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Abstract. Recent practical applications using advanced cryptographic
protocols such as multi-party computations (MPC) and zero-knowledge
proofs (ZKP) have prompted a range of novel symmetric primitives de-
scribed over large finite fields, characterized as arithmetization-oriented
(AO) ciphers. Such designs, aiming to minimize the number of multiplica-
tions over fields, have a high risk of being vulnerable to algebraic attacks,
especially to the higher-order differential attack. Thus, it is significant
to carefully evaluate the growth of their algebraic degree. However, the
degree estimation for AO ciphers has been a challenge for cryptanalysts
due to the lack of general and accurate methods.
In this paper, we extend the division property, a state-of-the-art frame-
work for finding the upper bound of the algebraic degree over binary
fields, to the scope of F2n . It is a generic method to detect the algebraic
degree for AO ciphers, even applicable to Feistel ciphers which have no
better bounds than the trivial exponential one. In this general division
property, our idea is to evaluate whether the polynomial representation
of a block cipher contains some specific monomials. With a deep investi-
gation of the arithmetical feature, we introduce the propagation rules of
monomials for field-based operations, which can be efficiently modeled
using the bit-vector theory of SMT. Then the new searching tool for de-
gree estimation can be constructed due to the relationship between the
algebraic degree and the exponents of monomials.
We apply our new framework to some important AO ciphers, including
Feistel MiMC, GMiMC, and MiMC. For Feistel MiMC, we show that the
algebraic degree grows significantly slower than the native exponential
bound. For the first time, we present a secret-key higher-order differen-
tial distinguisher for up to 124 rounds, much better than the 83-round
distinguisher for Feistel MiMC permutation proposed at CRYPTO 2020.
We also exhibit a full-round zero-sum distinguisher with a data complex-
ity of 2251. Our method can be further extended for the general Feistel
structure with more branches and exhibit higher-order differential dis-
tinguishers against the practical instance of GMiMC for up to 50 rounds.



For MiMC in SP-networks, our results correspond to the exact algebraic
degree proved by Bouvier et al. We also point out that the number of
rounds in MiMC’s specification is not sufficient to guarantee the security
against the higher-order differential attack for MiMC-like schemes with
different exponents. The investigation of different exponents provides
some guidance on the cipher design.

Keywords: Degree Evaluation, Division Property, Finite Field, MiMC, Feistel
Network

1 Introduction

The recent progress of advanced cryptographic protocols such as multi-party
computations (MPC) and zero-knowledge proofs (ZKP) has motivated new in-
sights into the design paradigm. These innovative primitives, characterized as
arithmetization-oriented (AO) ciphers, focus more on the arithmetic metrics. In
the case of MPC-friendly constructions, the goal is to minimize the number of
multiplications in large finite fields. Examples include MiMC [2] and its gen-
eralizations Feistel MiMC and GMiMC [2,1], HadesMiMC [23], Vision and
Rescue [3] and Ciminion [20].

AO cipher designs are quite different from the traditional ones. Instead of sym-
metric primitives whose non-linear layers are usually composed of relatively small
S-boxes (typically 4 or 8 bits), AO ciphers tend to use the non-linear function
with an explicit and compact algebraic representation over large finite fields (e.g.,
power maps like x 7→ xd for some odd integer d). Statistical attacks such as dif-
ferential [8] and linear cryptanalysis [30], which are two of the most powerful
classical cryptanalytic tools, appear not to threaten the security of these new
primitives. Consequently, algebraic attacks, especially the higher-order differ-
ential attack [28], usually determine their overall security level. As a concrete
example, Eichlseder et al. proposed a new upper bound on the algebraic degree
for low-degree key-alternating ciphers over F2n [21], based on which they suc-
cessfully mounted a key-recovery attack on full-round MiMC. Fairly speaking,
the algebraic degree is the most crucial security property of AO ciphers. It is of
great importance to devise new tools for their degree estimations.

Related work. Different methods and tools for degree evaluation have always
been an important topic in the literature. Trivially, the algebraic degree of the
composition of two functions F and G is bounded by deg(F ◦ G) ≤ deg(F ) ·
deg(G). However, if iterated, the resulting exponential bound fails to show the
real growth of the algebraic degree for many cryptographic primitives, especially
after a high number of rounds. The first improvement of the trivial bound was
proposed by Canteaut and Videau at EUROCRYPT 2002 [14]. Later, Boura et
al. focused on the iterated SPN schemes over Ft

2n and presented a tighter upper
bound [11]. Subsequently, more improved upper bounds for SPN schemes were
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proposed through comprehensive consideration of the underlying building blocks.
By further studying the influence of the algebraic degree of F−1, Boura and
Canteaut [9] proposed a tighter bound than [11]. Recently at FSE 2022 [17], the
influence of the linear layer on the algebraic degree was also noticed and the
current best bounds for SPN schemes with large and low-degree S-boxes over
Ft
2n were presented. Moreover, for Even-Mansour schemes, a special case of SPN

schemes, Eichlseder et al. pointed out that the algebraic degree grows linearly
with the number of rounds [21] for ciphers with low-degree round functions. As
an application, they managed to give a higher-order differential distinguisher
on almost full MiMC. Very recently, by carefully tracing the evolution of the
exponents, Bouvier et al. presented a tighter bound for ciphers based on iterated
power functions [13], leading to the exact algebraic degree estimation for MiMC.
However, there is no improved bound for Feistel schemes except the trivial bound.
Consequently, although the general method is more universal, if we are not able
to exploit the information of the components in a more fine-grained way, the
resulting algebraic degree will not be accurate enough.

Besides the above-mentioned methods, another approach for degree estima-
tion is based on division property, a state-of-the-art framework for finding inte-
gral property proposed by Todo at EUROCRYPT 2015 [33]. It is currently the
optimal way to estimate the algebraic degree in terms of accuracy as pointed out
in [16]. The division property was initially word-oriented and then extended to
bit level [34], referred to as the bit-based division property and three-subset bit-
based division property [34]. Subsequently, there was a lot of research focusing
on this topic to explain the imperfect nature inherent or extend the applica-
tion scope with the help of automatic approaches [10,37,32,36,12,29,25,19]. At
EUROCRYPT 2020, Hao et al. proposed the three-subset bit-based division
property without unknown subset (3SDPwoU) [24] and achieves perfect accu-
racy. The monomial prediction proposed by Hu et al. [26] is another language of
division property from a complete polynomial viewpoint. It allows us to precisely
determine whether or not a specific monomial appears in the ANF. Besides, they
also provide a framework to detect the integral properties more precisely than
but with similar efficiency as the two-subset division property for block ciphers.
Throughout this paper, we use the division porperty and monomial prediction to
denote the same technology without making strict distinctions. Despite of their
powerfulness, the division property/monomial prediction requires the ANF of
local components, which is too complicated to be calculated or stored in prac-
tice for large finite fields. Even if we know the ANF, the existing tools cannot
handle the modeling for S-boxes with a size larger than 32 bits [35] in practical
time to the best of our knowledge. Overall, the bit-based division property fails
to be useful for AO ciphers. However, AO ciphers can be directly regarded as mul-
tivariate polynomials over public variables (e.g., plaintext variables) and secret
variables (e.g., key variables) in F2n . This inspires us to focus on the algebraic
essentials of division property and thus take benefit from the concise polynomial
representations over fields.
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1.1 Our Contribution

In this paper, we extend the division property, a state-of-the-art method for find-
ing integral properties over binary fields, to the scope of the binary extension field
F2n , called general monomial prediction (GMP). It is a generic method to evalu-
ate the algebraic degree for ciphers over fields, in the way of studying whether or
not the polynomial representation of a block cipher described over F2n contains
some specific monomials by decomposing the cipher into a sequence of simpler
functions and tracing the monomial propagations. We then propose the propaga-
tion rules of the monomials based on the arithmetical features and model them
with the aid of the bit-vector theory of Satisfiability Modulo Theories (SMT).
Finally, by tracing the evolution of exponents for the monomials, we construct
an SMT-based searching tool for the degree estimation of ciphers over F2n . We
apply our algorithm to some important arithmetization-oriented block ciphers,
including MiMC, Feistel MiMC, GMiMC, and their variants. All the source codes
are available at https://github.com/iljido/GeneralMonomialPrediction.

– For Feistel MiMC, we show in particular that its algebraic degree grows obvi-
ously slower than the originally believed one. More precisely, after an initial
linear growth, the algebraic degree grows rather slow for a long period, along
with several large plateaus until reaching the maximal degree. While the pre-
vious work only handles the permutation Feistel MiMC, using our results, for
the first time we present a secret-key higher-order differential distinguisher
covering a total of 124 rounds. It is 41 rounds more than the previous best
distinguisher of permutation Feistel MiMC. We also establish a known-key
zero-sum distinguisher for the full-round Feistel MiMC over F2n with a data
complexity of 2251. Our method can be extended to more branches and we
successfully find the currently longest secret-key higher-order differential dis-
tinguisher for practical instance of block cipher GMiMC reaching up to 50
rounds, 10 rounds longer than the previous best distinguisher.

– We also investigate the algebraic degree of MiMC-like schemes with generic
exponents d. For exponents of the form d = 2l−1, we extend the higher-order
differential distinguishers by one or two more rounds for different instances
compared to the currently best results in [21]. For exponents of the form d =
2l+1, we find distinguishers with lower data complexities for d = 5, 9, 17. Our
results for MiMC with d = 3 are consistent with the exact algebraic degree
proved in [13]. Based on our results, we point out that the formula for the
number of rounds used in MiMC specification [2] is not sufficient to guarantee
security against the higher-order differential attack. This investigation of
different exponents provides some guidance on the design.

