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Abstract. Forward-secure encryption (FSE) allows communicating parties to refresh their keys across
epochs, in a way that compromising the current secret key leaves all prior encrypted communication secure.
We investigate a novel dimension in the design of FSE schemes: fast-forwarding (FF). This refers to the
ability of a stale communication party, that is “stuck” in an old epoch, to efficiently “catch up” to the
newest state, and frequently arises in practice. While this dimension was not explicitly considered in prior
work, we observe that one can augment prior FSEs — both in symmetric- and public-key settings — to
support fast-forwarding which is sublinear in the number of epochs. However, the resulting schemes have
disadvantages: the symmetric-key scheme is a security parameter slower than any conventional stream
cipher, while the public-key scheme inherits the inefficiencies of the HIBE-based forward-secure PKE.

To address these inefficiencies, we look at the common real-life situation which we call the bulletin board
model, where communicating parties rely on some infrastructure — such as an application provider — to
help them store and deliver ciphertexts to each other. We then define and construct FF-FSE in the bulletin
board model, which addresses the above-mentioned disadvantages. In particular,

– Our FF-stream-cipher in the bulletin-board model has: (a) constant state size; (b) constant normal
(no fast-forward) operation; and (c) logarithmic fast-forward property. This essentially matches the
efficiency of non-fast-forwardable stream ciphers, at the cost of constant communication complexity
with the bulletin board per update.

– Our public-key FF-FSE avoids HIBE-based techniques by instead using so-called updatable public-key
encryption (UPKE), introduced in several recent works (and more efficient than public-key FSEs). Our
UPKE-based scheme uses a novel type of “update graph” that we construct in this work. Our graph
has constant in-degree, logarithmic diameter, and logarithmic “cut property” which is essential for the
efficiency of our schemes. Combined with recent UPKE schemes, we get two FF-FSEs in the bulletin
board model, under the DDH and the LWE assumptions.
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1 Introduction

Forward Secrecy. Encryption is the fundamental building block of cryptography designed to protect the
confidentiality of data such as messages. The security of encryption is, however, confined by its requirement
to secretly store the keys. Indeed, leaking an encryption scheme’s secret key material typically means that all
security is forgone. With cryptographic applications nowadays also typically running on a wide variety of different
(and often poorly maintained) devices, alongside other software outside of the control of the cryptographic
engineer, such key exposures pose a very real threat scenario.

This risk can be partially mitigated by forward security, which refers to the concept that the corruption of a
system at some point should not adversely affect the security of prior operations. While initially proposed as a
concept for key exchange [34,23] it soon got broadened to incorporate a variety of non-interactive cryptographic
primitives, such as forward-secure public-key encryption [18] and forward-secure signatures [7,42]. Roughly
speaking, the non-interactive notions share the idea that they divide time into epochs with the objective that
leaking the secret state at epoch i does not endanger the security properties of past epochs j < i.

Fast-Forwarding. In this work, we investigate a novel dimension of the price — in terms of computational
and storage overhead — of forward-secure encryption: fast-forwarding. The term fast-forwarding refers to the
ability of a stale communication party, that is “stuck” in an old epoch, to efficiently “catch up” to the newest
state. Such a situation, for instance, might occur if the user has a device that is only sporadically used and has
consequently been turned off over a prolonged period.

Indeed, for many applications recovering the latest (or a recent) state seems of intrinsically higher priority
than recovering the intermediate states. For example, in an email or a group chat it is often the case that messages
sent weeks or months ago might simply no longer be relevant while replying to a recent conversation might
be urgent. Moreover, in many communication protocols sending messages requires first obtaining (reasonably)
up-to-date key material, further motivating the need for fast-forwarding. An example would be secure group
messaging (such as MLS) where the group maintains a shared symmetric key that is distributed using public-key
cryptography, which is then used to symmetrically encrypt and authenticate messages. It has been proposed to
strengthen MLS’ forward secrecy [3] by replacing the PKE used for distributing those group keys with a variant
of FS-PKE (called UPKE). One of the main drawbacks of that proposal, however, was the lack of fast-forwarding,
resulting in a party stuck in an old state having to restore the latest group keys in linear time before being able
to send any message. While sequentially downloading old messages might be fine, being unable to send messages

— until that process is completed — could trigger an assortment of problems.

1.1 Basic Solutions and A New Dimension

The functionality of forward-secure encryption — either symmetric- or public-key — automatically ensures that
one can (fast-)forward from period i to period j � i in time proportional to (j − i). In this work, we will call
such solutions linear and ask if one can build forward-secure encryption with a sublinear fast-forward property.
To the best of our knowledge, this question was not explicitly considered in the literature. However, one can look
at existing techniques for ensuring forward security and come up with some initial observations and solutions.

Symmetric Encryption: Stream Ciphers. Forward-secure symmetric-key encryption is typically achieved
using basic stream ciphers, constructed from iteratively evaluating a pseudorandom generator (PRG) [8]. While
this construction is efficient, as it only requires a constant size state and a constant number of cryptographic
operations to encrypt the next message, it does not allow fast-forwarding: if the receiver last decrypted ciphertext
i and now gets ciphertext j � i, then they need to advance the underlying PRG by (j − i) steps. The existence
of an efficient fast-forwarding method would be highly surprising for any widely used stream cipher, as they are
not based on number theory.1

Instead, we can observe that the Goldreich-Goldwasser-Micali (GGM) construction can be turned into a
forward-secure PRG with the fast-forwarding property. More concretely, one can adapt the template for building
forward-secure signature schemes [7,42], where the PRG outputs correspond to the GGM tree’s leaves and store
the current leaf’s right sibling path, i.e., the set of nodes from which exactly all leaves to the right of the current
leaf can be deduced. We outline this in more detail in Appendix A.1.
1 The number-theoretic Blum-Blum-Shub PRG [9] can be modified to allow sublinear (in fact, logarithmic) fast-forwarding

by additionally keeping the factorization of N = pq. Doing so, however, loses forward security.
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Lemma 1 (Informal). The template [7,42] (for building forward-secure signature schemes) can be adapted to
the Goldreich-Goldwasser-Micali (GGM) construction [32] to build a forward-secure PRG with the fast-forward
property. If n denotes the maximal number of epochs, then the scheme stores O(log(n)) seeds as local state, and
sequential updating as well as fast-forwarding from epoch i to j > i take O(log(n)) PRG expansions.

While practically efficient, this folklore construction comes at the cost of worst-case logarithmic sequential
evaluations, logarithmic local state, as well as a priori bounded number of overall evaluations. While some of
those restrictions can be circumvented using more elaborate constructions — such as growing trees or potentially
a cleverly designed amortized evaluation strategy — at least logarithmic-sized storage seems inherent. Thus,
wearing a theoretician’s hat, the first question we ask is:

Question 1. Can one have a model that allows for fast-forward stream ciphers simultaneously having: (a) constant
state size; (b) constant sequential (no fast-forward) operation; and (c) sublinear (ideally, logarithmic) fast-forward
property?

Forward-Secure Public-Key Encryption. In the public-key setting, Canetti, Halevi, and Katz [18] introduced
the notion of forward-secure public-key encryption (FS-PKE) and presented a generic construction of FS-PKE
from hierarchical identity-based encryption (HIBE). Their construction essentially mirrors the simple logarithmic
construction of the fast-forward PRG mentioned above, but replaces the “GGM tree” with the “HIBE tree.”
As a result, we observe2 that this construction allows us to fast-forward from any epoch i to any epoch j > i
using O(log j) many HIBE secret-key expansions, needs logarithmic-sized storage of HIBE keys (which, in turn,
might be long, depending on the HIBE used) and does worst-case logarithmic many secret-key expansions to
just proceed to the next epoch.

As of today, this generic construction from HIBE remains the only non-trivial FS-PKE known. Unfortunately,
while HIBE schemes from various assumptions exist [10,20,11,28,27,16], they are all either built from primitives
not readily available in widespread cryptographic libraries (e.g., bilinear maps) or are primarily theoretical. To
the best of our knowledge, this plays a significant role in why FS-PKE has never gained significant adoption in
the real world. Hence, we ask:

Question 2. Can one have a meaningful model for fast-forward public-key encryption that potentially enables
more efficient schemes than the generic HIBE-based solution mentioned above?

Bulletin Board Model. To address our motivating questions above, we notice that most secure real-world
communication applications critically rely on the existence of some centralized server, whose job is to store and
appropriately route encrypted messages to the corresponding participants. In other words, since communicating
parties might not all be online, or might not have direct communication channels among them, one anyway has
to implement some mechanism where old ciphertexts will be delivered to parties when those parties come online
and request them. In practice, those servers often perform additional tasks such as helping people discover each
other’s keys, verifying the authenticity of the keys, serializing the order of concurrently received messages, etc.

End-to-end (E2E) security means that this centralized infrastructure is treated as untrusted, ensuring that a
breach or a subpoena cannot affect the users’ security. For most applications, however, the server’s collaboration
is required for correctness.3 Generally speaking, for such server-assisted protocols, one requires that the most
harm a malicious server can inflict is a denial of service (DoS) attack. This is typically deemed an acceptable
risk, as a DoS attack is against the service provider’s economic incentives.

In our work, we assume the existence of such a server and abstract it as a bulletin board functionality.
Intuitively (see Section 3.1), this functionality allows all the parties to append some data to a public board,
in a way that this data is automatically serialized (so that everybody reads it in the same order), and cannot
disappear. Moreover, while the size of the bulletin board is allowed to grow linearly with the number of epochs,
it does not “count” toward any of the parties’ storage. However, it is also not completely “free”, as any party’s
reading/appending to the bulletin board counts toward the efficiency of this party. More concretely, for primitives
using this bulletin-board model, we consider the communication complexity (both in the size of transmitted
2 For completeness we present the scheme in Appendix A.2
3 Indeed, many secure messaging systems are designed for the rather peculiar model where the server is assumed to be

somewhat-but-not-fully trusted. For instance, MLS aims to provide E2E security, yet exhibits weaknesses if the server
does not consistently order messages.
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messages as well as required rounds) as part of the respective efficiency notion but choose to disregard the
server’s storage requirements. This is motivated by real-world communication applications often treating server
storage as essentially free (at least for “short” messages such as control messages or text messages, but not
necessarily multi-media content) while paying close attention to the efficiency constraints of end-user devices.
While disregarding server storage is an oversimplification, we remark that purging could be done in practice, at
a potential functionality loss.4 We can now make our Questions 1 and 2 more precise. Namely, we will ask (and
answer) them in the bulletin-board model:

Question 3. Assuming the existence of a bulletin board, can we design forward-secure fast-forward stream
ciphers and public-key encryption schemes satisfying the efficiency requirements stated in Questions 1 and 2,
respectively?

It is prudent to point out that regular forward-secure stream ciphers are already extremely efficient. The
bulletin board, however, will help us achieve the fast-forward property whose study we initiate. Even with
fast-forwarding, however, the bulletin board model may be primarily of theoretical interest, as the adapted GGM
construction is most likely efficient enough for all practical purposes, and the communication latency with the
bulletin board likely outweighs the reduced local storage requirement. Nevertheless, we view Question 1 as an
interesting open theoretical problem, as even a solution with fast-forwarding and either constant storage or
constant sequential updates is an open problem.

In contrast, in the public-key setting there exists no truly practical5 FS-PKE. It also appears that the
bulletin board does not offer any benefit for the HIBE-based FS-PKE schemes. However, for its variant known as
Updatable Public-Key Encryption (UPKE) [38,3], the bulletin board provides some critical functionality support.
We discuss this in more detail below to motivate our new notion of fast-forward UPKE.

1.2 Our Contributions

Modeling. We provide a simple yet powerful formalization of the bulletin board model capturing a central server
offering shared untrusted storage to assist the protocol execution. Our model entirely avoids complications such
as interactive models of computation, is carefully designed to ensure that it does not introduce any side-effects
such as the access pattern leaking secret information, and allows to easily capture bandwidth constraints.

We then provide rigorous definitions of two forward-secure encryption primitives in the bulletin board model,
using a common template: fast-forwardable stream cipher and fast-forwardable updatable public-key encryption
(FF-UPKE). We define correctness as well as IND-CPA security for both notions. We stress that our notions
are the first formalization of the fast-forwarding property: while we observe that GGM-PRF and HIBE-based
FS-PKE happen to allow for such an operation, none of the respective notions mandates/formalizes it.

Fast-Forwardable Stream Cipher. As a first scheme, we present a fast-forwardable stream cipher, in the
bulletin board model, that requires constant (in the number of epochs) storage and a constant number of
cryptographic operations to sequentially advance to the next epoch while allowing to fast-forward to any epoch j
in O(log j) cryptographic operations. The communication bandwidth of each operation also coincidences with the
number of cryptographic operations mentioned above. Thus, we answer the first part of Question 3 affirmatively.
Our construction is based on carefully adapting the GGM-based forward-secure stream cipher to:

(1) avoid the logarithmic worst-case computational complexity by appropriate amortization;
(2) offload most of the local storage to the bulletin board without compromising forward secrecy.

Roughly speaking, our scheme expands two GGM nodes per sequential update to ensure that whenever we
need a leaf it has already been expanded. As this leads to linearly many expanded but not yet consumed seeds,
we have to properly outsource to the bulletin board. This is achieved by encrypting them under independent
keys associated with the GGM nodes (also derived from the parent seed), over time forming a linked list among
the leaves in increasing order. In the meantime, forward-secrecy is preserved as all encryptions obey the tree’s
preorder, i.e., we only encrypt a node v’s seed under nodes with a smaller preorder index. Let us briefly remark
on the potential use-cases of such a solution. Compared to the folklore GGM-based solution, in most settings,
4 These concerns are interesting but orthogonal to our contributions.
5 Despite some remarkable progress in the construction of pairing-based HIBE (e.g. [11]) over the last decades, those

solutions have never gained any widespread adoption, partially for their omission from popular cryptographic libraries.
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trading logarithmic local computation and storage overhead for the need for communication appears to be highly
undesirable. However, when used e.g. in the context of secure messaging, the party has to communicate with the
server anyway, and as such our construction does not incur a cost in terms of round-trips but merely bandwidth.
In such cases, trading a small bandwidth overhead for a logarithmic computation gain could be worthwhile.

One might attempt to apply the same techniques to the HIBE-based FS-PKE construction. We observe,
however, that they do not directly translate over, as the senders cannot help the (typically single) receiver. As a
result, while the respective solution inherently does support logarithmic fast-forwarding (without even using the
bulletin board) supporting constant-time sequential updates does not work in the same way. While the receiver
potentially could use a bulletin board to amortize sequential updates, by outsourcing encryptions of secret keys,
this only works as long as they does not fast-forward, since senders cannot “help” creating those ciphertexts
instead. (Not that the security of outsourcing an encryption of a HIBE secret key under an earlier public key is
not implied by standard security notions, but should hold for most practical schemes.) As a result, once the
receiver would fast-forward to obtain the decryption key of an epoch j � i, they would be “stuck” there and
have to make up the missed (j − i) sequential operations before being able to sequentially update in a constant
number of operations again. We thus focus on the slightly different primitive of updatable public-key encryption

— which is well-suited for the bulletin-board model — instead.

Detour: Updatable Public-Key Encryption. Motivated by various applications to secure messaging,
forward-secure PKE in a setting where an untrusted server provides synchronization among parties has been
considered under the name UPKE in the literature [38,3]. The idea of UPKE is that one can use ciphertexts —
conveniently serialized and placed on the bulletin board (abstracting the messaging server) — to also contain
information on how to move from the old (pk, sk) tuple, into a new (pk′, sk′), in a way that: (a) new messages
will be encrypted by pk′ and decrypted by sk′; (b) exposure of sk′ does not help to decrypt prior ciphertexts
(including the one just sent under pk); (c) the person preparing ciphertext helps to “move” from sk to sk′ without
knowing either secret key but pk only. To show the potential of the bulletin board, the work of [38] provided
a very simple and efficient UPKE (in the random oracle model) that has similar efficiency to the underlying
ElGamal encryption. Recently, [24] also built two standard model UPKE schemes from the DDH and LWE
assumptions, which were again much more efficient than their HIBE-based counterparts based on either DDH or
LWE.

These constructions further validated the intuition that UPKE may be a significantly cheaper alternative
compared to regular FS-PKE. They, however, eschew the inherent fast-forwarding property the generic HIBE-
based FS-PKE enjoys. It thus remained an open problem whether it is possible to build a truly efficient
fast-forwardable PKE primitive. In this work, we provide a partially affirmative answer for FF-UPKE. While not
truly practical, our constructions are again more efficient when compared to their HIBE counterparts from the
same assumptions. Specifically, the LWE-based construction is significantly simpler and more efficient than the
best-known post-quantum secure FS-PKE scheme (see Section 1.3). Moreover, our novel approach initiates the
study in this new dimension and hopefully serves as a launchpad for improved construction. Critically, we propose
a generic FF-UPKE construction (much like the original FS-PKE scheme) that is not tethered to any particular
assumption. In this process, we introduce a new primitive, whose instantiation directly implies FF-UPKE.

