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Abstract

We present a rate-1 construction of a publicly verifiable non-interactive argument system for
batch-NP (also called a BARG), under the LWE assumption. Namely, a proof corresponding to
a batch of k NP statements each with an m-bit witness, has size m + poly(A, log k).

In contrast, prior work either relied on non-standard knowledge assumptions, or produced
proofs of size m - poly(\,log k) (Choudhuri, Jain, and Jin, STOC 2021, following Kalai, Paneth,
and Yang 2019).

We show how to use our rate-1 BARG scheme to obtain the following results, all under the
LWE assumption:

o A multi-hop BARG scheme for NP.
e A multi-hop aggregate signature scheme (in the standard model).

e An incrementally verifiable computation (IVC) scheme for arbitrary T-time deterministic
computations with proof size poly(A,logT).

Prior to this work, multi-hop BARGs were only known under non-standard knowledge assumptions
or in the random oracle model; aggregate signatures were only known under indistinguishability
obfuscation (and RSA) or in the random oracle model; IVC schemes with proofs of size poly(\, T¢)
were known under a bilinear map assumption, and with proofs of size poly(\,logT) under non-
standard knowledge assumptions or in the random oracle model.
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1 Introduction

Succinct non-interactive arguments (SNARGs) and arguments of knowledge (SNARKS) are not only
objects of great importance in the theory of cryptographic proofs, but are also revolutionizing
practical applications such as blockchains and cryptocurrencies [But21]. A vigorous and productive
line of research has resulted in several constructions of SNARGs and SNARKs for NP (e.g., [Mic94,
Grol0,Lip12,BCCT12,GGPR13,BCCT13,BCI"13], to name a few). However, despite decades of
research, all constructions of SNARGs for general NP languages have relied on either the random oracle
model or on non-falsifiable knowledge assumptions. While there are some limited negative results
on constructing SNARGs in the standard model under falsifiable cryptographic assumptions [GW11],
the possibility of achieving them remains tantalizing, indeed a holy grail of this line of research.

Meanwhile, a steady stream of results, starting from [KRR13, KRR14] has showed us how to
achieve SNARGs in the standard model for increasingly more expressive classes of computations.
The initial results in this direction compiled multi-prover interactive proofs into privately verifiable
SNARGs [KRR13,KRR14,BHK17, BKK 18], resulting in privately verifiable SNARGs for P (and
even for NTISP, the class of non-deterministic time and space bounded computations). More recent
incarnations [KPY19, KPY20] of this line of work have resulted in publicly verifiable SNARGs for
P (and NTISP) using hardness assumptions on groups that support bilinear maps. An alternate,
seemingly completely different, route to publicly verifiable SNARGs has proceeded by the round-
compression of interactive proofs via the Fiat-Shamir paradigm [FS87, CCH"19,JKKZ21]. Following
this line of research, the recent breakthrough work of Choudhuri, Jain and Jin [CJJ21a] constructed
a SNARG for P, under the learning with errors (LWE) assumption; and [KVZ21] achieved a SNARG
for NTISP from the LWE assumption. The key ingredient in their constructions is the notion of a
SNARG for batch-NP computations, also referred to as a batch argument or BARG.

BARGs are the central theme in our work. They have recently emerged as a powerful tool for
constructing expressive SNARGs for various classes of computations. A BARG is a proof system for
k NP statements where the size of the proof (resp. the verification time) is proportional to the size of
a single instance-witness pair (resp. the time for a single NP verification). Indeed, [KVZ21,CJJ21a]
showed a “BARG-to-SNARG compiler” that uses any BARG to construct a SNARG for P and one
for NTISP. Together with the construction of BARGs from LWE [CJJ21a], we have SNARGs for
P and NTISP from the LWE assumption. Together with the construction of BARGs from bilinear
maps [KPY19, WW22 KLVW22], and from a combination of the decisional Diffie-Hellman (DDH) and
quadratic residuosity (QR) assumptions [CJJ21b, KLVW22], the aforementioned BARG-to-SNARG
compiler [CJJ21a, KVZ21] gives us SNARGs for P and NTISP from the corresponding assumptions.
Batch proofs have also been studied in the statistical soundness setting; see, e.g., [RRR18, RR20].
In summary, the study of batch proofs and arguments shed new light on the long-running quest to
construct succinct non-interactive arguments for NP.

Our work. In this paper, we advance the study of batch arguments for NP in several directions.

As our main technical contribution, we construct the first rate-1 BARG in the standard model
where the size of the proof for k& NP statements is m + poly(\, log k), where m is the length of a
single witness and A is the security parameter. That is, the ratio between the length of the proof to
the length of a single witness is asymptotically 1. In all prior work [CJJ21a,CJJ21b,KVZ21, WW22],
the BARG proof had a multiplicative overhead in the security parameter (whereas our overhead is
additive). Short of attaining the holy grail of constructing a full-fledged SNARG for NP (with proof



length sublinear in the witness length), this is the optimal size one can achieve for BARGs. The
soundness of our construction relies on the learning with errors (LWE) assumption.

Our BARG scheme has the following two additional properties (similar to the one from [CJJ21al).
First, it is somewhere extractable (we call such schemes seBARG) in the sense that given an
appropriate trapdoor, one can extract a single witness from the BARG proof. In addition, it is an
index seBARG, which means that if the k instances can be generated by a size-s circuit that on
input ¢ outputs the i-th instance (where s may be significantly smaller than k) then the verification
time grows with s (and is otherwise independent of k).

On the way to our construction, we define and construct a fully local somewhere extractable
hash function (fISEH) family, a significant generalization of the notion of somewhere statistically
binding (SSB) hashing defined by Hubacek and Wichs [HW15]. In SSB hashing, the hash function
description specifies a (hidden) set of m input locations where the hash output is statistically
binding. It is not hard to see that this implies the hash output is at least m bits long. Indeed, in all
prior constructions [HW15, OPWW15a], the hash output had length m - poly(\). Our construction
improves on this in several ways. First, our construction is rate-1, in the sense that the hash output
consists of m + poly()) bits. Secondly, it is extractable in the sense that given a trapdoor associated
to the hash function, one can extract the m statistically bound bits efficiently?; and finally, it is
fully locally openable in the sense that the local opening of each bit has size poly()\), independent
of m. In contrast, the Hub&cek-Wichs [HW15] notion of SSB hashing required a weaker version
of local opening: the size of the local opening for a single bit could grow polynomially with m. A
minute of thought reveals that this requirement is highly non-trivial: the local opening needs to be
shorter than the hash function output which, as we observed above, grows with m. We view this
primitive and the construction thereof to be as important as the result itself, and elaborate on it in
Sections 1.2 and 2.3. Indeed, this primitive has already been used in [KLVW22] to compile any
semi-succinct BARG scheme (where the BARG proof of £ NP statements has size sublinear in k)
into a (succinct) BARG scheme.

We show a number of applications of our main result. We show a construction of multi-
hop seBARGs from LWE; a construction of multi-hop aggregate signatures from LWE (in the
standard model); and a construction of incrementally verifiable computation for all deterministic
computations from LWE. Previously, such results were known only in idealized models or under
non-standard knowledge assumptions, with the exception of aggregate signatures which was known
assuming indistinguishability obfuscation (i0) and the RSA assumption [HKW15].% We describe
our contributions in more detail below.

1.1 Owur Main Technical Result: Rate-1 seBARG for NP

Our main technical contribution is the construction of a rate-1 seBARG scheme. A somewhere
extractable BARG scheme (seBARG) consists of a setup algorithm Gen; a prover algorithm P; and
a verifier algorithm V. The setup algorithm Gen is given a security parameter 1%, a parameter k
(which specifies the number of instances in a batch NP statement), an instance size n, and an index
i € [k] (which specifies which witness should be extractable). It generates a common reference string

'From now on, when we refer to an seBARG, we always mean that it is an index seBARG.

2In fact, our construction turns out to have the stronger property of local extraction: that is, the time to extract a
single bit is poly(A), independent of m. However, we do not need this property for our constructions, and hence do
not pursue it any further.

3We note that the scheme presented in [HKW15] is only selectively secure, whereas our scheme is adaptively secure.



crs and a trapdoor td. The prover algorithm P is given the crs and a set of instances x1,...,x, € L
together with a set of corresponding witnesses wy, ..., wg, and generates a proof 7. Finally, the
verification algorithm V is given a crs, a set of instances xy, ..., x, and a proof 7, and outputs 0/1
(indicating accept or reject).

A rate-1 seBARG scheme has the following properties (in addition to the usual notion of
completeness).

1. Semi-adaptive soundness. For any index i € [k] and crs < Gen(1*,k,n,1), no probabilistic
polynomial-time adversary can generate a tuple of k NP statements xi,...,z; € {0,1}"
together with a proof 7*, where z; ¢ £ and yet, the verifier accepts 7*. Semi-adaptivity here
refers to the fact that the adversary picks i before seeing the common reference string.

2. Somewhere proof-of-knowledge is a strengthening of semi-adaptive soundness which requires
an probabilistic polynomial-time extractor algorithm that, given a trapdoor for the crs, £k NP
statements, and an accepting proof 7%, extracts a witness w; for the statement z;.

3. Index hiding. The common reference string crs should hide the index i € [k] (which specifies
which witness is extractable).

4. Efficiency. The algorithms Gen,P and V are all probabilistic polynomial-time, and the proof
7 has size m + poly(A,logk) = m + poly(A). Moreover, if the instances z1,...,x; can be
efficiently generated by a size-s circuit that on input ¢ outputs x;, then the run-time of V is
poly(s, m, ), as opposed to the potentially much larger poly(n, k, m, A).

We note that, as remarked before, all known constructions of BARGs and seBARGs [CJJ21a,CJJ21b,
WW22] have an inverse polynomial (in \) rate. Our main result is the following.

Theorem 1.1 (Informal). Under the LWE assumption, for every L € NP, there exists a rate-1
seBARG scheme (Gen, P, V).

We remark that our construction is more general: given a SNARG for an NP language with
proofs of size £(m) for statements with m-bit long witnesses, our construction produces an seBARG
with proofs of size £(m) + poly(\) for k < 2* statements. Special-purpose NP languages with such
non-trivial SNARGs exist, e.g. for the non-deterministic class NTISP. Our construction then “lifts”
them into somewhere extractable batch arguments with similarly short proofs. We also note that
short of constructing a non-trivial SNARG for NP, rate-1 seBARGs are the best one can do. We
refer the reader to Section 3.2 for details.

1.2 Our Main Tool: Fully Local Somewhere Extractable Hash (SEH) Families

The main technical tool that we define, construct and use is that of a fully local somewhere
extractable hash (fISEH) function.

Collision-resistant hash functions compress their input, therefore by definition lose information
about it. Hubdcek and Wichs [HW15] ask if there is a hash function that is nevertheless guaranteed
to preserve some information about its input. For example, letting the input x be an n-bit string, we
may wish to design a hash function h; so that hj(x) remembers 27 = (2;);c; for some subset I C [n].
That is, for every x,z’ such that z; # 2, hy(z) # h(2’). In this sense, the hash function hy is
statistically binding on the locations I C [n], and hence such a hash family is called a somewhere



statistically binding (SSB) hash function. It is not hard to see that for this to happen, the hash
output must have size at least |I|. As stated, however, this is trivial to build: h; could simply
output x;. To be non-trivial (and indeed, useful), an SSB hash function needs to have an additional
hiding property, namely the descriptions of the hash functions A; and hA;s should be computationally
indistinguishable whenever |I|= |I’|. Hubac¢ek and Wichs [HW15] show how to construct an SSB
hash function family using a leveled fully homomorphic encryption (FHE) scheme, thus relying on
the LWE assumption. Subsequent work showed how to realize SSB hash functions from a wider
class of assumptions [OPWW15a].

Our notion of fully local somewhere extractable hash function (fISEH) family is a significant
generalization SSB hashing: it is rate-1, extractable, and fully locally openable.

For a reader familiar with the Hubacek-Wichs construction, it is not hard to see that their
construction is somewhere extractable, that is, given a trapdoor associated with the hash function,
one can extract the statistically bound value. In the Hubacek-Wichs construction, the trapdoor
is simply the secret key of the FHE scheme. Their construction also has a local opening property,
that is, there is an opening algorithm that, given (z,7) and a description of the hash function,
outputs x; together with a short “certificate” that certifies the correctness of z;. The Hubacéek-Wichs
construction is a tree-based hash function, similar to a Merkle hash [Mer88]. Thus, an opening
consists of all the hash values on the path in the tree from the leaf node i to the root, together with
the hash values of all their siblings. The fact that each hash value is of size at least || implies that the
size of the opening is at least |I|. We refer to a hash family that satisfies these properties as an SEH
family. Finally, the Hubacek-Wichs construction achieves rate-1, that is, the size of the hash output
is |I|+poly(A), if one uses a rate-1 FHE scheme such as the one from [BDGM19, GH19a, DGI"19a].

A fully local SEH family is a rate-1 SEH family with the crucial additional property of full
locality. That is, the size of a local opening does not grow with |I|, the number of bits that we are
statistically bound on. In other words, one should be able to open any bit of the input using an
opening of size poly(\) bits, independent of |I|. Additionally, verification of this opening should be
possible in time poly(\) as well. In other words, verification should take time smaller than the hash
value itself! A minute of thought reveals that one has to significantly depart from the Merkle tree
paradigm to construct such a hash function. Indeed, the main novelty and technical contribution of
our construction is in building such a seemingly paradoxical hash function with fully local opening
and verification algorithms. We refer the reader to Section 2.3 for details.

Theorem 1.2 (Informal). Under the LWE assumption, there exists a rate-1 fully local SEH family.

1.3 Applications of seBARGs

We show two ways to strengthen seBARGs, resulting in the new notions of multi-hop seBARG and
hashed (multi-hop) seBARG. We then show how to use rate-1 seBARGs to achieve these stronger
notions. Finally, we show two applications of these stronger notions, the first to constructing a
multi-hop aggregate signature scheme in the standard model, and the second to constructing an
incrementally verifiable computation scheme in the standard model. All schemes are secure under
the LWE assumption. We describe these contributions in more detail below.

Multi-Hop seBARGs. The ability to compose proofs enables mutually distrustful parties to
perform distributed computations in a verifiable manner, and is especially important in decentralized
applications such as blockchains. The importance of proof composition was in fact already realized
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Figure 1: Each proof m; (resp. =) is an aggregation of 2¢ many NP statements. A proof of k
NP statements is thus a collection of seBARG proofs (7, ..., mogr) Where each m; is a proof of 2
statements (if the i'* digit in the binary expansion of k is 1) or empty (if the i’ digit is 0). To
aggregate two such proofs (for k£ = 7 and k = 5 NP statements respectively, as illustrated above
on the left), we start by combining 7y and 7, into a proof 7 that certifies the truth of two NP
statements. We then aggregate m; and 71 into a proof 7§ which certifies the truth of four NP
statements. Finally, we aggregate mo and 7 into a proof 7§ which certifies the truth of eight NP
statements. The final proof consists of (74, 74). Each proof 7; is a result of at most ¢ < log k hops
of aggregation.

in Micali’s original work introducing SNARGs [Mic93], and has been extensively studied in the
last two decades [Val08, CT10,BCCT13,BCTV14,C0OS20, KPY20, BCMS20,BCL"21], leading to
powerful primitives such as Incrementally Verifiable Computation (IVC) [Val08] and Proof-Carrying
Data (PCD) [CT10], and to many applications, such as enforcing language semantics [CTV13],
verifiable MapReduce computations [CTV15], image authentication [NT16], PPAD hardness [Val08,
BPR15,KPY20], and succinct blockchains [KB20, BMRS20, CCDW20).

We ask whether it is possible to compose BARG proofs. That is, given BARG proofs 7y, ..., m of
k batches of NP statements x1 = (z1,1,...,%1,4),.--,Xk = (Tk,1,---, %1, ), can we create a BARG
proof 7 for the collection of these NP statements, namely that all of the NP statements

X = (Xl,...,Xk) = (131717-~-,$1,€17~~733k,17-~~,$k,£k)

are true? Furthermore, the system should support an unbounded polynomial number of such
iterative compositions without the proof size or the verification time growing by too much. We call
such a system a multi-hop batch argument for NP, or a multi-hop BARG for short. If the system
supports somewhere extraction, appropriately defined, it is called a multi-hop seBARG.

It is natural to try to realize a multi-hop BARG by BARGing many BARG proofs. In the example
above, one could try to produce a BARG proof that there exist BARG proofs 71, ..., 7, certifying the
truth of the collections of NP statements x1,...,x; respectively. The first issue with this approach
is that each composition increases the length of the proofs. For example, if we use a BARG system
where the proof length has a multiplicative overhead of poly(\) (over the witness length) as is the
case for all known BARG schemes [KPY19,CJJ21a,CJJ21b, WW22], then the size of the proofs
after B hops grows to A*(B). By playing with the security parameter, one can make the number of
hops slightly super-constant (see, e.g., [KPY19, KPY20]), but that hits the limit of what is possible.



Even if we had a constant-rate BARG (with rate > 1), we could handle at most a logarithmic (in
the security parameter) number of hops. The second issue is one of proving soundness: the most
direct way of proving soundness of the composed proof system is through extraction.

Rate-1 somewhere extractable BARGs (seBARGs) solve both these problems, giving us the
following theorem.

Theorem 1.3 (Informal). Under the LWE assumption, there exists a multi-hop seBARG for NP
statements with m-bit witnesses where the size of the proof after B hops is m + B - poly(X).

Our proof of this theorem proceeds by showing a way to convert any rate-1 seBARG scheme
into a multi-hop seBARG. We obtain the theorem by using our rate-1 seBARG from Theorem 1.1
which we construct under LWE. Each hop incurs an additive increase of poly()) to the proof length,
and hence the total size after B hops is a modest m + B - poly(\) bits. Our construction does not
require the batch size or the instance length to be fixed in advance, relying on the fact that the
run-time of our rate-1 seBARG setup algorithm grows only poly-logarithmically with the batch size
and the instance length.

Finally, we observe that while the dependence on the number of hops may seem limiting, a simple
extension of our construction allows us to batch an arbitrary polynomial (and even more, upto an
exponential) number of NP proofs. To do so, we maintain the invariant that the batched proof at
any point corresponding to k NP statements consists of a sequence of seBARG proofs (7, 71, . . ., 7¢)
with ¢ < [logk|, where m; is either empty or a batched proof corresponding to exactly 2¢ NP
statements. It is not hard to see that two such batched proofs (m,...,m) and (7, ..., 7;) can be
combined together into a proof (7(, ..., n;) maintaining the invariant. When batching a total of k
NP statements, our batched proof consists of at most log k£ multi-hop seBARG proofs, each of which
is a result of at most log k hops of aggregation and thus has size O(log k). Thus, the total proof size
grows with O(log? k) (ignoring the dependence on the witness size m and the security parameter \).
See Figure 1 for an illustration.

We refer the reader to Section 6 for more details on the multi-hop seBARG definition and
construction.

Multi-Hop Hashed seBARGs. To realize some of our applications, such as incrementally verifiable
computation, we need a further generalization of (multi-hop) seBARGs, in which the verifier is given
only a (somewhere extractable) hash v of the instances, rather than all the instances in the clear.
The somewhere argument of knowledge property now states that if a proof 7 verifies with respect to
a hash value v, then we can extract a valid witness w from 7 for the instance x which is extractable
from v. We call this a (multi-hop) hashed seBARG. A hashed seBARG is related to, but different
from, an index seBARG: in the latter, there is a compressed representation of the instances from
which each instance can be recovered quickly, whereas in the former, the instances can be arbitrary
without necessarily a short representation. We believe that the notion of a hashed (multi-hop)
seBARG is of independent interest.

We show how to construct a hashed multi-hop seBARG from a rate-1 seBARG. The hashed
multi-hop seBARG proof combiner takes as input, instead of k£ batches of statements, k& hash values
vi,...,Vg of depth d, and corresponding proofs 71,..., 7, and outputs a hash value v of depth d + 1
and corresponding proof w. The construction is similar to the regular multi-hop seBARG, except
that now when aggregating, every witness includes a hash value v; and an opening p; of v; w.r.t. v,
in addition to the proof m;. In the initial aggregation step, the witness is simply an NP witness w;,



and v; is simply x;. In later aggregations, the witness becomes a seBARG proof 7; corresponding
to a hash value v;. We rely on the somewhere extraction property of the hash to ensure that the
instance which we recursively extract from the proof, which goes along with the witness w which we
recursively extract from the proof, matches the instance x which we recursively extract from the
hash value.

Theorem 1.4 (Informal). Under the LWE assumption, there exists a hashed multi-hop seBARG for
NP statements with n-bit instances and m-bit witnesses where the size of the proof after B hops is
m+n- B - poly(A).

We refer the reader to Section 6.3 for more details on hashed (multi-hop) seBARG.

Multi-Hop Aggregate Signature Schemes from LWE. As an immediate application of our
multi-hop seBARG, we construct a multi-hop aggregate signature scheme.

Aggregate signatures were introduced by Boneh, Gentry, Lynn, and Shacham [BGLS03] to
enable the compression of a sequence of signatures o1, ..., 0, where each o; is a signature of an
arbitrary message m; w.r.t. an arbitrary verification key vk;, into a single aggregated signature &
whose size is independent of k. While the original motivation for aggregate signatures was to
compress certificate chains and to reduce cryptographic overhead in secure BGP, the notion has
recently found a great deal of practical interest in the context of blockchains where they provide
tangible savings in communication and space. Multi-hop aggregate signatures require the ability to
aggregate several aggregate signatures, similar to multi-hop seBARGs.

