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Abstract. Efficient implementations of software masked designs constitute both an
important goal and a significant challenge to Side Channel Analysis attack (SCA)
security. In this manuscript we discuss the shortfall between generic C implemen-
tations and optimized (inline-)assembler versions while providing a large spectrum
of efficient and generic implementations, and exemplifying cryptographic algorithms
and masking gadgets with reference to the state of the art. We show the prime
performance gaps we can expect between different implementations and suggest how
to harness the underlying hardware efficiently, a daunting task for any masking-order
or masking algorithm (multiplications, refreshing etc.). This paper focuses on im-
plementations targeting wide vector bitsliced designs such as the ISAP algorithm.
We explore concrete instances of implementations utilizing processors enabled by
wide-vector capability extensions of the Instruction Set Architecture (ISA); namely,
the SSE2/3/4.1, AVX-2 and AVX-512 Streaming Single Instruction Multiple Data
(SIMD) extensions. These extensions mainly enable efficient memory level parallelism
and provide a gradual reduction in computation-time as a function of the level of
extensions and the hardware support for instruction-level parallelism. We also eval-
uate the disparities between generic high-level language masking implementations
for optimized (inline) assemblers and conventional single execution path data-path
architectures such as the ARM architecture. We underscore the crucial trade-off
between state storage in the data-memory as compared to keeping it in the register-file
(RF). This relates specifically to masked designs, and is particularly difficult to resolve
because it requires inline-assembler manipulations and is not naively supported by
compilers. Moreover, as the masking order (d) increases and the state gets larger,
there must be an increase in data memory access for state handling since the RF
is simply not large enough. This requires careful optimization which depends to a
considerable extent on the underlying algorithm to implement. We discuss how full
utilization of SSE extensions is not always possible; i.e. when d is not a power of two,
and pin-point the optimal d values and very sub-optimal values of d which aggressively
under-utilize the hardware. More generally, this manuscript presents several different
fully generic masked implementations for any order or multiple highly optimized
(inline-)assembler instances which are quite generic (for a wide spectrum of ISAs),
and provide very specific implementations targeting specific extensions. The goal
is to promote open-source availability, research, improvement and implementations
relating to SCA security and masked designs.The building blocks and methodologies
provided here are portable and can be easily adapted to other algorithms.

Keywords: AVX · Countermeasures · Code-Size · Low-Cost · Masking · Side-
Channel Analysis · Security Order · SIMD · SSE

mailto:dor.salomon;itamar.levi@biu.ac.il


2 On the Performance Gap of Masked Software with SIMD Vector Extensions . . .

Introduction
Side-channel protection by masking countermeasures has quadratic cost factors associ-

ated with the desired security level which are dominated by vector-multiplications [CGLS20,
MMSS18, CS21, GM18, DFS15, BDMD+20]. Masking implementations are also quite
expensive and complicated due to randomness handling (refreshes) and volume (gen-
eration) [BDMD+20, Pap18]. However, all inherent masking assumptions theoretically
provide exponential security at “only” a polynomial(quadratic) cost.

Generic; i.e., high-level software implementations of masked algorithms provide porta-
bility and are designed to be hardware/processor-agnostic. However, these designs do not
necessarily utilize the underlying hardware resources efficiently. Specifically, the memory-
level parallelism (MLP) and instruction-level parallelism (ILP) with vectorized processors
can be sub-optimal. These effects are amplified as the state size in masked algorithms
increases. This manuscript provides an in-depth discussion of the shortfall between generic
C implementations and optimized (inline-)assembler versions which optimally utilize MLP
and ILP, although they require much more expertise. Our main focus is the performance
gap in terms of the cycle count, code size and randomness requirements of different imple-
mentations and flavors of masked designs at all masking orders (d), with different masking
multiplications and refresh primitives, over a large spectrum of ISAs extensions. This
is exemplified by a typical cryptographic sponge permutation targeting a wide vector
bitsliced implementation, the Ascon-p [DEMS16], which is used by algorithms such as
ISAP [DEM+20] and can be generalized to Keccak as used by SHA3 and other sponges.
We also explore the differences between generic C masking implementations and optimized
(inline) assemblers over conventional single execution path data-path architectures such as
the ARM architecture.

One of the crucial features we explore is trading-off state storage in the data-memory as
compared to keeping it in the register-file (RF) and algorithmic chunking into independent
blocks and spacing instructions to maximally utilize ILP and reduce the impact of read-
after-write (RaW) and write-after-read (WaR). Specifically, when targeting masked designs,
these are hard challenges for experienced designers because they require inline-assembler
manipulations and are not naively supported by compilers. Furthermore, as the masking
order (d) increases as the state gets larger, data memory access for state handling needs to
be increased since the RF is simply not large enough. This requires careful optimization
which depends to a great extent on the underlying algorithm. One of the main issues we
evaluate in detail is how full utilization of SSE extensions is not always possible; i.e., when
d is not a a power of two. We pinpoint the optimal d values and draw attention to the
very sub-optimal values of d which aggressively under-utilize the hardware.

