
QCCA-Secure Generic Transformations in the Quantum

Random Oracle Model

Tianshu Shan1, 2, Jiangxia Ge1, 2, and Rui Xue1, 2

1State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

2School of Cyber Security, University of Chinese Academy of Sciences, Beijing
100049, China

{shantianshu, gejiangxia, xuerui}@iie.ac.cn

Abstract

The post-quantum security of cryptographic systems assumes that the quantum adversary only
receives the classical result of computations with the secret key. Furthermore, if the adversary is
able to obtain a superposition state of the result, it is unknown whether the post-quantum secure
schemes still remain secure.

In this paper, we formalize one class of public-key encryption schemes, named oracle-masked
schemes, relative to random oracles. For each oracle-masked scheme, we design a preimage extrac-
tion procedure and prove that it simulates the quantum decryption oracle with a certain loss. We
also observe that the implementation of the preimage extraction procedure for some oracle-masked
schemes does not need to take the secret key as input. This contributes to the IND-qCCA security
proof of these schemes in the quantum random oracle model (QROM). As an application, we prove
the IND-qCCA security of schemes obtained by the Fujisaki-Okamoto (FO) transformation and
REACT transformation in the QROM, respectively.

Notably, our security reduction for FO transformation is tighter than the reduction given by
Zhandry (Crypto 2019).

Keywords: public-key encryption, FO transformation, REACT transformation, quantum ran-
dom oracle model, quantum chosen ciphertext security

1 Introduction

Cryptographic schemes often have efficient constructions in the random oracle model (ROM) [BR93],
in which schemes are proven to be secure assuming the existence of the publicly accessible random
oracle. When to build a concrete scheme, the random oracle is instantiated with a cryptographic hash
function. Thus in the real world attack, any quantum attacker is able to evaluate the hash function
in superposition. To capture this issue, Boneh et al. [BDF+11] proposed the quantum random oracle
model (QROM) where the quantum adversary can query the random oracle with superposition states.

Boneh and Zhandry [BZ13] then introduced the indistinguishability under quantum chosen ci-
phertext attacks (IND-qCCA) security notion for encryption schemes, where the adversary can make
quantum queries to the decryption oracle. In this paper, we consider the IND-qCCA security for
public-key encryption (PKE) schemes in the QROM.

Generic transformations are widely used to enhance the security of PKE [BR93, FO99, OP01,
JSHJ+02]. The Fujisaki-Okamoto (FO) transformation [FO99] turns an arbitrary PKE that is one-
wayness under the chosen plaintext attacks (OW-CPA) into a PKE that is indistinguishable under
the chosen ciphertext attacks (IND-CCA) in the ROM. The REACT transformation [OP01] turns an
arbitrary PKE that is one-wayness under the plaintext check attacks (OW-PCA) into an IND-CCA
secure PKE in the ROM.

Boneh et al. [BDF+11] summarized several proof techniques that are commonly used in the ROM
but not appropriate to the quantum setting straight forwardly. “Extractability/Preimage Awareness”,
as one of them, is that the simulator learns the preimages the adversary takes interest in when sim-
ulating the random oracle for the adversary. And this technique is the core to simulate answers to

1

decryption queries in the security proof for both FO and REACT in the ROM. This had been an
obstacle to the security proof of FO in QROM. To circumvent it, Targhi and Unruh [TU16] and the
follow-up result by Ambainis et al. [AHU19] modified FO transformation by appending an extra hash
function to the ciphertext and gave the security proof for the modified ones in the QROM.

Zhandry [Zha19] proposed the compressed oracle technique, with which the simulator can ”record”
quantum queries to the random oracle while simulating it efficiently. This makes it feasible to use
Preimage Awareness technique in the quantum setting and thus makes it possible to prove the security
of the unmodified FO in QROM. Indeed in the full version of [Zha19], Zhandry gave a proof that FO
transforms any OW-CPA secure PKE into an IND-qCCA secure PKE in the QROM.

However, in his proof, as was pointed out by Don et al. [DFMS22], the answers to decryption
queries in Hybrids 2 to 4 are simulated by applying (purified) measurements on the internal state
of the compressed oracle, yet these measurements are hard to be determined explicitly from their
respective descriptions. Until now, this is considered as the gap that prevents the analysis of the
disturbance caused by those measurements.

1.1 Our Result

In this paper, we review Zhandry’s proof for FO transform and specify the procedures for simulating
the decryption oracle, based on which we prove the IND-qCCA security for FO and REACT in the
QROM, respectively. The concrete security bounds for FO and REACT are shown in Table 1.

Transformation
Underlying

security
Achieved
security

Security bound(≈)

FO OW-CPA IND-qCCA d/
√

2γ + (q + d) ·
√
εasy + εsy

REACT OW-qPCA IND-qCCA d/
√

2n + q · d ·
√
εasy + εsy

Table 1: Concrete security bounds for FO and REACT in the QROM. The “Underlying security”
column omits the one-time security of the underlying secret-key encryption(SKE) scheme for both FO
and REACT. εasy is the advantage of the reduced adversary against the security of the underlying
PKE. εsy is the advantage against the security of the underlying SKE scheme. d is the number of
decryption queries. q is the total number of random oracle queries. γ is the min-entropy of the
ciphertext of the underlying PKE. n is the length of the hash value being one part of the ciphertext
of the achieved PKE.

Firstly, we define a class of PKEs called oracle-masked. This class contains the hybrid schemes
obtained by the FO transform and that by REACT transform.

One property of oracle-masked schemes is that the Preimage Awareness technique is applied in
their classical IND-CCA security proof in the ROM. More specifically, in the classical ROM proofs,
the reduction algorithm record queries to the random oracle while simulating it for the adversary. When
to reply to adversary’s decryption queries, the reduction algorithm learns the message the adversary
has interest in from the recorded random oracle queries.

Then we design the preimage extraction procedure UExt. This is a tool of applying Preimage
Awareness technique to the IND-qCCA security proof for oracle-masked schemes in the QROM. Fix a
public/secret key-pair, the original decryption oracle corresponds to a unitary operator CCA , and we
have ‖(CCA−UExt)|φ〉‖ ≤ O(1) ·√η for one type of state |φ〉, where η depends on the concrete scheme.
As applications of this tool, we provide a tighter security reduction for unmodified FO transform than
the security reduction given by Zhandry, and give the IND-qCCA security proof for REACT transform
with a concrete bound.

1.2 Related work

Abstract frameworks were proposed to simplify the use of the compressed oracle technique in different
situations[CMS19, CFHL21, DFMS22]. They formalize properties that are satisfied in the presence of
random oracle, and lift them to the quantum setting.

Particularly, Don et al. [DFMS22] have considered Preimage Awareness in a more general form.
Specifically, they define a simulator that simulates the random oracle and also allows the extraction

2

query, that is replied with the guess of the preimage of the query. They then prove that this simulation
of the random oracle is statistically indistinguishable from the real ones if some properties are satisfied.
In their security proof, the extraction query is restricted to be classical in the simulation. Therefore,
their results seem to be tailored for post-quantum security proofs, yet are not sufficient to prove the
IND-qCCA security.

2 Preliminaries

2.1 Notation

DenoteM, C and R as key space, message space and ciphertext space, respectively. For a finite set X ,

denote |X | as the number of elements X contains, and denote x
$←− X as uniformly choose a random

element x from X . [b = b′] is an integer, that is 1 if b = b′ and 0 otherwise. Pr[P : Q] is the probability
that predicate P keeps true where all the variables in P are assigned according to the program in Q.

Algorithms take a security parameter λ as input, and we omit it for convenience. A non-negative
function f(λ) is a negligible function if it is smaller than the inverse of any non-negative polynomial
p(λ) for sufficient large λ. Time(f) is denoted as the time complexity of an algorithm computing
function f .

2.2 Quantum Background

Here we only give some background on quantum computation and quantum information, and we refer
to [NC02] for more discussion.

A quantum system Q is a complex Hilbert space HQ with an inner product 〈·|·〉, the notation ’|·〉’
or ’〈·|’ is called the Dirac notation. The state |ψ〉 of quantum system Q is a unit vector of HQ, it can
be a superposition of computational basis state {|x〉}x like

∑
x αx|x〉. The norm of |ψ〉 is defined as

‖ψ‖ =
√
〈ψ|ψ〉. The tensor product Q1 ⊗Q2 of quantum systems Q1 and Q2 is a composite quantum

system and the product state is |ψ1〉⊗|ψ2〉 ∈ Q1⊗Q2 where |ψ1〉 ∈ Q1, |ψ2〉 ∈ Q2. A transformation U
is called a unitary operation overHQ if UU† = U†U = I, where U† is the Hermitian conjugate of U and I
is the identity operator over HQ. A measurement on a quantum system Q are described by a collection
of measurement operators {Mm}m, that satisfy the completeness equation

∑
mM

†
mMm = I. One of

the most frequently used measurement is the computational basis measurement in which measurement
operator Mm = |m〉〈m|, where m is a computational basis vector. Moreover, unitary operations and
measurements can be generally described by completely positive trace-preserving operations.

A quantum system with an exactly known state |ψ〉 is said to be in a pure state. If a quantum
system whose state is a pure state |ψi〉 with probability pi, then this quantum system is called in
a mixed state, that can be denote as {pi, |ψi〉}i. In the quantum information theory, the statistical
behavior of the above mixed state can be described by a density operator ρ =

∑
i pi|ψi〉〈ψi|. For

two density operator ρ and ρ′, the trace distance of them is denoted as D(ρ, ρ′), which measures the
statistical distance of the quantum information stored in state ρ and ρ′.

Quantum algorithms. A quantum algorithm A is a family of generalized quantum circuits {An}n
over a finite universal gate set. If A is an oracle algorithm, i.e., it has access to several different oracles,
then each of these oracles is modeled with one separate oracle gate. The size of a quantum circuit is
the number of gates it contains plus the number of input and output qubits. A is polynomial-time if
there is a polynomial p(·) such that the size of An is at most p(n) for every n. And we call A is an
efficient algorithm if A is polynomial-time.

For a quantum oracle algorithm A have quantum access to oracle O, suppose A starts with an
initial state |ψ〉. We call A a unitary quantum oracle algorithm if it alternately queries oracle O and
applies a fixed unitary operation on the registers of A. And the final state of A can be represented by
UqO . . .U1OU0|ψ〉, where q is the number of queries made by A and U0, . . . ,Uq are unitary operations
between queries. There is a well-known fact that, with simple preprocessing, any quantum oracle
algorithm A can be transformed into a unitary quantum oracle algorithm without increase the query
times.

3

2.3 Quantum Random Oracle Model

In the ROM, we assume the existence of the random oracle O : X → Y, and O is publicly accessible

to all parties. For conceteness, let Y = {0, 1}n. O is initialized by choosing H
$←− ΩH , where ΩH is the

set of all functions from X to Y. In the QROM, quantum algorithms can query with superposition
states, and the oracle performs the unitary mapping |x, y〉 7→ |x, y ⊕O(x)〉 on the query state. Oracle
O also allows making classical queries. To query x, set the input and output state to be |x, 0〉 and
measure it after querying O to obtain O(x).

Below, we introduce several tools for QROM, that are used in this paper. We begin with two ways
for the simulation of the random oracle in the QROM.

Theorem 1 ([Zha15]). Let H be a function chosen from the set of 2q-wise independent functions
uniformly at random. Then for any quantum algorithm A with at most q queries,

Pr[b = 1 : b← AH()] = Pr[b = 1 : b← AO()].

The Compressed Oracle. Here we briefly introduce the compressed oracle technique, and we only
consider the Compressed Standard Oracles(CStO), one version of the compressed oracle, with query
number at most q. We refer to the full version of [Zha19] for more details of the compressed oracle.