Our Work: FF-UPKE. We define FF-UPKE. As with standard UPKE, the sender can create special ciphertexts
which do not encrypt messages,6 but can help move from the current tuple (pki, ski) for epoch i to the next
tuple (pki+1, ski+1) for epoch (i+ 1). To support fast-forwarding from epoch i to epoch j, we introduce a special
“leaping” algorithm. This algorithm can help a receiver7 who currently holds ski to get to the latest key skj , by
only reading a sublinear (in (j − i)) number of messages from the bulletin board, and performing a sublinear
number of cryptographic operations. See Definition 5.

Aside from solving the practical problem of allowing an offline receiver to quickly catch up with the current
messages, FF-UPKE also weakens the strictly sequential requirement of standard UPKE, that receiver should
read and process every previous key update message. Indeed, the sublinear efficiency requirement of FF-UPKE

6 For the highest security, these can be sent after every regular ciphertext encrypting a message, but we do not require
this to allow for the most flexibility.

7 Of course, a new sender who “fell behind” other senders, can trivially “catch up” by retrieving the latest public key
from the bulletin board.
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G̃8 G̃8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 1: The update graph G̃16, consists of two subgraphs G̃8 and an extra node.

means that the receiver has multiple “opportunities” to catch up, even if it cannot access some of the key update
messages.8

FF-UPKE Construction. We also present a novel FF-UPKE scheme. To this end, we observe that all existing
UPKE schemes refresh the secret key by having the sender choose an “update secret” δ that is then sent
encrypted under the current public key pki. After decrypting δ using ski, the next secret key ski+1 = ski + δ
(using appropriate group operation +), while the sender can compute the next public key pki+1 using only
the current public key pki and the value δ. Our generic FF-UPKE construction is built around the idea of
so-called cumulative updates using any so-called update-homomorphic UPKE scheme — a notion we introduce
to formalize that multiple such update messages can be homomorphically combined. (See Definition 8 for the
precise formalization of this requirement.)

As in prior UPKE schemes, in our construction, the sender for epoch i will choose update secret δi+1, and we
will have the invariant that skj = ski +∆[i, j], where ∆[i, j] := (δi+1 + . . .+ δj), for any j > i. Now, however,
senders can use the update homomorphism to create encryptions upi,j that “cumulatively encrypt” ∆[i, j] under
pki, for certain carefully chosen pairs i < j. Those encryption are then stored in the bulletin board to allow the
receiver to fast-forward.

Finally, we show that with minor modifications the standard model DDH/LWE UPKE schemes of Dodis et
al. [24] both satisfy the above homomorphism.9

Technical tool: Update Graph. As one can see, the efficiency of our cumulative update scheme for building
FF-UPKE from update-homomorphic UPKE critically depends on the properties of what we call an update
graph G, which will govern the collection of edges (i, j) for which parties need to maintain update ciphertexts
upi,j . As it turns out (see Definition 11), three such parameters will be essential for understanding the efficiency
of our construction:

– The maximum in-degree α(n) of any vertex j ≤ n;
– The diameter β(n) of the sub-graph of the first n vertices;
– The cardinality γ(n) of the active set that includes all vertices i < n which have at least one edge (i, j) with
j > n in G.

We call such graphs (α(n), β(n), γ(n))-update graphs. To the best of our knowledge, while many related notions
of dynamic graphs are known in the literature (e.g., see [44] and references therein), including graphs having
small in-degree and diameter, the exact notion of update graph we need for our construction is new.

We build a nearly optimal (2,O(logn),O(logn))-update graph. Our construction is inspired by the simple
family of spanner graphs that recursively join two consecutive graphs of an equal number of nodes with an
overarching edge spanning from the first to the last node. We observe that this results in a graph with logarithmic
diameter but also logarithmic indegree. To circumvent the growing indegree, we modify this construction slightly
and, in each recursive step, add one additional node at the end, to which the overarching edge connects. We call
this graph G̃n, where n denotes its number of nodes. See Fig. 1 for the example of G̃16.
8 Of course, the sender for epoch i should still be able to get the current key pki.
9 Interestingly, the most efficient random-oracle based scheme [38,3] does not appear to be update-homomorphic, and

will not be enough for our purposes.
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As we will see, using this graph G̃ results in our final FF-UPKE scheme having logarithmic overhead for key
update and fast-forwarding, and no overhead for public-key size, encryption, and decryption, as compared to the
underlying update-homomorphic UPKE.

Putting It All Together. Instantiating our generic cumulative update scheme with our update graph and the
two homomorphic-update UPKE scheme from DDH and LWE, we get two concrete FF-UPKE schemes from
DDH and LWE, respectively, achieving greater efficiency than the best-known HIBE-based FS-PKE scheme from
the same assumption (see Section 1.3) and answering Question 2 in the affirmative, in the bulletin board model.

1.3 Related Work

Hierarchical Identity Based Encryption. As mentioned before, the work of Canetti, Halevi, and Katz [19] showed
how to generically construct Forward-Secure Public Key Encryption from Hierarchical Identity Based Encryption
[31,35]. Indeed, over time, various HIBE schemes have been proposed under an assortment of assumptions such
as LWE [20,2], CDH/DDH [28,27,16], and pairing-based Diffie-Hellman Assumptions [10,11], among others.
However, despite the beautiful theory, HIBE-based schemes have not found much adoption in practice, either
due to the reluctance of practitioners to use pairings, or because the constructions are rather impractical. For
example, the CDH/DDH-based constructions [28,27,16], while giving us constructions of FS-PKE in the standard
model, rely on garbled circuits. More formally, if κ is the security parameter, it relies on a chain of O(κ) such
circuits, and the blow-up of the public key operations performed by the circuits is significant. HIBE constructions
based on LWE [20,2] rely on either lattice trapdoors or GPV-style pre-image sampling [30] which are inefficient
and quite complex. Additionally, all of these HIBE constructions suffer from overhead of O(κ) to support an
unbounded number of time periods in the FS-PKE construction built from HIBE. As the result, while our new
DDH/LWE schemes are not yet as practical as PKEs from the same assumption (and we also did not try to
optimize all the constants in our constructions for the elegance of presentation), they certainly are more efficient
than the corresponding HIBE-based FS-PKEs, even taking into account the reliance on the bulletin board model.

Forward-Secure Signatures. Anderson [5] first proposed the idea of Forward-Secure signatures. The idea was
that the compromise of a secret key at a time i should not allow for the forgery of messages at a time j < i.
Construction of this primitive was proposed by Bellare and Miner [7] and later extended and improved by Malkin
et al. [42]. There are still other constructions that are secure in the random oracle model [1,36,40].

Key Evolving Encryption Schemes. Two recent works - Jaeger and Stepanovs [37] and Poettering and Rössler [43]
- proposed a scheme that was secure even when the key updates were labeled by arbitrary (even adversarially
chosen) strings. This is a stronger setting than even FS-PKE and unsurprisingly, these constructions were realized
from HIBE Schemes.

Updatable Public Key Encryption. The work of Jost et al. [38] and Alwen et al. [3] formally introduced the
primitive and presented constructions that were secure in the random oracle model. The work of Dodis et al.
[24] explored constructions that were secure in the standard model. In addition, they also considered extensions
of the simpler CPA-based security definition to stronger definitions.

Updatable Encryption. Updatable Encryption [13,29,41,39,15,12], vastly different from the idea of Updatable
Public Key Encryption, explores the orthogonal problem of updating the ciphertext that was encrypted under a
key at a time i to be consistent, i.e., decryptable by the key at a time j > i. This primitive, however, is for the
symmetric key setting. Informally, the construction produces different ciphertexts for the same messages under
different keys. The goal is to produce tokens that help update the ciphertext without revealing any information
about the underlying message.

Key Insulated Public Key Cryptosystems. Key Insulated Public Key Cryptosystems [25,26], though motivated for
other purposes, achieves the feature of fast-forwardability. They do this by offering random-access key updates
which help move from the current period i to any other period j. However, the constructions and indeed the
setting assume that there is a party that is trusted, resistant to exposure/leakage, and has a secure channel to
the secret key owner.

Puncturable (Public Key) Encryption. Puncturable Encryption [6,45] and Puncturable PKE [33,22,46] achieve
forward secrecy on a per ciphertext basis. That is, puncturing has to work purely based on received ciphertexts,
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rather than dividing time into epochs, with senders not having to “target” a certain epoch or obtain an updated
(public) key. Hence, puncturable PKE solves a much more difficult problem than FS-PKE or fast-forwardable
UPKE, leading to significantly less efficient solutions.

Puncturable PRFs. Our fast-forwardable PRG construction is quite similar to some of the constructions of
puncturable PRFs based on the GGM construction [14]. We remark, however, that the (standard) notion of a
puncturable PRF is quite different and, for example, lacks the iterative aspect of “continuously re-puncturing”
which we require for our notion.

2 Preliminaries

Notation. We write N := {1, 2, . . .} and for x ∈ N we write [x] := {1, 2, . . . , x}. We write x ← a to assign the
value a to the variable x. Moreover, for a set S we write x←$ S to denote sampling an element from S uniformly
at random or according. For a probabilistic algorithm A, we write A(·; r) to denote that A is run with explicit
randomness r. The security parameter is denoted by κ.

Graphs. A directed graph G = (V,E) consists of a vertices set V and an edge set E ⊆ V 2. For an edge
(u, v) ∈ E, we call u the tail and v the head. For a node w ∈ V , we denote by E in

G (w) := {(u, v) ∈ E | v = w}
the set of incoming edges, and by Eout

G (w) := {(u, v) ∈ E | u = w} the set of outgoing edges, respectively.
Moreover, we denote by degin

G (w) := |E in
G (w)| and degout

G (w) := |Eout
G (w)| the in- and outdegrees, respectively.

We often omit to specify the graph for these functions when the context is clear. For u, v ∈ V we say that
edges

(
(v1, v2), (v2, v3), . . . , (vn, vn+1)

)
∈ En is a path of length n from v1 to vn+1. If the concrete path is not of

relevance, we sometimes use u v as a shorthand notation for and refer by |u v| to its length. Additionally,
we refer to d(u, v) as the minimum length of all paths from u to v (or ∞ if no such path exists). Finally, the
diameter of the graph G refers to the maximal distance between any nodes u and v for which a path exists, i.e.,
diam(G) := max{d(u, v) | u, v ∈ V ∧ d(u, v) 6=∞}.

Cryptographic Primitives. We make use of a pseudo-random generator with expansion factor 4, which is a function
PRG.Expand : {0, 1}κ → {0, 1}4κ such that the two distribution ensembles

{
PRG.Expand(s) | s ←$ {0, 1}κ

}
κ∈N

and
{

k←$ {0, 1}4κ
}
κ∈N

are computationally indistinguishable.
Moreover, we use a nonce-based symmetric encryption scheme, which is a tuple of deterministic algorithms

(SE.Enc,SE.Dec), such that for any encryption c← SE.Enc(k,m, n), the corresponding decryption recovers the
correct message m← SE.Dec(k, c, n). We require the scheme to satisfy standard IND-CPA security as long as the
nonce n is not reused.

3 Fast-Forwarding in the Bulletin Board Model

3.1 Bulletin Board

In this work, we consider a setting where parties can make use of an append-only bulletin board BB to store and
retrieve (shared) information, reducing their storage and computation costs. Intuitively, BB can be thought of
as an associative array where for an index idx ∈ I they can retrieve a value v ← BB[idx] either returning the
previously stored value v or a special error symbol ⊥. Along the same lines, BB[idx]← v′ sets the value to v′ if it
has been previously undefined, or ignores the new value.

We formalize this by using a partial function BB : I ⇀ V. Moreover, we define two additional operators on
the bulletin board: restriction and appending. For a subset of possible indices I, BB�I denotes the modified
bulletin board only defined for those indices. We will use this operation as a convenient way to handle a party
“fetching” a subset of the values of the bulletin board alongside the associated indices. The append operations
append another bulletin board to the existing one while ignoring all already defined values. We will use this
operation to represent a party “uploading” new values to the bulletin board.

Definition 1. For an index space I and a value space V, we call a partial function BB : I ⇀ V a bulletin board.
That is, BB ⊂ I × V such that for all idx ∈ I and v1, v2 ∈ V, (idx, v1) ∈ BB and (idx, v2) ∈ BB implies v1 = v2.
For a set of indices I ⊆ I, we denote by BB�I function restriction. That is, BB�I := {(idx, v) ∈ BB | idx ∈ I}.
Moreover, for bulletin boards BB1 and BB2, we define BB1 ++ BB2 := BB1 ∪BB2�I\dom(BB1), where dom denotes
the domain.
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Game FF-PRG Correctness

Initialization

win← false
n← 1
St[·],Out[·]← ⊥
key←$ {0, 1}κ
(St[1],Out[1],BB)

← Init(key)
return (key, St[1],

Out[1],BB)

Oracle Update

I← Update-Idx(n)
n← n+ 1
(St[n],Out[n],BBup)
← Update(St[n− 1],BB�I)

BB← BB ++ BBup
return (St[n],Out[n],BBup)

Oracle Leap

Input: i, j ∈ N
if i ≥ j ∨ j > n then

return ⊥
I← Leap-Idx(i, j)
(stj ,Rj)
← Leap(St[i], j,BB�I)

if stj 6= St[j]
∨ Rj 6= Out[j] then

win← true

Finalization

return win

Game FF-PRG Key Indist.

Initialization

b←$ {0, 1}
safe← true
n← 1
key←$ {0, 1}κ
(st,R,BB)← Init(key)
if b = 1 then R←$ {0, 1}κ
return (R,BB)

Oracle Update

I← Update-Idx(n)
n← n+ 1
(st,R,BBup)← Update(st,BB�I)
BB← BB ++ BBup
if b = 1 ∧ safe then

R←$ {0, 1}κ
return (R,BBup)

Oracle Corrupt

safe← false
return st

Finalization

Input: b′ ∈ {0, 1}
return b = b′

Fig. 2: The correctness (left) and security (right) games of FF-PRGs.

3.2 Fast-Forwardable Stream Ciphers

We investigate the construction of fast-forwardable forward-secure stream ciphers in the bulletin-board model. It
is easy to see that the folklore stream cipher construction from a PRG yields this as long as the PRG is both (1)
forward secure and (2) fast forwardable. We, thus, focus on fast-forwardable PRGs10 instead.

Definition 2. A Fast-Forwardable PRG (FF-PRG) consists of the deterministic algorithms (Init,Update,
Update-Idx, Leap, Leap-Idx), where:

– The (st1,R1,BBinit)← Init(key) algorithm takes key ∈ {0, 1}κ and produces an initial state st1, output R1,
and initial bulletin board state BBinit.

– The (sti+1,Ri+1,BBup)← Update(sti,BB�Ii) algorithm takes a state and parts of the bulletin board as inputs,
and produces the updated state and the next output, as well as content to upload to the bulletin board. The
corresponding update-index algorithm Ii ← Update-Idx(i) determines the part of the bulletin board required
for this operation.

– The (stj ,Rj)← Leap(sti, j,BB�Ii,j ) algorithm takes a state sti, the target epoch j > i, and parts of the bulletin
board as inputs, to leap to the j-th state and output. The indices are determined by Ii,j ← Leap-Idx(i, j).

Efficiency. For an FF-PRG scheme to be non-trivial we require fast-forwarding to be of sub-linear complexity
in j − i, concerning both running time and communication complexity. More specifically, we require the output
size of Leap-Idx to be bounded by fixed polynomials of the security parameter κ, i.e., to be independent of j− i.11

This in turn also implies that the running time of Leap is bounded by a fixed polynomial in κ.

Correctness and Security. For correctness, we intuitively expect that fast-forwarding results in the same
output and state as sequentially advancing throughout the epochs. Note, however, that fast-forwarding is meant
to be a “catching up” mechanism. Thus, we require fast-forwarding only to work whenever some other party
(using the same bulletin board) has already reached the target epoch. This is formalized in Fig. 2 using two
oracles: the Update oracle allows to sequentially advance throughout the epochs, while the Leap oracle allows
making arbitrary jumps as long as the target epoch has been reached before.

Definition 3 (Correctness). An FF-PRG is correct if every PPT adversary A has a negligible advantage in
winning the correctness game depicted in Fig. 2.

The key indistinguishability game of an FF-PRG formalizes that Ri look indistinguishable from fresh uniform
random outputs. Forward security moreover asserts that for past outputs this holds even once the state is leaked.
Note that for defining security, fast-forwarding is irrelevant, as Leap does not write to the bulletin board and, by
correctness, results in the same state as sequential updates.
10 For simplicity, we henceforth omit explicitly mentioning forward secrecy as part of each primitive’s name.
11 Since j ≤ 2κ, each function in poly(log(j)) is bounded by a fixed polynomial in κ.
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Definition 4 (Security). A FF-PRG is secure, if every PPT adversary A has negligible advantage (i.e,
2 Pr[Key-IndistA = true]− 1) in winning the key indistinguishability game depicted in Fig. 2.

We remark that having explicit indexing algorithms Update-Idx and Leap-Idx that depend on public information
only, guarantees that the access pattern to the bulletin board does not leak confidential information about a
party’s state.

Constructions. In Section 4, we present an FF-PRG scheme with the following properties: First, Init and
Update perform a constant number of cryptographic operations and output a constant number of elements to be
uploaded to the bulletin board, i.e., |BBinit|, |BBup| ∈ O(1). Second, Update only requires a constant number of
elements from the bulletin board, i.e., |Update-Idx(i)| ∈ O(1). Third, all elements on the bulletin board are of
size O(κ) (such as a key or an encryption). Finally, Leap(sti, j,BBin) performs at most O(log j) operations and
Leap-Idx(i, j) is of cardinality at most O(log j).

