc,Shred,Corr and RotKey. If b′ = 0, adversary Bpkw simulates all oracles on its own
(there is no embedded PKW challenge). To do this, it runs PKW.KeyGen() to obtain a KEK and uses
this to respond to Enc, Shred, RotKey and Corr queries, as would the challenger in game G4 when
b = 0 (and G5, as the two games are identical in this case). The challenge query to oracle Ro$-Enc is
responded to with random strings, conditioned on it occurring in the guessed key phase ω.

If b′ = 1, adversary Bpkw again acts as the challenger in game G4, except that it uses the New-
Ro$-Wrap oracle in the PKW game to produce the challenge header for A. In each key phase k < ω,
adversary Bpkw runs PKW.KeyGen() and uses the resulting KEK to simulate access to Enc,Shred,
RotKey and Corr for adversary A. When key phase k = ω is reached, adversary Bpkw draws a
file identifier idc ∈ {0, 1}t and a DEK Kc u.a.r. and issues query New-Ro$-Wrap(idc, ε,Kc) to its
challenger. In response, adversary Bpkw receives a new KEK which has been punctured on idc, and
a real or random wrap hc of Kc. The KEK is used to simulate oracles Enc, Shred and Corr for
adversary A. When adversary A makes the challenge query Ro$-Enc(F), adversary Bpkw uses Kc to
encrypt the plaintext and returns idc, hc and the file ciphertext to A. In the following key phases
(k > ω), the process is repeated until adversary A shreds the challenge file identifier. That is, until
adversary A issues query Shred(idc), adversary Bpkw responds to a RotKey query from A by issuing
a new New-Ro$-Wrap(idc, ε,Kc) query to its challenger, in response to which it receives (skk,h

′
c). It

uses the header h′c to simulate the update of the challenge header and then uses the new punctured KEK
skk to simulate the remaining key rotation updates, as well as to respond to all following queries from A.
After adversary A has issued the Shred(idc) query, the challenge file no longer needs to be updated, so
adversary Bpkw instead simulates key rotation queries by running PKW.KeyGen() and uses the resulting
fresh KEK to simulate oracles Enc, Shred and Corr.

Adversary Bpkw runs until adversary A halts and outputs bit bA. Then adversary Bpkw halts and

returns 1 if bA = b′, 0 otherwise. Let bpkw denote the secret bit in game Gfind$-1cpa
PKW (Bpkw). With the

strategy described above, adversary Bpkw simulates game G4 for A when bpkw = 1 and G5 when bpkw = 0.

Soundness. In the reduction, DEK-wraps in key phase ω are potentially reordered: the challenge header
is produced first, even if the first query from A in key phase ω is to oracle Enc. For this simulation to
be correct despite the potential reordering, we rely on that the PKW scheme is consistent (Definition 9),
that file identifiers drawn by Bpkw when simulating real encryption queries do not collide with idc, and
that idc does not coincide with a previously shredded file id (as in that case the output of wrap would be
undefined). The first is by assumption, the second by exclusion in G3, and the third by exclusion in G1.
Consistency guarantees that simulated responses to Enc-oracle queries are distributed correctly even if
the key used to generate them has been punctured on idc in the simulation, but not in the original game.
The exclusion of file id collisions is necessary since if adversary Bpkw tries to simulate an Enc-query
for A prior to the challenge query and draws idc, then the simulation will fail since the KEK has been
punctured on idc due to the pre-computed challenge.

We also need that PKW is puncture invariant (Definition 8) for the simulation to be sound. This
ensures that the KEK is correctly distributed at the point of corruption, despite being punctured on the
challenge file id first in the simulation. In the simulated game, adversary A may choose to query oracle
Shred on other file identifiers before shredding idc. Additionally, a correct guess of the key phase in
which the challenge query occurs is needed for the reordering strategy to work, as adversary Bpkw would
not be able to respond to a corruption query in key phase ω with an unpunctured KEK. This issue will
not arise if it is guaranteed that the challenge query happens in key phase ω, since adversary A is then
disallowed from querying oracle Corr without first shredding the challenge file id.

Bound. Let bB denote the value of the bit output by Bpkw when it halts. By rewriting the find$-1cpa
advantage from Definition 10 to condition on the value of bit bpkw, we have

Advfind$-1cpa
PKW (Bpkw) =

∣∣Pr
[
bB = 1

∣∣ bpkw = 1
]
− Pr

[
bB = 1

∣∣ bpkw = 0
]∣∣ .