The original construction of aggregate signatures [BGLS03] relied on bilinear maps and was proven
secure in the random oracle model. A more recent construction [HKW15] uses indistinguishability
obfuscation and the RSA assumption, and constructs an aggregate signature scheme secure in the
standard model. Finally, it is a folklore observation that SNARKs for NP immediately give us an
aggregate signature scheme. All these schemes support multi-hop aggregation. Thus, with the
exception of [HKW15], all constructions of aggregate signature schemes rely either on random
oracles, or on specialized knowledge-type assumptions.

In this work, we observe that our construction of multi-hop seBARGs immediately gives us a
multi-hop aggregate signature scheme (in the standard model) secure under the LWE assumption.

Theorem 1.5 (Informal). Assuming the existence of rate-1 seBARGs for NP, there exists a multi-hop
aggregate signature scheme. Consequently, there exists a multi-hop aggregate signature scheme in
the standard model under the hardness of LWE.

Finally, we note that the “seBARG lens” gives us multi-hop aggregate signatures with several
additional desirable properties. For example:

1. Universal Aggregation: The goal of universal signature aggregation [HKW15], is to be able
to aggregate a collection of signatures produced from any signing algorithm (as long as the
description of the verification algorithm is fixed). Universal signature aggregation allows
real-world systems to continue to use existing signature schemes and public-key infrastructure,
while supporting signature aggregation. The generality of the seBARG methodology lets us
add the signature aggregation feature to any signature scheme by including the description
of the verification algorithm as part of the instance. While [HKW15] and the SNARK-based
construction give us universal signature aggregation, [BGLS03] does not.



2. Local Verifiability: A locally verifiable aggregate signature scheme [GV22] allows a verifier to
check, given an aggregate signature o and a small advice that can be computed from all the
(m4,vk;) pairs, whether a particular message m is in the aggregated set (my, ..., mg), without
having to know the entire list of messages. Indeed, the signature verifier runs in time sublinear
in k. Using a hashed (multi-hop) seBARG scheme, we show how to construct a (multi-hop)
locally verifiable aggregate signature scheme.

We refer the reader to Section 7.1 for more details. While our constructions are not concretely
efficient (as compared to, e.g., [BGLS03]), we believe that a refinement of the seBARG lens can
potentially give us a concretely efficient LWE-based aggregate signature scheme. We leave the
exploration of this line of thought for future work.

Incrementally Verifiable Computation from LWE. Consider the computation of a Turing
machine M on an input z, a computation so long that no single person can finish it all by herself.
Each person thus takes the intermediate state resulting from a partial computation, a Turing
machine configuration conf; at time ¢, and updates it by running ¢ more steps to get a configuration
conf,g. To certify that the computation has been done correctly, one needs to do more. Given a
succinct proof 7y certifying that the ¢-th configuration is conf;, one needs to efficiently compute a
new succinct proof 7y certifying that the (¢ + £)-th configuration is confy,,. Importantly, the time
to generate (confyi¢,m1¢) should depend only on ¢, and should be independent of ¢. In particular,
the length of the proofs does not grow with ¢; at worst, we allow a poly-logarithmic in ¢ growth.
This is the notion of incrementally verifiable computation (IVC), a notion of great interest in settings
where long ongoing computations are performed by a distributed network of mutually distrusting
parties [Mic94, Val08, BCCT13].

All known constructions of IVC use full-fledged SNARKSs for NP as a building block, and thus
rely on non-falsifiable knowledge assumptions. Kalai, Paneth and Yang [KPY20] constructed a weak
form of IVC for deterministic time-7" computations with proofs of size poly(A, 7€) for any constant
(or even slightly sub-constant) € > 0, assuming the hardness of problems on elliptic curves that
support bilinear maps. Roughly speaking, in their construction, .y, simply consists of (7, 7’) where
7’ certifies the correctness of the computation from cf; to cfyy, and after p(\) many succinct proofs
are accumulated (where ) is the security parameter), they are combined into a single succinct proof
(using a seBARG), where each such combining step incurs a multiplicative blowup of ¢(A\) < p(}\)
to the proof size. Therefore, if this combining step is applied B times then the resulting proof
increases by a factor of ¢(A)? which allows for only a constant number of combination steps. Setting
parameters appropriately, this results in a somewhat succinct proof of size T for any constant
€ > 0, where T' is the run-time of the computation. (We remark that a careful balancing act with
the security parameter gives them slightly more, namely a slightly sub-constant e, but they are
inherently limited by this exponential growth of the proof in the depth B.)

We note that our rate-1 seBARG scheme allows us to do this combining step while paying only
an additive poly(A) blowup. In particular, using our seBARG, we can apply this combining step B
times while incurring only an additive blowup of B - poly()), and while relying only on the LWE
assumption. This allows us to obtain an IVC scheme for any deterministic computation, even ones in
EXP (e.g., by using a tree-like structure in which the depth, and thus the blowup, is only logarithmic
in the run-time of the computation).

Theorem 1.6 (Informal). There exists an incrementally verifiable computation scheme for any



deterministic computation under the LWE assumption, where the proofs grow poly-logarithmically
with the run-time of the computation.

Our construction of an IVC scheme uses multi-hop seBARGs. In the first hop, we batch k
instances, where the i-th instance is (x, cf;_1, cf;). The witness for this statement is empty since
verifying an instance can be done efficiently. It should be possible to verify the batched proof given
only the initial configuration cfy and the last configuration computed so far cfy, without knowing the
intermediate configurations. This is crucial to obtain our desired efficiency gain. This is where our
notion of a hashed multi-hop seBARG comes in. Using a hashed multi-hop seBARG, we can verify
proofs without knowing all the corresponding instances, rather only their (somewhere statistically
binding) hashes.

Continuing along these lines, we reach the second stage where we have k proofs my,..., 7 and
k hash values v1,..., vy, where m; certifies that v; is a hash of consecutive configurations starting
with cfy;_1)41 and ending with cfy;. We can feed these into the hashed multi-hop seBARG proof
combiner and get an aggregated proof 7, but we run into an issue along the “boundaries:” there is
no guarantee that cfy;_;) actually transitions to cfy;_1)4q fori € {2,...,k}.

We handle this by overlapping the batches that we aggregate. In the first hop, we batch 2k
instances at a time, so the second half of each batch overlaps with the first half of the next batch:
The proof 7; actually certifies that (v;_1,v;) is a hash of consecutive configurations starting with
cfr(i—2)41 and ending with cfg;, so it indeed certifies that cfy;_) actually transitions to cfy;_1)41.
This way, the problematic “boundary” of any batch is completely contained within another batch.
We refer the reader to Section 7.2 for more details on the IVC definition and construction.

2 Technical Overview

We sketch our main result that takes any seBARG scheme and converts it into a rate-1 seBARG,
assuming a rate-1 additive homomorphic encryption scheme with certain properties (which in turn
can be constructed based on LWE).

2.1 Main Ingredient: Flexible RAM SNARGs with Partial Input Soundness

The central tool that we use repeatedly in our construction is a flexible RAM SNARG with partial
input soundness, a primitive that was very recently introduced and constructed in [KLVW22].

Remark 2.1. Our work and that of [KLVW22] are intertwined. An earlier (unpublished) version
of this work did not use RAM SNARGs, and used quasi-arguments [KPY19] instead. Following
[KLVW22], we noticed that their notion of flexible RAM SNARG with partial input soundness can
be used to significantly simplify our construction and analysis. It is this simplified version that is
presented in this paper.

The notion of a RAM delegation scheme was introduced and constructed in the work of Kalai
and Paneth [KP16]. A (publicly-verifiable non-interactive) RAM delegation scheme, is a SNARG
for RAM computations where a prover, given a crs, a time-7' RAM machine M and an n-bit input
x, can produce a short, poly(A,logT)-bit, proof that y = M(z). Given a poly(A)-bit “digest” of
the input x, the verifier runs in time poly(\,logT), independent of the input length n, and either
accepts or rejects the proof. The key difference from a SNARG for P is that the prover runtime is



proportional to the RAM runtime, but more importantly, that the verifier runtime, given the input
digest, is independent of the input length and polylogarithmic in the RAM runtime.

For a formal definition, we refer the reader to Section 3.3.

For our work, the standard notion of a RAM SNARG is insufficient, and we need a RAM SNARG
with two additional properties, as was defined and constructed in [KLVW22]: First, the RAM
SNARG has to be flexible in the sense that any hash family with local opening can be used to digest
the input. Second, it has a stronger soundness guarantee known as partial input soundness. In prior
RAM SNARGs, soundness is guaranteed only if the adversary knows the entire input that is being
digested. Partial input soundness guarantees that if the memory is digested using a somewhere
extractable hash function that is extractable on a set of coordinates .S, and if the RAM computation
only reads coordinates in S, then soundness holds.

Such a flexible RAM SNARG with partial input soundness was constructed in [KLVW22] from
any seBARG scheme (and SEH hash) and was used to boost the succinctness of seBARG proofs.

2.2 Our Rate-1 seBARG Scheme

The high level intuition behind our construction is the following. Suppose a prover is given x1, ..., xk
and corresponding witnesses wi, . . . ,wk, and wishes to convince the verifier that x1, ..., x; are all in
the language. The basic idea is to simply hash all the witnesses using a rate-1 SSB hash function, so
that the hash value v is statistically binding on a single witness w;«. The seBARG proof will consist
of v together with a succinct proof 7 that v is obtained by hashing valid witnesses for x1, ..., Zg.
Importantly, to ensure that the proof (v,7) is of rate-1, i.e., of length m + poly(\) where m is the
length of a single witness, the succinct proof = must be of length poly(\), since v is already of length
m + poly(A).

Constructing such a succinct proof is the main technical challenge and novelty of our rate-1
seBARG construction. Jumping ahead, we note that we do not know how to construct such a
succinct proof if v is computed using any rate-1 SSB hash family, and we need to use a (rate-1) fully
local SEH hash family (fISEH), a primitive described in Section 1.2. Constructing a rate-1 fISEH
hash family is a grand challenge of its own, and we elaborate on it in Section 2.3 and Section 4.

At first it may seem that this approach, of constructing a succinct proof that v is a hash of valid
witnesses, is doomed to fail since it requires a SNARG for NP, which is currently out of our reach.
Yet, on a closer look, we notice that a SNARG for all of NP is not necessary. The reason is that a
witness w;+ for z;+ can be efficiently extracted from the hash value v given the trapdoor td. Indeed
it is this hash value that saves the day!

In order to prove that v is a commitment to valid witnesses, we draw inspiration from the works
on RAM delegation (starting with [KP16]), and in particular, we use the recent notion of a flexible
RAM SNARG with partial input soundness [KLVW22]. Recall that a flexible RAM SNARG allows us
to digest the memory with any hash family with local opening, and in particular with a fully local
SEH (fISEH) hash family. The partial input soundness property guarantees that if the hash value v
is extractable on w; and the RAM program only touches the memory locations corresponding to
w;+ then soundness holds.

Given such a RAM SNARG scheme, we proceed as follows: in our seBARG scheme, the prover
generates for every i € [k] a succinct RAM SNARG 7; for the RAM computation that checks that the
i-th witness in memory is a valid witness of x;. The size of each such proof grows with the size of a
local opening, and moreover, with the time it takes to verify a local opening. This is precisely where
the need for a rate-1 fISEH hash family comes in, as it allows each proof m; to be of size poly()).
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Note that if the prover would send (71, ..., ) to the verifier then we could argue semi-adaptive
soundness by sampling a hash key where the extractability is on the witness corresponding to the
instance x;+ which is not in the language, and then use the partial input soundness to argue that
m;+ would be rejecting with overwhelming probability. The issue is that we want our seBARG to be
succinct and hence cannot afford to send all the proofs (71, ..., 7). Instead we will send a seBARG
proof (which need not be rate-1) that for every i € [k] there exists a RAM SNARG 7; that is a valid
proof w.r.t. the digest v.

2.3 Owur Fully Local SEH Family

We next describe at a high-level the ideas behind our construction of a rate-1 fully local SEH (fISEH)
family.

Rate-1 SEH family. As a first step, we focus on achieving the rate-1 property (without the
fully-local property). Our construction uses as a building block the SEH family of Hubacek and
Wichs [HW15], which is a tree-like construction that can be instantiated using any leveled fully
homomorphic encryption (FHE) scheme [BV11,BGV12]. We note that in their construction, the
hash key hk consists of encryptions of the indices {i; ...,4,,} where the hash function is statistically
bound, and the hash value Hash(hk, z) consists of a bit-by-bit encryption of z;,, ..., x;,, .

To make this construction rate-1, we use a rate-1 levelled FHE [BDGM19, GH19b, DGI*19b]
as the underlying encryption. We use the fact that such an FHE scheme can convert any set of
(evaluated) ciphertexts cty,...,ct,, each encrypting a single bit b;, into a ciphertext v of size
m + poly(A) encrypting (b1, ..., by). Thus, the idea is to output v (which is rate-1), as opposed to
outputting the bit-wise ciphertexts cty,...,ct,,. Unfortunately, by outputting only v we lose the
local opening property. This is fixed as follows.

Obtaining fully local opening. Recall that our goal is to provide a local opening to any bit of
the input that can be verified in time poly(\) (i.e., significantly less than m). Thus, an opening
needs to be verified without even reading v! To reach this goal, we send in addition to v a somewhere
extractable hash of the ciphertexts cty,...,ct,,, denoted by h. Importantly h is statistically binding
on only one ciphertext ct; and hence is of size poly(A).

We use v to extract the m coordinates, and use h to open any desired coordinate. We elaborate
on the opening procedure below, and mention that to verify the validity of an opening we use only h
(which is succinct) and do not use v. This allows us to obtain our fully-local guarantee.

For this approach to work we need a mechanism that checks consistency between v and h. Thus
our hash value actually contains three components (v, h, 7), where 7 is a succinct proof that certifies
the consistency between ct and h. The main technical burden is in constructing such a proof of
consistency. Note that to obtain our promised rate-1 construction this proof must be of size poly(A).
We defer the description of this proof, and we first discuss the local opening (which is substantially
simpler).

Fully local opening using h. In the construction of Hubacek and Wichs [HW15], an opening to
a bit b consists of the bit b together with m openings, p1,..., pm, Where each p; corresponds to the
output ciphertext ct;. Moreover, each p; is of size poly()) and can be verified in time poly(\) given
ct;. To obtain full succinctness, rather that sending all these openings p1,. .., pm (together with
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local openings of cty,...,ct,,), we give a somewhere extractable BARG proof that for every j € [m]
there exists a triplet (pj,ct;,0;) where p; is a valid opening to b w.r.t. ct; and that o; is a valid
opening to ct; w.r.t. h.

Thus, our construction uses not only the SEH family corresponding to a rate-1 FHE scheme, but
also uses a somewhere extractable BARG scheme.

Proving consistency between ct and h. The remaining ingredient is the succinct proof 7 that
certifies the consistency between v and h. Namely, we need to prove that there exist ciphertexts
cty, ..., ct,, that hash to h and their corresponding rate-1 ciphertext is indeed v. Note that this is
an NP computation and SNARGs for NP are beyond our reach, and is harder than our goal that we
started with. Thus, it seems that we are back to square one.

However, we observe that this NP computation has special properties that will allow us to
construct a SNARG for it. The initial observation is that the NP witness is hashed (via h), and thus
one may hope to use RAM delegation here. Unfortunately, the soundness of RAM delegation is not
strong enough, since it provides soundness only if the adversary knows the memory that is digested.
In our setting the memory is cty, ..., ct, and we have no means of extracting these ciphertexts from
the adversary. What saves the day is that we can extract one ciphertext ct; (since the underlying
hash is somewhere extractable).

Indeed, to construct this SNARG we use a RAM SNARG from the recent work of [KLVW22].
This RAM SNARG has two properties that are crucial in our setting. First, it is flexible in the sense
that the memory can be digested using any hash family with local opening, and in particular using
any hash family that is also locally extractable. Second, it has a stronger soundness guarantee,
known as partial input soundness which guarantees correctness if the RAM computation only reads
the memory from locations in S C [N] (where N is the memory length) and the hash function is
extractable on the set S.

At first, it is not clear that this soundness guarantee is helpful since the RAM computation that
computes v from the memory (cty,...,ct,,) reads the entire memory. Yet, if we use the scheme
from [BDGM19] (which is based on LWE) then v is computed in the following way, which does allow
us to make use of this underlying RAM SNARG.

1. First, each ciphertext ct; is expanded into a vector ciphertext, denote by ct}.

2. Second, all these vector ciphertexts are added (over a finite field) to obtain a ciphertext
! _ m /
ct! = 0L, ct].
3. Finally, each bit of v is computed separately, and depends only on a few bits from ct’.

Note that by the partial input soundness guarantee one can compute a RAM SNARG for each
bit of ct; that certifies its correctness w.r.t. h, and correctness is guaranteed if h is extractable on
ctj. Denote all the proofs corresponding to ct; by 7.

We append to the hash value a somewhere extractable hash of

/ / / /
(Cty, Ty vy Cpyy Ty)

If Ttem 2 did not exist and each bit of v depended only on a few bits (ct},...,ct],) then we would
be done since we could simply add a BARG asserting that each bit of v is computed correctly, where
each witness is the relevant bits from (ct},...,ct),) and the corresponding proofs and all their
openings.
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Unfortunately, Item 2 does exist which causes an additional complication, stemming from the
fact that this computation is not local (as opposed to Item 1 and 3 which are local). What saves
the say is the fact that the computation in Item 2 is simply addition, which can be computed in a
tree-like manner where each node computation is a local computations in the nodes of the layer
below. Thus, we add log m hash values hy, ..., hioe.,, where h; is the hash of all the computations
at layer i of the tree along of RAM proofs of correctness, where each computation depends only on
a few coordinates of the memory at layer i — 1 of the tree, which allows us to rely on the partial
input soundness guarantee.

To summarize, in our construction of a fISEH hash family, the hash value consists of the following
ingredients:

1. A hash value h, which is a somewhere extractable hash of (cty,...,ct;,), which in turn is the
hash value from the construction of [HW15]. The size of h is poly(}).

2. A rate-1 ciphertext v, which is a rate-1 version of (cty,...,cty,), of size m + poly()).

3. A proof of consistency between h and v which consists of hash values (h’, ho, ..., hiog m) together
with a seBARG proof. Each of these hash values hashes ciphertexts and proofs of consistency,
and the final seBARG proof proves consistency between hj,g,, and v and that all the proofs
hashed in hyog 4, are accepting.

3 Preliminaries

Notations. We use PPT to denote probabilistic polynomial-time, and denote the set of all positive
integers up to n as [n] := {1,...,n}. Also, we use [0,n] to denote the set of all non-negative integers
up to n, i.e. [0,n] := {0} U [n]. Throughout this paper, unless specified, all polynomials we consider
are positive polynomials. For any finite set S, z <+ S denotes a uniformly random element x
from the set S. Similarly, for any distribution D, x < D denotes an element = drawn from the
distribution D.

3.1 Somewhere Extractable Hash (SEH) Families

In what follows we recall the definition of a somewhere extractable (SEH) hash family based on
prior works [HW15, OPWW15b].

Syntax. A SEH hash family consists of algorithms
(Gen, Hash, Open, Verify, Extract)

with the following syntax:

Gen(1*, N, I) — (hk,td). This is a probabilistic poly-time setup algorithm that takes as input a
security parameter 1% in unary, a message length N, and a subset I C [N]. It outputs a hash
key hk along with trapdoor td.

Hash(hk,z) — v. This is a deterministic poly-time algorithm that takes as input a hash key hk gen-
erated by Gen(1*, N, I) and an input z € {0,1}", and outputs a hash value v € {0, 1}//IPoly(}),
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Open(hk, z,7) — (b, p). This is a deterministic poly-time algorithm that takes as input a hash key
hk generated by Gen(1*, N, I), an input = € {0,1}" and an index j € [N], and outputs a bit
b€ {0,1} and an opening p € {0, 1}=HIPoly(}),

Verify(hk, v, j,b, p). This is a deterministic poly-time algorithm that takes as input a hash key hk
generated by Gen(1*, N, I), a hash value v € {0, 1}1IPoY(N "an index j € [N], a bit b € {0,1}
and an opening p € {0, 1}=HIPoY(N) and outputs 1 (accept) or 0 (reject).

Extract(td, v, j) — u. This is a deterministic poly-time extraction algorithm that takes as input a
trapdoor td generated by Gen(1*, N, I), a hash value v, and index j € [|I|] and outputs a bit w.
We sometimes use the notation Extract(td,v) = (Extract(td, v, 7)) e[

Definition 3.1 (SEH). A SEH hash family (Gen, Hash, Open, Verify, Extract) is required to satisfy
the following properties:

Efficiency. The size of the hash key hk and the hash value v is at most |I|-poly(\).

Index hiding. For any poly-size adversary A, any polynomial N = N(\), and any Iy, I; C [N]
such that |Ip|= |I1|, there exists a negligible function negl(-) such that for every A € N,

b+ {0,1} 1
(hk, td) < Gen(1*, N, T,) | =3 T e8lV);

Pr |A(hk) =1b:
Opening completeness. For any A € N, any N < 2%, any subset I C [N], any index j € [N],
and any z € {0,1}7,

(hk,td) + Gen(1*, N, I),
v = Hash(hk, z), =1.
(b, p) = Open(hk, z, 5),

b:xj

Pr s Verify(hk, v, j,b, p) = 1

Somewhere statistically binding w.r.t. opening. For any A € N, any N < 2%, any subset
I C [N], any indexi* € I, and any (all powerful) adversary A, there ezists a negligible function
negl(-) such that for every \ € N,

(hk,td) < Gen(1*, N, I),
(v,b, p) + A(hk), < negl(\).
(bi)ier = Extract(td, v)

Verify(hk,v,i*,b,p) = 1

Pro b b

Extraction correctness. For any A € N, any N < 2*, any subset I C [N], and any = € {0, 1}N,
there exists a negligible function negl(-) such that for every A € N,

(hk,td) < Gen(1*, N, I)

Pr| (z;)ier # Extract(td,v,I) : v < Hash(hk, x)

< negl(N).