Recall from Section 1.2 that while introducing additional communication might often be undesirable (and
indeed reducing communication complexity is often a primary goal) there are settings where communication
with a centralized server anyways occurs, such as the symmetric ratcheting layer of Signal. There, switching
this to our protocol would not add communication latency, but only slightly increased bandwidth. Moreover,
our scheme is concretely efficient and for 2T epochs reduces the secret storage compared to the GGM tree by
roughly a factor of T/7. For example, for T = 20 under standard parameter choices of 128 bit seeds we go from
320 bytes to 122 bytes (and the bulletin board material after 220 epochs will be under 50 MB).

3.3 Fast-Forwardable Updatable Public-Key Encryption
We now proceed to formalize fast-forwardable UPKE in the bulletin board model.
Definition 5. A Fast-Forwardable Updatable Public-Key Encryption (FF-UPKE) scheme is a tuple of PPT al-
gorithms (KeyGen,Encrypt,Decrypt,UpdatePK,UpdatePK-Idx,UpdateSK,UpdateSK-Idx, LeapSK, LeapSK-Idx), de-
fined as follows:
– The (pk1, sk1,BBinit)← KeyGen(1κ) algorithm outputs an initial secret/public key pair sk1 and pk1 and an

initial state of the bulletin board.
– The c ← Encrypt(pki,m) algorithm encrypts m under the public key pki and the deterministic m ←

Decrypt(ski, c) algorithm decrypts c using the corresponding secret key.
– The (pki+1,BBup)← UpdatePK(pki,BB�Ii) algorithm takes a public key and parts of the bulletin board as

input, and outputs the updated public key and content to be upload to the bulletin board.
– The deterministic ski+1 ← UpdateSK(ski,BB�Ii) algorithm takes a secret key and parts of the bulletin board

as inputs, and outputs the updated secret key.
– The deterministic skj ← LeapSK(ski, j,BB�Ii,j ) algorithm takes a secret key ski, the target epoch j > i, and

parts of the bulletin board as inputs.

The deterministic algorithms Ii ← UpdatePK-Idx(i), Ii ← UpdateSK-Idx(i), and Ii,j ← LeapSK-Idx(i, j) determine
the part of the bulletin board required for the respective operations.

Modeling and Efficiency. One of the key properties of UPKE is that UpdatePK may be probabilistic. It
is thus assumed that multiple senders coordinate on the advancing of epochs, with only one party executing
UpdatePK and then distributing the updated public key to the other senders. (Indeed, this synchronization
requirement seems to be what gives UPKE a significant performance lead over FS-PKE.) While in practice this
might be achieved by storing the public key on the bulletin board, passing around an explicit public key allows
us to easily model that during an epoch parties do not need to access the bulletin board.

Moreover, UpdateSK does not write any information to the bulletin board for the following reasons: First, there
is typically only one receiver (per key pair) in a public-key setting, so there is no need to upload information that
might help other receivers. Second, if the receiver had to somehow assist senders, this would introduce additional
online requirements contradicting the asynchronous nature of public-key communication. (The synchronization
among senders to prevent conflicting updates does not require all or any particular of them to be online.)

We require all algorithms except LeapSK to run in polynomial time independent of the epoch i. The LeapSK is
allowed to run in time sublinear in j− i (non-triviality). However, we stress that LeapSK-Idx must have a running
time, and thus output size, of a fixed polynomial independent of j − i, meaning that LeapSK has communication
complexity at most poly(log j).
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Game FF-UPKE Correctness

Initialization

win← false
n← 1
SK[·]← ⊥
(pk, SK[1],BB)

← KeyGen(1κ)
return (pk,SK[1],BB)

Oracle Update

Input: r ∈ R
Ipk ← UpdatePK-Idx(n)
Isk ← UpdateSK-Idx(n)
n← n+ 1
(pk,BBup)←

UpdatePK(pk,BB�Ipk
; r)

BB← BB ++ BBup
SK[n]←

UpdateSK(SK[n− 1],BB�Isk
)

return (pk, SK[n],BBup)

Oracle LeapSK

Input: i, j ∈ N
if i ≥ j ∨ j > n then

return ⊥
idx ← Leap-Idx(i, j)
skj ←

LeapSK(SK[i],BB�idx)
if skj 6= SK[j] then

win← true

Finalization

Input: m ∈M, r ∈ R
c← Encrypt(pk,m; r)
m′ ← Decrypt(SK[n], c)
if m′ 6= m then

win← true
return win

Game FF-UPKE IND-CPA

Initialization

b←$ {0, 1}
safe← true
chall← false
n← 1
(pk, sk,BB)← KeyGen(1κ)
return (pk,BB)

Oracle Update

Input: r ∈ R ∪ {⊥}
if r = ⊥ then

r ←$ R
safe← true

Ipk ← UpdatePK-Idx(n)
Isk ← UpdateSK-Idx(n)
n← n+ 1
(pk,BBup)← UpdatePK(pk,BB�Ipk

; r)
BB← BB ++ BBup
sk← UpdateSK(sk,BB�Isk

)
return (pk,BBup)

Oracle Challenge

Input: m0,m1 ∈M
if ¬chall ∧ |m0| = |m1| then

c← Encrypt(pk,mb)
safe← false
chall← true
return c

Oracle Corrupt

if chall ∧ safe then
return sk

Finalization

Input: b′ ∈ {0, 1}
return b = b′

Fig. 3: The correctness (left) and IND-CPA (right) games of FF-UPKE.

Correctness and Security. Correctness is formalized using a game depicted in Fig. 3. In a nutshell, there
are two ways for an adversary to break correctness: (1) he breaks the correctness of the encryption, i.e., comes
up with a message such that its encryption does not decrypt properly, or (2) he breaks the correctness of the
fast-forwarding mechanism. For simplicity, we require from an FF-UPKE scheme that fast-forwarding from epoch
i to j results in the same secret key skj as would have resulted from sequentially updating. Note that since
FF-UPKE is designed for a setting where parties might use bad randomness, the correctness game allows the
adversary to choose all randomness.

Definition 6 (Correctness). An FF-UPKE is said to be correct, if every PPT adversary A has a negligible
advantage in winning the correctness game depicted in Fig. 3.

Security is formalized as an IND-CPA game, depicted in Fig. 3. The game allows the adversary to make a
single challenge from which he must decide whether he received encryption of m0 or m1. Ahead, he can make an
arbitrary number of updates to the public key, potentially supplying the randomness. Moreover, to formalize
forward secrecy, he can corrupt the receiver’s state to obtain the secret key — once at least one is secure, i.e., not
with adversarially chosen randomness, an update has been applied. Similar to the FF-PRG notion, we observe
that the LeapSK algorithm is irrelevant for security.

Definition 7 (Security). An FF-UPKE is said to be IND-CPA secure, if every PPT adversary A has a
negligible advantage in winning the IND-CPA game depicted in Fig. 3.

Constructions. In Section 5, we present a generic FF-UPKE scheme where public and secret keys do not grow
with the epoch number i, the UpdatePK algorithm reads and writes O(log i) positions on the bulletin board,
UpdateSK reads O(1) positions, and LeapSK accesses O(log j) position to fast-forward from epoch i to j. The
construction makes use of a so-called Update-Homomorphic UPKE scheme as a building block. In Appendix B
we provide two concrete instantiations of this building block, both leading two bulletin board values of the order
of O(κ2) many cryptographic elements. In Section 5.4 we moreover discuss some of the barriers encountered in
constructing truly efficient FF-UPKE schemes.

4 Constructing a Fast-Forwardable PRNG

In this section, we present a construction of a fast-forwardable PRNG. We first introduce the basic variant
supporting a bounded number of epochs. We then extend this construction in Section 4.2 to an unbounded
number of epochs.
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Fig. 4: The tree GGM4 after the Init algorithm. Dotted arrows represent encryptions outsourced to the bulletin
board.

4.1 The Basic Construction

Our construction is based on the GGM construction. To this end, we first observe that in a GGM tree of height h,
and thus 2h leaves, there are a total of 2h − 1 inner nodes to expand. Hence, the amortized number of expansions
over the course of the 2h − 1 many possible updates in this tree is just one. In the following, we will show that if
for each update we do two expansions, then at the time we need a new leaf it has already been derived.

Implemented naively, this would of course make a party’s state grow linearly in the number of updates, which
is where the outsourcing to the bulletin board comes into play. Roughly speaking, rather than keeping all the
expanded seeds in the local state, we encrypt them under an appropriate key to outsource. Those encryption keys
are derived from the GGM tree as well. To this end, we modify the expansion step of a node v’s seed as follows:

(svleft , kvleft , svright , kvright)← PRG.Expand(sv),

where kv is an encryption key associated with v. Using this key, we can then encrypt another node’s seed su and
key ku using nonce-based symmetric encryption, i.e., c← SE.Enc(kv, (su, ku), n). Concretely, we use the index u
as nonce, n = u, and store this ciphertext at index (v, u) in the bulletin board.

To ensure forward secrecy, only certain such links can be stored. Recall to this end that when using the GGM
construction as a forward-secure PRNG, one expands the tree’s nodes according to the preorder traversal and
keeps the nodes from the copath (sometimes called sibling path) that are right children as a state. Hence, to
preserve forward secrecy, we maintain the following invariant:

I1. Whenever the bulletin board stores an encryption c ← SE.Enc(kv, (su, ku), u) for nodes u and v, then
preorderIdx(v) < preorderIdx(u),

where preorderIdx(v) returns v’s index according to the preorder traversal.

Initialization. Let us now turn our attention towards which such links we want to outsource. Initially Init(key)
first derives a seed s and outsourcing key k for the root (e.g., (s, k, ·, ·)← PRG.Expand(key) and then proceeds
to expand the leftmost path in the GGM. The copath is outsourced to the bulletin board by encrypting each
node under the previous when traversing the copath from the leaf to the root. Additionally, we encrypt the first
copath node under its left sibling, i.e., the first epoch’s leaf. All of those encryptions satisfy Invariant 1.

See Fig. 4 for the example of GGM4, the GGM tree of height 4, at the end of the Init operation. For clarity, we
labeled each node with its preorder index. White nodes represent inner nodes that have already been expanded,
black nodes those for which the seeds are currently known, and gray nodes are currently beyond the expansion
horizon. The dotted arrows represent the outsourced encryptions, i.e., a dotted arrow from node v to u means
that we store SE.Enc(kv, (su, ku), u) at position (v, u) in the bulletin board.

The Init algorithm outputs the seed R1 = sh+1 (of the leftmost leaf) and a state containing the following
values: the key ki and the seeds and keys of the thirst three nodes on i’s right copath, starting at its right sibling.
We call those three nodes the initial frontier, which we discuss in a moment. In our example of GGM4, this is s5
and (sj , kj) for j ∈ {6, 7, 10}.

Expanding the Tree. The nodes are expanded according to their preorder index. We call the first not yet
expanded node the frontier. In our example of GGM4, the initial frontier is node 7, which is then expanded into

13



1

2

3

4

5
(1)

6
(2)

7

8
(3)

9
(4)

10

11

12
(5)

13
(6)

14

15
(7)

16
(8)

17

18

19

20
(9)

21
(10)

22

23
(11)

24
(12)

25

26

27
(13)

28
(14)

29

30
(15)

31
(16)

Fig. 5: A visualization of the node expansion in the enhanced GGM construction.

nodes 8 and 9. In this step, Update “replaces” (they remain on the bulletin board but are no longer needed for
this party) the links (6, 7) and (7, 10) with the following ones: (6, 8), (8, 9), and (9, 10). (All those newly added
encryptions satisfy Invariant 1.) The new frontier is now 10. When later expanding node 10 into nodes 11 and
14, we upload links (9, 11), (11, 14), and (14, 17), replacing the existing links (9, 10) and (10, 17). See Fig. 5 for
the state of the tree after the expansion of f = 10. More generally, when expanding f, we consider the following
two additional nodes

– f− := prevLeaf(f) denoting the the largest leaf index f− < f that is not a descendent of f.
– f+ := rCoPath(f) denoting the first node on f’s right copath,

and replace the links (f−, f) and (f, f+) by link

– (f−, leftChild(f)),
– (leftChild(f), rightChild(f)),
– (rightChild(f), f+).

We observe that by definition rCoPath(rightChild(f)) = rCoPath(f) = f+ and rCoPath(leftChild(f)) =
rightChild(f). Thus, storing those additional links maintains the first of the following invariant that will become
crucial for fast forwarding.

I2. For any v not on the leftmost path, if sv has been computed, then the link (v, rCoPath(v)), i.e., the ciphertext
SE.Enc(kv, (srCoPath(v), krCoPath(v)), rCoPath(v)), has been added to the bulletin board.

I3. For any leaf v except the leftmost one, if sv has been computed, then the link (prevLeaf(v), v) has been added
to the bulletin board.

To be able to efficiently create those links described above, our algorithm keeps at any point in time the
index, seed, and key of the f, f−, and f+ as part of the state. After the expansion, those pointers of course have
to be adjusted and the respective seeds and keys locally stored.

– If leftChild(f) is not a leaf, then f ′ becomes this node. The new f+ is thus is the right sibling that we also
just derived and f− remains unchanged.

– If leftChild(f) is a leaf, then this node becomes the new f−. The new f gets the old f+. Its first right copath
node becomes the new f+. While for the latter we do not have seed or key readily stored, we know from
Invariant 2 that there is a link from the old to the new f+ stored in the bulletin board that we can use to
retrieve those values.

Sequential Updates. For each sequential update from epoch e to e+ 1, the Update algorithm has to output
the seed of the (e + 1)-th leaf, which we denote by leaf(e + 1). For this to be done in a constant number of
cryptographic operations, the algorithm relies on a link (leaf(e), leaf(e + 1)) is readily stored in the bulletin
board. Recall from Invariant 3 that such a link exists as long as the seed leaf(e+ 1) has been derived at this
point, meaning that Update just needs to expand the frontier sufficiently fast.

We achieve this by doing two expansions per invocation of Update, as long as there are still nodes to expand.
Consider the inner nodes on the copath of the leftmost leaf. Those node root h− 1 trees T1, . . . Th−1 of increasing
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height that still need to be expanded after Init, as shown in Fig. 4. During the first update, i.e., when moving to
node 6 in our example of GGM4, we can expand T1. More generally, we observe that Tj has 2j leaves and Tj+1
has 2j inner nodes that need to be expanded. Hence, doing two expansion steps per Update invocation maintains
the following invariant:

I4. By the time the epoch advances from Tj to Tj+1, i.e., when transitioning from epoch e to e+ 1 such that
leaf(e) ∈ Tj and leaf(e+ 1) ∈ Tj+1, the tree Tj+1 has already been fully expanded.

In summary, our algorithm achieves sequential updating using at most three elements from the bulletin board
(one to derive the new epoch’s output and two for the tree expansion) and two PRG expansion and uploading at
most six new elements to the bulletin board.

Fast Forwarding. We now describe the process of forwarding from epoch e to e′ � e in logarithmic time.
Observe that by Invariant 2 there is an encryption chain along the right copath of leaf(e) stored in the bulletin
board. (This holds as the second node on the right copath of leaf(e) is equal to rCoPath(rCoPath(leaf(e))) and
so forth.) Thus, Update can work analogously to the basic GGM-PRNG construction by determining the first
node of this copath intersecting with leaf(e′)’s path and recover this node decrypting a logarithmic number of
ciphertexts. Then, the seed and key of leaf(e′) can be derived using a logarithmic number of PRG.Expand calls.
The local state consisting of the keys and seeds of f−, f, and f+ can be restored analogously.

Finally observe that for the party to be able to continue from epoch e′ it may not sufficient to just recover
the local state, as subsequent calls to both Update and Leap require certain links to be stored in the bulletin
board. For our setting, where we assume that Leap is only used to catch up with other parties, this is not an
issue, however. For each epoch between e and e′ the first party reaching it must have done so using a sequential
update, uploading all necessary encryptions as part of this process.

Efficiency. Let n denote the maximal number of epochs, i.e., n = 2h. Then, the Init algorithm performs
O(log(n)) many cryptographic operations and uploads this many elements to the bulletin board. Afterwards,
Update requires at most 3 = O(1) elements from the bulletin board and performs O(1) cryptographic operations
and uploads at most 6 = O(1) elements. So far we have glossed over how the UpdateSK-Idx(e) algorithm works.
In short, it needs to be able to compute leaf(e), the f corresponding to leaf(e), rCoPath(f) and prevLeaf(f). Each
of them can be easily computed in time O(logn) given that f advances at the predictable double speed compared
to leaf(e). Finally, Leap requires O(logn) elements from the bulletin board and performs O(logn) computation.
In addition, Leap-Idx(e, e′) needs to compute the elements of the right copath of leaf(e) that are ancestors of
leaf(e′), the corresponding frontier f′, and prevLeaf(f ′). It then outputs the corresponding paths to recover e′,
prevLeaf(f′), f ′, and rCoPath(f ′), where the latter can be directly recovered from f′. All of those computations
can be done in O(logn) as well.

Correctness and Security. Let us briefly summarize the main results of this section, which is that our
modifications to the forward-secure GGM-based PRNG do not affect either correctness or security.

Theorem 1. The scheme outlined in Section 4.1 is correct and secure FF-PRNG, for a bounded number of at
most 2h epochs, according to Definitions 3 and 4, respectively.