Given that bB = 1 precisely when bA = b, we see that

Pr
[
bB = 1

∣∣ bpkw = 1
]

= Pr
[
bA = b

∣∣ bpkw = 1
]

= Pr [G4(A)]

and
Pr
[
bB = 1

∣∣ bpkw = 0
]

= Pr
[
bA = b

∣∣ bpkw = 0
]

= Pr [G5(A)] .

45

Hence Advfind$-1cpa
PKW (Bpkw) = |Pr [G4(A)]− Pr [G5(A)]|. In conclusion, we have shown that for each

adversary A there exists an adversary Bpkw such that

Adv4(A) ≤ 2 ·Advfind$-1cpa
PKW (Bpkw) + Adv5(A). (9)

Adversary Bpkw makes at most m queries to oracle New-Ro$-Wrap, where m is the maximum number
of KEKs used in the simulation, generated by at most m− 1 key rotation queries by adversary A.

G5 → G6: The final step of the proof consists of replacing the file ciphertexts in the real world by
uniformly random strings. Let G6 be identical to game G5, except that in response to a challenge query
Ro$-Enc(F), the file ciphertext is drawn u.a.r. from {0, 1}cl(|F|), regardless of the value of the secret bit
b. We bound any difference of advantage due to the change through a reduction to the ind$-cpa security
of the AEAD scheme. To this end, we design an adversary Baead, such that for all adversaries A it holds
that Adv5(A) ≤ 2 ·Advind$-cpa

AEAD (Baead) + Adv6(A).
The reduction is straightforward and works as follows. Adversary Baead acts as the challenger in

game G5 and begins by drawing b′←$ {0, 1} and running PKW.KeyGen() to generate an initial KEK,
which it uses to simulate responses to queries from A to oracles Enc, Shred, Corr and RotKey.
When adversary A makes the challenge query Ro$-Enc(F), adversary Baead queries oracle New in

game Gind$-cpa
AEAD to generate a new DEK. Additionally it samples id←$ {0, 1}t, h←$ {0, 1}PKW.cl(t) and

N ←$ {0, 1}n. Adversary Baead then issues query C ← Ro$(1,N , ε,F) to its challenge oracle and sets
C1 ← N‖C . It draws C0←$ {0, 1}cl(|F|) and returns (id,h,Cb′) to adversary A. When adversary A halts
and returns a bit b∗, adversary Baead also halts and returns 1 if b∗ = b′, otherwise 0.

Let b denote the secret bit in game Gind$-cpa
AEAD played by Baead. Adversary Baead perfectly simulates

game G5 for A when b = 1 and G6 when b = 0. Hence, for all adversaries A making exactly one query
to oracle Ro$-Enc in game G5, we have shown that there exists an adversary Baead, making a single
New- and Ro$-query, such that

Adv5(A) ≤ 2 ·Advind$-cpa
AEAD (Baead) + Adv6(A). (10)

G6: In game G6, the response to the single challenge query (as well as to all other oracle queries) has
the same distribution when b = 1 as when b = 0. Therefore

Adv6(A) = 0. (11)

Together, equations (5)-(11) give the theorem statement. This concludes the proof.

E.2 Proof of Theorem 8: PFS[PKW,AEAD] is find$-rcpa, via PKW find$-rcpa

The proof proceeds by a series of game hops, starting with game G0, which is equivalent to Gfind$-rcpa
PFS[PKW,AEAD],

and ending in game G4, where the distribution of the output components of the challenge oracle Ro$-Enc
is independent of the challenge bit b. We define Advi(A) := 2

∣∣Pr [Gi(A)⇒ true]− 1
2

∣∣ for i ∈ {0, . . . , 4}
for any adversary A.

G0 → G1: In the first game hop, file identifiers for challenge encryptions in the real and ideal world
are prevented from being drawn from the set of already shredded identifiers, letting Ro$-Enc and all
subsequent oracles return ⊥ in such case. This step is identical to the first game hop in the proof of
Theorem 7. Thus, for all adversaries A it holds that

Adv0(A) ≤ 4qro$ ·
qs
2t

+ Adv1(A), (12)

We refer the reader to the proof of Theorem 7 in Appendix E.1 for details.

