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Abstract. We present two simple zero knowledge interactive proofs that
can be instantiated with many of the standard decisional or computa-
tional hardness assumptions. Compared with traditional zero knowledge
proofs, in our protocols the verifiers starts first, by emitting a challenge,
and then the prover answers the challenge.

1 Introduction

A standard interactive proof of knowledge involves a prover, usually called P
or Peggy, and a verifier, usually called V or V ictor. Peggy is in possession of
some secret k and by interacting with V ictor she wants to convince him that
she indeed owns k. More formally, an interactive proof is a pair of programs
that implement the protocol between Peggy and V ictor. To be useful, such a
proof must be complete and sound. By complete we mean that an honest Peggy
succeeds in convincing an honest V ictor and by sound we mean that a dishonest
prover does not succeed in convincing the verifier of a false statement. Moreover,
if V ictor does not learn anything from the protocol’s execution which he did not
know before, we say that the protocol is zero knowledge.

In a classical zero knowledge protocol, Peggy starts the protocol by sending
a commitment to V ictor, then V ictor sends a challenge to Peggy and finally
Peggy sends her answer. The verifier will accept the proof if and only if Peggy’s
answer coincides with the answer he expects. In contrast with these protocols,
the authors of [10] introduce a new class of protocols in which V ictor starts the
protocol. Once the verifier knows that Peggy wants to start the protocol3, he
issues a challenge to which Peggy answers. If the answer is correct, then the
protocol ends successfully. Otherwise, it fails.

Although Grigoriev and Shpilrain’s protocol is very interesting, the authors
only claim that their protocol is zero knowledge without actually proving it. To
fill this gap, we re-formalized and generalized Grigoriev and Shpilrain’s proto-
col and then we proved its security. A downside of this formalization, is that
3 e.g. Peggy can send a “hello” type message or V ictor can be equipped with motion

sensors and detect Peggy’s proximity
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V ictor must iterate the protocol a number of times in order to fulfill the sound-
ness property. By vectorizing the protocol we managed to reduce the number of
iteration to one.

To further improve our protocol, we modified it by changing the underlying
assumption from a decisional one to a computational one. This was necessary in
order to reduce the bandwith requirements necessary for the decisional version.
Note that if Peggy and V ictor choose the right parameters the new protocol
will provide the same security assurances.

Finally, we offer the reader several concrete realizations of our protocols
and compare them with classical zero knowledge protocols such as Schnorr [17],
Guillou-Quisquater [11] and Fiat-Shamir [7]. Note that one can devise new in-
stantiations of our protocols.

Structure of the paper. We introduce notations and definitions used throughout
the paper in Section 2. Inspired by Grigoriev and Shpilrain’s protocol, in Sec-
tion 3 we formalize and analyse the Multi-Decisional Sherlock Holmes (MDSH)
protocol. A vectorized version of MDSH is presented in Section 4 and a com-
putational version is tackled in Section 5. Section 6 contains a comparison with
classical zero knowledge protocols. We conclude in Section 7.

2 Preliminaries

Notations. Throughout the paper, the notation |S| denotes the cardinality of
a set S. The action of selecting a random element x from a sample space X is
denoted by x

$←− X, while x← y represents the assignment of value y to variable
x. The probability of the event E to happen is denoted by Pr[E]. The subset
{0, . . . , s − 1} ∈ N is denoted by [0, s]. A vector v of length n is denoted either
v = (v0, . . . , vn−1) or v = {vi}i∈[0,n] and v1 = v2 stands for element-wise equality
between two vectors v1 and v2.

2.1 Hardness Assumptions

Inspired by the computational and decisional hardness assumptions described
in [2] and the one way function definitions found in [1,16], we further provide
the reader with the following two definitions. The first one captures the idea of
a generic computational hardness assumption, while the second the decisional
version. We do not claim to capture all the generic hardness assumptions, but
for our purpose these definitions suffice. Note that when we define an advantage,
we use “;” to denote the end of simple instructions or for loops and “,” to denote
the end of an instruction inside a for loop.