Proof. We have argued correctness throughout the section. In particular, sequential updating works due to
Invariants 3 and 4. For the fast-forwarding, we observed in Invariants 2 and 4 that at epoch i there is an
encryption chain alongside the right copath of leaf(i) stored in the bulletin board, from which Leap can recover
the seed of any future epoch j > i in the same manner as the underlying GGM construction. Moreover, from
Invariant 4 it follows that f−i > leaf(i) for any epoch i. Using f+

j > fj > f−j ≥ f−i we thus know that Leap can
restore the required local analogously.

Finally, the same observation means that the local state in epoch i only contains seeds for epochs strictly
greater than i, and keys for epochs larger or equal to i. Also ki reveals no information about si. Combined with
Invariant 1 this implies that the local state together with the content of the bulletin board only leaks information
about nodes j > i (assuming the encryption scheme to be IND-CPA secure). Hence, the security directly reduces
directly to the security of the basic punctured GGM construction. ut
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GGMt−1 GGMt GGMt+1 GGMt+2

Fig. 6: The sequence of GGM trees of increasing height underlying the unbounded scheme. The current epoch is
part of the tree GGMt, whereas expansion either happens in GGMt or GGMt+1.

4.2 Supporting an Unbounded Number of Epochs
In this section, we now briefly outline how our construction can be extended to support an unbounded number
of epochs, and in the process reduce the running time of Init to O(1).

In a nutshell, we can apply the idea of a sequence of GGM trees of growing height, as used in [42]. Their
roots can be derived using a forward-secure PRNG, such as the folklore construction from PRG.Expand. Recall
from Invariant 4 that within a tree GGMt, Update is done expanding before the epoch reaches the subtree Tt−1
(cf. Fig. 4). As this subtree has 2t−1 more leaves, we can spend this time initializing the next tree GGMt+1
instead, deriving its leftmost path and storing encryptions of its copath on the bulletin board.

In a bit more detail the scheme works as follows. See Fig. 6 for a graphical depiction of the strategy.
1. Init samples st0 ∈ {0, 1}κ and computes (st1, root1, ·, ·)← PRG.Expand(st0), and runs Init of the fixed-height

scheme from the previous section with GGM1. The state consists of st1, the index of the current epoch’s tree
t = 1, and the state of the underlying construction.

2. Update runs the corresponding algorithm of the underlying scheme on the tree GGMt to produce the output
Re+1 for the new epoch e+ 1. Moreover, if there are still nodes to expand in GGMt, then we use the same
strategy as in the underlying scheme. Otherwise, if GGMt−1 has not been fully initialized, the scheme derives
(stt+1, roott+1, ·, ·)← PRG.Expand(stt) if needs be, and then performs one more step of the initialization. If
at the end of Update the tree GGMt has been exhausted, i.e., all leaves have been output, then we delete stt
and increments t.

3. If e′ lies in the same tree as e, then derive the output the same way as the basic scheme. Otherwise, Leap
first derives the root of the new epoch e′, and then the corresponding leaf. The state around the current
frontier is derived analogously.

Theorem 2. The FF-PRNG outlined in Section 4.2 is correct and secure according to Definitions 3 and 4,
respectively. Moreover, Init and Update both perform O(1) cryptographic operations and upload O(1) elements to
the bulletin board, and Update-Idx outputs an index set of size O(1). Finally, Leap requires O(log j) elements
from the bulletin board and has running time in O(log j).

Proof. For correctness it is sufficient to observe that whenever the epoch moves to a tree GGMt, the initialization
of this tree has been completed, as this needs at most t+ 1 ≤ |Tt−2| = 2t−3 operations. Security also follows
directly from the bounded-epochs scheme and the observation that stt does not leak any information about the
trees GGMs for s ≤ t. For efficiency, we observe that an epoch i is at most in the tree t ≤ log2(i), due to the
increasing height. Hence, when fast-forwarding to an epoch j, we need to derive at most O(t) roots and then,
analogous to the basic scheme, perform O(t) computation there. Finally, initializing GGM1 is clearly a O(1)
operation. ut

5 Fast-Forwardable Updatable Public-Key Encryption

Our generic FF-UPKE uses any update-homomorphic UPKE (H-UPKE) and is built around the idea of so-called
cumulative updates, i.e., update ciphertexts that aggregate a sequence of individual updates. We use an update
graph to govern which cumulative updates are produced, to balance the senders’ overhead with the receiver’s
ability to fast forward. (For instance, the complete update graph would allow the receiver to update in constant
time while imposing an undesirable linear overhead on each sender, while the empty update graph results in a
plain UPKE without fast-forwarding.)
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5.1 Update-Homomorphic UPKE

As a building block — to allow for cumulative updates — our construction makes use of an update-homomorphic
UPKE scheme, constituting a special case of updatable public-key encryption.

In brief, in addition to a key-generation algorithm (pk1, sk1, pp) ← KeyGen(1κ), and respective message
encryption and decryption algorithms c ← Encrypt(pki,m) and m ← Decrypt(ski, c), an update-homomorphic
UPKE scheme provides the following structure:

(1) update ciphertext consist of an encrypted update message, i.e., upi+1 ← UpdEnc(pki, δi+1), sampled using
δi+1 ← UpdGen(pp) based on the public parameters pp;

(2) update messages are elements from the secret-key space which forms a group under some operator ?;
(3) the secret keys are updated according to ski+1 = ski ? δi+1;
(4) UpdEnc is message homomorphic, i.e., there is an algorithm Upd-Comb(up, up′) homomorphically combining

two updates encrypted under the same public key pki.

Using the shorthand notation ∆[j,`] := (δj+1 ? · · · ? δ`), the homomorphism property thus ensures that we can
compute an encryption that is equivalent to Upi[j,`] ← UpdEnc(pki, ∆[j,`]) from two partial updates Upi[j,k] and
Upi[k,`], for any j < k < `. More formally, we define update-homomorphic UPKE schemes as follows.

Definition 8. An update-homomorphic UPKE (H-UPKE) scheme is a tuple of algorithms (KeyGen,Encrypt,
Decrypt,UpdGen,UpdEnc,UpdDec,UpdatePK,Upd-Comb) for which the secret-key space SK forms a semigroup
(i.e., is associative with respect to some operator ?) and the algorithms are defined as follows:

– the key-generation algorithm (pk1, sk1, pp)← KeyGen(1κ), which outputs an initial key pair sk1 and pk1, as
well as public parameters pp;

– the encryption algorithm c ← Encrypt(pki,m) and the and deterministic decryption algorithm m ←
Decrypt(ski, c), respectively;

– the update-sample algorithm δi+1 ← UpdGen(pp) producing δi+1 ∈ SK;
– the deterministic public-key update algorithm pki+1 ← UpdatePK(pki, δi+1), which given a public key and

an update message produces an updated one;
– the update-encryption algorithm upij ← UpdEnc(pki, δj), for j > i;
– the update-combination algorithm Upi[j,`] ← Upd-Comb(Upi[j,k],Upi[k,`]), merging two updates encrypted under

the same public key pki.
– the and deterministic update-decryption ∆i

[j,`] ← UpdDec(ski,Upi[j,`]);

Correctness and Security. We formalize correctness using two separate properties. The first property
essentially demands that the pairs (Encrypt,Decrypt) and (UpdEnc,UpdDec) represent correct pairs of encryption
and decryption algorithms for their respective message spaces — analogously to the standard UPKE definition.
This is formalized in the game on the left side of Fig. 7. To account for the evolving sequence of public and
secret keys, as well as the use of bad randomness, the game allows the adversary to update the keys an arbitrary
number of periods under his randomness before submitting a challenge message to be encrypted. The adversary
wins if either the ciphertext or one of the update messages gets decrypted incorrectly. The second property
concerns homomorphism and is, thus, unique to update-homomorphic UPKE. It requires that the output of
Upd-Comb must correctly decrypt to the multiplication of the underlying update secrets (for the group operator
?), i.e., that

∆[j,k] ? ∆[k,`] = UpdDec
(

ski,Upd-Comb
(
UpdEnc(pki, ∆[j,k]),UpdEnc(pki, ∆[k,`])

))
,

which is formalized in the game on the bottom of Fig. 7.

Definition 9 (Correctness). A UPKE scheme is correct if any PPT adversary A has a negligible probability
of winning either the correctness or the update-homomorphicity game the game depicted in Fig. 7.

Finally, we require IND-CPA security. The IND-CPA game is essentially the same as for regular UPKE, when
accounting for the imposed special structure of the updating mechanism, via the sender invoking

1. δ ← UpdGen(pp)
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Game UPKE Correctness

Initialization

win← false
(pk, sk, pp)← KeyGen(1κ)
return (pk, sk, pp)

Oracle Update

Input: (r1, r2) ∈ R2

δ ← UpdGen(pp; r1)
up← UpdEnc(pk, δ; r2)
δ′ ← UpdDec(sk, up)
if δ′ 6= δ then

win← true
pk← UpdatePK(pk, δ)
sk← sk ? δ

Finalization

Input: m ∈M, r ∈ R
c← Encrypt(pk,m; r)
m′ ← Decrypt(sk, c)
if m′ 6= m then

win← true
return win

Game UPKE IND-CPA

Initialization

b←$ {0, 1}
safe← true
chall← false
n← 1
(pk, sk, pp)← KeyGen(1κ)
return pk

Oracle Update

Input: r1, r2 ∈ R ∪ {⊥}
if r1 = ⊥ ∨ r2 = ⊥ then

r1 ←$ R
r2 ←$ R
safe← true

n← n+ 1
δ ← UpdGen(pp; r1)
up← UpdEnc(pk, δ; r2)
pk← UpdatePK(pk, δ)
sk← sk ? δ
return (pk, up)

Oracle Challenge

Input: m0,m1 ∈M
if ¬chall ∧ |m0| = |m1| then

c← Encrypt(sk,mb)
safe← false
chall← true
return c

Oracle Corrupt

if chall ∧ safe then
return sk

Finalization

Input: b′ ∈ {0, 1}
return b = b′

Game Update Homomorphicity

Initialization

(pk, sk, pp)← KeyGen(1κ)
return (pk, sk, pp)

Oracle Update

Input: δ ∈ SK
pk← UpdatePK(pk, δ)
sk← sk ? δ

Oracle Finalize

Input: δ1, . . . , δt, r1, . . . , rt ∈ SKt ×Rt
up← UpdEnc(pk, δ1; r1)
for i← 2 . . . t do

up← Upd-Comb
(
up,UpdEnc(pk, δi; ri)

)
if UpdDec(sk, up) 6= δ1 ? · · · ? δt then

return true
else return false

Fig. 7: The correctness (left), IND-CPA (right), and homomorphism (bottom) games of Update-Homomorphic
Updatable Public-Key Encryption (H-UPKE).

2. up← UpdEnc(pk, δ)
3. pk′ ← UpdatePK(pk, δ),

and on the other side the receiver using δ ← UpdDec(sk, up) and sk′ ← sk?δ. A formal description of the resulting
IND-CPA game can be found on the right hand side of Fig. 7.

Definition 10 (Security). A UPKE scheme is said to be IND-CPA secure if any PPT adversary A has a
negligible probability of winning the game depicted in Fig. 7.

Schemes. In Appendix B we show that with minor modifications the standard-model UPKE schemes introduced
in the recent work of Dodis et al. [24] do lend themselves to an update-homomorphic UPKE scheme, resulting in
instantiations under either the DDH or the LWE assumption. We remark that both constructions have some
(different) caveats: the LWE-based scheme supports a bounded number of homomorphic operations, supporting
aggregation of at most q atomic updates (but q can be chosen superpolynomially large at the expense of
slightly larger other parameters) while the DDH-based construction supports an a priori unbounded number of
aggregations but decryption of an aggregated update takes local computation time O(

√
n) in the number of

underlying updates n.

5.2 Update Graphs

A crucial part of our construction will be deciding which cumulative updates to generate. If, on the one hand, we
insert too few such cumulative updates, then LeapSK-Idx(i, j) ≈ j − i loses the fast-forward property. If, on the
other hand, we insert too many — e.g., all of them — then both UpdatePK will need both to read and write
linearly many elements from the bulletin board. Indeed, such a solution would represent in many aspects the
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trivial dual solution to no fast-forwarding, as the former requires linear bandwidth for the receiver whereas the
latter requires linear bandwidth for all the senders.

To examine those trade-offs in more detail, we reformulate the insertion of cumulative updates as a graph-
theoretic problem. To simplify the reasoning about the index set, we moreover include the atomic (non fast-forward)
updates into the graph, as formalized by the following definition.

Definition 11. Let α, β, γ : N→ N. An (α, β, γ)-update graph G = (N, E) is a directed acyclic graph with the
following properties:

1. ∀i ∈ N : (i, i+ 1) ∈ E,
2. ∀(i, j) ∈ E : i < j,
3. ∀n ∈ N : degin

G (n) ≤ α(n),
4. ∀n ∈ N : diam(Gn) ≤ β(n),
5. ∀n ∈ N : |activeG(n)| ≤ γ(n),

where activeG(n) := {i ∈ [n − 1] | ∃j > n : (i, j) ∈ E}, and (Gn)n∈N with Gn := ([n], En) and En := E ∩ [n]2
denotes the sequence of prefix graphs.

Looking slightly ahead, let us briefly consider how the different parameters will affect the efficiency of
our construction. First, the number of update messages required by LeapSK is bounded by β(j). Second,
activeG(n) ≤ γ(n) corresponds to the set of cumulative updates that need to be extended when a sender initiates
the i-th epoch using UpdatePK. Finally, the indegree represents the number of “finalized” updates for the
respective epoch. This mainly becomes of relevance if the FF-UPKE scheme is deployed in a single-sender setting.

To be of use for our construction, we need that a given update graph can be efficiently computed. Specifically,
our construction will need to compute the sets E in

G (i) and activeG(i) for each node i, as well as computing short
paths between any nodes i and j.

Definition 12. We say that an (α, β, γ)-update graph G = (N, E) is implemented by a pair of deterministic
algorithms (G.Eval,G.Path) if:

– G.Eval(n) outputs E in(n) and active(n) in O(poly(logn)) time;
– G.Path(i, j) outputs a path ~e from node i to j such that |~e| ≤ β(j) in O(poly(β(j) · j)).

5.3 A Generic Construction

We now construct a Fast-Forwardable UPKE scheme based on an Update-Homomorphic UPKE scheme and an
update graph. The basic idea is very simple: When the sender j chooses the corresponding update secret δj+1, in
addition to updating pkj to pkj+1, they will also

(1) produce fresh ciphertext Up[j,j+1] encrypting δj+1 under pkj ; and
(2) for every i ∈ active(j+ 1)∪E in(j+ 1), fetch Up[i,j] from the bulletin board, and use the update-homomorphic

property of the UPKE to compute ciphertexts Up[i,j+1] to be published in the bulletin board.

On the receiving side, if the receiver knows key ski, and wishes to jump to some key skj for j > i, it will:

(1) compute a short “leap path” i = i0 → ii → · · · → id = j in the update graph;
(2) retrieve d ciphertexts {Up[ik,ik+1]} from the bulletin board;
(3) decrypt Upi0,i1 using ski = ski0 to get ∆[i0,i1];
(4) compute ski1 := ski0 ? ∆[i0,i1];
(5) iterate steps (3)-(4) d times to finally “catch up” with skj = skid .

A formal description of the scheme is presented in Fig. 8.
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Protocol Fast-Forwardable UPKE

KeyGen(1κ)
BBinit[·]← ⊥
(pkH-UPKE, skH-UPKE, ppH-UPKE)← H-UPKE.KeyGen(1κ)
pk← (1, pkH-UPKE, ppH-UPKE)

BB[·, ·]← ⊥
pk← (1, pkH-UPKE, ppH-UPKE,BB)
sk← (1, skH-UPKE)
return (pk, sk,BBinit)

Encrypt(pk,m)

parse (·, pkH-UPKE, ·)← pk

parse (·, pkH-UPKE, ·, ·)← pk
c← H-UPKE.Encrypt(pkH-UPKE,m)
return c

Decrypt(sk, c)
parse (·, skH-UPKE)← sk
m← H-UPKE.Encrypt(skH-UPKE, c)
return m

UpdatePK(pk,BB)

parse (n, pkH-UPKE, ppH-UPKE)← pk

parse (n, pkH-UPKE, ppH-UPKE,BB)← pk
n← n+ 1
BB′[·, ·]← ⊥

// Generate the regular update
δ ← H-UPKE.UpdGen(pp)
pk′H-UPKE ← H-UPKE.UpdatePK(pk, δ)
up(n−1,n) ← H-UPKE.UpdEnc(pk, δ)

// Update all active cumulative updates
(In,A)← G.Eval(n)
for all i ∈ A ∪ In \ {n− 1} do

up(i,n−1) ← BB[i, n− 1]
up(i,n) ← H-UPKE.Upd-Comb(up(i,n−1), up(n−1,n))
BB′[i, n]← up(i,n)

BB′[n− 1, n]← up(n−1,n)
pk′ ← (n, pk′H-UPKE, ppH-UPKE)
return (pk′,BB′)

BB′′[·, ·]← ⊥
BB′′[n− 1, n]← up(n−1,n)
pk′ ← (n, pk′H-UPKE, ppH-UPKE,BB′)
return (pk′,BB′′)

UpdateSK(sk,BB)
parse (n, skH-UPKE)← sk
n← n+ 1
δ ← H-UPKE.UpdDec(skH-UPKE,BB[n− 1, n])
skH-UPKE ← skH-UPKE ? δ
sk′ ← (n, skH-UPKE)
return sk′

LeapSK(sk, j,BB)
parse (n, skH-UPKE)← sk
if j ≤ n then

return ⊥
~e← G.Path(n, j)
for (u, v) ∈ ~e do

δ ← H-UPKE.UpdDec(skH-UPKE,BB[u, v])
skH-UPKE ← skH-UPKE ? δ

n← j
sk′ ← (n, sk′H-UPKE)
return sk′

UpdatePK-Idx(n)
I← ∅
(In,A)← G.Eval(n+ 1)
for all i ∈ A ∪ In \ {n} do

I← I ∪ {(i, n)}
return I

UpdateSK-Idx(n)
return {(n, n+ 1)}

LeapSK-Idx(n, j)
~e← G.Path(n, j)
I← ∅
for (u, v) ∈ ~e do

I← I ∪ {(u, v)}
return I

Fig. 8: The FF-UPKE protocols are built from an Update-Homomorphic UPKE scheme H-UPKE and an update
graph G. Lines enclosed in solid boxes belong to the regular multi-sender protocol, whereas lines enclosed in
dashed boxes represent the single-sender variant.
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A Single-Sender Variant. When deployed in a single-sender setting, such as a two-party secure messaging
scheme (considered as the original motivation for UPKE by Jost et al. [38]) the scheme can be slightly tweaked for
a different storage/bandwidth trade-off. To this end, we observe that in our scheme the receiver will never access
the temporary “ongoing” update messages but only ever use an element (i, j) if (i, j) ∈ E. As a consequence, the
sender may choose to upload only the elements from E in(n) while keeping the ongoing cumulative updates as
part of his local state.