The core idea of the compressed oracle technique is the purification of the quantum-accessible
random oracle, and the purified oracle imperfectly records quantum queries to the random oracle.
In the QROM, the random oracle is initialized by uniformly sampling a function H from ΩH . If
random oracle is queried with a quantum state |x, y〉, then the replied state is a mixed state and can
be represented as {pi, |x, y ⊕ Hi(x)〉}, where pi = 1/|ΩH |, i = 1, . . . , |ΩH |. This mixed state can be
purified to state 1/|ΩH |

∑
H |x, y⊕H(x), H〉, where |H〉 is the internal state of oracle O and H of |H〉

is a truth table of function H.
Instead of a superposition state of H, CStO takes a superposition of database as its internal state

and simulates random oracle O. We denote this compressed oracle by CStOO, and database by D.
D is represented by an element of set (X × Ȳ)l where Ȳ = Y ∪ {⊥}, l is the length of D. For any
x ∈ X , if (x, y) exists as an entry of D, then (x, y) ∈ D and D(x) = y. Otherwise, D(x) = ⊥.
Denote |D| as the total number of x ∈ X such that D(x) 6= ⊥. Then for any y ∈ Y and D that
D(x) = ⊥, |D| < l, define D∪ (x, y) to be the database that D∪ (x, y)(x′) = D(x′) for any x′ 6= x and
D ∪ (x, y)(x) = y. Moreover, any D is written in the form of ((x1, y1), . . . , (xs, ys), (0,⊥), . . . , (0,⊥))
such that |D| = s ≤ l, x1 < x2 < · · · < xs.

For any x ∈ X , define unitary StdDecompx applied on the database state as below:

- For D that D(x) = ⊥ and |D| = l, StdDecompx|D〉 = |D〉.

- For D that D(x) = ⊥ and |D| < l, StdDecompx|D ∪ (x, βr)〉 = |D ∪ (x, βr)〉 for any r 6= 0,
StdDecompx|D ∪ (x, β0)〉 = |D〉, StdDecompx|D〉 = |D ∪ (x, β0)〉,
where state |D ∪ (x, βr)〉 = 1/

√
2n
∑
y∈Y(−1)y·r|D ∪ (x, y)〉 for any r ∈ Y.

CStOO initializes a database state |(0,⊥)q〉 with length q.For any query to random oracleO, CStOO
does three steps: First, perform the unitary |x, y,D〉 7→ |x, y〉StdDecompx|D〉 in superposition. Next,
apply the map |x, y,D〉 7→ |x, y ⊕D(x), D〉. Finally, repeat the first step.

Theorem 2 ([Zha19]). CStOO and random oracle O are indistinguishable for any quantum algorithm
A, i.e.,

Pr[b = 1 : b← ACStOO ()] = Pr[b = 1 : b← AO()].

It is also observed that any quantum state on the database register is orthogonal to state |D∪(x, β0)〉
in the simulation of CStOO. Therefore, the database state should be the superposition state of
|D ∪ (x, βr)〉 for r 6= 0. This fact will be used later.

Semi-classical Oracle. For set X and S, define fS : X → {0, 1} to be an indicator function such that
fS(x) = 1 if x ∈ S and 0 otherwise. Then we define the semi-classical oracle OSCS : X → {0, 1}. For
any quantum query, OSCS does the following steps. First, initialize a qubit T to be |0〉. Then evaluate
the mapping |x, 0〉 7→ |x, fS(x)〉 in superposition. Finally, measure T in the computational basis and
obtain a bit b ∈ {0, 1} as its output.

4

Theorem 3 (Semi-classical O2H [AHU19]). Let S be a random subset of X , H : X → Y be a random
function, z be a random bitstring. And H,S,z may have arbitrary joint distribution. Let H \ S be an
oracle that on input x ∈ X , first queries H(x) and then OSCS (x). Let A be a quantum oracle algorithm
with query depth d. In the execution of AH\S(z), let Find be the event that OSCS ever outputs 1. Then∣∣∣Pr[b = 1 : b← AH(z)]− Pr[b = 1 : b← AH\S(z)]

∣∣∣ ≤ 2
√

(d+ 1) · Pr[Find : AH\S(z)].

The following theorem gives an upper bound for the probability that Find occurs.

Theorem 4 ([AHU19]). Let S ⊆ X and z ∈ {0, 1}∗. And S, z may have arbitrary joint distribution.
Let A be a quantum oracle algorithm making at most d queries to OSCS with domain X . Let B be an

algorithm that on input z chooses i
$← {1, . . . , d} , runs AO

SC
∅ (z) until (just before) the i-th query, and

then measures all query input registers in the computational basis. Denote by T the set of measurement
outcomes. Then

Pr
[
Find : AO

SC
S (z)

]
≤ 4d · Pr[S ∩ T 6= ∅ : T ← B(z)].

3 Preimage Extraction of the Oracle-Masked Scheme

In this section, we start by the formalization of a class of PKE scheme Π named the oracle-masked
scheme. Then we will introduce preimage extraction game GameExt

A,Π for adversary A, and end this

section with a theorem that bounds the difference between Pr[GameIND-qCCA
A,Π → 1] and Pr[GameExt

A,Π →
1], where the definition of IND-qCCA security game GameIND-qCCA

A,Π is shown in the Appendix A.

Definition 5. Let O be the random oracle with codomain Y, let Π = (Gen,EncO,DecO) be a PKE
scheme relative to O. We say that Π is an oracle-masked scheme if there exist deterministic polynomial
time algorithm A1, A2, A3, A4 such that for any (pk, sk)← Gen, EncO and DecO are written in Fig 1a
and Fig 1b, respectively. And tuple (A1,A2,A3,A4) is called the decomposition of Π.

EncO(pk,m; r)

1: x← A1(pk,m, r) 3: c← A2(pk, x, y)

2: y := O(x) 4: return c

(a) Algorithm EncO using A1 and A2

DecO(sk, c)

1: x← A3(sk, c) 4: c′ ← A2(pk, x, y)

2: if x = ⊥, return ⊥ 5: if c 6= c′, return ⊥
3: else y := O(x) 6: else m← A4(x)

7: return m

(b) Algorithm DecO using A2, A3 and A4

Figure 1: Algorithm EncO and DecO of an oracle-masked scheme Π

For oralce-masked scheme Π, parameter η of Π is defined to be

η := max
(pk,sk), c

∣∣{y ∈ Y : c = A2 (pk,A3(sk, c), y)}
∣∣/|Y|

where (pk, sk) is generated by Gen and c ∈ C satisfies A3(sk, c) 6= ⊥.

Let Π be an oracle-masked scheme. For quantum adversary A in the security game GameIND-qCCA
A,Π

in the QROM, it can query random oracle O and decryption oracle DecO both in superposition. Write
C and Z to denote the input and output register of the decryption query of A, respectively. Then we
introduce a new game GameSim

A,Π, that is identical with GameIND-qCCA
A,Π except that random oracle O

is simulated by CStO. In game GameSim
A,Π, quantum queries to oracle O are recorded in the database

register D.

5

The decryption oracle DecOsk(·) in GameIND-qCCA
A,Π can be simulated by a unitary operator UDec

applied on register C and Z, i.e., for any computational basis state |c, z〉, UDec acts as follows:

UDec|c, z〉 =

{
|c, z ⊕⊥〉 if c∗ is defined and c = c∗,

|c, z ⊕DecOsk(c)〉 else.

where c∗ is the challenge ciphertext in GameIND-qCCA
A,Π . In GameSim

A,Π, the decryption oracle answers
queries in the same process as shown in Fig 1b. Since oracle O is simulated by CStO, the decryption
process in this game can be simulated by a unitary operator applied on register C, Z, D. We denote
this operator by USim. Then by Theorem 2, UDec and USim, these two simulations of the decryption
oracle are perfectly indistinguishable for any quantum adversary.

Notice that in the execution of algorithm Dec, A3 is computed first to obtain x and then A2 is
applied to check if c = A2(pk, x,O(x)). Therefore, the query x to oracle O must be recorded in the
database D when USim is used to simulate the decryption oracle. Now we design a new unitary to
reply decryption queries, and it is defined as follows.

Definition 6 (Preimage Extraction Procedure). Let Π be an oracle-masked scheme, and (A1,A2,A3,A4)
be its decomposition. For any (pk, sk) of Π, define unitary operation UExt, as the preimage extraction
procedure of Π, applied on register C, Z, D as follows.

UExt|c, z,D〉 :

1. If the challenge ciphertext c∗ is defined and c = c∗, return |c, z ⊕⊥, D〉.

2. Else if database D contains no pair (x,D(x)) such that A2(pk, x,D(x)) = c, return |c, z⊕⊥, D〉.

3. Else, for each tuple (x,D(x)) satisfying A2(pk, x,D(x)) = c, check if A3(sk, c) = x and do the
following procedure:

(a) If a tuple (x,D(x)) passes this check1, compute m = A4(x) and return |c, z ⊕m,D〉.
(b) Otherwise, return |c, z ⊕⊥, D〉.

The implementation of UExt is shown in Appendix B.

Compared with USim, UExt extracts the preimage x of the function, that is determined by A2 and
pk, from the database D and does not need to compute the inverse function A3 at first. And thus we
call UExt a preimage extraction procedure. Then, for any oracle-masked scheme, a preimage extraction
procedure UExt exists, and it can be used to reply to quantum decryption queries.

By the definition of UExt, for any computational basis state |c, z,D〉, UExt has no effect on |D〉, and
does not need to query to oracle O. Here we define a new game GameExt

A,Π named preimage extraction

game that differs from GameSim
A,Π in the way to answer decryption queries: In game GameExt

A,Π, the
decryption procedure is implemented by preimage extraction procedure unitary UExt while that in
game GameSim

A,Π is implemented by unitary USim.
Now we introduce two properties of UExt by the following lemmas, and their detailed proofs are

shown in Appendix C.

Lemma 7. Fix an oracle-masked scheme and a public/secret key pair. Let |ψ〉 be a quantum state on
register C, Z, D, and |ψ〉 is orthogonal to state

∑
c,z,D,x αc,z,D,x|c, z,D ∪ (x, β0)〉. Then

‖(USim −UExt)|ψ〉‖ ≤ 5
√
η.

Lemma 8. Given any x ∈ {0, 1}∗, unitary StdDecompx is performed on register D. For any quantum
state |ψ〉 on register C, Z and D, we have∥∥(UExt ◦ StdDecompx − StdDecompx ◦UExt)|ψ〉

∥∥ ≤ 7
√
η.

Then we present Theorem 9 to bound the difference of the output distribution of game GameIND-qCCA
A,Π

and GameExt
A,Π.

1Such a tuple is unique, since c determines the value of P3(sk, c).

6

Theorem 9. Let Π be an oracle-masked scheme. For any quantum adversary A against the IND-qCCA
security of Π in the QROM, if A makes at most q decryption queries, then∣∣Pr[GameIND-qCCA

A,Π → 1]− Pr[GameExt
A,Π → 1]

∣∣ ≤ 5q · √η.

Proof. Given Π and A, recall that game GameSim
A,Π is identical with game GameIND-qCCA

A,Π except that
the random oracle is simulated by CStO. By Theorem 2,

Pr[GameIND-qCCA
A,Π → 1] = Pr[GameSim

A,Π → 1].

In the following, we prove that∣∣Pr[GameSim
A,Π → 1]− Pr[GameExt

A,Π → 1]
∣∣ ≤ 5q · √η.

For any fixed (pk, sk), the decryption procedure in game GameSim
A,Π and that in game GameExt

A,Π are
implemented by unitary USim and UExt, respectively.

For any i = 1, . . . , q, define Gi to be a game that is the same as GameSim
A,Π until just before the i-th

decryption query of A, then replaces decryption procedure USim with UExt. Then game G1 is game
GameExt

A,Π for A. We also denote game GameSim
A,Π by Gq+1. For i = 1, . . . , q + 1, denote by σi the final

joint state on the register of A and the database register in Gi. By the triangle inequality of the trace
distance, D(σ1, σq+1) ≤

∑q
i=1D(σi, σi+1).

Fix 1 ≤ i ≤ q. Denote by ρ the joint state of A and the database register just before the i-th de-
cryption query. All the operations after i-th decryption query can be represented by a trace-preserving
operation, that is denoted by E . Since game Gi and Gi+1 only differ in the i-th decryption procedure,
σi and σi+1, can be represented by σi = E(USim ρU†Sim) and σi+1 = E(UExt ρU†Ext), respectively. And

we have D(σ, σi+1) ≤ D(USim ρU†Sim,UExt ρU†Ext).