One of the comparison points of our generic-C implementations is the SOTA masked
bit-sliced compiled code developed by the Usuba team [MD19, BDM+20]. We show that
the proposed generic-C implementation outperforms the Usuba compiled code in several
cases in terms of cycle count but also (importantly) in code size. Our generic code does not
require any additional auxiliary tools, additional formats, languages, or effort from the user
except the use of the official and public ISA. We put forward that our work is not aimed at
providing a masked implementation behavioural security verification tool. However, it is
aimed at discussing: (1) the gap between codes which are generic and optimized ones and,
(2) the gap between codes which utilize such tools, and as such are abstracted, which may
result in some performance degradation. We compare such an implementation (the best
known) to both, general generic C codes and optimized assembler codes over extensive
range of different ISAs.

In terms of the masking gadgets explored here, we report results while considering
several masked-multiplication: ISW- and UMA-based algorithms (Usuba only supports
ISW-multiplication). We also report results when implementing single-input refreshes which
are not ISW-based (as supported by the Usuba tool). Note that masked-multiplication
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input refreshes were not used in the reports from [MD19, BDM+20] after verification that
refreshes were not needed in this specific implementation (with Tornado and a SAT-solver
tool). Here, we decided not to assume this type of scenario, since in the general case
refreshes may be required or at least their need cannot be easily falsified with dedicated
tools such as [BBD+16], FullVerif [CGLS20, CS21], MaskVerif [BBC+19]. Therefore, we
provide results with and without a varying level of refreshes in our designs to better
understand their impact on on performance. In terms of refresh implementations, we first
consider naive ISW-multiplication based refreshes [ISW03] which set one input to a logical
‘1’ and then turn to the far more efficient refresh variants which were explored in [CGLS20]
for the hardware implementation case. We provide a generic-C implementation by trading-
off the randomness cost of the ISW-based refresh with ⌊(d− 1)d/2⌋ [ISW03] and the more
randomness efficient variant from HPC [CGLS20]. The randomness-cost of the UMA-based
masked multiplication variant we explore is ⌈(d− 1)/4⌉ · d [BDF+17, GMK18].

High performance masked software implementations are attracting growing interest:
significant improvements and advances have been reported in [BGRV15, BS12, GR17, JS17,
WVGX15]. However, many of these previous works do not evaluate very high order masked
design efficiency over ISAs extensions, are focused on (ARM) NEON architectures, or only
provide specific rather than generic implementations. Further,most only provide results for
AES or utilize less efficient primitives than the ones evaluated in this work. Vectorized ARM-
based processors utilizing NEON were also evaluated in [GPSS18] targeting masked AES
with specific ds with tailored inline-assembler constructs. In this work we evaluate Intel-
based architectures and architectures without NEON extensions targeting simple (low-end,
IoT) ARM architectures. Nevertheless, our generic-C implementations, which are evaluated
over x86-64 based extensions, can be utilized to evaluate NEON-supported parallelism,
thus extending the results from [GPSS18]. The building blocks and methodologies for
our inline assembler optimized designs can be easily extended and evaluated on NEON
architectures with our implementations, gadgets and refresh mechanisms.

Both the generic-C implementations and the proposed optimized assembler codes reduce
the utilization of conditional branches, jumps and function calls considerably. The goal is
to improve performance while preserving a reasonable trade-off with increased code size,
although these reduce the generality and ease of reading.

Contributions:

1. The generic-C codes were carefully designed to support various ISAs and extensions
and be easily ported. They are mainly used as a comparison to illustrate the gap
with more optimized designs, but make a contribution in their own right.

2. Full-fledged comparison with generic-C, through slightly more optimized-C flavors
which are still generic (for all ds). We then present an optimized assembler and
specially crafted assembler versions for ISA-extensions.

3. The versions of the optimized assembler depend on the specific ISA-extension used
and d. These flavors result in significant gains as compared to the literature.

4. One of our contributions is to show that for some ds and some ISAs, software masking
is actually. free in terms of performance; i.e., there is a performance loss of O(1) as
compared to the unprotected design.

5. Providing real-life test-cases on concrete, relevant cryptographic instances.

6. Contribution to the open-source community and state of the art knowledge.

7. Promoting future research with/based on the designs developed.
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Figure 1: Schematic illustration: (a) data movement between cache, Register-File and
Memory buffer following execution, over low-end/ no-MLP architectures (b) abstract view
and utilization of x-, y- and z-mm registers enabling MLP and multiple execution units
(EU) with ILP

Paper organization. This manuscript starts with a short background introduction to
Intel architectures, SIMD extensions, and optimization trade-offs. It then discusses the
bitsliced permutation exemplified in this paper and the masking gadgets used in Section 1.
In Section 2 we detail the implementation aspects of our designs and the comparison
designs. In Section 3 we provide a detailed comparison of Intel architectures, several ARM
architectures, optimized assembler implementations and finally the cost of different refresh
mechanisms. Section 4 discuses the main conclusions that can be drawn from this work.

