
SCARF – A Low-Latency Block Cipher for Secure
Cache-Randomization

Federico Canale1, Tim Güneysu1,4, Gregor Leander1, Jan Philipp Thoma1, Yosuke
Todo2, and Rei Ueno3

1 Ruhr University Bochum, Bochum, Germany firstname.lastname@rub.de
2 NTT Social Informatics Laboratories, Tokyo, Japan yosuke.todo.xt@hco.ntt.co.jp

3 Tohoku University, Sendai-shi, Japan. rei.ueno.a8@tohoku.ac.jp
4 DFKI, Bremen, Germany.

Abstract. Randomized cache architectures have proven to significantly increase
the complexity of contention-based cache side channel attacks and therefore pre-
sent an important building block for side-channel secure microarchitectures. By
randomizing the address-to-cache-index mapping, attackers can no longer triv-
ially construct minimal eviction sets which are fundamental for contention-based
cache attacks. At the same time, randomized caches maintain the flexibility of
traditional caches, making them broadly applicable across various CPU-types.
This is a major advantage over cache partitioning approaches.
A large variety of randomized cache architectures has been proposed. However,
the actual randomization function received little attention and is often neglected
in these proposals. Since the randomization operates directly on the critical path
of the cache lookup, the function needs to have extremely low latency. At the
same time, attackers must not be able to bypass the randomization which would
nullify the security benefit of the randomized mapping. In this paper we propose
SCARF (Secure CAche Randomization Function), the first dedicated cache ran-
domization cipher which achieves low latency and is cryptographically secure in
the cache attacker model. The design methodology for this dedicated cache ci-
pher enters new territory in the field of block ciphers with a small 10-bit block
length and heavy key-dependency in few rounds.

1 Introduction

In the recent past, we have witnessed a significant increase in attacks on the microar-
chitectural level of widely deployed desktop- and server-grade CPUs for which side-
channel attacks on caches play an important role. By measuring the latency of a mem-
ory access, attackers can observe if the access was served from the cache or from main
memory. This ability has been exploited to leak secret keys from many cryptographic
algorithms, among others, including the widely used encryption schemes AES [6,35]
and RSA [34,56]. Cache-based keyloggers that observe the activity of keystroke han-
dlers in the cache to leak user input on co-located VMs have been presented in [56,17].
Moreover, cache side-channel attacks are a commonly used building block for spec-
ulative execution attacks like Spectre [20] and Meltdown [26]. A variety of cache
attack primitives including FLUSH+RELOAD [56] and PRIME+PROBE [35,50] have

2 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

been proposed. Using these primitives, attackers can reliably observe the access behav-
ior of a victim process and hence, leak sensitive information like secret key material.
Cache side-channel attacks can be categorized in two distinct groups. The first group,
flush-based attacks like FLUSH+RELAOD [56] and FLUSH+FLUSH [17], require shared
memory between the attacker and the victim process. Furthermore, the attacker must
be able to flush targeted entries from the cache using a special instruction. Such at-
tacks can be prevented by either making the flushing instruction privileged on the ISA
level, or by duplicating shared memory addresses in the cache [37]. The second group,
contention-based cache attacks, are much harder to prevent. Those attacks exploit the
internal structure of modern caches that is essential to their performance.

In an effort to design side-channel secure cache architectures that prevent contention-
based attacks, two approaches have emerged: cache partitioning and cache randomiza-
tion. The former splits the cache into n distinct partitions for different security domains
to avoid leakage across domain boundaries [36]. The main disadvantage of partition-
ing is the limited flexibility and therefore large performance overhead. For dynamically
partitioned caches, adjusting the size of partitions has shown to be difficult under se-
curity considerations [53]. As a consequence, randomization-based cache designs have
received more attention in response to such attacks [54,38,39,55,45,41,43,47]. These
designs randomize the address-to-cache-index mapping and therefore prevent the at-
tacker from efficiently finding addresses that contend for cache entries with the victim
address. All these designs use a randomization function that takes the memory address
as input and returns a set of pseudorandom cache indices. The exact instantiation of the
randomization function varies between the schemes for which designers carefully con-
sider performance interests versus security requirements. Since the randomization pro-
cess is within the critical path of the cache lookup, low latency is obviously extremely
important. At the same time, if the attacker can construct conflicting pairs of addresses,
the security of the scheme collapses and PRIME+PROBE-like attacks become feasible
again [37]. A conservative choice in terms of security is to use a low-latency block
cipher like PRINCE [12] as proposed in [55,41,47]. However, full encryption of the ad-
dress using a 64-bit block cipher is not ideal for two reasons: First, a 64-bit block cipher
introduces a significant storage overhead in the tag computation since the address con-
tains offset bits that must not be used for the randomization. Second, the attacker never
observes the ciphertext since the cache functions as a black-box; i.e., the attacker will
never observe the actual output of the randomization function. The only opportunity for
an attacker to learn something about the randomization function is when two addresses
map to the same randomized index. Hence, the randomization could in principle be
simpler than a full block cipher. However, previous work has demonstrated that ran-
domization functions with insufficient cryptographic properties can easily be broken by
an attacker [9]. Specifically, the Feistel-structure proposed to be used in CEASER [38]
has shown to be insufficient for secure randomization. Bodduna et al. [9] demonstrate
an attack on the randomization scheme and conclude: “This [attack] opens up a need for
specialized low-latency encryption techniques that are exclusively designed for cache
address encryption, that can provide the security guarantees with acceptable perfor-
mance overheads.” Similarly, Prunal et al. [37] state that “it is still an open challenge
to choose a strong and fast encryption algorithm for randomized caches.”

SCARF: A Secure Cache Randomization Function 3

In this paper we present SCARF, the first cryptographically sound, tailor-made
cache cipher. We define the attacker model for cache randomization functions and an-
alyze and discuss design requirements. We carefully design SCARF to minimize the
latency and thoroughly evaluate its security thanks to our new framework. We evaluate
the latency and area requirements of SCARF on ASIC hardware through logic synthesis
with the 45 nm and 15 nm Nangate open cell libraries (OCLs). Consequently, we con-
firm that SCARF achieves a latency less than half of that of PRINCE (the pioneering
and most major low-latency block cipher), Mantis, and QARMA (state-of-the-art low-
latency tweakable block ciphers). In addition, we quantify the performance of SCARF
in comparison to the above low-latency (tweakable) block ciphers in the cache setting
using the gem5 simulator [29].

1.1 Related Work

Different randomized cache architectures have been presented in [54,38,39,55,45,41,43,47].
Purnal et al. generalize the idea of randomized cache architectures in [37] and present a
generic algorithm to construct generalized eviction sets for solely randomization-based
caches. Several designs [55,41,47,9] use the PRINCE [12] block cipher for randomiza-
tion. The authors of PhantomCache [45] introduce a randomization function based on
Toeplitz hashes [22] but do not investigate the security properties of this function in
the cache application. The randomized cache architecture CEASER presented a custom
low-latency randomization function for their cache design [38]. However, the proposed
randomization function did not contain nonlinear functions. An attack on the random-
ization function of CEASER has been presented by Bodduna et al. [9]. Ribes-González
et al. [40] formally define security properties of randomized caches. For the formal
proofs, they assume an abstract randomization function based on an PRF.

Format-preserving encryption algorithms have been presented in [5,4,42]. These
encryption algorithms map a given plaintext to a ciphertext of same length and hence,
preserve the format. However, these schemes usually do not target low latency use cases
like SCARF. The K-Cipher has been presented by Kounavis et al. in [21] and allows
encryption with arbitrary ciphertext length between 24 and 1024 bit. The K-cipher has
been used in the context of memory safety in [25]. Recent analysis has revealed a prac-
tical key-recovery attack of the K-Cipher, thus rendering it insecure [30].

1.2 Organization of the Paper

The remainder of the paper is organized as follows: In Section 2, we introduce back-
ground on caches, cache randomization, and block ciphers. Moreover, we introduce and
justify the parameter choice on which this paper is based. Section 3 introduces the at-
tacker model. In Section 4, we introduce SCARF. The following Section 5 discusses
the design rationale of SCARF. We summarize the security of our design in Section 6
and details on the extensive security analysis we performed in the appendix. The results
of the performance evaluations, both in hardware as well as on a system level, are given
in Section 7 before we conclude in Section 8.

4 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

2 Background and Requirements

In this section we introduce background on caches and cache attacks. We provide rea-
soning for the parameter choice of SCARF and introduce the concept of cache random-
ization as a countermeasure.

2.1 Caches

Due to the large performance gap between the CPU and main memory, modern CPUs
store frequently accessed data in small memory modules in close physical proximity to
the core. Most modern processors divide this cache memory into multiple levels ranked
from the smallest and fastest L1 cache to the largest and slowest L3 cache. Each physical
core is equipped with private L1 and L2 caches whereas the L3 cache is typically shared
among all CPU cores. For every memory access, the respective cache levels are queried
for the accessed address. If the data associated with the requested address is stored in
the cache, a cache hit occurs and it is returned directly. In this case, the CPU does
not need to wait for the main memory. If the data is not cached, a cache miss occurs.
Such a cache miss leads to significantly slower access times which is measurable from
user level code. To determine if the data belonging to a given address is cached, part
of the address is stored as a tag alongside the data. Upon access, the cache is searched
for the tag and the corresponding data is returned if the access resulted in a hit. For
small L1 caches, one can simply search the entire cache for the given tag upon access.
Caches implementing this search strategy are called fully-associative. For larger caches
like the L2 and L3 cache which can often store multiple megabytes of data, searching
the entire cache upon access is not feasible for performance reasons. Therefore, most
caches deployed in real CPUs use a set-associative addressing scheme.

The set-associative layout can be imagined like a table structure with m byte entries.
The table rows are called sets and the columns are called ways. The accessed address
is split into a tag, an index, and an offset. The offset is log2(m) bits and selects which
word within the m-byte entry is returned. The index bits select the cache set (i.e., the
table row) in which the entry is placed. Finally, the tag bits are stored alongside the data
and are used in combination with the implicit index to uniquely identify the address.
When an address is accessed, all cache ways at the index of the requested address are
searched for the corresponding tag. On a cache hit, the correct data is returned. If a
cache miss occurs, the data is loaded from memory or from other cache levels. In this
case, a replacement policy is used which selects one entry from the cache set to be
evicted and replaced by the new data. In many cases, this replacement policy selects the
least-recently used (LRU) entry for replacement.

2.2 Cache Attacks and Randomization

The timing difference between a cache hit and a cache miss is easily measurable from
user level code and in combination with the set-associative structure allows attack-
ers to observe the cache behavior of processes that operate on the CPU in parallel.
Cache attacks can be divided into flush-based attacks [56,17] and contention-based at-
tacks [35,50]. For flush-based attacks, the attacker requires a shared memory address

SCARF: A Secure Cache Randomization Function 5

between himself and the victim process. This may for example be a library function.
Then, the attacker leverages a special cache-line flush instruction (e.g., clflush in x86)
to evict the shared address from the cache. Flush-based attacks can be prevented by
duplicating shared memory in the cache as proposed by Werner et al. [55]. Contention-
based attacks are much more challenging to prevent since they directly exploit the set-
associative structure of modern caches. Here, the attacker constructs an eviction set,
i.e., a set of addresses that map to the same cache set as the victim address. In a w-
way cache, an eviction set with exactly w addresses is called minimal. By accessing the
eviction set addresses, the attacker primes the cache set – that is, all addresses that were
stored in the cache set prior to the access are replaced by addresses from the eviction set.
When the victim address is accessed, one of the eviction set addresses must be evicted
by the replacement policy. The attacker can then probe whether the victim address was
accessed by measuring the access latency of the eviction set addresses. If accessing one
of these addresses results in a cache miss, the victim address was accessed. This exact
technique is used in the PRIME+PROBE attack [35,50] which was, among others, used
to leak GnuPG keys from the shared last-level cache [28].

=

F Tag Data (64 Byte) F Tag Data (64 Byte)

OffsetTag Index

051563

0
1

2
3

5
6

1021

1022

Way 0 Way 1

=

1023

Fk1 F1 Fk2 F

Fig. 1. Schematic overview of a 2-way randomized cache architecture with 10-bit indices.

