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Abstract. Let N = pq be the product of two balanced prime numbers
p and q. Murru and Saettone presented in 2017 an interesting RSA-like
cryptosystem that uses the key equation ed−k(p2+p+1)(q2+q+1) = 1,
instead of the classical RSA key equation ed− k(p− 1)(q − 1) = 1. The
authors claimed that their scheme is immune to Wiener’s continued frac-
tion attack. Unfortunately, Nitaj et. al. developed exactly such an attack.
In this paper, we introduce a family of RSA-like encryption schemes that
uses the key equation ed− k[(pn − 1)(qn − 1)]/[(p− 1)(q− 1)] = 1, where
n > 1 is an integer. Then, we show that regardless of the choice of n,
there exists an attack based on continued fractions that recovers the
secret exponent.

1 Introduction
In 1978, Rivest, Shamir and Adleman [24] proposed one of the most popular
and widely used cryptosystem, namely RSA. In the standard RSA encryption
scheme, we work modulo an integer N , where N is the product of two large prime
numbers p and q. Let φ(N) = (p − 1)(q − 1) denote the Euler totient function.
In order to encrypt a message m < N , we simply compute c ≡ me mod N ,
where e is generated a priori such that gcd(e, φ(N)) = 1. To decrypt, one needs
to compute m ≡ cd mod N , where d ≡ e−1 mod φ(N). Note that (N, e) are
public, while (p, q, d) are kept secret. In the standard version of RSA, also called
balanced RSA, p and q are of the same bit-size such that q < p < 2q. In this
paper, we only consider the balanced RSA scheme and its variants.

In 2017, Murru and Saettone introduced an RSA-like cryptosystem [18]. In-
stead of using Z∗

N , the scheme works with a special type of group that consists
of equivalence classes of polynomials from the GF (p3) × GF (q3), where GF
stands for Galois field. Furthermore, when developing their cryptosystem, the
authors use the same modulus as the RSA scheme, but they choose e such that
gcd(e, ψ(N)) = 1, where ψ(N) = (p2 + p + 1)(q2 + q + 1). Also, the decryption
exponent is d ≡ e−1 mod ψ(N). In [18], the authors claim that their scheme
is more secure than RSA. More precisely, they say that their scheme is secure
against Wiener’s small private key attack [30] and Hastad’s broadcast attack [12].
Unfortunately, this is not true as can be seen in the following paragraphs.
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Small Private Key Attacks. In order to decrease decryption time, one may prefer
to use a smaller d. Wiener showed in [30] that this is not always a good idea.
More exactly, in the case of RSA, if d < N0.25/3, then one can retrieve d from
the continued fraction expansion of e/N , and thus factor N . Using a result
developed by Coppersmith [7], Boneh and Durfee [5] improved Wiener’s bound
to N0.292. Later on, Herrmann and May [13] obtain the same bound, but using
simpler techniques. A different approach was taken by Blömer and May [3], whom
generalized Wiener’s attack. More precisely, they showed that if there exist three
integers x, y, z such that ex−yφ(N) = z, x < N0.25/3 and |z| < |exN−0.75|, then
the factorisation of N can be recovered. When an approximation of p is known
such that |p − p0| < N δ/8 and δ < 0.5, Nassr, Anwar and Bahig [20] present a
method based on continued fractions for recovering d when d < N (1−δ)/2.

In the case of the Murru-Saetonne scheme, it was shown in [22, 27] that a
Wiener-type attack still works. Using a technique based on continued fractions
they showed that when d < N0.25 we can factor N . Applying the method pro-
posed by Boneh-Durfee, Nitaj et al. [22] improved the bound to N0.5694. A better
bound d < N0.585 was found by Zheng, Kunihiro and Yao in [31]. When p0 is
known such that |p− p0| < N δ and δ < 0.5, Nassr, Anwar and Bahig [19] show
how to recover d when d < N (1−δ)/2.

Multiple Private Keys Attack. Let ℓ > 0 be an integer and i ∈ [1, ℓ]. When mul-
tiple large public keys ei ≃ Nα are used with the same modulus N , Howgrave-
Graham and Seifert [14] describe an attack for RSA that recovers the corre-
sponding small private exponents di ≃ Nβ . This attack was later improved by
Sarkar and Maitra [25], Aono [1] and Takayasu and Kunihiro [28]. The best
known bound [28] is β < 1 −

√
2/(3ℓ+ 1). Remark that when ℓ = 1 we obtain

the Boneh-Durfee bound.
The multiple private keys attack against the Murru-Saetonne cryptosystem

was studied by Shi, Wang and Gu [26]. The bound obtained by the authors is
β < 3/2− 4/(3ℓ+ 1) and it is twice the bound obtained by Aono [1]. Note that
when ℓ = 1 the bound is less than 0.585, and thus tighter bounds might exist.