Remark 3.1. Note that the index hiding property and the somewhere statistically binding w.r.t.
opening property of a SEH hash family, implies the following property:
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Computational binding w.r.t opening. For any poly-size adversary A any polynomial N =
N(X) and any I C [N], there exists a negligible function negl(-) such that for every A € N,

Vbe{0,1} ~ (hk,td) « Gen(1*, N, I),

: < _
Verify(hk,v, i, b’ pb) =1 (i,V, p07p1) — A(hk) S neg|()\)

Lemma 3.2. [KLVW22] Let (E.Gen, Enc,Dec) be any encryption scheme that is either levelled
fully homomorphic or rate-1 additively homomorphic. Then there is a somewhere extractable hash
family with algorithms Gen, Hash that satisfies the following:

1. For every A € N, any N = N(A) < 2*, anym < N, any I = {i1,...,in} C [N], and any
(hk,td) < Gen(1*, N, I),
hk = (pk, hky, ..., hk, )

where for every j € [m], hk; € {0, 1YPoYQN) s an encryption of the index ij € [N] w.r.t. pk,
and td is the secret key corresponding to pk.
In particular, if I consists of m consecutive indices I = {i + 1,...,i+ m} then one can set

hk = (pk, hk;), and (hks, ..., hk,,) can be computed efficiently from hk. In this case, Gen runs
in time poly(\).

2. There exists a negligible function negl such that for any X € N, any N = N(\) < 2%, any
m < N, any I = {i1,...,im} C[N], any j € [m], and any = € {0,1}¥,

(hk,td) < Gen(1* N, I),

Pr| Decftd,v) =zj ("7 L Hash(hk, z)

< negl(\).
In particular, for every j € [m], v; € {0, 1}P°|Y(/\).

3.2 Somewhere Extractable Batch Arguments (seBARGs)

Syntax. A (publicly verifiable and non-interactive) somewhere extractable batch argument scheme
seBARG for an NP language £ consists of the following polynomial time algorithms:

Gen(1*, k,n,i*) — (crs,td). This is a probabilistic algorithm that takes as input a security parame-
ter 1%, number of instances k, input length n, and an index i* € [k]. Tt runs in time at most
poly(A, n,log k) and outputs a crs crs along with a trapdoor td.

Plers,x1, ..., xp,wi,...,wk) — m. This is a prover algorithm takes as input a crs, k instances
x1, ..., and corresponding witnesses w1, ...,wg, and outputs a proof .
V(ers, x1, ..., 2, m) — 0/1. The verification algorithm takes as input a crs, k instances z; for i € [k],

and a proof 7. It outputs a bit to signal whether the proof is valid or not.

Definition 3.3 (seBARG). A somewhere-extractable batch argument scheme (seBARG) (Gen,P,V)
for L is required to satisfy the following properties:

Efficiency. The size of the CRS and the proof is at most poly(\,logk,n,m), where m is the
witness length.
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Completeness. For any A € N, and any k = k()\), n = n()\) of size at most 2*, any k instances

T1,..., 2Tk € L, and their corresponding witnesses wi, .. .,wy € {0,1}, and any index i* € [k],
crs, td) < Gen(1*, k,n,*)
P =1: (crs, LA =1.
: [V(crs,xl, ) Tk ) T P(crs, a1, ..., Tk, wiy ..., W)

Index hiding. For any poly-size adversary A, any polynomials k = k(\) and n = n(\), and any
indices ig,1; € [k] there exists a negligible function negl(-) such that for every X € N,
b+ {0,1}, 1
=b: < = .
Pr [A(crs) b (crs, td) < Gen(1*, k,n, ip) } -2 + negl(})
Somewhere argument of knowledge. There exists a PPT extractor £ such that for any poly-

size adversary A, there exists a negligible function negl(-) such that for any polynomials
k= k(X) and n =n(\), and any index i* € [k|, for every X\ € N,

crs, td) < Gen(1, k, n, i*)
xi,..., Tk, m) = Acrs) < negl(A).

Pr :
wr €& (td, {l‘i}ie[k},ﬂ')

V(ers,zy, ..., xp,m) =1 _ E
A w* is not a valid witness for x; € L

Remark 3.2. We note that the somewhere argument of knowledge property implies the
following semi-adaptive soundness property which asserts that for any poly-size adversary
A, any polynomials k = k(\) and n = n()), and any index * € [k], there exists a negligible
function negl(-) such that for every A € N,

V(ers, 1, ..., ap,m) =1 (crs,td) < Gen(1*, k,n,i*)

Pr A zis ¢ L " (21,28, ™) = Alcrs)

< negl(\).

Remark 3.3. In Section 4, we use a seBARG scheme which is somewhere extractable on a set
of indices I = {iy,...,i¢}, where the size of the CRS and proof and runtime of the verifier are
allowed to grow with ¢. This is trivially achievable using any generic seBARG scheme (Gen, P, V)
which is somewhere extractable on one index by creating ¢ separate parallel CRS and correspond-
ing proof segments. The setup algorithm, given 1%, k, n, I, samples crs; < Gen(l/\,k,n,ij) for
each j € [{] and outputs crs = (crs;);cjq- The prover, given crs,z1,...,7y,w1,. .. ,wk, computes
mj < P(crsj, w1, ..., Tp, w1, ..., wy) for each j € [¢] and outputs 7™ = (7;)¢fg- The verifier, given
crs, x1, ..., oy, m, outputs 1 if and only if V(crsj, x1, ..., a2y, 7)) for each j € [¢]. The extractor, given
td, x1,. .., 2, 7, computes w} E(td, z1,...,xy, ;) for each j € [¢] and outputs (W;)je[é}.

Definition 3.4. A seBARG scheme (Gen, P, V) is said to be an index seBARG if the run-time of V
on instances x1,...,x, where x; = (x,i) for every i € [k], is at most poly(A, |z|,log k).

Theorem 3.5 ( [CJJ21a]). Assuming the hardness of the Learning with Errors (LWE) problem,
there exists an index seBARG scheme with proof length |m|= m - poly(\,log k).

Rate-1 BARGs. In this work, we construct a rate-1 seBARG under the LWE assumption. More-
over, our crs grows only poly-logarithmically in n. Informally, in a rate-1 BARG the proof size is
the size of a single witness with only an additive overhead. Formally, we define it as follows:
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Definition 3.6. A seBARG scheme (Gen, P, V) is said to be rate-1 if the following two conditions
are satisfied:

1. Gen runs in time poly(\,logn,logk),* and outputs crs of size |crs|= poly()\, logk,logn).

2. The proof generated by P(crs,z1, ..., T, wi,...,wk) is of length m + poly(A,log k).

3.3 Flexible RAM SNARGs with Partial Input Soundness

In this work we use a flexible RAM SNARG with partial input soundness, as defined in [KLVW22].
Such a RAM SNARG is for RAM computations that only read from memory (and do not write).
However, it is flexible with respect to the hash family used to digest the memory, and works with
any hash family with local opening. Jumping ahead, the reason we need this flexibility is that our
rate-1 seBARG construction in Section 5, uses a RAM SNARG which digests its memory using a
rate-1 fully-local somewhere extractable hash function (defined and constructed in Section 4).

Importantly, this RAM SNARG achieves a soundness guarantee known as partial input soundness,
which is stronger than the soundness achieved in the recent works of [KPY19,CJJ21a]. In what
follows, for the sake of simplicity, we define a flexible RAM SNARG, where the flexibility is only
with respect to somewhere extractable hash family (see Section 3.1), as opposed to any hash family
with local opening.

Syntax. Let R be a RAM machine. A flexible (publicly verifiable and non-interactive) RAM
SNARG for R is associated with a somewhere extractable hash family (Section 3.1)

SEH = (SEH.Gen, SEH.Hash, SEH.Open, SEH .Verify, SEH.Extract),
and consists of the following algorithms:

Gen(1*,T) — crs. This is a probabilistic poly-time setup algorithm that takes as input a security
parameter 1* and a time bound T, and outputs a common reference string crs.

Digest(hk,z) — v. This is a deterministic polynomial-time algorithm that takes as input an SEH
hash key hk, generated by SEH.Gen(1*, N, I) for some N € N, and a bit string x € {0, 1},
and outputs the digest v = SEH.Hash(hk, z) of size |I|-poly(A).

P(crs, hk, Zimp, Texp) — (b, m). This is a deterministic polynomial-time prover that takes as input a
crs, a hash key hk, and an input & = (Zimp, Texp) Which consists of a (long) implicit input Zimp
and a (short) explicit input Zexp, and outputs a bit b = R(z) € {0,1} and a proof 7.

V(crs, hk,V, Zexp, b, ) — {0,1}. This is a deterministic polynomial-time verifier that takes as input
a crs, an SEH hash key hk, a digest v of the (long) implicit input, a (short) explicit input Zexp,
a bit b € {0,1}, and a proof 7, and outputs 1 (accept) or 0 (reject).

Remark 3.4. Sometimes the goal of the prover P is to prove that the RAM computation is
accepting (i.e., outputs 1). In this case we omit the bit b (which is set to 1), and simply think
of V as taking as input the tuple (crs, hk, v, Zexp, 7). This will indeed be the case in Sections 4
and 5.

4We note that we require that Gen runs in time poly-logarithmically in n. This may not be an inherent requirement
for a rate-1 BARG. We add this requirement since we can achieve it, and we use it in Section 7 where we construct a
multi-hop seBARG scheme and an aggregate signature scheme.
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Definition 3.7. A flexible RAM SNARG
(Gen, Digest, P, V)
associated with a somewhere extractable hash family (Section 3.1)
SEH = (SEH.Gen, SEH.Hash, SEH.Open, SEH.Verify),
satisfies the following properties:
1. Efficiency. The length of the RAM proof 7 is at most poly(\, Ty) where Ty is a bound on

the run-time of SEH.Verify.

In particular, if the hash key can be partitioned into hk = (hky, hky) and the hash value can be
partitioned into v = (vg,vs), and SEH. Verify takes as input only (hkg,vs), together with (4,b, p),
then |m|< poly(|hk,|, |vs|, ||, A), and thus the run-time of V is at most poly(|hk,], |vs|, |p], A).

Remark 3.5. Jumping ahead, we note that if the underlying SEH hash family is a fully local
SEH family (defined in Section 4) then |hkg|, |vs|, [p|< poly(A) in which case the length of 7
and the run-time of V is at most poly(\).

2. Completeness. For any \, N € N such that N < T(N) < 2* and any v = (Timp, Texp) €
{0,1}" such that R(x) halts within T time steps, and any I € [|Timp|] we have that

crs « Gen(1%),
V(crs, hk, V, Texp, b, ) =1 (hk,td) + SEH.Gen(1*, |Zimp|, I),
A b=TR(x) " (b,m) = P(crs, hk, z),

v = Digest(hk, Zimp)

Pr

3. Partial-input soundness: For any poly-size adversary A = (A1, A2) and any polynomial
T =T(\) there exists a negligible function negl(-) such that for every A € N,

crs < Gen(l)‘),
(AN, 1) = Aj(crs),
V(ers, hk, v, Zexp, b, ™) =1 (hk, td) < SEH.Gen(1*, N, I),

A R(Zimp, Texp, 1) = 1 — b* *
(anrzlpdazzpnog read any . (v,xexp,b ,w) = As(crs, hk), < negl(\).

location in [N]\ I (bj) ;7 = SEH.Extract(td, v, I),
define Timp € {0, 1}V :
VJ € I’ (l'imp)j = b]’\v/j € [N} \Ia (:L‘imp)j =0 ]

Pr

Theorem 3.8 ( [KLVW22]). Assuming the Learning with Errors (LWE) assumption, there exists a
flexible RAM SNARG.

3.4 Homomorphic Encryption with Ciphertext Compression

Below we recall the notion of a homomorphic encryption scheme, and define ciphertext compression
algorithms. These ciphertext compression algorithms are inspired by the rate-1 homomorphic
encryption scheme of Brakerski et al. [BDGM19], and are essential in our construction of a rate-1
fully-local somewhere extractable hash family (defined in section 4). Our compressed ciphertexts
have desired locality properties that are essential to our fully-local somewhere extractable hash
family.
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Syntax. A homomorphic encryption scheme HE for a circuit class C and message space {0, 1}
consists of the following PPT algorithms:

Gen(1*) — (pk,sk). This is a setup algorithm takes as input the security parameter \, and outputs
a public-secret key pair (pk, sk).

Enc(pk, b) — ct. The encryption algorithm takes as input a public key pk, message bit b € {0,1},
and outputs a ciphertext ct.

Eval(pk, C, (ct1,...,cty)) = (ct],...,cty). The evaluation algorithm is a deterministic algorithm
that takes as input a public key pk, description of a circuit C € C, and n ciphertexts ct;
for i € [n], where n is the input length of the circuit C. It outputs a sequence of evaluated
ciphertexts (ct},...,ct}), where ¢ is the output length of the circuit C.

Dec(sk, ct) — b. The decryption algorithm is a deterministic algorithm that takes as input a secret
key sk, a (possibly evaluated) ciphertext ct, and outputs a message bit b.

(Throughout the sequel, we naturally define the decryption algorithm to take as input a
sequence of ciphertexts, and output a sequence of message bits as output.)

Definition 3.9 (Correctness and Compactness of HE). The encryption scheme HE is said to be
correct if for any security parameter A € N, any circuit C' € C with input and output lengths n and
¢ (respectively), and any sequence of n messages by, ..., b, € {0,1},

Pr[Dec(sk, Eval(pk, C, (cty,...,ct,))) = C(b1,...,by)] =1

where the probability is over (pk,sk) < Setup(1?) and ct; < Enc(pk, b;) for i € [n].
The encryption scheme HE is said to be compact if the bit-length of the evaluated ciphertext is
at most poly(X,£), i.e. its size does not depend on circuit size.

Compressing ciphertexts. In our construction of a rate-1 fully-local SEH (in Section 4), we
use a homomorphic encryption scheme that has a “compression” algorithm which takes a set of
¢ evaluated ciphertexts (each encrypting a single bit) and compresses them into a single rate-1
ciphertext encrypting these ¢ bits. Moreover, we require this “compression” algorithm to have a
specific form which is needed in order to construct the rate-1 fully-local SEH scheme.

The compression algorithm consists of three parts: Compressi, LinEval, Compress,, which we
elaborate on below.” We note that in order to compress ¢ ciphertexts we need to generate new
“compression” keys (that depend on /), via an algorithm CompGen and we need a new decryption
algorithm called CompDec. We require this decryption algorithm to be local (as defined below).

CompGen(pk, sk, 1) — (pkg, ske). The PPT compression key generator algorithm takes as input
a public-secret key pair (pk,sk), and the compression parameter ¢, and it outputs a new
public-secret key pair (pk,,ske) that enables ciphertext compression.

(Here ¢ should be regarded as the maximum number of one-bit ciphertexts that can be
compressed to a rate-1 encryption.)

®We note that the properties we specify below are quite specific. We could have specified more general properties
but we chose simplicity over generality.
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Compress; (pke, ct, £,7) — cte,. The first part of the compression algorithm is a deterministic poly-
time algorithm that takes as input a compression public key pk., a (non-compressed) HE
ciphertext ct encrypting a single bit b, a length value ¢ € N, and an index i € [¢]. It outputs a
“processed” ciphertext ctc,, which encrypts the ¢-bit vector b - e; € {0, 1} where ¢; € {0,1}*
is 1 on its 7’th coordinate and zero on all other coordinates.

This processed ciphertext has the form
Cte, = (sub-ctg, sub-cty, ..., sub-cty),

where sub-ctp is a “preamble” consisting of poly(A) field elements in a finite field [, of size
q < 2*, and each sub-ct; for i € [¢] consists of a single element in F,.°

LinEval(pk, ctgll), - ,ct.(f;)) — ctg,. This linear evaluation algorithm is a deterministic poly-time

algorithm that takes as input a public key pk, and ¢ processed ciphertexts (each encrypting
an ¢-bit vector), and outputs a single processed ciphertext (encrypting an ¢-bit vector).

This algorithm simply adds the ¢ ciphertexts ctgll), e ,ctgl) coordinate-wise over F,. Impor-

tantly, if each ctgil) encrypts the vector b; - ¢; € {0, 1}z then the output ciphertext ct’Cl encrypts
the vector (by,...,bp).

Compressy(cte, ) — cte. The final compression algorithm is a deterministic poly-time algorithm that
takes as input a processed ciphertext cte, and outputs a fully compressed ciphertext ctc.
Importantly, this algorithm can be executed locally in the sense that one can run it on each
sub-ciphertext separately. Namely, Compressy(cte, ) can be computed as follows:

1. Parse cte, = (sub-ctg, sub-cty, ..., sub-cty).
2. For every j € [¢], compute sub-ct. ; = Compressy(sub-ct;) € {0,1}.
(For the sake of simplicity, we are overloading the notation of Compressy.)
3. Output cte = (sub-ctg, sub-ctc 1 ..., sub-cte ).
CompDec(ske, cte) — (b1,...,br). This is a deterministic poly-time decryption algorithm that de-

crypts compressed ciphertexts. It takes as input a compression secret key sk and a compressed
ciphertext cte and it outputs its decryption (by,...,by).

Importantly, this algorithm is local in the following sense: Parsing ct. = (sub-ctg, sub-cte; ..., sub-ctc )
(and overloading notation),

CompDec(ske, cte) = (CompDec(skc, sub-ctg, sub-cty), . .., CompDec(ske, sub-ctg, sub-cty)) .

Definition 3.10. [Correctness of Compressed Encryption Scheme] A homomorphic encryption
scheme (Gen, Enc, Eval, Dec) for a circuit class C, with compression algorithms

(CompGen, Compressy, LinEval, Compress;, CompDec)

as defined above, is said to be correct and compact if the encryption scheme is correct and compact
(as per definition 3.9), and there exists a negligible function negl such that for any security parameter

5We note that F, is the underlying field used in this encryption scheme.
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A € N, parameters £,n < 2*, key pair (pk,sk) < Setup(1%), compressed key pair (pke,ske)
CompGen(pk, sk, 1¢), any circuit C € C with input and output lengths n and £ respectively, any
sequence of n bit messages by, ..., b, € {0,1}, ciphertexts ct; < Enc(pk,b;) for i € [n], evaluated
ciphertext

(ct},...,cty) = ct’ « Eval(pk, C, (cty, ..., cty)),

partially compressed ciphertexts
(@) (D) (@) (@) ry
sub-cty”, sub-ct;”, ..., sub-ct,” ) = cte; <= Compress;(pk, ct;, £, 1)

for i € [{], letting

et/ = LinEval(pk, et ..., ct!),

and cte = Compressy(cty, ), it holds that
Pr[CompDec(ske, cte) = C(b1,...,by,)] > 1 — negl(A).

where the probability is over the sampling of all the ciphertexts above (including the ciphertexts
cty,...,Cty).

Security. For security of our encryption scheme with compression algorithms, we consider an
extended notion of semantic security, where the attacker gets both the regular and compression
public keys, and it still can not distinguish between two honestly computed ciphertexts.

Definition 3.11 (Semantic Security). A homomorphic encryption scheme (Gen, Enc, Eval, Dec) with
compression algorithms (CompGen, Compressy, LinEval, Compress,, LocDecy) is said to be secure if
for every poly-size adversary A there exists a negligible function negl(-) such that for all X € N, the
following holds:

(pk,sk) < Gen(1%), 1¢ < A(pk)
Pr | A(pk,pke,ct) =b: (pke,ske) «+ CompGen(pk, sk, 1¢) | <
b+ {0,1}, ct < Enc(pk,b)

+ negl(\).

DN |

Later in appendix A, we construct such a homomorphic encryption scheme with compression
algorithms by relying on the rate-1 FHE construction by Brakerski et al. [ BDGM19]. Below we
state the main theorem that we prove in appendix A.

Theorem 3.12. Assuming the Learning with Errors (LWE) assumption, there exists a homomorphic
encryption scheme (Gen, Enc, Eval, Dec) for all circuits of depth poly(\) (where the public key grows
with poly(X) ), with compression algorithms (CompGen, Compressy, LinEval, Compress;, CompDec) sat-
isfying all the properties defined above, including correctness, compactness, and security (see Defini-
tions 3.9 to 3.11).

4 Rate-1 Fully-Local SEH (fISEH) Families

4.1 Definition

Syntax. A rate-1 fully-local somewhere extractable hash family consists of the following polynomial
time algorithms:
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Gen(1*, N, I) — (crsy, crsy, td). This is a probabilistic poly-time setup algorithm that takes as input
security parameter 1* in unary, message length N, and subset I C [N]. It runs in time
poly(A, |I],log N) and outputs a long crs crsy € {0, 1}11PYN "4 short crs crs, € {0, 1PV,
and a trapdoor td.

Moreover, if the set I consists of consecutive indices I = {i* + 1,...,7* + m} then Gen runs in
time poly()\, log N,logm) and outputs (crs, td) both of size poly(), log N,logm).”