Even though the addresses used for cache addressing are not directly visible to
the attacker due to the virtual memory abstraction, constructing minimal eviction sets
can be done very efficiently for set-associative caches [51,44,46]. By randomizing the
address-to-cache-index mapping in each cache way separately, the concept of eviction
sets can be weakened [38,39,55,45,41,43,47] and the effort to construct eviction sets
increases significantly [37]. Addresses that only differ in the (usually 6) offset bits must
still map to the same cache indices to ensure cache coherency. Therefore, the offset bits
of the address are not considered for randomization. The index-width depends on the
number of available cache sets. Many recent CPUs feature 210 cache sets, and hence, an
index width of 10 bits [46]. By using different number of cache ways and instantiating

6 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

multiple cache slices (load balanced parallel caches) CPU designers can still create
arbitrary sized caches with a fixed number of cache sets. For the remainder of this paper,
we consider caches with an index width of 10 bits. Our approach and results can be used
as groundwork for further cache randomization functions with different index-width. A
schematic overview of a randomized cache is shown in Figure 1. The randomization
is applied to the address in each cache way. This way it is possible to have different
mappings in each way by selecting a unique random key. Since the cache can only
be searched for the queried address after the randomization function is complete, the
latency of the randomization function is crucial both in the hit-, and the miss scenario.
At the same time it must not be possible for an attacker to break the randomization since
in this case, the construction of eviction sets becomes trivial.

In [37], Purnal et al. present PRIME+PRUNE+PROBE, a generic attack on random-
ized cache architectures. It applies to cache architectures that purely rely on random-
ization as a protection mechanism, e.g, SCATTERCACHE [55]. By priming the cache
with a set of addresses k, the attacker is able to observe conflicts between addresses
from k and the victim address. Then, they construct a generalized eviction set G which
contains addresses that collide with the victim address in at least one cache way. The
generalized eviction set can be used to evict the victim address with probability pe
and can therefore be used similarly to a traditional eviction set. The profiling effort
of PRIME+PRUNE+PROBE is significant and hence, frequent re-keying of pure ran-
domization designs like SCATTERCACHE [55] can prevent attackers from being able
to construct generalized eviction sets. More recent randomized cache architectures use
additional measures to increase the complexity of PRIME+PRUNE+PROBE attacks be-
yond feasible boundaries [41,47].

2.3 (Tweakable) Block Ciphers

A block cipher takes two inputs, a plaintext P ∈ Fn
2 and a key K ∈ Fk

2, and produces a
ciphertext C ∈ Fn

2. A tweakable block cipher is a cryptographic primitive that extends
block ciphers [27] by allowing an additional input T ∈Ft

2 (called tweak) that, along with
the plaintext P and the key K, produces the ciphertext C. The idea is that a tweakable
block cipher is a family of independent block ciphers, one for every tweak T . Many
dedicated tweakable block ciphers have recently been proposed, such as Skinny and
Mantis [3], Deoxys [18], and QARMA [1].

2.4 Design Rationales

For cache randomization, we need to map an address consisting of a t-bit tag-, an i-bit
index-, and an o-bit offset to a pseudorandom i-bit randomized index. Since caches are
spread over a huge amount of CPU classes, ranging from small embedded devices over
smartphones and desktop PCs to high-end server clusters, the sizes and parameters of
caches can vary significantly. Therefore, there cannot be one randomization function
that suits all caches perfectly. We chose to design SCARF targeting the parameters of
recent desktop-grade CPUs.

SCARF is a tweakable block cipher where the tag is used as tweak and the index is
used as plaintext. Since addresses that only differ in the offset bits must map to the same

SCARF: A Secure Cache Randomization Function 7

randomized index, the offset bits are neglected for the randomization. For the remainder
of the paper, we denote addresses as (x,T), where x is the index part and T is the tag part
of the address. Our cipher uses a small block size of 10 bits - since as motivated earlier
many recent CPUs feature 210 cache sets, and hence, i = 10. Therefore, we achieve a
format-preserving encryption of the index while retaining the original 48-bit tag. The
offset that is typically 6 bits (log2(64)) is discarded. In Figure 1, SCARF would be used
as F-function with the tag used as tweak and the index used as plaintext.

Low latency is a key requirement for cache randomization. This holds especially
for the encryption, since the randomization function is applied on the critical path of
every cache access. The index of the accessed address is encrypted using SCARF and
the result is used for the cache lookup. The latency of the decryption function is less
critical since it is only used to write back dirty entries from the cache to main memory.
This usually happens on a cache miss where the CPU needs to wait for the slow main
memory to respond before the cache entry can be replaced. The decryption of the index
(and therefore, the reconstruction of the stored address) can be executed in parallel to
the memory access.

Opposed to a traditional 64-bit block cipher, our design approach has three key
advantages: (i) we avoid overhead in the ciphertext resulting from the discarded offset
bits, (ii) the construction allows more latency focused designs, and (iii) it enables a
much more elegant attacker model as described in the following section.

Our cipher design features a nominal security level of 80 bits (even though the key
used is 240 bits).

Hence, an attacker must perform at least 280 encryptions or decryptions for a suc-
cessful attack in the given attacker model (see Section 3). The 80-bit security level is
often taken as a practical complexity limit for brute force attacks on modern hardware,
although a higher security level is required for general purpose block ciphers to cover
future developments. Furthermore, we limit the data complexity by the attacker to 240.
Since each unique address (ignoring the offset bits) maps 64 bytes of memory on the
device under attack, these limitations are irrelevant for the cache use-case. 240 addresses
would map about 70 terabytes of RAM which is far beyond current system configura-
tions. Hence, the attacker is constrained by the available addresses for attacks on the
randomization key and the chosen limits leave a healthy security margin.

3 Attacker Model

One of the most interesting aspects of the problem we are facing is actually the attacker
model. From a system-perspective, we model the cache as a black-box which the at-
tacker can query with arbitrary physical addresses. For each access, the attacker can
observe based on timing whether it resulted in a cache hit or cache miss. Moreover,
we assume that two addresses are sufficient for the attacker to tell if they map to the
same cache set. In reality, the attacker would have to find w addresses that map to the
same cache set before observing this. The attacker cannot observe other cache internals
which especially include the set-index of a given address. From a cryptographic point of
view, this corresponds to an attacker that is able to choose plaintexts (index part of the
address) and tweaks (tag part of the address) to be encrypted. However, ciphertexts will

8 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

not be revealed. The only information the attacker is able to learn is in the collisions in
the ciphertexts. Hence, we must ensure that an attacker cannot learn how to construct
conflicting addresses from observing random conflicts. More formally, we require the
following security property for SCARF:

Security Requirement 1 Let O be the oracle that takes addresses (x1,T1) and (x2,T2),
and returns 1 if ET1(x1) = ET2(x2) and 0 otherwise.

Given a challenge address (xv,Tv), an adversary is allowed to make at most 240

queries to O. Let X be the set of queried (single) addresses. Then, the adversary is un-
able to output (xr,Tr) 6∈ X that satisfies ETv(xv) = ETr(xr) with probability significantly
larger than

1
|{x | {(x,Tr)} /∈ X }|

and in time significantly smaller than 280 evaluations of ET for Tr 6= Tv.

In other words, the attacker does not have significant advantage over guessing when
the data complexity and the time complexity are restricted as stated above.

The security requirement relates to contention-based cache attacks as follows: the
attacker wants to find addresses (x,T) that collide with a given target address (xv,Tv)
in the cache. Therefore, in a profiling phase, the attacker may query arbitrary addresses
and observe addresses that collide in the randomized cache index. Finally, the attacker
is challenged to output a new address (xr,Tr) which has not been part of a query to
the oracle (i.e., it cannot belong to X). Security Requirement 1 ensures that the at-
tacker cannot do this with a significant advantage over guessing addresses. This pre-
vents the attacker from constructing eviction sets more efficiently than in the generic
PRIME+PRUNE+PROBE attack [37].

Notice that in reality, Security Requirement 1 is more complex since the oracle
memorizes past queries and the attacker can learn small bits of information that are not
covered in the formal requirement. For example, the attacker can access two distinct
sets of addresses that do not contain conflicting addresses within each set. By accessing
first Set 1, then Set 2, and then Set 1 again, the attacker can learn if there are addresses
from Set 2 that collide with addresses from Set 1. Doing this, in general they do not
learn which exact address pairs collide. On the other hand, there are factors that reduce
the success probability of the attacker which outweigh the small benefit the attacker
can gain from the oracle memory. Most severely is the fact that caches feature multiple
ways. Hence, the attacker only learns if two addresses collide with some probability
determined by the replacement policy. If the oracle returns zero, the addresses may still
collide in a different cache way, but the attacker does not learn that information. Sim-
ilarly, in a real cache attack, the attacker does not have full control over the addresses
that are queried since the address bits above the page offset (usually Bit 12 upwards)
are determined by the operating system and not by the attacker. This limits the control
of the attacker over the queried tags. Finally, on real systems there is always some noise
from concurrent processes. Hence, even if the attacker observes an address collision,
he cannot be certain about it. This effect increases if the attacker queries large sets of
addresses at once since the probability that such a set is affected by noise increases.
The security requirement underestimates the information provided by the oracle (e.g.,

SCARF: A Secure Cache Randomization Function 9

the memory aspect) but it also overestimates the abilities of the attacker (e.g., choosing
addresses and telling apart colliding from non-colliding addresses with only two ad-
dresses). We designed Security Requirement 1 such that in practice, the overestimation
of the attacker outweighs the simplified oracle. This allows us to analyse the security of
SCARF w.r.t. Security Requirement 1, yielding a secure cipher in real-world environ-
ments.

From a designer perspective, Security Requirement 1 does not allow to use the many
well-understood cryptanalysis arguments and techniques that have led to the design of
modern block ciphers. Therefore, we now address this problem by framing the attacker
setting in the cache scenario in a novel and convenient way. In fact, by observing a
random conflict, the attacker can learn if two addresses collide in the cache, i.e., if two
plaintexts P1 and P2 and two tweaks T1 and T2 lead to the same ciphertext and hence
satisfy

ET1(P1) = ET2(P2).

P1

E

C1 =

T1

P2

E T2

C2

?

Then, and this is a key point of our work, P2 is actually the decryption of C1 = C2
under T2, where Ci = ETi(Pi) (i = 1,2). Indeed, the attacker learns the evaluation of the
function

E−1
T2
◦ET1(P1) = P2

in case of a collision and learns that

E−1
T2
◦ET1(P1) 6= P2

in case there is no collision. In other words, we can turn the attacker’s view actually
into the following view that will guide our design approach.

P1

ET1

P2

E−1 T2

So, as designers, we simplify this situation by assuming that the attacker is allowed
to query

ẼT1,T2(P) := E−1
T2
◦ET1(P) =C

directly for chosen P, and tweak pairs T1,T2. Note that, in practice, querying this func-
tion actually requires the attacker to perform a non-negligible amount of work by basi-
cally randomly searching for those collisions.

10 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

Assume we design E as an iterative function using r rounds. The great advantage of
this attacker model and the designer’s view is that we have to implement, and consider
the latency of r rounds, while the attacker actually faces a primitive consisting of 2r
rounds. This, among other ideas and insights described below, is the reason why SCARF
enables security with an exceptionally small latency.

Note that, even if ET is an ideal tweakable block cipher, ẼT1,T2 is not. The easiest
way to see that is to note that there is an important special choice of the tweak pair.
Indeed

ẼT1,T1(P) = P

for all P, i.e., for identical tweaks, the function is the identity. While this constitutes
weak-tweaks for the tweakable block cipher Ẽ, it actually does not correspond to any
knowledge the attacker gains as this just means that the same plaintext with the same
tweak always yields the same ciphertext using E.

There are more examples of non-ideal behaviour of ẼT1,T2 , e.g., it holds for all
T1,T2,T3 that

ẼT3,T1 ◦ ẼT2,T3 ◦ ẼT1,T2

is the identify function.
The Security Requirement 1 can then be translated into the following security re-

quirement for Ẽ.

Security Requirement 2 Let
∼
O be the encryption oracle of Ẽ that takes a plaintext P

and a pair of tweaks T1,T2 as input and returns C such that C = ẼT1,T2(P).
Given a challenge (Pv,Tv), an adversary is allowed to make at most 240 queries

to
∼
O. Let X ⊆ F10

2 ×F48
2 be the set containing all pairs (P,T1) and (C,T2) for queries

P,(T1,T2) made to the oracle.
Then, the adversary is unable to output (Cr,Tr) /∈ X that satisfies Cr = ETv,Tr(Pv),

with probability significantly larger than

1
|{x | {(x,Tr)} /∈ X }|

and in time significantly less than 280 evaluations of ET and Tr 6= Tv.

