
Anonymous Random Allocation and Its
Applications

Azam Soleimanian

ConsenSys, ConsenSys R&D, Paris, France
{firstname.lastname}@consensys.net

Abstract. Random Allocation -the random assignment of the data to the
parties- is a well-studied topic in the analysis of medical or judicial data,
and the context of resource distribution. Random allocation reduces the
chance of bias or corruption in the relevant applications, which makes the
results more reliable. This is done by preventing a special or pre-planned
assignment of the data to accommodate the assessment toward the desired
results. This paper provides the first formal syntax and security notion
of a random allocation scheme. Based on our new security notions of
anonymity, confidentiality, and data-integrity, random allocation can
cover more applications such as the distributed audit system where the
confidentiality of data and the anonymity of auditors are of paramount
importance. Our protocol allows the parties to stay anonymous during
the concurrent executions of the protocol even if they have revealed
themselves at a certain execution. The revelation property gives the
possibility to the parties to claim certain advantages/faults at the end of
a protocol-execution (without breaking the data-privacy or anonymity
in other protocol-executions). We instantiate our syntax and prove the
security based on simple cryptographic components and assumptions such
as the Diffie-Hellman assumption, in the random oracle model.

Keywords: Random Allocation, Random Assignment, Mix-Net, Single Secret
Election, Anonymity

1 Introduction

Random Allocation is the process of assigning the data to a set of parties based
on a one-to-one random map. This concept provides a simple and efficient way
for avoiding bias in clinical trials, or for preventing corruption in judicial or
evaluation systems [Alt96,FD98]. This is done by preventing a special or pre-
planned assignment of the data to accommodate the assessment toward the
desired results. The solutions based on random allocations seem very practical,
the group of parties agrees on a source of randomness (more precisely, on a
random permutation) and respects the allocation.

For example, imagine a clinical trial where there are different research groups,
each has its new intervention technique, and they want to know which of these
techniques is more effective. They assign a random group of participants to

2 A. Soleimanian

each intervention and check the results at the end. This process is known as the
Randomized Controlled Trial (RCT).

Similarly, in judicial systems, to reduce the chance of corruption or biased
judgment, the cases are randomly assigned to different judges or courts.

Random allocation can be used to address the scalability problem in the
large-scale distributed systems where different tasks are assigned to different
subsets of the system via a random allocation [GXC+17].

These examples and many others show the importance of random allocation.
Despite all these applications [BCKM13], this topic has not been analyzed from
a more precise security point of view. This paper puts forth a precise security
notion for Random Allocation.

In the rest of the paper, we use the general terms “party” and “data” respec-
tively for interventions and participants’ data in our RCT example. We may also
use data-owner as a replacement for a participant. When it is clear from the text,
we may use data and data-owner interchangeably.

The relevant communities are well aware of minimum security requirements
such as "Uniqueness", "Allocation Concealment" and "Blinding" [SG05,SG02].

Uniqueness is a trivial requirement saying that the allocation should be a
one-to-one map (more precisely, it is one-group-to-one-party). In our clinical
trial example, the Allocation Concealment prevents the researcher groups from
influencing the allocation of participants to the interventions. This property is
known as the "Fairness" in cryptography.

In a (single)-Blind allocation (again consider RCT example), information
that may influence the participants of the experiment is withheld until after the
allocation is complete. Unblinding a participant can cause the observer bias or
the confirmation bias, which arises from the expectation or the feeling of the
participant towards the intervention. To blind the participants, the existing RCT
techniques rely on a trusted third party who runs a random allocation and gives
the result of the allocation only to the parties. Even though the data-owner may
not have a direct interest in unblinding, still this kind of blindness is not realistic
for many applications, where the adversary may try to attack the data allocated
to a specific party just by colluding with the third party.

We suggest a strong notion of blindness called "Anonymity", which means
nobody can identify the party for an allocated pair except the party itself. So,
this is the blindness against all except the allocated party. More precisely, if the
allocation outputs a pair party-data (i, j) the identity of the party behind the
index i is unknown to everybody except the party-itself.

Moreover, we define the notion of "Confidentiality" that preserves the privacy
of data against all except its allocated party. Satisfying anonymity and confiden-
tiality, simultaneously, can be challenging since the data-owner needs to encrypt
the data with the public key of its allocated party, while the party is anonymous
and thus its public key is not known. Our solution allows transferring the data
to the allocated parties privately and anonymously.

Note that when the allocation is complete, each party knows with which data
it is paired. This may arise more attacks against the accessibility of data, where

Anonymous Random Allocation 3

a malicious party tries to replace the legitimate ciphertext with irrelevant data,
without being detected. To go around this issue we also present the security
notion of "Data-Integrity" which can detect the mentioned attack.

We emphasize that two notions confidentiality and data-integrity have not
been studied in the literature of random allocation. Additionally, our definition
of anonymity provides a stronger security notion than the mentioned blindness.
These properties strengthen random allocation to support more applications
such as distributed audit systems where auditors should check for the correct
executions of different steps in the system. Our security notions allow an auditor
to have access only to its allocated part, while the auditor is anonymous and
therefore there is less chance for attacks or corruption (meanwhile, the fairness
prevents biased judgment).

To summarize, in this paper, we present the first formal cryptographic ground
to define and evaluate the security of Random Allocation. We present a protocol
that satisfies uniqueness, fairness, and anonymity, and at the same time guarantees
data-confidentiality and data-integrity. We call such a protocol as Anonymous
Random Allocation (ARA). Our main idea is based on a Single Secret Leader
Election (SSLE) scheme [BEHG20,CFG21] which was first motivated by the
applications in the proof of stake for the blockchain [BPS16]. The SSLE scheme
of [BEHG20] relies on shuffling [Dur64, Hås06, Hås16], re-randomization and
commitment. Intuitively, re-randomization and shuffling are mainly used to
achieve anonymity, while the commitment is used to reveal the allocations at
the end of the protocol. The technique of Rerandomize-and-Shuffle (R&S) is a
well-known concept in Mix-Nets [GJJS04,Wik04] which guarantees the anonymity
of the senders. The intuition behind this technique is that it inserts the entropy
into the relationship between the input and the output of a R&S phase, such
that after enough steps of R&S, no one can link the last output to the initial
input.

Here, we use a card-based example to explain the intuition behind SSLE and
its extension to ARA protocol. Assume that there is a deck of cards and we agree
that after shuffling the deck and distributing the cards among the players, the
winner is the one who gets the “king of pick”. The winner can later prove that
he/she is the winner, simply by revealing the target card. Here, there is an attack
where one can prepare a copy of the target card in advance and put it in his/her
hand. To prevent this attack, the cards should be distributed transparently. More
precisely, instead of hiding the cards, we hide the players’ identities. First, in an
anonymity phase, each player chooses a pseudonym, where this pseudonym is the
commitment Cs to a selected (unique) secret s, pseudonyms are re-randomized
and shuffled among the players such that at the end of this phase each player can
link an output to its own pseudonym (while it can not find any link among other
outputs and pseudonyms). Then in an allocation phase, the cards are shuffled and
distributed transparently. The winner of the target card can later reveal itself by
revealing its secret (which can be verified against the output of the anonymity
phase).