Here we give an upper bound for D(USim ρU†Sim,UExt ρU†Ext). Let
∑
j pj |ψj〉〈ψj | be a spectral

decomposition of ρ. Then by the convexity of the trace distance,

D(USim ρU†Sim,UExt ρU†Ext) = D
(∑

j

pjUSim|ψj〉〈ψj |U†Sim,
∑
j

pjUExt|ψj〉〈ψj |U†Ext

)
≤
∑
j

pjD(USim|ψj〉〈ψj |U†Sim,UExt|ψj〉〈ψj |U†Ext) ≤
∑
j

pj‖(USim −UExt)|ψj〉‖.

Note that before the i-th decryption query, the decryption procedure is USim and A is simulated to be
in game GameSim

A,Π. Thus any pure state |ψj〉 in the spectral decomposition of ρ is in the form of the
superposition state in Lemma 7. Then by Lemma 7, ‖(USim −UExt)|ψj〉‖ ≤ 5

√
η. Therefore, we have

D(σi, σi+1) ≤
∑
j

pj · ‖(USim −UExt)|ψj〉‖ ≤
∑
j

pj · 5
√
η = 5

√
η

and D(σ1, σq+1) ≤
∑q
i=1D(σi, σi+1) ≤ 5q · √η. This completes the proof.

4 Application in the Quantum Security Proof

In this section, we apply Theorem 9 of the oracle-masked scheme to provide the IND-qCCA security
proof for FO and REACT transformation in the QROM, respectively.

4.1 FO: from OW-CPA to IND-qCCA in the QROM

The FO transformation combines a one-time (OT) secure secret-key encryption(SKE) scheme with a
well-spread OW-CPA secure PKE scheme to obtain an IND-CCA secure PKE in the random oracle
model. The definitions of the OW-CPA security for PKE, the well-spread property of PKE and the
OT security for SKE are given in Appendix A.

Let Πasy = (Genasy,Encasy,Decasy) be a PKE with message space Masy, randomness space Rasy
and ciphertext space Casy. Let Πsy = (Encsy,Decsy) be a symmetric encryption scheme with key space
Ksy, message space Msy and ciphertext space Csy = {0, 1}n. Let H and G be hash functions such
that

H : {0, 1}∗ → Rasy, G : {0, 1}∗ → Ksy.
These hash functions are modeled as random oracles in the following security proof.

7

Definition 10. The hybrid scheme FO[Πasy,Πsy, H,G] = (Gen,Enc,Dec) obtained from the FO trans-
formation is constructed as follows.

1. Gen: The Key Generation algorithm runs Genasy and takes its output (pk, sk) as a public
key/secret key-pair.

2. Enc: The Encryption algorithm on input pk and message m picks δ ∈Masy uniformly, computes

d = EncsyG(δ)(m), c = Encasypk (δ;H(δ, d))

and outputs (c, d) as a ciphertext.

3. Dec: The Decryption algorithm on input sk and ciphertext (c, d) computes

δ = Decasysk (c), c′ = Encasypk (δ;H(δ, d)).

If c′ = c, compute m = DecsyG(δ)(d) and output m. Otherwise, output ⊥.

Lemma 11. Assume that H is the random oracle and Πasy is γ-spread, then FO[Πasy,Πsy, H,G] =
(Gen,EncH ,DecH) is an oracle-masked scheme with η ≤ 1/2γ .

Proof. We define deterministic polynomial-time algorithm A1, A2, A3 and A4 as follows.

- A1 takes δ and m as input, evaluates k = G(δ) and d = Encsyk (m), then outputs (δ, d).

- A2 takes pk, (δ, d) and y ∈ Rasy as input, computes c = Encasypk (δ; y), then outputs (c, d).

- A3 takes sk and (c, d) as input, evaluates δ = Decasysk (c). If δ 6= ⊥, output (δ, d). Otherwise,
output ⊥.

- A4 takes (δ, d) as input, computes k = G(δ) and m = Decsyk (d), then outputs m.

It can be verified that with the above four algorithms, EncH and DecH are written as in Definition 5.
Then FO[Πasy,Πsy, H,G] is an oracle-masked scheme.

By the definition of η, we obtain η of FO[Πasy,Πsy, H,G] as below.

η = max
(pk,sk), c

∣∣{r ∈ Rasy : c = Encasypk (Decasysk (c); r)}
∣∣/|Rasy|

where (pk, sk) is generated by Gen and c ∈ Casy satisfies Decasysk (c) /∈ ⊥, i.e., Decasysk (c) ∈Masy.
On the other hand, for any (pk, sk) generated by Gen and m ∈Masy, we have

max
c∈Casy

∣∣{r ∈ Rasy : c = Encasypk (m; r)}
∣∣/|Rasy| ≤ 1/2γ

due to the γ-spread property of Πasy. Therefore, η ≤ 1/2γ .

Note that hash function G can be replaced with any function, which is accessed by an oracle. Then
algorithm A1 and A4 become oracle algorithms denoted by AG

1 and AG
4 , respectively. In this case, the

notions in Definition 5 still work, and Theorem 9 holds.
As shown in Lemma 11, the hybrid scheme FO[Πasy,Πsy, H,G] obtained from the FO transforma-

tion is an oracle-masked scheme. Then we use Theorem 9 of the oracle-masked scheme to prove the
IND-qCCA security of FO[Πasy,Πsy, H,G].

Theorem 12. Assume that Πasy is γ-spread, for any adversary against the IND-qCCA security of
scheme Π = FO[Πasy,Πsy, H,G], making at most qD quantum queries to the decryption oracle, at
most qH quantum queries to random oracle H and at most qG quantum queries to random oracle G,
there exists an adversary Aasy against the OW-CPA security of Πasy and an adversary Asy against
the OT security of Πsy such that

AdvIND-qCCA
A,Π ≤ qD ·

12√
2γ

+ 2(d+ 1) ·
√

AdvOW-CPA
Aasy,Πasy + 4d ·AdvOW-CPA

Aasy,Πasy + AdvOT
Asy,Πsy

where d = qD + qH + 2qG, Time(Asy) = Time(Aasy) ≈ Time(A) +O
(
d2 + qH · qD · Time(Encasy)

)
.

8

Proof. Denote by ΩH and ΩG sets of all functions H : {0, 1}∗ → Rasy and G : {0, 1}∗ → Ksy,
respectively. The input and output register of the decryption query of A are denoted by C and Z,
respectively. Define Game 0 to be game GameIND-qCCA

A,Π . In the following, we will introduce a sequence
of games to bound the difference between 1/2 and the probability that Game 0 outputs 1. By the
definition of Game 0, we obtain∣∣∣∣Pr[Game 0→ 1]− 1

2

∣∣∣∣ = AdvIND-qCCA
A,Π . (1)

Game 0:

1: G
$←− ΩG, H

$←− ΩH , δ∗
$←−Masy, (pk, sk)← Gen

2: (m0,m1)← AH,G,Decsk(pk)

3: b
$←− {0, 1}, d∗ = EncsyG(δ∗)(mb), c

∗ = Encasypk (δ∗;H(δ∗, d∗))

4: b′ ← AH,G,Dec∗sk(pk, c∗)

5: Return [b = b′]

From Game 1 begin, random oracle H is simulated with CStO and its database register is denoted
as D. This change is undetectable for A by Theorem 2.

Game 1: In this game, we replace the decryption oracle in Game 0 with oracle CCA1. When to
reply to decryption queries, CCA1 performs the preimage extraction procedure of Π. The construction
of CCA1 is shown in Appendix B.1.

It is obvious that Game 1 is the preimage extraction game GameExt
A,Π. Then by Theorem 7, we

obtain
∣∣Pr[Game 0→ 1]− Pr[Game 1→ 1]

∣∣ ≤ 5qD ·
√
η for any fixed G ∈ ΩG. Therefore,∣∣Pr[Game 0→ 1]− Pr[Game 1→ 1]

∣∣ ≤ 5qD ·
√
η (2)

where variable G both in Game 0 and Game 1 are sampled from ΩG, uniformly.
Note that as presented in Appendix B.1, the preimage extraction procedure of Π and CCA1 is

constructed without sk. Starting from Game 1, sk is no longer used to reply to decryption queries.

Game 2: We change oracle CCA1 by CCA2. CCA2 is defined as follows. Before the challenge query,
CCA2 acts the same as CCA1. After that, CCA2 answers the decryption query in three steps:

1. Perform unitary StdDecomp(δ∗,d∗) to register D.

2. Apply CCA1 on register C, Z and D.

3. Apply StdDecomp(δ∗,d∗) to register D a second time.

By the definition of CCA2, we only analyze the difference between CCA1 and CCA2 in the case
that the challenge ciphertext has been determined. Observe that if we flip the order of the last two
steps of CCA2, then StdDecomp(δ∗,d∗) ◦StdDecomp(δ∗,d∗) is an identity operator and in this way, CCA2

performs identically as CCA1.
Then by Lemma 8, for any joint state ρ of A and the database, D(CCA1ρCCA†1,CCA2ρCCA†2) ≤

7
√
η ≤ 7/

√
2γ . At most qD decryption queries are made after the challenge query, and then by the

hybrid argument,

|Pr[Game 1→ 1]− Pr[Game 2→ 1]| ≤ qD ·
7√
2γ
. (3)

Game 3: In this game, we change the way to answer random oracle queries in some cases. Let E be
a constant zero function with quantum access. When random oracle H or G is queried by A or G is
applied in the process of CCA2, we perform E and then perform the random oracle.

Since E is a constant zero function, the random oracle query does not change after performing E,
and we have

Pr[Game 2→ 1] = Pr[Game 3→ 1]. (4)

Game 4: In this game, the only change is that semi-classical oracle OSCS is applied before each query
to E, and set S := {δ∗, δ∗‖·}.

9

Let z = δ∗, and BE(δ∗) be the algorithm that simulates Game 3. Then we have

Pr[Game 3→ 1] = Pr[b = 1 : b← BE(δ∗), δ∗
$←−Masy],

Pr[Game 4→ 1] = Pr[b = 1 : b← BE\S(δ∗), δ∗
$←−Masy],

Pr[Find : Game 4] = Pr[Find : BE\S(δ∗), δ∗
$←−Masy].

B makes at most d = qH + qG + 2qD queries to E.

- E is queried each time H or G is queried.

- A makes at most qH queries to H and at most qG queries to G.

- A makes at most qD decryption queries, and CCA3 requires 2 queries to G for each decryption
query (c, d): If ((δ0, d0), y) ∈ D satisfies d0 = d and Encasypk (δ0; y) = c, one query to G is needed

when computing DecsyG(δ0)(d), and another one query is to uncompute G(δ0).

Let d = qH + qG + 2qD, then we apply Theorem 3 to obtain

|Pr[Game 3→ 1]− Pr[Game 4→ 1]| ≤ 2
√

(d+ 1) Pr[Find : Game 4]. (5)

Furthermore, the database state on (δ∗, d∗) is not disturbed by the decryption process of CCA2

until Find occurs, which is analyzed as follows. Notice that if Find does not occur, then A has never
queried (δ∗, d∗) to H, which implies that the database of H does not record (δ∗, d∗) until Find occurs
or H is queried by (δ∗, d∗) when producing the challenge ciphertext. And we only care about the
latter situation: It is apparent that the database state on (δ∗, d∗) is not disturbed by CCA2 before the
challenge query. Then we argue that the database state on (δ∗, d∗) is not disturbed by CCA2 after the
challenge query as follows.

For decryption query (c, d) after the challenge query, CCA2 outputs ⊥ if d 6= d∗. Then we assume
d = d∗. In this case, CCA2 computes the value of H(δ∗, d∗) through unitary StdDecomp(δ∗,d∗) and

tests if Encasypk (δ∗;H(δ∗, d∗)) = c. However, by the correctness of Πasy, Encasypk (δ∗;H(δ∗, d∗)) = c only
when c = c∗, in which case CCA2 outputs ⊥.

Game 5: In this game, oracle CCA2 is replaced with oracle CCA3. CCA3 is defined as follows. Before
the challenge query, CCA3 acts the same as CCA1. After that, CCA3 performs the preimage extraction
procedure of Π but the database state on (δ∗, d∗) is not involved in this procedure.

Before the challenge query, oracle CCA2 and CCA3 act the same by their definitions. In the
following, we consider the case when the challenge query has happened.