– Moreover, we present a comprehensive analysis of the degree growth of
MiMC-like schemes in (unbalanced) Feistel networks and prove a theoret-
ical upper bound that improves the trivial exponential bound.

All the results are summarized in Table 1, Table 2 and Table 3. Our ex-
periments are implemented in the AMD EPYC 7302 CPU @ 3.0 GHz with 8
threads.

4

https://github.com/iljido/GeneralMonomialPrediction


Table 1: Higher-order differential distinguishers for FeistelMiMC3(129, r).

Security #Rounds Target Attack Time Source
Permutation Block Cipher #Rounds Cost

129 164 ✓ − 82 2127† − [7]
✓ ✓ 82 2127 < 1 min Sec 5.1

258 166
✓ − 83 2129 − [7]
✓ ✓ 83 2129 < 1 min Sec 5.1
✓ ✓ 124 2257 < 5 min Sec 5.1

†
This complexity is calculated using the formula in [7] with subgroup of size 2127.

Table 2: Zero-sum distinguishers for FeistelMiMC3(129, r).

Security #Rounds Attack Source
#Rounds Cost

129 164 162 2127† [7]
163 2127 Sec 5.1

258 166
164 2129 [7]
165 2129 Sec 5.1
166 2251 Sec 5.1

†
This complexity is calculated using the formula in [7] with subgroup of size 2127.

1.2 Outline

The rest of this paper is organized as follows. In Section 2, we revisit some back-
ground knowledge about polynomial representations, the monomial prediction,
and SMT solvers. In Section 3, we propose the principle of general monomial
prediction and present the new searching model for degree estimation. For a
better insight into the degree estimation, we prove a theoretical upper bound on
the algebraic degree for ciphers in (unbalanced) Feistel-networks with low-degree
round functions in Section 4. Section 5 shows the applications to MiMC, Feistel
MiMC, and GMiMC. We conclude the paper in Section 6.

2 Preliminaries

2.1 Notations

Let Fn
2 denote the n-dimensional vector space over the finite field F2. Ft

2n denotes
the t-fold Cartesian product of the binary extension field F2n . For any n-bit
vector u = (u[0], · · · , u[n − 1]) ∈ Fn

2 , the Hamming weight of u is wt(u) =∑n−1
i=0 u[i]. For any a ∈ F2n , we have a =

∑n−1
i=0 a[i] · 2i for a[i] ∈ {0, 1} and

wt(a) =
∑n−1

i=0 a[i]. For any a, a′ ∈ F2n , we define a ⪯ a′ if a[i] ≤ a′[i] for all
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Table 3: Distinguishers for different instances of MiMCd(129, r).

d/l n · logd(2)
Attack Source

#Rounds Cost

d = 2l − 1

7/3 46
45 2127 [21]
45 2124 Section 5.2
46 2127 Section 5.2

15/4 34
32 2126 [21]
32 2125 Section 5.2
33 2125 Section 5.2

31/5 27
25 2124 [21]
25 2121 Section 5.2
27 2128 Section 5.2

d = 2l + 1

3/1 82
80 2128 [21]
81 2127 [13]
81 2127 Section 5.2

5/2 56

54 2125 [13]
54 2124 Section 5.2
55 2128 [21]
55 2127 [13]
55 2127 Section 5.2

9/3 41

40 2127 [21]
40 2125 [13]
40 2124 Section 5.2
41 2128 [13]
41 2127 Section 5.2

17/4 32
31 2127 [21]
32 2128 [13]
32 2127 Section 5.2

i, a ⪰ a′ if a[i] ≥ a′[i] for all i. We use ⊕ as addition over F2 or F2n . 0n or 1n

represents the all-zeros or all-ones vector of length n, respectively.

Polynomial representations. Let F : Ft
2n → F2n be a function over F2n [x0, x1,

· · · , xt−1]/
〈
x2n

0 − x0, x
2n

1 − x1, · · · , x2n

t−1 − xt−1

〉
. F can be uniquely expressed

by a polynomial over F2n with t variables x0, x1, · · · , xt−1 ∈ F2n , as

F (x0, · · · , xt−1) =
∑

v=(v0,··· ,vt−1)∈{0,1,··· ,2n−1}t

φ(v) · πv(x) (1)

where the coefficient φ(v) ∈ F2n . We call the degree of a single variable in
F as univariate degree and the degree of F as a multivariate polynomial as
multivariate degree. The maximum univariate degree is 2n − 1. When t = 1,
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the maximum univariate degree is 2n − 2 if F is invertible since the maximal
algebraic degree of invertible functions over F2n is n− 1.

In Equation (1), πv(x) =
∏t−1

i=0 x
vi
i = xv0

0 · ... · x
vt−1

t−1 is called a monomial
over F2n . If the coefficient of πv(x) in F is a constant c ̸= 0, we say πv(x) is
contained by F , denoted by πv(x)→ F . Otherwise, if the coefficient of πv(x) in
F is 0, πv(x) is not contained by F , denoted by πv(x) ↛ F .

As is well-known, the function F can as well be represented at bit level with
N = n ·t variables. The i-th output element is defined by the coordinate function

Fi(y0, · · · , yN−1) =
∑

u=(u0,··· ,uN−1)∈{0,1}N

ρi(u) · πu(y). (2)

The coefficient ρi(u) ∈ F2 can be computed by the Möbius transform. πu(y) =∏N−1
i=0 yui

i = yu0
0 · ... · y

uN−1

N−1 is called a monomial. If the coefficient of πu(y) in Fi

is 1, we say πu(y) is contained by Fi, denoted by πu(y)→ Fi. Otherwise, πu(y)
is not contained by Fi, denoted by πu(y) ↛ Fi.

This representation is also referred to as algebraic normal form (ANF) of
Boolean functions. Essentially, we can see that the polynomial representation
and ANF of F are equivalent when n = 1.

Definition 1 (ANF and Algebraic Degree). Let f : Fn
2 → F2 be a Boolean

function. Its algebraic normal form (ANF) is given as

f(x) = f(x[0], x[1], · · · , x[n− 1]) =
⊕
u∈Fn

2

ρ(u) · xu (3)

where the coefficient ρ(u) ∈ F2 and xu =
∏n−1

i=0 x[i]u[i]. Then the algebraic degree
of f is defined as

δ(f) = max{wt(u) | u ∈ F2n , ρ(u) ̸= 0}.
If f : Fn

2 → Fm
2 is a vectorial Boolean function, then the algebraic degree is

defined as the maximal algebraic degree of its coordinate functions fi, i.e., δ(f) =
max{δ(fi) | 0 ≤ i < m}.

The link between the algebraic degree and the univariate degree of a vectorial
Boolean function is well-known.

Proposition 1 ([15]). For any univariate function F : F2n → F2n as

F (x) =
∑

v∈{0,1,··· ,2n−1}
φ(v) · xv,

the algebraic degree of F as a vectorial Boolean function is the maximum Ham-
ming weight of the exponents for the non-vanishing monomials, i.e.,

δ(F ) = max
0≤v≤2n−1

{wt(v) | φ(v) ̸= 0}.

Corollary 1. For x0, x1, · · · , xt−1 ∈ F2n , the algebraic degree of a monomial
πu(x) = xu0

0 · ... · x
ut−1

t−1 is given by
∑t−1

i=0 wt(ui).

7



2.2 Monomial Prediction

In this paper, we mainly take the framework of the monomial prediction to
simplify the exposition. The monomial prediction, proposed by Hu et al. in [26],
is another language of division property from a pure algebraic perspective. By
counting the so-called monomial trails, the monomial prediction can determine if
a monomial of the plaintext or IV appears in the polynomial of the output of the
cipher, proved to be equivalent to the three-subset bit-based division property
without unknown subsets [24].

Let f : Fn0
2 → Fnr

2 be a composite vectorial Boolean function of a sequence
of smaller functions f (i) : Fni

2 → Fni+1

2 , 0 ≤ i ≤ r − 1, as

f = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0)

where x(i+1) = f (i)(x(i)). Considering the function f (i), if the ANF of f (i) is
available, we can find the monomial πu(i+1)(x(i+1)) that contains the monomial
πu(i)(x(i)) for any u(i) easily, denoted by πu(i)(x(i))→ πu(i+1)(x(i+1)). If we can
find an r-round transition connecting πu(0)(x(0)) and πu(r)(x(r)) as

πu(0)(x(0))→ πu(1)(x(1))→ · · · → πu(r)(x(r)),

then the r-round transition is denoted by πu(0)(x(0)) ⇝ πu(r)(x(r)), called a
monomial trail. The set of all monomial trails from πu(0)(x(0)) to πu(r)(x(r))
are denoted by πu(0)(x(0)) 1 πu(r)(x(r)). The size of the monomial trails deter-
mines whether πu(0)(x(0)) → πu(r)(x(r)). If there is no trail from πu(0)(x(0)) to
πu(r)(x(r)), we say πu(0)(x(0)) ̸⇝ πu(r)(x(r)) and hence πu(0)(x(0)) ↛ πu(r)(x(r)).