1 Background
Modern x86 designs are pipelined, superscalar, and are also capable of out of order and

speculative execution (via branch prediction, register renaming, and memory dependence
prediction). This means they can execute multiple (partial or complete) x86 instructions
simultaneously, and not necessarily in the same order as given in the instruction stream
(instruction level parallelism, ILP). The out of order execution unit includes load/store
buffers for committing memory reads/writes, thus reducing the penalty for memory writes
to almost zero. In all x86 based processors there is a level 1 cache (L1) containing a
few thousand bytes (at least), with a very fast access time of a few clock cycles. The
size of the cipher; e.g., the Ascon-p [DEMS16] permutation in ISAP is 40 bytes (40 · d
in dth-order masked design), so it can easily fit inside an L1 cache, even for high order
masking designs. All in all, x86 architecture offers excellent instruction level parallelism,
and very good Memory Level Parallelism (MLP), which was exploited extensively in our
implementations (when possible). However, in architectures that do not fully support ILP,
MLP (e.g. simple or low-end/energy architectures), we also expect a significant impact
in terms of the cipher’s performance. In our implementations, we aimed to maximize
the amount of independent instructions by splitting the operations among registers and
reordering the independent operations (to be fair, by design, Ascon-p already has a great
deal of instruction parallelism).

In the following, we briefly recapitulate the basic terminology used for SIMD extensions,
the basic trade-offs at the heart of software optimization of bitsliced algorithms, and
present some of the basic building blocks used in this research.

1.1 SIMD extensions and trade-offs
In most x86 based processors, at least one of the following SIMD extensions are present

(illustrated in Fig. 1(b)):
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• SSE2/SSE3 - 8/16 (for 32/64 bit modes, respectively) 128-bit registers, accessible
via xmm register names

• AVX2 - 8/16 (for 32/64 bit modes, respectively) 256-bit registers, accessible via ymm
register names, in addition to the 16 registers described in SSE2.

• AVX-512 - 32 512-bit registers, accessible via zmm register name; this extension also
adds 16 128, 256 bits registers to the 16 existing registers described above.

In the following, we relate to some persistent challenges that are likely to exist for years
to come for within-processor cryptographic computation in general. Modern workloads,
such as big data searches, deep neural networks, graph and image processing, and high
data-volume cryptographic applications are memory-bound. The limited memory provided
by low-level caches (of any type) eventually may cause a bottleneck in the memory. Data
movement between the main memory (and in some cases even from the L1 cache) and
CPU cores impose a significant overhead in terms of both latency and energy, especially
for low-end/ no-MLP architectures, as illustrated in Fig. 1(a). As the state size within a
cryptographic algorithm increases (due to key size and security level, along with encoding
and/or masking due to fault-injection or side-channel attacks), communication takes place
through narrow buses with high latency and limited bandwidth. The low data reuse in
cryptographic algorithms cannot amortize the memory access cost in many cases.

Working with data memory vs. different registers with SIMD extensions
In the following we discuss how to fetch data from the data-memory with different

SIMD technologies in the context of the size of the available state (d dependent).
Fig. 2(a) shows the results from a benchmark of copying an array, using various SIMD

technologies, measured in CPU clock cycles, as a function of the array size. It is clear that
the SIMD technologies (XMM, YMM, ZMM) outperformed the native Register File, but
there was little or no improvement among the SIMD registers. This can be explained in
two ways:

1. The memory bus width is 256 bits, so that there is no additional performance gain
when copying 256/512 bits at a time.

2. In larger registers (XMM −→ YMM −→ ZMM) the opcode sizes and the number of
cycles per instruction (x86 is pipelined, so that the effect is reduced) increase and
cancel out the effect of larger reads/writes to the Register File.

Nevertheless, SIMD still provides a 2x-4x performance gain compared to the native
registers: for XMM: ∼2.20x gain. For YMM: ∼3.46x gain. For ZMM ∼4x gain.