Definition 1 (Computational Hardness Assumption). Let K ⊆ {0, 1}∗
be a family of indices and for k ∈ K let Dk, Rk ⊆ {0, 1}∗. A computational hard
function f is a parameterized family of functions fk : Dk → Rk such that
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1. for every k ∈ K there exists a PPT algorithm that on input x ∈ Dk outputs
fk(x);

2. for every PPT algorithm A the advantage

ADV cha
f (A) = Pr[fk(z) = y | k $←− K;x

$←− Dk; y ← fk(x); z ← A(fk, y)]

is negligible;
3. there exists a PPT algorithm B such that

Pr[fk(z) = y | k $←− K;x
$←− Dk; y ← fk(x); z ← B(k, y)] = 1.

Definition 2 (Decisional Hardness Assumption). A function f is a deci-
sional hard function if in Definition 1, Item 2 and 3 are changed to

2. for every PPT algorithm A the advantage

ADV dha
f (A) = |2Pr[b = b′ | k0, k1

$←− K; b
$←− {0, 1};

x
$←− Dkb

; y ← fkb
(x); b′ ← A(fk0 , fk1 , y)]− 1|

is negligible;
3. there exists a PPT algorithm B such that

Pr[b = b′ | k0, k1
$←− K; b

$←− {0, 1};

x
$←− Dkb

; y ← fkb
(x); b′ ← B(k0, k1, y)] = 1.

2.2 Zero-Knowledge Protocols

Let Q : {0, 1}∗×{0, 1}∗ → {true, false} be a predicate. Given a value z, Peggy
will try to convince Victor that she knows a value x such that Q(z, x) = true.

We further base our reasoning on both a definition from [6,12] and a definition
from [9,12] which we recall next.

Definition 3 (Proof of Knowledge Protocol). An interactive protocol (P, V )
is a proof of knowledge protocol for predicate Q if the following properties hold

– Completeness: V accepts the proof when P has as input a value x with
Q(z, x) = true;

– Soundness: there exists an efficient program K (called knowledge extrac-
tor) such that for any P̄ (possibly dishonest) with non-negligible probability
of making V accept the proof, K can interact with P̄ and output (with over-
whelming probability) an x such that Q(z, x) = true.

Definition 4 (Zero Knowledge Protocol). A protocol (P, V ) is zero-knowledge
if for every efficient program V̄ there exists an efficient program S, the simulator,
such that the output of S is indistinguishable from a transcript of the protocol
execution between P and V̄ .

Remark 1. Note that we further work in the honest verifier scenario.
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3 Multi-Decisional Protocol

3.1 Description

Based on a variation of decisional hard functions, we further describe a protocol
(see Figure 1) that allows Peggy to prove to V ictor that she is in possession of
some secrets. When V ictor knows that Peggy is ready to start the protocol, he
sends her a challenge and Peggy responds with her guess. If the guess is correct,
then V ictor accepts the answer.

Peggy V ictor

Knows ki, for i ∈ [0, n] Knows fki , for i ∈ [0, n]

Choose i
$←− [0, n]

Choose x
$←− Dki

Compute y ← fki(x)
y←−−−−−−−−−−−

i′ ← −1
For j ∈ [0, n]

If y ∈ Rkj then i′ ← j
If i′ = −1 then abort

i′−−−−−−−−−−−→
If i′ = i return true
Else return false

Fig. 1. Multi-Decisional Sherlock Holmes (MDSH) Protocol.

Remark 2. The probability of an adversary guessing the correct index i is 1/n.
Thus, the protocol must be repeated sufficient number of times (e.g. m times) in
order to prevent an attacker4 to convince V ictor that he knows ki, for i ∈ [0, n].

3.2 Security Analysis

To ease understanding, we first introduce the notion of a multi-decisional hard
function and then we prove the security of the MDSH protocol. At the end of
this, subsection we show how to relate the security of a multi-decisional function
to the security of a decisional function.

Definition 5 (Multi-Decisional Hardness Assumption). Let n ≥ 2 be an
integer. A function f is a multi-decisional hard function if in Definition 2, Item
2 and 3 are changed to
4 In this case, the attacker’s success probability is 1/nm.
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2. for every PPT algorithm A the advantage

ADV mdha
f (A) = |2Pr[i = i′ | for i ∈ [0, n] : ki

$←− K; i
$←− [0, n];x

$←− Dki
;

y ← fki
(x); i′ ← A(fk, y)]− 1|

is negligible, where fk = {fki}i∈[0,n];
3. there exists a PPT algorithm B such that