2.3 SMT Solvers

A recent approach to construct automatic tools is to formulate the searching
problems into some mathematical problems and delegate the solving task to
the powerful off-the-shelf solvers. The Satisfiability Modulo Theories (SMT) [5]
is a problem of determining whether logical formulas in the first-order logic is
satisfiable. It is a generalization of the Boolean Satisfiability Problem (SAT) [18].
SMT formulas provide much richer modeling language than SAT formulas such
as bit-vectors, which give more flexibility in the interpretation of mathematical
problems.

A bit-vector variable is a string of Boolean variables that can represent either
a bit-vector or an integer. The set of the basic bit-vector operations is a combi-
nation of arithmetic operations and bit-wise operations. We list the operations
used in the following sections in Table 4.

There are many public available solvers to solve SMT problems. We construct
our model using the CVC [6] input language and take STP [22] and Cryptomin-
isat5 [31] as our solvers in the paper. For more details about STP and CVC,
readers are encouraged to refer to http://stp.github.io/.
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Table 4: Basic bit-vector operations.

x ∧ y bit-wise AND of x and y x+ y addition of x and y
x ∨ y bit-wise OR of x and y x× y multiplition of x and y
x⊕ y bit-wise XOR of x and y x = y x is equal to y
x || y concatenation of x and y x ̸= y x is not equal to y
x≪ i x left shift by i bits x ≤ y x is less than or equal to y
x≫ i x right shift by i bits x ≥ y x is greater than or equal to y

3 General Monomial Prediction

Let y = F (x) be a function from Ft
2n to Fs

2n . We focus on the exponents of x
so that the algebraic degree can be estimated based on its relationship with the
Hamming weight of exponents. In Section 3.1, we will introduce how to trace
the transition of the exponents by generalizing the monomial prediction from
F2 to the finite field F2n , referred to as general monomial prediction (GMP).
Since any function F can be represented as a sequence of basic operations such
as XOR, AND, COPY, m-COPY, and POWER, we give the propagation rules
for these basic functions by investigating the arithmetical features in Section 3.2
and provide their SMT models in Section 3.3. Finally in Section 3.4, by setting
the initial constraints and stopping rules appropriately, the problem of degree
estimation for ciphers over fields can be converted into an SMT problem and
solved efficiently.

3.1 Definition of General Monomial Prediction

Let y = F (x) be a function from Ft
2n to Fs

2n , where x = (x0, · · · , xt−1) and
y = (y0, · · · , ys−1). By general monomial prediction we mean the problem of
whether a particular monomial yv is contained by xu, denoted by xu → yv.
Notice that we make no distinction between the secret variables and public
variables here and they are all treated as symbolic variables. While it is a trivial
problem if the polynomial representation of F is available, F is usually too
complicated to be computed or stored in practice for most symmetric primitives
and we are limited to knowing the local components of F .

Let F : Ft0
2n → Ftr

2n be a composite function over F2n consisting of a sequence
of smaller functions F (i) : Fti

2n → Fti+1

2n , 0 ≤ i ≤ r − 1, as

F = F (r−1) ◦ F (r−2) ◦ · · · ◦ F (0).

We assume that x(i) and x(i+1) are the input and output variables of F (i),
where x(i) = (x

(i)
0 , · · · , x(i)

ti−1). Each x
(i)
j is a variable over F2n . For a given pair

of (u(i),u(i+1)), if the polynomial representation of F (i) is available, one can de-
termine whether πu(i)(x(i))→ πu(i+1)(x(i+1)). We emphasize that πu(i)(x(i))→
πu(i+1)(x(i+1)) if and only if the coefficient of πu(i)(x(i)) in πu(i+1)(x(i+1)) is a
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constant c ̸= 0. If there exists a trail such that

πu(0)(x(0))→ · · ·πu(i)(x(i))→ · · · → πu(r)(x(r)),

there exists a trail connecting πu(0)(x(0)) and πu(r+1)(x(r+1)), which naturally
leads to the definition of general monomial trail.

Definition 2 (General Monomial Trail). Let F (i) be a sequence of polyno-
mials over F2n for 0 ≤ i < r, while x(i+1) = F (i)(x(i)). We call a sequence of
monomials (πu(0)(x(0)), πu(1)(x(1)), · · · , πu(r)(x(r))) an r-round general mono-
mial trail connecting πu(0)(x(0)) and πu(r)(x(r)) with respect to the composite
function F = F (r−1) ◦ F (r−2) ◦ · · · ◦ F (0) if

πu(0)(x(0))→ πu(1)(x(1))→ · · · → πu(r)(x(r)).

If there is at least one general monomial trail connecting πu(0)(x(0)) and πu(r)(x(r)),
we write πu(0)(x(0)) ⇝ πu(r)(x(r)). Otherwise, πu(0)(x(0)) ̸⇝ πu(r)(x(r)). When
n = 1, general monomial trail is equivalent to monomial trail.

Proposition 2. πu(0)(x(0))⇝ πu(r)(x(r)) if πu(0)(x(0))→ πu(r)(x(r)), and thus
πu(0)(x(0)) ̸⇝ πu(r)(x(r)) implies πu(0)(x(0)) ↛ πu(r)(x(r)).

Proof. We proceed by induction on r. Assuming that this proposition holds for
r < s, we now prove that it also holds for r = s. When r = s, we expand
πu(s)(x(s)) on πu(s−1)(x(s−1)) as

πu(s)(x(s)) =
⊕

π
u(s−1) (x(s−1))→π

u(s) (x(s))

φ(u(s−1)) · πu(s−1)(x(s−1)), φ(u(s−1)) ̸= 0.

Since πu(0)(x(0))→ πu(s)(x(s)), there is at least one πu(s−1)(x(s−1)) contained by
πu(s)(x(s)) satisfying πu(0)(x(0))→ πu(s−1)(x(s−1)). According to the assumption
that πu(0)(x(0))⇝ πu(s−1)(x(s−1)), we have πu(0)(x(0))⇝ πu(s)(x(s)). ⊓⊔

Example 1. Let x0, x1, y, z ∈ F23 with the irreducible polynomial f(x) = x3 +
x+ 1. z = 2y3, y = x3

0 ⊕ 2x0 ⊕ x2
1.

Considering the monomial x5
0, we can compute all the monomials of y as

y0 ≡ 1,

y1 ≡ x3
0 ⊕ 2x0 ⊕ x2

1,

y2 ≡ x6
0 ⊕ 4x2

0 ⊕ x4
1,

y3 ≡ 2x7
0 ⊕ x6

0x
2
1 ⊕ 4x5

0 ⊕ x3
0x

4
1 ⊕ 3x3

0 ⊕ 4x2
0x

2
1 ⊕ x2

0 ⊕ 2x0x
4
1 ⊕ x6

1,

y4 ≡ x5
0 ⊕ 6x4

0 ⊕ x1,

y5 ≡ 6x7
0 ⊕ 2x6

0 ⊕ x5
0x

2
1 ⊕ 7x5

0 ⊕ 6x4
0x

2
1 ⊕ x3

0x1 ⊕ 2x0x1 ⊕ x0 ⊕ x3
1,

y6 ≡ 4x7
0 ⊕ x6

0x1 ⊕ 6x6
0 ⊕ x5

0x
4
1 ⊕ 6x4

0x
4
1 ⊕ x4

0 ⊕ 6x3
0 ⊕ 4x2

0x1 ⊕ x5
1
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y7 ≡ 6x7
0x

4
1 ⊕ 4x7

0x
2
1 ⊕ 2x7

0x1 ⊕ 2x6
0x

4
1 ⊕ x6

0x
3
1 ⊕ 6x6

0x
2
1 ⊕ 6x6

0 ⊕ x5
0x

6
1 ⊕ 7x5

0x
4
1,

⊕ 4x5
0x1 ⊕ 2x5

0 ⊕ 6x4
0x

6
1 ⊕ x4

0x
2
1 ⊕ 7x4

0 ⊕ x3
0x

5
1 ⊕ 6x3

0x
2
1 ⊕ 3x3

0x1 ⊕ 4x3
0

⊕ 4x2
0x

3
1 ⊕ x2

0x1 ⊕ 6x2
0 ⊕ 2x0x

5
1 ⊕ x0x

4
1 ⊕ 3x0 ⊕ x7

1.

Similarly, we can compute all the monomial of z

z0 ≡ y0, z1 ≡ 2y3, z2 ≡ 4y6, z3 ≡ 4y3 ≡ 3y2,

z4 ≡ 6y12 ≡ 6y5, z5 ≡ 7y15 ≡ 7y, z6 ≡ 5y18 ≡ 5y4, z7 ≡ y21 ≡ y7.

There are four monomial trails connecting x5
0 and monomials of z:

x5
0 → y3 → z1, x5

0 → y4 → z6, x5
0 → y5 → z4, x5

0 → y7 → z7.

Comparison with word-based division property. At a first glance, the
general monomial prediction is similar to the word-based division property as
both of them are described at the word level. However, we emphasize that they
are completely different, especially in the way of extracting information. While
the word-based division property can only exploit the information of the degree,
our general monomial prediction can essentially utilize the internal structure of
the ciphers in a more fine-grained way. Actually, it is more like the bit-based
division property since word is the minimum unit of polynomials over F2n .