Another issue relates to the under-utilization of the bandwidth to get data from the
memory; i.e., whether it efficiently utilizes the memory-bus with d=2 for SSE2 or d=8 for
AVX512. This is directly related to the selection the masking order (d) which corresponds
with to a specific ISA extension with out inline-assembler implementations.
Computation time with SIMD extensions as the state size increases

This final comment and example relate to storing states in the IMM/RF when possible,
instead of always accessing the memory. Fig. 2(b) illustrates the results of a benchmark
that worked exclusively with the RF, the XMM or the YMM registers. The figure shows
how the computation time increases as the state size increases and depends on the number
of reads/writes needed by the algorithm. As the number or reads/writes increases (with
advances in SIMD technology) the computation time becomes dominated by memory
access. This is clearly a function of the overall state size which, depending on the size
of the registers, can/cannot be handled in registers enforcing memory-accesses. This is
another factor we carefully optimized in our inline-assembler versions.
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(a) (b)
Figure 2: (a) Working with data memory vs. different registers with SIMD extensions (b)
Computation time with SIMD extensions as the state size/d increases

The level of Instruction Level Parallelism in Intel’s architecture (i.e. the super-
scalar/multi issue) is also an important factor. That is, even if we can enjoy processing
parallelism equivalent to the memory access parallelism, it is not always possible given the
dependencies between subsequent instructions, where the improvement can be cancelled
out by scheduling, register-renaming, stalls, etc. Therefore, in the following sections, we
also compare a “limited parallelism” architecture; e.g., non-NEON ARM low-cost /energy
architectures.

In our implementations, we made no attempt to minimize the memory reads/writes as
a criterion, but only where an impact was observed. This was done for several reasons:
(1) The state is still rather small and fits easily into the L1 cache, (2) Memory Level
Parallelism and register renaming essentially eliminate the penalty of a memory write, (3)
Because of rearrangements of our instructions the distance between writing-after-read of a
certain memory address could be at least a dozen instructions, enabling the processor to
execute almost non-stop.

1.2 Highly parallel-able bitsliced ciphers
The candidate we chose to illustrate the results with in this paper is the Ascon-

p [DEMS16]. It is the core permutation of Ascon, as proposed in the CAESAR lightweight
competition. In fact, it is also the main building block of ISAP, an AEAD scheme which is
one of finalist in the NIST lightweight cryptography standardization competition. However,
the main reason this primitive was chosen is that it is a nice overall representative of a
large class of sponge-based constructions (such as Keccak as used in SHA3). ISAP is more
oriented towards providing protection against a fairly large class of implementation attacks
(e.g. SCA and FIA) and is entirely based on the concept of mode-level security.

Therefore, Ascon-p can be used to realize a wide range of cryptographic computations
such as pseudorandom number generation, authentication, encryption, authenticated-
encryption and hashing. All of these can appended with implementation security require-
ments or not. These properties make it a promising candidate for lightweight cryptography.

Note, however, that in this manuscript we are interested in the typical client/server
asymmetry: although one party to the communication might be forced to run on an
embedded device, the other might be very strong computationally. In other words, we
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Figure 3: Schematic illustration: (a) refresh by ISW-multiplication gadget (b) refresh by
HPC (c) refresh by HPC and multiplication by UMA

were interested in implementations that are efficient on both low-end and high-end devices.
Furthermore, we also aimed at providing efficient implementations over various architectures
(supporting advanced ISAs extensions or not), and various security levels; i.e., with any
security order (d) in the context of masking efficiency.

Ascon operates on a 320-bits state that is organized into 5×64 bit lanes, and is updated
by the permutation Ascon-p. It consists of 3 steps that are applied consecutively on the
state in each round: a constant round addition, a substitution layer, and a linear layer.
The Ascon substitution-box (Sbox) is in fact very similar to the Keccak Sbox with the
exception of several linear operations; namely, six XORs and one Invert, which in the
context of masking are low cost, especially as d increases.

The Ascon-p permutation is organized in a sponge construction, which expresses it in
terms of rate r and capacity c where 320 = r + c. The rate in the sponge construction
corresponds to the block size, whereas the capacity affects the security level. In this work
we implemented the Ascon-p based instances used by Isap-A-128a.

Ascon-p is built by default to support bitsliced, high parallelism implementations where
the 64 5-bit Sboxes can be sliced and efficiently arranged as bit-operations between 64-bit
words.

1.3 Masking gadgets
1.3.1 SOTA single input refreshes

• Naive: Standard ISW input refreshes can be implemented with Algorithm 1 which
asserts one of the masked multiplication inputs to be refreshed and the other input
as ‘1’ (illustrated in Fig. 3(a)).

• HPC: A greater randomness and latency efficient flavor was proposed in [CGLS20] for
all d’s by utilizing the concepts of on-path and off-path randomness handling. Though
more efficient for hardware scenarios it is also efficient for software implementations,
as implemented here, and illustrated in Fig. 3(b).

1.3.2 SOTA multiplication gadgets
Below we discuss generic multiplications, i.e. ones that their code implementation is

quite d-independent, as well as the internal refresh mechanisms are rather easily coded
with an high-level description.

