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1 Introduction

In 2020, Bardet et al. introduced the support minors modeling [1] for
solving MinRank problem, whose applications include the novel attacks
on GeMSS [20] and Rainbow [2]. The powerful attacks make us wonder
whether some new algebraic structures exist in support minors modeling
and help it reduce the complexity of MinRank. In this paper we explore
the algebraic relation between this modeling and other two modelings,
namely minors modeling [11] and Kipnis–Shamir modeling [17].

The MinRank problem asks for a nonzero linear combination of given
matrices with low rank. It has been used to attack some NIST-PQC candi-
dates, for example ROLLO, RQC, GeMSS and Rainbow. In rank-metric-
based code (for example ROLLO and RQC [1]) and rank syndrome prob-
lem [14] it is natural to consider MinRank problem since metric is defined
by matrix rank. In multivariate cryptography, traditional ways to design
a cryptography system and make trapdoors include two ways: using Big-
Field structure [18,8,19] and using properties of BigField to build trap-
doors; using UOV structure [16,7] and assigning vinegar variables to build
trapdoors. Some of these trapdoors include special restrictions which can
be detected by matrix rank, for example in HFE [18] the degree restriction
of univariate polynomial and in Rainbow [7] the multi-layer oil and vine-
gar variable structure, therefore MinRank problem can be used to attack
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these schemes. On the other hand, since Buss et al. proved that Min-
Rank problem is generally NP-hard [4], there exists some zero-knowledge
scheme based on MinRank, for example [6].

There are many ways to solve the MinRank problem, including minors
modeling, Kipnis–Shamir modeling and linear algebra search [15]. Besides
these basic ideas, Wang et al. [22] also considered the hybrid method that
combines Kipnis–Shamir modeling and minors modeling. Moreover, previ-
ous works also concern the complexity of MinRank. Faugere et al. focused
on the case of under-determined and well-determined cases [13,11,12] and
proved that minors modeling is better than Kipnis–Shamir modeling by
a little. For the over-determined case, Verbel et al. considered the case
of the so-called ‘superdetermined’ case for Kipnis–Shamir modeling [21]
which uses Jacobian of the matrix to induce equations.

Most of these modelings and analyses above fall into the step of calcu-
lating Gröbner basis [3] for the ideal corresponding to equations, which is
the conceptual generalization of Gaussian Elimination and Euclid’s great-
est common factor. Efficient algorithm for solving Gröbner basis are F4 [9]
and its variant F5 [10]. Meanwhile, support minors modeling does not re-
quire Gröbner basis computation and turns to XL-like methods [5,23]
which has its full power when the number of equations is more than that
of variables.

In this paper we focus on the quadratic equations given by Kipnis–
Shamir modeling and support minors modeling. We found that by sub-
stituting cT variables in equations of the support minors modeling with
determinant-like polynomials in yi,j variables from equations of the Kipnis–
Shamir modeling, all former equations become linear combination of latter
equations with coefficients in the polynomial ring of yi,j variables. As a
byproduct, we offer a constructive proof of the fact that the equations
of the minors modeling come from linear combination of that of Kipnis–
Shamir modeling with coefficients in the polynomial ring of yi,j ’s and
linear variables xk’s.

2 Notation

We list some useful notations for the following statements and proofs:

– I (calligraphic font) stands for some index set with r + 1 elements
corresponding to either rows or columns. The row (column) number
always starts from 1.

– {i1 < · · · < il ≤ r < il+1 < · · · < ir+1} stands for {i1, . . . , ir+1}, with
orders in the set specified as i1 < · · · < il ≤ r < il+1 < · · · < ir+1.
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– For matrix A, AI,J stands for submatrix of A with rows I and columns
J .

– For a m×n matrix A, I ⊂ {1, . . . ,m} and J ⊂ {1, . . . , n}, if |I| = |J |,
|A|I,J stands for the minor of A with rows I and J .

– For a m× n matrix A and |J | = m, A∗,J is acronym for A{1,...,m},J ,
and |A|∗,J is acronym for |A|{1,...,m},J .