After the challenge query, (δ∗, d∗) is recorded in the database. In the process of CCA2, H(δ∗, d∗)
is computed to test if Encasypk (δ∗;H(δ∗, d∗)) = c. But as analyzed in Game 4, H(δ∗, d∗) fails that test
in each process of CCA2. Therefore, unitary StdDecomp(δ∗,d∗) in the first and last step of CCA2 and
that test can be removed from the process of CCA2 and the modified CCA2 has the same effect as
CCA2. By the definition of CCA3, the modified CCA2 is exactly oracle CCA3 and thus we obtain

Pr[Find : Game 4] = Pr[Find : Game 5], (6)

Pr[¬Find ∧Game 4→ 1] = Pr[¬Find ∧Game 5→ 1]. (7)

Moreover, it is clear that the database state on (δ∗, d∗) will not be disturbed by the decryption proce-
dure of CCA3.

Game 6: In this game, we pick k∗ ∈ Ksy and r∗ ∈ Rasy uniformly and use them to compute
d∗ = Encsyk∗(mb) and c∗ = Encasypk (δ∗; r∗) when producing the challenge ciphertext (c∗, d∗).

In Game 5, H(δ∗, d∗) and G(δ∗) is used to produce (c∗, d∗), and they are replaced by k∗ and
r∗ in Game 6. If Find does not occur, then random oracle G has never been queried by δ∗ except
for producing the challenge ciphertext and thus G(δ∗) is uniformly random in A’s view. H(δ∗, d∗) is
uniformly random in A’s view for two reasons: Firstly, the fact that Find does not occur means that
A has never queried (δ∗, d∗) to H. Secondly, the database state on (δ∗, d∗) is not disturbed by the
decryption process of CCA3. Therefore, it is undetectable for adversary A to produce the challenge

10

ciphertext with uniformly chosen r1 ∈ Ksy and r2 ∈ Rasy. Then the view of A in Game 5 and that
in Game 6 are identical until Find occurs. Thus, we have

Pr[Find : Game 5] = Pr[Find : Game 6], (8)

Pr[¬Find ∧Game 5→ 1] = Pr[¬Find ∧Game 6→ 1]. (9)

Game 7: In this game, we change oracle CCA3 back to CCA1.
If Find does not occur, (δ∗, d∗) is not recorded in the database of H. In this case, oracle CCA1

and CCA3 act the same by their definitions. Therefore, Game 6 and Game 7 are perfectly indistin-
guishable for A until Find happens. Thus,

Pr[Find : Game 6] = Pr[Find : Game 7], (10)

Pr[¬Find ∧Game 6→ 1] = Pr[¬Find ∧Game 7→ 1]. (11)

Then by equation (6), (7), (8), (9), (10) and (11),

Pr[Find : Game 4] = Pr[Find : Game 7], (12)

Pr[¬Find ∧Game 4→ 1] = Pr[¬Find ∧Game 7→ 1]. (13)

By equation (13),

|Pr[Game 4→ 1]− Pr[Game 7→ 1]| = |Pr[Find ∧Game 4→ 1]− Pr[Find ∧Game 7→ 1]| .

Combines this equation with equation (12), and we obtain

|Pr[Game 4→ 1]− Pr[Game 7→ 1]| ≤ Pr[Find : Game 7]. (14)

Lemma 13. There exists a quantum adversary Asy invoking A such that∣∣∣∣Pr[Game 7→ 1]− 1

2

∣∣∣∣ = AdvOT
Asy,Πsy (15)

and Time(Asy) ≈ Time(A) +O((qH + qG + 2qD)2 + qH · qD · Time (Encasy)).

Proof. A quantum algorithm Asy that runs A and breaks the one-time security of Πsy is constructed
as follows:

Asy generates (pk, sk)← Gen, picks δ∗
$←−Masy and simulates Game 7 for A. Random oracle G

is simulated by a 2(qG + 2qD)-wise independent function, and other oracles used in Game 7 can be
implemented efficiently by Asy. For A’s challenge query (m0,m1), Asy sends it to the challenger in

GameOT
Asy,Πsy . After receiving d∗, Asy picks r ∈ Rasy uniformly, then computes c∗ = Encasypk (δ∗; r) and

sends (c∗, d∗) back to A. After receiving b′ from A, Asy output b′.
From the construction of Asy, the view of A invoked by Asy is identical with that in Game 7, and

the output of Asy is correct if and only if A guesses correctly. Thus we have Pr[GameOT
Asy,Πsy → 1] =

Pr[Game 7→ 1] and∣∣∣∣Pr[Game 7→ 1]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[GameOT
Asy,Πsy → 1]− 1

2

∣∣∣∣ = AdvOT
Asy,Πsy .

Denote by TO the time needed to simulate oracle O, then the running time of B is given by
Time(B) = Time(A) + TG + TH + TCCA1

, where TG = O
(
(qG + 2qD)2

)
, TH = O(q2

H), TCCA1
=

O(qD · qH · Time(Encasy)) by Appendix B.1.

Lemma 14. There exists a quantum adversary Aasy invoking A such that

Pr[Find : Game 7] ≤ 4d ·AdvOW-CPA
Aasy,Πasy (16)

and Time(Aasy) ≈ Time(A) +O((qH + qG + 2qD)2 + qH · qD · Time (Encasy)).

11

Proof. Define BO
SC
S as a quantum oracle algorithm that on input pk, c∗, runs A and simulates Game 7

for it. Then we have Pr[Find : Game 7] = Pr[Find : BO
SC
S (pk, c∗)], where c∗ = Encasypk (δ∗), δ∗ is

sampled uniformly fromMasy. As analyzed in Game 5, B makes at most d = qH + qG+ 2qD queries,
then by Theorem 4,

Pr[Find : BO
SC
S (pk, c∗)] ≤ 4d · Pr[(δ, d) ∈ S : (δ, d)← D(pk, c∗)].

Here D is a quantum algorithm invoking B. On input (pk, c∗), D chooses i
$←− {1, . . . , d}, runs

BO
SC
∅ (pk, c∗) until (just before) i-th query of B, and then measures the state on the input register of

OSC∅ and obtains (δ, d). Note that the running time of D and that of B are almost the same.
Because S = {δ∗, δ∗‖·}, (δ, d) ∈ S is equivalent to δ = δ∗. Then D can also be considered as a

quantum algorithm Aasy that breaks the OW-CPA security of Πasy. Therefore,

Pr[(δ, d) ∈ S : (δ, d)← D(pk, c∗)] = Pr[δ = δ∗ : (δ, d)← D(pk, c∗)] = AdvOW-CPA
Aasy,Πasy .

The running time of B is Time(B) = Time(A) + TG + TH + TCCA1
, where TG = O

(
(qG + 2qD)2

)
,

TH = O(q2
H), TCCA1

= O(qD · qH · Time(Encasy)).

Combining equation (5), (12), (14), (15) and (16), we obtain∣∣∣∣Pr[Game 3→ 1]− 1

2

∣∣∣∣ ≤ 2d ·
√

AdvOW-CPA
Aasy,Πasy + 4d ·AdvOW-CPA

Aasy,Πasy + AdvOT
Asy,Πsy . (17)

Summarizing equation (1), (2), (3), (4), and (17), we have

AdvIND-qCCA
A,Π ≤ qD ·

12√
2γ

+ 2d ·
√

AdvOW-CPA
Aasy,Πasy + 4d ·AdvOW-CPA

Aasy,Πasy + AdvOT
Asy,Πsy .

Furthermore, compared with Zhandry’s proof for FO transform, we notice that oracle CCA1 in this
proof acts the same as the decryption procedure defined in Hybrid 4 in his proof for ciphertext (c, d)
such that c 6= c∗. And by Theorem 9, we can prove that any polynomial time quantum adversary
distinguishes Hybrid 1 from Hybrid 4 with a negligible probability. On the other hand, by equation (2),
it seems unnecessary to restrict that the decryption oracle outputs ⊥ directly for ciphertext (c, d) such
that c = c∗. Thus Hybrid 1 can be removed from his reduction, which contributes a tighter security
reduction.

4.2 REACT: from OW-qPCA to IND-qCCA in the QROM

Let Πasy = (Genasy,Encasy,Decasy) be a PKE with key space Kasy, message spaceMasy, randomness
space Rasy and ciphertext space Casy. Let Πsy = (Encsy,Decsy) be a symmetric encryption scheme
with message space Msy, ciphertext space Csy, key space Ksy. Let H and G be hash functions such
that

H : {0, 1}∗ → {0, 1}n, G : {0, 1}∗ → Rsy.

Definition 15. The hybrid scheme REACT[Πasy,Πsy, H,G] = (Gen,Enc,Dec) obtained from the
REACT transformation is constructed as follows.

1. Gen: The Key Generation algorithm runs Genasy and takes its output (pk, sk) as a public/secret
key pair.

2. Enc: The Encryption algorithm on input pk and m ∈ Msy picks R
$←− Masy, r

$←− Rasy,
computes

c1 = Encasypk (R; r), c2 = EncsyG(R)(m), c3 = H(R,m, c1, c2)

and outputs (c1, c2, c3) as a ciphertext.

12

3. Dec: The Decryption algorithm on input sk and (c1, c2, c3), computes

R = Decasysk (c1), m = DecsyG(R)(c2), c′3 = H(R,m, c1, c2).

If R = ⊥ or m = ⊥, output ⊥. Else if c′3 = c3, output m. Else, output ⊥.

Lemma 16. Let H be the random oracle, then REACT[Πasy,Πsy, H,G] = (Gen,EncH ,DecH) is an
oracle-masked scheme with η = 1/2n.

Proof. We define deterministic polynomial time algorithm A1, A2, A3 and A4 as follows.

- A1 takes pk, R, r and m as input, evaluates c1 = Encasypk (R; r), k = G(R), c2 = Encsyk (m), and
then outputs (R,m, c1, c2).

- A2 takes (R,m, c1, c2) and y ∈ {0, 1}n as input, defines c3 := y, then outputs (c1, c2, c3).

- A3 takes sk and (c1, c2, c3) as input, computes R = Decasysk (c1). If R = ⊥, output ⊥. Else,
compute k = G(R) and m = Decsyk (c2). If m = ⊥, output ⊥. Otherwise, output (R,m, c1, c2).

- A4 takes (R,m, c1, c2) as input and outputs m.

We can verify that with four algorithms defined as above, EncH and DecH are written as in
Definition 5. And thus Π is an oracle-masked scheme and tuple (A1,A2,A3,A4) is Π’s decomposition.

By the definition of η,

η = max
(pk,sk), (c1,c2,c3)

1/2n ·
∣∣{y ∈ {0, 1}n : (c1, c2, c3) = A2(pk,A3(c1, c2, c3), y)}

∣∣
= max

(pk,sk), (c1,c2,c3)
1/2n ·

∣∣{y ∈ {0, 1}n : c3 = y}
∣∣ = 1/2n

where (pk, sk) is generated by Gen and (c1, c2, c3) ∈ Casy×Csy×{0, 1}n satisfies A3(sk, c1, c2, c3) 6= ⊥.

Theorem 17. For any adversary A against the IND-qCCA security of Π = REACT[Πasy,Πsy, H,G]
in the QROM, making at most qD queries to the decryption oracle, at most qG queries to random oracle
G and at most qH queries to random oracle H, there exists an adversary Aasy against the OW-qPCA
security of Πasy and an adversary Asy against the OT security of Πsy such that

AdvIND-qCCA
A,Π ≤ qD ·

12√
2n

+ 2(d+ 1) ·
√

AdvOW-qPCA
Aasy,Πasy + 4d ·AdvOW-qPCA

Aasy,Πasy + AdvOT
Asy,Πsy

where d = qH + qG + 2qH · qD, Time(Asy) = Time(Aasy) ≈ Time(A) +O(d2).

Proof. Denote ΩH and ΩG as sets of all functions H : {0, 1}∗ → {0, 1}n and G : {0, 1}∗ → Rsy,
respectively. The input and output register of the decryption query of A are denoted by C and Z,
respectively. The proof of the IND-qCCA security of REACT transformation follows a proof outline
for FO transformation as in the proof of Theorem 12, and thus we only give a brief analysis here.