4 A. Soleimanian

While in SSLE a single data has a distinct value (namely, “king of pick”), in
an ARA protocol data is treated equally and the aim is just to distribute the
data among the parties (with the same anonymity property of SSLE). On the
other hand, the main difference between SSLE and ARA is in the concept of data.
While in SSLE data is only an abstraction, in ARA data is based on real-world
information. ARA protocol not only extends the idea of SSLE to the distribution
of data (rather than single selection), but also allows the existence of real data
which can be transferred to the allocated party privately and anonymously. Such
extensions make ARA a proper tool for applications, dealing with real data,
demanding privacy of data and anonymity of parties (with revelation at the end)
simultaneously. Furthermore, in our security model, we consider parties malicious
and the data-owners honest-but-curious.

1.1 Our Technique

The intuition of our ARA protocol is as follows.
Each party P chooses a random secret s, commits to s through the commitment

Cs, and adds Cs to the common list L. Then it re-randomizes and shuffles the
list, where re-randomization is done as Crs for a randomly chosen r. The data-set
would be shuffled and assigned to the elements of the list L in order. Intuitively,
re-randomizations and shuffles guarantee the anonymity of the parties. While the
correct shuffling and the binding property of commitment guarantee uniqueness
and fairness. The commitment Cs (to the secret s) is generated such that the
party can detect its associated entry in the list L, even after re-randomization.
Let the commitment to the secret s be Cs = (gr, gsr) = (u, v), then the relation
v = us is preserved through all the re-randomizations. This is important that
the commitment is detectable by its owner, as the party needs to reveal itself at
the end of the protocol. The above idea - first commit, then re-randomize and
shuffle- was used in SSLE [BEHG20].1

We further extend this protocol to guarantee data-confidentiality and data-
integrity. To do so, in the anonymity phase, each party appends its public key to
the list L as well. Thus, at the end of this phase, the public key is re-randomized as
apk = pkra , where ra is due to the re-randomization steps during the protocol, and
we call it aggregate randomness. The data-owner can encrypt its message M ∈ G
by a scheme similar to the El-Gamal encryption as (ct0, ct1) = (Rr,M · apkr),
where R = gra is the (encoding of) aggregate randomness. Thus, to provide
access to R, we add the generator g to the list L as well. Namely, in the set L,
at first we have l = (Cs, pk, g) and after re-randomization steps, it changes to
l = (Cra

s , apk = pkra , R = gra) which makes the mentioned encryption possible.
For the aim of data-integrity, before allocating data to parties, we also add
commitments Cm to a data-set DB. After the party has received its ciphertext,
it decrypts and compares it against the commitment Cm.
1 One can say that their protocol has two main phases: anonymity and random single

selection, while our protocol has a similar anonymity phase pursuing a random
allocation phase.

Anonymous Random Allocation 5

Note that unlike the secret s which is refreshed for each allocation, the se-
cret/public key is fixed. Thus, we should make sure the adversary can not link
two randomized public keys in two different allocations and break the anonymity.
At first glance, the above idea may seem appropriate since the public key is
re-randomized as well, and thus by the DDH assumption the re-randomized ver-
sions of the public key (in different allocations) all seem random. Unfortunately,
the reasoning fails since, by the aim of the protocol, parties have to decrypt
their associated ciphertext and check for the data-integrity. This means in the
security proof, the simulator needs access to the secret key to simulate concurrent
decryption from other allocation queries (while the secret key is not given through
the DDH samples). To go around the mentioned issue, we use fresh random
encryption keys for each allocation but bind the secret s to the identity of the
party through another commitment H ′(pk, gs) such that after the revelation of s
the owner of the pk would be recognized as the allocated party. Thus, the secret
s is used for building a detectable-commitment that would be revealed later, the
encryption keys (esk, epk) are used for data-encryption, and pk is used as the
unique and fix identity of the party.

Putting together, our technique can be summarized as follows,

1. Each party chooses a fresh secret s and a fresh encryption key pair (esk, epk),
it generates a detectable commitment Cs and appends (Cs, epk, g) to the list
L. Then it re-randomizes and shuffles L. It also registers the commitment
H ′(pk, gs).

2. For each data, we add a commitment Cm to the data-set DB. Then the
elements of DB are randomly allocated to the element of L. Let us call the
allocation as ADB = {(l, Cm) ∈ L× DB}.

3. Data is encrypted under its allocated encryption key.
4. The party can reveal its secret and its identity pk to claim an allocated pair.

To achieve confidentiality and data-integrity at the same time, the commitment
Cm to the message M ∈ G should be hiding (meaning that it does not leak
information about the message M). Here we use the hash function H (modeled
as the random oracle [BR93,FS87]) to commit to M as Cm = H(M,D) where
D is chosen uniformly at random from the appropriate set. Then not only the
encryption of M , but also the encryption of D is sent to the party making it
possible to compare the received data against the commitment Cm. The opening
D must belong to the group G since we are using the El-Gamal encryption
scheme.

1.2 Related Work

Transfer of real data privately and anonymously is not a new problem, and
is widely studied in the context of oblivious transfer [Rab05, IPS08], mix-nets
[Cha81], onion routing systems [DMS04] and non-interactive anonymous router
(NIRA) [SW21].

6 A. Soleimanian

A 1-out-of-n oblivious transfer is a protocol where the sender holds several
messages and the receiver chooses one of them such that the sender transfers
the chosen message to the receiver whiteout knowing the choice of the receiver,
and mutually the receiver does not get any information about other messages.
In an ARA protocol, messages come from different senders and are allocated
to different receivers who do not trust each other, this makes ARA a different
problem.

Mix-nets and onion routing systems provide a way for anonymous commu-
nication where usually the sender of the ciphertext knows with who he/she is
communicating and the ciphertext goes through a MPC (i.e., interactive mes-
saging)2, to hide this information from others. In ARA and non-interactive
anonymous router, the assignment (of senders to receivers) is preprocessed which
allows separating the (interactive) setup phase from the (non-interactive) mes-
saging phase. Thus, ARA and non-interactive anonymous router are somehow
orthogonal concepts to the mix-net and onion routing.

In a non-interactive anonymous router (NIRA), the router can allocate the
senders to the receivers while neither the router nor the sender knows the assign-
ment. More detailed, a trusted setup, which is realized by a trusted authority,
provides n sender keys, n receiver keys and a token such that the private per-
mutation is encoded inside the token. Each sender can send private messages to
its allocated receiver by encrypting its message with its own key, then a router
holding the token receives all the ciphertexts and navigates them to the allocated
receivers (without knowing the allocation). Finally, the receiver uses its assigned
key to decrypt the message.

Unlike NIRA which has an on-the-fly messaging, our ARA protocol has a
predefined messaging phase3 (due to the data-integrity), and the router is replaced
with a pool. The ciphertexts are stored in a hash table and each party/receiver
can get access to its assigned ciphertext through a flag (where the flag is its
randomized public key associated with the ciphertext).

We emphasize that an ARA protocol supports not only anonymity and random
allocation but also revelation. This property enables the parties to stay anonymous
during the protocol but reveal themselves later, to claim some advantages or
to give a proof (for example, to prove the end of the task and so claim their
compensation).