Comparison with bit-based division property. From the example above
we can see that the obvious difference between the general monomial prediction
and bit-based division property is the range of the variables. Given a specific
monomial m, there are two possible cases for the coefficient c in the ANF of
a block cipher: c = 1 or c = 0, i.e., the ANF contains exactly m or the ANF
does not contain m. However, since the coefficient c for ciphers over fields ranges
over the 2n elements of F2n , the existence of a monomial m represents multiple
states. As long as c ̸= 0, the monomial m does appear in the polynomial rep-
resentations. Recall that two-subset bit-based division property can essentially
allow us to derive one of two possible results: the ANF of a block cipher does
not contain any multiple of the monomial m, or we do not know any thing about
the monomial. Given a specific monomial m for ciphers over fields, we can derive
one of the following two results for the general monomial prediction according
to Proposition 2:

– The monomial m with a corresponding coefficient c ̸= 0 does not appear in
the polynomial representation if there is no general monomial trail from m
to the polynomial representation of the block cipher,

– We do not know anything about the monomial.

Essentially, we believe that the concept of the general monomial prediction is
more common with the conventional bit-based division property. Moreover, we
emphasize that due to the field-based structure for ciphers described over F2n ,
the word-based/bit-based division property fails to be useful in this case.
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3.2 Propagation Rules of Basic Field-Based Operations

Considering a sequence of monomials

(πu(0)(x(0)), πu(1)(x(1)), · · ·πu(r)(x(r))),

where x(i) and x(i+1) are the input and output of F (i). Each pair (u(i),u(i+1)) is
a valid monomial trail through F (i) if and only if πu(i)(x(i))→ πu(i+1)(x(i+1)) (No-
tice that x(i) and x(i+1) are only symbolic variables.). However, each u(i) is de-
fined in F2n where the size of n is typically larger than 32. So we are not able
to depict the possible propagations by simple observation or exhaustive search.
As any arithmetization-oriented cipher can be represented as a sequence of basic
operations such as XOR, AND, COPY, m-COPY, and POWER, we carefully in-
vestigate the arithmetical feature of operations and prove the propagation rules.
Our propagation rules put no restrictions on the irreducible polynomial since we
do not care about the exact value of the coefficients.

Rule 1 (Field-based XOR) Let F be a function compressed by an XOR over
F2n , where the input x = (x0, x1, · · · , xn−1) and the output y is calculated as
y = (x0⊕x1, x2, · · · , xn−1). Considering a monomial of x as xu, the monomial
yv contains xu iff

v = (v, u2, · · · , un−1),

where v = u0 + u1, v ⪰ u0.

Proof. We have

(x0 ⊕ x1)
v ≡

⊕
0≤u0≤v

pv(u0) · (xu0
0 xv−u0

1 ),

where pv(u0) = 1 if
(
v
u0

)
is odd and pv(u0) = 0 if

(
v
u0

)
is even.

(
v
u0

)
is the binomial

coefficient. Clearly,
(
v
u0

)
is odd if and only if u0 ⪯ v according to the Lucas’s

theorem. Therefore, if xu0
0 · xu1

1 → (x0 ⊕ x1)
v, there must be pv(u0) = 1 and we

have u0 + u1 = v, u0 ⪯ v. Conversely, if u0 + u1 = v, u0 ⪯ v, we have pv(u0) = 1
and xu0

0 · xu1
1 → (x0 ⊕ x1)

v. ⊓⊔

Rule 2 (Field-based AND) Let F be a function compressed by an AND over
F2n , where the input x = (x0, x1, · · · , xn−1) and the output y is calculated as
y = (x0x1, x2, · · · , xn−1). Considering a monomial of x as xu, the monomial
yv contains xu iff

v = (u0, u2, · · · , un−1),

where (u0, u1) = (i, i), for 0 ≤ i ≤ 2n − 1.

Proof. Since
(x0x1)

v = (x0x1)
u0 = xu0

0 xu0
1 = xu0

0 xu1
1 ,

we have xu0
0 xu1

1 → (x0x1)
v if v = u0 = u1 = i for 0 ≤ i ≤ 2n − 1. Conversely if

v = u0 = u1 = i for 0 ≤ i ≤ 2n − 1, there must be xu0
0 xu1

1 = (x0x1)
i = (x0x1)

v

and xu0
0 xu1

1 → (x0x1)
v. ⊓⊔
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Rule 3 (Field-based COPY) Let F be a COPY function over F2n , where the
input x = (x0, x1, · · · , xn−1) and the output y is calculated as y = (x0, x0, x1,
· · · , xn−1). Considering a monomial of x as xu, the monomial yv contains xu

iff

v = (v0, v1, u1, u2, · · · , un−1),

where

(v0, v1) =

{
(0, 0), if u0 = 0;
(i, u0 − i), (j, u0 + 2n − 1− j), else.

for 0 ≤ i ≤ u0, u0 ≤ j ≤ 2n − 1.

Proof. For u0 = 0, if xu0
0 → xv0+v1

0 , there must be v0 + v1 = 0, which implies
(v0, v1) = (0, 0). Conversely if u0 = 0 and (v0, v1) = (0, 0), we have xu0

0 =
xv0+v1
0 = x0

0 and xu0
0 → xv0+v1

0 .
Let us now consider u0 ̸= 0. When v0 + v1 ≤ 2n − 1, if xu0

0 → xv0+v1
0 we have

u0 = v0 + v1 and it holds that (v0, v1) = (i, u0 − i) for 0 ≤ i ≤ u0. Conversely if
(v0, v1) = (i, u0 − i) for 0 ≤ i ≤ u0, we have v0 + v1 = u0 and xu0

0 → xv0+v1
0 .

When v0 + v1 > 2n − 1, we have v0 + v1 = t + 2n − 1 and xv0+v1
0 ≡ xt, 0 <

t ≤ 2n − 1. If xu0
0 → xv0+v1

0 , we have xu0
0 → xt

0 and u0 = t. Therefore it
holds that (v0, v1) = (j, u0 + (2n − 1) − j) for u0 ≤ j ≤ 2n − 1. Conversely if
(v0, v1) = (j, u0+(2n−1)− j) for u0 ≤ j ≤ 2n−1, we have v0+v1 = u0+2n−1

and xu0
0 ≡ xu0+2n−1

0 ≡ xv0+v1
0 . Then xu0

0 → xv0+v1
0 . ⊓⊔

Rule 4 (Field-based POWER) Let F be a POWER function over F2n , where
the input x = (x0, x1, · · · , xn−1) and the output y is calculated as y = (xd

0, x1,
· · · , xn−1), for gcd(d, 2n − 1) = 1. Considering a monomial of x as xu, the
monomial yv contains xu iff

u = (v, u1, · · · , un−1),

where

v =

{
u0, if u0 = 0 or 2n − 1;

(d−1)u0 mod (2n − 1), else.

Proof. For u0 = 0, if (x0)
0 → (x0)

dv then v must be 0. Conversely if v = 0, we
have (x0)

u0 → (x0)
dv. For u0 = 2n − 1, if (x0)

2n−1 → (x0)
dv, then v must be

2n − 1. Conversely if v = 2n − 1, we have (x0)
d×(2n−1) ≡ x2n−1

0 and x2n−1
0 →

x2n−1
0 .

If u0 ̸= 0 and u0 ̸= 2n − 1, if xu0
0 → (xd

0)
v we have u0 = dv mod (2n − 1).

Conversely if u0 = dv mod (2n − 1), we have (xd
0)

v ≡ x
dv mod (2n−1)
0 ≡ xu0

0 .
Therefore (x0)

u0 → (x0)
dv. Then we have v = (d−1)u0 mod (2n − 1). ⊓⊔

Rule 5 (Field-based m-COPY) Let F be a m-COPY function over F2n , where
the input x = (x0, x1, · · · , xn−1) and the output y is calculated as y = (x0, · · · , x0︸ ︷︷ ︸

m

,
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x1, · · · , xn−1). Considering a monomial of x as xu, the monomial yv contains
xu iff

v = (v0, v1, · · · , vm−1, u1, u2, · · · , un−1),

where

(v0, · · · , vm−1) =

{
(0, 0, · · · , 0), if u0 = 0;

(is0, · · · , ism−2, i
s
m−1) for 0 ≤ s ≤ m− 1, else.

Here, ism−1 = u0 + (s− 1)(2n − 1)−∑m−2
j=0 isj , 0 ≤ isj ≤ 2n − 1 for 0 ≤ j < m.

Proof. For u0 = 0, if x0
0 → x

v0+v1+···+vm−1

0 there must be (v0, v1, · · · , vm−1) =
(0, 0, · · · , 0). Conversly, if (v0, v1, · · · , vm−1) = (0, 0, · · · , 0) we have (x0)

u0 →
(x0)

v0+v1+···+vm−1 .
Let us consider u0 ̸= 0. We have 0 < v0 + v1 + · · ·+ vm−1 ≤ m · (2n − 1). When
s(2n − 1) < v0 + v1 + · · · + vm−1 ≤ (s + 1)(2n − 1), 0 ≤ s ≤ m − 1, we have
v0 + · · ·+ vm−1 = t+ (s− 1)(2n − 1), 0 < t ≤ 2n − 1.
If xu0

0 → x
v0+v1+···+vm−1

0 , we have xu0
0 → xt

0 and thus u0 = t. Therefor it holds
that (v0, v1, · · · , vm−1) = (is0, i

s
1, · · · , ism−2, u0 + (s − 1)(2n − 1) −∑m−2

j=0 isj) for
0 ≤ isj ≤ 2n − 1.
Conversely if (v0, v1, · · · , vm−1) = (is0, i

s
1, · · · , ism−2, u0+(s−1)(2n−1)−∑m−2

j=0 isj)
for 0 ≤ isj ≤ 2n − 1, we have v0 + v1 + · · · + vm−1 = u0 + (s − 1)(2n − 1) and
xu0
0 ≡ x

u0+(s−1)(2n−1)
0 ≡ x

v0+v1+···+vm−1

0 . Then xu0 → x
v0+v1+···+vm−1

0 . ⊓⊔

Example 2. Let x0, x1, y, z ∈ F23 with the irreducible polynomial f(x) = x3 +
x+ 1. y = (x0 ⊕ 3x1)

3. Compute (u0, u1) when xu0
0 · xu1

1 ⇝ yv, v = 2.