Let Game 0 be game GameIND-qCCA
A,Π . We then introduce a sequence of games to bound the

difference between 1/2 and the probability that Game 0 outputs 1.∣∣∣∣Pr[Game 0→ 1]− 1

2

∣∣∣∣ = AdvIND-qCCA
A,Π . (18)

Game 1:

1: H
$←− ΩH , G

$←− ΩG, (pk, sk)← Genasy, R∗
$←−Masy, r∗

$←− Rasy

2: (m0,m1)← AH,G,Decsk(pk)

3: b
$←− {0, 1}, c∗1 = Encasypk (R∗; r∗), c∗2 = EncsyG(R∗)(mb), c

∗
3 = H(R∗,m∗b , c

∗
1, c
∗
2)

4: b′ ← AH,G,Dec∗sk(pk, (c∗1, c
∗
2, c
∗
3))

5: return[b = b′]

13

Starting from Game 1, random oracle H is simulated with CStO and its database register is
denoted as D.
Game 1: In this game, we replace the decryption oracle in Game 0 with oracle CCA1. When to
answer decryption queries, CCA1 applies the preimage extraction procedure of Π. The construction
of CCA1 is shown in Appendix B.2. Note that as presented in Appendix B.2, the preimage extraction
procedure of Π and CCA1 is constructed by invoking oracle PCAsk(·), instead of using sk directly.

Since Game 1 is the preimage extraction game GameExt
A,Π, we apply Theorem 9 to obtain

|Pr[Game 0→ 1]− Pr[Game 1→ 1]| ≤ qD ·
5√
2n

(19)

by similar analysis performed in the proof of Theorem 12.

Game 2: In this game, we replace oracle CCA1 with CCA2. Define CCA2 as follows. Before the
challenge query, CCA2 acts the same as CCA1. After that, CCA2 replies to the decryption query in
three steps:

1. Perform unitary StdDecomp(R∗,mb,c∗1 ,c
∗
2) to register D.

2. Apply CCA1 on register C, Z and D.

3. Perform StdDecomp(R∗,mb,c∗1 ,c
∗
2) to register D again.

Oracle CCA1 and CCA2 differs only after the challenge query happens. In this case, CCA1 and
CCA2 has the same effect on register C, Z and D if StdDecomp(R∗,mb,c∗1 ,c

∗
2) and CCA1 are commutative.

Lemma 8 implies that unitary StdDecomp(R∗,mb,c∗1 ,c
∗
2) commutes with CCA1 with a loss, and thus

D(CCA1ρCCA†1,CCA2ρCCA†2) ≤ 7
√
η = 7/

√
2n holds for any joint state ρ of A and database. Further,

adversary A issues at most qD decryption queries after the challenge query, and then by the hybrid
argument, we obtain

|Pr[Game 1→ 1]− Pr[Game 2→ 1]| ≤ qD ·
7√
2n
. (20)

Game 3: We change the process of replying random oracle queries: When random oracles are queried
by A or oracle G is applied in the process of CCA2, we perform E and then perform the random oracle,
where E is a constant zero function with quantum access. Then we have

Pr[Game 2→ 1] = Pr[Game 3→ 1]. (21)

Game 4: In this game, the only change is that semi-classical oracle OSCS is applied before performing
E, where set S := {R∗, R∗‖ · ‖ · ‖· }.

E is queried at most qH + qG + 2qH · qD times in Game 5:

- E is queried each time H or G is queried.

- A makes at most qH queries to H and at most qG queries to G.

- A makes at most qD decryption queries, and CCA2 requires at most 2qH queries to G for each
decryption query (c1, c2, c3): At most qH queries is needed to check if any ((R,m, c′1, c

′
2), y) ∈ D

matches with (c1, c2, c3), i.e., y = c3, c′1 = c1, c′2 = c2, Decasysk (c′1) = R and DecsyG(R)(c
′
2) = m.

Another qH queries is to uncompute these checks.

Let d = qH + qG + 2qH · qD. By applying Theorem 3, we obtain

|Pr[Game 3→ 1]− Pr[Game 4→ 1]| ≤ 2
√

(d+ 1) Pr[Find : Game 4]. (22)

If Find does not occur, CCA2 will not disturb the database state on (R∗,mb, c
∗
1, c
∗
2) by similar

arguments in Game 4 in the proof of Theorem 12.

Game 5: In this game, oracle CCA2 is replaced with oracle CCA3. Oracle CCA2 and CCA3 differs
only after the challenge query happens. In this case, CCA3 applies the preimage extraction procedure
of Π but the database state on (δ∗, d∗) is not involved in this procedure.

14

If Find does not occur, oracle CCA2 and CCA3 acts identically. Thus,

Pr[Find : Game 4] = Pr[Find : Game 5], (23)

Pr[¬Find ∧Game 4→ 1] = Pr[¬Find ∧Game 5→ 1]. (24)

Game 6: In this game, we pick k∗ ∈ Ksy and c∗3 ∈ {0, 1}n uniformly. We use them to produce the
challenge ciphertext (c∗1, c

∗
2, c
∗
3) instead of using G(R∗) and H(R∗,m∗b , c

∗
1, c
∗
2).

A has never queried (R∗,mb, c
∗
1, c
∗
2) to H until Find occurs. Furthermore, CCA3 will not disturb

the database state on (R∗,mb, c
∗
1, c
∗
2) and thus H(R∗,mb, c

∗
1, c
∗
2) is uniformly random in A’s view. On

the other hand, if Find does not occur, then G has never been queried by δ∗ except for producing the
challenge ciphertext, which means thatG(R∗) is uniformly random in A’s view. Thus, it is undetectable
for adversary A to produce the challenge ciphertext with uniformly chosen k∗ ∈ Ksy and c∗3 ∈ {0, 1}n.
Hence,

Pr[Find : Game 5] = Pr[Find : Game 6], (25)

Pr[¬Find ∧Game 5→ 1] = Pr[¬Find ∧Game 6→ 1]. (26)

Game 7: In this game, we turn oracle CCA3 back to CCA1.
If Find does not occur, (δ∗, d∗) is not recorded in the database of H both in these two games. In

this case, oracle CCA1 and CCA3 act the same by their definitions. Therefore, we have

Pr[Find : Game 6] = Pr[Find : Game 7], (27)

Pr[¬Find ∧Game 6→ 1] = Pr[¬Find ∧Game 7→ 1]. (28)

Then by equation (23), (24), (25), (26), (27) and (28), we obtain

Pr[Find : Game 4] = Pr[Find : Game 7] (29)

and
|Pr[Game 4→ 1]− Pr[Game 7→ 1]| ≤ Pr[Find : Game 7]. (30)

Lemma 18. There exists a quantum adversary Asy invoking A such that∣∣∣∣Pr[Game 7→ 1]− 1

2

∣∣∣∣ = AdvOT
Asy,Πsy (31)

and Time(Asy) ≈ Time(A) +O
(
(qH + qG + 2qH · qD)2

)
.

Proof. A quantum algorithm Asy that runs A and breaks the one-time security of Πsy is constructed
as follows:

Asy generates (pk, sk)← Gen, picks R∗
$←−Masy and simulates Game 7 for A. Random oracle G is

simulated by CStO, and other oracles used in Game 7 can be implemented efficiently by Asy. When

A makes challenge query (m0,m1), Asy sends it to the challenger in GameOT
Asy,Πsy . After receiving

c∗, Asy picks r∗ ∈ Rasy and c∗3 ∈ {0, 1}n uniformly, then computes c∗1 = Encasypk (R∗; r∗) and sends
(c∗1, c

∗, c∗3) back to A. After receiving b′ from A, Asy output b′.
By the construction of Asy, the view of A invoked by Asy and that in Game 7 are identical, and

the output of Asy is correct if and only if A guesses correctly . Thus we have Pr[GameOT
Asy,Πsy → 1] =

Pr[Game 7→ 1] and∣∣∣∣Pr[Game 7→ 1]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[GameOT
Asy,Πsy → 1]− 1

2

∣∣∣∣ = AdvOT
Asy,Πsy .

Moreover, the running time of B is Time(B) = Time(A) + TG + TH + TCCA1
, where TG =

O
(
(qG + 2qH · qD)2

)
, TH = O(q2

H), TCCA1 = O(qD · qH) by Appendix B.2.

Lemma 19. There exists a quantum adversary Aasy invoking A such that

Pr[Find : Game 7] ≤ 4d ·AdvOW-qPCA
Aasy,Πasy (32)

and Time(Aasy) ≈ Time(A) +O
(
(qH + qG + 2qH · qD)2

)
.

15

Proof. Define BO
SC
S as a quantum oracle algorithm that on input pk, c∗, runs A and simulates Game 7

for it. Then we have Pr[Find : Game 7] = Pr[Find : BO
SC
S (pk, c∗)], where c∗ = Encasypk (R∗), R∗ is

sampled uniformly from Masy. As analysis in Game 5, B makes at most d = qH + qG + 2qH · qD
queries, then by Theorem 4,

Pr[Find : BO
SC
S (pk, c∗)] ≤ 4d · Pr[(R,m, c1, c2) ∈ S : (R,m, c1, c2)← D(pk, c∗)].

Here D is a quantum algorithm invoking B. On input (pk, c∗), D chooses i
$←− {1, . . . , d}, runs

BO
SC
∅ (pk, c∗) until (just before) i-th query of B, and then measures the state on the input register of

OSC∅ and obtains (R,m, c1, c2). Note that the running time of D and that of B are almost the same.
By the definition of S, (R,m, c1, c2) ∈ S is equivalent to R = R∗. Then D can also be considered

as a quantum algorithm Aasy that breaks the OW-qPCA security of Πasy. Therefore,

Pr[(R,m, c1, c2) ∈ S : (δ, d)← D(pk, c∗)] = Pr[R = R∗ : (R,m, c1, c2)← D(pk, c∗)] = AdvOW-qPCA
Aasy,Πasy .

The running time ofB is Time(B) = Time(A)+TG+TH+TCCA1
, where TG = O

(
(qG + 2qH · qD)2

)
,

TH = O(q2
H), TCCA1

= O(qD · qH).

Combining equation (22), (29), (30) (31), and (32),∣∣∣∣Pr[Game 3→ 1]− 1

2

∣∣∣∣ ≤ 2(d+ 1) ·
√

AdvOW-qPCA
Aasy,Πasy + 4d ·AdvOW-qPCA

Aasy,Πasy + AdvOT
Asy,Πsy (33)

Finally, we summarize equation (18), (19), (20), (21), and (33), and obtain

AdvIND-qCCA
A,Π ≤ qD ·

12√
2n

+ 2(d+ 1) ·
√

AdvOW-qPCA
Aasy,Πasy + 4d ·AdvOW-qPCA

Aasy,Πasy + AdvOT
Asy,Πsy .

References

[AHU19] Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs us-
ing semi-classical oracles. In Annual International Cryptology Conference, pages 269–295.
Springer, 2019.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. Random oracles in a quantum world. In International conference on the theory
and application of cryptology and information security, pages 41–69. Springer, 2011.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In Proceedings of the 1st ACM Conference on Computer and
Communications Security, pages 62–73, 1993.

[BZ13] Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext security in a
quantum computing world. In Annual cryptology conference, pages 361–379. Springer,
2013.

[CFHL21] Kai-Min Chung, Serge Fehr, Yu-Hsuan Huang, and Tai-Ning Liao. On the compressed-
oracle technique, and post-quantum security of proofs of sequential work. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, pages
598–629. Springer, 2021.

[CMS19] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in the quan-
tum random oracle model. In Theory of Cryptography Conference, pages 1–29. Springer,
2019.

[DFMS22] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-extractability
in the quantum random-oracle model. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 677–706. Springer, 2022.

16

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmet-
ric encryption schemes. In Annual international cryptology conference, pages 537–554.
Springer, 1999.

[JSHJ+02] Coron Jean-Sébastien, Helena Handschuh, Marc Joye, Pascal Paillier, David Pointcheval,
and Christophe Tymen. Gem: A generic chosen-ciphertext secure encryption method. In
Cryptographers Track at the RSA Conference, pages 263–276. Springer, 2002.

[NC02] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information,
2002.

[OP01] Tatsuaki Okamoto and David Pointcheval. React: Rapid enhanced-security asymmetric
cryptosystem transform. In Cryptographers Track at the RSA Conference, pages 159–174.
Springer, 2001.

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security of the fujisaki-
okamoto and oaep transforms. In Theory of Cryptography Conference, pages 192–216.
Springer, 2016.

[Zha15] Mark Zhandry. Secure identity-based encryption in the quantum random oracle model.
International Journal of Quantum Information, 13(04):1550014, 2015.