Pr[i = i′ | for i ∈ [0, n] : ki
$←− K; i

$←− [0, n];x
$←− Dki ;

y ← fki(x); i
′ ← B(k, y)] = 1,

where k = {ki}i∈[0,n].
Remark 3. Please be advised that in the case of the multi-decisional hardness
assumption we implicitly assume that all the keys are kept secret and none
of them are leaked to an adversary (dishonest prover). If, for example, t out
of n keys are leaked there is a simple strategy that makes the attacker win
with probability (t + 1)/n. More precisely, his strategy works as follows: The
attacker, upon receipt of the verifier’s challenge y, checks whether the message
belongs to the set Rki for any of the t known secrets. If true (that happens with
probability t/n), the attacker correctly answers the corresponding index of the
matching secret. Otherwise, the attacker answers a random index chosen among
the unknown secrets. In this last case, the success probability is 1/(n− t) · (n−
t)/n = 1/n. Hence, the total success probability is t/n+ 1/n = (t+ 1)/n.
Theorem 1. The MDSH protocol is a proof of knowledge if and only if f is a
multi-decisional hard function. Moreover, the protocol is zero knowledge.
Proof. If f is a multi-decisional hard function, then according to Definition 5,
Item 3, Peggy will compute with probability 1 the correct index. Thus, the
completeness property is satisfied.

Let P̃ be a PPT algorithm that takes as input fk0
, . . . , fkn−1

and makes V

accept the proof with non-negligible probability Pr(P̃ ). Then we are able to
construct a PPT algorithm Q (described in Algorithm 1) that interacts with
P̃ and that has a non-negligible advantage ADV mdha

f (Q) = Pr(P̃ ). Thus, the
soundness property is satisfied.

Algorithm 1. Algorithm Q.
Input: An element y ← fki(x) and n functions fki , where i ∈ [0, n]

1 Send y to P̃

2 Receive i′ from P̃
3 return i′

The last part of our proof consists in constructing a simulator S such that its
output is indistinguishable from a genuine transcript between Peggy and V ictor.
Such a simulator is described in Algorithm 2.
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Algorithm 2. Simulator S.
Input: n functions fki , where i ∈ [0, n]

1 Choose i
$←− [0, n]

2 Choose x
$←− Dki

3 Compute y ← fki(x)
4 return (y, i)

⊓⊔

We further show that if ADV dha
f is negligible, then MDSH is secure. Thus,

when instantiating MDSH it suffices to know that decisional functions are secure.

Theorem 2. For any PPT algorithm A there exists a PPT algorithm B such
that the following inequality holds

ADV mdha
f (A) ≤ ADV dha

f (B).

Proof. Let A have a non-negligible advantage ADV mdha
f (A). We describe in Al-

gorithm 3 how B can obtain a non-negligible advantage ADV dha
f (B) by inter-

acting with A. Note that we have to randomly shuffle the functions’ positions,
in order to ensure that the index is randomly chosen from [0, n].

Algorithm 3. Algorithm B.
Input: An element y ← fkb(x)

1 , where b
$←− {0, 1} for i ∈ [2, n] do

2 Choose ki
$←− K

3 end
4 Randomly shuffle fk0 , . . . , fkn−1 ’s positions and denote the result by

f ′
k0
, . . . , f ′

kn−1

5 Let i′ ← A(f ′
k0
, . . . , f ′

kn−1
, y)

6 if i′ is the position of fk0 then
7 return 0
8 end
9 else if i′ is the position of fk1 then

10 return 1
11 end
12 else
13 return ⊥
14 end

⊓⊔
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3.3 Examples

Quadratic Residuosity Assumption. Let N be the product of two large primes
p and q and let JN (x) denote the Jacobi symbol of x modulo N . We denote by
JN = {x ∈ Z∗

N | JN (x) = 1} and QRN = {x ∈ Z∗
N | Jp(x) = 1 and Jq(x) = 1}.

Let u be an element such that his Jacobi symbol JN (u) is 1. The quadratic
residuosity assumptions (denoted by qr) states that deciding if u ∈ JN \ QRN

or u ∈ QRN is intractable without knowing p or q (see [5]).
Since qra partitions JN in two sets, we must set n = 2 for MDSH. Let u be

an element such that Jp(u) = Jq(u) = −1. Then the MDSH parameters are as
follows

– the secret keys are k0 = k1 = (p, q);
– the functions are defined as fk0

(x) = x2 mod N and fk1
(x) = u · x2 mod N ,

where u and N are public.