Hash(crsy, crss, ) — (v,rt). This is a deterministic poly-time hash algorithm that takes as input
(long) crsy, (short) crs crsg, and message = € {0, 1}N, and outputs a long hash value v €
{0, 1PV and a short digest rt € {0, 13PNV,

Remark 4.1. We note that we can always assume w.l.o.g. that crsy contains crsg, in which
case Hash can take as input only crs;. However, in our construction (in Section 4.2) crsy does
not include crs; and hence we give Hash both crs, and crs;.

Validate(crsg, v, rt) — 0/1. This is a deterministic poly-time validation algorithm that takes as input
(short) crsg, hash value v, and (short) digest rt, and outputs 1 (accept) or 0 (reject).

Open(crsy, crsg, ¢, i) — (z;, p). This is a deterministic poly-time opening algorithm that takes as
input (long) crsy, (short) crs crss, message = € {0,1}", and index i € [N], and outputs a bit
x; € {0,1} and a local opening p of length poly(A,log N).

Verify(crsg, rt, i, b, p) — 0/1. This is a deterministic poly-time verification algorithm that takes as
input (short) crss, (short) digest rt (produced by Hash), index ¢ € [IV], bit b, and local opening
p, and outputs 1 (accept) or 0 (reject).®

Extract(td,v) — u. This is a deterministic poly-time extraction algorithm that takes as input
trapdoor td, and hash value v, and outputs a string u € {0, 1}”'.

A rate-1 fISEH family is required to satisfy similar properties to those of a SEH family adapted
to the fISEH setting. The adapted properties are described formally below.

Definition 4.1 (rate-1 fISEH). A rate-1 fISEH family is required to have the following properties:

Index hiding. For any poly-size adversary A, any polynomial N = N(\), and any subsets
Iy, I € [N] such that |Io|= |I1|, there exists a negligible function negl(-) such that for every
AeN,

1
b {0,1} < — + negl(N).

Pr | A(erse, crss) = b (crsg, crsg, td) « Gen(1M, N, I) | = 2

Completeness. For any A € N, any N < 2*, any subset I C [N], any index i € [N], and any

x e {0,1}7,
b=ux; (crsg, crsg, td) < Gen(1*, N, I),
Pr | A Verify(crsg, rt,i,b,p) =1 : (v, rt) = Hash(crsy, crsg, @), =1.
A Validate(crsg, v, rt) = 1 (b, p) = Open(crsy, crsg, @, 1),

"In this case, there is no reason to distinguish between crs, and crs; since crs is short.
®Note that the run-time of Verify is poly()\) assuming N < 2*.
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Somewhere statistically binding w.r.t. opening. For any A € N, any N < 2%, any subset
I C[N], any index i € I, and any (all powerful) adversary A, there ezists a negligible function
negl(-) such that for every A € N,

Verify(crsg, rt,i,b, p) = 1 (crsg, crsg, td) < Gen(1*, N, I),
Pr | A Validate(crsg,v,rt) =1 : (v,rt,b,p) < A(crsy,crss), < negl(\).
A b b (bj)jel = Extract(td, v)

Extraction correctness. For any A € N, any N < 2*, any subset I C [N], and any x € {0,1}",
there exists a negligible function negl(-) such that for every A € N,

(crsg, crsg, td) « Gen(1*, N, I)

Pr| oy # Extract(td,v) v < Hash(crsy, crs,, )

< negl(A).

4.2 Construction
Our construction of a fISEH family uses the following ingredients:
1. A rate-1 linearly homomorphic or levelled fully homomorphic encryption scheme
(Gen, Enc, Eval, Dec)
with compression algorithms
(CompGen, Compress;, LinEval, Compressy, CompDec)
(see Section 3.4). Recall that each ciphertext is a vector over a finite field, denoted by F,.
2. A somewhere extractable hash family
SEH = (SEH.Gen, SEH.Hash, SEH.Open, SEH.Verify, SEH.Extract)

constructed w.r.t. the rate-1 encryption scheme (Gen, Enc, Eval, Dec) from Item 1 (see Section 3.1
and Lemma 3.2).

3. Two flexible RAM SNARG schemes with partial input soundness (see Section 3.3):
(RAM.Gen, RAMy.Digest, RAM(. P, RAM,.V)

and
(RAM;.Gen, RAM; .Digest, RAM;.P,RAM.V),

where the first is w.r.t. the RAM machine Ry that runs in time 7j and the second is w.r.t.
the RAM machine R that runs in time 73.

(a) The RAM machine Ry is associated with the encryption scheme from Item 1. It
takes as input a sequence of ciphertexts (cty,...,ct,,) each encrypting a single bit, the
corresponding public key pk, indices j € [m] and k € [m/], where m’ denotes the number
of field elements in the vector Compress, (pk, ctj,m, j), and a field element ¢ € F,, and
outputs 1 if and only if c is the k’th element of Compress, (pk,, ctj, m, j).

Recall that m’ = m + poly(\). We let

A(N) £ m' —m = poly()\) (1)
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(b) The RAM machine R; is specified in Item 6b of the Hash algorithm construction below.

4. Two somewhere extractable BARG schemes (see Section 3.2)

and

(seBARG(.Gen, seBARG.P, seBARG).))

(seBARG;.Gen, seBARG;.P,seBARG;.V)

where the first is for the NP language Lo, specified in Item 8 of the Hash algorithm construction
below, and the second is for the NP language L1, specified in Item 5 of the Open algorithm
construction below.

We are now ready to define our fISEH family.

Gen(1*, N, I) — (crsy, crsy, td). This poly-time algorithm does the following:

In what follows we let m = |I| and we assume without loss of generality that m is a power
of 2, and for every t € [0,logm] we denote by m; = m/2t.

1.
2.

N o w

Generate (hk',td’) «~ SEH.Gen(1*, N, I).

Parse hk’ = (pk, hk),... hkl ).

Recall that td’ = sk where sk is the secret key corresponding to pk, and n £ \hk;-|§ poly(\)
for every j € [m] (see Lemma 3.2). In addition, recall that each hash value corresponding
to hk’ consists of m = |I| ciphertexts w.r.t. pk, each encrypting a single bit, where the
j’th ciphertext is a function of pk and hk;-. By padding, we can assume w.l.o.g. that the
size of each of these ciphertexts is also n.

Generate (pkg,ske) < CompGen(pk, sk, 1™).

Set arbitrarily a € [m]. For example, set a = 1.

Generate (hk,td) < SEH.Gen(1*,m - n, I,), where I, = {(a— 1) -n+1,...,a-n}.

Let h’ = SEH.Hash (hk, (hki, ..., hk;n)).

For every t € [0,logm], generate (hk;,td;) < SEH.Gen(1*,m’ - my - ny, Ji o), where the

value n; and the set of coordinates J; o C [m' - my - ny] of size poly(\) are specified in
Item 6a of the Hash algorithm construction below.

8. Generate RAMg.crs < RAM.Gen (1%, Tp).
9. Generate RAM;.crs <~ RAM;.Gen(1*, T7).

10.

11.

12.

Generate (seBARGy.crs, seBARGq.td) < seBARGy.Gen(1*,m/,n/, S,,), where recall that
m' = A(X) + m is the number of field elements in the vector Compress; (pk, ct;,m, ),
n’ < poly()) is specified in ITtem 8 of the Hash algorithm construction below, and
So={1,...,AN)FU{A\) + a} C [m/].

Generate (seBARGj.crs,seBARG.td) + seBARG;.Gen(1*,m,n", ), where n” < poly())
is specified in Item 5 of the Open algorithm construction below.

Let crs; = hk’ and

crsg = (pk, pk,, hk, h’, {hkt}iozgom , RAMg.crs, RAM .crs, seBARGg.crs7seBARG1.crs> )
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13. Output (crsy, crsg, td*), where td* = sk.

Remark 4.2. Note that if I = {i* +1,...,7* + m} then hk’ can be computed efficiently from
pk and an encryption of i*, so Gen runs in time poly(A,log N) (see Lemma 3.2).

Hash(crsy, crss, ) — (v, rt). This poly-time algorithm does the following:

1. Parse crs; = hk' = (pk, hk),..., hk! ) and
crsg = (pk, pke, hk, h’, {hkt}iozgom , RAMg.crs, RAM .crs, seBARGU.crs,seBARGl.crs> )

2. Compute
(cty,...,cty) = SEH.Hash (hk’,:c) .

Denoting by I = {i1,...,im} C [N], note that ct; is a ciphertext encrypting the bit z;,
w.r.t. pk (see Lemma 3.2).

3. Compute
h = SEH.Hash (hk, (cty,...,cty)).

Note that |h|< poly()).

4. Compute v which is the compressed ciphertext corresponding to (cty,...,ct,,) and pk,,
as follows:

(a) For every j € [m] compute
(ctj)er = Compress; (pk, ctj,m, j) -

Note that (ct;)
(b) Compute

c IS5 a ciphertext encrypting the vector z;, - e; € {0, 1}™.

CtC1 = LinEVal (pk7 (Ctl)cl 9y (Ctm)cl) :

¢ ompute
( ) Comput
VvV = CompreSSQ(ctcl).

Note that v = (vi,...,v,) is a ciphertext encrypting the string z; € {0,1}™, where
v € F, for every k € [A(N)], and vi, € {0,1} for every k € [A(X) + 1,m/].?

In Item 5-Item 9 below we compute a proof that h and v are consistent.

5. For every j € [m]| and k € [m/] let

c% = k-th element of (ct;), , and

) = RAM,.P (RAMg.crs, hk, (cti, . .., ctm) , (pk, j, &, cg.?,g>) .

Note that 773(',012 is a RAM proof that cg.?,z is the k’th element of Compress; (pk,, ct;,m, j).
6. Fort=0,...,logm:

9Using our notation in Section 3.4, sub-cty = (vi,... vamy) € FQAO‘) and sub-ctec ; = va(n)+; € {0,1} for every
j € [m].
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(a) Let
M) = {0 0
X {Cy,k’ 7T37k}j6[mt]7ke[m/}

and compute
h = SEH.Hash (hkt, X(t)>

where hk, is defined to hash messages of length m’-m;-n; and be statistically binding
on the coordinates in J; o, where n; and J; , are defined as follows:

_ (t)
=logq + ‘Wj7k‘

where ’ﬂ(-t)

k| 18 the number of bits in the proof 7 and Ji,o is defined by first letting

Jik?

Jro = {1e/2'] =1, Ta/2'], [a/2"] + 1} 0 [m].

and letting J; o be the set of coordinates corresponding to (cgti, ()> for j € J] a
and k € S,.19 Note that |J; o< poly(A).
(b) If t < logm: For every j € [my41] and k € [m/], compute

D (t) (t)
jk _62] 1k+c2jk’

where addition is over the finite field F; used in the underlying encryption scheme
(see Definition 3.10), and compute

T = RAMLP (RAMl'Crs’ kg, X, (hk, h, {hky, h¢}/Zo, pk,J,k,cgtljl)» '

RAM; is defined w.r.t. the RAM machine R, that takes as input X® as in Equa-
tion (2), hash keys (hk, hkg, ..., hk,_;), hash values (h,hg,hy,... h;_1), the public

key pk defined by hK', indices j € [m+1] and k € [m/], and field element ¢/,

outputs 1 if and only if the following conditions are satisfied:

1. c§t:1) cg;) 1k + cgj)k over [Fy.

, and

ii. For every b € {0,1}, 772j—b i is a valid proof. Namely, if ¢ = 0, then
RAM,.V (RAMO.crs, hk, h, (pk, 2j — b,k,cg},b’,{) v bk) —1
and if ¢ > 1, then
RAM;.V (RAM; crs, hk,_y, hi1, (hk, h, {he, he 23, ok, 25 = b,k e) ) oml) ) = 1.

Note that the RAM proof 7T( U certifies the correctness of the k’th element of c§t+1)

w.r.t. (h,hg,hy,..., he, pk).

YRecall that m¢ = 2'°6™ 7 and S = {1,..., AN} U{A\) + a} C [m].
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7. Note that

c1°g™) — |inEval (Pk, (Cti)g, s+ (Ctm)e,) = Z (ctj)e,
j=1

where addition is coordinate-wise over Iy, and

hlogm = SEH.Hash (hkbgm, ( I(glogm)vﬂ-l(ﬁlogm)> [ /]> .
8. Compute

instances = (pk Vi, hk, h, {hk,, h }1&™ )k o’
e !

seBARGy.m = seBARG(.P | seBARGy.crs,
witnesses = (cgogm),ﬂgogm),pk)k -
elm’

where seBARGy is defined w.r.t. the NP language Ly that has instances of length

MT—

and a valid witness (c,(flog m), W,(Clog m), pk) satisfies the following conditions:

(logm) _(log m))

(a) pi is a valid opening of (ck , T w.r.t. (hkjog 1, Nlogm). Namely,

SEH.Verify (hklogm, hiog ms (cgogmxﬂgogm)) : pk) — 1,

where J}, are the coordinates corresponding to ( (log m), ﬁ,(clog m)> in (c,(glog m), rilos m)> -
elm’
(b) W,(Clog ™) s a valid proof. Namely,

RAM:.1 (RAM crs, hiog s Piog ms (K b, {hk, he B pk, 1, cf 26 ) (6™ ) = 1.

(c) cgog ™) is consistent with vi. Namely, if k& € [m’ — m], then
Vi = clglog m)

and if kK > m’ —m, then

v, = Compress, (c,(clogm)) :

9. Set m = (ho, h1,. .., higg m,seBARGq.).
10. Output (v, rt = (h,7)).

Validate(crsg, v, rt) — 0/1. This poly-time algorithm does the following:
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1. Parse
crsg = (pk, pke, hk, h', {hk, iozgom , RAM.crs, RAM .crs, seBARGO.crs,seBARGl.crs> ,
parse rt = (h,7) where
7 = (ho, h1, .- ., hiog m, SeBARGo.7),

and parse
V= (Vi,..., V)
where recall that v; € F, for every j € [m’ — m], and v; € {0,1} for every j €
[m' —m+1,m/].
2. Output 1 if and only if

seBARGy.V <seBARGO.crs, (pk,vk,hk,h,{hkt,ht}i‘;gom,k)k [ },seBARGO.W> — 1.
elm’

Open(crsy, crsg, @, 1) — (x;, p). This poly-time algorithm does the following:
1. Parse crs; = hk' = (pk, hk),... hk! ) and
crs = <pk, pke, hk, h', {hk, %™ RAMg.crs, RAM .crs, seBARGy.crs, seBARGl.crs> .
2. Compute
(cty, ..., cty) = SEH.Hash (hK, z) .

3. Compute
(b, Py ..., pl,) = SEH.Open(hk', z,1).

Note that (p), ..., pl,) is an opening of z; w.r.t. the hash value (cty, ..., ct,,). Importantly,
for every j € [m], one can verify p; given only (pk, hk’, ct;). Namely,

SEH.Verify((pk, hkj), ct;, i,b, ) = 1.
4. For every j € [m] let
0; = SEH.Open (hk, (cty, ..., cty), [(j — 1) -n+ 1,5 - n])

and let
o = SEH.Open (hk, (hK, ..., hk,),[(j = 1) -n+1,j - n])
where n = |ct;|.
Note that o; is an opening of ct; w.r.t. the hash value h = SEH.Hash(hk, (cty, ..., cty,)),
and o) is an opening of hk}; w.r.t. the hash value h’ = SEH.Hash(hk, (hK}, ..., hk,)).

5. Compute

. B N
seBARG;.m = seBARG;.P <seBARG1.crs, instances = (hk, pk, ', h, 7, b, j)jefm), >

witnesses = (ct;, hk, p', 05, 0)) jelm
where seBARG; is defined w.r.t. the NP language £, that has instances of length
n" = | (hk, pk, h', h,,b, j)|

and a valid witness (ct;, hk;, p;-, 0j, 0;-) satisfies the following conditions:
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(a) p; is a valid opening of b w.r.t. (pk,hkj,ct;). Namely,
SEH.Verify ((pk, hk}) ,cty, 4, b, p;) =1.
(b) oj is a valid opening of ct; w.r.t. (hk,h). Namely,
SEH.Verify (hk,h,[(j — 1) -n+ 1,5 - n],ctj,05) = 1.
(c) of is a valid opening of hk: w.r.t. (hk,h’). Namely,
SEH.Verify (hk, b, [(j — 1) - n+ 1,5 - n] , hK, o)) = 1.
6. Output (b, p = seBARG;.7).
Verify(crsg, rt, i, b, p) — 0/1. This poly-time algorithm does the following:
1. Parse
crsg = (pk, pke, hk, h’, {hkt}iozgom , RAMg.crs, RAM .crs, seBARGg.crs,seBARGl.crs> ,

and parse rt = (h,7), p = seBARG;.7.

2. Output
seBARG;.V(seBARG; .crs, (hk, pk,h’, h, 1, b, j)je[m), SeBARGy.7).

Extract(td,v) — {0,1}™. This poly-time algorithm does the following:

1. Output Dec(td,v).!!

4.3 Analysis

Theorem 4.2. Assuming hardness of the LWE problem, the construction defined in Section 4.2 is a
rate-1 fully-local somewhere extractable hash family as in Section 4.1.

Proof of Theorem 4.2.

Efficiency. Follows immediately from the efficiency of the underlying primitives, namely, the
efficiency of the underlying rate-1 linearly homomorphic encryption scheme, the SEH scheme, the
RAM SNARGs, and the seBARG schemes. If I = {i* 4+ 1,...,7* +m} for some i* € [N], then Gen
runs in time poly(A,log N) (see Remark 4.2).

Index hiding. Follows immediately from the index hiding property of the underlying SEH hash
family (see Definition 3.1).

Completeness. Follows immediately from the completeness property of the underlying RAMg, RAM;
schemes (Definition 3.7), the completeness of the underlying seBARGq, seBARG; schemes (Defini-
tion 3.3), and the opening completeness of the underlying SEH family (Definition 3.1).

"Recall that the SEH hash family we used has the property that the trapdoor key td is the secret key corresponding
to the underlying encryption scheme (see Lemma 3.2).
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Somewhere statistically binding w.r.t. opening. Fix any (possibly all-powerful) adversary
A, any polynomial N = N(\), subset I C [N], and index i* € I. We need to prove that there exists
a negligible function p such that for every A € N,

Verify(crss, rt, i*,b,p) = 1 (crsg, crsg, td’) <= Gen(1*, N, I),

Pr | A Validate(crss,v,rt) =1 : (v,rt, b, p) + A(crsy, crsg), < (). (3)
A b b« (bi)ier = Extract(td, v)
Parse I = {i1,...,imn} and suppose that i* = i,. Let Gen, be identical to Gen except that it sets «

as above, as opposed to setting o = 1. In addition, Gen,, does not output only td’ as the trapdoor,
but rather outputs all the trapdoors generated during the Gen algorithm. Namely, it outputs

td* = (td’,td, {td, }loem seBARGO.td,seBARGl.td) .

Below we define the extraction algorithm &, which uses td* and calls as subroutines the polynomial
time extractors SEH.Extract, seBARGq.£ and seBARG;.£:

E(td*, crss, v, rt, b, p)
Parse td* = (td’,td, {tdt}i‘f"om,seBARGo.td,seBARGl.td) )

Parse crs, — (pk, pke, hk, I, {hk, }°6™ RAMq.crs, RAM .crs, seBARGy crs, seBARGl.crs) .

Parse rt = (h,7), m = (ho,. .., higgm,SeBARGy.T), p = seBARG;.7.
Compute hk!, = SEH.Extract(td, h’).
Compute ct, = SEH.Extract(td, h).

for t € [0,logm] : Compute (C;t])wﬂ'](t])c = SEH.Extract(tdy, h).

)jGJt’Ya,kESa
Compute wo = seBARGy.E (seBARGy.td, <pk,vk, hk, h, {hk,, ht}i‘fom,k)k vy SEBARGY.T).
clm’

Compute w; = seBARG;.£(seBARG; .td, (hk, pk, h’, h,i*, b, 5)

logm
t) (¢t
return hk;xtm{(c;y,)g,w](-y,l) , } , Wo, W1
JE€J; akESa ) g

,seBARG;.7).

Jj€[m]

Recall that J; , = {Te/27 = 1, /2", Ta/2'] + 1} N [my] and S = {1,..., AN} U{A(N) + o}
We define the following experiment:

EXPT,

(crsg, crs,, td*) < Geny (1%, N, 1)
(v,rt, b, p) < Alcrsg,crs)

(b;)icr = Extract(td, v)

ke, cta, 4 (el mi2)
< o€ { ook Tk JET] o kESa

By the index hiding property of the underlying SEH family and the underlying seBARG schemes, to
prove Equation (3) it suffices to prove that there exists a negligible function p such that for every
AEN,

logm

,wo,w1> = E(td", crsg, v, rt, b, p)
t=0

EXIID:’I"I' [ b#bi, A Verify(crs,rt,iq,b,p) =1 A Validate(crsg, v, rt) =1 | < u(A). (4)
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Recall that Verify(crss, rt,iq,b, p) =1 A Validate(crsg, v, rt) = 1 if and only if
seBARGy.V <seBARG0.crs, (pk Vi, hk, h, {hk,, hy 118 )k [ ],seBARGo.w> —1
e[m’

and

seBARG,.V (seBARGl.crs, (hk, pk, W, h, iy, b, 7) seBARGl.w) —1.

JEm]’

In what follows, we parse

_ [ s(logm) _s(logm) _ ’ "o /
wo = (ck ST s Pk res and wi = (cta,hka,pa,oa,oa) .