[Zha19] Mark Zhandry. How to record quantum queries, and applications to quantum indifferen-
tiability. In Annual International Cryptology Conference, pages 239–268. Springer, 2019.

A Cryptographic Primitives and Security Definitions

Definition 20 (Secret-key encryption scheme). A secret-key encryption scheme Π consists of a pair
of polynomial-time (in the security parameter λ) algorithms (E,D).

1. E, the encryption algorithm, on input a message m and a key k outputs a ciphertext c.

2. D, the decryption algorithm, on input a ciphertext c and a key k outputs either a message m or
a special symbol ⊥ if c is invalid.

Definition 21 (One-time security). Given secret-key encryption scheme Π = (E,D) and adversary A,
we define GameOT

A,Π(1λ) in the following:

1. Query: Adversary A chooses two messages m0,m1 with the same length, and sends them to the

challenger. The challenger chooses b
$←− {0, 1}, computes c = E(k,mb) and returns it to the

adversary.

2. Guess: Adversary A outputs a guess b′, if b′ = b, output 1.

AdvOT
A,Π(λ) :=

∣∣∣∣Pr[GameOT
A,Π(1λ)→ 1]− 1

2

∣∣∣∣
Π = (E,D) is one-time secure if for any quantum polynomial time adversary A, there exists a negligible
function negl(·) such that AdvOT

A,Π(λ) ≤ negl(λ).

Definition 22 (Public-key encryption scheme). A public-key encryption scheme Π consists of a triple
of polynomial-time (in the security parameter λ) algorithms (Gen,Enc,Dec).

1. Gen, the key generation algorithm, on input 1λ outputs a public/secret key-pair (pk, sk).

2. Enc, the encryption algorithm, on input a public key pk and a message m outputs a ciphertext c.

3. Dec, the decryption algorithm, on input a secret key sk and a ciphertext c outputs either a
message m or a special symbol ⊥ if c is invalid.

17

Definition 23 (γ-spread). A public-key encryption scheme Π is γ-spread (for λ) if for any pk produced
by Gen(1λ) and any message m,

max
c∈{0,1}∗

Pr[c← Enc(pk,m)] ≤ 1

2γ
.

Especially, the encryption scheme Π is well-spread if γ = ω(log(λ)).

Definition 24. We say a function H : {0, 1}m → {0, 1}n has min-entropy k if

− log max
y∈{0,1}n

Pr[y = H(x) : x
$←− {0, 1}m] = k.

Definition 25 (OW-CPA security). Given a public-key encryption scheme Π = (Gen,Enc,Dec) and
adversary A, we define GameOW-CPA

A,Π (1λ) in the following:

1. KeyGen: The challenger runs Gen(1λ) to obtain (pk, sk), then sends pk to adversary A.

2. Challenge query: The challenger chooses m∗
$←−M, computes c∗ ← Enc(pk,m∗), and then sends

c∗ to adversary A.

3. Guess: Adversary A produces a guess m. The challenger outputs [m∗ = m].

Define the advantage of adversary A in GameOW-CPA
A,Π (1λ) as

AdvOW-CPA
A,Π (λ) := Pr[GameOW-CPA

A,Π (1λ)→ 1].

Π = (Gen,Enc,Dec) is OW-CPA secure if for any quantum polynomial time adversary A, a negli-
gible function negl(·) exists such that AdvOW-CPA

A,Π (λ) ≤ negl(λ).

Definition 26 (OW-qPCA security). Given a public-key encryption scheme Π = (Gen,Enc,Dec) and

adversary A, we define GameOW-qPCA
A,Π (1λ) in the following:

1. KeyGen: The challenger runs Gen(1λ) to obtain (pk, sk), then sends pk to adversary A.

2. Challenge query: The challenger chooses m∗
$←−M, computes c∗ ← Enc(pk,m∗), and then sends

c∗ to adversary A.

3. Guess: Adversary A queries oracle PCAsk(·, ·) with superposition state, where PCAsk(·, ·) is an
oracle that takes input (m, c) and outputs [m = Dec(sk, c)]. Finally, adversary A produces a
guess m. The challenger outputs [m∗ = m].

Define the advantage of adversary A in GameOW-qPCA
A,Π (1λ) as

AdvOW-qPCA
A,Π (λ) := Pr[GameOW-qPCA

A,Π (1λ)→ 1].

Π = (Gen,Enc,Dec) is OW-qPCA secure if for any quantum polynomial time adversary A, a

negligible function negl(·) exists such that AdvOW-qPCA
A,Π (λ) ≤ negl(λ).

Definition 27 (IND-qCCA security). Given a public-key encryption scheme Π = (Gen,Enc,Dec) and

adversary A, we define GameIND-qCCA
A,Π (1λ) as follows:

1. KeyGen: The challenger runs Gen(1λ) to obtain (pk, sk) and sends pk to A.

2. Query: The adversary A is allowed to make the following two types of queries:

(a) Challenge query: The adversary A chooses a pair of message (m0,m1) with the same length
and sends them to the challenger. The challenger computes c∗ = Enc(pk,mb), and returns
it to adversary A.

(b) Decryption queries: Suppose challenge query is c∗, and adversary A makes a quantum query
to the function CCA, where CCA is defined as follows.

CCA(c) =

{
⊥ if the challenge query has happened and c = c∗,

Dec(sk, c) otherwise.

18

3. Guess: The adversary A produces a guess b′. If b′ = b, output 1.

Define the advantage of adversary A in GameIND-qCCA
A,Π (1λ) as

AdvIND-qCCA
A,Π (λ) :=

∣∣∣∣Pr[GameIND-qCCA
A,Π (1λ)→ 1]− 1

2

∣∣∣∣ .
Π = (Gen,Enc,Dec) is IND-qCCA secure if for any quantum polynomial time adversary A, there

exists a negligible function negl(·) such that AdvIND-qCCA
A,Π (λ) ≤ negl(λ).

B The implementation of UExt

Let O be the random oracle with codomain Y. Let Π be an oracle-masked scheme relative to O, and
tuple (A1,A2,A3,A4) be the decomposition of Π. And (pk, sk) determines unitary UExt by definition 6.

To implement UExt, we first give some notations, then introduce algorithm Extract, as a primitive
of UExt, and finally give the implementation of UExt.

As is shown in definition 6, O is simulated by CStO and we introduce two definitions related to
database D: For any c ∈ C, a completion in D is a pair (x, y) ∈ D such that A2(pk, x, y) = c and
A3(sk, c) = x. Define Dc to be the subset of D such that A2(pk, x, y) = c for any (x, y) in Dc. Then
any completion of c in set D is necessarily in set Dc. Note that D contains at most one completion of
c, since c determines A3(sk, c).

Define relation R1(pk, sk) and R2(pk, sk) for any (pk, sk) of Π as below.

R1(pk, sk) := {(x, c) ∈ X × C : ∃ y ∈ Y s.t. A2(pk, x, y) = c},

R2(pk, sk) := {(x, c) ∈ X × C : A3(sk, c) = x}

where X is the output space of algorithm A1. And we give the definition of the verification oracle
V(pk, sk, ·, ·) of Π. V(pk, sk, ·, ·) takes input (x, c) ∈ X × C and outputs a bit b ∈ {0, 1}. For any
(x, c) ∈ R1(pk, sk), V(pk, sk, x, c) = 1 if and only if (x, c) ∈ R2(pk, sk).

Next, we define a classical algorithm Extract. Extract takes pk, sk, c and D as input. It looks
for a completion of c in D. If a completion (x, y) ∈ D is found, Extract outputs (1, x). Otherwise, it
outputs (0, 0).

Then we give a construction of Extract relative to oracle V. Extract on input c and D, finds a
completion in two steps: For each pair (x, y) in D, it computes c′ = A2(pk, x, y) and compares c′ with
c for equality to check whether (x, y) ∈ Dc. Then to extract a completion from Dc, it invokes V and
computes V(pk, sk, x, y) for each pair (x, y) ∈ Dc. If (x, y) ∈ D exists such that V(pk, sk, x, y) = 1,
Extract outputs (1, x). Otherwise, it outputs (0, 0).

Then we implement UExt by Extract, and we start with the case when the challenge query does
not happen.

1. Evaluate (b, x) = Extract(pk, sk, c,D) in superposition and xor the output into a newly created
register.

2. Apply the following conditional procedures in superposition:

3. Condition on b = 0, evaluate the map |c, z,D, b, x〉 7→ |c, z ⊕⊥, D, b, x〉.

4. Condition on b = 1, evaluate the map |c, z,D, b, x〉 7→ |c, z ⊕A4(x), D, b, x〉.

5. Uncompute (b, x) by evaluating Extract(pk, sk, c,D) in superposition again. Then discord the
new register.

After the challenge query, the challenge ciphertext c∗ is produced and UExt is implemented below.

1. Apply the following conditional procedures in superposition:

2. Condition on c = c∗, evaluate the map |c, z,D〉 7→ |c, z ⊕⊥, D〉.

3. Condition on c 6= c∗, apply the procedure in the case when c∗ is undefined.

19

In addition, the running time of UExt is upper bounded as follows. Denote the length of database
by l. For each database D, |D| ≤ l and Extract invokes A2 and V at most l times during the execution.
Thus O(l · Time(A2) + l · Time(V)) is an upper bound of the running time of UExt.

In the following B.1 and B.2, we give respective implementations of UExt for FO[Πasy,Πsy, H,G] and
REACT[Πasy,Πsy, H,G]. From the above general construction of UExt, we observe that a specific im-
plementation of V is sufficient to determine the implementation of UExt for an oracle-masked scheme Π.
Thus, we only give respective constructions of the verification oracle V for scheme FO[Πasy,Πsy, H,G]
and REACT[Πasy,Πsy, H,G].

B.1 The implementation of UExt for FO

For scheme Π = FO[Πasy,Πsy, H,G], we first present relation R1(pk, sk) and R2(pk, sk) to determine
the input form of the verification oracle V, then give an implementation of V.

By Lemma 11, relation R1(pk, sk) and R2(pk, sk) are subsets of Masy × Csy × Casy × Csy for any
(pk, sk) of Π. Any tuple (δ, d1, c, d2) ∈ R1(pk, sk) satisfies that d1 = d2 and r ∈ Rasy exists such that
Encasypk (δ; r) = c. Tuple (δ, d1, c, d2) ∈ R2(pk, sk) if d1 = d2 and δ = Decasysk (c).

Further, any tuple (δ, d1, c, d2) ∈ R1(pk, sk) also satisfies Decasysk (c) = δ by the correctness of Πasy,
and thus (δ, d1, c, d2) ∈ R2(pk, sk). Then R2(pk, sk) is a subset of R1(pk, sk). By similar arguments,
we also conclude that (δ, d1, c, d2) /∈ R1(pk, sk) implies (δ, d1, c, d2) /∈ R2(pk, sk) for any (pk, sk). Thus
for any (pk, sk) of Π, R1(pk, sk) = R2(pk, sk) and

R2(pk, sk) = {(δ, d, c, d) : c ∈ Casy, δ = Decasysk (c), d ∈ Csy}.

By the definition of the verification oracle, V for Π can be simply simulated by an algorithm that
takes tuple (δ, d1, c, d2) as input and trivially outputs 1. Moreover, notice that sk is not used in the
implementation of UExt except for the verification oracle. Therefore, UExt for Π can be implemented
without sk.

Finally, the running time of UExt is given by O(l · Time(Encasy)).

B.2 The implementation of UExt for REACT

For scheme Π = REACT[Πasy,Πsy, H,G], we only give an implementation of oracle V here.
By Lemma 16,R1(pk, sk) andR2(pk, sk) are subsets ofMasy×Msy×Casy×Csy×Casy×Csy×{0, 1}n

for any (pk, sk). Any tuple (R,m, c1, c2, c
′
1, c
′
2, c
′
3) ∈ R1(pk, sk) if c1 = c′1, c2 = c′2. And this tuple is

an element of R2(pk, sk) if R = Decasysk (c′1), m = DecsyG(R)(c
′
2), c1 = c′1, c2 = c′2. Thus, we have

R1(pk, sk) = {(R,m, c1, c2, c1, c2, c3) : R ∈Masy,m ∈Msy, c1 ∈ Casy, c2 ∈ Csy, c3 ∈ {0, 1}n},
R2(pk, sk) = {(R,m, c1, c2, c1, c2, c3) : c1 ∈ Casy, R = Decasysk (c1), c2 ∈ Csy,m = DecsyG(R)(c2), c3 ∈ {0, 1}n}.