– T (letter ‘T’) stands for some index set subset of {1, . . . , n} with r
elements.

– cT represents |C|∗,T , where C is the coefficient matrix in support mi-
nors modeling.

– For matrix A, At stands for transpose of A.

3 Preliminaries

MinRank problem We give the statement of the MinRank problem:

Definition 1 (MinRank problem). Fix a field K. We denote Km×n as
the vector space of matrices with m rows and n columns and entries in K.

Given matrices M1, . . . ,Ml ∈ Km×n and a target rank r, the MinRank
problem asks for elements x1, . . . , xl ∈ K that are not all zero, such that
the linear combination M =

∑l
k=1 xkMk has rank no more than r.

Notice that sometimes the solution is restricted to some subfield L ⊂ K
(for example in some BigField schemes). However, in this paper we only
consider the case that solution takes value in K.

Algebraic modelings for solving MinRank problem Below we de-
scribe three algebraic modelings for MinRank problem.

minors modeling The matrix M has rank ≤ r iff all its r + 1 minors are
zero. Minors modeling simply uses these minor conditions as equations.
There are

(
m
r+1

)(
n

r+1

)
minors in matrix M , and they are all r + 1 degree

polynomials in the variables x1, . . . , xl, since each entry of M is a linear
form of these variables.

If we denote M = (ai,j), then each ai,j can be written as

ai,j =

l∑
k=1

a
(k)
i,j xk (1)

where a
(k)
i,j is the (i, j)-th element of Mk. Each (r + 1)-minor of M is a

homogeneous polynomial of degree r+1 in the ai,j ’s, so when substituting
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ai,j with xk’s, we get a homogeneous polynomial of degree r + 1 in the
xk’s. If we make these polynomials equal to zero we get the corresponding
equations of minors modeling.

Kipnis–Shamir modeling We recall the following rank–nullity theorem
from linear algebra:

Lemma 1. For a linear map A : Kn → Km, we have

dimA(Kn) + dimker(A) = n

Since the matrix M has rank ≤ r, the dimension of the kernel of M is no
less than n−r, hence it must contain a (n−r)-dim subspace. So there exists
a full-rank matrix Y ∈ Kn×(n−r) such that MY = 0. Notice further that
for any invertible matrix R ∈ GLn−r(K), we have M(Y R) = (MY )R = 0,
and Y R also has full rank, so we can restrict some entries of Y and still
expect a solution. Therefore, we solve the following matrix equation

M

[
−Y ′

In−r

]
= 0 (2)

where In−r is the (n− r)× (n− r) identity matrix, and

Y ′ =

y1,1 · · · y1,n−r
...

...
yr,1 · · · yr,n−r

 (3)

is a r× (n− r) matrix. If (2) has a solution, then the rank of M must be
less than r.

From (2) we can get m(n− r) equations, each of the form

fi,j = ai,r+j −
r∑

k=1

ai,kyk,j = 0 (4)

for i = 1, . . . ,m, j = 1, . . . , n − r. If we plug in (1), we get quadratic
equations with no square terms and the equations are linear in xk’s. Total
number of variables is p+ r(n− r).

support minors modeling We recall the following rank decomposition the-
orem from linear algebra:

Lemma 2. A m×n matrix M has rank ≤ r iff there exists a m×r matrix
S and a r × n matrix C, such that M = SC.
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Since the rank of M is no more than r, we can find some matrices S
and C such that

∑p
k=1 xkMk = M = SC. While we cannot make both S

and C full rank (otherwise we know M is of rank r), we can assure that C
has full rank by expanding the row space of M into a r-dim vector space
and solve for entries of S. Since C has full rank, we know that each row
ri is in the row space of C, so the augmented matrix

Ci =

[
ri
C

]
has rank r. Therefore the maximal minors of Ci should be zero. If we
denote cT for the maximal minors of C with columns T , then using Laplace
expansion of determinant, each maximal minor of Ci is a bilinear form in
aij and cT . By evaluating these maximal minors to be zero, we get m

(
n

r+1

)
quadratic equations

|Ci|∗,J = 0 (5)

for i = 1, . . . ,m and all subset J ⊂ {1, . . . , n} with r + 1 elements. If we
plug in (1), we get equations bilinear in xk’s and cT ’s. Total number of
variables is p+

(
n
r

)
.