The somewhere argument of knowledge property of the underlying seBARGy, seBARG; schemes
(Definition 3.3) implies that to prove Equation (4) it suffices to prove that there exists a negligible
function g such that for every A € N,

b # b;,,
b AV EkeS, < (logm), /gogm)’ pk> is a valid witness for
r
EXPT., (pk Vi, hk, h, {hk,, h, }187 k) e Lo
A (ctly, hk}, ply, 0a,0),) is a valid witness for (hk, pk,h', h,iq, b, ) € £4

«

<p(A). (5)

Recall that (ct,,hkl, pl,0q,0,) is a valid witness for (hk,pk,h’,h,is,b,&) € Ly if and only if
phs 0u, 0, are valid openings for b, ct! , hk) respectively (see Item 5). The somewhere statistically
binding w.r.t opening property of the underlying SEH family (Definition 3.1) implies that there
exists a negligible function negl such that for every A € N,

/

Py (Ply, 0a, 0ly) are valid openings for (b,ct),, hk,) respectively < negl())
ExpT, | A ((b# SEH.Extract(td’,ct])) V (ct, #cta) V (hkl #hK))) | ~ '

This implies that for every A € N,

(ctly, hk, ply, 00, 0)) is a valid witness for (hk, pk, h’,h,iq,b,a) € L1 ]

< .
EXPT, [ A b # SEH.Extract(td’, cty) < negl(A).  (6)

It remains to argue that there exists a negligible function p’ such that for every A € N,

VkeS,: (c’,(clogm), W’,(glogm),pk> is a valid witness for

ogm /
ol (pk,vie bk, b, {hk,, he 5™ ) € Lo | < #/().
A SEH.Extract(td’, cty) # b;

(2

et (logm) _(logm) (logm) _(logm)
ogm ogm Ny ogm ogm
(aeemmm) & (i)
log m,«a
where (cgzg m),wj(.lzg m)) . was extracted by £ (note that Ji,,, , = {1} so the sizes align).

log m,a

Recall that ( y(logm) s(lo ),pk) is a valid witness for (pk,vk,hk,h,{hkt,ht}k’gom,@ € Lo if

and only if (1) pg is a valid opening of (c’gogm), W’,(clogm)) w.r.t. (hKjogm: Nogm), (2) 7 ,E}Ogm) is a

31



valid RAM proof, and (3) ¢ gog ™) is consistent with vk (see Item 8). The somewhere statistically
binding w.r.t. opening property of the underlying SEH family (Definition 3.1) implies that there
exists a negligible function negl such that for every A € N,

VkeSy,: piisa valid opening of c’,(clogm),ﬂ/gogm)

Pr

< negl(A).
EXPTa | Ak eES, : (Cikgnﬂyﬂjgognw> £ Cgognw’wgognw> )

Also note that if cgog ™) is consistent with vi for all k € S, then

CompDec (skc, <Compressz (cgogm)»k ; ) = CompDec (ske, (Vi) eg. ) = bia-
€Sa «

Thus to prove Equation (5) it suffices to argue that there exists a negligible function y’ such that
for every A € N,

ﬁ,(clog ™) is a valid proof

P oz m <uN). (7
EXPT. | A SEH.Extract(td’, ct,) # CompDec (Skm (Compre552 (C;(gl g )))k . ) < (A). (7)
€5a

The partial-input soundness property of the underlying RAM; scheme (applied logm — ¢ times)
implies that there exists a negligible function negl such that for every A € N, ¢ € [0,logm]|, k € S,,
and j € Ji ,,

w,ilog ™) is a valid RAM proof

Pr ) . .
A ;5 is not a valid RAM proof

EXPTa

] < (logm —t) - negl(A).

Definition 4.3. For every t € [logm] and j € J{, we say that (Cg])“)kes is invalid if j # [ 5] and

CompDec <skc, (Compressz (Cgt’)“))kes > #0

Claim 4.3.1. There exists a negligible function negl such that for every A € Nt € [0,logm] and
JE€Ja
<7Tj(t,)€> res, are valid RAM proofs

Pr < negl(A).
EXPTo | A (c(.t,)€> is invalid
15/ keSa
logm
We note that Claim 4.3.1 implies Equation (7) since if {(c(tll) } are all valid then
PE) et keSa )

the correctness of the underlying encryption scheme (Definition 3.10) implies that

CompDec (skc, (Compre552 (C’(ﬂlogm)))kes ) = CompDec <skc, (Compressz (C‘()g;“))kes )

= SEH.Extract(td’, ct,)

except with negligible probability, since all the other ciphertexts we add up encrypt 0. Thus, to
conclude the proof it remains to prove Claim 4.3.1.
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Proof of Claim 4.3.1. We proceed by induction.

e Base case (t = 0). Recall that for k € S,, 7T(k) certifies that c(lz is the k-th element
of Compress; (pkg,ct;, m,j). The partial-input soundness property of the underlying RAM
scheme (Definition 3.7) implies that

p ( J(O,g )k g are valid RAM proofs
r €S,

© < negl(A).
EXPTa | AJ ke S, : cj’lz # (Compressy (pk,, ctj, m, j)),

Recall that Compress (pkg, ctj, m, j) is a ciphertext encrypting the vector SEH.Extract(td’, ct;)-
ej, which is 0 everywhere except at coordinate j. The correctness of the encryption scheme
implies that for all j # «,

CompDec (skc, (Compress; ((Compressy (pk,, ct;, m’j))k))kesa> =0,

so we can conclude the claim for ¢ = 0.

e Inductive step. Recall that xt ,1 certifies that c(ll = cg; 11) T cg; kl) , where addition is over

the finite field Fy, and that 7[';3 11) o 7153 kl) are valid RAM proofs. The partial-input soundness
property of the underlying RAI\/I1 scheme implies that for every A € N, j € J; o,

;tk are valid RAM proofs |
(t) ( (t=1) ) ( (t—l))
p Coj 1k + Gk < negl
N9 ( k€ Sa I=1F) esa ik ) kes, < negl(}),
V3kelS, 77% 11)k or ﬂ'ét kl) is not a valid RAM proof)

(8)
where addition is coordinate-wise over the finite field IF,. The inductive hypothesis for t — 1
implies that

b (7‘(’% 11) s 7'('53 k1)>keS are valid RAM proofs
r (e

(t-1) (t-1) o
EXPTa | A ( Coi 1k>kz€$’ or (Czj,k: )keS is invalid

Note that if (cg;f_ll),k) res. and (C%Tkl))kes are valid, then

< negl(\). (9)

451 = w14 [y e [
— CompDec <skc, (Compre552 (Cgtj:ll),k)>k65 ) =0
and CompDec <skc, (Compre552 <C;§’_k1))>kes > =0

— CompDec <skc, (Compressz (cgg 1)k + gtj ;)))kes ) =0,

SO (cgt,)c) s <cé§__11)7 k>kes + (c%’_kl)hes is valid. Combining this fact with Equations (8)
and (9), we can conclude the claim for ¢.
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O]

Extraction correctness. Follows immediately from the correctness of the encryption scheme
(Definition 3.10).
O

5 Rate-1 seBARGs

In this section we construct a rate-1 seBARG (Definitions 3.3 and 3.6) for any NP language
L = {L,}nen with witnesses of length m = m(n). Our construction of a rate-1 seBARG uses the
following ingredients:

1. A rate-1 fISEH family (see Section 4)

(H.Gen, H.Hash, H.Extract, H.Digest, H.Open, H.Verify).

2. A flexible RAM SNARG scheme with partial input soundness (see Section 3.3)
(RAM.Gen, RAM.Digest, RAM.P, RAM.V)

as in Theorem 3.8 w.r.t. the RAM machine R which takes an implicit input (wy,...,wy) and
an explicit input (z;,4) and outputs 1 if and only if w; is a valid witness for x; € £. Let T
denote the run-time of K.

3. An index seBARG scheme with proof length [seB.7|= m - poly(},log k) as in Theorem 3.5 (see
Section 3.2)
(seB.Gen, seB.P,seB.V)

for the NP language

ly(A
L= { (RAM.crs, H.crs, rt, x;, 1) I RAM.7 € {0,1}PYW st }

RAM.V(RAM.crs, H.crs, rt, (x;,4), RAM.1) =1

We are now ready to construct our rate-1 seBARG for L.

Gen(1*, k,n,i*) — (crs,td). This poly-time algorithm does the following:

1. Generate (H.crs,H.td) < H.Gen (1}, k- m,I) where I = {(i* —1)-m+1...,i* -m}.12
2. Generate RAM.crs <~ RAM.Gen(1*, 7).

3. Generate (seB.crs,seB.td) « seB.Gen(1*, k, n’, i*)
where n’ = |(RAM.crs, H.crs, rt, i, x;)|.

4. Output crs = (H.crs,RAM.crs, seB.crs) and td = (H.td, seB.td).

P(crs,x1, ..., Tk, w1, ... ,wg) — II. This poly-time algorithm does the following:

12Recall that a fISEH hash family has the property that if I consists of consecutive indices (which is the case here)
then Gen runs in time poly(}, log k,log m), and outputs a single (shrot) crs, denoted above by H.crs.
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1. Parse crs = (H.crs, RAM.crs, seB.crs).
2. Compute (v, rt) = H.Hash(H.crs, (w1, ..., wg)).
3. For every i € [k] let RAM.m; = RAM.P (RAM.crs, H.crs, (w1, . .., wk), (x4,17)).

i = (RAM.crs, H. 1)
4. Compute seB.7 < seB.P (seB.crs, instances = ( crs, H.crs, rt, 24, d)sefy), >

witnesses = (RAM.7;);c ()
5. Output II = (v, rt,seB.m).

V(ers, z1, ..., x, II) — 0/1. This poly-time algorithm does the following:

1. Parse crs = (H.crs, RAM.crs, seB.crs).
2. Parse II = (v, rt,seB.7).

3. Output 1 if and only if
H.Validate(H.crs, v, rt) =1

and
seB.V(seB.crs, (RAM.crs, H.crs, rt, x;, i) e [x), seB.7m) = 1.

Theorem 5.1. Assuming hardness of the LWE problem, the construction defined in Section 5 is a
rate-1 seBARG as in Definitions 3.3 and 3.6.

Proof of Theorem 5.1.

Efficiency. We first note that our construction satisfies the efficiency requirement.

1. The fact that Gen is a poly-time algorithm follows from the efficiency guarantee of the key
generation algorithm of the underlying primitives: the fISEH family, the RAM delegation
scheme (Definition 3.7), and the seB scheme (Definition 3.3).

2. The fact that the proof IT = (v, rt,seB.) is of length m + poly(\) follows from the fact that the
underlying fISEH family has rate-1, which implies that |[v|= m + poly(}), |rt|< poly(A), and the
time to verify an opening is poly()), together with the efficiency guarantees of the underlying
RAM and seB schemes, which ensure that |RAM.7;|< poly(\) and thus [seB.7|< poly()\).

Moreover, II can be generated in polynomial time, which follows from the polynomial running
time of the underlying algorithms.

Index hiding. The index hiding condition follows directly from the index hiding property of the
underlying fISEH family (Definition 4.1) and the seB scheme (Definition 3.3).

Completeness. The completeness condition follows immediately from the completeness condition
of the underlying RAM delegation scheme (Definition 3.7), the completeness condition of the
underlying seB scheme (Definition 3.3), and the validation/opening completeness condition of the
underlying fISEH scheme (Definition 4.1).
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Somewhere argument of knowledge. We define a PPT extractor £ that takes as input a tuple
(td, (x1,...,2%), 1), and does the following:

g(td, (.1‘1, R ,:L'k),H)

parse I = (v, rt,7),td = (H.td, seB.td)
return w = H.Extract(H.td, v)

Suppose for the sake of contradiction that there exists a poly-size adversary A, polynomials k = k(\)
and n = n(\), an index ¢* € [k], and a non-negligible function ¢, such that for every A € N,

(crs,td) « Gen(1*, k,n,i*),
(1, ...z, 1) « Alcrs), >e(N).  (10)
Wix $— 5(td,.%'1, R ,{L‘k,H)

V(ers,xy, ... x5, 1) =1

Pr ) . .
A w;+ 1s not a valid witness for z;+ € L

We abbreviate & = (x1,...,xx). Recall that
V(crs = (H.crs,RAM.crs, seB.crs), x, I = (v, rt,seB.1)) =1
if and only if
H.Validate(H.crs,v,rt) =1

and
seB.V(seB.crs, (RAM.crs, H.crs, rt, x;, i) e [y), seB.m) = 1.

Thus, Equation (10) implies that for every A € N,
H.Validate(H.crs, v, rt) = 1
A seB.V(seB.crs, ~ (crs,td) < Gen(1*, k, n,i*),

(RAM.crs, H.crs, rt, z;,1);ck),5¢B.m) =1 ° (2,11 = (v,rt,seB.m)) = A(crs) | ~
A w;+ is not a valid witness for z;+ € £

Pr

Consider the following poly-size adversary seB..A for the seB scheme.

seB..A(seB.crs)

(H.crs,H.td) < H.Gen(1*,k - m, I)
RAM.crs +— RAM.Gen(1*,T')

crs = (H.crs, RAM.crs, seB.crs)
(z,11 = (v, rt,seB.7)) = A(crs)

return (seB.x = (RAM.crs, H.crs, rt, ;, i), (), seB.7)

Recall that seB proves that for all i € [k] there exists a short proof RAM.m; such that
RAM.V(RAM.crs, H.crsg, rt, (2;,1), RAM.7;) = 1. By the somewhere argument of knowledge property
(Definition 3.3), the seB scheme has a PPT extractor seB.£ that satisfies that there exists a negligible
function p such that for every A € N,

seB.V(seB.crs,seB.x,seB.7) = 1 (seB.crs,seB.td) < seB.Gen(1, k,n’,i*),
Pr | A RAM.V(RAM.crs, H.crs, : (seB.z,seB.m) = seB.A(seB.crs), < u(A)
rt, (x+,7*), RAM.1*) #1  RAM.7m* = seB.E(seB.td, seB.x, seB.)
(12)
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Combining Equations (11) and (12) we conclude that there exists a non-negligible function €'(\) =
€(A) — p(A) such that for every A € N,

w;+ 1s not a valid witness for z;« € £
A H.Validate(H.crs, v, rt) = 1
A RAM.V(RAM.crs, H.crs,

rt, (x+, 1), RAM.*) = 1

(crs,td) « Gen(1*, k,n, %),
(z,II = (v, rt,seB.m)) = A(crs), >€'(N). (13)
RAM.7* = seB.E(seB.td, x, seB.7)

Pr

Consider the following poly-size adversary RAM.A for the RAM delegation scheme.

RAM.A(RAM.crs, H.crs)

(seB.crs, seB.td) < seB.Gen(1*, k,n’, i*)

crs = (H.crs, RAM.crs, seB.crs)

(z,11 = (v, rt,seB.7)) = A(crs)

RAM.7* = seB.£(seB.td, (RAM.crs, H.crs, rt, 2, %) ;c[x), 5€B.7)
return ((v,rt), (z;+,i*), RAM.7")

Recall that the RAM machine R associated with the RAM SNARG scheme takes as input (w1, . .., ws), (2;,17)
and outputs 1 if and only if w; is a valid witness for x; € L. Equation (13) implies that for every
AeN,

i (H.crs,H.td) < H.Gen(1*, k - m, I),
R((wi, ..., wg), (Ti#,1*)) =0 RAM.crs < RAM.Gen(1*, 7)),
pe | H.Validate(H.crs,v,rt) =1 = (v, rt), (z4+,7%), RAM.TT¥) > ¢\
A RAM.V(RAM.crs, H.crs, ' = RAM.A(RAM.crs,H.crs), | —
rt, (z;+,7*), RAM.m*) =1 w; = H.Extract(H.td, v),
i Viek]\{i*}:w=0" i
which contradicts partial-input soundness of the RAM delegation scheme (Definition 3.7).
O

6 Multi-Hop seBARGs

In this section, we extend the notion of a seBARG to the multi-hop setting, and describe a generic
construction based on any rate-1 seBARG. In the multi-hop setting, seBARGs can be further batched
with other seBARGs (or even a single instance-witness pair) succinctly. The number of hops (i.e.,
number of times seBARGs can be successively batched) can be any polynomial, and the batch size
in each hop can be set arbitrarily. Each hop increases the proof size by an additive poly(\) factor.

In Section 7 we show how to use a multi-hop seBARG to construct a multi-hop aggregate
signature scheme, and how to construct an IVC scheme.

6.1 Definition

To formally capture the notion of multi-hop seBARGs, we make the following syntactic and semantic
changes to seBARGs, which includes adding a new “proof combiner” procedure that we call AggProve.
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Syntax.

Gen(1*,d, (i1, ...,iq)) — (crs,td). Gen is a PPT machine. It no longer takes as input the number
of instances k being batched, nor the length of the instances n.'3 Rather, it takes as input
the security parameter 1%, the maximum number of hops d € [2*] (i.e., the number of batch-
compositions), and a sequence of d extraction indices I = (iy,...,iq) € [2}]%. It outputs crs
which consists of d strings crs = (crsy, ..., crsy), along with a trapdoor td which consists of d
strings td = (tdy, ..., tdy).

We note that in the multi-hop setting, we need to define a separate extraction index for
each hop. That is, instead of having a single extraction index (as in a standard seBARG),
it takes as input d extraction indices I = (i1,...,%4). Also, since the batch size in each hop
is unbounded, each index i; € [2*] for j € [d]. The j'th extraction index i; is interpreted
as saying that, from an accepting seBARG proof 7 created via j-hops/compositions, we can
efficiently extract the i;'th witness (which is an another accepting seBARG proof 7’ created
via (j — 1)-hops/compositions). Thus, the sequence of extraction indices I defines the sequence
in which multi-hop seBARGs can be recursively extracted.

P(crsi, z1,. .., T, wi,...,wk) — 7. The prover P is a poly-time algorithm that takes as input crs;
(which is the first string in crs), any (unbounded) number of instance-witness pairs of arbitrary
size (since the batch size nor the instance size are no longer fixed at setup time). It runs in
time poly (A, (||, |wi|);e(x)) and outputs a proof .

AggProve ((crsi)ie[d/],X(l), L XO g ,7T(£)> — 7. This proof combiner is a poly-time algo-
rithm that takes as input the (crs)ie[d/], a sequence of arbitrarily many instance-trees X O, ..., x®0
(as defined below), of maximal depth d’—1, and corresponding multi-BARG proofs O O

It outputs a (combined) multi-BARG proof .

Definition 6.1. An instance-tree X is a tree of varying arity, where each leaf node v is
associated with an instance x,, and each intermediate node u corresponds to a multi-BARG
proof that certifies the validity of the sub-tree rooted at u (though these multi-BARG proofs are
not included in X ).

We note that the depth of an instance-tree X represents the number of hops taken in order
to compute a proof w for X. Therefore, the proof combiner takes as input a sequence of
instance-trees along with their corresponding multi-BARG proofs, where each instance-tree
encodes not only the instances in the leaves, but also the history of how the previous proofs
were combined, including the number of hops taken so far.

V((crsi)igpa); X, m) — {0, 1}. The verifier V is a poly-time algorithm that takes as input (crs;);cja,
an instance-tree X of depth d’, and a (combined) proof 7, and outputs 0/1 (corresponding to
reject or accept).

Notation 6.2. In what follows, when we refer to a tree T we always think of a tree where each of
its leaves, denoted by v, is associated with a parameter n, = n,(\).'* When we refer to a poly-size

13We note that it was unnecessary for Gen to take k and n as input to begin with, since it could have produced a
crs corresponding to every k,n € {2i}i€[)\], and by padding we can assume w.l.o.g. that indeed k,n are powers of 2.
Indeed, originally Gen took k,n as input only for the sake of simplicity.

Different leaves can be associated with different parameters.

38



tree, we mean that the number of nodes in the tree is < poly(\) and n, = n,(A) < poly(A) for every
leaf v. For any tree T, we let path(T') be the set that consists of all the possible paths from the
root to a leaf in T. We say that an instance-tree X is consistent with T if X has the exact same
tree structure as T and for each leaf v € T the instance x, in X (corresponding to the leaf v) is
of size n,. For any instance-tree X that is consistent with T and any (i1, ...,iq) € path(T) we let
Xi,,..i, denote the instance in the leaf corresponding to the path (iy,...,iq).

In addition, for any instance-trees XD XO we denote by X = (X(l), el X(f)) the instance-
tree that combines all the € instance-trees XV, ..., X© by adding a root with arity ¢, whose i’th
child is the root of X,

Definition 6.3. A rate-1 multi-hop seBARG for an NP language L is required to satisfy all the
properties in definitions 3.3 and 3.6, adapted to our syntax (all stated below for the sake of
completeness), with an additional completeness and compactness guarantee for combined proofs.

Efficiency. For everyi € [d], the size of (crs;,td;) is at most poly(X), and the size of a (combined)
proof corresponding to an instance-tree X of depth d’ is at most m + d' - poly(\, log|X|), where
m is the mazximal witness length of all the leaf instances in X.

Completeness. For any A € N any d € [2Y], any instance-tree X of size < 2* and depth d' < d,
and any corresponding valid witness W

(crs, td) « Gen(12,d, (i1, .. .,iq)),
Pr| V ((crsi)ie[dq,X, 7r) =1 : parsecrs= (crsi)ie[d},
m < AggProve ((crsi)ie[d/],X, W)

Il
—_

where AggProve ((crsi)ie[d/],X, W) is defined by induction on d' as follows:
If d =1 then parse X = (x1,...,2¢) and W = (wy ..., wy) and output

AggProve(crsy, X, W) = P(crsi, x1, ..., T, w1 ..., wy).