Putting together, while ARA shares some similarities with the existing works,
it follows a different aim and setting (Random allocation, private and anonymous
predefined messaging, and revelation property).

2 Indeed we are using the mix-net idea as a setup phase.
3 More precisely, in NIRA a sender chooses its message at the moment, while in ARA
the message is the one that was previously committed during the allocation phase.

Anonymous Random Allocation 7

2 Preliminaries

Notation. In this paper, the security parameter is denoted by κ. We say that a
function negl(x) is negligible if negl(κ) ≤ κ−ω(1). For a probabilistic polynomial
time (p.p.t) algorithm A, the notation y ← A(x) means: A receives x as the
input and outputs y. The notation x R← X stands for sampling the element x
uniformly from the set X. We use AO(·), to show that A has the oracle access to
the algorithm or interactive protocol O.

Definition 1 (DDH Assumption[DH76]). For a cyclic group G of the prime
order p = poly(κ) and with the generator g (described by G = (G, p, g)), we say
that the DDH assumption holds in G if for any p.p.t. adversary A there is a
negligible function negl such that for a, b, c R← Zp,

|Pr[A(G, ga, gb, gab) = 1]− Pr[A(G, ga, gb, gc) = 1]| ≤ negl(κ)

Definition 2 (Shuffle and Random Beacon (RB)). A random shuffle is
a random reordering of the elements of a set. A random beacon is a center or
software that generates random values/shuffles. There are different techniques for
generating the randomness: randomness from the financial data [BCG15,CH10],
or based on cryptographic elements [NP,HMW18,BSL+20,SJK+17] which may
provide more features like public verifiability.

Note that our ARA protocol is already interactive, considering (black-box)
interactions with RB improves the efficiency and is pretty realistic since many
organizations are using RB for generating their required randomness.

In Appendix A, we also give the definition of other primitives that we will
use in ARA, such as hash family, commitment scheme, public key encryption
system, and their security notions.

2.1 Syntax and Security of ARA

An ARA protocol is formally defined as follows.

Definition 3 (Anonymous Random Allocation). An Anonymous Random
Allocation is a tuple of six main algorithms/protocols Π = (Setup,Anonymity,
Alloc,Enc,Reveal,Verif) among a set of parties Pi and data-owners Di as follows
(here N is the total number of parties in the system),

– Setup(1κ, N): it generates and returns the public parameters pp, a state st0,
and public/private keys (ski, pki)i∈[N]. All the other algorithms implicitly use
pp in their inputs.

– Anonymity(stc): it is a protocol among a subset of parties (indexed by c), each
party who joins, updates the public state stc (set as st0 at the beginning) by
adding some public information. Each party keeps track of its corresponding
secret information through a private state pstc.

8 A. Soleimanian

– Alloc(stc,DB,m1, . . . ,mn,RB): it is a protocol between parties and data-
owners that starts after the anonymity phase. The data-set DB is set to
the empty at the beginning, and n is the number of parties participating
in the allocation c. Assuming n data-owner, each adds its data Cm to DB
where the data corresponds with a message m. Parties receive the data-set
DB, the random beacon RB, and stc as their input, and return an allocation
between stc and DB. This consequently implies an allocation between the
set of parties and the data-set called Ac,DB (we can denote the allocation
as Ac,DB = T ∪ {stc,DB} where T = {(i, j)} ⊆ stc × DB). They output the
allocation Ac,DB.

– Enc(Ac,DB,m): it returns a ciphertext ct associated with a public key epk ∈ stc
and the message m. Where m and epk are an allocated pair through Ac,DB.
The pair (epk, ct) is added to a pool.

– Reveal(Ac,DB, pstc, c, ct, pk): Upon receiving Ac,DB, the party P reveals itself
as the owner of pk and claims a specific pair party-data (i, j) ∈ Ac,DB by
sending a proof πi,j. From the pool, it reads the pair (epk, ct) generated by
its allocated data-owner j. It runs the decryption over the ciphertext ct and
may send an invalidity request after (if the decrypted data is not compatible
with DB). Thus the output is (pk, πi,j , (i, j), Result) where Result = esk as
an invalidity request, and otherwise Result = valid.

– Verif(Ac,DB, pk, πi,j , (i, j), c, Result, ct): for the allocation c, it verifies the
correctness of a claim (or an invalidity request) that the data j is allocated to
the party i who owns the public key pk.

Note that while we have a fixed setup algorithm, we may have several allocations
w.r.t different subsets of parties. Thus, when we say an allocation is indexed by c,
it means that all other algorithms are working with the same state stc (or Ac,DB)
and are indexed by c.
Security Notion. For all the following security requirements we consider con-
current security which means: several allocations may happen where honest
and corrupted parties participate in any number of allocations together. The
corruptions are static meaning that at the beginning of each game the adversary
declares which parties are corrupted, we denote the set of corrupted parties by CP .
We use the term “user” to refer to both parties or data-owners. The threat model
assumes that parties are malicious while data-owners are honest-but-curious
(HBC).4

The uniqueness guarantees that each allocation is a one-to-one map between
the set of parties and the data-set (for some applications this might be one group
of data to one party5). In other words, the adversary tries to find an allocation
(indexed by c) such that it is not a one-to-one map.

4 The definitions of uniqueness, fairness, and anonymity are the generalization of
counterpart definitions from the SSLE to the ARA context [BEHG20] (These extend
the definitions- from the single selection- to the distribution of data through a 1-to-1
map. Moreover, we also consider malicious parties and HBC data-owners).

5 For this case, one can randomly distributes the data among n batches and then runs
ARA among the parties and batches-of-data.

Anonymous Random Allocation 9

Definition 4 (Uniqueness). We say that an ARA protocol Π is unique,
if for any p.p.t. adversary A there is a negligible function negl(κ) such that
Pr [UniqueA(1κ) = 1] ≤ negl(κ), for the experiment UniqueA(1κ) given in Fig. 1.
In this experiment, after many oracle queries to QARA, the adversary A outputs
an allocation c allocating two pairs party-data (i, j) and (k, t) (for honest parties)
such that they breach the 1-to-1 relation.

Here AQARA means the adversary has the oracle access to the interactive
algorithms (QAnonymitym,QAllocm,QEncm,QRevealm) where A plays the role of
corrupted users and challenger C plays the role of all the honest users. We use
the same index m for a set of algorithms to show they are related to the same
allocation m. For the index c output by the adversary, we have the condition that
the adversary has already queried QARAc(·).

UniqueA(1κ):
(pp, st0, {ski, pki}i∈[N])← Setup(1κ, N)
in := (pp, st0, {pki}i∈[N], {ski}i∈CP)
(c; (i, j), (k, t))← AQARA(·)(1κ, in)
such that (i, j), (k, t) ∈ Ac,DB.
output 1 iff
1. Verif(Ac,DB, pki, πi,j , (i, j), c, Result, cti,j) = 1 and

Verif(Ac,DB, pkk, πk,t, (k, t), c, Result, cti,j) = 1.
2. case I. (i = k ∧ j 6= t) for the honest party i or

case II. (i 6= k ∧ j = t) for i or k honest.

Fig. 1: The experiment for Uniqueness.