• ISW: The baseline and generic multiplication gadget which is utilized here is the
well-known ISW multiplication gadget (Algorithm 1). Its implementation is simple,
is less platform/ISA-dependent and requires a small code size; however, it is quite
randomness-hungry, as discussed above.

• UMA: The Unified Masking Approach, UMA, algorithm we embedded is more
randomness-efficient. However, more complex algorithms that require more operations
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(more energy hungry) and given in Algorithm 2. It is based on a series of optimizations
starting from the parallel masking multiplication algorithm first proposed by Barth
et al. [BDF+17], later optimized by Belai’d to reduce the randomness cost for specific
ds and finally illustrated in a rather condensed form in [GMK18]. Although there
are some randomness utilization optimizations for specific ds ( e.g. for d={4,7}
in [GPSS18]), our goal with the generic-C implementation was to implement a
generic (d independent) code.

In Algorithm 2 a boldface lowercase letter denotes a vector of shares (i.e. a =
(a0, ..., ad−1)). A subscript pre-pended with a > symbol denotes a circular rotation
of a vector and a superscript denotes an index to a subsection of a vector. In other

Algorithm 1 ISW multiplication.
Input: shares ai and bi, s.t. Σiai = a and Σibi = b.
Output: shares ci, s.t. Σici = a⊗ b.
for i = 0 to d− 1 do

ci ←− ai ⊗ bi;
end for
for i = 0 to d− 1 do

for j = i + 1 to d− 1 do
s

$←− F2n ;
s′ ←− (s⊕ (ai ⊗ bj))⊕ (aj ⊗ bi);
ci ←− ci ⊕ s;
cj ←− cj ⊕ s′;

end for
end for
return c1, ..., cd;

Algorithm 2 UMA based generic SW masked multiplication.
Input: shares ai and bi, s.t. Σiai = a and Σibi = b, and a uniformly drawn at random
vector r chunked to ⌈d−1

4 ⌉ vectors of d bits each.
Output: shares xi, s.t. Σixi = a⊗ b.
x←− a⊗ b;
for i = 0 < ⌊d/4⌋ do

x←− x⊕ (((((a⊗ b>2i+1)⊕ ri)⊕ (a>2i+1⊗ b)⊕ ri
>1)⊕ (a⊗ b>2i+2))⊕ (a>2i+2⊗ b));

end for
l←− ⌊d/4⌋;
if d = 3 mod 4 then

x←− x⊕ ((((rl ⊕ (a⊗ b>2i+1))⊕ (a>2i+1 ⊗ b))⊕ rl
>1)⊕ (a⊗ b>2i+2));

else if d = 2 mod 4 then
if d = 2 then

z ←− {rl
0, rl

1, rl
0 ⊕ rl

1};
x←− x⊕ ((z ⊕ (a⊗ b>2l+1))⊕ (a>2l+2 ⊗ b));

else
x←− x⊕ (((rl ⊕ (a⊗ b>2l+1))⊕ rl

>2l+2)⊕ (a⊗ b>2l+2));
end if

else if d = 1 mod 4 then
z ←− {rl, rl};
x←− x⊕ (z ⊕ (a⊗ b>2l+1));

end if
return x;
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words, in the case of r, ri
>1 denotes the ith subsection of size d, circularly shifted by 1

position. Operations are performed within each assignment from left to right to prevent
recombinations.

2 Implementations
Various implementations were tested, and fell into 3 main groups:

• Optimized assembly implementations: These implementations were written with
inline assembly, using various SIMD instructions (see Section 1.1), for specific masking
orders; e.g., SSE2 for 2nd order masking, AVX2 for 4th order masking, AVX-512 for
8th order masking.

• Generic C implementations: This is a generic implementation for every masking
order, written in C. An optional optimization for 32 bits was added, to support 64
bit data operations (using SSE2).

• 3rd party / open Source implementations: These implementations were developed
/ compiled by 3rd parties, and were included in our comparisons to evaluate our
implementations; specifically, the Usuba compiled generic C implementation for any
masking order [MD19, BDM+20], and the non-masked C implementation provided
by the creators of the cipher [DEMS16].

A fair comparison:
Efficient randomness throughput handling was carried out by an efficient randomness

buffer to obtain the true performance of each implementation, we had to eliminate the
biggest bottleneck in our system; namely, randomness bandwidth (e.g. it takes time
to make random bytes and read them from a file). Therefore, we implemented a class
which manages a ring buffer that fills up with random bytes (taken in our case from
/dev/urandom) whenever needed as illustrated in Fig. 4. The one exception was Usuba,
which does not come with a built-in solution for dealing with the randomness bandwidth
(there is only a place holder that uses srand(time(NULL)); rand() to get 8 random bytes,
which is far from an efficient placeholder). Thus, we integrated our system into the Usuba
compiled code. This was the only change we made to their code, to ensure the best possible
performance from Usuba and guarantee comparisons on equal grounds.