Ifd > 1 then parse X = (X(l), cee X(Z) and W = (W(l), ce W(E), where W is the witness
corresponding to the sub-tree instance X V. Denote by d; the depth of X®.

For every i € [(] compute by induction
() = AggProve ((Crsj)jE[dibX ®, W(i))

and output
m = AggProve ((crsi)ie[d/], x® ox®O 0 ,77(6)) )

Index hiding. For any poly-size adversary A, any polynomial d = poly()), any poly-size tree T
of depth d' < d, and any sets of indices Iy = (io1,--.,%.4),01 = (i1,1,...,11,4) € path(T),
there exists a negligible function negl(-) such that for every A € N,

b+ {0,1},

br [“4(”5) =05 (ars,1d) ¢ Gen(1),d, I)

] < % + negl(A).
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Somewhere argument of knowledge. There exists a PPT extractor € such that for any poly-

size adversary A, there exists a negligible function negl(-) such that for any polynomial

d = poly()), any poly-size tree T' of depth d' < d, and any set of indices (i1, ...,iq) € path(T)

and igyy ..., iq € [2*], for every A €N,
V(ers, X,m) =1 (crs,td) « Gen(12,d, (i1, ... ,iq))

Pr | A X is consistent with T o (X, m) = A(crs) < negl(A).
A w* is not a valid witness for Xi, _;, € L w* « £ (td, X, 7)

Remark 6.1. We note that the above somewhere argument of knowledge property implies

the following semi-adaptive soundness property:

For any poly-size adversary A, any polynomial d = poly()), any poly-size tree T" of depth

d' < d, and any set of indices (iy,...,ig) € path(T) and iz, ...,iq € [2"], there exists a
negligible function negl(-) such that for every A € N,
Viers, X,m) =1 A\ . :
Pr | A X is consistent with 7" : gégs;;c;i)_:éerz)(l o (i, 1a)) < negl(\).
N Xiyig &L ’

6.2 Construction and Analysis

In this section we construct a multi-hop seBARG from any rate-1 seBARG (Definitions 3.3 and 3.6).
We do this in two steps. First, we show how to convert the rate-1 seBARG into a an intermediate
primitive that we call a rate-1 single-hop seBARG, denoted by single-seBARG, and then we show
how to convert a rate-1 single-seBARG into a multi-hop seBARG.

Single-hop seBARG. A single-seBARG scheme is very similar to a seBARG scheme, the only
difference being that it enables batching instances and witnesses of varying lengths, and these
lengths, as well as batch size k, can be decided at batching time (and are no longer fixed at setup
time). The reason why a rate-1 single-seBARG can be directly obtained from a rate-1 seBARG
scheme follows from the following two observations about a rate-1 seBARG scheme.

Observation 1. The fact that the running time of a rate-1 seBARG.Gen grows only poly-
logarithmically with the number of instances k and the input length n (see Definition 3.6) implies
that one could generically convert this seBARG into another seBARG scheme in which the number
of instances and the input length are not a priori bounded. To see this, we first observe that by
standard padding we can consider only k& and n which are powers of 2. Therefore, we can run
seBARG.Gen \? times, one for each k,n € {Qi}ie[/\}- The prover can then compute the seBARG proof
using the crs corresponding to appropriate k,n. This gives a single-hop seBARG scheme for k£ and n
that are not fixed in advance.

Observation 2. Our second observation is that any rate-1 seBARG can be converted into one
that allows batching instances of unequal lengths, by padding all the instances and witnesses to be
of the same length.

By combining the above two observations we can convert our rate-1 seBARG scheme into a

rate-1 single-seBARG scheme, which enables batching instances of varying lengths where the length
of these instances as well as the batch size are not a priori fixed.
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The construction of our rate-1 multi-hop seBARG. Fix any NP language £. We construct a
rate-1 multi-hop seBARG scheme for £, denoted by multi-BARG, which uses as a building block a
rate-1 single-seBARG scheme for the NP language £'. This NP language £’ contains £ and is defined
recursively below. Loosely speaking, any instance in £’ is an instance-tree X of some depth d’,
along with (crs;);ca (if @ = 0 then there is no crs associated with the instance) and a valid witness
is a valid aggregated proof corresponding to (crsi)ie[d/] (where if d’ = 0 then a valid proof is simply
a valid witness corresponding to £).

Gen(1*,d,I) — (crs,td). This PPT algorithm parses I = (iy,...,iq), it samples for every j € [d]
(crsj, td;) < single-seBARG.Gen (1%, i;),
and it outputs crs = (crsy, ..., crsg) and td = (tdy, ..., tdg).
Persy, X1y, Ty w1, - - - ,wg) — 7. This poly-time algorithm outputs

7 < single-seBARG.P(crsy, 1, ..., Tk, Wi, ..., Wk)-

AggProve (crs,X(l), X0 g ,71'(@) — . For every i € [¢] denote by d; the depth of X
and let ' = max{d;} + 1. If d’ > d then abort. Otherwise, output

ingle- , ). (@) (@)
7 < single-seBARG.P <crsd , <(crsj)]€[di},X )ie[g] , <7T )z‘e[é]>
where a valid witness corresponding to ((crsj)je[di],X(j)) € £ is 7 such that
1% ((CI’Sj)je[di},X(i),ﬂ'(i)> =1

V(crs, X, m) — 0/1. Parse crs = (crsy, ..., crsy) and parse X = (X(l), . ,X(e)). Let d; € [d] be the
depth of the instance-tree X If d’ # max{d; };;q + 1 then output 0. Else, output

single-seBARG.V <crsd/, ((crsj)je[di], X(i))ie[e] ,7r> .

Remark 6.2 (The language £'). At first there may appear to be a circularity in the definition of
the NP language £, since on the one hand its definition depends on the multi-hop multi-BARG
scheme, and on the other hand, multi-BARG uses as a building block a rate-1 single-seBARG
for £'. The reason this is not an issue is that both £’ and multi-BARG are formally defined
by induction on the depth d’ of the instance-trees, starting with d’ = 0. Namely, we define
by induction for every d’ € N, £/, and Vg, where L, contains only instance-trees of depth
at most d’ (where £, = £), and V takes as input only an instance-tree of depth d’, and it
runs single-seBARG.V with instance-trees of depth d’ — 1 (where Ly is already defined by
induction).

Theorem 6.4. If single-seBARG is a rate-1 single-hop seBARG scheme then multi-BARG is a rate-1
multi-hop seBARG scheme (definition 6.3).

Proof. In what follows we prove that multi-BARG satisfies all the desired properties:
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Efficiency. Follows immediately from the fact that the underlying single-seBARG is rate-1.
Completeness. Follows directly from the completeness of the underlying single-seBARG scheme.

Index-hiding. Follows immediately from the index-hiding property of the underlying single-seBARG
scheme (via a standard hybrid argument).

Somewhere argument of knowledge. Let single-seBARG.E denote the PPT extractor corre-
sponding to the underlying single-seBARG scheme. We define an extractor £ that given (td, X, )
does the following:

1. Parse td = (tdy,...,td;) and suppose that td corresponds to indices (i1, .. .,iq).

2. Parse X = (X(l), R X(Z)), and let d’ denote the depth of X.

3. For every j € [d'] we denote by d; the depth of the subtree X Carstarin—j),

Let j* € [d'] be the smallest index such that d; = 0 for for every j > j* (i.e., j* is the length
of the path (ig,...,41) in X until we reach a leaf).

4. Define .
7la) = single-seBARG.E (tdg, X, ).

Intuitively, if 7 is a valid multi-BARG proof for X then with overwhelming probability (%) is
a valid multi-BARG proof for the instance-tree X (ta’).

5. For every j € [j* — 1] we define (by induction, starting with j = 1)
wliatie—;) = single-seBARG.E (tddj7X(id,""’id,+1’j)a n<id~-~-id'—j+1>)

where X @ %~5) is defined to be the subtree of X obtained by going down from the root on
the path (ig,...,i¢—j).

Fix any poly-size adversary A and any polynomial d = poly(\). In what follows we argue by
induction that for every d’ < d there exists a negligible function pg, such that for any poly-size
tree T of depth d’, and any set of indices (i1, ...,iq¢) € path(T) and ig 41 ...,iq € [2%] it holds that
for every A € N,

V((crsj)jepan, X,m) =1 (crs,td) < Gen(12,d, (i1, ... ,iq))
Pr | A X is consistent with 7' : (X, m) = Alcrs) < par(N).
A w* is not a valid witness for X, eL w'<«&(td, X, m

el

(14)

Base case: d' = 1: This follows immediately from the somewhere argument of knowledge of the
underlying single-seBARG scheme.
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Induction step: Suppose that Equation (14) holds for every j < d’ and we prove that it holds
for d’. To this end, the somewhere argument of knowledge of the underlying single-seBARG scheme
implies that there exists a negligible function v such that for every A € N,

V((crs;) e, X, m) = 1 (crs,td) « Gen(1),d, (i1, ... ,iq))
i s <Xy

Pr | A X is consistent with T : . (& (i i) )<_ sm(CI:.Z,eBARG £ (tdy, X, 7) <wv(\). (15)
AV ((crs-)- a1, X Car) ﬁ(’d’)) =1 & ) aH
J/5€lch ] ’ parse crs = (crsy, ..., Crsg)

Consider the poly-size adversary A’ that given crs does the following;:

1. Parse crs = (crsy, ..., crsyg).

2. Generate (crs*, td*) < single-seBARG.Gen (1%, ).
3. Let crs* = (crsy, ..., crsg_1,crs*, crsgiq,...,Crsq).
4. Compute (X, 7) = A(crs*).

5. Compute 7(@) = single-seBARG.E (td*, X, 7).

6. Output (X(id’), TI‘(id')).
By the induction hypothesis there exists a negligible function p such that for every A € N,

1% ((Cfsj)je[dl],X(id')vW(id')) =1 (crs td) — Gen(1>‘ d, (i1,...,1q))
pr | A XUa) is consistent with 7(a) (X)) 7)) = A*(crs) <v(\).

AV <(Cr5j)j€[d2},X(idl’idl_l), ﬂ(id’:id/_ﬂ) =1 rtar g - 1) — & (td*, (ld’)77r(id’))

This, together with Equation (15), implies the induction step (i.e., Equation (14)).

6.3 Hashed Multi-Hop seBARGs
6.3.1 Definition

A hashed multi-BARG is one where the verifier is required to verify the proof without being given
the instances (in the clear), and instead being given only a hash of the instances. In Section 7 we
use a hashed multi-BARG to construct an IVC scheme. For this application, it suffices to consider
hashed multi-BARG where all the instances are of the same size n and where the number of instances
being BARGed is a fixed parameter k. Therefore, for simplicity we fix n and k in setup time. We
also consider a hashed multi-BARG where the number of hops is at most A. This suffices for our IVC
application since there we will combine the seBARGs in a tree-like structure with fan-out k, so a
depth X tree is sufficient to accumulate £* many proofs.

We note that one could define the more general notion where n and k can vary adaptively (as in
Section 6.1), and we chose simplicity over generality.
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Syntax. A hashed multi-BARG scheme, corresponding to an NP language L, is associated with a
rate-1 SEH family

SEH = (SEH.Gen, SEH.Hash, SEH.Open, SEH.Verify, SEH.Extract).

Remark 6.3. For simplicity (and w.l.o.g.) we assume that each hash value v computed by SEH.Hash
includes a depth parameter d € N which corresponds to the number of times SEH.Hash was applied
in order to compute v. Namely, we assume that there exists a poly-time computable function d(-)
such that for every hk generated by SEH.Gen, and for every vy, ..., vy,

SEH.Hash(hk,vy,...,vy) =V

where d(v) = max{d(v;)}ic[n) + 1, and we also assume that if v; is a “fresh” input then it is encoded
so that d(v;) = 0. This depth parameter d indicates the number of times that SEH.Hash was applied
(i.e., the number of hops made) to compute the hash value.

A multi-BARG is also associated with the following algorithms:

Gen(1*,n, k, (i1,...,4y)) — (crs, hk,td). This is a PPT algorithm that takes as input a security
parameter 17, an instance size n, the number of instances k, and a sequence of A extraction
indices i1,...,4x € [k]. It outputs a crs = (crsg) 4y, @ hash key hk and a trapdoor td which
consists of two parts, denoted by td = (seBARG.td, SEH.td), one corresponding to crs and the
other corresponding to hk.

Plers,hk, z1, ..., 2, w1,...,wk) — (v,7). This is a poly-time prover algorithm that takes as input
crs, a hash key hk, instances x1, ...,z each of size n, and corresponding witnesses wi, ..., wk,
and outputs a hash value v and a proof 7.

AggProve (crs, hk, v, ... v 7D ,w(k)) — (v, ). This proof combiner is a poly-time algorithm
that takes as input crs, a hash key hk, a sequence of hash values v(V, ... v(®) along with
corresponding proofs 7, ... 7*) and outputs a new hash value v and a corresponding
proof 7.

V(crs, hk,v, ) — 0/1. The verifier V is a poly-time algorithm that takes as input (crs;);e(q), a hash
key hk, a hash value v s.t. d(v) = d, and a proof m and outputs a bit to signal whether the
proof is valid or not.

Remark 6.4. The fact that in a hashed multi-BARG the parameters n and k are fixed in advance,
implies that the instance tree is a k-ary tree where all the leaves correspond to instances of size n.
Since this tree is fixed (except its depth which is some d € [\]) we do not need to include it as an
input (and all we need is to include its depth d which we assume is encoded in v). We note that in
a multi-BARG we did need to include it as part of the input since n and k were adaptively chosen
and were changing from hop to hop.

The definition of a hashed multi-BARG is similar to that of a seBARG (adapted to our syntax),
and the main change is to the somewhere argument of knowledge property.

Definition 6.5. A rate-1 hashed multi-BARG for an NP language L is required to satisfy the
following properties.
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Efficiency. The output (v, m) generated by the prover, or the aggregate prover, is of size at most

n - poly(\) + m where n is the instance size and m is the witness size.'>
Completeness. For any A € N any n, k,{ € [2>‘] such that k > 2, any £ instances x1,...,xy each
of size n, and corresponding valid witnesses wi, . ..,wy, and any i1,...,ix € [k],

(crs, hk, td) < Gen(1*, n, k, (i1, . .., i),

(v,m) < AggProve (crs, 1, ..., xp, w1, ..., wy) =1

Pr | V(crs,hk,v,m) =1
where AggProve (crs, x1, ..., xg, w1, ..., wy) is defined recursively, as follows: First assume that
¢ is a multiple of k (this can be achieved via padding). If ¢ = k then

AggProve (crs, hk, x1,. .., zp, w1, ..., we) = P (crs,hk,z1, ..., 20wy, ..., we).

Otherwise, first compute for every i € [%]
(V(i),ﬂ'(i)) = P(CI’S, hk, x(i_l).k+1, P P ) w(i_l).kﬂ, N ,wi.k)

and then compute AggProve (crs, hk, v, ... vk ) W(Z/k)), recursively.

Index hiding. For any poly-size adversary A, any polynomials n = n(\) and k = k(\), and
any sets of indices In = (io1,-..,%0.x), 11 = (i1,1,...,11,2) € path(T), there exists a negligible
function negl(-) such that for every X € N,

b+ {0,1}, 1
< —
(crs, hk. td) < Gen(1*,n, k. 1,) | =3 T eV

Pr [A(crs7 hk) =b:
Somewhere argument of knowledge. There exists a PPT extractor € such that for any poly-
size adversary A, there exists a negligible function negl(-) such that for any polynomials

n =n()\) and k = k(\), and any sequence of indices I = (i1, ...,iy) € [k]*, for every A € N,

V(crs, hk,v,m) =1 (crs, hk, td) < Gen(1*,n, k, I)
pr | A (93 + SEH.Extract(SEH.td, v, ) . (v,m) = A(ers, hk) < negl(\).
(x,w) < & (td,v, ) -
V w is not a valid witness for x € E) parse td = (seBARG.td, SEH.td)

6.3.2 Construction and Analysis

Fix any NP language £ and any rate-1 somewhere extractable hash family
SEH = (SEH.Gen, SEH.Hash, SEH.Open, SEH.Verify, SEH.Extract).

We construct a hashed multi-BARG scheme for £ w.r.t. the SEH family. Our scheme uses as a
building block a rate-1 seBARG scheme

seBARG = (seBARG.Gen, seBARG.P,seBARG.V, seBARG.Extract)

for the NP language £’ defined recursively below.'6

150ur scheme allows for at most A hops so we do not need to incorporate the depth as an additional parameter.
$The language £’ is somewhat similar to the NP language £’ defined in the construction of the multi-BARG scheme
in Section 6.2, except that here the instance-tree is hashed.
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Gen(1*,n, k, (i1,...,4y)) — (crs, hk,td). This PPT algorithm does the following:

1. For every d € [)\] sample (hkg, SEH.tdg) - SEH.Gen(1*,ng4_1 - k, I;,), where ng = n and
for every d € [A], ng is the size of hash values outputted by SEH.Hash(hkg, -), i.e., hash
values of depth d, and

Iid £ {nd,1 . (id— 1) +1,...,n9-1 Zd}

Note that ng < ng_1 + poly(\) and thus ny < n + poly(}).

2. For every d € [\] sample (crsy, tdg) < seBARG.Gen(1*,n/;, k,i4), where n/; for d € [)\] is
defined below.

3. Let crs = (crsy, ..., crsy), hk = (hkq, ..., hky),and td = (tdy,...,tdy,SEH.tdy, ..., SEH.td)).
4. Output (crs, hk,td).

Plers,hk, z1, ..., xp, w1, ..., wk) — m. This poly-time algorithm does the following:

1. Parse hk = (hky, ..., hky).

2. Compute v = SEH.Hash(hky, (z1,...,zg)).
Note that |v|< n + poly()).

3. For every i € [k] compute p; = SEH.Open(hky, (z1,...,2%), I;), where I; corresponds to
the coordinates of z;, i.e.,

Lea{n -(i—-1)+1,...,n-i}.

Note that |p;|< poly(\) (see Lemma 3.2 in Section 3.1).

4. Parse crs = (crsy, ..., Crsy).

5. Compute m = seBARG.P (cr517 (hky, v, ) > (@i, iy wi)ie[k])v where instances of £’ have
length
= |(hky,v,9)] < n+ poly(\)

and a valid witness (z;, p;, w;) satisfies the following conditions:
SEH.Verify(hky,v, I, 25, p;) =1 A (x5, w;) € Re.
The fact that seBARG and SEH both have rate 1 implies that 7 is of size
7| < |(i, pi wi)|+poly(A) < n+m + poly(A),
as desired.
6. Output (v, ).
AggProve (crs, hk,v®®, . v®) 2 ,W(k)) — (v, ). This poly-time algorithm does the following:

1. Parse hk = (hky,...,hky).

2. Check that d (v(i)) =d (v(j)) for every i, j € [k] and that this depth, denoted by d, is
smaller than A. If this is not the case then abort.
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3. Compute v = SEH.Hash (hde, (v(l), . ,v(k))). Note that

lv| < ‘V(i)

+ poly(A\) = ng + poly(A\) < n + poly(A).
4. For every i € [k] compute p; = SEH.Open (hkd+1v (v(l), o 7v(’“)) ,Ii), where (as above) I;
corresponds to the coordinates of vV i.e.,
LE{ng (i—1)+1,...,n4-i}

and |p;|< poly(X).
5. Parse crs = (crsy, ..., crsy).

6. Compute

instances = ((crs;).ciq, (hk. ), SV, 1)
7 = seBARG.P (Cr5d+17 (( J)Je[d]A( ])JE[d+1] )ze[k] ) ,

witnesses = (v(i) s Pis W(Z))ie[k]
where instances of £’ have length

g1 = |(ers)jeqa (hk;)jefara)s vo i < n+ poly(X)

and a valid witness (v(i), Dis TF(i)) satisfies the following conditions:

(a) p; is a valid opening of vV w.r.t. (hkgyi,v). Namely,
SEH.Verify(hky 1, v, I;, v\, p;) = 1

(b) 7 is a valid proof w.r.t. v(?). Namely,
. g (@) 5 @) =
seBARG.V (crsd, ((crsj)]e[d_l], (hk;)jela, v ,])je[k} T > 1.

Inductively we have that || < n-d- poly(A) + m. The fact that seBARG and SEH
both have rate 1 implies that « is of size

7| =

(v("),m, ﬂ(i)> ‘ + poly(A) < ng + poly(A) + (n - d - poly(A) + m)
<n-(d+1)-poly(A) +m

(16)

as desired.
7. Output (v, 7).

V(crs, hk,v, ) — 0/1. This polynomial time algorithm does the following:

1. Parse crs = (crsq, ..., crsy) and hk = (hkq,. .., hky).
2. Let d € [A] be the depth of v. If d > A then output 0.
3. Output seBARG.V (crsd+1, (Z(l), e Z(k)) ,7r), where Z() = ((crsj)je[d], (hk;)jed+1), Vs z)

Theorem 6.6. The above construction is a hashed multi-BARG scheme (according to Definition 6.5).

Proof. In what follows we prove that our hashed multi-BARG satisfies all the desired properties:
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Efficiency. Follows from the construction, together with the fact that the underlying seBARG
scheme and SEH family are both rate-1.

Completeness. Follows directly from the completeness of the underlying seBARG scheme and
the opening completeness of the underlying SEH family. and from the fact that the underlying
single-seBARG scheme is rate-1.

Index-hiding. Follows immediately from the index-hiding property of the underlying single-seBARG
scheme and the SEH family (via a standard hybrid argument).