4 Main results and proofs

4.1 Relation between Kipnis–Shamir modeling and support
minors modeling

We will adopt the following matrix

C ′ =
[
Ir Y

′]
where Y ′ is the r × (n − r) matrix defined by (3). The core idea of this
subsection is to make substitution ϕ : cT 7→ |C ′|∗,T in support minors
modeling. This is the same as replacing the coefficient matrix C from
support minors modeling with C ′.

The reason we consider matrix C ′ comes from cryptographical situa-
tions. In practical use of MinRank problem, the target rank r is often the
smallest rank that

∑p
k=1 xkMk can attain besides zero. In this case the

rank decomposition M = SC tells us that row space of C is the same as
that of the M . Therefore from (2) we also get

C

[
−Y ′

In−r

]
= 0 (2’)

We claim that
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Lemma 3. The reduced row echelon form of C is C ′.

Proof. Denote C ′′ to be the reduced row echelon form of C. Since C is full
row rank, all rows in C ′′ have pivot elements. Since C ′′ is in reduced row
echelon form, the r-th row of C ′′ must begin with r − 1 zeros. Therefore
it suffices to show that the (r, r)-th element of C ′′ is 1 instead of 0.

Assume instead that the r-th row of C ′′ begin with r zeros, then this
row has the shape of [

0 · · · 0 z1 · · · zn−r

]
for some z1, . . . , zn−r ∈ K. Using (2’), we get that

0 =
[
0 · · · 0

]
(−Y ′) +

[
z1 · · · zn−r

]
In−r =

[
z1 · · · zn−r

]
So the r-th row of C ′′ is a zero row, which contradicts the fact that C has
full rank. Therefore the (r, r)-th element of C ′′ is 1, and we get C ′′ has
the shape of C ′.

Since C ′ is the reduced row echelon form of C in cryptographical situa-
tions, it suffices to replace C with C ′ and use this to relate the support
minors modeling and Kipnis–Shamir modeling. Notice that in general the
row space of M is only contained in that of C, therefore (2’) cannot be
derived from (2).

Denote

C ′
i =

[
ri
C ′

]
(6)

the augmented matrix Ci with block C replaced by C ′.
Some properties of ϕ are listed below:

Lemma 4. ϕ(c{1,...,r}) = 1.

Lemma 5. ϕ(c{1,...,r}\{i}∪{r+j}) = (−1)r−iyi,j.

Proof. Direct calculation. We have

|C ′|∗,{1,...,r}\{i}∪{r+j} =

∣∣∣∣∣∣
Ii−1 0(i−1)×(r−i) ∗(i−1)×1

01×(i−1) 01×(r−i) yij
0(r−i)×(i−1) Ir−i ∗(r−i)×1

∣∣∣∣∣∣ = (−1)r−iyi,j

maximal minors of C′
i To calculate maximal minors of C ′

i and relate
this with fij from Kipnis–Shamir modeling (see (4)), we consider the
following matrix

Li =

[
1 −ai,1 · · · −ai,r

0r×1 Ir

]
(7)
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Li is invertible matrix and has determinant 1. Also, when calculating
maximal minors of LiC

′
i, we have

|LiC
′
i|∗,J = (detLi)|C ′

i|∗,J = |C ′
i|∗,J (8)

since the determinant function is multiplicative. Therefore it suffices to
consider the matrix LiC

′
i. Denote

LiC
′
i =

[
Q1 Q2

Q3 Q4

]
where Q1 is 1× r matrix, Q4 is r × (n− r) matrix, and the shape of Q2

and Q3 follows from the block matrix rules. We have Q3 = IrIr = Ir,
Q4 = IrY

′ = Y ′. Also,

Q1 =
[
ai,1 · · · ai,r

]
+
[
−ai,1 · · · −ai,r

]
Ir = 0

Q2 =
[
ai,r+1 · · · ai,n

]
+
[
−ai,1 · · · −ai,r

] y1,1 · · · y1,n−r
...