Consider z = x0 ⊕ 3x1, then y = z3. Then we need to compute all the
monomial trails xu0

0 xu1
1 ⇝ zw ⇝ yv. According the Rule 4, we have w = 3v mod

(7) = 6 mod (7), w = 6. As w = u0 + u1 and u0 ⪯ w, we have u0 = 0, 2, 4, 6.
Then we deduce that (u0, u1, w, v) = (6, 0, 6, 2), (4, 2, 6, 2), (2, 4, 6, 2), (0, 6, 6, 2)
by the propagation rules. It is verified by

y2 = x6
0⊕5x4

0 ·x2
1⊕7x2

0 ·x4
1⊕6x6

1 → (u0, u1, v) = (6, 0, 2), (4, 2, 2), (2, 4, 2), (0, 6, 2).

3.3 Bit-Vector Models for Field-Based Operations

In this subsection, we take advantage of the bit-theory of SMT and translate the
propagations into a system of equations involving both arithmetic operations
and bit-based operations. The solutions to the constraints are all the possible
monomial trails through the basic operations. Moreover, we avoid arithmetic
multiplications and arithmetic modular to obtain efficient bit-vector constraints.
The models for XOR, AND, COPY, m-COPY, and POWER are introduced as
follows.
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Model 1 (Field-based XOR) Let (u0, u1)
XOR−−−→ (v) denote the monomial

trails through the field-based XOR function, where two n-bit words are com-
pressed to one n-bit word using an XOR operation. Then, it can be depicted
using the following constraints:

u0 + u1 = v,

v ∧ u0 = u0,

u0, u1, v are n-bit variables.

The constraint v ∧ u0 = u0 excludes the invalid trails for v ⪰̸ u0.

Model 2 (Field-based AND) Let (u0, u1)
AND−−−→ (v) denote the monomial

trails through the field-based AND function, where two n-bit words are compressed
to one n-bit word using an AND operation. Then, it can be depicted using the
following constraints: 

u0 = v,

u1 = v,

u0, u1, v are n-bit variables.

Model 3 (Field-based COPY) Let (u) COPY−−−−→ (v0, v1) denote the monomial
trails through the field-based COPY function, where one n-bit word is copied to
two n-bit words using a COPY operation. Then, it can be depicted using the
following constraints: 

v0 + v1 + t = t || u,
u || t ̸= 0n || 11,
u, v0, v1 are n-bit variables,
t is a 1-bit variable.

Proof. For u = 0, the only valid trail is v0 + v1 = 0 since t ̸= 1. For u ̸= 0, we
have v0 + v1 = u when t = 0 and v0 + v1 + 1 = 1 || u = u+ 2n when t = 1.

⊓⊔

Model 4 (Field-based m-COPY) Let (u)
m−COPY−−−−−−−→ (v0, v1, · · · , vm−1) de-

note the monomial trails through the field-based m-COPY function, where one
n-bit word is copied to m n-bit words using an m-COPY operation. Then, it can
be depicted using the following constraints:

v0 + v1 · · ·+ vm−1 + t = t || u,
u || t ̸= 0n || q, 0 < q ≤ m− 1

t ≤ m− 1,

u, v0, v1 are n-bit variables,
t is a s-bit variable, s = ⌊log2(m− 1)⌋+ 1.
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The constraints
u || t ̸= 0n || q, 0 < q ≤ m− 1

is implemented in STP solver with an IF-THEN-ELSE branch statement as
follows

ASSERT (IF u = 0n THEN t = 0s ELSE t ≥ 0s);

Model 5 (Field-based POWER) Let (u) POWER−−−−−−→ (v) denote the monomial
trails through the field-based POWER function, where one n-bit word is trans-
mitted to another n-bit word using a POWER operation, gcd(d, 2n − 1) = 1,
Then, it can be depicted using the following constraints:

d× v + t = t || u,
t ≤ d− 1,

u, v are n-bit variables,
t is an s-bit variable, s = ⌊log2(d− 1)⌋+ 1.

Moreover, when d = 2l + 1 or d = 2l − 1, we can avoid multiplications and give
more efficient constraints as:

(v ≪ l)± v + t = t || u,
t ≤ d− 1,

u, v are n-bit variables,
t is an s-bit variable, s = ⌊log2(d− 1)⌋+ 1.

Proof. When u = 0, we have d× v = t× (2n − 1). Since gcd(d, 2n − 1) = 1, we
have gcd(d, t× (2n − 1)) ≤ t < d, then d is not divisible by t× (2n − 1) if t ̸= 0.
Then we have v = 0.

When u = 2n − 1, d × v = (1 + t) × (2n − 1). If t = d − 1, v = 2n − 1. If
t ̸= d− 1, there are no solutions since d is not divisible by (t+ 1)× (2n − 1) for
0 < t+ 1 < d.

When u ̸= 0 and u ̸= 2n − 1, we have d × v = u + t × (2n − 1) and thus
u = dv mod (2n − 1). ⊓⊔

3.4 Detecting the Upper Bound of the Algebraic Degree

In this subsection, we describe how to detect the upper bound of the algebraic
degree for block ciphers considering round keys. All the round keys k(i) are
regarded as independent input variables defined over F2n for 0 ≤ i < r. Suppose
the input of the statement is defined over Ft

2n , that is, the length of the word
size is n and the number of words is t. For 0 ≤ i < r, let πu(i)(x(i)) denote
the input monomials of the i-th round function, respectively. Then πu(r)(x(r))
denotes a monomial of ciphertext we are interested in and is usually set as a unit
vector to study a certain word of the ciphertext in practice. πv(i)(k(i)) denotes the
monomial of the i-th round key. We use equations to add constraints for variables
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u(i), u(i+1), and v(i) according to the function between them. The monomial
trails through the public function described in the models are introduced in
Section 3.3. Notice that the monomials πv(i)(k(i)) are treated equivalently as
πu(i)(x(i)) when we add constraints.

Initial constraints. According to Proposition 2, if we want to determine
whether a specific monomial πũ(r)(x(r)) does not contain any (key-related) mono-
mial πv(0),··· ,v(r)(k(0), · · · ,k(r)) ·πũ(0)(x(0)), we only need to check whether there
exist some trails from the monomial πv(0),··· ,v(r)(k(0), · · · ,k(r)) · πũ(0)(x(0)) to
πũ(r)(x(r)). Given an initial vector Iu = (ũ

(0)
0 , · · · , ũ(0)

t−1), where ũ
(0)
i ∈ F2n , we

use
u
(0)
i = ũi

(0) for 0 ≤ i < t

to add the initial constraints on u(0) and search for the general monomial trails.
Notice that we do not add any constraints on (v(0), · · · ,v(r)) since they are all
free variables over F2n .

However, in the higher-order differential attacks [28], we are interested in
the algebraic degree of F . If the algebraic degree of F is δ(F ), then we have⊕

v∈V⊕c F (v) = 0 if the dimension of the affine vector space V ⊕ c is strictly
greater than δ(F ). We then use Corollary 1 that the algebraic degree of monomial
xu0
0 · ... · x

ut−1

t−1 is given by
∑t−1

i=0 wt(ui). Therefore, if we want to determine the
algebraic degree of a certain monomial πu(r)(x(r)), we only need to check whether
πu(r)(x(r)) contains any term in the set Sl for d ≤ l ≤ ∆, where

Sl = {πv(0),··· ,v(r)(k(0), · · · ,k(r)) · πu(0)(x(0)) |
t−1∑
i=0

wt(u
(0)
i ) = l} (4)

and ∆ denotes the maximum algebraic degree. According to Proposition 2, if the
monomial πu(r)(x(r)) contains no monomials in Sl for d ≤ l ≤ ∆, the algebraic
degree δ(F ) is strictly less than d and the upper bound of the algebraic degree
is d− 1.

Stopping rules. If we consider the algebraic degree of the i′th ciphertext word,
then we use {

u
(r)
i = 1, if i = i′,

u
(r)
i = 0, if i ̸= i′.

to add the stopping rules on u(r).

Detecting the upper bound of the algebraic degree. Let us denote
the stopping constraints as Γ = (0, · · · , 0︸ ︷︷ ︸

i′

, 1, 0, · · · , 0︸ ︷︷ ︸
t−i′−1

). If we want to deter-

mine whether the upper bound of the algebraic degree for a certain monomial
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Algorithm 1: δ = SearchDegree(Mr, ∆, Γ )

Input: The r-round SMT modelMr, the maximum algebraic degree ∆, the
stopping constraints Γ

Output: The algebraic degree δ
1 M←Mr;
2 δ = 0;
3 for i = 0; i < t; i← i+ 1 do
4 M.con← u

(r)
i = Γ [i];

5 for i = ∆; i ≥ 0; i← i− 1 do
6 M.con←

∑
j wt(u

(0)
j ) = i;

7 solve the r-round SMT modelM;
8 if the problem is satisfiable then
9 δ = i;

10 break;

11 return δ;

πu(r)(x(r)) is d−1, we only need to check whether πu(r)(x(r)) contains any term
in the set Sl. Sl is defined in Equation (4). For l ≤ ∆, if there is no general
monomial trail from any monomial contained by Sl to π

(r)
u (x(r)) for d ≤ l ≤ ∆,

the upper bound of the algebraic degree is d− 1. Therefore, we use constraint∑
i

wt(u
(0)
i ) = l (5)

from l = ∆ in a decreasing order to add the initial constraint on u(0). ∆ denotes
the theoretical upper bound of the algebraic degree with a maximum value of
n · t− 1 for permutations.