Both (P,T1) and (C,T2) for the query (P,T1) and T2 are added to X , i.e., X is the
equivalent of the set of queries in Security Requirement 1. Notice that

∼
O is a stronger

oracle than O, but that it is possible to construct the oracle
∼
O from O. For each query

to
∼
O, the oracle needs to query multiple addresses to O. Thus, given that in both cases

the query complexity is limited to 240, Security Requirement 2 is actually a stronger
requirement than Security Requirement 1.

Why Existing Ciphers Are Not Enough. If we use a traditional block cipher to encrypt
both the address and tag instead of the tweakable block cipher, the above simplification
is no longer possible. In fact, a cache hit would then imply only a partial collision of the
ciphertexts, so that we cannot model the target cipher as encryption-then-decryption as

SCARF: A Secure Cache Randomization Function 11

in the tweakable case. Thus, we conclude that the security of a round-reduced version
of a secure block cipher like PRINCE is questionable without a careful analysis.

Finally note that, as a matter of fact, designing a secure tweakable block cipher as
E−1

T2
◦ET1 , where ET has r rounds, is more challenging than designing a secure 2r-round

tweakable block cipher. Even if we would design a secure tweakable block cipher, it
is unlikely that a half-round reduced version would yield a suitable solution for our
setting. The target cipher in our attack model must have the structure E−1

T2
◦ET1 , and

without taking special care, it is likely that tweaks can be chosen by the attacker such
that the last rounds of ET1 are canceled by the first rounds of E−1

T2
.

4 SCARF

We now present SCARF (Secure Cache Randomization Function), a tweakable block
cipher with 48-bit tweak and 10-bit block size. SCARF uses a 240-bit secret key. An
overview of SCARF is shown in Figure 2. The cipher consists of a tweakey schedule
and a data encryption path. Before giving the detailed specification of the design, we
discuss the security we expect from SCARF. Reference implementations are available
at https://anonymous.4open.science/r/SCARF-D434/README.md5.

4.1 Security Claims

We claim that SCARF satisfies Security Requirement 1 against any adversary running
in time at most 280 using at most 240 queries to O. We also claim that SCARF satisfies
Security Requirement 2 against any adversary running in time at most 280 using at most
240 queries to

∼
O. Note that the latter is a significantly stronger claim for the actual use

case of SCARF because the real attacker never gets corresponding plaintexts with a
query complexity 1. The purpose of the claim is to encourage cryptanalysis and gain a
better understanding of the security of SCARF.

We do not claim security against related- or known-key attacks because (i) these
attacks do not apply to the cache randomization use case for which SCARF is designed
and (ii) should be irrelevant for any properly used tweakable block cipher. Indeed, there
is no situation where SCARF is used with multiple keys with a specific relation simul-
taneously, and the 240-bit secret key is always chosen at random.

The key is maintained by the hardware which is responsible for storing it in a se-
cure manner. Due to the dense packaging of modern CPUs, physical side-channel at-
tacks (e.g., power or EM) on SCARF are immensely difficult to carry out and therefore
considered out of scope for this work. Moreover, while recent CPUs feature software-
level voltage monitoring [33], the values are not actually measured but instead extrap-
olated from the CPU load. Hence, these measurements cannot leak information about
the SCARF key.

4.2 Specification of SCARF

5 Anonymous Git repo for double-blind review.

https://anonymous.4open.science/r/SCARF-D434/README.md

12 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

30

30

30

30

30

30

30

30

P ∈ F10
2

C ∈ F10
2

Σ

Tweakey schedule Data encryption

R1

R1

R1

R1

R1

R1

R1

R2

Σ

π

K1

K2

K3

K4

SL

SL

SL

expansion(T) ∈ F60
2

SL

Fig. 2. Overview of SCARF

The Round Function R1 and R2. The round function R1 has a 10-bit input x and a
30-bit subkey k generated by the tweakey schedule. The input x is divided into two
halves, i.e., x = xL‖xR of 5 bit each. The subkey k is also divided into six 5-bit values
as k = k6‖k5‖k4‖k3‖k2‖k1. Let τi be an i-bit left rotation, i.e., τi(x) = x ≪ i. Then, the
round function R1 updates (xL,xR) as follows:

y = G(xL,k1,k2,k3,k4,k5)⊕ xR,

xR = S(xL⊕ k6),

xL = y,

where G is

G(x,k1,k2,k3,k4,k5) =

[
4⊕

i=0

(τi(x)∧ ki+1)

]
⊕ (τ1(x)∧ τ2(x))

and S is

S(x) =
(
(τ0(x)∨ τ1(x))∧ (τ3(x)∨ τ4(x))

)
⊕
(
(τ0(x)∨ τ2(x))∧ (τ2(x)∨ τ3(x))

)
.

The round function R2 is a slight variation of R1. Specifically, the order of applying
the S-box and XORing the subkey is swapped, and the last swap is omitted. The round

SCARF: A Secure Cache Randomization Function 13

R1 R2

k6

≪ 0

≪ 1 ∧
k2

∧
k1

≪ 2 ∧
k3

≪ 3 ∧
k4

≪ 4 ∧
k5

5

S

k6

≪ 0

≪ 1 ∧
k2

∧
k1

≪ 2 ∧
k3

≪ 3 ∧
k4

≪ 4 ∧
k5

5

S

Fig. 3. Function R1(x,k) and R2(x,k)

functions are depicted in Figure 3.

xR = G(xL,k1,k2,k3,k4,k5)⊕ xR,

xL = S(xL)⊕ k6.

The Tweakey Schedule. The tweakey schedule generates four 60-bit subkeys T i from a
48-bit tweak T and a 240-bit secret key K4‖K3‖K2‖K1:

T 1 = expansion(T)⊕K1,

T 2 = Σ(SL(T 1))⊕K2,

T 3 = SL(π(SL(T 2)⊕K3)),

T 4 = SL(Σ(T 3)⊕K4),

each subkey T i is split into two parts of 30 bits. Those 30 bits are then used as actual
round keys in two consecutive rounds, e.g., T 1 provides the round keys for rounds 1
and 2.

In the following, the bits of the states T [i] are also labeled starting from 1, from
right to left. The tweakey schedule first expands the 48-bit tweak to a 60-bit value as
follows:

expansion(T) =0 ‖ T [48] ‖ T [47] ‖ T [46] ‖ T [45] ‖
0 ‖ T [44] ‖ T [43] ‖ T [42] ‖ T [41] ‖· · ·‖
0 ‖ T [4] ‖ T [3] ‖ T [2] ‖ T [1].

The function SL applies 12 identical 5-bit S-boxes S in parallel, where S is the same
S-box as in the round function. The function Σ is a linear function defined as

Σ(x) = x⊕ τ6(x)⊕ τ12(x)⊕ τ19(x)⊕ τ29(x)⊕ τ43(x)⊕ τ51(x),

14 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

and the function π is a bit permutation, where xi is mapped to xpi and pi is represented
as:

p =1,6,11,16,21,26,31,36,41,46,51,56,
2,7,12,17,22,27,32,37,42,47,52,57,
3,8,13,18,23,28,33,38,43,48,53,58,
4,9,14,19,24,29,34,39,44,49,54,59,
5,10,15,20,25,30,35,40,45,50,55,60.

Finally, rki denotes a subkey for the i-th round.

rk2‖rk1 = T 1, rk4‖rk3 = T 2,

rk6‖rk5 = T 3, rk8‖rk7 = T 4.

5 Design Rationale

We provide details on the design rationale of SCARF.

5.1 Overall Structure

SCARF is a dedicated tweakable block cipher for randomizing the cache. It was de-
signed only for this specific use case and achieves a substantial improvement of the
latency compared not only to common block ciphers like AES, but also to existing low-
latency block ciphers like PRINCE or QARMA. We first present two exclusive design
philosophies on which SCARF is built.

Very Short Block Length. One of the essential differences between SCARF from a
common block cipher is its short block length. To the best of our knowledge, SCARF
is the first block cipher with such a short block length. The small block length makes
SCARF well suited for cache randomization but not for other classical uses, e.g., as a
symmetric-key encryption scheme or an authenticated encryption.

We first discuss the choice of the structure for the design of a block cipher. There are
two most prominent structures: Substitution-Permutation-Network (SPN) and Feistel
structures. AES is an example of a SPN cipher, while DES is an example of a Feistel
cipher. Many low-latency block ciphers such as PRINCE [11] or MANTIS [3] adopt the
SPN structure. Indeed, the SPN is suited to the low-latency design because it updates
the entire state nonlinearly with a simultaneous operation. However, it usually uses
subkey XOR, which means that at most a number of subkey bits equal to the block
length can be absorbed every round. This would be problematic for our purpose since
the block length is only 10 bits. Furthermore, adding extra bijective functions to absorb
more subkey bits would work against our low-latency goal. On the other hand, the
Feistel structure only uses a half-block length nonlinear operation every round, thus
having a generally higher latency than the SPN. However, it can absorb many subkey
bits efficiently because a non-bijective nonlinear function can be used.

SCARF: A Secure Cache Randomization Function 15

critical path

parallel
application

S

G

n
n

m

S

G

n
n

m

Fig. 4. Two-round structure of SCARF. The position of S equivalently moves from the left branch
to the right branch due to an easy understanding of the parallel application of two S-boxes.

In light of the above observations, we adopted a new structure that combines the
advantages of the SPN and Feistel structures. We can also view the new structure as
a modification of the MISTY structure [32]. Figure 4 shows our two-round structure.
Similar to the MISTY structure, two S-boxes can be computed in parallel. The main
purpose of the G function is to result in high key-dependency, i.e., absorb many subkey
bits with minimal latency. Note that the G function does not need to be bijective, which
allows for a more flexible design.

One of the most interesting aspects of this structure is that the S-box does not lie
in the critical path when the latency of the Sbox is smaller than the latency of two
consecutive G functions. In fact, as depicted in Figure 4, it is the two G functions that
make up the critical path in the encryption.

Taking the Attack Model into Account. Most modern block ciphers are designed under
the assumption that plaintexts and ciphertexts can be observed by potential attackers.
However, as motivated in Section 3, ciphertexts of ET are not observable in the cache
use case. As mentioned in Section 3, the target of an attacker using ciphertexts is then
ẼT1,T2 = E−1

T2
◦ET1 and not ET .

We designed the round function and the tweakey schedule to reflect this attack
model. As explained above, special care has to be taken in order to avoid the inter-
nal cancellation of rounds. When the subkeys for the last round of ET1 and ET2 are the
same, two rounds in the middle of E−1

T2
◦ET1 are cancelled by each other. We call this a

last-round cancellation. We counter the last-round cancellations in two ways: first, we
make finding such T1,T2 as hard as guessing the subkey involved in the computation
of the last round function. For this, we adopted a nonlinear tweakey schedule, and the

16 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

last subkey is generated as a “ciphertext”, i.e., an encrypted tweak by the secret key.
Secondly, SCARF guarantees that the last two rounds behave differently if the 60-bit
subkeys are different. Note that the tweakey schedule always generates different 60-bit
subkeys from different tweaks. In addition to the typical case like the last-round can-
cellation, as a general rule, the tweakey schedule should generate, on different tweaks,
subkeys whose Hamming distance is as far as possible. Indeed, if the Hamming distance
was close, the applied round function wold be almost the same, and it might cause many
fixed points in Ẽ. To avoid this, the tweakey schedule guarantees that the Hamming dis-
tance of the subkeys generated by different tweaks is at least 17. Besides, since we
guarantee that the differential characteristic probability is low enough in the tweakey
schedule, it is not easy for the attackers to choose the subkey difference by controlling
the tweak difference.

5.2 Design of the Round Function

The round function is the main component in the data encryption. The design is based
on a modified MISTY structure that additionally has a low-latency G function absorbing
many subkey bits.

The G function. The main goal of the G function is to absorb many subkey bits very
quickly. It is well known that the AND / NAND gate has lower latency than XOR /
XNOR gate. Thus, an initial idea for designing the G function is G(x,k) = x∧ k, but it
involves only 5-bit subkey. To absorb more subkey bits, we use bit rotations, AND gates,
and their sum, i.e., G(x,k1,k2,k3,k4,k5) =

⊕4
i=0(τi(x)∧ki+1). It can absorb 5×5 = 25-

bit subkey. To avoid G being the zero function for a specific choice of the subkey, we
additionally XOR τ1(x)∧ τ2(x).

G(x,k1,k2,k3,k4,k5) = (τ1(x)∧ τ2(x))⊕
[

4⊕
i=0

(τi(x)∧ ki+1)

]
.