...
yr,1 · · · yr,n−r

 =
[
fi,1 · · · fi,n−r

]

So

LiC
′
i =

[
01×r fi,1 · · · fi,n−r

Ir Y ′

]
(9)

From (9) and (8) we know that |C ′
i|∗,{1,...,r}∪{r+j} = (−1)rfi,j . There-

fore after applying substitution ϕ, equations of Kipnis–Shamir modeling
can be viewed as a subset of equations of support minors modeling (up to
a constant of −1). In general, we have

Proposition 1. Suppose J = {j1 < · · · < jl ≤ r < jl+1 < · · · < jr+1},
then

|C ′
i|∗,J =

r+1∑
k=l+1

(−1)k−1fi,jk−r|C ′|∗,J\{jk} (10)

Proof. Simply use Laplace expansion.

Notice that |C ′|∗,J\{jk} is maximal minor of C ′, which in turn is polyno-
mial in yi,j ’s. So we know that |C ′

i|∗,J is a linear combination of fi,j ’s with
coefficients in K[y1,1, . . . , yr,n−r].
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4.2 Solution space of cT ’s from support minors modeling

We know that cT is denoted to be the maximal minor of C with columns
T . However when cT becomes variables of equations, it becomes not so
clear if any solution of equations from support minors modeling still has
the meaning that corresponding M is of rank ≤ r. It is intuitive that
if M has rank ≤ r, then we can expand the row space of M into a r
dimensional space, and get a matrix A of r rows and n columns, whose
maximal minors is a nonzero solution of (5) since A has full rank. Also,
if M has rank < r, then different ways of expanding the row space of M
will possibly give linear independent solutions for (5). In particular, we
are interested in the following questions:

1. For some specific choice of xk’s such that M has rank > r, is the
solution space of cT ’s the zero space?

2. For some specific choice of xk’s such that M has rank r, is the solution
space of cT ’s dimension 1?

3. For some specific choice of xk’s such that M has rank < r, what can
we say about the solution space of cT ’s?

Nonetheless, we give the following proposition:

Proposition 2. Suppose for some specific choice of xk’s, the rank of M
is r′. Then the solution space of cT has dimension

(
n−r′

n−r

)
. In particular,

when r′ > r the only solution for cT ’s is zero solution.

Proof. We know that the equations (5) come from augmenting matrix C
with a row of M and calculating the r+1 minors. In general, we can also
augment C with b rows of M to get a b-augmented matrix

ri1
...
rib
C


where 1 ≤ i1, . . . , ib ≤ m, and calculate its r + b minors. Since all rows
of M are in the row space of C, all these r + b minors are zero as long
as r + b ≤ n. Using Laplace expansion along the first row we get a linear
combination of r + b − 1 minors of (b − 1)-augmented matrix. Therefore
the equations (5) are not linearly independent.

Since we know that M has rank r′, it suffices to use these r′ indepen-
dent rows to generate augmented matrices. There are

(
r′+b−1

b

)
different
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ways to b-augment the matrix C. Using some knowledge of syzygy, it is
easy to deduce the number of independent equations as

n−r∑
b=1

(−1)b−1

(
r′ + b− 1

b

)(
n

r + b

)
(11)

Lemma 6. We have the following combinatorial identity:
n−r∑
b=0

(−1)b
(
r′ + b− 1

b

)(
n

r + b

)
=

(
n− r′

n− r

)
(12)

Proof. Denote

G(r′, r, n) =
n−r∑
b=0

(−1)b
(
r′ + b− 1

b

)(
n

r + b

)
(13)