To decide if y ∈ JN \ QRN or y ∈ QRN , Peggy computes Jp(y). Note that
when b = 0 we have Jp(y) = Jp(x

2) = 1 and when b = 1 we have Jp(y) =
Jp(u)Jp(x

2) = −1.

Remark 4. A similar assumption can be found in [3]. Let κ > 1 be an integer
and let p, q ≡ 1 mod 2κ. Then the gap 2κ-residuosity assumption states that
is hard to distinguish between an element from JN \ QRN and element of the
form y2

κ

mod N , where y ∈ Z∗
N . In this case the functions become fk0

(x) =
x2κ mod N and fk1

(x) = u · x2κ mod N

Least Significant Bit of the e-th Root Assumption. Let N = pq be the product
of two large primes. We denote by φ(N) the Euler totient function. Let e be
an integer such that gcd(e, φ(N)) = 1. The least significant bit of the e-th root
assumption (denoted lsb-er) states that given y ≡ xe mod N is hard to decide
if the least-significant bit of x is 0 or 1 (see [15]).

As in the case of qr, we have n = 2. The protocol’s parameters are

– the secret keys are k0 = k1 = (p, q);
– the functions are defined as fk0(x) = (2x)e mod N and fk1(x) = (2x+ 1)e ·

x2 mod N , where N and e are public.

To find the least significant bit lsb, Peggy computes a d such that ed ≡ 1 mod
φ(N) and an element z ← yd mod N . Then lsb ≡ z mod 2.

Decisional Diffie-Hellman Assumption. Let G be a cyclic group of prime order q
and g a generator of G. Let x1, x2, y

$←− Z∗
q and b

$←− {0, 1}. The decisional Diffie-
Hellman assumption (denoted by ddh) states that given (gx1 , gx2 , gy, (gxb)y) the
probability for a PPT algorithm to compute the bit b is negligible (see [2]).

In this case n ≥ 2 and the parameters are

– the secret keys are ki
$←− Z∗

q , for i ∈ [0, n];
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– the public parameters are ri ← gki , for i ∈ [0, n], the group G and the
generator g;

– the functions are defined as fki
(x) = (gx, rxi ), for i ∈ [0, n].

To decide the correct index, Peggy has to parse y = (y0, y1) and to compute
ℓ = yki

0 until ℓ = y1. Note that yki
0 = rxi .

Decisional Bilinear Diffie-Hellman Assumption. Let G be cyclic group of prime
order q and let P be the corresponding generator. We denote by e : G×G→ GT

a cryptographic bilinear map, where GT is a cyclic group of order q. We will use
the convention of writing G additively and GT multiplicatively.

Let a0, a1, b0, b1, c
$←− Z∗

q . The decisional bilinear Diffie-Hellman assumption
(denoted dbdh) states that given (a0P, a1P, b0P, b1P, cP, Z) the probability of
deciding if Z = e(P, P )a0b0c or Z = e(P, P )a1b1c is negligible (see [4]).

As in the case of ddh, we have n ≥ 2. The MDSH’s parameters are

– the secret keys are ai, bi
$←− Z∗

q , for i ∈ [0, n];
– the public parameters are Qi ← aiP and Ri ← biP , for i ∈ [0, n], the group

G, the generator P and the bilinear map e;
– the functions are defined as fki

(x) = (xP, e(Qi, Ri)
x), for i ∈ [0, n].

To find the correct answer, Peggy parses y = (Y0, Y1) and computes L =
e(P, Y0)

aibi until L = Y1. Note that e(Qi, Ri)
x = e(P, P )aibix = e(P, xP )aibi =

e(P, Y0)
aibi .

4 Vectorized Multi-Decisional Protocol

4.1 Description

A downside to the MDSH protocol is that V ictor has to run the protocol a
number of times before he can be sure that Peggy knows {ki}i∈[0,n]. We further
present a variation of MDSH (see Figure 2) that allows V ictor to run the protocol
only once, if he chooses the right parameters. Let t > 1 be an integer.

Remark 5. The probability of an adversary guessing the correct index vector v
is 1/nt. If nt is sufficiently large, then a single execution of the protocol suffices.
Otherwise, V ictor must rerun the protocol multiple times.