The framework of the whole algorithm is illustrated in Algorithm 1. When the
SMT solver finds the solution for the first satisfiable problem, an assignment of
the variables that makes the problem satisfiable is obtained. Then the searching
process finishes and we have found the upper bound of the algebraic degree δ.

4 Theoretical Upper Bound for MiMC-like Constructions
in (Unbalanced) Feistel Network

In this section, for a better insight into the behavior of the degree growth, we
firstly investigate the algebraic degree of MiMC-like constructions in the (un-
balanced) Feistel network. Based on the upper bound given in [21] valid for
the MiMC-like construction in Even-Mansour schemes, we propose a new lin-
ear upper bound in Section 4.1. Besides, we show that higher-order differential
distinguisher can be established using the special structure of the function in
Section 4.2.
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4.1 Theoretical Upper Bound on the Algebraic Degree

Considering Ek : Ft
2n → Ft

2n as an (unbalanced) Feistel-network cipher, t ≥ 2.
The j-th (expanding) round function is defined as

(x
(j)
0 , x

(j)
1 , · · · , x(j)

t−1)← (x
(j−1)
1 ⊕ F (x

(j−1)
0 ), · · · , x(j−1)

t−1 ⊕ F (x
(j−1)
0 ), x

(j−1)
0 ), (6)

where F (x) := (x⊕k(j−1))d. k = (k(0), · · · , k(r−1)) denotes a sequence of round
keys.

We firstly focus on the univariate degree of Ek. The maximum Hamming
weight of the exponent for a single variable xi in x

(r)
j is represented by δxi

(x
(r)
j ).

Example 3. Let y = x2
0x

7
1 ⊕ x5

0x
3
1 ⊕ x8

0x
5
1, then we have

δx0
(y) = 2, δx1

(y) = 3.

Recalling the upper bound given in [21] valid for the MiMC-like construction
in Even-Mansour schemes, we apply this idea to the (unbalanced) Feistel network
and prove the following Lemma 1.

Lemma 1. Considering Ek : Ft
2n → Ft

2n as an (unbalanced) Feistel-network ci-
pher represented as in Equation (6). For 0 ≤ i, j < t, r ≥ 1, we have

δxi(x
(r)
j ) ≤


min{⌊log2(dr−(i+θ(j)) + 1)⌋, n}, if r > i+ θ(j),
1, else if r = i− j + t · θ(j),
0, else.

where

θ(j) =

{
0, if 0 ≤ j < t− 1,
1, if j = t− 1.

Proof. Notice that the degree of xi grows differently in the different branches of
the (unbalanced) Feistel network. When j < t − 1, we have that the maximum
exponents of xi in x

(i)
j is d. Then the exponents of xi in r-th round are upper

bounded by dr−i if r > i. This means that the upper bound of δxi
(x

(r)
j ) is the

maximum integer l that satisfies 2l − 1 ≤ dr−i.Since δxi
(x

(r)
j ) ≤ n we have

δxi(x
(r)
j ) ≤ min{⌊log2(dr−i+1)⌋, n}. For the case of r ≤ i, by simple observation

the maximum exponents of xi in x
(i−j)
j is 1 when i > j and x

(r)
j does not

contain the variable xi otherwise. Hence we have δxi
(x

(r)
j ) = 1 if r = i − j and

δxi(x
(r)
j ) = 0 otherwise.

When j = t − 1, due to the structure of the (unbalanced) Feistel network
we have δxi(x

(r)
t−1) = δxi(x

(r−1)
0 ). Then we can derive δxi(x

(r)
j ) in the same

way before. Since the maximum exponents of xi in x
(i+1)
j is d, we have that

the exponents in r-th round are upper bounded by dr−(i+1) and δxi
(x

(r)
j ) ≤

min{⌊log2(dr−(i+1) + 1)⌋, n} for r > i + 1. For the case of r ≤ i, the maximum
exponents of xi in x

(i−j+1)
j is 1 and we have δxi

(x
(r)
j ) = 1 if r = i− j + 1.

⊓⊔
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Using Corollary 1, we propose the upper bound on the algebraic degree of
MiMC-like constructions in (unbalanced) Feistel network as follows.

Proposition 3. Considering Ek : Ft
2n → Ft

2n as a (unbalanced) Feistel-network
cipher represented as in Equation (6). Let Rj = logd(2

n − 1) + (t − 1 + θ(j)),
The algebraic degree of Ek satisfies that

δ(x
(r)
j ) ≤

{∑t−1
i=0 δxi(x

(r)
j ), if r < Rj ,

t · n− 1, else.

Proof. Based on Corollary 1, the upper bound of δ(x
(r)
j ) is the maximal sum

of the Hamming weight for the non-vanishing monomials in x
(r)
j , respectively.

Therefore, we have δ(x
(r)
j ) ≤∑t−1

i=0 δxi(x
(r)
j ).

Notice that the maximum algebraic degree is t · n − 1 for permutation and
δxi

(x
(r)
j ) ≤ n. The maximal algebraic degree appears if there are t− 1 variables

with algebraic degree n and one variable with algebraic degree n − 1. Since for
r > i + θ(j) we have δxl

(x
(r)
j ) ≥ δxi

(x
(r)
j ) if l < i, then δ(x

(r)
j ) ≤ t · n − 1 if

δxt−1(x
(r)
j ) ≤ n− 1. Then we have r < logd(2

n − 1) + (t− 1 + θ(j)).
⊓⊔

Discussion of Proposition 3. By the proof of Proposition 3, we can see that
the growth of the algebraic degree is almost linear. When r ≥ Rj , δ(x

(r)
i ) is

always t · n − 1. However, we point out that it is not always the case. Taking
the polynomial (x0 ⊕ k0)

27(x1 ⊕ k1)
18 as a simple example, the algebraic degree

is wt(27) + wt(18) = 6 for the appearance of monomial x27
0 x18

1 . However, when
n = 3, actually we have

(x0 ⊕ k0)
27(x1 ⊕ k1)

18 ≡ (x0 ⊕ k0)
6(x1 ⊕ k1)

4

and the algebraic degree is wt(6) + wt(4) = 4. The deviation is caused by the
offset of exponents when the degree is over 2n − 1, which is difficult to give a
condition to guarantee when a particular monomial will change. Moreover, the
relatively simple algebraic structure also leads to sparser terms and this decreases
the practical degree.

4.2 Constructing Higher-Order Differential Distinguishers by
Considering Different Numbers of Branches.

As is well known, if the algebraic degree of F is strictly smaller than d− 1, then
for any subspace V ⊆ FN

2 with dimension s ≥ d, we have
⊕

x∈V⊕c F (x) = 0.
Unfortunately, the opposite does not hold in general. Even if the summing over
all the x ∈ V ⊕ c of dimension s ≤ d always results in a zero-sum, we cannot
make sure if the algebraic degree is d since it can be caused by some special
structure of the function. However, this provides us with a new approach for
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detecting the higher-order differential distinguisher. For multivariate polynomial
Fk : Ft

2n → F2n defined as

Fk(x0, · · · , xt−1) =
∑

u=(u0,··· ,ut−1)∈{0,1,··· ,2n−1}t

φk(u) ·
t−1∏
i=0

xui
i ,k ∈ Fr

2n .

We limit ourselves to consider the sum of the Hamming weight for the exponents
of different branches, denoted by

∑
i∈X δxi

(x
(r)
j ) for some certain j. X represents

the set of the branches we are interested in. Then by tracing the upper bound of∑
i∈X δxi(x

(r)
j ) precisely, we can establish higher-order differential distinguishers.

The following theorem is a corollary of Proposition 1 in [7].

Corollary 2. Let Fk : Ft
2n → F2n be multivariate polynomial defined as

Fk(x0, · · · , xt−1) =
∑

u=(u0,··· ,ut−1)∈{0,1,··· ,2n−1}t

φk(u) ·
t−1∏
i=0

xui
i ,k ∈ Fr

2n .

If there exist m variables xj0 , xj1 , · · · , xjm−1
satisfies that for each non-vanishing

monomial in Fk there is
⊕m−1

w=0 hw(ujw) ≤ s− 1, we have
⊕

v∈V⊕c

Fk(v) = 0. V =

{(l0, l1, · · · , lt−1) | (lj0 , lj1 , · · · , ljm−1) ∈ V } for any affine subspace V ⊆ F2m×n

of dimension at least s.

Proof. Each non-vanishing monomial of Fk can be written in the form of φk(u) ·
xu0
0 xu1

1 · · · · · x
ut−1

t−1 with φk(u) ̸= 0. Since the dimension of V is at least s, then
we have ∑

(xj0
,··· ,xjm−1

)∈V

x
uj0
j0
· ... · xujm−1

jm−1
= 0

and for each monomial of Fk we have

∑
(x0,··· ,xt−1)∈V⊕c

φk(u) ·
t−1∏
i=0

xui
i = 0.