Remark 1. We emphasize that malicious parties always can exchange their claims
since they just can share their secrets among themselves and generate proper
proofs. This is the reason why in the experiment UniqueA(1κ) we conditioned
the output on honest parties. Though, the mentioned issue can be prevented by
the design, where the verification algorithm ignores all the claims deviating from
a one-to-one map (which then by the uniqueness, does not include the honest
parties, with overwhelming probability).

Fairness is about the uniform distribution of the allocations and the possibility
that the honest party can claim its allocated data. By the uniform distribution,
the probability that a specific data is allocated to a specific party is equal for
all the data and parties. Thus, the adversary aims to decrease the chance that a
specific pair happens, for the honest parties, either by changing the distribution
or by disturbing the party in the generation of its proof.

Definition 5 (Fairness). In the experiment FairA(1κ), Fig. 2, after many
oracle queries to QARA, the adversary A chooses a data-index j hoping that the
chosen index would not be allocated to an honest party in the next (i.e., the last)
allocation (or no honest party can generate a valid proof to claim otherwise).

In Fig. 2, let A play the role of corrupted users and challenger C play the
role of honest users. After a challenge request “one more, n”, the adversary has

10 A. Soleimanian

the interactive oracle access just to one allocation indexed by c and including n
parties (denoted by AQARAc,n), where ⊥ ← AQARAc,n(·) means A does not have
any output apart from the ones in the interactive oracle QARAc,n. We say that
an ARA protocol is fair if for any p.p.t adversary A there is a negligible function
negl such that

∣∣Pr[FairA(1κ) = 1]− t
n

∣∣ ≤ negl(κ), where t is the number of the
corrupted parties in the challenge allocation c of the game FairA(1κ), and n is
the total number of parties in this allocation.

FairA(1κ):
pp, st0, {skipki}i∈[N] ← Setup(1κ, N)
in := (pp, st0, {pki}i∈[N], {ski}i∈CP)
(one more, n; j)← AQARA(·)(1κ, in)
where A chooses an index j ≤ n (a data-owner).
⊥ ← AQARAc,n(·)

output 1 if for any honest party i in the allocation c:
Verif(Ac,DB, pki, πi,j , (i, j), c, Result, cti,j) = 0

Fig. 2: The experiment for Fairness.

The anonymity guarantees that for a target data, as long as its allocated
party does not reveal itself, no one can predict the allocated party.

Definition 6 (Anonymity). In the experiment PredictA(1κ), Fig. 3, after
many oracle queries to QARA, the adversary A chooses a data-index j hoping
that in the next (i.e., last) allocation the chosen index would be allocated to an
honest party and the adversary can detect the party (before the parties reveal
themselves).

In Fig. 3, let A play the role of corrupted users and challenger C play the
role of honest users. After a challenge request “one more, n”, the adversary has
the interactive oracle access just to one allocation, indexed by c and including
n parties, as QAnonymityc,n, QAllocc,n and QEnc(c, n) (but not to QRevealc,n).
We say an ARA protocol Π is Anonymous if for any p.p.t adversary A there is a
negligible function negl such that Pr[PredictA(1κ) = 1] ≤ 1

n−t + negl(κ) where t
is the number of corrupted parties in the allocation c. This means, for the honest
parties, the adversary can not guess their allocated data, with the probability of
more than 1/(n− t).

Confidentiality protects the data against all but the allocated party.

Definition 7 (Confidentiality). In the experiment INDA(1κ), Fig. 5, after
many oracle queries to QARA, the adversary A outputs two messages (m0,m1) ,
the challenger chooses one of them randomly and embeds it in the data-set DB of
the last allocation (for the honest users), they participate in the last allocation
with the mentioned DB. The adversary wins if it can guess the chosen message.

In Fig. 5, let A play the role of corrupted users and challenger C play the
role of honest users. The adversary can send queries to QAlloc for messages m
(to be embedded in the data-set). It would send a challenge pair (m0,m1) for a

Anonymous Random Allocation 11
PredictA(1κ):
pp, st0, {ski, pki}i∈[N] ← Setup(1κ, N)
in := (pp, st0, {pki}i∈[N], {ski}i∈CP)
(one more, n; j)← AQARA(·)(1κ, in)
where A chooses an index j ≤ n (a data-owner).
i∗ ← AQAnonymityc,n(·),QAllocc,n(·),QEncc,m(·)

output 1 if for an honest party i in the allocation c:
Verif(Ac,DB, pki, πi,j , (i, j), c, Result, cti,j) = 1 and i∗ = i.
where πi,j ← Reveal(Ac,DB, pst, c, cti,j).

Fig. 3: The experiment for Anonymity.

challenge allocation c (to be used in Allocc for the honest data-owners, denoted
as Alloc(stc,DB(mb)). We say that an ARA protocol is confidential if in the
experiment INDA(1κ), for any p.p.t adversary A there is a negligible function
negl(κ) such that Pr[INDb

A(1κ) = 1, b R← {0, 1}] ≤ 1/2 + negl(κ).

INDbA(1κ):
(pp, st0, (ski, pki)i)← Setup(1κ, N)
in := (pp, st0, {pki}i∈[N], {ski}i∈CP)
(one more)← AQARA(·)(1κ, in)
(m0,m1)← AQAnonymityc(·)

where for any honest party and data-owner in the allocation c,
Ac,DB ← Alloc(stc, DB(mb)) and ctb ← Encc(Ac,DB,mb)
b′ ← AQARA(Ac,DB, {ctb})
output 1 if b′ = b.

Fig. 4: The experiment for Confidentiality.

Remark 2. Note that we can not preserve the confidentiality of data that is
allocated to the adversary. Simply, because data is revealed to its allocated party,
and the adversary already knows the data. That is why the challenger gives ctb
only for honest users.

The Data-integrity guarantees that an honest party would get access to the
correct allocated data stored in DB. More precisely, the adversary tries to find a
pair party-data (i, j) for an allocation c such that the embedded message m in
the data-set is different from the embedded message in the ciphertext, while the
verification still passes. Data-integrity can prevent man-in-the-middle attacks
where the adversary tries to replace the legitimate ciphertext with a malicious
one.
Definition 8 (Data-Integrity). We say that an ARA protocol Π has Data-
Integrity, if for any p.p.t. adversary A there is a negligible function negl such
that Pr[IntegrityA(1κ) = 1] ≤ negl(κ), where in the experiment IntegrityA(1κ) the
adversary has access to the oracle QARA, then it outputs an allocation c which she
has already sent a query for that, such that the allocation includes an allocated
pair party-data (i, j) and a ciphertext cti,j (associated with the allocation c),
where the party i is honest and cti,j is the corresponding ciphertext from the
data-owner j to the party i.

12 A. Soleimanian
IntegrityA(1κ):
(pp, st0, (ski, pki)i)← Setup(1κ, N)
in := (pp, st0, {pki}i∈[N], {ski}i∈CP)
(c, (i, j),mj , cti,j)← AQARA(·)(1κ, in)
The challenger sets m′j = Dec(pstc, cti,j) (where pstc is the private state of party i).
It outputs 1 if m′j 6= mj and m′j and mj are both compatible with DB.

Fig. 5: The experiment for Data-Integrity.

3 Our ARA protocol

In this section, we present our ARA scheme based on three main building blocks;
R&S, commitment, and encryption system where all are instantiated based on
the DDH assumption or collision-resistant hash.