According to R1(pk, sk) of Π, we assume the input form of V to be (R,m, c1, c2, c1, c2, c3) for
convenience. Then we present an algorithm VSim relative to oracle PCA. VSim takes pk and tuple
(R,m, c1, c2, c1, c2, c3) as input. It first invokes oracle PCAsk(·, ·) and obtain b := PCAsk(R, c1). If
b = 0, VSim outputs 0. Else, it computes m′ = DecsyG(R)(c2). If m 6= m′, output 0. Else, output 1.

Then by the definition of PCA in Appendix A, it is easily verified that V can be simulated by VSim.
In this way, UExt for Π is implemented by invoking oracle PCAsk instead of using sk directly.

The running time of UExt is given by O(l).

C The Properties of UExt

Let Π = (Gen,EncH ,DecH) be an oracle-masked scheme with parameter η. Let tuple (A1,A2,A3,A4)
be Π’s decomposition. Fix any (pk, sk) generated by Gen and then we give some notations. Let {0, 1}n
be the codomain of H. Relation R1(pk, sk) and R2(pk, sk) of Π is as defined in Appendix B:

R1(pk, sk) := {(x, c) ∈ X × C : ∃ y ∈ {0, 1}n s.t. A2(pk, x, y) = c},

R2(pk, sk) := {(x, c) ∈ X × C : A3(sk, c) = x},
where X is the output space of algorithm A1. For any c ∈ C, define Sc := {y ∈ {0, 1}n : x =
A3(sk, c), c = A2(pk, x, y)}, and |Sc| ≤ 2n · η from the definition of η.

20

C.1 Proof of Lemma 7

Proof. Let 4 := USim −UExt. Denote by c∗ the challenge ciphertext. The decryption oracle DecHsk(·)
corresponds to unitary operator USim. Given ciphertext c and database D, let x := A3(sk, c) and then
we define several cases for x, c, D.

1. c = c∗, or x = ⊥, or (x, c) /∈ R1(pk, sk). Then DecHsk(c) = ⊥ and USim|c, z,D〉 = |c, z ⊕ ⊥, D〉.
On the other hand, except for the c = c∗ case, no (x, y) ∈ D exists such that A2(pk, x, y) = c
and A3(sk, c) = x. And therefore, UExt|c, z,D〉 = |c, z ⊕⊥, D〉.
Let P1 be the projection onto c, D that c = c∗ or x = ⊥, or (x, c) /∈ R1(pk, sk). Then for any
state |ψ〉, 4 ◦ P1|ψ〉 = 0.

2. c 6= c∗, (x, c) ∈ R1(pk, sk) but D(x) = ⊥. Then UExt|c, z,D〉 = |c, z⊕⊥, D〉. In this case, x 6= ⊥,
DecHsk(·) first queries CStOH the value of H(x), and then decrypts with H(x). Thus, unitary
USim performs as follows:

USim|c, z,D〉

=
∑
r∈Sc

1√
2n

StdDecompx|c, z ⊕A4(x), D ∪ (x, r)〉+
∑
r/∈Sc

1√
2n

StdDecompx|c, z ⊕⊥, D ∪ (x, r)〉.

Then

4|c, z,D〉 =
∑
r∈Sc

1√
2n

(
|c, z ⊕A4(x)〉 − |c, z ⊕⊥〉

)
StdDecompx|D ∪ (x, r)〉.

Let P2 be the projection onto c, D such that (x, c) ∈ R1(pk, sk) and D(x) = ⊥.

3. c 6= c∗, (x, c) ∈ R1(pk, sk) and D(x) = ⊥, r 6= 0.

UExt|c, z,D∪ (x, βr)〉 =
∑
ω∈Sc

(−1)ω·r√
2n
|c, z⊕A4(x), D∪ (x, ω)〉+

∑
ω/∈Sc

(−1)ω·r√
2n
|c, z⊕⊥, D∪ (x, ω)〉.

By similar arguments in case 2,

USim|c, z,D ∪ (x, βr)〉

=
∑
ω∈Sc

(−1)ω·r√
2n

StdDecompx|c, z ⊕A4(x), D ∪ (x, ω)〉+
∑
ω/∈Sc

(−1)ω·r√
2n

StdDecompx|c, z ⊕⊥, D ∪ (x, ω)〉.

Thus we obtain

4|c, z,D ∪ (x, βr)〉

=
∑
ω∈Sc

(−1)ω·r√
2n

(StdDecompx − I) |c, z ⊕A4(x), D ∪ (x, ω)〉

+
∑
ω/∈Sc

(−1)ω·r√
2n

(StdDecompx − I) |c, z ⊕⊥, D ∪ (x, ω)〉

=
∑
ω∈Sc

(−1)ω·r√
2n
|c, z ⊕A4(x)〉(1√

2n
|D〉 − 1√

2n
|D ∪ (x, β0)〉)

+
∑
ω/∈Sc

(−1)ω·r√
2n
|c, z ⊕⊥〉(1√

2n
|D〉 − 1√

2n
|D ∪ (x, β0)〉).

For any r 6= 0 and subset S of {0, 1}n,
∑
ω∈S

(−1)ω·r√
2n

+
∑
ω/∈S

(−1)ω·r√
2n

= 0 holds, and therefore

4|c, z,D ∪ (x, βr)〉 =
∑
ω∈Sc

(−1)ω·r√
2n

(|c, z ⊕A4(x)〉 − |c, z ⊕⊥〉)(1√
2n
|D〉 − 1√

2n
|D ∪ (x, β0)〉).

Let P3 be the projection onto state of the form
∑
c,z,D,r 6=0 αc,z,D,r|c, z,D ∪ (x, βr)〉, where the

support is over c, D such that (x, c) ∈ R1(pk, sk), D(x) = ⊥.

21

For any state |ψ〉, P2|ψ〉 =
∑
c,z,D αc,z,D|c, z,D〉, where the support is over c, D defined in case 2.

By the calculation in case 2,

4 ◦ P2|ψ〉 =
∑

c,z,D,r∈Sc

1√
2n
· αc,z,D

(
|c, z ⊕A4(x)〉 − |c, z ⊕⊥〉

)
StdDecompx|D ∪ (x, r)〉.

Then we have

‖4 ◦ P2|ψ〉‖2 =

∥∥∥∥∥∥
∑

c,z,D,r∈Sc

1√
2n
· αc,z,D (|c, z ⊕A4(x)〉 − |c, z ⊕⊥〉)StdDecompx|D ∪ (x, r)〉

∥∥∥∥∥∥
2

=
∑

c,z,D,r∈Sc

1

2n
· |αc,z,D|2 · ‖|c, z ⊕A4(x)〉 − |c, z ⊕⊥〉‖2.

Since ‖|a〉 − |b〉‖2 ≤ 2
(
‖|a〉‖2 + ‖|b〉‖2

)
holds for any state |a〉 and |b〉 on the same register. Thus

‖4 ◦ P2|ψ〉‖2 ≤
∑

c,z,D,r∈Sc

2

2n
· |αc,z,D|2 ·

(
‖|c, z ⊕A4(x)〉‖2 + ‖|c, z ⊕⊥〉‖2

)
=
∑
c,z,D

4

2n
· |Sc| · |αc,z,D|2 ≤

∑
c,z,D

4 · η · |αc,z,D|2 = 4 · η · ‖P2|ψ〉‖2.

For any state |ψ〉, P3|ψ〉 =
∑
c,z,D,r 6=0 αc,z,D,r|c, z,D ∪ (x, βr)〉 where c, D, r is defined in case 3.

By the calculation in case 3,

4◦P3|ψ〉 =
∑

c,z,D,r 6=0

αc,z,D,r·

(∑
ω∈Sc

(−1)ω·r√
2n

(|c, z ⊕A4(x)〉 − |c, z ⊕⊥〉)(1√
2n
|D〉 − 1√

2n
|D ∪ (x, β0)〉)

)
.

Then∥∥4 ◦ P3|ψ〉
∥∥2

=

∥∥∥∥∥∥
∑

c,z,D,r 6=0

αc,z,D,r ·

(∑
ω∈Sc

(−1)ω·r√
2n

(|c, z ⊕A4(x)〉 − |c, z ⊕⊥〉)(1√
2n
|D〉 − 1√

2n
|D ∪ (x, β0)〉)

)∥∥∥∥∥∥
2

=
∑
c,z,D

1

2n
·

∣∣∣∣∣∣
∑
r 6=0

αc,z,D,r

(∑
ω∈Sc

(−1)ω·r√
2n

)∣∣∣∣∣∣
2

· ‖|c, z ⊕A4(x)〉 − |c, z ⊕⊥〉‖2 · ‖|D〉 − |D ∪ (x, β0)〉‖2

≤
∑
c,z,D

2

2n
·

∣∣∣∣∣∣
∑
r 6=0

αc,z,D,r

(∑
ω∈Sc

(−1)ω·r√
2n

)∣∣∣∣∣∣
2

·
(
‖|c, z ⊕A4(x)〉‖2 + ‖|c, z ⊕⊥〉‖2

)
· ‖|D〉 − |D ∪ (x, β0)〉‖2

=
∑
c,z,D

8

2n
·

∣∣∣∣∣∣
∑
r 6=0

αc,z,D,r

(∑
ω∈Sc

(−1)ω·r√
2n

)∣∣∣∣∣∣
2

.

On the other hand, ‖P3|ψ〉‖2 = ‖
∑
c,z,D,r 6=0 αc,z,D,r|c, z,D ∪ (x, βr)〉‖2, which can be rewritten as

‖P3|ψ〉‖2 =

∥∥∥∥∥∥
∑

c,z,D,r 6=0

αc,z,D,r
∑
ω

(−1)r·ω√
2n
|c, z,D ∪ (x, ω)〉

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

c,z,D,ω

∑
r 6=0

αc,z,D,r
(−1)r·ω√

2n
|c, z,D ∪ (x, ω)〉

∥∥∥∥∥∥
2

=
∑

c,z,D,ω

∣∣∣∣∣∣
∑
r 6=0

(−1)r·ω√
2n

αc,z,D,r

∣∣∣∣∣∣
2

.

22

Therefore,

∥∥4 ◦ P3|ψ〉
∥∥2 ≤

∑
c,z,D

8/2n ·

∣∣∣∣∣∣
∑
r 6=0

αc,z,D,r

(∑
ω∈Sc

(−1)ω·r√
2n

)∣∣∣∣∣∣
2

=
∑
c,z,D

8/2n ·

∣∣∣∣∣∣
∑
ω∈Sc

∑
r 6=0

αc,z,D,r
(−1)ω·r√

2n

∣∣∣∣∣∣
2

≤
∑
c,z,D

8/2n · |Sc| ·

∑
ω∈Sc

∣∣∣∣∣∣
∑
r 6=0

αc,z,D,r
(−1)ω·r√

2n

∣∣∣∣∣∣
2


≤
∑
c,z,D

8 · η ·

∑
ω∈Sc

∣∣∣∣∣∣
∑
r 6=0

(−1)ω·r√
2n

αc,z,D,r

∣∣∣∣∣∣
2


≤
∑
c,z,D

8 · η ·

∑
ω

∣∣∣∣∣∣
∑
r 6=0

(−1)ω·r√
2n

αc,z,D,r

∣∣∣∣∣∣
2
 = 8 · η · ‖P3|ψ〉‖2.

Notice that for any state |ψ〉 in Lemma 7, (P1 + P2 + P3)|ψ〉 = |ψ〉, and thus

‖4|ψ〉‖ ≤
3∑
i=1

‖4 ◦ Pi|ψ〉‖ ≤ (2 + 2
√

2) · √η ≤ 5
√
η.

C.2 Proof of Lemma 8

Proof. Let 4 := UExt ◦ StdDecompx∗ − StdDecompx∗ ◦ UExt. For any x∗ ∈ {0, 1}∗, we define several
cases for x∗, ciphertext c and database D.