Somewhere argument of knowledge. Let seBARG.E denote the PPT extractor corresponding
to the underlying seBARG scheme. We define an extractor £ that given (td,v, ) does the following:

1. Parse td = (tdy,...,tdy,SEH.tdy,...,SEH.tdy).

2. Let d € [)\] be the depth of v, and denote by v(¥ = v and 7(9) = 7.

3. For every i € [d — 1] compute by backward induction the triplet

(v@, pi,ﬂ’(l)) — seBARG.E (tdiﬂ, (ZU))jGW ,W@H))
where
Z0) = ((Crsﬁ)ﬁe[d]a (hkz)ﬁe[d+1]av(i+1)aj)
and let (z, p,w) = seBARG.E (tdl, (hky, v, 5) e ,w(i)>.
4. Output (z,w).

We need to argue that for any poly-size adversary A there exists a negligible function negl such that
for every A € N,

(crs, hk, td) < Gen(1*,n, k, (i1, ..., 1))
(v,m) = A(crs, hk)

(z,w) + & (td,v, )

parse td = (seBARG.td, SEH.td)

V(ers, hk,v,m) =1
Pr | A z = SEH.Extract(SEH.td, v, 1)
A w is not a valid witness for x € £

We prove this by induction on the depth d of v output by A.

Induction base: Fix any poly-size adversary that always outputs (v, 7) such that d(v) = 1. In
this case, the equation above follows immediately from the somewhere argument of knowledge
property of the underlying seBARG scheme together with the somewhere statistically binding w.r.t.
opening property of the underlying SEH family.
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Induction step: Suppose that Equation (17) holds for every poly-size A that outputs (v, 7) such
that d(v) < d, and we prove that it holds for any poly-size A that outputs (v, 7) such that d(v) < d.
Recall that £(td, v, 7) first computes

(v<d*1>, pd_l,w(d*)) — seBARG.E <tdd, (ZU))M ,77)

where .
Z9 = ((crse)eia, (hke)eefarn)s Vs 4)

By the somewhere argument of knowledge property of the underlying seBARG scheme there exists a
negligible function p such that for every A € N,

V(crs, hk,v,m) =1
Pr| A (v(d_l), Pd—1, W(d_l)) is not a valid witness for
AN

(crs, hk, td) < Gen(1*, n, k, (i1, ... ,iy))
parse td = (seBARG.td, SEH.td).

By the definition of £’ this implies that for every A € N,

V(crs, hk,v,m) =1
A . .
A (SEH.Verify (hk,v, I; ,v(@D 5, 1) =0 . (crs,hk, td) < Gen(1%,n, k, (i1, . . ., ix))
e | A ( ‘ Y " parse td = (seBARG.td, SEH.td)
V seBARG.V (crsy, (Y1), ..., Y () 7(d-D) = o)

where

Y0 = ((Crsf)fe[d—1}7 (hke)ze[d],v(d_l),j> :
This together with our induction hypothesis implies Equation (17), as desired. ]

Remark 6.5. The above construction can be generalized to prove statements which involve multiple
of the hash values being aggregated (but still only one of the proofs being aggregated). Suppose
AggProve is given hash values vy, ..., vy of depth d and proofs 7y, ..., 7 where each proof m; is
verified against hash values (v;);; for a subset J; C [k] of size £ > 1. AggProve produces a hash
value v = SEH.Hash (hky 1, (v1,...,vi)) and proof m with witnesses 7, (v}, p;)
opening of v; w.r.t. (hky,1,v).

Where in the original construction we have that the length of © was bounded by n - (d + 1) -
poly(A) + m (see Equation (16)), here we have that

jedi where p; is an
K3

|| = |mi| + £+ (ng + poly(N)) < (€-n-d-poly(A) + m) + £-n+ poly(X)
</l-n-(d+1)-poly(A)+m

The bound on the length of v remains the same, as it is still only extractable on one hash value of
depth d. Thus we preserve succinctness for £ = O(1).

Note that we still only have the somewhere argument of knowledge property for one instance
of the NP language £. We will use this generalization when constructing incrementally verifiable
computation in Section 7.2.
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7 Applications

7.1 Aggregate Signatures

Our first application is to show how multi-hop seBARGs can be used to build an unbounded
(multi-hop, multi-signer) aggregate signature scheme.

7.1.1 Definition

The notion of aggregate signatures as introduced by Boneh, Gentry, Lynn, and Shacham [BGLS03] is
a digital signature scheme that comes with two poly-time algorithms Aggregate and AggVerify, where
Aggregate is used to aggregate an arbitrary polynomial number of message-signature pairs {(m;, o;) };
generated using verification keys {vk;};, into a shorter aggregate signature o, and AggVerify can be
used to verify such aggregate signatures with respect to the sequence of messages (mi,...,my) and
the verification keys (vki, ..., vky).

It is desirable that aggregated signatures have the property that they can be further aggregated;
i.e., that aggregation can be performed in multiple hops or sequentially, and all the key-message-
signature tuples need not be available at once. Indeed, many existing schemes in the literature
give multi-hop aggregation by default, yet this notion was not formalized. In this work, we give a
formal definition of a multi-hop aggregate signature scheme. First, we recall the syntax and desired
properties from (single-hop) aggregate signatures as defined in the literature, and later describe the
formal syntax for multi-hop signature aggregation.

Syntax. A (single-hop, multi-signer) aggregate signature scheme S for message space {{0, 1}*}xen
consists of the following polynomial time algorithms:

CRS(1*) — crs. The CRS generation algorithm samples global parameters crs.
All the remaining algorithms take crs as input, and for ease of notation we do not write it explicitly.

Setup(1*) — (vk,sk). The setup algorithm, on input the security parameter \, outputs a pair of
signing and verification keys (vk, sk).

Sign(sk,m) — o. The signing algorithm takes as input a signing key sk and a message m € {0,1}*,
and computes a signature o.

Verify(vk, m,o) — 0/1. The verification algorithm takes as input a verification key vk, a message
m € {0,1}*, and a signature o. It outputs a bit to signal whether the signature is valid or not.

Aggregate ({(vki,m;,0;)}i) — /L. The signature aggregation algorithm takes as input a sequence
of tuples, each containing a verification key vk;, a message m;, a signature o;, and it outputs
either an aggregated signature & or a special abort symbol L.

AggVerify ({(vk;, m;)}i, @) — 0/1. The aggregated verification algorithm takes as input a sequence
of tuples, each containing a verification key vk;, a message m;, and it outputs a bit to signal
whether the aggregated signature ¢ is valid or not.

50



Correctness and Compactness. An aggregate signature scheme is said to be correct and compact
if for all A, ¢, N € N, parameters crs <— CRS(1%), verification-signing key pairs (vkj,sk;) < Setup(1*)
for j € [N], messages m; for i € [{], every key mapping function 7 : [¢(] — [N],!7 and every signature
;i < Sign(skx(;), m;) for i € [¢], the following holds:

Correctness of signing. For all i € [{], Verify(vky ), m;, 0;) = 1.

Correctness of aggregation. If & = Aggregate ({(vkw(i), m;, O'Z') },), then
AggVerify ({(vkﬁ(i), ml) H, 8) =1.

Compactness of aggregation. |o|< poly(),log/). That is, the size of an aggregated signature
is bounded by a fixed polynomial in A, and only logarithmically depends on the number
of aggregations £. (Since ¢ is always less than 2%, thus one could also simply write poly(\)
instead.)

Security. For security, there is plain and aggregated unforgeability.

Definition 7.1 (Unforgeability). A signature scheme (Setup, Sign, Verify) is said to be a secure
signature scheme if for every admissible PPT attacker A, there exists a negligible function negl(-)
such that for all A € N, the following holds

crs « CRS(17), (vk, sk) < Setup(1*)

Pr | Verify(vk,m*,c*) =1 : (m*, o) + ASiEn(k) (12 yk)

< negl(}),

and A is admissible as long as it did not query m* to the Sign oracle.

Definition 7.2 (Aggregated Unforgeability). An aggregate signature scheme (CRS, Setup, Sign,
Verify, Aggregate, AggVerify) is said to be a secure aggregate signature scheme if for every admissible
PPT attacker A, there exists a negligible function negl(-) such that for all A € N, the following holds

crs + CRS(17), (vk, sk) < Setup(1*)

Pr | AggVerify ({vk5s mi)Yics &) =15 (ret me) e, 6)  ASENERI(13, vk

< negl(A),

where A is admissible if there exists i € [€] such that vkj = vk and m} was not queried by A to the
Sign(sk, -) oracle.

Extended syntax for multi-hop aggregation. In the case of multi-hop aggregation, the syntax
of aggregation and aggregated verification is strengthened as follows.

Aggregate ({(Ti\'k’m, 0’1‘)}@'> — o /L. The signature aggregation algorithm takes as input a sequence

of (verification-)key-message trees along with a (possibly aggregated) signature o;. And, it
outputs either an aggregated signature o or a special abort symbol L.

"The goal behind the key mapping function is to allow aggregation of multiple signatures that come from a
single-signer. That is, an aggregator might want to aggregate signatures from multiple signers, where each signer
might be contributing more than one signature potentially.
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Remark 7.1. Similar to the case of multi-hop BARGs, we define a (verification- )key-message
tree TV®™ of key-message pairs as a tree of varying arity each of whose leaf nodes is associated
with a single key-message pair, and each intermediate node corresponds to an aggregated
signature that certifies the validity for all key-message pairs associated with its children. As
before, the signatures at the intermediate nodes are not stored in the tree. (See definition 6.1.)

AggVerify (T "k’m,ﬁ) — 0/1. The aggregated verification algorithm takes as input a key-message
tree TVR™ of key-message pairs, and an aggregate signature o. It outputs a bit to signal
whether the aggregated signature ¢ is valid or not.

Correctness and Compactness of Multi-Hop Aggregation. The correctness and compactness
of an aggregate signature scheme can be naturally extended to the multi-hop setting. In addition to
the properties discussed previously, we require the following to hold:

Correctness of multi-hop aggregation. For any sequence of accepting aggregate signatures
and key-message trees o; and Ti\’k’m for i € [¢], we have that the aggregated signature & will
also be an accepting signature for the key-message tree TV6™ = (Tfk’m, . ,Tg’k’m). More
formally, we have that for any A € N, £ € [2*], and any ¢;, and key-message tree T;’k’m such
that AggVerify(ﬂyk’m, o) = 1, we have that

Pr [AggVerify(T"k’m,E) =1 TR = (Y ,TZk’m), & + Aggregate({(T*™, az)}z)] =1

Compactness of multi-hop aggregation. |o|= max;|o;|+poly(),log¥). That is, the size of an
aggregated signature is bounded by a fixed polynomial in A, and only logarithmically depends
on the number of aggregations £. (Since £ is always less than 2*, thus one could also simply
write poly(\) instead.)

Security of Multi-Hop Aggregation. Multi-hop aggregated unforgeability is defined as follows.

Definition 7.3 (Multi-Hop Aggregated Unforgeability). An multi-hop aggregate signature scheme
(CRS, Setup, Sign, Verify, Aggregate, AggVerify) is said to be a secure multi-hop aggregate signature
scheme if for every admissible PPT attacker A, there exists a negligible function negl(-) such that
for all A € N, the following holds

crs + CRS(17), (vk, sk) < Setup(1?)

Pr |AggVerify (T O ) =1: (T*’a_\*) (7 ASign(Sk")(l’\,Vk)

< negl(}),

where A is admissible if there exists a leaf node (vki,m}) in T* such that vki = vk and m} was not
queried by A to the Sign(sk, -) oracle.
7.1.2 Construction and Analysis

We construct a multi-hop aggregate signature scheme from any multi-hop seBARG scheme seBARG =
(seBARG.Gen, seBARG.P, seBARG.AggProve, seBARG.V) and any signature scheme S = (S.Setup,
S.Sign, S.Verify). Below we describe our multi-hop aggregate signature scheme Agg.
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CRS(1%) — crs. The CRS generator samples the CRS for the multi-hop seBARG scheme for language
Ls (eq. (18)) as
(crs, td) < seBARG.Gen(1*,d = X\, T = (1,...,1)).
That is, it sets the maximum number of hops to be A, and sets the extraction indices to be all

ones by default. (Refer to remark 7.2 for details on A hops being sufficient for unbounded
signature aggregation.)

Ls = {x = (m,vk) : Jo s.t. SVerify(vk,m,o) = 1}. (18)

It outputs crs as the CRS.

(As noted previously, for ease of notation, we do not write it explicitly, but all the algorithms
take crs as an additional input.)

Setup(1*) — (vk,sk). This is the same as the regular signature setup algorithm. That is, it outputs
the verification-signing key pair as (vk, sk) <— S.Setup(1*).

Sign(sk,m) — o. This is the same as the regular signature signing algorithm. That is, it outputs
the signature as o < S.Sign(sk, m).

Verify(vk, m,o) — 0/1. This is the same as the regular signature verification algorithm. That is, it
checks whether S.Verify(vk,m, o) = 0 or 1, and outputs whatever it outputs.

Aggregate ({(TZ-Vk’m,ai)}ie[gO — /L. The signature aggregator simply runs the proof combiner
algorithm seBARG.AggProve on the CRS, and sequence of key-message tree and signature
pairs. Concretely, it computes the aggregated signature as

0 <+ seBARG.AggProve(crs, Tlvk’m, . ,Tgk’m, Tly-eny00).

Here we abuse notation, and if all the input signatures o; are plain (unaggregated) signatures,
then we run the prover algorithm seBARG.P. However, for ease of exposition, we write it to
be the proof combiner above.

AggVerify (Tvk,m,a) — 0/1. This is the same as the seBARG verification algorithm. That is, it
checks whether seBARG.V(crs, TVK™,5) = 0 or 1, and outputs whatever it outputs.
Correctness, Compactness, and Security. Below we prove the following.

Theorem 7.4. If the signature scheme S is unforgeable as per definition 7.1, and batch argument
scheme seBARG is rate-1 multi-hop scheme (definition 6.3), then the above scheme Agg is a multi-hop
aggregate signature scheme satisfying plain and aggregated unforgeability as per definitions 7.1 and 7.3.

First, we argue correctness and compactness of our multi-hop aggregate signatures, and later talk
about its security.

Correctness, Compactness and Multi-Hop Aggregation. The correctness of signing follows

directly from the correctness of the signature scheme S, as the Setup, Sign, Verify algorithms in
our aggregate signature scheme Agg are same as S.Setup, S.Sign, S.Verify. Next, the correctness
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of aggregation also follows from that the correctness of the multi-hop BARGs and the signature
scheme.

For compactness, first note that each aggregate signature o is simply a batched proof. Thus, in
the base case, when the aggregation algorithm takes as input plain (unaggregated) signatures, then
the size of the resulting aggregate signature ¢ will simply be the size of a plain signature (which is a
fixed polynomial in the security parameter) plus another polynomial term in the security parameter
(since the length of each instance is also a fixed polynomial as it only contains a single key-message
pair). Thus, our multi-hop aggregate signature scheme is fully compact. Below we briefly talk
about how a fixed number of A hops is sufficient for unbounded aggregation.

Remark 7.2 (Unbounded Aggregation using Tree-Based Aggregation). Note that in the above
description we only set the number of hops supported by the BARG scheme to be A. However, this
does not limit the number of times an aggregator can aggregate signatures. This is because we
consider that each aggregator will combine proofs in a more efficient tree-based fashion where the
proof combiner algorithm is only run when the input aggregate signatures are of equal length.

More concretely, in any application, we consider that each aggregate signature o will be stored
as a length-\ sequence of batched proofs. Here the i-th element of the sequence is interpreted as
an aggregate signature for 2 key-message pairs. Now, whenever two aggregate signatures will be
combined, then only the proofs corresponding to the same level ¢ will be combined together. Since
this is purely a data structure management task, we decided to simply our above exposition, and
avoid maintaining this structure as part of the actual scheme.

Next, we argue the unforgeability of our scheme.

Lemma 7.5. If the signature scheme S satisfies unforgeability, the aggregate signature scheme
Agg satisfies plain unforgeability. In addition, if the multi-hop batch argument scheme seBARG
satisfies the index-hiding and somewhere argument of knowledge properties, then the scheme Agg is
aggregated-unforgeable.

Proof. Plain Unforgeability follows directly from the unforgeability of the signature scheme S.

Aggregated unforgeability relies on the index hiding and somewhere argument of knowledge
properties of seBARG, and unforgeability of the signature scheme S. Let A be a PPT attacker
that breaks aggregated unforgeability property. That is, A finds a valid forgery (7%,0*) with
non-negligible probability € = €(\).

Here and through the rest of the proof, we consider that the the arity of every node in the tree
T* is exactly two, except the parents of the leaf nodes. That is, the all except the last layer of tree is
a binary tree. Note that this does not conflict with our scheme, but is in line with remark 7.2. That
is, the aggregator only runs the proof combiner algorithm on a batch size of two, but the initial
batch size could still be arbitrary. Although we could consider that the arity of all nodes is exactly
two and it would not affect the compactness, we allow a larger arity for the parents of leaf nodes for
simplicity.

With this consideration, note that by definition of a valid forgery, there must exist a set of
indices (i7,...,}) € [2/\])‘ such that the key-message pair in the tree T* corresponding to the path
I* = (i],...,4}) is (vk,m*) where vk is the challenge verification key, and m* was not queried by A
to the challenger. (Also, all but the first index i} are just a single bit due to the condition that
arity of T is exactly two at all but the last layer.) While there might exist multiple such paths,
we use I* to denote the lexicographically first such path with this property. We start by defining
simple hybrid experiments to complete the proof.
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Ezperiment 0. This is the aggregate unforgeability security game, and we say the output of the
experiment is 1 if and only if A wins.

Ezperiment 1. Let N be the maximum running time of Aand therefore the maximum number
of leaves in T™. In this experiment, the challenger samples A random indices i1,...,7) at the
beginning of the game as i; < [N] and i; - {1,2} for j > 1. And, it plays the rest of aggregate
unforgeability game with A as is. In the end, we say the output of the experiment is 1 if and only if
A wins and I* = (i1,...,45+,1,...,1) for some j*. (That is, I* matches the guessed path. Since A
is a PPT machine, thus the tree T* is of polynomial size.)

Ezperiment 2. In this experiment, the challenger samples A random indices i1, ...,7) as before, and
samples the CRS as follows:

(crs, td) < seBARG.Gen(1*,d = A\, T = (iy,...,iy)).

It plays the rest of aggregate unforgeability game with A as is. In the end, we say the output of the
experiment is 1 if and only if A wins and I* = (i1,...,4+,1,...,1) for some j*.

Ezxperiment 3. This is same as previous experiment, except if A wins and I* matches the guessed
indices (i1,...,4j+), then the challenger runs &, the PPT extractor for the seBARG scheme, as
follows:

o =E&(td, T, 0%).

And, we say the output of the experiment is 1 if and only if (m*, 0*) is a valid forgery w.r.t. challenge
key vk.

Let EXPT;“(l)‘) denote the output of the experiment i. Next, we prove the following sequence of
claims regarding the above experiments.

Claim 7.5.1. For every adversary A, for every A € N, we have that

Pr [ExpTg!(1)]

N . 27"-1
Proof. This is an information theoretic argument, and follows directly from the fact that the
challenger samples A random indices as its guesses, and the first guess is correct with probability at
least 1/N, while remaining (5% — 1) guesses are correct with probability at least 1/2. Basically, with
probability at least ——t=57, its guess will be correct, and the output of the experiment will be kept

N,Qj*Ol 1)
as 1 when A wins. O

Pr [EXPTf(l’\)] >

Claim 7.5.2. If the batch argument scheme seBARG satisfies index hiding, then for every PPT A
playing the above aggregated unforgeability game, there exists a negligible function negl(-) such that
for all A € N, we have that

Pr [EXPT{l(lA)} —Pr [EXPT;‘(V‘)} < negl(A).
Proof. This follows directly from the index hiding property of the seBARG. O

Claim 7.5.3. If the batch argument scheme seBARG satisfies somewhere argument of knowledge
property, then for every PPT A playing the above aggregated unforgeability game, there exists a
negligible function negl(-) such that for all X € N, we have that

Pr [EXPT?(I)‘)} — Pr [EXPT{;‘(I)‘)} < negl(\).
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Proof. This follows directly from the somewhere argument of knowledge property of the seBARG. [J

Claim 7.5.4. If the signature scheme S satisfies unforgeability, then for every A playing the above
aggregated unforgeability game, there exists a negligible function negl(-) such that for all A € N, we
have that

Pr [ExpTg“(ﬂ)} < negl(\).

Proof. Suppose Pr [ExpT4'(1})] = € for some non-negligible probability € = €(\). We now describe
a reduction algorithm B that uses A to break the unforgeability property of the signature scheme S
with probability at least e.

The challenger corresponding to scheme S samples a verification-signing key pair, and sends
vk to the reduction algorithm B. B then samples A random indices i1, ...,%) as described in the
experiments above, and samples the CRS components as follows:

(crs, td) « seBARG.Gen(1*,d = A\, T = (iy,...,iy)).

It then sets the CRS as crs, and sends crs, vk to the adversary. B then answers A’s signing queries
by forwarding them to the signature scheme challenger, and relaying the challenger’s response back
to A. Finally, A outputs a forgery (7%,5*), and sends it to B.

The reduction algorithm B computes the forgery as o* = £(td, T*,5*), and submits m* and o*
as its forgery, where (vk,m*) is the key-message pair corresponding to path I* in 7.