G1 → G2: In the second game hop, we remove the need to handle encryption and challenge queries with
coinciding file identifiers. Let Sid be the set of all file identifiers output by oracle Enc or Ro$-Enc which
have not been shredded in an earlier key phase. (That is, Sid includes file identifiers shredded in the
current key phase, but not those for which at least one key rotation has taken place after the shredding.)
Let game G2 be identical to game G1, except that if during an encryption or challenge query, a file

46

identifier is drawn which coincides with an id in Sid, then a flag bad2 is set to true and the query is
responded to with ⊥.

The probability of bad2 occurring is hence upper bounded by the collision probability when drawing
qe + qro$ elements from a set of size at most qe + qro$. Hence, by the birthday bound, Pr [bad2] ≤
1
2 ·

(qe+qro$)2

2t . Since games G2 and G1 are identical-until-bad, the fundamental lemma of game playing [7]

gives |Pr [G1]− Pr [G2]| ≤ Pr [bad2] ≤ (qe+qro$)2

2t+1 , which means that

Adv1(A) ≤ 2 · (qe + qro$)2

2t+1
+ Adv2(A). (13)

G2 → G3: In this game hop, the distribution of the headers output by oracle Ro$-Enc is made
independent of the value of the secret bit b. To this end, the headers generated by oracle Ro$-Enc when
b = 1 are replaced by random strings in game G3. We bound the advantage difference of adversary A
resulting from this change by the advantage of an adversary Bpkw against the find$-rcpa security of PKW
(Definition 10).

Adversary Bpkw acts as the challenger in game G2, drawing a secret bit b′ at the start of the game
and initializing a counter u to keep track of the key phase (the counter is incremented upon successful
key rotation queries from A). To generate the initial PKW key, adversary Bpkw uses oracle New. To
simulate the header part of the response to an Enc- or Ro$-Enc-query in the real world (when the
secret bit b′ = 1), Bpkw issues query h←Wrap(u, id, ε,K) or h← Ro$-Wrap(u, id, ε,K), respectively,
for a freshly sampled AEAD key K and file identifier id. Additionally, adversary Bpkw keeps a table T[·, ·]
in which it stores K id and h. The table is used to simulate queries to oracle RotKey, where adversary
Bpkw—after calling oracle New to initialize a new PKW key—uses oracles Wrap and Ro$-Wrap to
re-wrap the DEKs in the table under the new key in order to generate the new headers. The table
is updated accordingly. Queries to oracles Shred and Corr from adversary A are relayed to oracles
Punc and Corr, respectively. A Shred query additionally deletes any table entry corresponding to
the shredded file id. When adversary A halts and outputs its bit guess b∗, Bpkw halts and outputs 1 if
b∗ = b′, otherwise 0.

Thanks to the hop to game G2 where the need to handle coinciding file identifiers was removed,
adversary Bpkw is guaranteed to be tag-respecting. Let b denote the secret bit drawn by the challenger in
the PKW find$-rcpa game played by Bpkw. With the strategy described above, adversary Bpkw simulates
game G2 for adversary A when b = 1 and G3 when b = 0. Hence

Adv2(A) ≤ 2 ·Advfind$-rcpa
PKW (Bpkw) + Adv3(A). (14)

G3 → G4: In this final game hop, the AEAD encryption C of the file plaintext in the real world is
replaced by a random string of the appropriate length. That is, game G4 is identical to game G3,
except that in response to a challenge query Ro$-Enc(F), the challenger draws C ←$ {0, 1}AEAD.cl(|F|)
and sets C1 ← N‖C , where N is a freshly sampled AEAD nonce. As before, C0 is drawn u.a.r. from
{0, 1}PFS.cl(|F|) and the challenger returns (id,h,Cb) to the adversary, where b is the secret bit and id
and h is a freshly sampled file identifier and header, respectively.

We bound |Pr [G3]−Pr [G4] via a reduction to the ind$-cpa security of AEAD, as follows. Let Baead
be an adversary against the ind$-cpa security of AEAD. Baead simulates game G3 for adversaryA, drawing
a secret bit b′ and acting as the challenger in the game, with the following exceptions. To respond to a
challenge query Ro$-Enc(F), adversary Baead calls oracle New to initialize a new AEAD key, as well as
increments a key counter u. It then draws a file identifier id←$ {0, 1}t and checks if id has been shredded
in the current key phase, i.e., if adversary A has issued query Shred(id) since the last key rotation. If
the id has been shredded, Baead returns ⊥ to A now and in all subsequent queriey, in accordance with
game G1. Otherwise Baead samples a random header h ← H and a file nonce N ←$ {0, 1}n. It then
queries its challenge oracle, C ← Ro$(u,N , ε,F), sets C1 ← N‖C , samples C0←$ {0, 1}PFS.cl(|F|) and
returns (id,h,Cb′) to adversary A. When A halts and outputs a bit b∗, adversary Baead halts and returns
1 of b∗ = b′, 0 otherwise.