This works nicely since the sender does not need arbitrary γ(n) + α(n) many of the O(n) so far uploaded
elements, but in each step we have

active(n) ∪ E in(n) ⊆ active(n− 1) ∪ {n− 1},

implying that O(γ + α(n)) storage suffices. Additionally, this variant has the distinct advantage that UpdatePK
does not need to read anything from the bulletin board, i.e., UpdatePK-Idx(n) = ∅, potentially reducing latency.

The corresponding protocol is depicted in Fig. 8 as well using the dashed boxes. For simplicity, we model the
local state as the public key containing a “local” bulletin board.

Correctness and Efficiency. Correctness of the construction follows essentially directly from the correctness
of the underlying Update-Homomorphic UPKE scheme, which is formalized in parts of the correctness of a
regular UPKE scheme plus the correctness condition of the homomorphism. Moreover, by the construction the
various parameters of the update graph directly translate to the efficiency of the scheme, yielding the following
result.
Theorem 3. The FF-UPKE schemes presented in Fig. 8 are correct, according to Definition 6, if the underlying
scheme H-UPKE is correct and update homomorphic as formalized via the games from Fig. 7.

Moreover, the regular scheme has public and secret keys of roughly the same size, and encryption and
decryption of the same efficiency, as the underlying H-UPKE scheme. Using an (α, β, γ)-update graph, yields the
following efficiency:
– UpdatePK: |UpdatePK-Idx(n)| ≤ γ(n+ 1) and |BBup| ≤ γ(n+ 1) + 1. Moreover, UpdatePK needs O(γ(n+ 1))

as many cryptographic operations as the underlying scheme.
– UpdateSK: |UpdateSK-Idx(n)| = 1 and UpdateSK uses O(1) as many cryptographic operations as the under-

lying scheme.
– LeapSK: |LeapSK-Idx(n, j)| ≤ β(j) and LeapSK uses O(β(j)) as many cryptographic operations as the

underlying scheme.
The single-sender scheme has a secret key of roughly the same size as the underlying H-UPKE scheme, and a

public key size of roughly γ(n) as big as the underlying scheme (modeling local storage) and the same efficiency
except that |UpdatePK-Idx(n)| = 0 and |BBup| ≤ α(n+ 1).
Proof. The efficiency claims follow immediately from the construction. For correctness, we first observe that as
long as the receiver updates sequentially, i.e., use UpdateSK, then both variants essentially execute the underlying
update-homomorphic UPKE scheme. Hence, the decryption correctness property of Definition 6 follows from the
correctness of the underlying scheme.

Finally, consider the fast-forward correctness, i.e., that LeapSK(sti, j) results in the same secret key as
sequentially updating. Here we first observe that the receiver only accesses BB[i, j] if (i, j) is an edge in the
update graph and both variants upload a corresponding cumulative update when transitioning to epoch j as
i ∈ E in(j). Next, note that active(n) ∪ E in(n) ⊆ active(n − 1) ∪ {n − 1} moreover ensures that whenever a
sender tries to extend a cumulative update, he can find it on the bulletin board. The correctness of those
cumulative updates follows from the update homomorphicity property (as formalized in Fig. 7). Hence, every
update (u, v) ∈ G.Path(i, j) the receiver applies during LeapSK correctly results in skv, finally resulting in skj
after applying the whole path. ut

Corollary 1. When instantiated using the (2,O(logn),O(logn))-update graph construction from Theorem 8
(cf. Section 6), and either the LWE- or DDH-based update-homomorphic UPKE scheme from Theorem 9 or
Theorem 10, respectively, the FF-UPKE scheme from Fig. 3 has the following communication complexity:

– UpdatePK to epoch i has communication complexity O(log(i) · κ3) in the multi-sender variant and O(κ3) in
the single-sender variant;

– UpdateSK to epoch i has communication complexity O(κ3), independent of the epoch i;
– LeapSK from epoch i to j has communication complexity O(log(j)κ3).
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Security. Security also follows directly from the security of the underlying Update-Homomorphic UPKE scheme,
as intuitively the cumulative updates represent a computation on public data.

Theorem 4. The FF-UPKE schemes presented in Fig. 8 are IND-CPA secure, according to Definition 7, if the
underlying scheme H-UPKE is IND-CPA secure according to Definition 10.

Proof. Security-wise it is irrelevant whether certain data is stored as part of the bulletin board or the public key,
we thus focus on the regular scheme (not the single-sender variant) only.

We now show the reduction that transforms an adversary A against the FF-UPKE security game into an
adversary A′ against the H-UPKE security of the underlying scheme. The reduction internally runs A and
emulates the FF-UPKE security game towards A. It internally maintains the current bulletin board and current
public key. It works as follows:

– It takes the initial public key pkH-UPKE and the public parameters ppH-UPKE output by the initialization of
the H-UPKE game, and hands pk := (1, pkH-UPKE, ppH-UPKE) together with an empty bulletin board BB[·]←
to A.

– Upon A invoking the update oracle with randomness r = (r1, r2), the reduction queries the update oracle of
the H-UPKE game with the same randomness.
1. This generates an update message δ which gets encrypted as up and gets applied as pk′H-UPKE =

UpdatePK(pk′H-UPKE, δ).
2. We observe that to simulate the (pk,BBup) ← UpdatePK(pk, �Ipk

; r) the FF-UPKE game performs,
we need to update all active cumulative updates. The reduction can simply perform this using the
H-UPKE.Upd-Comb algorithm and store the resulting cumulative updates in BBup.

3. Finally, to emulate the FF-UPKE game, the reduction needs to emulate the UpdateSK(sk,BB�Isk
)

invocation. To this end, observe that for the specific scheme we have Isk = UpdateSK-Idx(n) = {(n, n+1)},
implying that BB�Isk

just consists of the above update ciphertext up. Furthermore, we observe that the
reduction can simply call the UpdateSK oracle of the underlying H-UPKE game to have the same desired
effect on the secret key. (The reduction keeps separately track of the receiver’s epoch number.)

– Upon A invoking the challenge oracle with messages m0 and m1, the reduction invokes the challenge oracle of
the underlying H-UPKE game and returns the obtained ciphertext c. Note that FF-UPKE and H-UPKE games
maintain the safe and chall alike, meaning that the H-UPKE game will perform the appropriate checks.

– Upon A invoking the corruption oracle, the reduction invokes the H-UPKE game’s corruption oracle to
obtain skH-UPKE. It then returns sk = (n, skH-UPKE) where n denotes the receiver’s epoch number that is
maintained by the reduction. (If the H-UPKE game returns an error due to chall ∧ safe check failing, this
error is propagated to A.)

– Upon A outputting the guess b′, the reduction forwards it to the underlying H-UPKE game.

In both cases, b = 0 and b = 1, the reduction perfectly emulates the IND-CPA game of the FF-UPKE scheme
with the same bit, resulting in the reduction having the same advantage as A. ut

5.4 A Remark on More Efficient Schemes

The efficiency of the aforementioned FF-UPKE construction directly hinges on the efficiency of the underlying
H-UPKE scheme. Unfortunately, neither construction is practically efficient, suffering from public keys growing
linearly in the security parameter and update ciphertexts growing quadratically in the security parameter. Given
that neither construction has been particularly optimized (and presents more feasibility results) and UPKE is a
rather new primitive, we however believe that there is plenty of room for improvement and that the FF-UPKE
scheme based on update-homomorphic UPKE may very well end up more efficient than the construction based
on HIBE. In the following, we remark on some roadblocks we encountered when trying to devise truly efficient
schemes and outline some possible future directions.

Efficient H-UPKE schemes. While the original UPKE schemes [38,4] are essentially as efficient as (hybrid)
ElGamal encryption, adapting those schemes to the update-homomorphic setting poses some seemingly inherent
challenges. First, note that all of those schemes do follow the paradigm of using encrypting update secrets as
update messages. None of them uses a homomorphic encryption scheme in that process, however. For instance,
the original scheme introduced by Jost et al. [38] uses hashed ElGamal encryption over a group of prime order p
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with UpdGen sampling a uniform δ ←$ Zp and encrypts it in UpdEnc. Similarly, the multiplicative variant put
forward by Alwen et al. [4] draws δ uniformly from the multiplicative subgroup Z∗p and uses hashed ElGamal as
well.

Unfortunately, their reliance on hashed ElGamal, which destroys the homomorphicity, appears to be inherent
as their respective security proofs crucially rely on the ROM as a means to break circularity. More concretely, in
order for those schemes to be secure, one needs that ski+1 = ski ? δi+1 and upi+1 = UpdEnc(pki, δi+1) leak no
information about ski. Intuitively, to argue this one needs, however, that upi+1 does not leak any information
about δi+1, which in turn requires ski to be secure for standard ElGamal encryption creating a cycling dependence.
Using the ROM, one can argue that Hash(pkri ) ⊕ δi+1 is uncorrelated to δi+1 unless the attacker manages to
compute pkri and thus break the CDH assumption. Without the ROM, however, this does not follow from any
standard property.

Additionally, we remark that security aside, simply avoiding the ROM wouldn’t suffice to yield a suitable
update homomorphism. Crucially, our generic construction relies on a homomorphic encryption scheme for which
the message space roughly corresponds to the secret-key space. For most (efficient) additively or multiplicatively
homomorphic PKE schemes, however, the message space coincides with the public-key space instead. As such,
even employing different cryptographic assumptions such as pairings or isogenies do not naturally lend themselves
to H-UPKE schemes.

The standard model schemes by Dodis et al. [24] circumvent this restriction by having secret keys as well as
update messages that are vectors (in the length of the security parameter) of small elements. Alternative, more
exotic, assumptions such as DDH groups with subgroups for which the discrete logarithm problem is easy — as
e.g., considered by Castagnos and Laguillaumie [21] to build an additive homomorphic variant of ElGamal —
could thus be used to circumvent this result. We remark, however, that the scheme would still need to solve
circular security (e.g., by using a BHHO-like construction like the schemes in [24]).

Forgoing H-UPKE. The use of the H-UPKE notion appears to be a very natural instantiation of the “cumulative
update” idea, but alternative constructions might exist. For instance, even without storing secret update
information on the bulletin board, being able to sample fresh randomness and store public information might
still help compared to the more rigid FS-PKE notion. For instance, it appears as if one could adapt the Boneh-
Boyen-Goh HIBE [11] scheme to have public keys of constant size (in the number of supported epochs) by having
the sender sample the public key on the fly and preparing clever update information for the receiver. Indeed,
this seems to result in a (FF-)UPKE scheme where the receiver can follow on single (non-sequential) update
link in the graph. However, an update graph with constant diameter and sub-linear out-degree is impossible,
rendering this (naive) scheme void. Unfortunately, there appears to also be some inherent barrier in boosting
such a weak FF-UPKE scheme into one that even supports following two consecutive links — without the use of
some homomorphism in the encryption scheme.

6 An (2,O(logn),O(logn))-Update Graph

As sketched in Section 1.2, our construction is inspired by the simple family of spanner graphs that recursively
join two consecutive graphs of an equal number of nodes with an overarching edge spanning from the first to the
last node, with one additional node inserted at the end of each recursive step to avoid a growing indegree. We
call this graph G̃n, where n denotes its number of nodes. See Fig. 1 (on page 7) for the example of G̃16.

Formally, the overall graph G̃ is defined as follows.

Definition 13. Consider the following graph G̃ := (N, E) with E :=
⋃
k∈N∪{0}E2k , where E1 := ∅ and for

k ∈ N
E2k := E2k−1 ∪

{
(i+ 2k−1 − 1, j + 2k−1 − 1)

∣∣ (i, j) ∈ E2k−1
}
∪
{

(2k − 1, 2k), (1, 2k)
}
.

In the remainder of the section, we prove that this construction indeed yields a (2,O(logn),O(logn))-update
graph as needed for our FF-UPKE construction to be efficient as stated in Corollary 1. More concretely, we show
the following theorem.

Theorem 5. The graph G̃ is an
(
2, 3 log2(n) + 2, log2(n) + 1

)
-update graph according to Definition 11. It can be

efficiently implemented according to Definition 12.
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6.1 Basic Properties of the Graph

Recall the graph G̃ from Definition 13. In this section, we show the first couple of properties of Theorem 5.
Namely, we show that G̃ satisfies the basic properties of an update graph, has in-degree 2 and logarithmic
diameter. To show the final property — namely that the active set is of logarithmic size — we then first do a
detour and derive an explicit formula of G̃.

Lemma 2. The graph G̃ satisfies the first two properties of an update graph, according to Definition 11.

Proof. We first prove by induction that for all k ∈ N ∪ {0}

1. ∀i ∈ [2k − 1] : (i, i+ 1) ∈ E2k ;
2. ∀(i, j) ∈ E2k : i < j.

For k = 0, [2k − 1] = [0] = ∅ and E2k = ∅, rendering both properties trivially true. Now assume k ∈ N and
the induction hypothesis to hold for k − 1. If i ∈ [2k−1 − 1], then we have by the induction hypothesis that
(i, i+ 1) ∈ E2k−1 and thus (i, i+ 1) ∈ E2k . For 2k−1 ≤ i < 2k − 1 we have (i− 2k−1 + 1, i− 2k−1 + 2) ∈ E2k−1 ,
since 1 ≥ i− 2k−1 + 1 < 2k−1, and thus (i, i+ 1) ∈ E2k . Finally, (2k − 1, 2k) ∈ E2k by definition. The second
property follows directly from the induction hypothesis, as 2k − 1 < 2k and 1 < 2k for k ∈ N.

To conclude the proof, assume towards a contradiction that one of the properties is violated for E =⋃
k∈N∪{0}E2k . First, assume that there exists an i ∈ N such that (i, i+ 1) /∈ E. This, however, contradicts that

for k ∈ N such that 2k > i we have that (i, i + 1) ∈ E2k and E2k ⊂ E. Now, assume that there exists i ≥ j
such that (i, j) ∈ E. By definition of E, there however must exists a k such that (i, j) ∈ E2k , also resulting in a
contradiction to the previously proven properties. ut

The Indegree. We now show that the maximal indegree of the graph G̃ is upper bounded by two. Showing
how the set of incoming edges can be efficiently computed is deferred to a later section.

Theorem 6. The update graph G̃ has indegree two, i.e.,

∀n ∈ N : degin
G̃ (n) = |E in

G̃ (n)| ≤ 2.

Proof. Let k := dlog2(n)e. We first argue that (i, n) ∈ E (for some i < n) implies (i, n) ∈ E2k , i.e., that the
indegree of n in G̃ is equal to the one in G̃2k . Assume towards a contradiction that this is not the case, i.e.,
there exists some k′ > k and i < n such that (i, n) /∈ E2k but (i, n) ∈ E2k′ , and consider the smallest such k′,
i.e., (i, n) /∈ E2k′−1 . Moreover, one can see that (i, n) /∈ {(u + 2k′−1 − 1, v + 2k′−1 − 1) | (u, v) ∈ E2k′−1} for
u+ 2k′−1 − 1 ≥ u+ 2k − 1 ≥ 2k ≥ n. Finally, as 2k′ > n we have (i, n) /∈ {(2k′ − 1, 2k′), (1, 2k′)}, and thus by
the definition of E2k′ we obtain the contradicting (i, n) /∈ E2k′ .