Note that B wins the unforgeability game with the challenger for signature scheme S with
probability e. This is because, by definition of experiment 3, the experiment outputs 1 if and only if
(m*,0*) is a valid forgery w.r.t. challenge key vk. Thus, the claim follows. O

Combining all the above claims, we obtain that Pr [EXpTg!(1")] < negl(A) as N - 27" 1 is a
polynomial in the security parameter as the adversary outputs at most N - 27"~ messages along
with its forgery. Thus, proof of aggregate unforgeability follows.

This concludes the security proof.

7.2 Incrementally Verifiable Computation

In this section, we construct an incrementally verifiable computation (IVC) scheme for deterministic
computations with proof size poly(\,logT) using a rate-1 hashed multi-hop BARG scheme (see
Section 6) associated with a rate-1 fully-local somewhere extractable hash function. Below we recall
the definition of IVC.

7.2.1 Definition

Language L. For any deterministic Turing machine M with run-time 7" = T'(n) and configura-
tion size S = S(n), any input z € {0,1}", and any ¢ € [T'(n)], we denote by M(z;1*) € {0,1}5™
the configuration of M when executed on input z after ¢ steps. In this paper, we consider the
following language.

L= {(zt0) ¢ ve[T()] A M(z1) = c e {0,1}50D} (19)
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Notation 7.6. We use nxt-cnfg () as the shorthand denoting the computation of the next configu-
ration from any given valid intermediate configuration of the Turing machine M and an input z.
That is, co = nxt-cnfg (0, z) is the starting configuration, and ¢; = nxt-cnfg v (ci—1,2) fori > 1. It
follows by induction that ¢; = M(z;1%) for i > 1. We refer to ¢y as the initial configuration of the
machine, and z represents the fized input tape of the Turing machine.

IVC Syntax and Definition. An incrementally verifiable computation (IVC) scheme for a Turing
machine M consists of the following (probabilistic) polynomial time algorithms:

Gen(1*,n,1%) — crs. The setup algorithm is a randomized algorithm that takes as input a security
parameter 1%, the input length n, the maximum configuration size S = S (n) in unary, and
outputs a common reference string crs.

P(crs, z, 1Y) — (¢4, m). The prover algorithm takes as input a common reference string crs, an input
z € {0,1}", and the number of time steps ¢ € N in unary. It outputs the configuration
¢y = M(z;1%) and a proof 7.

Update(crs, z, ¢;—1, m—1) — (ct, 7). The update algorithm takes as input a CRS crs, an input
z € {0,1}", an intermediate configuration ¢;—1, and a proof m_;. It outputs the next
configuration ¢; and an updated proof 7.

V(ers,z = (z,t,¢),m) — 0/1. The verifier algorithm takes as input a CRS crs, an instance z =
(z,t,¢t), and a proof 7. It outputs a bit to signal whether the proof is valid or not.

Definition 7.7. An incremental verifiable computation scheme (Gen, P, Update, V) for M is required
to satisfy the following properties:

Efficiency. The running time of the setup algorithm is at most poly(X,S,logn,logT(n)), the
run-time of verifier and update algorithm is at most poly(\, S,n,logT(n)), and the prover
runs in time at most t - poly(X\, S,n,log T'(n)).

Completeness. For every A\,n € N any z € {0,1}", and any time step t € [T'(n)],

crs « Gen(1*,n, 15()

(c,7) « Plars, 2,1t |~ b

Pr| V(ers,(2,t,c),m) =1

Soundness. For any poly-size adversary A = (A1, As) there exists a negligible function negl(-)
such that for every A € N,

1" .Al(l)‘),
crs + Gen(1*,n, 15(), < negl(\).
(x = (2,14, ¢p), ) < Asz(crs)

2€{0,1}" N x ¢ L

br A Vers,z,m) =1

An incremental verifiable computation (IVC) scheme for M is simply an updatable SNARG for £ 4.
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7.2.2 Construction and Analysis

Let
(multi-BARG.Gen, multi-BARG.P, multi-BARG.AggProve, multi-BARG.V)

be a hashed multi-BARG scheme associated with the rate-1 SEH hash family

(SEH.Gen, SEH.Hash, SEH.Open, SEH.Verify, SEH.Extract)

corresponding to the NP language
Linxt-cnfg, M = {(z, c, c’) | ¢ = nxt-cnfg (¢, z)} .

Notation. We specify our multi-BARG interface using the generality of Remark 6.5. Given
instances x; = (z,¢,—1,¢;) for i € [2k], multi-BARG.P outputs a segmented hash value (v,v') of
depth 1 where v = SEH.Hash(hk, 2z, co, c1, ..., cx) and v/ = SEH.Hash(hk, z, ¢, cky1, - - -, cor) (and
a corresponding proof). That is, although each configuration ¢; is included in two instances, it is
only included once in the string being hashed (except c). v and v/ are each statistically binding on
the input z and two configurations. Similarly, given hash values (v;_1,v;) for ¢ € [2k] of depth d
(and corresponding proofs), multi-BARG.AggProve outputs a segmented hash value (v,Vv') of depth
d + 1 where v = SEH.Hash(hkg, {,vo,v1,...,v) and v/ = SEH.Hash(hkg, 1, i, Vi+1, ..., var) (and a
corresponding proof). That is, although each hash value v; is included in two instances, it is only
included once in the string being hashed (except vi). v and v/ are each statistically binding on one
hash value of depth d.

Overview. We aggregate in a tree-like structure, and only aggregate configurations (leaves of the
tree) or hash values (non-leaf nodes of the tree) in batches of 2k. We store all the unaggregated
configurations/hash values at each level of the tree while waiting to accumulate enough configura-
tions/hash values to aggregate. In our construction, a proof m = (p, o© o ,H(A)) contains
an opening p, a list II(9) of configurations, and, for every d € A, a list II'® of hash values of depth d
(and corresponding proofs). Initially, p and the lists are empty. As we keep updating 7 for more
timesteps, whenever a list reaches length 2k, we aggregate, add the aggregated hash value/proof to
the list one level higher, and then erase the first half of the list. The second half of the list will be
aggregated again once the list grows (so we can ensure that we're always aggregating consecutive
batches of configurations). We also maintain p so that it always opens the “leftmost” hash value,
i.e., the first hash value stored in the highest nonempty level, to the initial configuration cy.

For example, after updating the proof 7 for timestep 2k? — 1, the hash tree looks like this (only
the blue boxes are stored in 7):

— | 17(»

¢ - C -0 Ck v Cp2p v G2 et | Cop2 9k \;H%khk“;[’%k?q‘:

Note that II(") also contains proofs {m}fﬁfl for instances {(v;_1, vi)}?ifl, which are omitted
from the above figure for simplicity. After updating the proof 7 for the next timestep 2k, the hash
tree looks like this (again, only the blue boxes are stored in ):
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Note that II() also contains proofs {m}?ﬁkﬂ for instances {(vi_l,vi)}?ikﬂ, and TI? also

contains a proof 7’ for instance (v(, V] ), which are omitted from the above figure for simplicity.

We are now ready to define our IVC scheme.

Gen(1*,7n,1%) — crs. This poly-time algorithm does the following:

1. Set iy,...,ix € [2k] arbitrarily. For example, set i1 =--- =iy = 1.
2. Sample (multi-BARG.crs, hk, td) « multi-BARG.Gen(1*,n + 28, 2k, (i1, ... ,i))).
3. Output crs = (multi-BARG.crs, hk).

P(crs, z,1') — (¢t, m¢). This poly-time algorithm does the following:

1. Let co = nxt-cnfg (0, 2).

2. Let mo = (p = 0,11 = (), IV = 0,..., TV = §).
3. For i € [t], compute (¢;, m;) = Update(crs, z, ¢i—1,m—1).
4. Output (¢, 7).

Update(crs, z, ¢;—1, m—1) — (¢t, ). This poly-time algorithm does the following:

Parse crs = (multi-BARG.crs, hk = (hky, ..., hky)).
Compute the next configuration ¢; = nxt-cnfg(ci—1, 2).
Parse m;_1 = (,0, oo, ..., H()‘)).
Append ¢; to IO,
If TI©) is not full, i.e., contains < 2k + 1 configurations, go to Item 11.
Parse the list T1(0) = (Ct—2ky -y Cto1,Ct).
Compute (vy,V,, ) = multi-BARG.P(crs, (2, ¢t—ok1i—1, Ct—2k+i)ie[2k]).
Compute p) = SEH.Open(hky, (2, ¢i—ok, - - -, ¢—k) , [n + S]). Note that the set [n + S]
corresponds to the coordinates of (z,c;_ok).
9. Erase the first half of I ie., let I = (¢,_t,..., 1, ¢).
10. Ford=1,..., X

© N o ot W
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o If II9 is empty, i.e., vy is now the leftmost hash value, then let II(9) = (vi) and
append (p(9,v,) to p.

e Append v, and m, to II(4.

o If 1D is not full, i.e., contains < 2k + 1 hash values of depth d, go to Item 11.

e Parse the list II(® = (vg,vi,...,vor, 71, ..., m2x). Recall that for i € [2k], m; is a
proof for instance (v;_1,V;).

e Compute ((v4,Vy, 7)) = multi-BARG.AggProve(crs, (vVi—1,Vi);cpar - (Ti)ic2n])-

e Compute p(4t1) = SEH.Open(hkg, 1, (Vo, - - -, V&), [[vol])-

e Erase the first half of IID i.e., let TID = (v, Vip1, - - - s Vaks Thals - - - » Tok)
11. Output (¢, m = (p, IO, IW, ... TIV)).

V(crs,x = (z,t,¢), ) — 0/1. This poly-time algorithm does the following:

1. Parse crs = (multi-BARG.crs, hk).
2. Parse m = (p, IO, ... TIMV).
3. Parse I1(0) = (ct—gy ... ct—1,c) for some € > 1.
4. If ¢; # ¢, output 0.
5. For i € [¢], if ¢;—ij41 # nxt-enfg (ci—i, 2), output 0.
6. Ford=1,..., \
e Parse II'D = (v, v1,...,vg, 71, ..., m) for some £ > 1.

e For i € [{], if multi-BARG.V(crs, (vi—1, Vi), ™) # 1, output 0.
o If II1H1) = (), break.
7. Let ¢ = nxt-cnfg (0, z). Note that vq is the leftmost hash value.
8. If SEH.Verify(hk, vq, [n + 5], p, (2, c0)) = 0'8, output 0.
9. Output 1.

Theorem 7.8. The above construction is an IVC scheme (Definition 7.7).
Proof of Theorem 7.8.

Efficiency. Follows from efficiency of the underlying SEH and multi-BARG schemes, as in Re-
mark 6.5.

Completeness. Follows from the completeness of the underlying multi-BARG scheme.

'8We are abusing notation here — p is actually a sequence of openings and hash values which can be verified using
the sequence of hash keys.
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Soundness. Suppose towards contradiction that there exists a poly-size adversary A = (A;,.A2)
and a non-negligible function e such that for every A € N,

1™ A (1Y),
crs « Gen(1*,n, 15(7), > e(\). (20)
(x = (z, 1t ct), m) < Asz(crs)

Let ¢ = nxt-cnfg (0, z) and ¢f = nxt-cnfg (c7_,, z) for i € [t] be M’s true configurations when
run for ¢ timesteps on input z. For I = (i1,...,i\ € [2k]), let Gen; be identical to Gen except that
it sets i1,...,7) as above, as opposed to setting i1 = --- =i, = 1. In addition, Gen; outputs the
multi-BARG trapdoor td = (seBARG.td, SEH.td). By the index hiding property of the multi-BARG
scheme, Equation (20) implies that for any I,

2€{0,1}"N ¢ Ly

Pr A V(ers,z,m) =1

1" A (174),

(crs, td) < Geny(1*,m, 15()) | > ¢(N). (21)
(x = (2,1, ¢p), ) « Aa(crs)

We define an extractor Extract which takes as input the multi-BARG trapdoor td = (seBARG.td, SEH.td),
an instance = = (z,t,¢;), a proof m = (H(O), oo, ... ,H(’\)), and a timestep ¢ € [t]. If configurations

z€{0,1}" N ¢ # ¢}

Pr A V(ers,x,m) =1

ci—1 and ¢; are stored in H(O), Extract outputs (z,c¢;—1,¢;). If not, Extract locates the hash value
v; which covers timestep i (i.e., v; is a depth d hash of configurations including ¢;—; and ¢;), and
outputs SEH.Extract(SEH.td, v;).

To contradict Equation (21), it suffices to show by induction that for all i € {0,...,t}, if we set
I = (i1,...,ix € [2k]) so that the hash value v; which covers timestep ¢ is statistically binding on
configurations (¢;_1,¢;), then

1"« Al(l)‘),
z€{0,1}" A V(ers,az,m) =1 (crs,td) < Geny(1*,n, 15(),
: < )
Pr A ¢ #c; (x = (2, 1t,ct),7r) — A (crs), < negl(})

(7, ¢i—1,¢;) = Extract(td, z, 7, 1)

Induction base. Since V verifies that p opens the leftmost hash value to the true initial configu-
ration, the somewhere statistically binding property of SEH implies that

1" A (1%),
z2€{0,1}" A V(ers,z,m) =1 (crs, td) « Geny(1*,n, 15(7),
: <
Pr N (2 # 2V ey #cf) (x = (2,1%, ¢t), m) < As(crs), < negl(d),

(2, co,c1) = Extract(td, z, 7, 1)

i.e., the probability that ¢y is incorrect is negl(\).

Induction step. Since the event that
2e{0,1}" AN (F#2V i1 #Gy) AN V(s,z,m) =1

is detectable by an efficient distinguisher, the inductive hypothesis and the index hiding property of
multi-BARG imply that

17 < A (1Y),
z € {0, 1}” A V(crs,x,w) =1 (CrS,td) — Genl(l)\’n7 1S(n))7
: <
o A (Z/ # ZV i # Cffl) ‘ (‘T = (Za 1t7 Ct)aﬂ-) — A2(Cr5)7 - negl()\)

(2, ¢i—1,¢;) = Extract(td, z, 7, 1)
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Let multi-BARG.E be the hashed multi-hop BARG extractor given by the somewhere argument of
knowledge property. We define an extractor Extract’ which behaves identically to Extract, except that
if configurations ¢;_1 and ¢; are not stored in H(O), Extract’ locates the hash value v; which covers
timestep i (i.e., v; is a depth d hash of configurations including ¢;—1 and ¢;), immediately previous
hash value v;_1, and corresponding proof 7; and outputs multi-BARG.E(seBARG.td, (v;_1,V;), 7;).
The somewhere argument of knowledge property of multi-BARG implies that

z€{0,1}" A V(ers,z,m) =1 1"+ Ay (1),
pr| A ((z’,cz'q,ci) £ Extract(td, z, m,i) . (Crs;td) < Geny(1*,n,15(), < negl(\)
(x = (2,1, ¢p), ) + Az(crs), = ’
vV ci 7 nxt-enfg v (cim1, Z>> (#/,ci—1,c;) = Extract/(td, x, 7, 14)

Note that ¢; is only incorrect if ¢;_1 is incorrect or ¢; is not the next configuration after ¢;_;. Thus
the probability that ¢; is incorrect is at most negl(\) + negl(\) = negl(\).
O
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A  Homomorphic Encryption with Local Compression Compiler

In this section, we build a homomorphic encryption scheme (Gen, Enc, Eval, Dec) along with com-
pression algorithms

(CompGen, Compressy, LinEval, Compress,, CompDec)

as defined in section 3.4. Our construction is based on the rate-1 homomorphic encryption by
Brakerski et al. [BDGM19].

Construction. Our encryption scheme has a linear decrypt-and-multiply property (see [BDGM19,
Definition 2.9]) for message space {0, 1} and circuit class C, and the linearly homomorphic packed
Regev encryption scheme as in [BDGM19, § 3.3]. Since our usage of the linearly homomorphic
packed Regev encryption scheme is more specific than in [BDGM19], thus we use it directly below
rather than abstracting out the required properties as in their rate-1 homomorphic encryption
construction. Below we describe our homomorphic encryption with the compression compiler.

Gen(1%) — (pk, sk). The setup algorithm runs the FHE setup algorithm to sample the key pair as
(pk,sk) ¢ FHE.Setup(1*, 1%).

Enc(pk, 1) — ct. The encryption algorithm is the FHE encryption algorithm and computes the
ciphertext as ct <— FHE.Enc(pk, u).

Eval(pk, C, ct) — ct’. The evaluation algorithm simply runs the FHE evaluation algorithm as ct’ +
FHE.Eval(pk, C, ct).

Dec(sk, ct) — p. The decryption algorithm is also the FHE decryption algorithm and computes the
output as p = FHE.Dec(sk, ct).
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CompGen(pk, sk, 1¢) — (pke, ske). Let ¢ be the LWE modulus chosen for the FHE scheme. Also, let
x be a B-bounded error distribution defined on Z, and n, m be the LWE parameters. We
discuss later how the parameters are selected. And, let {g = |sk| denote the length of FHE
secret key interpreted as a vector over Z,. That is, sk € ngk.

The compression parameter generator samples a random matrix A <+ ZZX’”, a secret matrix
S « ngn, and an error matrix E < ™. It computes matrix B as B = SA + E, and
samples the following sequence of ¢ X £g Regev ciphertexts:

Viell,jelal,  ckij=(AR;;,BR;+sk;-g' @e;)

where R;; {O,l}mxnog‘ﬂ7 skj € Z4 is the j-th element of the secret key sk, gl =
(1,2,...,2Medl=1) "and e; Zfl is the i-th unit vector. It outputs compression key pair
(pke, ske) as

pke = (pk, {Cki7j}i7j)7 ske = S.

Compress; (pke, ct, ¢, € [¢]) — cte,. It parses the compression public key pk. as above, and let
vectorize : [¢] x {0,1} — {0,1}* denote the function that takes as input an index i € [¢], and a
bit u € {0, 1}, and outputs a length-¢ vector which contains p in the i-th position and zeros
everywhere else. Thus, vectorize(i, ) = p - €; (i.e., the i-th unit vector mutliplied with bit p).

The initial compression algorithm homomorphically evaluates vectorize(i, -) on the ciphertext
ct to compute ctyec = FHE.Eval(pk, vectorize(i, -), ct), a sequence of ¢ evaluated ciphertexts
Ctyec = (Ctyec1s - - -, Clyec,e). Next, let Dec&Mult be the linear function that takes as input an
FHE secret key sk € fok, an FHE ciphertext ct encrypting a single bit u, and a scaling factor
w, and outputs a scaled approximation pw in the clear. We use the fact that Dec&Mult is a
linear function in sk over Z,. For more details, we refer the reader to [BDGM19, Definition
2.9]. The algorithm now defines ¢ linear function f; = (fi1,..., fie,) € ngk for ¢ € [¢] such
that
> fij - skj = Dec&Mult(sk, ctyec i, 2184171,
J€lts]

It then homomorphically evaluates the linear functions on the Regev ciphertexts {ck; ;}; ; as

Co = ZCkz’,j,1 g (fig), = ZCkz’,j,z g (fiy)
.3 1,J

where ck; ; = (ck; j1,¢ckij2) € ZQXHOM X ng ogal " and g !(+) is the standard binary ex-
pansion function. Note that we get that ¢g € Zy, and ¢; € Zg. The algorithm outputs the
compressed ciphertext as cte, = (co,c1). And, it is interpreted as the following sequence of

(£ + 1) sub-ciphertexts
cte, = (sub-ctg, sub-cty, ..., sub-cty), sub-ctg = ¢ € Zy;, sub-ct; =cy; € Zy,
where ¢y ; is the i-th element of the second ciphertext vector.

LinEval(pk,, ctgll), e ctg?) — ctg,. It parses the compressed ciphertexts as (£ 4 1) sub-ciphertexts

each (as describe above). That is, ctgl) = (sub—ctéi),sub—ctgi), . .,sub—cty)) for ¢ € [¢], and
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outputs the linearly evaluated ciphertext as

C’Eé1 = (Z Sub—ctéi), Z sub—ctgi), ceey Z sub-ctgi)> )

That is, each resulting sub-ciphertext is computed by simply adding all the individual under-
lying sub-ciphertexts. Therefore, the linear evaluation algorithm for compressed ciphertexts
satisfies both the ‘locality’ and ‘low depth’ properties as defined in section 3.4. Basically, for
ensuring the low depth property, it is enough to perform the ¢ sub-ciphertext additions in a
tree-like manner.

Compressy(cte, ) — cte. The final compression algorithm parses the ciphertext into £+ 1 components
as above. That is, cte, = (sub-ctg, sub-cty,...,sub-cty). And, it compresses each component
individually as follows:

sub-ct; ifj=0
sub-cte j = Compressy(sub-ct;) = / S
|sub-ctj]2  otherwise.

Here |-]2 : Zg — {0,1} outputs the most significant bit of the number. That is, |z]2 =1
for > 2M°gdl=1 and 0 otherwise. It outputs the fully compressed ciphertext as cte =
(sub-ctc g, sub-cte 1, ..., sub-cte ).

CompDec(ske, cte) — (f41, - - ., it¢). The decryption algorithm for fully compressed ciphertexts parses
the compressed secret key ske = S, and let SZT be the i-th row of the matrix S. It parses the
ciphertext as cte = (sub-ctc g, sub-cte 1, ..., sub-ctc¢).

It outputs the message bits yu; as p; = (sub-cte; — LSZT -sub-cteg]2) mod 2 for i € [¢].

Security and setting the LWE parameters. The LWE parameters are set exactly as in [BDGM19].
Also, the proof of correctness, compactness, and security are based on [BDGM19], except we do not
have the randomized shift before rounding, thus at the time of proving correctness this leaves a
negligible error over the choice of random coins of setup and encryption.
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