Consequently,
⊕

v∈V⊕c

Fk(v) = 0.

5 Applications to Feistel MiMC, MiMC and GMiMC

We apply our algorithm to some competitive arithmetization-oriented block ci-
phers, including MiMC and its generalization Feistel MiMC and GMiMC. All
of them use x 7→ x3 as their round function, but are based on different design
strategies. The original MiMC introduced by Albrecht et al. [2] is a family of
block ciphers dedicated to applications that support operations in large finite
fields posing largest performance bottleneck. Due to its outstanding performance
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in applications such as MPC, SNARKs and STARKs, it quickly became the op-
timal choice for many use cases. In the same specification, a variant of MiMC
was proposed by inserting the original design into the Feistel structure, named
Feistel MiMC or MiMC-2n/n. This first application of Feistel networks in AO ci-
phers brings more flexibility of being able to rely on a larger field size. In that
spirit, Albrecht et al. proposed GMiMC [1], a family of block ciphers based on
different types of Feistel networks which can operate on different numbers of
branches.

5.1 Application to Feistel MiMC

In this subsection, we focus on Feistel MiMC, an r-round block cipher in Feistel
network with n-bit block size and the same key size operating on F2n . The i-th
round function F (i) is depicted in Figure 2 and defined as

(x
(i)
0 , x

(i)
1 )← (x

(i−1)
1 ⊕ (x

(i−1)
0 ⊕ k(i−1))d, x

(i−1)
0 )

k = (k(0), . . . , k(r−1)) denotes a sequence of r round subkeys. The round con-
stants are omitted for simplicity since they can be regarded as part of the round
keys and do not affect the upper bound of the algebraic degree. We denote Feis-
tel MiMC specified by exponent d and block size n as FeistelMiMCd(n, r). When
d = 3, the number of rounds to achieve n-bit security is rn = 2n · log3(2)+1 and
the number of rounds to achieve 2n-bit security is rN = ⌈2n · log3(2)⌉ + 3. As
far as we know, the best higher-order differential distinguisher in the literature
is the 83-round one proposed in [7] for the permutation Feistel MiMC.

xd

x
(i−1)
0

⊕
k(i−1)

x
(i−1)
1

⊕

x
(i)
0 x

(i)
1

Fig. 1: The round function F (i) of FeistelMiMCd(n, r).

Detect the algebraic degree of FeistelMiMCd Let πu(0)(x(0)) denote the
monomials of the input statements of FeistelMiMCd. πu(i)(x(i)) and πv(i)(k(i))
denote the output statements of the i-th round function F (i) and the monomial
of the i-th round key, respectively. We introduce auxiliary variables and the
whole SMT modelMr is described as
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Mr ←



(u
(i)
0 )

COPY−−−−→ (u
(i+1)
1 ,m(i)) for 0 ≤ i < r,

(v(i),m(i))
XOR−−−→ (pi) for 0 ≤ i < r,

(p(i))
POWER−−−−−−→ (q(i)) for 0 ≤ i < r,

(q(i), u
(i)
1 )

XOR−−−→ (u
(i+1)
0 ) for 0 ≤ i < r,

By setting the initial constraints and stopping rules, Algorithm 1 is imple-
mented to search the algebraic degree of FeistelMiMCd(n, r). We denote the al-
gebraic degree of the left branch and the right branch by δ(x

(r)
0 ) and δ(x

(r)
1 ),

respectively. Without loss of generality, we only search for δ(x
(r)
0 ) due to the

structure of the Feistel network, i.e., δ(x(r)
1 ) = δ(x

(r−1)
0 ).

Comparison of our results with theoretical bounds. We have practically
verified our results on small-scale instances of FeistelMiMC3(n, r) with block size
n = 13 and found that our detected bounds correspond to the practical results.
A concrete comparison of different degree bounds for δ(x0) is given in Figure 2
for FeistelMiMC3(129, r). The trivial upper bound is defined as 2r. Meanwhile, we
also depict the trivial lower bound to explicitly understand the security margin.
Indeed, since the monomials x3r

0 and x3r−1

1 always appears in x
(r)
0 independently

from the choice of round constants or round keys, we can define the trivial lower
bound as max{wt(3r), wt(3r−1)}.

We notice that both our detected bound and our theoretical bound present
a linear growth in the initial stage. A more substantial difference appears when
the algebraic degree is reaching the maximal, namely when r > Rj . While the
theoretical bound predicts that δ(x(r)

0 ) reaches the maximal degree directly after
the linear growth, the detected bounds show that there is still a long stage of slow
growth before achieving the maximum algebraic degree. During some consecutive
rounds, the algebraic degree even remains constant, called a plateau in [13]. Some
plateaus cover a few rounds, e.g., δ(x(r)

0 ) stays constant at 254 for only 2 rounds.
The largest plateau appears when the algebraic degree is 2n − 2. It remains
constant for an especially long time, covering a total of 27 rounds. Our results
indicate that the stage of slow growth significantly influences the growth of
the algebraic degree. Therefore, more rounds than previously predicted may be
necessary to guarantee security against high-order differential distinguishers. For
FeistelMiMC3(129, r), our detected bound can produce the distinguisher for 124
rounds, which extends the theoretical distinguisher for 41 rounds.

We would like to mention that our Algorithm 1 can also be applied to search
for the univariate degree δxi

(x
(r)
j ) by slightly modifying the initial constraints as

wt(u
(0)
i ) = l

for i ∈ {0, 1}, respectively. Then if wt(u(0)
i ) ≤ s − 1, we can always construct

a higher-order differential distinguisher with a data complexity of 2s for branch
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i. As an example, for FeistelMiMC3(129, r), we can exhibit a distinguisher with
data complexity 2127/2129 for 82/83 rounds, both resulting in a zero-sum in the
output of the right branch.
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Fig. 2: Comparison of different degree bounds δ(x
(r)
0 ) for FeistelMiMC3(129, r).

Comparison of our bounds with different exponents. We also applied
our algorithm to different exponents d and observe the influence of exponents
on the degree growth. A simple observation of Figure 3 is that the linear rate of
the initial linear growth goes up with d and the number of rounds for the slow
growth (i.e., from the round R0 until reaching the maximal algebraic degree)
is reduced. The number of rounds for the slow growth is 42 rounds for d = 3
whereas it is 30 rounds for d = 5 despite the Hamming weight of d is the same.
For d = 31, the number of rounds for the slow growth is only 15, with the largest
plateau covering 10 rounds.

Known-key zero-sum distinguisher for the full FeistelMiMC3(129, r).
The known-key distinguishers for block ciphers were introduced by Knudsen and
Rijmen at ASIACRYPT 2007 [27] and have been a major research direction in
cryptanalysis since then. There is no secret material involved in the computation
and the attacker aims to find a structural property for the cipher which an ideal
cipher would not have. It is also related to the distinguishers for permutation
since the analysis is often done in the known-key model. A well-known powerful
distinguisher for the known-key setting is the so-called zero-sum distinguisher [4].
The idea is based on the inside-out approach, where the attacker starts from the
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Fig. 3: Comparison of our degree bounds δ(x
(r)
0 ) for FeistelMiMCd(129, r) with

different exponents d.

middle rounds and chooses a set of internal states so that the sum of the inputs
and outputs are all zero when computing backwards and forwards.

Let us consider FeistelMiMC3(129, r). By choosing a subspace of the right
input branch of dimension 127, the distinguisher can be extended forwards for
82 rounds, with the output of the right branch achieving zero-sum property. The
inverse of FeistelMiMC3(129, r) still follows the Feistel network. When computing
backwards, the active branch is now the left one. Then the distinguisher can be
extended backwards for 81 rounds, resulting in a zero-sum property in the right
output branch. This eventually leads to a distinguisher with complexity 2127 for
a total of 82 + 81 = 163 rounds. Besides, by saturating the branch x1, we can
further derive a zero-sum distinguisher of 83+82 = 165 rounds. Moreover, since
the upper bound of the algebraic degree δ(x

(r)
0 ) is 250 for 83 rounds, we can

establish a zero-sum distinguisher covering a total of 83 × 2 = 166 rounds by
choosing a subspace of dimension D = 251. With the largest non-trivial vector
space F257

2 , we can deduce the longest zero-sum distinguisher covering a total of
124× 2 = 248 rounds, much more than rN = 166 rounds for 2n-bit security.

5.2 Application to MiMC

In this subsection, we consider the algebraic degree of different variants of MiMC
and investigate some possible choices for the generic exponents d. MiMC [2] is
an r-round key-alternating block cipher with an n-bit block size and the same
key size. Each round consists of three steps: a key addition with the master key
k, a round constant addition of ci ∈ F2n , and the application of the non-linear
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function Rd := xd over F2n with (d, 2n − 1) = 1. After r round iterations, an
additional k is added at last. To simplify the representation, we equivalently
regard k ⊕ ci as the round key ki and the instance MiMCd(n, r) is defined by

MiMCd(n, r) := Rd(· · ·Rd(Rd(x⊕ k0)⊕ k1) · · · )⊕ kr (7)

where Rd(x) := xd.