Inline optimizations:
Fig. 5 of our code illustrates a major design pattern found in our assembly implemen-

tations:

1. Minimizing Read After Write dependencies which is done with re-ordering instructions
and maximum register usage.

Figure 4: Random buffer implementation
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Figure 5: Minimizing RaW and memory-access

2. Minimizing memory access, by loading the entire state to the register file for as long
as possible.

The chart to the right of the figure shows the usage of the state with the registers (YMM0
to YMM4). It reveals a considerable gap of at least 4 cycles between writing to the registers
and reading / writing afterwards. Note that modern compilers can optimize code with the
methods mentioned above, but with our experience, GCC does not handle inline assembly
optimizations well (the code generated a SEG fault, so we have added a ‘volatile’ keyword).

In Fig. 6 we depict the usage of the entire Register File, while inline-ing each sub-

Figure 6: Usage of the entire register file in the linear layer and minimal block dependency
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function in Ascon-p (in this case, the linear diffusion layer, LDL). For example, the three
highlighted routines here are a section of the full LDL, in this case it corresponds to a 4th

order masking and AVX-2 (i.e. were implemented per extension flavour and d pairs). As
stated above, we minimized the Read after Write dependencies in our code as much as
possible by reordering instructions and using as much as possible registers, as can be seen
from each code section. Note that we have maximized the register usage and removed the
‘volatile’ keyword so GCC could reorder the instructions.

These optimizations are merely examples and are extensively used by different SIMD
flavors in our codes and different parts of the algorithm. All are available in our fully
public GitHub1 repository.

3 Evaluation
In all the evaluation benchmarks discussed below we implemented 105/d repeated

Ascon-p blocks with random inputs; i.e., 105/d calls for each d, design flavor, architecture
flavor and optimization mode. This is because as d increases, the input size increases
and cannot be stored in memory as is (a typical limit is around 500MB). On the one
hand, to obtain solid statistics and robust measurements for metrics such as cycles/bit and
randomness usage we need a significant sample space, but on the other, it is impossible
to do so when using large ds to generate random inputs or getting them directly from
the randomness source, since this would detract from the validity of our measurements.
Therefore, in our experiments we limited the number of experiments by normalizing them
to the maximum number of inputs that could fit in the cache/buffer (which was easily
achieved by dividing by d). In all the experiments, and most importantly for large d values,
the number of tests were always far more than enough to achieve convergence on our
evaluated parameters.

3.1 Generic Implementation Efficiency vs. d for x86 and x86-64 Intel
architectures

Fig. 7 depicts various performance results for the proposed generic C implementations
on the Ascon-p permutation block, tested on both the x86, and x86-64 Intel architectures.
For each architecture we illustrate the cycles per bit, randomness usage (in units of
bytes), and code size of each implementation (as loaded into memory). Note that all the
randomness usage figures in this work were divided/normalized by a factor of d, which
enable easy visualization of trends and differences between curves. “Proposed (generic
C)” refers to our efficient implementation (with and without UMA AND gates), “Usuba
compiled” refers to the C code generated for Ascon-p by the Usuba compiler. In all the
implementations, optimization flags were set (gcc -O3) to provide the best possible results,
including vectorization of the code. The proposed implementation achieved somewhat
better performance in x86-64 (in the range of 5-10%), and slightly worse in x86 compared
to the Usuba compiled code, with a maximum 7% degradation. Even though our proposed
code was not considerably faster, it used considerably less code than the Usuba code
size in x86-64; namely, up to a 50% code-size reduction (in our experience, the Usuba
compiled code looked bloated with redundant variables and state copies). As discussed in
the introduction, one of the goals of generic C codes is to promote transparency, reduce the
need for additional auxiliary tools, formats, languages, or effort from the user except for the
official and public ISA. Therefore, exceeding the results from the highly professional Usuba
tool and remaining on a par with it in other scenarios constitute a very nice additional
added value. In terms of x86, as shown on the right side of Fig. 7, we were not able to detect
a clear trend from the code size graph since neither code size exhibited a consistent trend
(recall that Ascon-p is optimized for 64-bit registers). As stated above, the findings must

1https://github.com/dorsal1464/ascon-p

https://github.com/dorsal1464/ascon-p
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be taken with a grain of salt, since an increased code size could imply more vectorization /
loop unrolling, which is not a bad thing in cycle counts. However, while trying to find a
good balance while maintaining superb cycle counts we observed that the product metric
of cycle count and code size was much more efficient in x86-64 for the proposed generic
C. Note as well that despite the generality of the code and its independence in terms of
auxiliary tools, it was mainly aimed at pinpointing the gap with highly inline assembly
optimized codes, as discussed below in details.