Then, G is described by the sum of six 5-bit values. Including XORing with xR, it is
described by the sum of seven 5-bit values. In other words, the critical path of G and
XORing with xR is one AND gate and an XOR tree of depth three.

The S-Box. The S-box is the main component to randomize the data nonlinearly. We
design the S-box so that the critical path of the data encryption is still the iterative
applications of the G function. We adopt the following design criteria, where we give
more importance to the algebraic degree than to the linearity and differential uniformity
when designing the S-box because the MISTY structure is potentially weak against the
integral / higher-order differential attack [49]:

– The latency is competitive with two consecutive applications of XOR, so that the
latency of S and XORing of the key is competitive with three consecutive XOR
(that is, competitive with G). Thus, we can expect that this S-box is not on the
critical path.

– Algebraic degree is 4.

SCARF: A Secure Cache Randomization Function 17

In order to satisfy the above criteria, we have followed the ideas used for the de-
sign of the S-box of SPEEDY [24], and opted to search for S-boxes that are obtained
by the composition of a OAI gate (that is, the gate that represents the logic function
(A,B,C,D) 7→ (A∨B)∧ (C∨D)) followed by an XOR, that is

S(x) = ((τa(x0)∨ τb(x1))∧ (τc(x2)∨ τd(x3)))⊕ ((τe(x4)∨ τ f (x5))∧ (τg(x6)∨ τh(x7)))

for some 0 ≤ a,b,c,d,e, f ,g,h ≤ 4 and xi ∈ {x,x}. Among all S-boxes fulfilling those
properties, we choose the ones that provided the best resistance against linear and dif-
ferential attacks, i.e., that had minimal differential uniformity and linearity. We found
15 different S-boxes that satisfied the above criteria with minimal differential unifor-
mity and linearity, and chose S to be the one given by the first (a,b,c,d,e, f ,g,h) in
lexicographic order. In particular, the differential uniformity and linearity of S are 4 and
12, respectively.

No Last-Round Cancellation. Considering the model ẼT1,T2 = E−1
T2
◦ET1 , the last round

of ET1 and ET2 can be cancelled out when the last 30-bit subkeys rk8 are the same,
resulting in effectively reducing ẼT1,T2 by two rounds. The existence of tweak pairs that
make the subkeys collide is unfortunately unavoidable, since the size of the tweak is 48
bits. However, we can prove that the full cancellation can only happen in this case.

Proposition 1. For any k,k′ ∈ F30
2 and i = 1,2, then Ri(·,k) 6= Ri(·,k′) if k 6= k′.

Proposition 1 guarantees that Ri (and R2 in particular) always generate different
maps for different 30-bit subkeys so that we can rule out the possibility of the full last-
round cancellation. The proof of this result is given in Appendix A.3.

Note that Proposition 1 does not exclude the possibility of a partial last-round can-
cellation, i.e., the existence of many fixed points. However, we expect that this does not
cause critical vulnerability because our tweakey schedule is nonlinear, and generated
subkeys have good Hamming distance with different tweaks.

No Last-Two-Round Cancellation. While we cannot avoid that the last round of ET
is canceled, we can show that it is impossible to cancel more rounds. In particular,
we now consider the possibility of the last two rounds of ET1 and ET2 being the same
map, effectively reducing ẼT1,T2 by four rounds. As we have seen, if the collisions are
only in the subkeys rk8 or only in the subkeys rk7, this is not a problem thanks to
Proposition 1. However, partial collisions in subkeys rk7 and rk8 cannot result in full
round cancellation. In fact, an analogous of the above result for Ri can be proved for
R2 ◦R1 (see Proposition 2), so that the cancellation of the last two rounds of ET1 and ET2

can only occur when both rk7 and rk8 collide fully, which cannot happen for different
tweaks, thanks to the fact that the tweakey schedule is a permutation on the set of
tweaks.

5.3 Design of the Tweakey Schedule

The tweakey schedule generates subkeys from a tweak and the secret key which are
used by the data encryption. We carefully designed the tweakey schedule such that it
does not affect the critical path of the block cipher to meet the low-latency requirement.

18 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

For the design of the tweakey schedule, there are two possibilities: linear or nonlin-
ear. The low-latency block cipher PRINCE [11,12] and the lightweight tweakable block
cipher Skinny [3] use linear tweakey / key schedules. On the other hand, AES uses a
nonlinear key schedule. With linear tweakey schedules, attackers can generate tweak
pairs such that they yield a given subkey difference at no cost. In particular, the attacker
can immediately construct two tweaks such that rk8 are identical. In other words, they
can cause the last-round cancellation with no real effort. To avoid such a potential risk,
SCARF uses a nonlinear tweakey schedule.

We design the tweakey schedule using a block-cipher-design paradigm, i.e., the
tweak is linearly / nonlinearly updated while XORing the secret key. The tweakey
schedule first expands the 48-bit tweak to a 60-bit value, i.e., double the size of the
subkey of each round.

The nonlinear layer SL is given by twelve parallel applications of the S-box S. These
outputs are diffused by the linear layer Σ, which is represented by the sum of 7 bits.
Including the key XOR, it consists of the sum of 8 bits, and the critical path is an XOR
tree of depth three. We impose the following security criteria on security to pick a good
linear layer:

– bijectivity;
– word-wise (5 bits) branch number of 8;
– word-wise (5 bits) branch number of 9 when the Hamming weight of the input is

more than 1.

These criteria imply at least 8+9 = 17 active S-boxes when the tweak is active. In other
words, the Hamming distance of (30×6)-bit subkeys generated by different tweaks is
at least 17. Moreover, we can guarantee low differential and linear characteristic prob-
abilities when the tweak is active. In particular, the maximum differential characteristic
probability in the tweakey schedule is at most 2−3×17 = 2−51, while the maximum
squared linear trail correlation in the tweakey schedule is at most 2−2.83×17 = 2−48.11.
Both probabilities are lower than 2−48.

We chose the bit permutation π such that each output bit of a single S-box becomes
an input bit of a different S-box.

6 Security

In this section, we discuss the cryptanalyis of ẼT1,T2 against some major attacks such as
the differential [8], linear [31], impossible differential [7], integral [14,19], and meet-in-
the-middle attacks [15]. As we will see, no key-recovery or distinguishing attack works
for ẼT1,T2 . This in particular implies that the Security Requirement 1 is achieved.

In the following, we will indicate the round-reduced version of ET to r rounds as
r-round SCARF, while the round reduced version of ẼT1,T2 = E−1

T2
◦ET1 to r rounds of

ET1 and r rounds of E−1
T2

as (r+ r)-round SCARF.
More details on the cryptanalys conducted to assess the secruity of SCARF can be

found in Appendix B.

SCARF: A Secure Cache Randomization Function 19

6.1 Statistical Attacks

Statistical attacks are among the most popular cryptanalysis techniques, based on ob-
servable statistical properties that should not be exhibited by randomly chosen func-
tions, therefore making the attacked primitive distinguishable from random.

In order to show the security margins of SCARF against the most prominent fam-
ilies of statistical attacks, we can take advantage of the small block size that allows to
carry out experiments that are normally not possible for the more common block sizes,
like the possibility of computing the Differential Distribution Table (DDT) or the Lin-
ear Approximation Table (LAT) of the entire cipher for fixed tweak and key. For most
of these families (differential, linear, boomerang and differential-linear), we have con-
ducted experiments that study the distribution of the relevant statistical property (like
the linearity or differential uniformity) for T 7→ ET and (T1,T2) 7→ ẼT1,T2 , by computing
it experimentally for 210 different tweaks and comparing it to the distribution obtained
by drawing 210 random permutations.

In this way, we can avoid any of the typical independency assumptions made for
estimating the probability of such distinguishers with larger block sizes for a fixed
tweakey. Besides, we can also observe what happens when considering weak tweaks
and how frequently we can expect them. For example, we will see that whenever the
last 5 bits of the subkey of ET1 and ET2 are the same, the composition of the respec-
tive last rounds becomes an affine function (see Section A for details). It allows for the
existence (every 25 pairs of tweaks) of longer trails than what is expected assuming
independence.

On the other hand, the rather limited amount of tweaks used for our experiments
cannot fully capture the dependency between T1 and T2. For instance, the fact that every
25 pairs of tweaks we expect a collision in the last 5-bit subkey, and thus the existence
of a differential distinguisher for (3+3)-round Ẽ, implies the existence of a differential
distinguisher for 4+4 rounds every 235 tweaks. In fact, this is to be expected whenever
the last 30-bit round key collides (canceling two rounds of Ẽ), as well as the last 5-bit
subkey of the last but one round, making the composition of the last two rounds (that is,
four rounds of Ẽ) an affine function. Even though such rare (and unavoidable) collisions
cannot clearly be observable when considering 210 tweaks, we expect that the existence
of such rare dependencies does not pose a threat for the security of SCARF when the
data is limited to 240, given the ample margin of security provided by the chosen number
of rounds.

A more detailed analysis of the resistance of SCARF against linear and differential
attacks (as well as boomerang, differential-linear and impossible differential attacks)
and how SCARF compares to ideal permutations is discussed in Appendix B. All in all,
we argue that it is not possible to distinguish 5+ 5 rounds of SCARF with any of the
aforementioned cryptanalysis, given the data limitation.

Related-Tweak Attacks. When considering related-tweak attacks, we can no longer as-
sess the security experimentally because the domain size becomes 48+ 10 = 58 bits.
We therefore assume the usual independence assumption, under which we can estimate
a low enough probability. As discussed in Sect. Section 5.3, the tweakey schedule guar-
antees at least 17 active S-boxes in the related-tweak differential/linear attacks. The

20 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

probability is less than 2−48. Therefore, we expect that related-tweak differential/linear
attack does not threaten SCARF.

Multiple-Tweak Attacks. We now focus on the multiple-tweak attack to SCARF. It
exploits the fact that the block length of SCARF is smaller than the tweak length and
significantly smaller than the security level, so that a significantly smaller bias than what
is commonly considered in cryptanalysis can be observed over multiple tweaks. Those
attacks have been introduced in [16] with a focus on format preserving encryption, and
we adopt here to the case of SCARF.

As a concrete example, the classical differential attack exploits a certain differential
property that can be observed with a probability of p � 2−n, where n is the block
length. The multiple-tweak variant exploits the fact that a certain differential property
with a probability 2−n + ε can be observed even though ε� 2−n. In fact, since the
tweak length is relatively large compared to the block length, it is possible to collect an
amount of pairs satisfying a certain differential property that is also many times larger
than the block length, allowing to observe biases that are extremely small with respect
to n. Furthermore, the technique explained in Appendix A.1 can also be used to collect
significantly more data than the amount that is queried.

We estimate that the multiple-tweak differential over (5+5)- and (6+6)-round SCARF
has a bias of about 2−30 and 2−40, respectively. The data limitation does not allow to
collect more than 251 and 267 pairs satisfying a certain differential in Security Require-
ments 1 and 2, respectively (see Appendix A.1). Therefore, even for the bold security
claim (Security Requirement 2), distinguishing the (6+6)-round SCARF with a signifi-
cantly higher advantage is non-trivial. Besides, even if (6+6) rounds were distinguish-
able, a 60-bit subkey guess is required to attack the full (8+8) rounds. Therefore, we
believe SCARF provide a sufficient margin for 80-bit security, particularly for Security
Requirement 1. We refer to Appendix B.5 for a more detailed analysis and experiments.

6.2 Impossible Differential Attack

SCARF has the full diffusion in 3 rounds for any subkey. It implies that miss-in-the-
middle approach finds at most 3+ 3 = 6-round impossible differential. In our attack
model, Ẽ consists of (8+8) rounds. Thus, there is plenty of security margin against the
impossible differential.

6.3 Integral Attack

The integral attack (also known as higher-order differential attack) exploits the low
degree of a cipher. Given an encryption network, we use the division property [48]
to detect such distinguishers. We evaluated all integral distinguishers using 29 chosen
plaintexts. As a result, we found 3-round integral distinguishers, where the left branch
is balanced in any 9th order differential. On the other hand, we do not find any 4-round
integral distinguisher.

We also considered an extension to the related-tweak setting, where we focus on the
sum of many ciphertexts with multiple tweaks. The highest cost distinguisher is con-
structed by 29 chosen plaintexts and 248 tweaks. Again, we used the division property

SCARF: A Secure Cache Randomization Function 21

and found 4-round related-tweak integral distinguishers. However, even this extension
cannot detect any 5-round distinguishers because the tweakey schedule is a nonlinear
function with a high degree.