The general idea is that each party, who joins the system, adds its encryption
key (g, gesk) ∈ G2 and a detectable-commitment Cs = (gr′

, gr
′s) ∈ G2 to the

public state and then re-randomizes and shuffles the state. On the other hand,
each data-owner generates a hiding commitment Cm to its message m and adds
the commitment to DB. Then the elements in the data-set DB are allocated to
the elements of the public state.

After the allocation phase, each data owner encrypts its data (message m)
and the opening of its commitment. The encryption is done via a randomized
public key allocated to its data, via the allocation phase. The allocated party uses
its secret key esk to decrypt the ciphertext and if the result is not compatible
with the commitment in the DB, it arises an invalidity request. It also outputs
the opening of its detectable-commitment Cs, to reveal itself as the allocated
party.

There are some details to make the encryption and decryption possible. In
particular, we use the El-Gamal encryption. Note that the decryption algorithm
of the El-Gamal system only works on messages which are either in the group G
or have a small size (to make the discrete-logarithm operation possible). On the
other hand, in our ARA protocol, a data-owner should send the opening (of its
committed data) to its allocated party by the El-Gamal encryption. Therefore,
we use a commitment scheme where the opening factor belongs to the group G,
to be compatible with the decryption of El-Gamal.

As mentioned before, a necessary property is the anonymity which cuts any
link between the identity of the party (i.e., its public key) and its inputs to the
protocol (through different allocations). For this aim, in each new allocation,
parties use fresh inputs (including the secret s for the detectable-commitment
and the encryption keys (esk, epk)), while the connection between the inputs and
the fixed public key is revealed at the end when the allocation is done. This
allows the party to claim an allocation associated with its public key while the
anonymity is preserved.

In the following construction H1 : G → {0, 1}poly(κ), H2 : G × G →
{0, 1}poly(κ) and H : G × G → {0, 1}poly(κ) are hash functions where H is
modeled as the random oracle.

Anonymous Random Allocation 13

3.1 Construction

Setup: as the input, it receives the security parameters κ and the number of
parties N . It creates an empty list L, for the cyclic group G of prime order
p it chooses a generator g, and sets pp = (G, g, p) and st0 = L. It outputs
(pp, st0, {pki}i∈N) where pki = gski and ski R← Zp is the secret key of party Pi.

Anonymity Phase: For the allocation c, let the state be stc = (L, t1, . . . , ti−1).
Let parties join in order. If Pi is the newly joint party:
– It checks that there are no two same tj in the state stc.
– It chooses a secret s R← Zp and an encryption secret key esk, then it generates

an identifiable commitment as Cs = (u, v) = (gr′
, gr

′s) for r′ R← Zp.
– It appends Cs, the encryption public key epk = gesk and the generator g to

the list L, i.e., L ← L ∪ (Cs, epk, g). It stores s and esk in its private state
pstc.

– It re-randomizes and shuffles the elements of L as lrj

j (where lj stands for
the j-th entry of L) for a randomly chosen rj R← Zp.

– Finally, it updates the state as stc = (L, t1, . . . , ti) where ti = (H1(gs), H2(pki, gs))
and different from other values tj . It outputs the updated state stc.

– Generating Proof Of R&S: If P has joined previously (i.e., P ∈ {P1, . . . , Pi−1}):
let its identifiable commitment be as C = (u, us), P verifies the output of
the party Pi by finding the randomized version of C (i.e., it searches for a
pair C ′ = (u′, v′) from the output such that v′ = u′s).

Allocation Phase: This protocol receives the last state stc and the set DB := ∅.
– Each data-owner generates the commitment Cm = H(M, gd) to its data
M ∈ G, for a unique value d R← Zp and locally stores m = (M, gd).

– They add the commitments Cm to the data-set DB.6
– Parties receive DB and a public random shuffle (from RB) and apply it over

the data-set DB.
– Finally, the elements of the resulting set are allocated one-by-one to the

elements of the list L in order, where the resulting allocation is called Ac,DB.
We will show an allocated pair as (l, Cm) ∈ Ac,DB where l = (Cra

s , aepk =
epkra , Ra = gra) is an element of L and ra is due to the re-randomization
steps (we also can assume that stc,DB ∈ Ac,DB).

Encryption Phase: Upon receiving the allocation Ac,DB, such that (l, Cm) ∈
Ac,DB (and Cm = H(M, gd) is associated with the data-owner D), the data-
owner D encrypts its data M ∈ G and its chosen revealing factor gd by El-Gamal
encryption as,

ct0 = Rra, ct′0 = Rr
′

a , ct1 = M · aepkr, ct′1 = gd · aepkr
′

where aepk is the anonymous encryption public key of its allocated party, r, r′ R←
Zp, and Ra is the (encoding of) aggregate randomness (note that l = (Cra

s , aepk =
6 Since the data-owner is not anonymous, we always can append a unique identifier to
Cm to be sure the elements of DB are unique.

14 A. Soleimanian

epkra , Ra = gra)). The ciphertext is sent to a pool that can be stored in a key-
value hash table (i.e., key=H(aepk), value= ct = (ct0, ct1; ct′0, ct′1)).
Reveal: Upon receiving the allocation Ac,DB such that (l, Cm) ∈ Ac,DB and
reading the ciphertext ct (through the pool), the party P as the owner of esk
(where esk is the secret key associated with aepk):
– Decrypts ct = (ct0, ct1; ct′0, ct′1) by its encryption secret key esk asM ′ = ct1

ct0esk

and gd′ = ct′
1

ct′
0

esk .
– From its local storage, it recovers its secret s for the commitment Cs (as the

proof for the allocated pair (l, Cm) ∈ Ac,DB.
– It sends an invalidity request (for data-integrity) by setting Result = esk

if the decrypted data is not compatible with the commitments Cm in the
data-set. More precisely, let M ′, gd′ be the decrypted data:

M ′ = Dec(esk, ct0, ct1), gd
′

= Dec(esk, ct′0, ct′1)

It sends an invalidity request (i.e, Result = esk) if Cm 6= H(M ′, gd′), Other-
wise Result = valid.

– Finally, it outputs (pk, π = s, (l, Cm) ∈ Ac,DB, Result).
Verification: upon receiving the allocation Ac,DB, the allocated pair (l, Cm) ∈
Ac,DB, the public key pk, the proof π = s, the request Result and the ciphertext
ct (associated with aepk ∈ l), the verifier:
– Checks if t = (H1(gs), H2(pk, gs)) ∈ stc.
– For Cra

s = (u, v) ∈ l , it checks the relation v = us.
– If the above checks pass, it accepts pk as the owner of the allocated pair

(l, Cm) ∈ Ac,DB.
– For Result = esk, first, it checks if Resk

a = aepk, then it decrypts the associ-
ated ct as (M ′, gd′) (through esk), and if Cm 6= H(M ′, gd′), it confirms the
invalidity request.

4 Security Analysis

In this section, we analyze the security properties of our ARA protocol.
To prove the uniqueness, we need to show that there is a one-to-one map

between the set of registered parties and the data. To do so, first, we show that
there is a one-to-one map between the set of registered parties and the set L, from
there evidently there is a one-to-one map between L and DB by the construction.