4.2 Security Analysis

As in Section 3.2, we first introduce the relevant hardness assumption, then
we prove the security of the VDSH protocol and at the end we relate the new
hardness assumption with the multi-dimensional hardness assumption.

Definition 6 (Vectorized Multi-Decisional Hardness Assumption). Let
t > 1 be an integer. A function f is a vectorized multi-decisional hard function
if in Definition 5, Item 2 and 3 are changed to
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Peggy V ictor

Knows ki, for i ∈ [0, n] Knows fki , for i ∈ [0, n]
For j ∈ [0, t]

Choose ij
$←− [0, n]

Choose xj
$←− Dkij

Compute yj ← fkij
(xj)

Let y = (y0, . . . , yt−1)
y←−−−−−−−−−−−

For s ∈ [0, t]
i′s ← −1
For j ∈ [0, n]

If ys ∈ Rkj then i′s ← j
If i′s = −1 then abort

Let v′ = (i′0, . . . , i
′
t−1)

v′
−−−−−−−−−−−→

Let v = (i0, . . . , it−1)
If v′ = v return true
Else return false

Fig. 2. Vectorized Multi-Decisional Sherlock Holmes (VDSH) Protocol.

2. for every PPT algorithm A the advantage

ADV vdha
f (A) = |2Pr[v = v′ | for i ∈ [0, n] : ki

$←− K; for j ∈ [0, t] : ij
$←− [0, n],

xj
$←− Dkij

, yj ← fkij
(xj); v

′ ← A(fk, y)]− 1|

is negligible, where fk = {fki
}i∈[0,n], v = {ij}j∈[0,t] and y = {yj}j∈[0,t];

3. there exists a PPT algorithm B such that

Pr[v = v′ | for i ∈ [0, n] : ki
$←− K; for j ∈ [0, t] : ij

$←− [0, n],

xj
$←− Dkij

, yj ← fkij
(xj); v

′ ← B(k, y)] = 1,

where k = {ki}i∈[0,n], v = {ij}j∈[0,t] and y = {yj}j∈[0,t].

Theorem 3. The VDSH protocol is a proof of knowledge if and only if f is a
vectorized multi-decisional hard function. Moreover, the protocol is zero knowl-
edge.

Proof. The proof is similar to Theorem 2 and thus we only provide a sketch.
The completeness property is satisfied due to Definition 6, Item 3.

A PPT algorithm R is described in Algorithm 4 and R has a non-negligible
advantage ADV vdha

f (R) = Pr(P̃ ).
Finally, the simulator T is described in Algorithm 9

⊓⊔
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Algorithm 4. Algorithm R.
Input: A vector y ← (fk(x0), . . . , fk(xt−1))

1 Send y to P̃

2 Receive v′ from P̃
3 return v′

Algorithm 5. Simulator T .
Input: n functions fki , where i ∈ [0, n]

1 for j ∈ [0, t] do
2 Choose ij

$←− [0, n]

3 Choose xj
$←− Dkij

4 Compute yj ← fkij
(x)

5 end
6 Let y = (y0, . . . , yt−1) and v = (i0, . . . , it−1)
7 return (y, v)

The next theorem proves the equivalence between the security notion as-
sociated with multi-decisional functions and the vectorized version of it. Using
Theorems 2 and 4, the security of VDSH reduces to making sure that the deci-
sional security notion is intractable.

Theorem 4. For any PPT algorithms A and C there exist PPT algorithms B
and D such that the following inequalities hold

ADV mdha
f (A) ≤ ADV vdha

f (B)

ADV vdha
f (C) ≤ ADV mdha

f (D).

Proof. Let A have a non-negligible advantage ADV mdha
f (A) and let Pr(A) =

(ADV mdha
f (A) + 1)/2. We describe in Algorithm 6 how B can obtain a non-

negligible advantage ADV vdha
f (B) = |2Pr(A)n − 1| by interacting with A.

Algorithm 6. Algorithm B.
Input: A vector of elements y ← (y0, . . . , yt−1)

1 for j ∈ [0, t] do
2 Let i′j ← A(fk0 , . . . , fkn−1 , yj)
3 end
4 Let v′ = (i′0, . . . , i

′
t−1)

5 return v′

To prove the second inequality we assume that ADV vdha
f (C) is non-negligible.