6.4 Meet-in-the-Middle Attacks

In a Meet-in-the-Middle (MitM) attack, an attacker guesses subkeys for fixed T1 and T2
and checks the following equation

ET1(P) = ET2(C).

The attacker can evaluate ET1 and ET2 independently. When κ1 and κ2 bits are involved
to check this equation for ET1 and ET2 , respectively, the attack requires N× (2κ1 +2κ2),
where N is the number of required plaintexts / ciphertexts.

SCARF uses subkeys that involve independently-generated secret-key bits. There-
fore, each bit of the subkey is independent. The size of the involved key material is
8× 30 = 240 bits, and it is unlikely that such a straightforward MitM attack works.
When we use the 1-bit matching instead of the 10-bit matching, we can bypass guess-
ing subkey bits in the last few rounds. For example, when we focus on the MSB, it is
enough to guess only rk7,1, rk7,2, rk7,3, rk7,4, rk7,5, and rk8,6 in the last two rounds. The
size of involved subkey bits is reduced from 60 bits to 30 bits. Even if we assume the
attacker can have the last-round cancellation at no additional cost, the attack would still
involve 30×5+30 = 180-bit subkey. Therefore, we expect that the MitM attack does
not invalidate the 80-bit security.

There are several kinds of variants of the MitM attack. In a multi-dimensional meet-
in-the-middle (MD-MitM) attack [57], an attacker guesses the intermediate state and
applies the MitM with multiple dimensions. In a 3-subset meet-in-the-middle [10], an
attacker guesses subkey bits in one subset, and apply the MitM by guessing each re-
maining subset independently. These variants need to exploit the key schedule. In par-
ticular, very simple key schedules are required to successfully apply the attack. The
tweakey schedule of SCARF is however nonlinear, and each subkey bit involves many
secret key bits. Moreover, SCARF uses a 240-bit random secret key for the 80-bit secu-
rity. Therefore, we expect that such variants cannot be successfully applied to SCARF.

7 Evaluation

In this section, we evaluate the efficiency of SCARF in hardware and analyze the effects
on the system performance when SCARF is used to randomize the cache indexing.

7.1 Hardware Efficiency

We first evaluate and validate the hardware performance of SCARF through a logic
synthesis. We implemented SCARF hardware in a fully-unrolled manner, meaning that
our implementation including all round functions and key scheduling datapaths is a
solely combinational circuit with registers only to store the plaintext P, the initial

22 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

Table 1. Synthesis results using Nangate OCLs

Technology 45 nm 15 nm
Latency [ns] Area [GE] Latency [ps] Area [GE]

PRINCE 4.74 12,554 628.49 17,484
Mantis 4.73 13,129 630.07 17,641
QARMA 5.11 13,915 654.62 21,102
SCARF 2.26 7,335 305.76 8,118

key K, the tweak T , and the encryption result (i.e., ciphertext) C. Note that these
registers are used for defining the timing constraints at logic synthesis and evaluat-
ing the critical path delay / maximum operational frequency. For the logic synthe-
sis, we employed Synoposys Design Compiler Q-2019.12SP-1 and Nangate 45 nm
and 15 nm Open Cell Libraries (OCLs). We synthesized the circuits using compile

-boundary_optimization -map_effort high without the hierarchy broken (which
is suitable to unrolled implementations), and did not apply incremental syntheses.

Table 1 reports the synthesis results of SCARF, where “Latency” denotes the critical
path delay which corresponds to a latency of one block encryption and “Area” denotes
the circuit area in gate equivalents (GE). Note that Latency includes that for a D-FF
(i.e., register) to store plaintext / key / tweak / ciphertext and related control logic. We
utilized an area optimization option and a speed optimization (i.e., a frequency con-
straint such that the latency is minimized as much as possible) for the synthesis. For
a comparison, the table also reports the results of PRINCE, Mantis, and QARMA im-
plemented and synthesized in the same manner, as PRINCE is the pioneering and most
major conventional low-latency block cipher and Mantis and QARMA are state-of-the-
art low-latency tweakable block ciphers. We here focused on the 64-bit 12-round ver-
sion of Mantis and QARMA (i.e., MANTIS6-64 and QARMA6-64-σ0) as recommended for
the security against practical attacks in [1]. Note that, for the synthesis of each cipher,
the speed optimization was set such that its latency is minimized. The synthesis results
confirm that the latency of SCARF is less than half of that of PRINCE, Mantis, and
QARMA, which reveals the advantage of SCARF for the low-latency application in-
cluding the cache-randomization. Moreover, the SCARF critical path lies on the round
datapath in addition to the first key-tweak XOR, whereas the difference in latency be-
tween round and key schedule datapaths is almost equivalent to each other. This might
indicate that SCARF would be reasonable as a low-latency tweakable block cipher for
the block, key, and tweak lengths.

7.2 Performance Benchmark

To evaluate the performance of SCARF, we implement a randomized cache using
PRINCE [12] and SCARF in the gem5 simulator [29]. We simulate a two level cache
hierarchy with a 16 kB L1 data cache, 16 kB L1 instruction cache and 1 MB unified
L2 cache. The L1 caches have 8 ways, and the L2 cache has 16 ways. The system is
clocked at 2 GHz (500 ps period) equipped with 2 GB memory with 100 ns (±10 ns)
latency. The default (non-randomized) caches have a tag-latency of 1 clock cycle for the

SCARF: A Secure Cache Randomization Function 23

bla
ck

sch
ole

s

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fac
esi

m
fer

ret

fluid
an

im
ate

fre
qm

ine

ray
tra

ce

str
ea

mclu
ste

r

sw
ap

tio
ns vip

s

−1

0

1

2

0.
09 0.
22

0.
12

−
0.

05

0.
22

0.
02

−
0.

46

0.
00

−
0.

08

0.
05

0.
00

−
0.

35

0.
13 0.

41 0.
53

0.
32 0.
41

0.
10

−
0.

42

0.
05

0.
02 0.

27

0.
01

−
0.

11

Pe
rf

or
m

an
ce

O
ve

rh
ea

d
(%

)

SCARF Prince

Fig. 5. Performance improvement of SCARF compared to PRINCE in percent using the PARSEC
benchmark suite.

L1 caches and 10 clock cycles for the L2 cache. In Section 7.1 we found that SCARF
has a latency of about 306 ps and PRINCE has a latency of 628 ps in 15 nm technology.
Hence, for the simulation we assume that SCARF adds one clock cycle delay to the L2
cache access and PRINCE adds two cycles.

Figure 5 shows the performance results of the PARSEC benchmark suite using
SCARF and PRINCE for cache randomization in comparison to a traditional, non-
randomized cache. We averaged the benchmarks over 10 executions with random keys
to account for differences in scheduling decisions and noise from parallel processes.
The first observation is that despite the added delay for the randomized caches, some
benchmarks are faster that in the non-randomized setup. This is consistent with prior
work [55] and an artifact of frequent evictions within the data used by the benchmarks.
For example, if a given benchmark uses w+ 1 addresses that map to the same cache
index frequently, many cache misses occur in a w-way cache which slows down the
computation. In the randomized setting, the probability that all those addresses map to
the exact same entries is very small. Hence, it is more likely that the addresses can be
co-located in the cache without causing frequent evictions.

Despite the speedup that is achieved for some of the benchmarks, the results indi-
cate in general that the cache is a very timing-sensitive part of the CPU. Even as little
as two added clock cycles in the latency result in up to 0.53% reduced overall perfor-
mance. On average, our simulation using PRINCE results in a 0.11% overhead while
SCARF causes on average a 0.003% performance increase. In combination with the
reduced area requirements of SCARF, this is an important improvement on the way to
randomized cache architectures in real-world CPUs.

8 Conclusion

In this work we presented SCARF, the first purpose-built cache randomization func-
tion. Our design uses a 10-bit tweakable block-cipher that allows for an elegant at-
tacker model, contributing to the crucial low-latency property. We implement SCARF
in hardware and compare it to other low-latency block ciphers. Our design outperforms
other block ciphers by a factor of two, both in area and performance. We implemented

24 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

SCARF in gem5 to evaluate the effect on system level performance. Using SCARF,
the overhead of cache randomization can be compensated entirely, matching the perfor-
mance of traditional caches.

Finally, our findings and design approach can be used as groundwork for specific
cache randomization designs with other parameter sizes.

Acknowledgments

The authors would like to thank Eran Lambooij and Shahram Rasoolzadeh for the fruit-
ful discussions.

References

1. Roberto Avanzi. The QARMA Block Cipher Family – Almost MDS Matrices Over Rings
With Zero Divisors, Nearly Symmetric Even-Mansour Constructions With Non-Involutory
Central Rounds, and Search Heuristics for Low-Latency S-Boxes. IACR Trans. Symmetric
Cryptol., 2017(1):4–44, 2017.

2. Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman. DLCT: A new tool
for differential-linear cryptanalysis. In Yuval Ishai and Vincent Rijmen, editors, Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part I, volume 11476 of Lecture Notes in Computer Science, pages 313–342.
Springer, 2019.

3. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas Peyrin,
Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY Family of Block Ciphers
and Its Low-Latency Variant MANTIS. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of
Lecture Notes in Computer Science, pages 123–153. Springer, 2016.

4. Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers. Format-Preserving
Encryption. In Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors,
Selected Areas in Cryptography, 16th Annual International Workshop, SAC 2009, Calgary,
Alberta, Canada, August 13-14, 2009, Revised Selected Papers, volume 5867 of Lecture
Notes in Computer Science, pages 295–312. Springer, 2009.

5. Mihir Bellare, Phillip Rogaway, and Terence Spies. The FFX mode of operation for format-
preserving encryption. NIST Draft, 20:19, 2010.

6. Daniel J Bernstein. Cache-timing attacks on AES. 2005.
7. Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Reduced to 31 Rounds

Using Impossible Differentials. In Jacques Stern, editor, Advances in Cryptology - EURO-
CRYPT ’99, International Conference on the Theory and Application of Cryptographic Tech-
niques, Prague, Czech Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes
in Computer Science, pages 12–23. Springer, 1999.

8. Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In Alfred
Menezes and Scott A. Vanstone, editors, Advances in Cryptology - CRYPTO ’90, 10th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1990,
Proceedings, volume 537 of Lecture Notes in Computer Science, pages 2–21. Springer, 1990.

9. Rahul Bodduna, Vinod Ganesan, Patanjali SLPSK, Kamakoti Veezhinathan, and Chester
Rebeiro. Brutus: Refuting the Security Claims of the Cache Timing Randomization Coun-
termeasure Proposed in CEASER. IEEE Comput. Archit. Lett., 19(1):9–12, 2020.

SCARF: A Secure Cache Randomization Function 25

10. Andrey Bogdanov and Christian Rechberger. A 3-subset meet-in-the-middle attack: Crypt-
analysis of the lightweight block cipher KTANTAN. In Alex Biryukov, Guang Gong, and
Douglas R. Stinson, editors, Selected Areas in Cryptography - 17th International Workshop,
SAC 2010, Waterloo, Ontario, Canada, August 12-13, 2010, Revised Selected Papers, vol-
ume 6544 of Lecture Notes in Computer Science, pages 229–240. Springer, 2010.

11. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic, Lars R.
Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian Rechberger, Peter
Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE - A Low-Latency Block Cipher
for Pervasive Computing Applications - Extended Abstract. In Xiaoyun Wang and Kazue
Sako, editors, Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference
on the Theory and Application of Cryptology and Information Security, Beijing, China, De-
cember 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer Science, pages
208–225. Springer, 2012.

12. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic, Lars R.
Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian Rechberger, Peter
Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE - A Low-latency Block Cipher
for Pervasive Computing Applications (Full version). IACR Cryptol. ePrint Arch., page 529,
2012.

13. Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang Connectivity
Table: A New Cryptanalysis Tool. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May
3, 2018 Proceedings, Part II, volume 10821 of Lecture Notes in Computer Science, pages
683–714. Springer, 2018.

14. Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block Cipher Square. In Eli
Biham, editor, Fast Software Encryption, 4th International Workshop, FSE ’97, Haifa, Israel,
January 20-22, 1997, Proceedings, volume 1267 of Lecture Notes in Computer Science,
pages 149–165. Springer, 1997.

15. Whitfield Diffie and Martin E. Hellman. Special Feature Exhaustive Cryptanalysis of the
NBS Data Encryption Standard. Computer, 10(6):74–84, 1977.