Theorem 1. If the values t are unique, and H2 is collision-resistant, then our
ARA scheme has the uniqueness property.

Proof. By the definition of uniqueness (Definition 4), we have,

Pr[UniqueA(1κ) = 1] ≤ Pr[UniqueA(1κ) = 1| case I]+Pr[UniqueA(1κ) = 1| case II]

Since the values tj are unique, and by the correctness of public shuffle, an honest
party would not get assigned to two different data. Thus, case I can not happen.
The only situation that case II may happen (i.e., an honest and a malicious party
are allocated to the same data) is,

Anonymous Random Allocation 15

– If Cs = Cs′ for s 6= s′. This is prevented by the binding of Cs = (gr, grs).7
– During the reveal phase the adversary A can copy the secret s as its own

claim. This is prevented by the collision-resistance of hash function H2 since
H2(pk, gs) 6= H(pkA, gs) with overwhelming probability. �

Theorem 2. If Proofs of R&S are correct and RB outputs uniformly random
shuffles, then our ARA protocol satisfies the fairness property.

Proof. For fairness, two main points help:
– The shuffle on the data-side is uniformly random; this is true since it is a

public shuffle generated by RB.
– The pseudonyms of the parties (i.e, Cs) are not removed and are still de-

tectable by the party-itself; this point is guaranteed by the proof of R&S
(see the construction, the last step in the anonymity phase or Definitions 13
and 14).

The former guarantees that the probability that a chosen data gets allocated to
an honest party is (n − t)/n + negl(κ). The latter guarantees that the honest
party can claim its allocated pair successfully (note that in Definition 5, if an
honest party can not claim its allocated data, the adversary wins). �

Intuitively, anonymity is guaranteed since, on one hand, the adversary can not
detect the randomized version of values associated with honest parties. On the
other hand, the honest shuffles are uniform. Putting these two together, the
adversary knows which values (after R& S) are associated with the set of honest
parties but it can not specifically associate a value to an honest party. Or said
in the other words, the adversary faces an entropy n − t out of n (where t is
the number of corrupted parties). In the following theorem, we formalized this
intuition. We say a shuffle is honest if it is executed by an honest party.

Theorem 3. If the DDH assumption holds in the group G and honest shuffles
are uniformly random, then our ARA protocol is anonymous.

Proof. The proof proceeds through a sequence of games.

G0 : is the real game of anonymity (Definition 6).

Let x be the last honest party in the challenge allocation c, and we show the list
L with Lx when it reaches x (for the allocation c).

G1 : is similar to G0, except that, for each honest party, the associate element
l = ((u, us), aepk, Ra) from the list Lx, is replaced with l = ((u, us′), aepk, Ra)
for s′ R← Zp, and from then on s′ is used as the secret of the honest user.

G2 : is similar to the game G1, except that, for each honest party the as-
sociated element l = ((u, us′), aepk = Resk

a , Ra) from Lx is replaced with l =
((u, us′), Resk′

a , Ra) where esk′ ← Zp.
7 It is a binding commitment because for s 6= s′ we have Cs 6= Cs′ (they are different
either in the first entry or in the second entry).

16 A. Soleimanian

The probability that the adversary wins in the game G2 is 1/(n− t) since s′
and esk′ are random (and so are not related to any honest party), and particularly
that the honest shuffle by x is uniformly random (i.e., neither the values nor the
positions do not carry information about the honest parties).

We prove the indistinguishability of adjacent games in Lemmas 1 and 2. �

Lemma 1. In Theorem 3, two games G0 and G1 are computationally indistin-
guishable under the DDH assumption.

Proof. The proof proceeds through a hybrid of games as follows (where G0,0 :=
G0).

G0,γ : is similar to the gameG0,γ−1, except that, the entry lγ = ((u, us), aepk, Ra) ∈
Lx, as the γ-th element of Lx and associated with an honest party, is replaced
with lγ = ((u, v), aepk, Ra) for v R← G.

G0−1 : is similar to the game G0,n (where n is the number of parties in the
challenge allocation), except that, each randomness v is replaced with us′ for
s′ R← Zp.

Note that G0−1 = G1 and G0,0 = G0. If lγ corresponds with a corrupted
party, clearly two games G0,γ−1 and G0,γ are identical. Thus, in the following,
we assume that lγ is associated with an honest party.

We now are ready to show the indistinguishability of games G0,γ−1 and G0,γ .
Let A be the attacker to the DDH problem, and the attacker B tries to

distinguish between G0,γ−1 and G0,γ . The adversary A (the simulator) simulates
the game for B as follows:
– A receives the challenge (G, A = ga, B = gb, C) from its challenger where
C = gab or C R← G. It generates the public parameters pp and st0 via G. It
generates the secret/public keys by the real algorithm. Finally, it sends all
the public keys, pp, st0, and the secret keys of the corrupted parties to B.
It guesses the index y for the honest party corresponding with lγ . Where lγ
is the γ-th element of list Lx.

– For the honest party y (its guess), it sets the secret sy = a and so at the
anonymity phase Anonymityc, the party y inserts the commitment Cs =
(gr, Ar) to the list L.

– When the list L reaches the honest party x (i.e., in Lx), if the simulator knows
the secret s, associated with lγ , it aborts (this means lγ corresponds with an
honest party other than y). Otherwise, lγ is associated with party y and has
the form lγ = ((grar, Arra), (graesk, gra)) where gra is due to the previous re-
randomizations. It re-randomizes lγ by considering the randomness rγ = br−1

a

and so lγ is replaced with ((Br, Cr), (Besk, B)) while the simulator knows r
and esk for the honest party. For the other elements of Lx, it behaves like in
the real protocol8.

– The allocation phase QAllocc is done like in the real algorithm.
8 Note that here is why in the construction of ARA we needed to use separate
randomnesses rj to re-randomize the elements lj ∈ L (i.e., lrj

j rather than lrj).

Anonymous Random Allocation 17

– When B outputs its guess for the winner, if the winner is an honest party
and B has guessed it correctly (experiment Predict outputs 1), A outputs 1.
Otherwise, it outputs 0.

In the above simulation, if C = gab, the simulator A has simulated the game
G0,γ−1 for B, and if C is random, it has simulated the game G0,γ . Thus, if the
simulation does not abort and B distinguishes the games by the probability ε, the
adversary A solves the DDH problem with the probability 1

n−t · ε (where (n− t)
is the number of honest parties in the challenge allocation and is appearing here
since y is chosen randomly from the set of honest parties).

For the indistinguishability of G0,n and G0−1: Note that the game G0,γ was
equivalent with the case that the DDH challenge C (used in lγ) is random. Thus
in the game G0,n, the entries associated with honest parties all are replaced with
random values C. Consequently, we can replace each (random) challenge C with
Bs

′ for s′ ← Zp (a fresh s′ per each C). Note that all the mentioned changes are
possible thanks to the fact that for the challenge allocation c, the adversary does
not have access to QRevealc (and does not verify the commitments Cs, t). �

Lemma 2. In Theorem 3, two games G1 and G2 are computationally indistin-
guishable under the DDH assumption.