Since
(

n
r+b

)
=

(
n−1
r+b

)
+

(
n−1

r−1+b

)
, we have G(r′, r, n) = G(r′, r, n − 1) +

G(r′, r − 1, n − 1). Also G(r′, r, r) = (−1)0
(
r′−1
0

)(
r
r

)
= 1. So it suffices to

prove that G(r′, r′, n) = 1.
Denote F (r′, n) = G(r′, r′, n). Notice that(

n

r′ + b

)
=

(
n− 1

r′ + b

)
+

(
n− 1

r′ − 1 + b

)
(
r′ + b− 1

b

)
=

(
r′ − 1 + b− 1

b

)
+

(
r′ − 1 + b− 1

b− 1

)
Therefore F (r′, n) = F1 + F2 + F3, where

F1 =
n−1−r′∑
b=0

(−1)b
(
r′ + b− 1

b

)(
n− 1

r′ + b

)
= F (r′, n− 1)

F2 =
n−r′∑
b=0

(−1)b
(
r′ − 1 + b− 1

b

)(
n− 1

r′ − 1 + b

)
= F (r′ − 1, n− 1)

F3 =
n−r′∑
b=1

(−1)b
(
r′ + b− 1− 1

b− 1

)(
n− 1

r′ + b− 1

)
= −F (r′, n− 1)

So F (r′, n) = F (r′ − 1, n− 1), hence

F (r′, n) = F (1, n− r′ + 1) =
n−r′∑
b=0

(−1)b
(
n− r′ + 1

b+ 1

)
= 1

i.e. G(r′, r′, n) = 1. Therefore G(r′, r, n) =
(
n−r′

r−r′

)
=

(
n−r′

n−r

)
.
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Therefore

n−r∑
b=1

(−1)b−1

(
r′ + b− 1

b

)(
n

r + b

)
=

(
n

r

)
−
(
n− r′

n− r

)

Since we have
(
n
r

)
variables cT , the solution space dimension is

(
n−r′

n−r

)
.

Therefore when r′ > r the binomial coefficient takes the value 0. This
ends the proof of Proposition 2.

Notice that when r′ < r, we know that the solution space of cT ’s has
dimension more than 1. Therefore if we do not make the target rank r′

optimal, then original equations from support minors modeling have more
than 1 dimension of solutions, which means XL-like algorithms cannot
make out a solution as [1] said.

4.3 Relation between Kipnis–Shamir modeling and minors
modeling

We will adopt the following matrix:

M ′ =

a1,1 · · · a1,r f1,1 · · · f1,n−r
...

...
...

...
am,1 · · · am,r fr,1 · · · fr,n−r

 (14)

Since only r columns of M ′ are of the form ai,j , if we calculate r+1 minors
of M ′, at least one column is of the form fi,j , so all r+1 minors lie in the
ideal of K[{xk}, {yi,j}] generated by fi,j ’s. Notice that from (4), M ′ and
M are related by the matrix equation

M = M ′R (15)

where

R =

[
Ir Y ′

0 In−r

]
. (16)

Using Cauchy–Binet formula, we can calculate r + 1 minors of M :

|M |I,J =
∑
K

|M ′|I,K|R|K,J (17)

where K takes value of each r+1 subset of {1, . . . , n}. Since all |M ′|I,K’s
lie in the ideal generated by fi,j ’s, so does |M |I,J .
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5 Conclusion and Discussion

We discussed the quadratic equations from Kipnis–Shamir modeling and
support minors modeling, and give the proof that they can be derived
from each other. We also give proof that from equations of Kipnis–Shamir
modeling we can get the minors equations. Heuristically, the equations
derived from support minors modeling can be viewed as an application of
bilinear XL on those from Kipnis–Shamir modeling with bi-degree (b, r).
This helps us make sure that support minors modeling contains no new
algebraic structures from Kipnis–Shamir modeling. However, these calcu-
lations above are from the viewpoint of commutative algebra (symbolic
calculation) and cannot explain why supports minors modeling has ma-
jor improvement from other modelings. We believe that the efficiency of
support minors modeling comes from the way it solves equations since it
contains no additional Gröbner basis calculation.
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