Since each query to oracle Ro$ is under a new AEAD key, Baead is guaranteed to be nonce-respecting.
Let b denote the secret bit in game Gind$-cpa

AEAD played by adversary Baead. Adversary Baead simulates game

G3 for A when b = 1 and game G4 when b = 0. Hence |Pr [G3]− Pr [G4]| ≤ Advind$-cpa
AEAD (Baead), giving

Adv3(A) ≤ 2 ·Advind$-cpa
AEAD (Baead) + Adv4(A). (15)

47

G4: In game G4, the output of all oracles has the same distribution when b = 1 as when b = 0. In
particular, we note that this holds for the file ciphertext C generated in response to a query Ro$-Enc(F),
since when b = 1, C = N‖C where N and C are randomly sampled from {0, 1}n and {0, 1}AEAD.cl(|F|),
respectively, and when b = 0 then C is drawn u.a.r. from {0, 1}PFS.cl(|F|), where PFS.cl(|F|) = n +
AEAD.cl(|F|) by construction of PFS[PKW,AEAD]. Hence for all adversaries A it must hold that

Adv4(A) = 0. (16)

Combining Equations (12)-(16) gives the theorem bound.

E.3 Proof of Theorem 9: PFS[PKW,AEAD] is int-ctxt

The proof consists of three game hops, starting with G0 which is identical to Gint-ctxt
PFS[PKW,AEAD] and ending in

game G3. We bound the advantage difference in the first hop by a birthday bound collision probability
and in the subsequent hops by the advantage of an adversary against the security of the underlying
puncturable key wrapping scheme PKW. The advantage of A in the final game G3 is bounded by a
reduction to the int-ctxt security of AEAD.

G0 → G1: The first game hop ensures that the file identifiers output by oracle Enc are unique. That is,
game G1 is identical to game G0, except that if in an encryption query a previously used file identifier
is drawn, then the query is responded to by ⊥. Let bad1 be the event that a collision of file identifiers

occurs. By the birthday bound, Pr [bad1] ≤ q2
e

2t+1 , since there are at most qe file identifiers sampled
during the course of the game, and they are all drawn uniformly at random from a set of size 2t.

Games G0 and G1 are identical-until-bad, hence

|Pr [G0]− Pr [G1]| ≤ Pr [bad1] ≤ q2
e

2t+1
(17)

by the fundamental lemma of game playing [7].

G1 → G2: In the second game hop, forged headers are ruled out by PKW int-ctxt security (Definition 11).
This limits the data encryption keys used in the game to those wrapped by the PKW scheme. Let bad2

be the event that adversary A successfully forges a header. That is, let Spkw contain all pairs (id,h) of file
identifiers and headers which have been output by the encryption oracle during the current key phase, or
which where output by oracle RotKey to initiate the key phase, and for which id has not subsequently
been shredded. Then we say that bad2 occurs if adversary A issues either (1) a query Dec(id,h,C) such
that the resulting plaintext is not ⊥, and (id,h) /∈ Spkw, or (2) a query to oracle RotKey in which the
key is successfully rotated and the input to the oracle includes a file id, header pair (id,h) /∈ Spkw.

Let game G2 be identical to G1 unless the bad event occurs. If bad2 happens, the query is aborted
and responded to by ⊥. By the fundamental lemma of game playing [7], we have Pr [G1]− Pr [G2] ≤
Pr [bad]. We bound the probability of bad2 by the advantage of an adversary Bpkw.

Adversary Bpkw simulates game G1 for adversary A, acting as the challenger. It initiates the sim-
ulation by calling oracle New and setting a counter u to 1. To wrap a DEK in an encryption query,
adversary Bpkw uses its wrapping oracle. To unwrap a header in a decryption query, it uses its unwrap-
ping oracle, and to shred a file identifier it calls the puncturing oracle. In all such queries, adversary Bpkw
uses the key counter u to indicate under which PKW key the query should be processed. To simulate a
key rotation query for A, adversary Bpkw calls oracle New to initialize a new PKW key. For each pair
(id,h) in the query it then issues query Unwrap(u, id, ε,h) to unwrap the DEK and then rewraps it
under key u+1 using oracle Wrap with the id as tag. If all rewraps are successful, it updates u← u+1.