Next, observe that E1 = ∅ and thus every node in G̃1 has indegree 0. Now consider G̃2k for an arbitrary
k ∈ N and assume as induction hypothesis that each node n ∈ N \ {1} in G̃2k−1 has indegree at most 2 and
node 1 has indegree 0. First, we remark that E2k−1 ⊆ [2k−1]2 and {(u + 2k−1 − 1, v + 2k−1 − 1) | (u, v) ∈
E2k−1} ⊆ {2k−1, . . . , 2k − 1}2. Thus, node 2k has indegree 2, from the two additional links, and the nodes in
{1, . . . , 2k−1 − 1, 2k−1 + 1, . . . , 2k − 1} inherit their indegree from the respective copy of E2k−1 . Since the node
2k−1 has moreover indegree 0 in the second copy, it follows that all nodes have indegree at most 2 and node 1
has indegree 0. ut

The Diameter. Next, we prove that each prefix G̃n of the graph G̃ has a diameter O(logn) diameter.

Lemma 3. Let k ∈ N \ {1}. For every x, y ∈ [2k] such that x < y there exists a path x  y in G̃2k such that
|x y| ≤ 3k − 5.

Proof. We prove the lemma using two additional claims about the shortest path from x to the middle node 2k−1

and from 2k−1 to y.

Claim. Let k ∈ N. For every y ∈ [2k] there exists a path 1 y in G̃2k such that |1 y| ≤ k.
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Proof: For k = 1, there exists an edge (1, 2), trivially satisfying the property. Now consider k ≥ 2 and assume
the property to hold for k − 1. If y ≤ 2k−1, then by the induction hypothesis |1 y| ≤ k − 1. If y = 2k−1, then
we know from the construction of G̃2k that there is an edge (1, 2k), i.e., |1 2k| = 1. Finally, for 2k−1 < y < 2k,
we know that there is an edge (1, 2k−1). Moreover, by the construction of G̃2k , we know that each path 2k−1  y
corresponds to a path 1 y − 2k−1 + 1 in G̃2k−1 . Thus, we know from the induction hypothesis that there exists
a path such that |2k−1  y| ≤ k − 1 and, thus, |1 y| ≤ k. �

Claim. Let k ∈ N \ {1}. For every x ∈ [2k] there exists a path x 2k in G̃2k such that |x 2k| ≤ 2k − 2.

Proof: Let k = 2 and observe that there are edges (1, 4), (2, 3), and (3, 4). Thus for every x ∈ [4] there exits a path
|x 4| of length at most 2. Now consider an arbitrary k > 2. If x ≤ 2k−1, then by the induction hypothesis we
know that there exists a path x 2k−1 of length at most 2(k−1)−2. Moreover, {(2k−1, 2k−1), (2k−1, 2k)} ⊆ E2k
and thus there exists an overall path of length 2(k − 1)− 2 + 2 = 2k − 2. Analogously, if 2k−1 < x < 2k, then
we know that a path x 2k − 1 in G̃2k corresponds to a path x− 2k−1 + 1 2k−1 in G̃2k−1 , for which by the
induction hypothesis we know that there exists one of length at most 2(k− 1)− 2. Combining this with the edge
(2k − 1, 2k) thus immediately yields an overall path of length at most 2(k − 1)− 1 = 2k − 3. Finally, if x = 2k,
there trivially exists a path of length 0. �

We now can combine those two results to yield our claim: for any x and y in G̃2k we know from the first claim
that there exists a path x  2k−1 such that |x  2k−1| ≤ k − 1. By the recursive construction, we moreover
know that a path 2k−1  y corresponds to a path 1 y − 2k−1 in G̃2k−1 , for which by the second claim there
exists one of length at most 2(k − 1)− 2, resulting in a total path of length k − 1 + 2(k − 1)− 2 = 3k − 5. ut

Using this lemma about the diameter of the graphs G̃2k we now immediately yield the following theorem
about the general diameter.

Theorem 7. For every n ∈ N, we have diam(G̃n) ≤ 3 log2(n) + 2.

Proof. First consider the cases of n < 4. Clearly diam(G̃1) = 0, diam(G̃2) = 1, and diam(G̃3) = 2. For n ≥ 4, let
k := dlog2(n)e ≥ 2. By Lemma 3, we thus have

diam(G̃n) ≤ diam(G̃2k) ≤ 3k − 5 ≤ 3dlog2(n)e − 2 < 3 log2(n) + 2,

concluding the proof. ut

6.2 An Explicit Formula.

To provide an explicit formula of active(n) and E in(n) (and respective algorithm to efficiently compute them),
we first need to analyze the graph in some more detail. First, we observe that all non-trivial (i.e, not (i, i+ 1))
edges have the length of a power of two minus one.

Lemma 4. For all (i, j) ∈ E, where G̃ = (N, E), either j = i+1 or j− i = 2`−1 for some ` ∈ {2, . . . , dlog2(j)e}.

Proof. The base case E1 = ∅ is trivial. Assume for an arbitrary k ∈ N that the property holds for E2k−1 . Clearly,
adding 2k−1−1 to both the head and tail of a link (i, j) ∈ E2k−1 preserves its length. Moreover, (i, j) = (2k−1, 2k)
satisfies j = i+ 1 and (i, j) = (1, 2k) satisfies j − i = 2` − 1 for ` = k if k ≥ 2 and j = i+ 1 if k = 1. ut

Second, we provide an explicit formula for all starting points of non-trivial edges in the following lemma.

Lemma 5. For k ∈ N\{1} and 2 ≤ ` ≤ k, let tails(k, `) denote the set of vertices of G̃2k which have an outgoing
edge of length 2` − 1, i.e.,

tails(k, `) :=
{
i ∈ [2k]

∣∣ (i, i+ 2` − 1) ∈ E2k
}
.

Then, we have that
tails(k, `) =

{
i · 2` − wH(i) + 1

∣∣ i ∈ {0, . . . , 2k−` − 1}
}
,

where wH(i) denotes the Hamming weight of the binary representation of i.
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Proof. We prove this using induction over k. First, for the base case consider k = 2, i.e., G̃4 for which (1, 4) ∈ E4
is obviously the only edge of length 3 and thus tails(2, 2) = {1}. However, we also have {i · 22 − wH(i) + 1 | i ∈
{0, . . . , 22−2 − 1}} = {0 · 4− wH(0) + 1} = {1}, concluding the case k = 2.

Now consider an arbitrary k > 2. First, for the case ` = k, analously to above we have that tails(k, `) =
{1} = {i · 2` − wH(i) + 1

∣∣ i ∈ {0, . . . , 20 − 1}}. Second, consider the case 2 ≤ ` < k and recall that

E2k := E2k−1 ∪
{

(i+ 2k−1 − 1, j + 2k−1 − 1)
∣∣ (i, j) ∈ E2k−1

}
∪
{

(2k − 1, 2k), (1, 2k)
}
.

Since the edge (2k − 1, 2k) has length 1 < 2` − 1 and the edge (1, 2k) has length 2k − 1 > 2` − 1, we obtain

tails(k, `) = tails(k − 1, `) ∪ {i+ 2k−1 − 1 | (i, j) ∈ tails(k − 1, `)}

and, thus, by the induction hypothesis

tails(k, `) = {i · 2` − wH(i) + 1 | i ∈ {0, . . . , 2k−1−` − 1}}
∪ {i · 2` − wH(i) + 2k−1 | i ∈ {0, . . . , 2k−1−` − 1}}

= {i · 2` − wH(i) + 1 | i ∈ {0, . . . , 2k−1−` − 1}}
∪ {(j − 2k−1−`) · 2`︸ ︷︷ ︸

j·2`−2k−1

−wH(j − 2k−1−`) + 2k−1 |

j ∈ {2k−1−`, . . . , 2k−` − 1}}
= {i · 2` − wH(i) + 1 | i ∈ {0, . . . , 2k−1−` − 1}}

∪ {j · 2` − wH(j − 2k−1−`) | j ∈ {2k−1−`, . . . , 2k−` − 1}},

where in the first step we substituted i 7→ j − 2k−1−`. Since j ≥ 2k−1−` we moreover have wH(j − 2k−1−`) =
wH(j) + 1, which concludes the proof. ut

As a corollary, we immediately obtain an explicit formula for E2k . (Recall that by definition E1 = ∅, and by
inspection it is easy to see that E2 = {(1, 2)}.)

Corollary 2. For k ∈ N \ {1} we have

E2k = {(i, i+ 1) | i ∈ [2k − 1]} ∪ ⋃
`∈{2,...,k}

{(
i · 2` − wH(i) + 1, (i+ 1) · 2` − wH(i)

) ∣∣ i ∈ {0, . . . , 2k−` − 1}
}
.

Additionally, we can deduce from Lemma 5 that no two edges of the graph cross.

Corollary 3. Let k, `, `′ ∈ N be arbitrary. We then have:

(a) For any x, x′ ∈ tails(k, `) such that x 6= x′ we have |x−x′| ≥ 2`−1. Moreover, for i such that x = i2`−wH(i)+1
and x′ = i′2` − wH(i′) + 1, existing according to Lemma 5 respectively, we have i > i′ iff x > x′.

(b) For any x ∈ tails(k, `) and x′ ∈ tails(k, `′) with x < x′ < x+ 2` − 1, we have x′ + 2`′ − 1 < x+ 2` − 1.

Proof. We first prove Corollary 3a. First, let i = i′ + 1. Then we have i2` − wH(i) − (i′2` − wH(i′)) = 2` +
wH(i′)− wH(i′ + 1) ≥ 2` − 1 > 0. Hence, by an inductive argument we get x > x′ ⇒ i > i′. To show the other
direction, assume x > x′ but i′ > i (obviously i′ 6= i). However as we just shown, i′ > i implies x′ > x, resulting
in a contradiction. Next, assume w.l.o.g. that x > x′. We then have

x− x′ = i · 2` − wH(i) + 1− (i′ · 2` − wH(i′) + 1)
= (i− i′) · 2` − (wH(i)− wH(i′))
≥ (i− i′) · 2` − (i− i′) ≥ 2` − 1,

where in the third step we first used that wH(i)−wH(i′) ≤ i− i′, as i > i′, concluding the first part of the proof.
Second, we show Item b. If `′ = `, then this directly follows from Corollary 3a. If `′ > `, then as wH(i ·2`′−`) =

wH(i), by Lemma 5, we have x′ ∈ tails(k, `) as well. Hence, by Corollary 3a x′ > x implies x′ ≥ x+ 2` − 1 and
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hence the implication is trivially satisfied. Finally, consider the case of `′ < `. Using j := i · 2`−`′ , and thus
wH(j) = wH(i), we can rewrite x and x+ 2` − 1 as

x = i · 2` − wH(i)− 1 = j · 2`
′
− wH(j)− 1, (1)

x+ 2` − 1 < (i+ 1) · 2` − wH(i) + 1 = j · 2`
′
+ 2` − wH(j) + 1. (2)

Hence, in order for x < x′ < x+ 2` − 1 to hold, we can see i′ must be in the following range:

i · 2`−`
′

= j < i′ ≤ j + 2`−`
′
− 1 = (i+ 1)2`−`

′
− 1.

Using Corollary 3a we know that x′ is maximized if we set i′ = (i+ 1) · 2`−`′ − 1. Thus, we can derive

x′ + 2`
′
− 1 = (i′ + 1) · 2`

′
− wH(i′)

= (i+ 1) · 2` − wH((i+ 1)2`−`
′
− 1)

= (i+ 1) · 2` −
(
wH(i · 2`−`

′
) + wH(2`−`

′
− 1)

)
< (i+ 1) · 2` − wH(i) = x+ 2` − 1,

concluding the proof. ut

Active Nodes and Incoming Edges. Using Lemmas 4 and 5 and Corollary 3 explicit formulas for active(n)
and E in(n) can be obtained.

Lemma 6. For the graph G̃ and the corresponding function tails as defined in Lemma 5, let

lastTail(n, `) := max
{
i ∈ tails

(
dlog2(n)e, `

) ∣∣ i < n
}

active(n, `) :=
{
∅ if lastTail(n, `) ≤ n− 2` + 1,
{lastTail(n, `)} else.

Then, for n ∈ N \ {1} we have
active(n) = {1} ∪

⋃
`∈{2,...,dlog2(n)e}

active(n, `).

Proof. In the following, let k := dlog2(n)e. We first show that active(n) ⊇ {1} ∪
⋃
`∈{2,...,k} active(n, `). As a

first step, we recall that (1, 2k+1) ∈ E2k+1 with 1 < n < 2k+1 and, thus, 1 ∈ active(n). Next, for ` ∈ {2, . . . , k}
consider i ∈ active(n, `). By definition this means i = lastTail(n, `) and i > n− 2` + 1. For j := i+ 2` − 1 > n,
we thus obtain (i, j) ∈ E2k , as i ∈ tails(k, `), which shows that i ∈ active(n).

Second, we show that active(n) ⊆ {1}∪
⋃
`∈{2,...,k} active(n, `). To this end, consider an arbitrary i ∈ active(n).

Claim. If i ∈ active(n) and i 6= 1, then there exists ` ∈ {2, . . . , k} such that i = lastTail(n, `) and i > n− 2` + 1.

Proof: Recall that i ∈ active(n) means that there exists an j such that i < n < j and (i, j) ∈ E. By Lemma 4 we
have j−i = 2`−1 for some ` ≥ 2. Since j > n, this yields i+2`−1 > n, which in turn is equivalent to i > n−2`+1.
Moreover, observe that i ∈ tails(dlog2(j)e, `) by definition of tails. Assume towards a contradiction that j > 2k. Let
k′ ∈ N be the smallest such that (i, j) ∈ E2k′ . Hence, (i, j) /∈ E2k′−1 . Furthermore, we have k′ > k as E2k ⊆ [2k]2
and, thus, i < 2k ≤ 2k′−1. As a result, we can deduce that (i, j) /∈ {(u+2k′−1−1, v+2k′−1−1) | (u, v) ∈ E2k′−1}.
Since moreover j − i ≥ 2 and i 6= 1 we can also conclude that (i, j) /∈ {(2k′ − 1, 2k′), (1, 2k′)} to arrive at the
contradiction to (i, j) ∈ E2k′ .

Hence, we have j ≤ 2k and, thus, ` ≤ k. As j > n, it must however hold that dlog2(j)e = k = dlog2(n)e. Thus,
we have i ∈ tails(k, `) and i < n moreover makes it a candidate for lastTail(n, `). Using Corollary 3a we moreover
know that for any i′ ∈ tails(k, `) with i′ > i, we have i′ ≥ i+ 2` − 1 = j > n. Hence, i = lastTail(n, `). �

Using this claim, we immediately obtain that for all i ∈ active(n) \ {1}, there exists ` ∈ {2, . . . , k} such that
{i} = active(n, `), concluding the proof. ut
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Lemma 7. For the graph G̃ and the corresponding functions tails and lastTail as defined in Lemmas 5 and 6,
respectively, let

E in(n, `) :=
{
{lastTail(n, `)} if lastTail(n, `) = n− 2` + 1,
∅ else.

Then, for n ∈ N \ {1} we have
E in(n) = {n− 1} ∪

⋃
`∈{2,...,dlog2(n)e}

E in(n, `).

Proof. Let i ∈ E in(n), i.e., (i, n) ∈ E and assume n > i + 1. (If n = i + 1, then (i, n) is obviously contained
in the right hand set.) By Lemma 4 there exists ` ≥ 2 such that n − i = 2` − 1. For k := dlog2(n)e, we thus
have i ∈ tails(k, `). Using Corollary 3a, we moreover know that for i′ > i, such that i′ ∈ tails(k, `), it holds that
i′ ≥ i+ 2` − 1 = n. As a consequence, we have i = lastTail(n, `), and since i = n− 2` + 1, thus E in(n, `) = {i}.

For the other direction, first observe that {n− 1} ∈ E in(n) follows directly by the update graph property of
G̃. Now consider an arbitrary element of the union, i.e., i ∈ E in(n, `) for some ` > 2. By definition we thus have
i = lastTail(n, `) ∈ tails(dlog2(n)e, `) and i = n− 2` + 1. Hence, by the definition of tails, (i, n) ∈ E2dlog2(n)e ⊂ E,
which is equivalent to i ∈ E in(n). ut

6.3 Implementing the Graph.

It remains to implement our update graph G̃. Recall that we require an implementation of an (α, β, γ)-update
graph to provide the following two algorithms:

– (In,A)← G̃.Eval(i) which computes In = E in(n) and A = active(n) in O(poly(logn)) time,
– ~p← G̃.Path(i, j) which computes a path from node i to j such that |~p| ≤ diam(j) ≤ β(j) in O(poly(β(j)j)).

Our implementation makes use of the helper lastTail(n, `), which returns the largest index x < n that has an
outgoing edge of length 2` − 1. (Note that according to the construction, all edges are of length 2` − 1 for some
` ∈ N.) The concrete implementation of lastTail(n, `) is based on an explicit formula of the graph outlined in
Section 6.2.

The G̃.Path(i, j) algorithm depicted in Fig. 9 works by greedily always taking the longest outgoing edge that
does not go past node j. To this end, note that if there is an outgoing edge of length 2` − 1 from node i, then
lastTail(i+ 2` − 1, `) = i. This is due to the fact that in G̃ edges of equal length never cross. Thus, any node k
with i < k < i+ 2` − 1 does not have an outgoing edge of length 2` − 1 and, hence, i is the largest index that
satisfies the condition of lastTail.