Comparison of different choices for exponents d. Referring to the analysis
proposed in MiMC, the best choice of the exponents seems to be of the form
d = 2l−1 for integer l. We then apply our searching algorithm for MiMCd(129, r)
with d ∈ {3, 7, 15, 31}, respectively. Table 5 and Table 6 in Appendix A compares
the different upper bounds of the algebraic degree. δ(d,r)MP denotes the algebraic
degree found by our algorithm, while δ

(d,r)
[EGL+20] denotes the theoretical upper

bounds in [21] given as δ
(d,r)
[EGL+20] = ⌊log2(dr + 1)⌋. We also verified our bounds

on small-scale instances and the observed degree is denoted by δ(d,r).
We observe that for MiMCd(129, r) with d ∈ {3, 7, 15, 31}, the higher-order

differential distinguisher can be established for up to 81, 46, 33, 27 rounds, re-
spectively. However, according to the formula for the number of rounds used in
MiMC specification [2], the total rounds are 82, 46, 34, 27 rounds, respectively.
The distinguishers even can cover the full-round MiMCd for d = 7 and 31 while
the security margin is only 1 round for d = 3 and 15. Therefore, it invalidates the
security claims of the designers and we expect that more rounds than previously
predicted in MiMC-like schemes are necessary to guarantee the security against
the higher-order differential distinguisher.

We also investigate the algebraic degree of MiMCd(n, r) with d = 2l + 1.
Besides the theoretical bound δ

(d,r)
[EGL+20], the work of [13] proposed another the-

oretical bound for d = 2l + 1, represented by δ
(d,r)
[BCP22]. δ

(d,r)
[BCP22]

5 is given as

δ
(d,r)
[BCP22] =

{
2× ⌈kr/2− 1⌉, kr = ⌊r log2(d)⌋, for l = 1,

⌊r log2(d)⌋ − l + 1, for l > 1.

When d = 3, δ(3,r)[BCP22] is exact for up to more than 16000 rounds of MiMC.
Table 5 and Table 7 in Appendix A compare the different upper bounds of

the algebraic degree for MiMCd(129, r) for exponents d = 2l + 1. δ(d,r)MP denotes
the algebraic degree found by our method and δ(d,r) is the observed degree
verified in small-scale instances. We notice that when d = 3, our detected bound
seems to coincide with δ

(3,r)
[BCP22], the exact algebraic degree of MiMC. However,

with the increase of d, the theoretical bounds δ
(d,r)
[EGL+20] and δ

(d,r)
[BCP22] do not

5 [13] also gives an improved bound when d ̸= 3. However, the cost for computing the
Hamming weight is exponential in r, which means that the bound is infeasible to be
determined computationally.
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match the observed bound δ(d,r) as well as d = 3, even if the weight of d is the
same. Instead, the upper bound found by our algorithm seems to coincide to the
observed degree well. Overall, our bounds provide a more precise evaluation of
the algebraic degree. This leads to the full-round or almost full-round higher-
order differential distinguishers for different instances of MiMCd. All the results
are summarized in Table 3.

5.3 Application to GMiMC

In this subsection, we focus on GMiMCerf , which achieves the best performance
among all the variants of GMiMC and has been chosen in the StarkWare chal-
lenges. We denote GMiMCerf specified by branch number t and block size n as
GMiMC(n, t) for simplicity. It is an r-round block cipher in unbalanced Feistel
network with an expanding round function, defined as

(x
(i)
0 , x

(i)
1 , · · · , x(i)

t−1)← (x
(i−1)
1 ⊕ F (x

(i−1)
0 ), · · · , x(i−1)

t−1 ⊕ F (x
(i−1)
0 ), x

(i−1)
0 ),

where x
(i)
j denotes the input of the j-th branch for round i. F represents the

cubic mapping over finite field as

F (x) := (x⊕ k(i−1))3.

k = (k(0), · · · , k(r−1)) is a sequence of round keys and we omit the round con-
stants for simplicity. The overall round function of GMiMC(n, t) is illustrated in
Figure 4.
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⊕
⊕
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1 x
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2 x
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(i)
t−1

Fig. 4: The round function of GMiMC(n, t) .

Higher-order differential distinguisher for GMiMCerf . With Model 4, we
can apply Algorithm 1 to search for the higher-order differential distinguisher
by slightly modifying the initial constraints as∑

i∈X
wt(u

(0)
i ) = l.
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X denotes the set of branches we focus on, For a concrete example, we search
for the degree growth of GMiMC(33, 8).

By saturating three branches (x5, x6, x7) of GMiMC(33, 8), our algorithm
finds zero-sum in all the output variables after 29 rounds. Due to the structure
of the unbalanced Feistel structure, we can extend the distinguishers for t − 1
more rounds according to Proposition 3 in [7], as a total of 36 rounds. Moreover,
we can modify the initial constraint as

t−1∑
i=0

wt(u
(0)
i ) = t · n− 1

and search for the longest higher-order differential distinguisher. If the model is
infeasible, then the corresponding algebraic degree is strictly less than n · t − 1
and we can always construct the distinguisher with the largest non-trivial vector
space. The longest distinguisher we can find covers a total of 43 rounds with
all the output branches achieving zero-sum property, which can be naturally
extended to 50 rounds in the same way as before. It is 10 rounds longer than
the distinguisher for permutation GMiMC(33, 8) found in [7].

6 Conclusion

While the traditional block ciphers defined over F2 possess a far-developed analy-
sis toolbox, there is a lack of cryptanalytic methods for the novel arithmetization-
oriented ciphers due to the quite different design constraints. In this paper, we
introduce a novel extension of the division property, called general monomial
prediction. It is a generic technique to detect the algebraic degree for ciphers
over F2n by evaluating whether the polynomial representation of a block cipher
contains some specific monomials. Through tracing the transition of the expo-
nents, we develop a searching tool for the degree estimation of ciphers based on
the relationship between the exponents of monomials and the algebraic degree.
We apply our algorithm to some competitive arithmetization-oriented block ci-
phers including MiMC, Feistel MiMC, and GMiMC. As a result, we successfully
find the currently best degree bounds and get much longer distinguishers than
previous results for several instances. Overall, our methods provide a better es-
timation for the algebraic degree in case of ciphers over the finite field F2n and
furthermore, help to establish a more accurate number of rounds necessary to
guarantee the security level.
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A Different upper bounds of the algebraic degree for
MiMCd(n, r)

Table 5: Different upper bounds of the algebraic degree for MiMC3(n, r). The
bounds correspond to δ(3,r) are in bold.

r δ(3,r) δ
(3,r)

[EGL+20]
δ
(3,r)

[BCP22] δ
(3,r)
MP r δ(3,r) δ

(3,r)

[EGL+20]
δ
(3,r)

[BCP22] δ
(3,r)
MP

1 2 2 - 2 17 24 26 24 24
2 2 3 - 2 18 26 28 26 26
3 4 4 - 4 19 28 30 28 28
4 4 6 - 4 20 30 31 30 30
5 6 7 6 6 40 - 63 62 62
6 8 9 8 8 41 - 64 62 62
7 10 11 10 10 42 - 66 64 64
8 10 12 10 10 78 - 123 122 122
9 12 14 12 12 79 - 125 124 124
10 14 15 14 14 80 - 126 124 124
11 16 17 16 16 81 - 128 126 126
12 18 19 18 18 82 - 129 128 128
13 18 20 18 18 160 - 253 252 252
14 20 22 20 20 161 - 255 254 254
15 22 23 22 22 162 - 256 254 254
16 24 25 24 24 646 - 1023 1022 1022
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Table 6: Different upper bounds of the algebraic degree for MiMCd(n, r), d =
7, 15, 31. The bounds correspond to δ(d,r) are in bold.

Parameters Bounds
d r δ(d,r) δ

(d,r)

[EGL+20]
δ
(d,r)

[BCP22] δ
(d,r)
MP

7

1 3 3 - 3
2 3 5 - 3
3 6 8 - 6
4 9 11 - 9
5 12 14 - 12
6 15 16 - 15
7 18 19 - 18
8 21 22 - 21
9 24 25 - 24
45 - 126 - 123
46 - 129 - 126

15

1 4 4 - 4
2 4 7 - 4
3 8 11 - 8
4 12 15 - 12
5 16 19 - 16
6 20 23 - 20
32 - 125 - 124
33 - 128 - 124

31

1 5 5 - 5
2 5 9 - 5
3 10 14 - 10
4 15 19 - 15
5 20 24 - 20
25 - 123 - 122
26 - 128 - 125
27 - 133 - 127
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Table 7: Different upper bounds of the algebraic degree for MiMCd(n, r), d =
5, 9, 17. The bounds correspond to δ(d,r) are in bold.

Parameters Bounds
d r δ(d,r) δ

(d,r)

[EGL+20]
δ
(d,r)

[BCP22] δ
(d,r)
MP

5

1 2 2 - 2
2 3 4 - 3
3 6 6 - 6
4 7 9 8 7
5 10 11 10 10
6 12 13 12 12
7 14 16 15 14
8 16 18 17 16
9 19 20 19 19
10 22 23 22 22
11 23 25 24 23
12 26 27 26 26
13 28 30 29 28
27 - 62 61 60
28 - 65 64 63
54 - 125 124 123
55 - 127 126 126

9

1 2 3 - 2
2 3 6 - 3
3 6 9 7 6
4 7 12 10 7
5 10 15 13 10
6 15 19 17 15
7 20 22 20 20
8 22 25 23 22
40 - 126 124 123
41 - 129 127 126

17

1 2 4 - 2
2 3 8 5 3
3 6 12 9 6
4 7 16 13 7
5 11 20 17 11
6 16 24 21 16
7 22 28 25 22
8 26 32 29 26
31 - 126 123 122
32 - 130 127 126
33 - 134 131 130
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