With this strategy, adversary Bpkw perfectly simulates game G1 for adversaryA. Additionally, if event
bad2 occurs, Bpkw wins game Gint-ctxt

PKW . To see this, consider each of the two cases when the bad flag gets
set. In case (1), adversary A makes a query Dec(id,h,C) such that the resulting plaintext is not ⊥,
which means that the header must have unwrapped successfully. (Otherwise the AEAD decryption would
fail since there would be no DEK to decrypt with.) Furthermore, the requirement that (id,h) /∈ Spkw
ensures that the unwrap query issued by Bpkw during the simulation of the decryption query counts as
a valid forgery. The exclusion of colliding file identifiers in the prior game hop ensures that adversary

48

Bpkw is tag-respecting. For the same reasons case (2) corresponds to a valid forgery by Bpkw in the PKW
integrity game. Hence

|Pr [G1]− Pr [G2]| ≤ Pr [bad] ≤ Advint-ctxt
PKW (Bpkw). (18)

G2 → G3: In this game hop, all headers generated in encryption and key rotation queries are replaced
by random strings from the header space. Any advantage difference due to the change is bound by a
reduction to the find$-cpa security of PKW (Definition 10).

Let game G3 be identical to G2, except that in encryption and key rotation queries new headers
are not generated by the wrapping algorithm of PKW, but rather drawn uniformly at random from
{0, 1}PKW.cl(k). Here k is the bit length of the DEKs in the construction. We construct an adversary
Cpkw such that

|Pr [G2]− Pr [G3]| ≤ Advfind$-cpa
PKW (Cpkw). (19)

Adversary Cpkw simulates game G2 for A, acting as the challenger, except that to generate headers for
encryption and key rotation queries it uses oracle Ro$-Wrap on input a file identifier id and key K .
To simulate the unwrapping of headers in decryption and key rotation queries, Cpkw keeps a table T[·, ·]
where it stores the DEKs it has wrapped under the header it received from oracle Ro$-Wrap and the
file id. That is, after each query h ← Ro$-Wrap(u, id, ε,K), where u is a counter keeping track of the
current key phase, adversary Cpkw sets T[id,h]← K . The table entry is deleted if adversary A calls oracle
Shred on id. Additionally all table entries are reset after a key rotation query such that only DEKs
corresponding to updated headers are kept, and they are stored under the new header.

Queries to oracle Shred are relayed to oracle Punc with key index u. To simulate key rotation,
adversary Cpkw calls oracle New to initialize a new key and lets u ← u + 1. When adversary A halts,
adversary Cpkw checks if the win flag has been set to true. If yes, it halts and returns 1, otherwise 0.

Because PKW.Unwrap is a deterministic algorithm, and since (thanks to the previous game hop)
only pairs (id,h) which have been part of the response to an encryption query need to be handled by
adversary Cpkw in decryption and key rotation queries, any DEK which would be output by PKW.Unwrap
in game G2 will be stored in the table kept by Cpkw. Additionally adversary Cpkw is guaranteed to be
tag-respecting thanks to the exclusion of event bad1 in the hop to game G1. This ensures that the
simulation is sound. When the secret bit b in game Gfind$-cpa

PKW is 1, adversary Cpkw simulates game G2

for A. When b = 0 the simulation corresponds to game G3. Let b∗C denote the bit returned by adversary
Cpkw. Then

Advfind$-cpa
PKW (Cpkw) = 2

∣∣∣∣Pr
[

Gfind$-cpa
PKW (Cpkw)⇒ true

]
− 1

2

∣∣∣∣
=
∣∣Pr
[
b∗C = 1

∣∣ b = 1
]
− Pr

[
b∗C = 1

∣∣ b = 0
]∣∣

= |Pr [G2(A)]− Pr [G3(A)]| ,

which establishes Equation (19).