The G̃.Eval(n) needs to output the set of incoming edges E in
G̃ (n) to node n as well as the set of active nodes

activeG̃(n). To this end, it considers all possible edge lengths 2` − 1 with ` ≤ dlog2(n)e. (Recall that any active
edge not present in the subgraph G̃dlog2(n)e of the first dlog2(n)e nodes will start at node 1 that can be handled
as a special case.) If lastTail(n, `) equals n − 2` + 1 then by the same argument as in G̃.Path(i, j) there is an
incoming edge from n− 2` + 1. If lastTail(n, `) > n− 2` + 1, then an edge of length 2` − 1 starts at lastTail(n, `)
and crosses node n, thus belonging to the active set. As no edges of the same length cross, those are moreover all
active nodes.

Theorem 8. The algorithms in Fig. 9 implement a
(
2, 3 log2(n) + 2, log2(n) + 1

)
-update graph.

Proof. We divide the proof into two parts about the respective algorithms.

Claim. The algorithm G̃.Eval(n) outputs the sets E in
G̃ (n) and activeG̃(n) in O(poly(logn)) time.

Proof: It is easy to see that G̃.Eval(n) makes O(logn) invocations to the helper algorithm lastTail(n, `), which in
turn has running time O(poly(logn)). For correctness, we moreover immediately get by Lemmas 6 and 7 that
the output is correct as long as lastTail implements the function defined in Lemma 6. To this end, consider
lastTail(n, `) as defined in Lemma 6. Using Lemma 5 we can conclude that for x := lastTail(n, `) we have

x = lastTail(n, `) = max{i2` − wH(i) + 1 | i < 2log2(n)−` ∧ i2` − wH(i) + 1 < n}.
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Protocol Update Graph

G̃.Eval(n)
if n = 1 then

return (∅,∅)
k ← dlog2(n)e
A← {1}
In← {n− 1}
for `← 2, . . . , k do

x← lastTail(n, `)
if x > n− 2` + 1 then

A← A ∪ {x}
else if x = n− 2` + 1 then

In← In ∪ {x}
return (In,A)

G̃.Path(i, j)
~e← ∅
while i < j do

// greedily take longest link
for ` ∈ k, k − 1, . . . , 2 do

p← i+ 2` − 1
if lastTail(p, `) = i then

~e← ~e ‖ (i, p)
i← p
continue // jump to header of while

// no non-trivial link found
~e← ~e ‖ (i, i+ 1)
i← i+ 1

return ~e

helper lastTail(n, `)
k ← dlog2(n)e
xmax ← 0
for q ← 0, . . . , k + 1 do

i←
⌊
(n− 1 + q)/2`

⌋
x← i2` − wH(i) + 1
if x ≥ xmax ∧ x < n ∧ 2k−` then

xmax ← x
return xmax

Fig. 9: An implementation of the (2,O(logn),O(logn))-update graph G̃.

First, for imin =
⌊
n−2
2`
⌋
, we have

imin2` − wH(i) + 1 ≤ n− 2− wH(imin) + 1 < n,

and ⌊
n− 2

2`

⌋
≤ n− 2

2` ≤ 2k − 2
2` < 2k−`,

making imin a valid candidate for the maximum.. Second, we can observe that

i = x+ wH(i)− 1
2` ≤ x+ wH(n)− 1

2` ≤ x+ k − 1
2` ,

Hence, if i∗ denotes the one maximizing lastTail(n, `), we have⌊
n− 2

2`

⌋
≤ i∗ ≤

⌊
n+ k − 1

2`

⌋
,

showing that our implementation of lastTail(n, `) is correct. �

Claim. The greedy algorithm implemented by G̃.Path(i, j) returns the shortest path from i to j.

Proof: This directly follows from Corollary 3b, stating that no two edges in the graph cross. In other words, if
we are currently at node u and (u, v) is the longest outgoing edge, then it is never beneficial to not take this
edge, given that there cannot be an edge starting at u < w < v that skips v. �

6.4 Proof of Theorem 5

Theorem 5. The graph G̃ is an
(
2, 3 log2(n) + 2, log2(n) + 1

)
-update graph according to Definition 11. It can be

efficiently implemented according to Definition 12.

Proof. The first two properties of Definition 11 have been proven as a part of Lemma 2. The third and fourth
properties have been proven as Theorems 6 and 7, respectively. The final property directly follows from Lemma 6
as |active(n, `)| ≤ 1, by definition, and |{2, . . . , dlog2(n)e}| ≤ log2(n). The graph being efficiently implementable
has been shown in Theorem 8. ut

7 Conclusions and Open Problems

We identified fast-forwarding as a compelling property of forward-secure encryption, and have shown that in the
practically relevant bulletin-board model fast-forwarding can be obtained at little additional cost. First, we have
constructed a fast-forwardable stream cipher that maintains a constant local state and has a constant running
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time per update operation. This essentially matches the efficiency of non-fast-forwardable stream ciphers at the
cost of constant communication complexity with the bulletin board per update.

Second, we presented a generic construction of a fast-forwardable updatable public-key encryption scheme
from a novel primitive of an update-homomorphic UPKE scheme. This bridges the gap between forward-secure
PKE, for which fast-forwardability is the norm, and its more efficient cousin UPKE, where none of the existing
schemes were fast-forwardable. As a feasibility result, we presented instantiations based on the DDH and LWE
assumptions, respectively.

While neither instantiation is truly practical, we believe that our novel construction of FF-UPKE could
ultimately lead to constructions significantly outperforming those of forward-secure PKE, resolving the dilemma of
practical public-key encryption to having to choose between forward-secrecy and fast-forwarding. Accordingly, this
leaves the construction of efficient update-homomorphic UPKE schemes as an intriguing problem, demonstrating
that while highly practical UPKE schemes are known to exist in the ROM, the search for efficient schemes in
the standard model may be of interest for the sake of exhibiting homomorphic properties typically unknown to
ROM constructions.
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Protocol GGM based FF-PRG

The parameter h specifies the GGM tree’s depth, i.e., the PRG supports up to 2h epochs.

Init(key)
Seeds[·]← ⊥
sl ← key
for i← 1, . . . , h do // Expand leftmost path

(sl, sr)← PRG.Expand(sl)
// Keep co-path nodes in state
idxr ← rightChild(i)
Seeds[idxr]← sr

st1 ← (1, Seeds)
return (st1,R1,∅)

Update-Idx(i)
return ∅

Leap-Idx(i, j)
return ∅

Update(sti,BBIi)

parse (i,Seeds)← sti
return Leap(sti, i+ 1,BBIi)

Leap(sti, j,BBIi,j )

parse (i,Seeds)← sti
idx ← leaf(i)
idx′ ← leaf(j)
repeat// Find copath ancestor of idx′

idx ← rCoPath(idx)
s← Seeds[idx]
Seeds[idx]← ⊥ // Delete for forward secrecy
idx ← idx′

until isAncestor(idx, idx′)
while idx 6= idx′ do // Derive path to idx′

if isAncestor(idx + 1, idx′) then // Go down left
(s, sr)← PRG.Expand(s)
idxr ← rightChild(idx)
Seeds[idxr]← sr // Store right copath
idx ← idx + 1

else // Go down right
(·, s)← PRG.Expand(s)
idx ← rightChild(idx)

stj ← (j, Seeds)
return (stj , s,∅)

Fig. 10: The GGM-based FF-PRG does not make use of the bulletin board.

A Simple Constructions

A.1 GGM as an FF-PRG

In this section, we outline the adaptation of the basic GGM construction to a fast-forwardable PRG (see Defini-
tion 2). To this end, we adapt the template [7,42] (for building forward-secure signature schemes) to the GGM
tree.

The scheme. The idea is to use the i-th leaf value vleaf(i) of the GGM tree as the i-th PRG output. In epoch i
one then additionally stores the right copath of vleaf(i) — the set of nodes u such that u is a right child, u.parent
is an ancestor of vleaf(i), and u is not an ancestor of vleaf(i) (i.e., is not on its direct path). From these, at most
log(n) internal nodes of the GGM tree one can derive precisely all the secrets for periods j ≥ i using at most
log(n) PRG evaluations, giving us the desired sublinear (actually, logarithmic) fast-forward property. At the
same time, however, none of the previous epoch’s secrets can be derived, ensuring forward secrecy.

In Fig. 10 we present a formal definition of this FF-PRG protocol for 2h outputs using a complete binary tree
of depth h. The Init algorithm thus takes an initial seed and uses a length-doubling PRG to derive the leftmost
leaf, storing all the derived right children as part of the local state. The Leap algorithm, to jump from epoch i to
j, first finds the unique node on the right copath that is an ancestor of the j-th leaf, which it can then derive
from there. To update the stored right copath, observe that the right copaths of the i-th and j-th leaves share
the part above this node. Thus, the algorithm deletes all nodes below that node and stores the ones obtained
when deriving the new leaf instead. Finally, the Update algorithm is just a special case of the Leap algorithm.

Note that none of the algorithms uses the bulletin board to either store or receive data. As a result, both
Update-Idx and Leap-Idx return an empty set of indices to access.

Analysis. In the following we argue that the aforementioned construction is a secure FF-PRG according to
Definitions 3 and 4. More concretely, we claim that it satisfies the following lemma stated in Section 1.

Lemma 1 (Informal). The template [7,42] (for building forward-secure signature schemes) can be adapted to
the Goldreich-Goldwasser-Micali (GGM) construction [32] to build a forward-secure PRG with the fast-forward
property. If n denotes the maximal number of epochs, then the scheme stores O(log(n)) seeds as local state, and
sequential updating as well as fast-forwarding from epoch i to j > i take O(log(n)) PRG expansions.
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Game IND-CPAHIBE,A

Initialization

b←$ {0, 1}
(mpk, hsk)← HIBE.setup(1κ)
Rev-ID,Chal-ID,Ctxts← ∅

Oracle Challenge(~id,m0,m1)

if |m0| = |m1| then
Chal-ID← Chal-ID ∪ {~id}
c← HIBE.enc(mpk, ~id,mb)
Ctxts← Ctxts ∪ {(c, ~id)}
return c

Oracle Corrupt(~id)

Rev-ID← Rev-ID ∪ {~id}
return HIBE.kg(hsk, ~id)

Finalization(b′)

if ∃~id ∈ Rev-ID, ~id′ ∈ Chal-ID
s.t. ~id prefix of ~id′

then return false
else return b = b′

Fig. 11: The IND-CPA game for HIBE.

Proof (Sketch). The efficiency claim follows directly by inspection of the construction depicted in Fig. 10. For
correctness, we need to argue that fast-forwarding yields both the same state and output as repeatedly sequential
updating. First, we argue that both methods end up outputting the same j-th leaf value for epoch j. To this end,
we observe that for any i < j, the j-th leaf is a descendent of one of the i-th right copath’s nodes. (In general
any leaf j 6= i is one one of the i-th copath’s nodes with j > i ensuring that this holds true when restricting to
the right copath.) Second, we observe that for both methods the state ends up being the j-th right copath.

For security, we first observe that due to the scheme being deterministic we only need to consider at most
one corruption. W.l.o.g. assume that the adversary corrupts the j-th state. As argued above, this state consists
of the j-th right copath, from which all leaves k > j can be reached but none of the leaves i < j. Hence, security
follows directly from the security of the underlying PRG used to expand the GGM tree. ut

A.2 A HIBE Based FF-UPKE

We can adapt the previous section’s scheme to a fast-forwardable UPKE scheme by the use of hierarchical
identity-based encryption (HIBE) instead of the PRG. In a nutshell, the scheme replaces the GGM tree with the
HIBE secret-key tree maintained by the receiver. Before outlining the scheme, let us thus briefly introduce HIBE
in a bit more detail.

Hierarchical Identity-Based Encryption. A hierarchical identity-based encryption (HIBE) [35,31] scheme
is an encryption scheme, that by using the master public key allows encrypting to a specific identity vector ~id,
such that the message can only be decrypted using a secret key for that identity ~id. Those secret keys can be
hierarchically derived from the master secret key. That is, from the secret key for ~id, secret keys for ~id ‖ ~id

′
,

for arbitrary suffixes ~id
′
, can be derived. The HIBE secret keys can be seen as a tree, where the master secret

key, corresponding to the empty ~id, is the root, and keys at depth k correspond to ~id’s of length k. A secret key
allows decrypting ciphertexts encrypted for keys in its subtree, and only those.

Formally, a HIBE scheme is a tuple of algorithms HIBE = (HIBE.setup,HIBE.kg,HIBE.enc,HIBE.dec) with
the following syntax.

– Setup: (mpk, hsk())← HIBE.setup samples a fresh master public key and the corresponding root secret key.
– Key Generation: hsk~id‖id ← HIBE.kg(hsk~id, id) outputs a lower-level secret key. For compactness, we write

hsk~id‖~id′ ← HIBE.kg(hsk~id, ~id
′
) to denote the iterative derivation of hsk~id‖~id′ using each id ∈ ~id

′
.

– Encryption: c← HIBE.enc(mpk, ~id,m) encrypts m for identity vector ~id.
– Decryption: m← HIBE.dec(hsk~id, c) decrypts c.

We require that HIBE schemes satisfy IND-CPA security, as captured by the game depicted in Fig. 11. It is
the standard IND-CPA game with an additional corrupt oracle, which outputs secret keys for identity vectors
chosen by the adversary. To disable “trivial wins”, the game stores the set Chal-ID of identity vectors used in
challenge queries and the set Rev-ID of identity vectors used in corrupt queries, and checks that a corrupted
identity is not a prefix of a challenged identity.
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Protocol HIBE based FF-UPKE

The parameter h specifies the depth of the HIBE tree, i.e., the stream cipher supports at most 2h epochs.

KeyGen(1κ)
(mpk, hsk)← HIBE.setup(1κ)
SK[·]← ⊥
// Expand leftmost path
for i← 1, . . . , h do

hskl ← HIBE.kg(hsk, 0)
hskr ← HIBE.kg(hsk, 1)
// Keep co-path nodes in state
idxr ← rightChild(i)
SK[idxr]← hskr
hsk← hskl

sk1 ← (1, hsk, SK)
pk1 ← (1,mpk)
return (pk1, sk1,∅)

Encrypt(pki,m)
parse (i,mpk)← pki
~id← binary(i− 1, h)
c← HIBE.enc(mpk, ~id,m)
return c

Decrypt(ski, c)
parse (i, hsk, ·)← ski
m← HIBE.dec(hsk, c)
return m

UpdatePK(pki,BBIi)

parse (i,mpk)← pki
pki+1 ← (i+ 1,mpk)
return (pki+1,∅)

UpdatePK-Idx(i)
return ∅

UpdateSK(ski,BBIi)

parse (i, hsk, SK)← sti
return Leap(ski, i+ 1,BBIi)

UpdateSK-Idx(i)
return ∅

LeapSK(ski, j,BBIi,j )

parse (i, ·, SK)← ski
idx ← leaf(i)
idx′ ← leaf(j)
// Find copath ancestor of idx′
repeat

idx ← rCoPath(idx)
hsk← SK[idx]
SK[idx]← ⊥ // Delete for forward secrecy
idx ← idx′

until isAncestor(idx, idx′)
// Derive path to idx′
while idx 6= idx′ do

if isAncestor(idx + 1, idx′) then // Go down left
hskl ← HIBE.kg(hsk, 0)
hskr ← HIBE.kg(hsk, 1)
idxr ← rightChild(idx)
SK[idxr]← hskr // Store right copath
idx ← idx + 1
hsk← hskl

else // Go down right
hsk← HIBE.kg(hsk, 1)
idx ← rightChild(idx)

skj ← (j, hsk, SK)
return skj

LeapSK-Idx(i, j)
return ∅

Fig. 12: The HIBE-based FF-UPKE.

Definition 14. Let AdvIND-CPA
HIBE,A := 2 Pr[IND-CPAHIBE,A = true] − 1 denote the advantage of A against the

game defined in Fig. 11 without the Decrypt oracle. A scheme HIBE is IND-CPA secure, if for all PPT adversaries
A, AdvIND-CPA

HIBE,A is negligible in κ.

The scheme. The scheme, depicted in Fig. 12, then works analogously for the GGM-based FF-PRG: It simply
replaces the PRG expansion of a seed into its left and right sub-seeds by two key derivations for the sub-identities
0 and 1.

Encryption works by encrypting to the respective epoch’s leaf identity. To this end, we define binary(n, h) to
return the h digit binary representation of n. (Note that epoch number starts at 1, while the corresponding leaf
index is the all-zero string.)

Analysis. Analogous to the GGM-based FF-PRG, we can summarize the construction using the following
lemma. The proof is analogous to the one of Lemma 1, where instead of PRG security one uses the correctness
and IND-CPA security of the HIBE scheme to argue the respective properties.

Lemma 8. The scheme from Fig. 12 is a correct and IND-CPA secure FF-UPKE, according to Definitions 6
and 7. If h denotes the height of the tree (i.e., the construction allows for at most 2h epochs), then the secret key
consists of O(log(h)) secret keys of the underlying HIBE scheme, and sequential updating as well as fast-forwarding
from epoch i to j > i take O(log(h)) secret-key derivations.
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B Homomorphic UPKE Schemes

We rely on standard model constructions of Dodis et al. [24] to present the construction of homomorphic UPKE.
Their constructions, from DDH and LWE, relied on three properties: combined leakage resilience and circular
security, message homomorphism, and key homomorphism. We will leverage the homomorphism properties to
show how to build homomorphic UPKE. Due to space constraints, we will not reproduce the security proof of
these constructions in full. We invite the reader to refer to the work of Dodis et al. [24] for the complete details.