Using algorithm C, we construct algorithm D (see Algorithm 7) that has a non-
negligible advantage ADV mdha

f (D).
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Algorithm 7. Algorithm D.
Input: An element y ← fki(x), where i

$←− [0, n]
1 for j ∈ [1, t] do
2 Choose ij

$←− [0, n]

3 Choose xj
$←− Dkij

4 Compute yj ← fkij
(x)

5 end
6 Let z = (y, y1, . . . , yt−1) and fk = (fk0 , . . . , fkn−1)
7 Let v′ ← C(fk, z)
8 Parse v′ = (v′0, . . . , v

′
t−1)

9 return v′0

⊓⊔

5 Computational Protocol

5.1 Description
Using a different security notion, we describe in Figure 3 a protocol that con-
sumes less bandwith that the VDSH protocol, while maintaining its security, if
the parameters are selected correctly.

Peggy V ictor

Knows k Knows fk

Choose x
$←− Dk

Compute y ← fk(x)
y←−−−−−−−−−−−

Compute z such that fk(z) = y
z−−−−−−−−−−−→

If fk(z) = y return true
Else return false

Fig. 3. Computational Sherlock Holmes (CSH) Protocol.

Remark 6. The probability of an adversary guessing the correct element x is
1/|Dk|. If |Dk| is sufficiently large, then a single execution of the protocol suffices.
Otherwise, the protocol must be repeated several times.

Remark 7. A vectorized version of the CSH protocol can also be constructed,
but as we will see in Section 5.3 it is not necessary. Note that the security analysis
is similar to the one from Section 4.2.
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5.2 Security Analysis

Theorem 5. The CSH protocol is a proof of knowledge if and only if f is a
computational hard function. Moreover, the protocol is zero knowledge.

Proof. The proof is similar to Theorem 2 and thus we only provide a sketch.
The completeness property is satisfied due to Definition 1, Item 3.

A PPT algorithm O is described in Algorithm 8 and O has a non-negligible
advantage ADV cha

f (O) = Pr(P̃ ). Note that in this case P̃ only takes as input a
function fk.

Algorithm 8. Algorithm O.
Input: An element y ← fk(x)

1 Send y to P̃

2 Receive z from P̃
3 return z

Finally, the simulator U is described in Algorithm 9

Algorithm 9. Simulator U .
Input: A function fk

1 Choose x
$←− Dk

2 Compute y ← fk(x)
3 return (y, x)

⊓⊔

5.3 Examples

e-th Root Assumption. Using the same parameters as in the case of lsb-er, the
e-th root assumption (denoted er) states that given y ≡ xe mod N computing
x is intractable (see [12]).

Using this assumption we can instantiate the CSH protocol with k = (p, q)
and fk(x) = xe mod N . To recover x, Peggy has to compute a d such that
ed ≡ 1 mod φ(N) and then x← yd mod N .

Remark 8. The problem can also be stated for e = 2, but to find a solution
to x2 mod N , Peggy has to use a different technique (e.g the Shanks-Tonelli
algorithm [13]). Note that this assumption is equivalent with the intractability
of factoring N (i.e. factoring assumption).
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Gap 2κ-residuosity Assumption Using the same parameters as in Section 3.3, we
can define fk(x) = yxz2

κ

mod N , where k = (p, q), Dk = [0, 2κ] and z
$←− Z∗

N . A
method for recovering x if one knows p is described in [3].

Computational Diffie-Hellman. Let G be a cyclic group of order q and g a
generator of G. Let x, y

$←− Z∗
q . The computational Diffie-Hellman assumption

(denoted by cdh) states that given (gx, gy) is intractable to compute gxy without
knowing x or y (see [2]). In this case a more efficient version of the CSH protocol
is provided in Figure 4.

Peggy V ictor

Knows x Knows y = gx

Choose k
$←− Z∗

q

Compute r ← gk
r←−−−−−−−−−−−

Compute z ← rx
z−−−−−−−−−−−→

If z = yk return true
Else return false

Fig. 4. Diffie-Hellman Version of the CSH (DHCSH) Protocol.

Remark 9. Note that the DHCSH protocol was used in [19] to develop a method
that performs full network authentication for resource-constrained devices. In
[18], the authors introduce a version of the DHCSH protocol in which instead of
sending r the verifier sends (r, h(yk)), where h is a hash function. Stinson and
Wu [18] prove that their protocol is secure against active intruders and reset
attack5. A more efficient version of the Stinson-Wu protocol was introduced in
[20,21]. In this variant, V ictor sends r, while Peggy sends h(z) instead of z.
The authors [20,21] show that the scheme achieves the same security as their
previously proposed protocol.