The blue curves in Fig. 7 which correspond to the proposed code with UMA AND
gates revealed that:

1. The cycles per bit had a “zigzag” pattern, for several reasons. The UMA AND gate
is much more complex / long compared to its ISW counterpart; thus, it has more
branches and fewer loops, making it harder for the compiler to optimize and vectorize
the code for the masking orders in the best way possible.

2. The randomness usage plot has a step-like shape that increases every four masking
orders, but always uses fewer random bytes than the other implementations, which
is its main added value and motivation. This stems from the design of the UMA
AND gates.

3. The code size of the proposed code (with UMA) is considerably larger than other
implementations. As stated above, this is due to the fact that the UMA AND gate
is much more complex.

Interestingly, an examination of the code of the UMA AND gate showed that for certain
masking orders, the cycles per bit was (slightly) better (as observed in the figure), whereas
for others, the cycles per bit were much higher. This is related to the branches, since
for masking orders that do not divide by 4, we eventually end up with a much larger
function that corresponds to the existence of complete, incomplete and pseudo-complete
branches [GMK18]).

Figure 7: Generic Implementation Efficiency vs. d for x86 and x86-64 Intel architectures
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Figure 8: Generic Implementation Efficiency vs. d for 32 and 64 bit ARM architectures

3.2 Generic Implementation Efficiency vs. d for 32 and 64 bit ARM
architectures

Fig. 8 illustrates the performance metrics of the generic C implementations on the
Ascon-p permutation block, emulated on the ARMv7 (32-bit), and aarch64 (64-bit) ARM
architectures. For each architecture we calculated the cycles per bit, randomness usage, and
code size of each implementation (as loaded into memory). The proposed implementation
achieved somewhat better performance for some masking orders, and up to 17% worse for
others in aarch64. On the other hand in ARMv7, the performance was identical compared
to the Usuba compiled code. Again, cycles per bit was emulated and should not be taken
as a complete case. Regarding code size,the proposed code was significantly smaller in
aarch64, and since QEMU’s ARM emulation has no special SIMD, there could be direct
correlation between increased code size and better performance (because increased code
size could imply more loop unrolling). In ARMv7, both graphs followed the basic trend.
In terms of the proposed code with UMA AND gate, similar trends as observed for the
x86/64 architectures emerged.

3.3 Tailored Implementation Efficiency vs. d and extension type, and
the gap from generic-designs

As discussed above, the x86 architecture has three major SIMD extensions: SSE2/3/4
is accessible via XMM register names, AVX2 is accessible via YMM register names, and
AVX-512 is accessible via ZMM register names (this extension is only available in the
64-bit mode). Given the constraints mentioned above,in our x86 (32-bit) benchmark, there
was no optimized assembly for masking order 8 (usage of AVX-512 is not supported), and
the code was slower and longer due to smaller register files.

The performance metric results of the generic C implementations and our optimized
assembly on the Ascon-p permutation block are illustrated in Fig. 9, which was tested on
both the x86, and the x86-64 Intel architectures. As discussed above, for each architecture
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Figure 9: Tailored Implementation Efficiency vs. d and extension type and the differences
with generic designs

we calculated the cycles per bit and the code size. The optimized assembly legend entry
refers to the assembly implementations we wrote for masking orders 2, 4, 8 for x86-64. For
x86 there is no optimized assembly for masking order 8 as mentioned above. The baseline
(no masking) implementation results from the official inventors of Ascon-p also appear on
the plots for comparison, as indicated by the gray diamond mark in the d = 1 entry. In all
implementations, optimization flags were set (gcc -O3) to provide the best possible results
including vectorization of the code, although for our optimized assembly, it had little effect.
Even though we optimized the proposed generic C to the limit, it still struggled to keep
up with our optimized assembly. The shortfall in this case reached 50% in cycles per bit
which is very high. Note that in all our assembly implementations, we also included input
refreshes (unlike the proposed generic C and Usuba), so real raw performance would be
slightly better. Furthermore, in our proposed generic C code, in 64 bits we were faster than
in 32 bits for all ds, as we would expect, but in Usuba the situation was sometimes the
other way around. This may hint that the Usuba compiler does not generate code aiming
for good optimizations for 64 bit architectures. In terms of code size, our assembly code
was 100% unrolled, whereas the proposed C code was not (mainly AND gates unrolling),
but in almost all cases our assembly implementation was still better, providing even joint
and considerable added value for cycles/bit and code-size.