1. (x∗, c) 6∈ R1(pk, sk), or (x∗, c) 6∈ R2(pk, sk). Then the value of D(x∗) does not affect the decryp-
tion of c. StdDecompx∗ only affects the value of database D on x∗, and therefore 4|c, z,D〉 = 0.
Let P1 be the projection onto x∗, c, D such that c = c∗, or (x∗, c) 6∈ R1(pk, sk), or (x∗, c) 6∈
R2(pk, sk). Then for any state |ψ〉, 4 ◦ P1|ψ〉 = 0.

2. (x∗, c) ∈ R1(pk, sk), (x∗, c) ∈ R2(pk, sk) but D(x∗) = ⊥. We obtain

StdDecompx∗ ◦UExt|c, z,D〉 = StdDecompx∗ |c, z ⊕⊥, D〉 = |c, z ⊕⊥, D ∪ (x∗, β0)〉

and

UExt ◦ StdDecompx∗ |c, z,D〉 = UExt

∑
r

1√
2n
|c, z,D ∪ (x∗, r)〉

=
1√
2n

∑
r∈Sc

|c, z ⊕A4(x∗), D ∪ (x∗, r)〉+
1√
2n

∑
r/∈Sc

|c, z ⊕⊥, D ∪ (x∗, r)〉.

Therefore,

4|c, z,D〉 =
1√
2n

∑
r∈Sc

(|c, z ⊕A4(x∗)〉 − |c, z ⊕⊥〉)|D ∪ (x∗, r)〉.

Let P2 be the projection onto x∗, c, D such that (x∗, c) ∈ R1(pk, sk), (x∗, c) ∈ R2(pk, sk) and
D(x∗) = ⊥.

3. (x∗, c) ∈ R1(pk, sk), (x∗, c) ∈ R2(pk, sk) and D(x∗) /∈ Sc. Rewrite D as D′ ∪ (x∗, y), where
D′(x∗) = ⊥, y = D(x∗). Then we calculate

StdDecompx∗ ◦UExt|c, z,D′ ∪ (x∗, y)〉 = StdDecompx∗ |c, z ⊕⊥, D′ ∪ (x∗, y)〉

= |c, z ⊕⊥〉
(
|D′ ∪ (x∗, y)〉+

1√
2n
|D′〉 − 1√

2n
|D′ ∪ (x∗, β0〉

)

23

and

UExt◦StdDecompx∗ |c, z,D′∪(x∗, y)〉 = UExt|c, z〉
(
|D′ ∪ (x∗, y)〉+

1√
2n
|D′〉 − 1√

2n
|D′ ∪ (x∗, β0)〉

)
where UExt|c, z,D′ ∪ (x∗, y)〉 = |c, z ⊕⊥, D′ ∪ (x∗, y)〉, UExt|c, z,D′〉 = |c, z ⊕⊥, D′〉 and

UExt|c, z,D′ ∪ (x∗, β0)〉 =
1√
2n

∑
r∈Sc

|c, z⊕A4(x∗), D′ ∪ (x∗, r)〉+ 1√
2n

∑
r/∈Sc

|c, z⊕⊥, D′ ∪ (x∗, r)〉.

Thus

4|c, z,D′ ∪ (x∗, y)〉 =
1

2n

∑
r∈Sc

(|c, z ⊕⊥〉 − |c, z ⊕A4(x∗)〉)|D′ ∪ (x∗, r)〉.

Let P3 be the projection onto x∗, c, D′, y such that (x∗, c) ∈ R1(pk, sk), (x∗, c) ∈ R2(pk, sk),
D′(x∗) = ⊥, y /∈ Sc.

4. (x∗, c) ∈ R1(pk, sk), (x∗, c) ∈ R2(pk, sk) and D(x∗) ∈ Sc. We represent D as D′ ∪ (x∗, y), where
D′(x∗) = ⊥, y = D(x∗). Then we have

StdDecompx∗ ◦UExt|c, z,D′ ∪ (x∗, y)〉 = StdDecompx∗ |c, z ⊕A4(x∗), D′ ∪ (x∗, y)〉

= |c, z ⊕A4(x∗)〉
(
|D′ ∪ (x∗, y)〉+

1√
2n
|D′〉 − 1√

2n
|D′ ∪ (x∗, β0〉

)
and

UExt◦StdDecompx∗ |c, z,D′∪(x∗, y)〉 = UExt|c, z〉
(
|D′ ∪ (x∗, y)〉+

1√
2n
|D′〉 − 1√

2n
|D′ ∪ (x∗, β0〉

)
where UExt|c, z,D′ ∪ (x∗, y)〉 = |c, z ⊕A4(x∗), D′ ∪ (x∗, y)〉, UExt|c, z,D′〉 = |c, z ⊕⊥, D′〉 and

UExt|c, z,D′ ∪ (x∗, β0)〉 =
1√
2n

∑
r∈Sc

|c, z⊕A4(x∗), D′ ∪ (x∗, r)〉+ 1√
2n

∑
r/∈Sc

|c, z⊕⊥, D′ ∪ (x∗, r)〉.

Then we obtain

4|c, z,D′ ∪ (x∗, y)〉

=
1√
2n

(|c, z ⊕⊥〉 − |c, z ⊕A4(x∗)〉)|D′〉+
∑
r/∈Sc

1

2n
(
|c, z ⊕A4(x∗)〉 − |c, z ⊕⊥〉

)
|D′ ∪ (x∗, r)〉.

Let P4 be the projection onto x∗, c, D′, y such that (x∗, c) ∈ R1(pk, sk), (x∗, c) ∈ R2(pk, sk),
D′(x∗) = ⊥ and y ∈ Sc.

For any state |ψ〉, P2|ψ〉 =
∑
c,z,D αc,z,D|c, z,D〉, ‖P2|ψ〉‖2 =

∑
c,z,D |αc,z,D|2 where c, z, D is

defined in case 2. By the calculation in case 2,

4 ◦ P2|ψ〉 =
∑
c,z,D

αc,z,D

(
1√
2n

∑
r∈Sc

(
|c, z ⊕A4(x∗)〉 − |c, z ⊕⊥〉

)
|D ∪ (x∗, r)〉

)
,

‖4 ◦ P2|ψ〉‖2 =
∑

c,z,D,r∈Sc

1

2n
· |αc,z,D|2 ·

∥∥(|c, z ⊕A4(x∗)〉 − |c, z ⊕⊥〉
)
|D ∪ (x∗, r)〉

∥∥2

≤
∑

c,z,D,r∈Sc

2

2n
· |αc,z,D|2 ·

(
‖|z ⊕A4(x∗)〉‖2 + ‖|z ⊕⊥〉‖2

)
≤ 4 · η · ‖P2|ψ〉‖2.

For any state |ψ〉, P3|ψ〉 =
∑
c,z,D′,y 6∈Sc αc,z,D′,y|c, z,D

′ ∪ (x∗, y)〉, where c, z, D′, y is defined in

case 3. Then ‖P3|ψ〉‖2 =
∑
c,z,D′,y 6∈Sc |αc,z,D′,y|

2. By the calculation in case 3,

4 ◦ P3|ψ〉 =
∑

c,z,D′,y 6∈Sc

αc,z,D′,y

(
1

2n

∑
r∈Sc

(|c, z ⊕⊥〉 − |c, z ⊕A4(x∗)〉) |D′ ∪ (x∗, r)〉

)
,

24

‖4 ◦ P3|ψ〉‖2 =
∑

c,z,D′,r∈Sc

1

4n
·

∣∣∣∣∣∣
∑
y 6∈Sc

αc,z,D′,y

∣∣∣∣∣∣
2

· ‖|c, z ⊕⊥〉 − |c, z ⊕A4(x∗)〉‖2 · ‖|D′ ∪ (x∗, r)〉‖2

=
∑
c,z,D′

1

4n
· |Sc| ·

∣∣∣∣∣∣
∑
y 6∈Sc

αc,z,D′,y

∣∣∣∣∣∣
2

· ‖|c, z ⊕⊥〉 − |c, z ⊕A4(x∗)〉‖2

≤
∑
c,z,D′

2

4n
· |Sc| ·

∣∣∣∣∣∣
∑
y 6∈Sc

αc,z,D′,y

∣∣∣∣∣∣
2

·
(
‖|z ⊕⊥〉‖2 + ‖|z ⊕A4(x∗)〉‖2

)

=
∑
c,z,D′

4

4n
· |Sc| ·

∣∣∣∣∣∣
∑
y 6∈Sc

αc,z,D′,y

∣∣∣∣∣∣
2

≤
∑
c,z,D′

4

4n
· |Sc| · (2n − |Sc|) ·

∑
y/∈Sc

|αc,z,D′,y|2


≤
∑

c,z,D′,y /∈Sc

4 · η · |αc,z,D′,y|2 = 4 · η · ‖P3|ψ〉‖2.

For any state |ψ〉, P4|ψ〉 =
∑
c,z,D′,y∈Sc αc,z,D′,y|c, z,D

′ ∪ (x∗, y)〉, where c, z, D′, y is defined in

case 4. Then ‖P4|ψ〉‖2 =
∑
c,z,D′,y∈Sc |αc,z,D′,y|

2. By the calculation in case 4,

4 ◦ P4|ψ〉 =
∑

c,z,D′,y∈Sc

αc,z,D′,y

(
1√
2n

(|c, z ⊕⊥〉 − |c, z ⊕A4(x∗)〉)|D′〉

+
∑
r/∈Sc

1

2n
(
|c, z ⊕A4(x∗)〉 − |c, z ⊕⊥〉

)
|D′ ∪ (x∗, r)〉

)
,

‖4 ◦ P4|ψ〉‖2

=
∑
c,z,D′

1

2n
·

∣∣∣∣∣∣
∑
y∈Sc

αc,z,D′,y

∣∣∣∣∣∣
2

·
∥∥|c, z ⊕A4(x∗)〉 − |c, z ⊕⊥〉‖2 · ‖|D′〉

∥∥2

+
∑

c,z,D′,r /∈Sc

1

4n
·

∣∣∣∣∣∣
∑
y∈Sc

αc,z,D′,y

∣∣∣∣∣∣
2

· ‖|c, z ⊕⊥〉 − |c, z ⊕A4(x∗)〉‖2 · ‖|D′ ∪ (x∗, r)〉‖2

≤
∑
c,z,D′

2

2n
·

∣∣∣∣∣∣
∑
y∈Sc

αc,z,D′,y

∣∣∣∣∣∣
2

·
(
‖|z ⊕A4(x∗)〉‖2 + ‖|z ⊕⊥〉‖2

)

+
∑

c,z,D′,r /∈Sc

2

4n
·

∣∣∣∣∣∣
∑
y∈Sc

αc,z,D′,y

∣∣∣∣∣∣
2

·
(
‖|z ⊕⊥〉‖2 + ‖|z ⊕A4(x∗)〉‖2

)

=
∑
c,z,D′

4

2n
·

∣∣∣∣∣∣
∑
y∈Sc

αc,z,D′,y

∣∣∣∣∣∣
2

+
∑
c,z,D′

4

4n
· (2n − |Sc|) ·

∣∣∣∣∣∣
∑
y∈Sc

αc,z,D′,y

∣∣∣∣∣∣
2

≤
∑
c,z,D′

4

2n
· |Sc| ·

∑
y∈Sc

|αc,z,D′,y|2
+

∑
c,z,D′

4

4n
· (2n − |Sc|) · |Sc| ·

∑
y∈Sc

|αc,z,D′,y|2


≤
∑

c,z,D′,y∈Sc

8 · η · |α2
c,z,D′,y| = 8 · η · ‖P4|ψ〉‖2.

Because P1 + P2 + P3 + P4 = I, ‖4|ψ〉‖ ≤
∑4
i=1 ‖4 ◦ Pi|ψ〉‖ ≤ (4 + 2

√
2) · √η ≤ 7

√
η.

25

	Introduction
	Our Result
	Related work

	Preliminaries
	Notation
	Quantum Background
	Quantum Random Oracle Model

	Preimage Extraction of the Oracle-Masked Scheme
	Application in the Quantum Security Proof
	FO: from OW-CPA to IND-qCCA in the QROM
	REACT: from OW-qPCA to IND-qCCA in the QROM

	Cryptographic Primitives and Security Definitions
	The implementation of UExt
	The implementation of UExt for FO
	The implementation of UExt for REACT

	The Properties of UExt
	Proof of Lemma 7
	Proof of Lemma 8