Computational Bilinear Diffie-Hellman Assumption. We assume the same setup
as in the case of dbdh. Let a, b, c

$←− Z∗
q . The computational bilinear Diffie-

Hellman assumption (denoted cbdh) states that given (aP, bP, cP ) a PPT algo-
rithm will compute e(P, P )abc with negligible probability (see [4]).

As in the case of cdh, this assumption allows us to have a more efficient
version of the protocol. We will use Figure 4 as a reference. Thus, Peggy and
V ictor know x = (a, b) and, respectively, y = (aP, bP ). The protocol’s first step
consists of V ictor computing r ← kP . After that Peggy computes z ← e(P, r)ab.
Finally, the protocol’s output is true if and only if z = e(aP, bP )k.
5 We refer the reader to [8] for a detailed description of these types of attacks.
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6 Performance of the Sherlock Holmes Protocols

In this section we compare the Sherlock Holmes protocols to some classical zero
knowledge protocols such as Schnorr [17], Guillou-Quisquater [11] and Fiat-
Shamir [7].

We further assume the same setup as in the case of cdh. From Figure 5 we
can see that the bandwidth requirement for Schnorr’s protocol is log2(|G|+ 2q)
bits. Similarly, for the Diffie-Hellman version of the CSH protocol we obtain a
requirement of log2(2|G|) bits. In practice, G is either Z∗

p, where p = (q−1)/2 is
a prime or an elliptic curve E(Zp) such that |E(Zp)| = hq, where h ≤ 4. Thus,
in the modulo p case we obtain (5q − 1)/2 versus q − 1 and in the elliptic curve
case (h+2)q vs 2hq. Thus, in most cases, our protocol’s requirements are slightly
lower. From a computational point of view, it is easy to see that both protocols
have their complexity dominated by three exponentiations.

Peggy V ictor

Knows x Knows y = gx

Choose k
$←− Z∗

q

Compute r ← gk
r−−−−−−−−−−−→

Choose c
$←− Z∗

q
c←−−−−−−−−−−−

Compute s← k + cx
s−−−−−−−−−−−→

If gs = ryc return true
Else return false

Fig. 5. Schnorr’s Protocol.

Remark 10. Okamoto’s protocol [14] can be seen as a vectorized version of
Schnorr’s protocol with n = 2. Thus, we can conclude that a vectorized ver-
sion of DHCSH has slightly lower requirements as Okamoto’s protocol.

Using Figure 5 as a reference, we further describe the Guillou-Quisquater
(GQ) protocol. Assuming the setup from er we set y ≡ xe mod N . In the first
phase, Peggy chooses k

$←− Z∗
N and computes r ≡ ke mod N . Then V ictor

randomly selects c
$←− [0, e − 1]. The third step consists of Peggy computing

s ≡ kxc mod N . Then V ictor accepts the proof if an only if se ≡ ryc mod N .
The bandwidth requirement for the GQ protocol is log2(2N+e), while for the

e-th root instantiation of CSH is loq2(2N). Hence, the requirements are similar
only if e is small. From a computational point of view, CSH’s time is dominated
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by two exponentiations, while GQ’s time by four. So, our protocol is twice as
fast. Also, note that the probability of impersonating Peggy is 1/e for GQ, while
for our protocol is in the worse case e2/φ(N)6.

The Fiat-Shamir protocol [7] considers e = 2. Let n = 2. If we consider
MDSH instantiated with ddh, we obtain a bandwith requirement of log2(|G|),
a complexity dominated by three exponentiations and a probability of imperson-
ating Peggy of 1/2. Let G = Z∗

p′ , when p′ is prime7. Using the reasoning from
the GQ protocol, we obtain that the MDSH protocol has a better performance
that the Fiat-Shamir, while having the same security.

7 Conclusions

Our two main zero knowledge protocols, decisional and computational Sherlock
Holmes protocols, represent two new large classes of protocols. The presented
list of examples is by no means exhaustive. Our next challenge is to see how we
can adapt these protocols in order to obtain new cryptographic primitives (e.g.
non-interactive zero knowledge proofs or digital signatures). Another interesting
research direction is to investigate whether these protocols can be secured against
active intruders and reset attack
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