16. Orr Dunkelman, Abhishek Kumar, Eran Lambooij, and Somitra Kumar Sanadhya. Crypt-
analysis of feistel-based format-preserving encryption. IACR Cryptol. ePrint Arch., page
1311, 2020.

17. Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. Flush+Flush: A
Fast and Stealthy Cache Attack. In Juan Caballero, Urko Zurutuza, and Ricardo J. Ro-
dríguez, editors, Detection of Intrusions and Malware, and Vulnerability Assessment - 13th
International Conference, DIMVA 2016, San Sebastián, Spain, July 7-8, 2016, Proceedings,
volume 9721 of Lecture Notes in Computer Science, pages 279–299. Springer, 2016.

18. Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. The Deoxys AEAD Family.
J. Cryptol., 34(3):31, 2021.

19. Lars R. Knudsen and David A. Wagner. Integral Cryptanalysis. In Joan Daemen and Vincent
Rijmen, editors, Fast Software Encryption, 9th International Workshop, FSE 2002, Leuven,
Belgium, February 4-6, 2002, Revised Papers, volume 2365 of Lecture Notes in Computer
Science, pages 112–127. Springer, 2002.

20. Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre Attacks: Exploiting Speculative Execution. In 2019 IEEE Symposium on
Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, pages 1–19.
IEEE, 2019.

26 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

21. Michael E. Kounavis, Sergej Deutsch, Santosh Ghosh, and David Durham. K-Cipher: A
Low Latency, Bit Length Parameterizable Cipher. In IEEE Symposium on Computers and
Communications, ISCC 2020, Rennes, France, July 7-10, 2020, pages 1–7. IEEE, 2020.

22. Hugo Krawczyk. LFSR-based Hashing and Authentication. In Yvo Desmedt, editor, Ad-
vances in Cryptology - CRYPTO ’94, 14th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 21-25, 1994, Proceedings, volume 839 of Lecture
Notes in Computer Science, pages 129–139. Springer, 1994.

23. Susan K. Langford and Martin E. Hellman. Differential-Linear Cryptanalysis. In Yvo
Desmedt, editor, Advances in Cryptology - CRYPTO ’94, 14th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 21-25, 1994, Proceedings, volume
839 of Lecture Notes in Computer Science, pages 17–25. Springer, 1994.

24. Gregor Leander, Thorben Moos, Amir Moradi, and Shahram Rasoolzadeh. The SPEEDY
Family of Block Ciphers Engineering an Ultra Low-Latency Cipher from Gate Level for
Secure Processor Architectures. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):510–
545, 2021.

25. Michael LeMay, Joydeep Rakshit, Sergej Deutsch, David M. Durham, Santosh Ghosh, Anant
Nori, Jayesh Gaur, Andrew Weiler, Salmin Sultana, Karanvir Grewal, and Sreenivas Subra-
money. Cryptographic Capability Computing. In MICRO ’21: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, Virtual Event, Greece, October 18-22, 2021,
pages 253–267. ACM, 2021.

26. Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown: Reading Kernel Memory from User Space. In William Enck and Adrienne Porter
Felt, editors, 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018, pages 973–990. USENIX Association, 2018.

27. Moses D. Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable Block Ciphers. In
Moti Yung, editor, Advances in Cryptology - CRYPTO 2002, 22nd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 18-22, 2002, Proceedings,
volume 2442 of Lecture Notes in Computer Science, pages 31–46. Springer, 2002.

28. Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-Level Cache
Side-Channel Attacks are Practical. In 2015 IEEE Symposium on Security and Privacy, SP
2015, San Jose, CA, USA, May 17-21, 2015, pages 605–622. IEEE Computer Society, 2015.

29. Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico Am-
slinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Srikant Bharadwaj, Gabe
Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues Carvalho, Jerónimo Castrillón,
Lizhong Chen, Nicolas Derumigny, Stephan Diestelhorst, Wendy Elsasser, Marjan Fariborz,
Amin Farmahini Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar Gope,
Thomas Grass, Bagus Hanindhito, Andreas Hansson, Swapnil Haria, Austin Harris, Timo-
thy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Han-
hwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Subash Kannoth, Hamidreza
Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli, Christian Menard, An-
drea Mondelli, Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Niko-
leris, Lena E. Olson, Marc S. Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke,
Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov, Matthew D. Sinclair,
Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish, Ilias Vougioukas,
Zhengrong Wang, Norbert Wehn, Christian Weis, David A. Wood, Hongil Yoon, and Éder F.
Zulian. The gem5 simulator: Version 20.0+. CoRR, abs/2007.03152, 2020.

30. Mohammad Mahzoun, Liliya Kraleva, Raluca Posteuca, and Tomer Ashur. Differential
Cryptanalysis of K-Cipher. IACR Cryptol. ePrint Arch., page 1158, 2022.

SCARF: A Secure Cache Randomization Function 27

31. Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Tor Helleseth, editor,
Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory and Application of of
Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings, volume 765 of
Lecture Notes in Computer Science, pages 386–397. Springer, 1993.

32. Mitsuru Matsui. New Block Encryption Algorithm MISTY. In Eli Biham, editor, Fast Soft-
ware Encryption, 4th International Workshop, FSE ’97, Haifa, Israel, January 20-22, 1997,
Proceedings, volume 1267 of Lecture Notes in Computer Science, pages 54–68. Springer,
1997.

33. Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss, and Frank
Piessens. Plundervolt: Software-based Fault Injection Attacks against Intel SGX. In Pro-
ceedings of the 41st IEEE Symposium on Security and Privacy (S&P’20), 2020.

34. Maria Mushtaq, Muhammad Asim Mukhtar, Vianney Lapotre, Muhammad Khurram Bhatti,
and Guy Gogniat. Winter is here! A decade of cache-based side-channel attacks, detection
& mitigation for RSA. Information Systems, 92:101524, 2020.

35. Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and Countermeasures: The
Case of AES. IACR Cryptol. ePrint Arch., page 271, 2005.

36. Dan Page. Partitioned Cache Architecture as a Side-Channel Defence Mechanism. IACR
Cryptol. ePrint Arch., 2005:280, 2005.

37. Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede. Systematic Analysis of
Randomization-based Protected Cache Architectures. In 42nd IEEE Symposium on Security
and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021, pages 987–1002. IEEE,
2021.

38. Moinuddin K. Qureshi. CEASER: Mitigating Conflict-Based Cache Attacks via Encrypted-
Address and Remapping. In 51st Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO 2018, Fukuoka, Japan, October 20-24, 2018, pages 775–787. IEEE Com-
puter Society, 2018.

39. Moinuddin K. Qureshi. New attacks and defense for encrypted-address cache. In Sri-
latha Bobbie Manne, Hillery C. Hunter, and Erik R. Altman, editors, Proceedings of the
46th International Symposium on Computer Architecture, ISCA 2019, Phoenix, AZ, USA,
June 22-26, 2019, pages 360–371. ACM, 2019.

40. Jordi Ribes-González, Oriol Farràs, Carles Hernández, Vatistas Kostalabros, and Miquel
Moretó. A Security Model for Randomization-based Protected Caches. IACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2022(3):1–25, 2022.

41. Gururaj Saileshwar and Moinuddin K. Qureshi. MIRAGE: Mitigating Conflict-Based Cache
Attacks with a Practical Fully-Associative Design. In Michael Bailey and Rachel Greenstadt,
editors, 30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021,
pages 1379–1396. USENIX Association, 2021.

42. Rich Schroeppel. Hasty pudding cipher specification. In First AES Candidate Workshop,
1998.

43. Wei Song, Boya Li, Zihan Xue, Zhenzhen Li, Wenhao Wang, and Peng Liu. Randomized
Last-Level Caches Are Still Vulnerable to Cache Side-Channel Attacks! But We Can Fix It.
In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27
May 2021, pages 955–969. IEEE, 2021.

44. Wei Song and Peng Liu. Dynamically Finding Minimal Eviction Sets Can Be Quicker Than
You Think for Side-Channel Attacks against the LLC. In 22nd International Symposium
on Research in Attacks, Intrusions and Defenses, RAID 2019, Chaoyang District, Beijing,
China, September 23-25, 2019, pages 427–442. USENIX Association, 2019.

45. Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. PhantomCache: Obfuscating Cache Con-
flicts with Localized Randomization. In 28th Annual Network and Distributed System Secu-
rity Symposium, NDSS 2021, virtually, February 21-25, 2021. The Internet Society, 2021.

28 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

46. Jan Philipp Thoma and Tim Güneysu. Write Me and I’ll Tell You Secrets - Write-After-Write
Effects On Intel CPUs. In RAID ’22: 25th International Symposium on Research in Attacks,
Intrusions and Defenses, Limassol, Cyprus, October 26-28, 2022. ACM, 2022.

47. Jan Philipp Thoma, Christian Niesler, Dominic A. Funke, Gregor Leander, Pierre Mayr, Nils
Pohl, Lucas Davi, and Tim Güneysu. ClepsydraCache - Preventing Cache Attacks with
Time-Based Evictions. CoRR, abs/2104.11469, 2021.

48. Yosuke Todo. Structural Evaluation by Generalized Integral Property. In Elisabeth Oswald
and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer
Science, pages 287–314. Springer, 2015.

49. Yosuke Todo. Integral Cryptanalysis on Full MISTY1. J. Cryptol., 30(3):920–959, 2017.
50. Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient Cache Attacks on AES, and Coun-

termeasures. J. Cryptol., 23(1):37–71, 2010.
51. Pepe Vila, Boris Köpf, and José F. Morales. Theory and Practice of Finding Eviction Sets.

In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May
19-23, 2019, pages 39–54. IEEE, 2019.

52. David A. Wagner. The Boomerang Attack. In Lars R. Knudsen, editor, Fast Software Encryp-
tion, 6th International Workshop, FSE ’99, Rome, Italy, March 24-26, 1999, Proceedings,
volume 1636 of Lecture Notes in Computer Science, pages 156–170. Springer, 1999.

53. Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C. Myers, and G. Edward Suh.
SecDCP: Secure dynamic cache partitioning for efficient timing channel protection. In Pro-
ceedings of the 53rd Annual Design Automation Conference, DAC 2016, Austin, TX, USA,
June 5-9, 2016, pages 74:1–74:6. ACM, 2016.

54. Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting software cache-based
side channel attacks. In Dean M. Tullsen and Brad Calder, editors, 34th International Sympo-
sium on Computer Architecture (ISCA 2007), June 9-13, 2007, San Diego, California, USA,
pages 494–505. ACM, 2007.

55. Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel Gruss, and
Stefan Mangard. ScatterCache: Thwarting Cache Attacks via Cache Set Randomization. In
Nadia Heninger and Patrick Traynor, editors, 28th USENIX Security Symposium, USENIX
Security 2019, Santa Clara, CA, USA, August 14-16, 2019, pages 675–692. USENIX Asso-
ciation, 2019.

56. Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolution, low noise, L3
cache side-channel attack. In Kevin Fu and Jaeyeon Jung, editors, Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014, pages 719–732.
USENIX Association, 2014.

57. Bo Zhu and Guang Gong. Multidimensional meet-in-the-middle attack and its applications
to KATAN32/48/64. Cryptogr. Commun., 6(4):313–333, 2014.

A Some Properties of SCARF

In this section, we are going to discuss some notable properties that arise when consid-
ering the security of Ẽ. For better readability, we are going to add a prime symbol for
the later part of ẼT,T ′ = E−1

T ′ ◦ET , e.g., rk′8 denotes the subkey of the 8th round function
of ET ′ .

SCARF: A Secure Cache Randomization Function 29

A.1 Learning Full Queries with Birthday Queries

A unique property that arises from the attacker model (and is not due to the design of
SCARF, as discussed in Section 3) is structural queries that can collect N2 plaintext-
ciphertext pairs by only N queries to SCARF. In fact, when a fixed tweak T1 and a
plaintext P1 are chosen, we can query P1 to ẼT1,Ti with chosen tweak Ti and get Pi =
ẼT1,Ti(P1). Then, N queries allows us to lean about N2 queries, i.e., Pj = ẼTi,Tj(Pi) =

ẼT1,Tj ◦ ẼTi,T1(Pi) for any i ∈ {1,2, . . . ,N} and j ∈ {1,2, . . . ,N}.
Note that we cannot always use these structural queries in arbitrary cases. For ex-

ample, an attacker can choose P1 and Ti but cannot choose Pi for i ≥ 2. Therefore,
when we learn Pj = ẼTi,Tj(Pi), the attacker can make use of these additional queries in
a known-plaintext attack.