B.1 An LWE-Based Construction

We now re-frame their LWE Construction according to our syntax. There are some critical differences between
their construction and ours. First, we increase the message space from bits to Zq with q � p. In other words,
rather than encoding the input m as an element in Z2, we encode it as Zq. Further, the ? operation is also defined
over this space Zq. We will then prove that this construction is indeed update-homomorphic. This construction
is presented as Fig. 13. Finally, as a corollary of the results of Brakerski and Vaikuntanathan [17], we get the
following theorem:

Theorem 9. Under the LWE assumption, the construction presented in Fig. 13 is update-homomorphic, i.e., a
correct and secure H-UPKE scheme, supporting the aggregation of up to q atomic updates.

B.2 A DDH-Based Construction

We now present their DDH Construction but in our definition. Note that in this construction update ciphertext
has a value z at the beginning. This is to represent the upper bound on the value each element of δ. In other
words, encrypting δ that is a bit string, will have the value of z as 1. However, when one combines updates
corresponding to two values δ, δ′ where each has an upper bound z and z′, it produces a resulting encryption of
δ′′ with upper bound z + z′. This can be seen in the function Upd-Comb.

While this was observed in the LWE-based construction as well, this construction critically uses it to efficiently
compute the discrete logarithm. As a result, using for instance Pollard’s rho algorithm, fast-forwarding from
epoch i to j ends up having local computation time O(

√
j − i) instead of O(log(j)).

Theorem 10. Under the DDH Assumption, the construction as presented in Fig. 14 is update-homomorphic.

Proof. This proof follows from the definition and correctness of the underlying UPKE Scheme.

C Details on the Fast-Forwardable PRG Construction

In this section, we provide a formal description of the (basic) fast-forwardable PRG construction in the bulletin-
board model.

To this end, we consider the construction for up to 2h epochs that makes use of a GGM tree of height h. We
assume that the tree nodes are index according to the preorder depth-first traversal of the tree. Observe that
this implies that for an inner node idx, its left child has an index idx + 1. Moreover, if idx is just one level above
the leaves (i.e, if its children are leaves) then its right child has index idx + 2. To simplify the exposition, we
additionally introduce the following notation:

rightChild(idx) Returns the right child’s index of the inner node idx.
isAncestor(idx, idx′) Returns true iff idx is an ancestor of idx′, i.e., iff idx lies on the path from idx′ to the root.

leaf(e) Returns the e-th leaf. (Corresponding to the e-th epoch).
isLeaf(idx) Returns true iff idx denotes a leaf node.

prevLeaf(idx) Returns the next lower index idx′ < idx such that isLeaf(idx′). (Undefined if no such node
exists.)

nextLeaf(idx) Returns the next higher index idx′ > idx such that isLeaf(idx′). (Undefined if no such node
exists.)

rCoPath(idx) Returns the first node on idx’s right copath. (Undefined if no such node exists.)
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Protocol LWE-Based UPKE

KeyGen(1κ)

Sample A←$ Zn×mp

Sample s1 ←$ {0, 1}m
Compute u1 = As
return (pk1 = (A,u1), sk1 = (s1))

Encrypt(pki, b ∈ Zq)
Parse pki = (A,ui)
Sample x←$ Znp , e←$ χm, e′ ← χ′

Compute t = ATx+ e, pad = 〈x,u〉+ e′ + bbp/qc
return c = (t, pad)

Decrypt(ski, c)
Parse c = (t, pad) and ski = si
Compute b′ = (pad− 〈si, t〉) ∈ Zp
return bb′ · q/pc

UpdGen(1κ)
Sample δi = (δ1, . . . , δm)←$ {0, 1}m
return δi

UpdEnc(pki, δi+1)
Encrypt δ bit-by-bit, i.e., up = (1, (Encrypt(pki, δ1), . . . ,Encrypt(pki, δm))).
return up

UpdDec(ski, upi+1)

Parse up = (z, c1, . . . , cm)
for j = 1, . . . ,m do

Compute δj = Decrypt(ski, cj)
return δ = (δ1, . . . , δm)

UpdatePK(pki, δi+1)
Parse pki = (A,ui)
Compute ui+1 = u+Aδ
return pki+1 = (A,ui+1)

Upd-Comb(up1, up2)

Parse up1 = (z, c1, . . . , cm), up2 = (z′, c′1, . . . , c′m)
for j = 1, . . . ,m do

Parse cj = (tj , padj) and c′j = (t′j , pad′j)
Compute c′′j = (tj + t′j , padj + pad′j)

return up = (z + z′, c′′1 , . . . , c
′′
m)

Fig. 13: LWE Based Construction. Let n,m, p, q be integer parameters of the scheme. We will assume that LWE
holds where q is super-polynomial, p � q (p defined as product of q and another super-polynomial) and χ is
polynomially bounded. Then, we set χ′ to be uniformly random over (say)

[
−p
4q ,

p
4q

]
. Further, we have that

m ≥ (n+1)
log2(4/3) log p+ ω(log κ). Finally, in this construction ? is element-by-element addition over Zq.

Protocol DDH-Based UPKE

KeyGen(1κ)
G, g ←$ G(1κ)
Sample s1 = (s1, . . . , s`)←$ {0, 1} and g1, . . . , g` ←$ G.
Compute h =

∏`

j=1 g
sj
j .

return sk1 = s1 ∈ Z`p, pk1 = (g1, . . . , g`, h) ∈ G`+1, pp = G

Encrypt(pki,m ∈ G)
Parse pki = (g1, . . . , g`, h)
Sample r ←$ Zp
for j = 1, . . . , ` do

Compute fj = grj
return C = (f1, . . . , f`, c = hr ·m) ∈ G`+1

Decrypt(ski, C)

Parse C = (f1, . . . , f`, c = hr ·m) and ski = si = (s1, . . . , s`) ∈ Z`p

Compute m′ = c ·
(∏`

j=1 f
sj
j

)−1

return m′

UpdGen(pp)

Sample δi = (δ1, . . . , δm)←$ {0, 1}`
return δi

UpdEnc(pki, δi+1)

Encrypt δ bit-by-bit, i.e., up =
(
1,
(
Encrypt(pki, gδ1 ), . . . ,Encrypt(pki, gδ`)

))
.

return up

UpdDec(ski, upi+1)

Parse up = (z, c1, . . . , c`)
for j = 1, . . . , ` do

Compute uj = Decrypt(sk, cj)
Compute δj from uj = gδj where δj ∈ {0, . . . , z}

return δ = (δ1, . . . , δ`)

UpdatePK(pki, δi+1)
Parse pki = (g1, . . . , g`, h) and δi+1 = (δ1, . . . , δ`)
Compute h′ = h ·

(∏`

j=1 g
δj
j

)
return pki+1 = (g1, . . . , g`, h

′)

Upd-Comb(up1, up2)

Parse up1 = (z, c1, . . . , c`), up2 = (z′, c′1, . . . , c′`)
for j = 1, . . . , ` do

Parse cj = (f1, . . . , f`, c) and c′j = (f ′1, . . . , f ′`, c′)
Compute c′′j = (f1 · f ′1, . . . , f` · f ′`, c · c′)

return up = (z + z′, c′′1 , . . . , c
′′
` )

Fig. 14: DDH Based H-UPKE Construction. Let G be a probabilistic polynomial-time “group generator” that
takes as input 1κ and outputs the description of a group G with prime order p = p(κ) and g is a fixed generator
of G. Set ` = d5 log pe. Finally, in this construction ? is element-by-element addition over Zp.
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Protocol Fast-Forwardable PRG

The parameter h specifies the depth of the GGM tree, i.e., the stream cipher supports at most 2h epochs.

Init(key)
BBinit[·]← ⊥
// Expand leftmost path
sl ← key
for i← 1, . . . , h do

(sl, kl, s′r, k′r)← PRG.Expand(sl)
idx′r ← rightChild(i)
if i 6= 1 then

c← SE.Enc(k′r, (sr, kr), idxr)
BBinit[idx′r, idxr]← c

// Keep 3 last co-path nodes in state
if i = h then

vf− ← (idx′r, s′r, k′r)
else if i = h− 1 then

vf ← (idx′r, s′r, k′r)
else if i = h− 2 then

vf+ ← (idx′r, s′r, k′r)
(sr, kr, idxr)← (s′r, k′r, idx′r)

c← SE.Enc(kl, (sr, kr), h + 1)
BBinit[h + 1, h + 2]← c
st1 ← (h + 1, kl, vf− , vf , vf+ )
R1 ← sl
return (st1,R1,BBinit)

Update-Idx(i)

if i ≥ 2h+1 then
return ∅

// Next leaf
Ii ← {(leaf(i), leaf(i+ 1))}
// Potential change of f+

idxf ← indexOfFrontier(i)
if idxf 6= ⊥ ∧ isLeaf(idxf + 1) then

idxf+ ← rCoPath(idxf)
if idxf+ 6= ⊥ then

idxf++ ← rCoPath(idxf+ )
if idxf++ 6= ⊥ then

Ii ← Ii ∪ {(idxf+ , idxf++ )}
return Ii

Leap-Idx(i, j)
Ii,j ← ∅
idx ← leaf(i)
idxt ← leaf(j)
f ← indexOfFrontier(j)
if f 6= ⊥ then

f+ ← rCoPath(f)
if f+ 6= ⊥ then

idxt ← f+

else
idxt ← f

repeat
idx′ ← rCoPath(idx)
Ii,j ← Ii,j ∪ {(idx, idx′)}
idx ← idx′

until isAncestor(idx, idxt)

Update(sti,BBIi)

parse (idx, kidx, vf− , vf , vf+ )← sti
// Decrypt output
idx′ ← nextLeaf(idx)
c← BBIi [idx, idx′]
(sidx′ , kidx′)← SE.Dec(kidx, c, idx′)
Ri+1 ← sidx′

// Expand (up to) two internal nodes
if vf 6= ⊥ then

(v′f− , v
′
f , v
′
f+ ,BBup)← expandFrontier(vf− , vf , vf+ ,BBIi)

if v′f 6= ⊥ then
(v′f− , v

′
f , v
′
f+ ,BB′up)← expandFrontier(v′f− , v

′
f , v
′
f+ ,BBIi ∪ BBup)

BBup ← BBup ∪ BB′up // merge (disjoint) BBs
sti+1 ← (idx′, kidx′ , v

′
f− , v

′
f , v
′
f+ )

return (sti+1,Ri+1,BBup)

Leap(sti, j,BBIi,j )

// Derive current seed and key
idx ← leaf(j)
(s, k)← recoverNode(sti,BBIi,j , idx)
// Derive frontier state
(vf− , vf , vf+ )← ⊥
idxf ← indexOfFrontier(j)
if idxf 6= ⊥ then

(sf , kf)← recoverNode(sti,BBIi,j , idxf)
vf ← (idxf , sf , kf)
idxf− ← prevLeaf(f)
(sf− , kf−)← recoverNode(sti,BBIi,j , idxf−)
vf− ← (idxf− , sf− , kf−)
idxf+ ← rCoPath(f)
if idxf+ 6= ⊥ then

(sf+ , kf+ )← recoverNode(sti,BBIi,j , idxf+ )
vf+ ← (idxf+ , sf+ , kf+ )

// Assemble new state
stj ← (idx, k, vf− , vf , vf+ )
return (stj , s)

Fig. 15: A formal description of the FF Stream Cipher protocol.
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The algorithms are depicted in Figs. 15 and 16. The Init algorithm takes the GGM tree’s seed as input and
then proceeds to expand the tree’s leftmost path. As part of this process, it sequentially (bottom-up) stores
encryption of the copath on the bulletin board. That is, if vl is a node on the leftmost path, then denote by
ul and ur its left and right children, respectively, and by vr its sibling node. Then, the algorithm stores the
encryption of the copath node vr under the key of the next copath node ur. Additionally, the algorithm stores
encryption of the last copath node (the leaf) under its left sibling’s key v. The Init algorithm outputs v’s seed sv
as the first random value, and stores its index idxv and key kv as part of the state. Moreover, it keeps indices,
seeds, and keys of the last three copath nodes vf− , vf , and vf — which represent the frontier at this point — as
part of the state.

The Update algorithm moves to the next leaf by fetching from the bulletin board the ciphertext that encrypts
its seed and key under the current leaf’s key. Recall that this key is stored as part of the local state. The algorithm
then expands the next two internal nodes by expanding the frontier node twice. For each such step, vf is used to
derive the seeds and keys of the respective child nodes vl and vr and the algorithm then uploads the following
encryptions to the bulletin board: the node vl under the last fully expanded node f−’s key, vr under vl’s key,
and f+ under vr’s key. If vl and vr are leaves, then vr becomes the last fully expanded node f′−. Its first right
copath node rCoPath(idxr), which is equal to the old f+, is thus the next node to expand: the new frontier f′.
The algorithm now needs to store rCoPath(rCoPath(idxr)) as the new f+. To this end, it fetches the encryption
of that node under rCoPath(idxr) from the bulletin board. If on the other hand vl is an internal node, then vl
becomes the new frontier f and f− remains unchanged. Note that in that case rCoPath(idxr) = rCoPath(idxf) and
thus f+ remains unchanged as well.

The Update-Idx algorithm thus needs to identify the following encryptions: First, the indices (leaf(i), leaf(i+1))
to decrypt the next leaf. Second, it needs to determine whether an additional link is needed to recover the node
v′f+ during the expansion. If so, it additionally outputs the indices (idxf+ , idx′f+). Note that this can only happen
for the former of the two expansions: If the first expansion step results in two leaf nodes, then v′f = vf+ and v′f+

needs to be restored from the bulletin board; the second node to be expanded, v′f , on the other hand then is higher
up in the tree. If the first expansion step does not result in leaf nodes, then we either get v′′f+ = rightChild(v′f)
or v′′f+ = vf+ . (For simplicity, the pseudo-code description then recovers v′′f+ using the link (idx′f+ , idx′′f+) we
just produced during the first expansion and hence is in BBup. Of course this could be optimized avoiding the
unnecessary encryption and decryption.)

To fast forward from epoch i to j, the Leap algorithm first determines the least-common ancestor of the
copath of epoch i and the direct path of epoch j. This is done as part of the recoverNode helper from Fig. 16
that walks up to copath (by fetching the respective encryptions from the bulletin board) until an ancestor of
leaf(j) is hit. From there, it then derives the necessary seeds and keys. The nodes vf− , vf , and vf+ are recovered
analogously. The Leap-Idx algorithm thus has to determine all the required encryptions from the bulletin board
to recover the required part of epoch i’s copath. Observe that vf+ (if it still exists for epoch j) is right of vf , and
thus potentially needs more of the copath, which in turn is further to the right of leaf(j).
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Protocol FF Stream-Cipher Helpers

indexOfFrontier(e)
// The frontier associated with epoch e
idx ← h− 1
for j ← 1, . . . , 2e do

if idx ≥ 2h+1 − 1 then
return ⊥

else if isLeaf(idx + 1) then
idx ← rCoPath(idx)

else
idx ← idx + 1

return idx

recoverNode(st,BB, idxt)
// Derives seed and key of node idxt
parse (idx, k, ·, ·, ·)← st
repeat

idx′ ← rCoPath(idx)
c← BB[idx, idx′]
(sidx, kidx)← SE.Dec(kidx, c, idx′)
idx ← idx′

until isAncestor(idx, idxt)
while idx 6= idxt do

if isAncestor(idx + 1, idxt) then
(sidx, kidx, ·, ·)← PRG.Expand(sidx)
idx ← idx + 1

else
(·, ·, sidx, kidx)← PRG.Expand(sidx)
idx ← rightChild(idx)

return (sidx, kidx)

expandFrontier(vf− , vf , vf+ ,BBIi)

BBup[·]← ⊥
parse (idxf , sf , kf)← vf
(s′l, k′l, s′r, k′r)← PRG.Expand(sf)
idx′l ← idxf + 1
idx′r ← rightChild(idxf)
// Upload new links
parse (idxf− , sf− , kf−)← vf−

BBup[idxf− , idx′l]← SE.Enc(kf− , (s′l, k′l), idx′l)
BBup[idx′l, idx′r]← SE.Enc(k′l, (s′r, k′r), idx′r)
if vf+ 6= ⊥ then

parse (idxf+ , sf+ , kf+ )← vf+

BBup[idx′r, idxf+ ]← SE.Enc(k′r, (sf+ , kf+ ), idxf+ )
// Adjust frontier
if isLeaf(idx′l) then

v′f− ← (idx′r, s′r, k′r)
v′f ← vf+

v′f+ ← ⊥
if idxf+ 6= ⊥ then

idx′f+ ← rCoPath(idxf+ )
if idx′f+ 6= ⊥ then

c← BBIi [idxf+ , idx′f+ ]
(s′f+ , k′f+ )← SE.Dec(kf+ , c, idx′f+ )
v′f+ ← (idx′f+ , s′f+ , k′f+ )

else
v′f− ← vf−

v′f ← (idx′l, s′l, k′l)
v′f+ ← (idx′r, s′r, k′r)

return (v′f− , v
′
f , v
′
f+ ,BBup)

Fig. 16: Helper algorithms for the FF Stream Cipher protocol.
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