G3: Finally, we show that the advantage of adversary A in game G3 is bounded by that advantage
of an adversary Baead against the int-ctxt security of AEAD (Definition 3). Adversary Baead simulates
game G3 for A, using oracle New to initiate a new AEAD key each time a new DEK would be drawn
in the game, that is, in each encryption query where a file id id is drawn which does not coincide with
a previously used id and which has not been shredded. To keep track of the initiated keys, adversary
Baead keeps a key counter j which is incremented each time a call to oracle New is made. It additionally
keeps a table T[·, ·] in which it stores the key indices corresponding to a certain pair (id,h). To simulate
a file encryption for A, adversary Baead calls oracle Enc in game Gint-ctxt

AEAD under the index of the new
key. To simulate query Dec(id,h,N‖C) from A, adversary Baead retrieves the key index j ← T[id,h] and
issues query Dec(j,N , ε,C) to its decryption oracle. To simulate shredding of file identifier id, Baead sets
T[id, ∗] to ⊥ and additionally adds id to a set SP such that it can keep track of the shredded identifiers
(and avoid providing a simulated encryption on a shredded id). When A makes a key rotation query,
adversary Baead first checks that for all file identifier and header pairs (idi,hi) in the input, T[idi,hi] 6= ⊥.
If the check passes, Baead samples a new random header h′i for each idi and updates the table by setting
T[idi,h

′
i]← T[idi,hi], transferring the key index to the new file identifier and header pair. It additionally

deletes all old entries in the table and sets SP ← ∅.

49

This way, adversary Baead perfectly simulates game G3 for adversary A. Furthermore, Pr [G3(A)] ≤
Pr
[
Gint-ctxt

AEAD (Baead)
]
, since if A wins in game G3, it means that it has submitted a query Dec(id,h,N‖C)

such that the result is not ⊥ and (id,h,N‖C) /∈ S, where S is defined in as in the PFS integrity game
in Figure 12. To simulate the query, Baead makes query Dec(T[id,h],N , ε,C) and since the decryption
is successful for A, we know directly that it was also successful for Baead (meaning that the resulting
plaintext is not ⊥). Hence it only remains to show that the query counts as a valid forgery. I.e., that
Baead has not previously made a decryption query on (T[id,h],N , ε,C). From (id,h,N‖C) /∈ S we know
that at least one of the components is new12, or that the combination (i.e. the tuple taken as a whole)
is new, or that id has been shredded on. We consider each case separately.

1. id has been shredded: By construction of Baead this implies that T[id,h] = ⊥, contradicting the
fact that the result of the query was not ⊥. Hence this case is ruled out.

2. (id,h) is new: This case is ruled out by the hop to game G2. (It corresponds to T[id,h] = ⊥ in
the simulation.)

3. N or C is new: Then (T[id,h],N , ε,C) is new, so the decryption query by Baead is a valid AEAD
forgery.

4. The combination of id,h and N‖C is new (meaning each component may have appeared separately
in previous outputs from Enc, but not the entire tuple together): Then the tuple (T[id,h],N , ε,C)
is new (since there are no duplicates in the key index table T) leading to a valid forgery by Baead.

This shows that
Pr [G3] ≤ Advint-ctxt

AEAD (Baead), (20)

where adversary Baead makes at most qe calls to oracle New, qe calls to oracle Enc and qd calls to oracle
Dec in game Gint-ctxt

AEAD .

Combining Equations (17)-(20) yields the claimed bound on the advantage of A.

12New here means “not part of the output of the encryption oracle in response to an earlier query”.

50

	Introduction
	Our Contributions
	Further Related Work

	Preliminaries
	Notation and Conventions
	AEAD

	Puncturable PRFs
	PPRF Security and Relations

	Puncturable Key Wrapping
	PKW Security
	Instantiating PKW from PPRF and AEAD

	TLS Ticketing
	Integration into the TLS 1.3 Handshake
	Security Model
	Security Proof

	Protected File Storage
	PFS Syntax
	Confidentiality and Integrity of PFS
	Instantiating PFS from PKW and AEAD

	Discussion and Future Work
	PPRF Relations
	PKW Relations
	All-in-One Notions for PKW
	TLS Session Resumption: A Formal Violation of Integrity
	PFS Instantiation Proofs
	Proof of Theorem 7: PFS[PKW,AEAD] is find$-rcpa, via PKW find$-1cpa
	Proof of Theorem 8: PFS[PKW,AEAD] is find$-rcpa, via PKW find$-rcpa
	Proof of Theorem 9: PFS[PKW,AEAD] is int-ctxt