More importantly, this also has implications for chosen-ciphertext attacks by query-
ing the full code book every tweak. In fact, suppose the adversary queries the full
code-book for 2 ·NT different tweaks divided in two disjoint sets T and T ′. The at-
tacker then queries ẼT1,T ′ for some fixed T1 ∈ T and for all T ′ ∈ T ′. Similarly, they
query ẼT,T ′1

for all T ∈ T and some fixed T ′1 ∈ T ′. This requires 2 · 210 ·NT − 210

queries. However, the attacker can learn the full codebook for all T ∈ T ,T ′ ∈ T ′ since
ẼT,T ′ = ẼT1,T ′ ◦ ẼT1,T ′1

◦ ẼT,T ′1
. In other words, the attacker can then learn 210 ·N2

T pairs
with ·210 ·NT −210 queries.

In Security Requirement 2, an attacker can query Ẽ 240 times. It implies that the
attacker can learn the full code book for 229+29 = 258 tweaks, i.e., 268 data.

On contrary, in Security Requirement 1, an attacker can query O, which returns 0
or 1 only. For fixed T and T ′, we need to ask about 218 (P,T,P′,T ′) to O to get the
full code book. With NT = 221, the query complexity is close to 2×NT ×218 = 240. It
implies that the attacker can learn the full code book for 221× 221 = 242 tweaks, i.e.,
252 data.

A.2 Partial Last-Two-Round Cancellation

One of the most notable properties when considering the security of Ẽ is the so-called
last-round cancellation shown in Sect.5. Since SCARF has 8 rounds, when rk8 = rk′8,
the last round is cancelled out in the composition. Therefore, the total number of rounds
of ẼT,T ′ decreases to 7+7 rounds. Due to the property of the tweakey schedule, there is
no chance that rk7‖rk8 = rk′7‖rk′8 implying that two rounds cannot be cancelled out, as
we show in Proposition 2. However, partial collision can still happen.

We first consider tweak pairs with a 35-bit collision, rk7,6‖rk8 = rk′7,6‖rk′8. Let

(x′L,x
′
R) = (R′−1

1 ◦R′−1
2 ◦R2 ◦R1)(xL,xR) representing the last 2+2 rounds, then in the

case of collision this function is actually the following key-dependent affine transfor-
mation

x′L = xL,

x′R = xR⊕
[

4⊕
i=1

(τi(xL)∧ (rk7,i+1⊕ rk′7,i+1))

]
⊕ (rk7,1⊕ rk′7,1).

30 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

≪ 0

≪ 1 ∧

≪ 2 ∧

≪ 3 ∧

≪ 4 ∧

5

S

xL xR

β2

∧
β1

β3

β4

β5

γ

∆L(x) = 0? ∆R(x) = 0?

Fig. 6. The function (∆L,∆R)(x) = R2(x,k)⊕R2(x,k′).

The 35-bit collision derives the left-branch collision in the input of the 7th round
function. Moreover, when the jth bit of rk7,i collides with the jth bit of rk′7,i for all
i ∈ {1,2,3,4,5}, the jth bit of the right-branch also collides in the input of the 7th
round function. In other words, (35+ 5c)-bit subkey collision derives a 5-bit collision
in the left branch and a c-bit collision in the last two rounds.

A.3 No Last-Round Cancellation

In this section, we first prove Proposition 1 and, furthermore, that it is not possible to
cancel the last two rounds of ET1 and ET2 unless the last two subkeys collide, which
implies that T1 = T2.

Proof (Proof of Proposition 1). For simplicity, we are going to prove the result for R2,
since it is the one of interest for our cipher and the proof for R1 is analogous.

We want to show that the function x 7→ (∆L,∆R)(x) = R2(x,k)⊕ R2(x,k′) is the
zero function if and only if k⊕ k′ = 0. This function is shown in Figure 6, where
k = (k1, . . . ,k6) and k′ = (k′1, . . . ,k

′
6) such that k⊕ k′ = (β1, . . . ,β5,γ), for some β =

(β1, . . . ,β5) ∈ F25
2 (difference in the subkeys k1, . . . ,k5) and γ ∈ F5

2 (difference in the
subkey k6). Notice that any non key-dependent component of R2, like τ1(x)∧ τ2(x) in
the G function, gets cancelled out since the difference is in the key.

With these new notations, we show that the function

(∆L,∆R)(x) = R2(x,k)⊕R2(x,(k⊕ (β,γ))

is the zero function, then β and γ are all zero.
Let Mκ be the 5×5 matrix that represents x 7→⊕4

i=0(τi(x)∧ki+1), with κ=(k1, . . . ,k5)∈
F25

2 . Then, we can write that

∆R(xL,xR) = Mβ(xL).

SCARF: A Secure Cache Randomization Function 31

≪ 0

≪ 1 ∧

≪ 2 ∧

≪ 3 ∧

≪ 4 ∧

5

S

≪ 0

≪ 1 ∧

≪ 2 ∧

≪ 3 ∧

≪ 4 ∧

5

S

rk7,2

∧
rk7,1

rk7,3

rk7,4

rk7,5
rk7,6

rk8,2

∧
rk8,1

rk8,3

rk8,4

rk8,5

rk8,6

yL

xL xR

Fig. 7. The last two rounds of ET .

Then ∆R(xL,xR) 6= 0 for any xL outside the kernel of Mβ; in particular, such an xL does
not exist if and only if Mβ is the zero matrix, that is β = 0. Therefore, ∆R = 0 if and
only if β is the zero difference.

Finally, if β = 0, let us consider

∆L(xL,xR) = γ.

then it is clear that ∆L = 0 if and only if γ = 0. Therefore, we have that ∆L = ∆R = 0 if
and only if β and γ are the zero difference. ut

Proposition 2. For any k,k′ ∈ F60
2 then R2 ◦R1(·,k) 6= R2 ◦R1(·,k′) if k 6= k′.

Proof. Following the notations of Figure 7 of the last two rounds of SCARF, we are
going to show that for any fixed k ∈ F60

2 , β = (β1,β2,β3,β5) ∈ F25
2 (difference in

rk7,1, . . . ,rk7,5), δ = (δ1,δ2,δ3,δ5) ∈ F25
2 (difference in rk8,1, . . . ,rk8,5) and γ,ε ∈ F5

2
(differences in rk7,6,rk8,6 respectively), then the function

x 7→ (∆L,∆R)(x) = R2 ◦R1(x,k)⊕R2 ◦R1(x,(k⊕ (β,γ,δ,ε))

32 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

is the zero function then β,γ,δ,ε are all the zero difference, that is k = k′.
Let Mκ, be the 5× 5 matrix that represents x 7→ ⊕4

i=0(τi(x) ∧ ki+1), with κ =
(k1, . . . ,k5) ∈ F25

2 . Then, if we let yL be the output value of the left branch of R1 with
the key k and y′L with key k′, we have that

y′L = yL⊕Mβ(xL).

Let us consider

∆L(xL,xR) = S(yL)⊕S(yL⊕Mβ(xL))⊕ ε. (1)

If ε 6= 0, given that xR 7→ yL is a bijection for any fixed xL, we can always choose a
yL (and therefore xR) such that S(yL)⊕ S(yL⊕Mβ(xL)) 6= ε, otherwise S would have a
non-trivial differential of probability 1.

Therefore, in order to have ∆L(xL,xR) = 0 for all xL and xR, we must have that
ε = 0. In this case, Equation (1) implies that ∆L(xL,xR) = 0 if and only if yL = y′L, that
is Mβ(xL) = 0. In other words, ∆L(xL,xR) = 0 for all xL,xR if and only if Mβ(xL) = 0,
that is β = 0.

Let us then assume that β and ε are all the zero difference, so that ∆L is the zero
function. Then we can write

∆R(xL,xR) = Mδ(yL)⊕S(xL)⊕S(xL⊕ γ). (2)

If γ 6= 0, for any fixed xL, we have that S(xL)⊕S(xL⊕ γ) is also non-zero, so that if
we choose yL = 0 (by choosing xR appropriately) we have that

∆R(xL,xR) = S(xL)⊕S(xL⊕ γ) 6= 0

for any xL and δ. Therefore we must have γ = 0. But if γ = 0, we would have from
Equation (2) that ∆R is the zero function if and only if Mδ is also the zero function, that
is δ = 0.

B Detailed Cryptanalysis Reports of SCARF

We analyze the statistical behavior of SCARF on well-studied cryptanalysis: differen-
tial, linear, boomerang, and differential-linear attacks. We briefly address the security
of SCARF against invariant attacks.

B.1 Differential Cryptanalysis

A differential attack [8] exploits a non ideal behaviour of a cipher in the propagation
of differences. As a rule of thumb, it is possible to mount a differential attack on E (of
block size n) whenever there exist α,β such that

Pr
x
(E(x)⊕E(x⊕α) = β)> 2−n.

α→ β is then called a differential trail.

SCARF: A Secure Cache Randomization Function 33

0 2 4 6 8 10
uniformity

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Differential uniformity distribution for r-SCARF

r = 3
r = 4
r = 5
r = 6
random

(a) r-round SCARF

0 2 4 6 8 10
uniformity

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Differential uniformity distribution for (r + r)-SCARF

r = 2
r = 3
r = 4
random

(b) (r+ r)-round SCARF

Fig. 8. Cumulative probability distribution for the differential uniformity of SCARF.

0 2 4 6 8 10
uniformity

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Differential uniformity distribution for r-SCARF

r = 3
r = 4
r = 5
r = 6
random

(a) r-round SCARF

0 2 4 6 8 10
uniformity

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Differential uniformity distribution for (r + r)-SCARF

r = 2
r = 3
r = 4
random

(b) (r+ r)-round SCARF

Fig. 9. Cumulative probability distribution for the differential uniformity of SCARF.

34 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

The maximum differential probability of the S-box is 4/32 = 2−3. Moreover, the
maximum differential probability of the G function is 16/32 = 2−1. Therefore, for any
subkey, the maximum differential characteristic probability (MDCP) is 2−4 every two
rounds. The MDCP of the 6-round cipher is is lower than 2−10. Namely, we do not
expect that any differential property is observable neither for the 8 rounds of E nor for
the 8+8 rounds of Ẽ, with plenty of security margin against differential cryptanalysis.

Figure 9 shows the distribution of the differential uniformity (that is, the maximum
probability of any possible differential trail multiplied by the cardinality of the domain,
210) of E and Ẽ over 210 random tweaks. While for r = 5 and 6 the distribution of
the differential uniformity of E almost perfectly matches the one obtained for random
permutations, the same is not true for Ẽ and r = 3, despite the MDCP being lower than
2−10 for fixed tweakeys. As far as we could tell, this is due to the unavoidable collision
of the last 5-bit subkeys every 25 tweaks. When the last 5-bit subkey of T1 and T2 collide,
the composition of the last two rounds of ET1 and ET2 become an affine function: as a
consequence, for such tweaks there exists differential trails for (3+ 3)-round Ẽ with
p < 2−10, that would not exist otherwise.

Furthermore, we cannot observe any non-ideal behaviour of Ẽ for r = 4 for this
amount of tweaks, although this does happen whenever the last 35-bit subkeys collide,
which we expect to happen every 235 pairs of tweaks approximately (for a more detailed
discussion on these partial collisions, we refer to Appendix A.2). We expect that 5+5
rounds cannot be distinguished, even taking into account the observation made in A,
since a cancellation of two (or more) last rounds implies a collision of 60-bits subkeys,
that is the 48-bits tweaks are actually the same.

A possible extension of differential attacks for tweakable block ciphers are related-
tweak differential attacks. However, the tweakey schedule of SCARF has many nonlin-
ear components, and the tweakey schedule itself ensures 17 active S-boxes, from which
it follows that the differential probability of a characteristic of the tweakey schedule is
at most 2−51. Therefore, we expect that the related-tweak differential attack is not of
concern.

B.2 Linear Cryptanalysis

A linear attack on an n-bit block length cipher E is possible whenever there exists masks
α,β such that if

Pr
x
(〈α,x〉⊕〈β,E(x)〉) = 1

2
+

c
2

then the correlation of the linear approximation c must be smaller than 2n/2. We say
that α→ β is a linear trail.