Proof. The proof is similar to the proof of Lemma 1, with the difference that,
this time the challenge A is used as the encryption secret key esk of the honest
party y, and for the re-randomization x uses the randomness rγ = br−1

a . This
means that before x applies re-randomization, lγ is ((grra , grsra), (Ara , gra)) and
after it is lγ = ((Br, Brs), (C,B)) (where the simulator knows r and s for the
honest parties). All the other steps are similar to the proof of Lemma 1. �

In the following theorem, we discuss the confidentiality of our ARA scheme.
We use the hiding property of the commitment Cm = H(M, gd) where d R← Zp,
and also the CPA-security of El-Gamal encryption. The formal proof is more
tricky since the randomness d which guarantees the hiding of the commitment is
also embedded in the El-Gamal ciphertext. Thus, we should make sure that no
information regarding d is leaking through the ciphertexts.

Theorem 4. If the DDH assumption holds in the group G, our ARA protocol
has confidentiality in the random oracle model.

Proof. We proceed through a sequence of games (summarized in Fig. 6).

G0 : is the real game IND0
A(1κ) (Definition 7).

G1 : is similar to the game G0, except that, in the simulation of ct and ct′,
the anonymous encryption public key aepk is replaced with epk. Two games G0
and G1 are indistinguishable since the challenger (having the role of the honest
party and honest data-owner) knows the key epk and does not need Ra = gra to
generate ct (remember that in the ARA construction, the key epk was unknown
to the encryptor and so we used Ra to make the encryption possible). On the

18 A. Soleimanian

other hand, two distributions (aepkr, Rra) and (epkr
′
, gr

′) are identical.

G2 : is similar to the game G1, except that, the message M0 in the ciphertext
is replaced with M1, for all the honest parties.

This game is indistinguishable from G1 thanks to the security of El-Gamal
encryption. To see this, let A be the attacker to the CPA-security of El-Gamal
encryption and B be the adversary trying to distinguish two games G1 and G2.
The adversary A simulates the game for the adversary B as follows:
– The adversary A receives the set of corrupted parties from B. It chooses

an honest party P ∗ randomly, and receives the public key epk∗ from its
challenger (where it sets epk∗ as the encryption public key of its chosen
honest party P ∗ for the challenge allocation c). It runs the real algorithm
Setup to generate (pp, st0, {pki}i). Finally, it sends (pp, st0, {pki}i∈N) and
{ski}i∈CP to B.

– For the challenge allocation c, it uses epk∗ in Anonymityc associated with P ∗.
– The adversary B sends its chosen challenge (M0,M1), where A outputs the

challenge M0,M1 as well.
– They run Alloc(stc,DB(M0)), i.e., for the honest data-owners, A embeds M0

in the data-set.
– When the adversary A receives ct = Enc(epk∗,Mb) = (gr,Mb · (epk∗)r) it

forwards it to B. It chooses d R← Zp to simulate ct′ = Enc(epk∗, gd) and
Cm = H(M0, g

d).
– When B outputs b′, the adversary A also outputs b′.

G3 : is similar to the game G2, except that, the simulator replaces the ran-
domness d with d′ in the ciphertext. The simulation is as before except that the
adversary A sends the challenge (D0, D1) = (gd, gd′) for its chosen d, d′ R← Zp.
It relays (ct, ct′) = Enc(epk,M1),Enc(epk, Db) and Cm = H(M0, D0) to B. The
indistinguishability of G3 and G2, is similar to the one for G2 and G1.

G4 : is similar to the game G3, except that, for the challenge allocation QAllocc,
the simulator replaces Cm with H(M1, D0). These two games are indistinguish-
able because D0 is chosen randomly from a large space and is unknown to B,
and thus B can not efficiently find H(M0, D0) or H(M1, D0) (through the RO
queries).9

G5 : is similar to the game G4, except that, we simulate the ciphertext ct′ as
Enc(epk, Db). These two games are indistinguishable by the security of El-Gamal,
similar to games G2 and G3.

G6 : is similar to the game G5, except that, the key epk is replaced with aepk.
The proof of indistinguishability is similar to the one for games G0 and G1. Note
that this is the real game IND1 (i.e., INDb for b = 1). �

Theorem 5. If the commitment Cm is binding (or equivalently, H is collision-
resistant), then our ARA protocol satisfies data-integrity.

9 In fact, this is the hiding property of commitment Cm.

Anonymous Random Allocation 19

Proof. In the experiment IntegrityA(1κ), assume that the adversary outputs
an allocated pair (l, Cm) ∈ Ac,DB and also (m = (M,d), (ct, ct′)), where l =
(Cra

s , aepk, Ra) and aepk is associated with esk. From the received ciphertexts we
have,

M ′ = Dec(esk, ct0, ct1), gd
′

= Dec(esk, ct′0, ct′1)

The adversary wins if Cm = H(M, gd) while m 6= m′ for m′ = (M ′, gd′). Which
is equivalent to breaking the binding property of the commitment scheme Cm.
This completes the proof. �

References

Alt96. DG Altman. Better reporting of randomised controlled trials: the consort
statement. BMJ, 313:570, 1996.

BCG15. Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a
public randomness source. IACR Cryptol. ePrint Arch., 2015:1015, 2015.

BCKM13. Eric Budish, Yeon-Koo Che, Fuhito Kojima, and Paul Milgrom. Design-
ing random allocation mechanisms: Theory and applications. American
Economic Review, 103(2):585–623, 2013.

BEHG20. Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. Single
secret leader election. In AFT ’20: 2nd ACM Conference on Advances in
Financial Technologies, New York, NY, USA, October 21-23, 2020, pages
12–24. ACM, 2020.

BPS16. Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white: Provably secure
proofs of stake. IACR Cryptol. ePrint Arch., 2016:919, 2016.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning, Raymond
Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM
CCS 93, pages 62–73. ACM Press, November 1993.

BSL+20. Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik
Nayak. Randpiper - reconfiguration-friendly random beacons with quadratic
communication. IACR Cryptol. ePrint Arch., 2020:1590, 2020.

CFG21. Dario Catalano, Dario Fiore, and Emanuele Giunta. Efficient and universally
composable single secret leader election from pairings. IACR Cryptol. ePrint
Arch., 2021:344, 2021.

CH10. Jeremy Clark and Urs Hengartner. On the use of financial data as a
random beacon. In Douglas W. Jones, Jean-Jacques Quisquater, and Eric
Rescorla, editors, 2010 Electronic Voting Technology Workshop / Workshop
on Trustworthy Elections, EVT/WOTE ’10, Washington, D.C., USA, August
9-10, 2010. USENIX Association, 2010.

Cha81. David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–88, 1981.

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Trans. Inf. Theory, 22(6):644–654, 1976.

DMS04. Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The second-
generation onion router. In Matt Blaze, editor, Proceedings of the 13th
USENIX Security Symposium, August 9-13, 2004, San Diego, CA, USA,
pages 303–320. USENIX, 2004.

20 A. Soleimanian

Dur64. Richard Durstenfeld. Algorithm 235: Random permutation. Commun. ACM,
7(7):420, 1964.

FD98. Katie Featherstone and Jenny L Donovan. Random allocation or allocation
at random? patients’ perspectives of participation in a randomised controlled
trial. BMJ, 317:1177, 1998.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

GJJS04. Philippe Golle, Markus Jakobsson, Ari Juels, and Paul F. Syverson. Universal
re-encryption for mixnets. In Tatsuaki Okamoto, editor, CT-RSA 2004,
volume 2964 of LNCS, pages 163–178. Springer, Heidelberg, February 2004.