The final and important highlight from the figure is that full utilization of SSE extensions
is not always possible. For instance, when ds are not a power of two, the effort will strain
the memory access and under-utilize the memory interface hardware by creating vacant
information traffic. The need to work with (e.g.) ZMM with ds in the range 5 to 7
will reduce the cycles per bit since these accesses are slower (Fig. 1) thus pinpointing
the distinct optimal d values and very sub-optimal progressively improving values of d
which aggressively under-utilize the hardware (these are illustrated with ellipses in the
figure). All in all, ideally we would have hoped that the SIMD progressive extensions
would give us masking for “free” (at least in terms of throughput). In practice, we were
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Figure 10: Performance of generic C implementations with various refresh lev-
els/implementations

not far from this in terms of cycles per bit since with d=2 and 4 we were very close to the
unmasked official design. However, with d=8 we began to observe an impact. As hinted in
Sub-section 1.1 this is due to the limited memory-bus width and the payload of the ZMM
registers opcodes. However, the results still indicate very significant gains as compared
to the generic C implementations, thus justifying the use of such techniques for similar
cryptographic primitives.

3.4 The cost of Refreshes
Finally, in Fig. 10 we illustrate the performance of generic C implementations with

various refresh levels/implementations on the Ascon-p permutation block AND gates
single-input, as tested on the x86-64 architecture. In each architecture we calculated the
cycles per bit and randomness usage.

Clearly, adding 20% refreshes (one out of five ANDs in an Sbox) with either method
yielded very good performance, almost on a par with the original proposed generic C.
However, at full (100%) input refreshes there was a considerable difference in performance in
both refresh methods compared to no refreshes, as expected. For larger masking orders, the
ISW became much more expensive in terms of performance. With respect to randomness
usage, HPC used considerably fewer random bytes, which justifies its utilization in cases
where refreshes are needed or their need is hard to falsify.

4 Discussion and Conclusion
High performance masked software implementations are attracting significant interest.

In this work we evaluated the efficiency of very high order masked designs over different
ISAs extensions, specifically targeting Intel x86/-64 architectures and SSE3/AVX-2/AVX-
512 extensions. We evaluated non-NEON ARM architectures and provided ultra-specific
assembly optimized implementations (different d to optimally match the level of extension)
and fully ported and flexible generic C implementations for all ds with several levels
of optimizations and parametric natures for gadget selection. Whereas most previous
studies on software masking have focused on the AES algorithm, NEON architectures or
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provide some specific ds results, in this work we provided a complementary view with
the Ascon-p sponge permutation and a variety of architectures ranging from low-cost to
ultra high-performance, and for all ds. We concretely embedded state of the art masking
gadgets in this evaluation to better understand the differences between utilizing specific
multiplication algorithm or a specific refresh gadget. To the best of our knowledge, this
constitutes the first published results on some of these combinations.

Both the generic-C implementations and the proposed optimized assembler codes
considerably reduced the utilization of conditional branches, jumps and utilization of
function calls in an attempt to improve performance while preserving a reasonable balance
with increased code size. Although some of these features reduce generality and ease of
reading and are tedious, the shortfall we observed with our evaluation metrics was notable.
The major design patterns found in our optimized assembly implementations for each
SIMD extension flavor are as follows: (1) Minimization of read after write and write after
read dependencies, achieved by instruction re-ordering and with maximum register usage
(2) Minimizing memory access, by loading the entire state to the register file for as long as
possible and, (3) Usage of the entire register file, while inline-ing each sub-function.

The generic-C codes were carefully designed to support various ISAs and extensions and
to be easily ported. They were mainly used as a comparison to identify differences from
more optimized designs, but constitute a contribution in their own right. As compared
to the Usuba compiler results, the proposed generic C implementation achieved better
performance in cycles/bit for the x86-64 architecture (in the range of 5-10%), and on both
x86-64/x86 the code size of our generic C was up to 50% smaller (in fact, we can trade
off and achieve fewer cycles/bit for slightly more code area). One of the highlights of
this work is that the generic C codes promote design transparency, reduce the need for
additional auxiliary tools, additional formats, languages, and effort from the user except
employing the official and public ISA. Therefore, outperforming the results of the highly
professional Usuba compiler and remaining on a par with it in other scenarios is a very
nice additional added value.

The optimized inline assembler versions demonstrate a gap of up to 50% in cycles per
bit, which is considerable, between the most optimized generic C design (and Usuba), and
also concurrently provide far more code size efficiency. We discussed the fact that full
utilization of SSE extensions is not always possible; for instance when ds are not a power
of two (with a 64 bit word size in Ascon), which places excessive strain on memory access
that under-utilizes the memory bandwidth. This underscores the distinct optimal d values
and very sub-optimal progressively improving values of d. Finally, we reported on the
relative gap of several refresh gadgets and discussed its wide range in terms of cycle counts
and randomness usage, thus highlighting that although different types of gadgets reduce
generality and require different building blocks for different parts of the implementation,
the use of more advanced refresh mechanisms is worthwhile.

Finally, we believe that providing real-life test cases with concrete and relevant cryp-
tographic instances such as sponges (which propagate to various other cryptographic
primitives) can contribute to the open-source community and the sharing of knowledge
and expertise, thus overall promoting future research with or based on these designs.
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