The maximum squared correlation of the 5-bit S-box is (12/32)2 = 2−2.83. More-
over, the maximum squared correlation of the G function is (16/32)2 = 2−2. Since
there is at least one active S-box and active G function every two rounds for any sub-
key, the maximum linear squared trail correlation is 2−4.83 over two rounds, and of
6-round SCARF is lower than 2−14.49. Similarly to the differential attack, we conclude
that 8-round E does not have any non-trivial linear property, as well as (8+8)-round Ẽ.

Figure 11 shows the distribution of the linearity (that is, the maximum absolute
correlation over all possible linear trails, multiplied by 210) of E and Ẽ over 210 tweaks.

SCARF: A Secure Cache Randomization Function 35

70 75 80 85 90 95 100
linearity

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Linearity distribution for r-SCARF

r = 3
r = 4
r = 5
r = 6
random

(a) r-round SCARF

70 75 80 85 90 95 100
linearity

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

Linearity distribution for (r + r)-SCARF

r = 2
r = 3
r = 4
random

(b) (r+ r)-round SCARF

Fig. 10. Cumulative probability distribution for the linearity of SCARF.

70 75 80 85 90 95 100
linearity

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Linearity distribution for r-SCARF

r = 3
r = 4
r = 5
r = 6
random

(a) r-round SCARF

70 75 80 85 90 95 100
linearity

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

Linearity distribution for (r + r)-SCARF

r = 2
r = 3
r = 4
random

(b) (r+ r)-round SCARF

Fig. 11. Cumulative probability distribution for the linearity of SCARF.

36 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

We observe that for r = 5 and 6 the distribution of the linearity of E, as well as that of
Ẽ with r ≥ 3 matches the one drawn for random permutations very closely.

As for the related-tweak scenario, we observe that any linear characteristic has at
least 17 active Sboxes so that its linear probability is at most 2−48.11. Therefore, we
expect that the related-tweak linear attack cannot be applied successfully.

B.3 Boomerang Attacks

8 10 12 14 16 18 20
uniformity

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Boomerang uniformity distribution for r-SCARF

r = 3
r = 4
r = 5
r = 6
random

(a) r-round SCARF

8 10 12 14 16 18 20
uniformity

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Boomerang uniformity distribution for (r + r)-SCARF

r = 2
r = 3
r = 4
random

(b) (r+ r)-round SCARF

Fig. 12. Cumulative probability distribution for the boomerang uniformity of SCARF.

8 10 12 14 16 18 20
uniformity

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Boomerang uniformity distribution for r-SCARF

r = 3
r = 4
r = 5
r = 6
random

(a) r-round SCARF

8 10 12 14 16 18 20
uniformity

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Boomerang uniformity distribution for (r + r)-SCARF

r = 2
r = 3
r = 4
random

(b) (r+ r)-round SCARF

Fig. 13. Cumulative probability distribution for the boomerang uniformity of SCARF.

SCARF: A Secure Cache Randomization Function 37

A boomerang distinguisher [52] of E is given by α,β such that

Pr
x
(E−1(E(x)⊕β,k)⊕E−1(E(x⊕α)⊕β) = α)> 2−n

if n is the block size of E.
Usually, boomerang distinguishers are obtained by the composition of two differen-

tial trails: for a cipher E = E1 ◦Em ◦E2 can be estimated as p2rq2, where p and q are the
probability of two differential trails for E1 and E2, and r is the probability of connecting
the two trails over Em [13].

As previously mentioned, the MDP of SCARF is 2−4 every two rounds, so that
E1 and E2 cannot both be chosen to cover more than two rounds. Furthermore, the
boomerang uniformity of S is 6 (that is the maximum probability of any possible boom-
erang distinguisher of S, multiplied by the cardinality of the domain 25). Therefore, we
expect that there does not exist a distinguisher over 5 rounds of probability higher than
2−10. Once again, the fact that E is 8 rounds and Ẽ is 8+ 8 rounds guarantees ample
margin of security against this class of attacks.

Figure 13 shows the distribution of the boomerang uniformity of E and Ẽ over 210

tweaks. Once again, for r = 5 and 6 the distribution of the uniformity of E, as well as
that of Ẽ with r ≥ 3 matches the one drawn for random permutations very closely.

B.4 Differential-linear Attacks

50 60 70 80 90 100
uniformity

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Differential-linear uniformity distribution for r-SCARF

r = 3
r = 4
r = 5
r = 6
random

(a) r-round SCARF

50 60 70 80 90 100
uniformity

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Differential-linear uniformity distribution for (r + r)-SCARF

r = 2
r = 3
r = 4
random

(b) (r+ r)-round SCARF

Fig. 14. Cumulative probability distribution for the differential linear uniformity of SCARF.

In a nutshell, a differential-linear attack [23] is obtained by combining a differential
and linear trail. More formally, a differential-linear trail of E is given by α,β such that
the correlation c given by

Pr
x
(β,E(x)⊕E(x⊕α) = 0) =

1
2
+

c
2

38 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

50 60 70 80 90 100
uniformity

0.0

0.2

0.4

0.6

0.8

1.0
cu

m
ul

at
iv

e
pr

ob
ab

ilit
y

Differential-linear uniformity distribution for r-SCARF

r = 3
r = 4
r = 5
r = 6
random

(a) r-round SCARF

50 60 70 80 90 100
uniformity

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Differential-linear uniformity distribution for (r + r)-SCARF

r = 2
r = 3
r = 4
random

(b) (r+ r)-round SCARF

Fig. 15. Cumulative probability distribution for the differential linear uniformity of SCARF.

is greater than 2−n/2, if n is the block size of E.
Similarly to boomerang attacks, the correlation of such a distinguisher for a cipher

E = E1 ◦Em ◦E2 can be estimated as prq2 where p is the probability of the differential
trail over E1, q is the correlation of the linear trail over E2 and r is the correlation of
connecting the trails [2]. Despite the maximum DLCT of S being 16, since the MDP
and maximum linear correlation over two rounds are respectively 2−4 and 2−4.83, E1
and E2 cannot be both two or more rounds, so that we do not think it is possible to
find differential-linear distinguishers over 6 rounds with probability higher than 2−10,
leaving a significant margin of security for the 8+8 round-cipher Ẽ against this kind of
attacks.

Figure 15 shows the distribution of the differential linear uniformity (that is, the
maximum absolute correlation of any differential-linear trail, multiplied by the cardi-
nality of the domain 210) of E and Ẽ over 210 tweaks. As expected, for r = 5 and 6 the
distribution of the uniformity of E, as well as that of Ẽ with r ≥ 3, matches the one
drawn for random permutations.

B.5 Multiple-Tweak Differential

The multiple-tweak differential cryptanalysis is one of the most powerful attack strate-
gies against SCARF. As reported in Appendix B.1, with a non-zero α and a non-zero
β,

Pr
x
(E(x)⊕E(x⊕α) = β)

behaves like a random permutation for both ET and ẼT1,T2 . The multiple-tweak differ-
ential cryptanalysis observes slight bias from the random, i.e.,

Pr
x,T1,T2

(ẼT1,T2(x)⊕ ẼT1,T2(x⊕α) = β) =
1

1023
+ ε.

SCARF: A Secure Cache Randomization Function 39

Algorithm 1 Efficient algorithm to observe very low bias
1: function COMPUTING_BIAS(NT ,α,β)
2: Store NT random tweaks to T1
3: Store NT random tweaks to T2 and T1∩T2 = φ

4: Prepare an array S of 220 elements.
5: for all T1 ∈ T1 do
6: for all P1 ∈ {0,1}10 do
7: if P1⊕α > P1 then
8: continue
9: end if

10: v = ET1(P1)‖ET1(P1⊕α)
11: S[v]← S[v]+1
12: end for
13: end for
14: num← 0
15: for all T2 ∈ T2 do
16: for all P2 ∈ {0,1}10 do
17: v = ET2(P2)‖ET2(P2⊕β)
18: num← num+S[v]
19: end for
20: end for
21: return num
22: end function

In random tweakable permutation, the probability is 1
1023 because of the permutation,

i.e., ẼT1,T2(x)⊕ ẼT1,T2(x⊕α) 6= 0. To observe a bias ε from a random permutation, we
need at least ε−2× 1

1023 pairs.
There is a very efficient method to experimentally verify the bias of a fixed in-

put/output difference (α,β), thanks to the extremely small block length and peculiar
structure of ẼT1,T2 . Algorithm 1 shows the pseudo code. We first prepare a set of NT
tweaks, T1, construct 29 pairs (P1,P1⊕α) for every tweak, and finally store the number
of appearances of (ET1(P1)‖ET1(P1⊕α)) of all T1 ∈ T1. Similarly, we prepare another
disjoint set of NT tweaks, T2. Then, for every T2 ∈T2, we construct 210 pairs (P2,P2⊕β),
and sum the number of (ET2(P2)‖ET2(P2⊕β)) in the stored above. This technique al-
lows us to observe a bias using N2

T × 29 pairs with a complexity of NT × 210 and 220

memory. Usually, we cannot observe a low bias detected using incredibly many pairs
first. However, this algorithm enables us to catch it, e.g., we can observe the bias using
255 pairs.

Table 2 shows some examples of observed differential bias, where we used NT =
223, i.e., N2

T ×29 = 255 pairs. We generally observe significant biases when α = β and
the left branch of α is inactive. When α 6= β, the bias is lower, and sometimes, it derives
a negative bias.

On our main security claim (Security Requirements 1), the number of collectable
pair is N2

T ×29 = 221+21+9 = 251 even if we use the technique shown in Appendix A.1.
These pairs are not always sufficient to distinguish (5+5)-round SCARF with a sig-
nificant advantage. However, considering the multi-differential, it might be possible to

40 F. Canale, T. Güneysu, G. Leander, JP. Thoma, Y. Todo, R. Ueno

Round α β Bias ε

2+2 (0x00,0x01) (0x00,0x01) 2−9.6792

3+3 (0x00,0x01) (0x00,0x01) 2−14.6761

4+4 (0x00,0x01) (0x00,0x01) 2−24.8467

5+5 (0x00,0x01) (0x00,0x01) 2−29.8025

4+4 (0x00,0x01) (0x00,0x02) 2−29.7363

4+4 (0x00,0x01) (0x00,0x03) −2−29.8138

4+4 (0x00,0x01) (0x00,0x04) 2−26.5813

4+4 (0x00,0x01) (0x00,0x05) −2−30.6340

4+4 (0x00,0x02) (0x00,0x01) 2−30.1689

4+4 (0x00,0x02) (0x00,0x02) 2−24.8833

4+4 (0x00,0x02) (0x00,0x02) 2−24.8833

4+4 (0x00,0x02) (0x00,0x03) −2−27.9966

4+4 (0x00,0x02) (0x00,0x04) 2−30.0152

4+4 (0x00,0x1F) (0x00,0x1C) 2−28.1046

4+4 (0x00,0x1F) (0x00,0x1D) 2−28.1773

4+4 (0x00,0x1F) (0x00,0x1E) 2−27.9916

4+4 (0x00,0x1F) (0x00,0x1F) 2−24.4674

Table 2. Examples of observed differential bias given experimentally: we used NT = 223 to get
these results, i.e., 223+23+9 = 255 pairs.

distinguish (5+5)-round SCARF. Nevertheless, we cannot append (3+3)-round key re-
covery to this distinguisher faster than 280 because 3+3 rounds involve a 90-bit key.

On the contrary, our bold security claim (Security Requirements 2) allows to collect
N2

T × 29 = 229+29+9 = 267 pairs. Therefore, (5+5)-round SCARF is distinguishable. It
might allow an attacker to distinguish (6+6)-round SCARF6. Even if we assume that
(6+6) rounds are distinguishable by using 240 oracle queries to Õ, we need to guess the
60-bit key involved in (2+2) rounds to attack the full round. While more effort is needed
to better understand this new class of attacks, we believe that it is not possible to attack
(8+8) rounds in time significantly lower than 280.

B.6 Invariant Attacks

Invariant subspace/nonlinear invariant attacks do not seem to pose a threat to SCARF,
in particular as our tweakey schedule is nonlinear, and we use a 240-bit secret key
generated randomly.

6 Due to computational limitations, we cannot estimate the bias in the 6+6 rounds. However, as
far as we experimentally evaluated the bias of α = β = (0x00,0x01) using NT = 228 once, we
cannot observe a significant bias. It implies that the bias is not significantly higher than 2−37.5

(since no bias was observed using 265 pairs, i.e., its standard deviation is about
√

265−10 =
227.5, and its corresponding probability is 227.5/265 = 2−37.5). We expect it to be about 2−40

heuristically.

	SCARF – A Low-Latency Block Cipher for Secure Cache-Randomization