GXC+17. Zhimin Gao, Lei Xu, Lin Chen, Nolan Shah, Yang Lu, and Weidong Shi.
Scalable blockchain based smart contract execution. In 23rd IEEE Inter-
national Conference on Parallel and Distributed Systems, ICPADS 2017,
Shenzhen, China, December 15-17, 2017, pages 352–359. IEEE Computer
Society, 2017.

Hås06. Johan Håstad. The square lattice shuffle. Random Struct. Algorithms,
29(4):466–474, 2006.

Hås16. Johan Håstad. The square lattice shuffle, correction. Random Struct.
Algorithms, 48(1):213, 2016.

HMW18. Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY tech-
nology overview series, consensus system. CoRR, abs/1805.04548, 2018.

IPS08. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography
on oblivious transfer - efficiently. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 572–591. Springer, Heidelberg, August 2008.

KL14. Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,
Second Edition. CRC Press, 2014.

NP. NIST-Project. NIST randomness beacon. https://beacon.nist.gov/home.
Rab05. Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryp-

tology ePrint Archive, Report 2005/187, 2005. https://eprint.iacr.org/
2005/187.

SG02. Kenneth F Schulz and David A Grimes. Blinding in randomised trials:
hiding who got what. Lancet, 359 (9307):696–700, 2002.

SG05. Kenneth F Schulz and David A Grimes. Allocation concealment in ran-
domised trials: defending against deciphering. EPIDEMIOLOGY SERIES,
359:614, 2005.

SJK+17. Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly,
Linus Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. Scalable
bias-resistant distributed randomness. In 2017 IEEE Symposium on Security
and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 444–460.
IEEE Computer Society, 2017.

SW21. Elaine Shi and Ke Wu. Non-interactive anonymous router. In Anne Can-
teaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part III,
volume 12698 of LNCS, pages 489–520. Springer, Heidelberg, October 2021.

Wik04. Douglas Wikström. A universally composable mix-net. In Moni Naor, editor,
TCC 2004, volume 2951 of LNCS, pages 317–335. Springer, Heidelberg,
February 2004.

https://eprint.iacr.org/2005/187
https://eprint.iacr.org/2005/187

Anonymous Random Allocation 21

A Appendix : Missing Materials

Definition 9 (Collision-Resistant Hash Function). H = {Hi : X → Y}i∈I
is a family of collision-resistant hash functions if:

Generation. There is a p.p.t. algorithm Gen(1κ) which outputs i ∈ I.
Efficient evaluation. Given x and i, one can compute Hi(x) in time polynomial

in κ.
Collision-resistance (CR). For every p.p.t. adversary A there is a negligible

function negl such that for i← Gen(1κ)

Pr
[
(x, x′)← A(1κ, i) : x 6= x′ ∧

Hi(x) = Hi(x′)

]
≤ negl(κ).

Let E = (KeyGen,Enc,Dec) be an encryption system, in the following definition
pp stands for the public parameters (e.g., for the El-Gamal encryption it is the
group description).

Definition 10 (IND-CPA encryption [KL14]). A public key encryption
E = (KeyGen,Enc,Dec) is IND-CPA, if for any p.p.t adversary A, arbitrary
messages m0,m1 (such that |m0| = |m1|), there is a negligible function negl such
that:

|Pr[A(1κ, pp, pk,Enc(pk,m0)) = 1]− Pr[A(1κ, pp, pk,Enc(pk,m1)) = 1]| ≤ negl(κ)

where (pp, pk)← KeyGen(1κ).

Definition 11 (Commitment[KL14]). A commitment scheme is a tuple of
four algorithms C = (Setup,Commit,Open,Verif) as follows:

– Setup(1κ): it returns the public parameters pp, which is the implicit input of
all the following algorithms.

– Commit(m): it returns a commitment c to the message m.
– Open(c,m): it returns an opening π, for the commitment c to the message
m.

– Verif(c,m, π): it returns 1, if the opening π and the message m are compatible
with the commitment c, otherwise it returns 0.

Definition 12 (Security of Commitment: Binding and Hiding).

– Binding. we say that a commitment scheme C is (computationally) binding,
if for any p.p.t. adversary A there is a negligible function negl such that:

Pr

(c,m,m′, π, π′)← A(1κ, pp) :

pp← Setup(1κ)
m 6= m′

Verif(c,m, π) = 1
Verif(c,m′, π′) = 1

 ≤ negl(κ)

22 A. Soleimanian

– Hiding. We say that a commitment scheme C is (computationally) hiding, if
for any p.p.t. adversary A, arbitrary messagesm0,m1 (such that |m0| = |m1|),
and pp← Setup(1κ), there is a negligible function negl such that:

|Pr[A(1κ, pp,Commit(m0)) = 1]− |Pr[A(1κ, pp,Commit(m1)) = 1]| ≤ negl(κ)

A Randomize-and-shuffle (R& S) scheme is a scheme that receives a list L = {`i}i
and updates it to L∗ such that L∗ and L are equal up to a randomization and a
shuffle.

Definition 13 (a R& S scheme). A R& S scheme associated with the list
L is a tuple of p.p.t. algorithms as follows,

– Randomize(L): it receives the list L = {`i}i, it chooses the randomnesses ri
and randomizes elements of L to L′ = {`′i}i such that `′i = `ri

i , then it outputs
L′.

– Shuffle(L′): it received a randomized list L′ and shuffle its elements. It outputs
the result to L∗. It outputs L∗.

Definition 14 (Proof of R& S). A proof of R& S guarantees that the R& S
has been executed correctly and L and L∗ are equal up to a randomization and
a shuffle of their elements. Indeed, it is a simple check comparing L with L∗ as
follows,

– for each element `i ∈ L, there is an element `∗j in L∗ such that `∗j = `ri
i for a

randomness ri.

Game Ciphertext & Commitment Justification

G0
ct = Enc(aepk,M0) ct′ = Enc(aepk, gd; gra)
Cm = H(M0, g

d) Real Game

G1
ct = Enc(epk ,M0) ct′ = Enc(epk , gd)
Cm = H(M0, g

d)
info.the.

G2
ct = Enc(epk, M1) ct′ = Enc(epk, gd)
Cm = H(M0, g

d)
El-Gamal

G3
ct = Enc(epk,M1) ct′ = Enc(epk, gd

′
)

Cm = H(M0, g
d)

El-Gamal

G4
ct = Enc(epk,M1) ct′ = Enc(epk, gd

′
)

Cm = H(M1 , g
d)

RO

G5
ct = Enc(epk,M1) ct′ = Enc(epk, gd)
Cm = H(M1, g

d)
El-Gamal

G6
ct = Enc(aepk ,M1) ct′ = Enc(aepk , gd)
Cm = H(M1, g

d)
info.the.

Fig. 6: Overview of games for Confidentiality

	Anonymous Random Allocation and Its Applications
	Introduction
	Our Technique
	Related Work

	Preliminaries
	Syntax and Security of ARA

	Our ARA protocol
	Construction

	Security Analysis
	Appendix : Missing Materials