Partial Key Exposure Attack. In this type of attack, the most or least significant
bits of the private exponent d are known. Starting from these, an adversary can
recover the entire RSA private key using the techniques presented by Boneh,
Durfee and Frankel in [6]. The attack was later improved by Blömer and May [2],
Ernst et al. [9] and Takayasu and Kunihiro [29]. The best known bound [29] is
β < (γ + 2−

√
2− 3γ2)/2, where the attacker knows Nγ leaked bits.

Shi, Wang and Gu [26] describe a partial exposure attack that works in the
case of the Murru-Saetonne scheme. The bound they achieve is β < (3γ + 7 −
2
√
3γ + 7)/3. When γ = 0, the bound is close to 0.569, and thus it remains an

open problem how to optimize it.

Small Prime Difference Attack. When the primes difference |p− q| is small and
certain conditions hold, de Weger [8] described two methods to recover d, one
based on continued fractions and one on lattice reduction. These methods were
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further extended by Maitra and Sakar [16, 17] to |ρq − p|, where 1 ≤ ρ ≤ 2.
Lastly, Chen, Hsueh and Lin generalize them further to |ρq− ϵp|, where ρ and ϵ
have certain properties. The continued fraction method is additionally improved
by Ariffin et al. [15].

The de Weger attack was adapted to the Murru-Saetonne public key encryp-
tion scheme by Nitaj et al. [23], Nassr, Anwar and Bahig [19] and Shi, Wang
and Gu [26]. The best bounds for the continued fraction and lattice reduction
methods are found in [23]. The Maitra-Sakar extension was studied only in [19].

1.1 Our Contribution

In this paper we generalize the Murru-Saetonne scheme to equivalence classes
of polynomials from GF (pn) × GF (qn), where n > 1. We wanted to see if only
for n = 3 the attacks devised for RSA work or this is something that happens
in general. In this study we present a Wiener-type attack that works for any
n > 1. More, precisely we prove that when d < N0.25, we can recover the secret
exponent regardless the value of n. Therefore, no matter how we instantiate the
generalized version, a small private key attack will always succeed.

Structure of the Paper. We introduce in Section 2 notations and definitions used
throughout the paper. Inspired by Murru and Saettone’s work [18], in Section 3
we introduce a family of groups that is latter used in Section 4 to construct RSA-
like cryptosystems. After proving several useful lemmas in Section 5, we extend
Wiener’s small private key attack in Section 6. Two concrete instantiations are
provided in Section 7. We conclude our paper in Section 8.

2 Preliminaries

Notations. Throughout the paper, λ denotes a security parameter. Also, the
notation |S| denotes the cardinality of a set S. The set of integers {0, . . . , a} is
further denoted by [0, a].

2.1 Continued fraction

For any real number ζ there exist an unique sequence (an)n of integers such that

ζ = a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 + · · ·

,

where ak > 0 for any k ≥ 1. This sequence represents the continued fraction
expansion of ζ and is denoted by ζ = [a0, a1, a2, . . .]. Remark that ζ is a rational
number if and only if its corresponding representation as a continued fraction is
finite.
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For any real number ζ = [a0, a1, a2, . . .], the sequence of rational numbers
(An)n, obtained by truncating this continued fraction, Ak = [a0, a1, a2, . . . , ak],
is called the convergents sequence of ζ.

According to [11], the following bound allows us to check if a rational number
u/v is a convergent of ζ.

Theorem 1. Let ζ = [a0, a1, a2, . . .] be a positive real number. If u, v are positive
integers such that gcd(u, v) = 1 and∣∣∣ζ − u

v

∣∣∣ < 1

2v2
,

then u/v is a convergent of [a0, a1, a2, . . .].

3 Useful Quotient Groups

In this section we will provide the mathematical theory needed to generalize the
Murru and Saettone encryption scheme. Therefore, let (F,+, ·) be a field and
tn − r an irreducible polynomial in F[t]. Then

An = F[t]/(tn − r) = {a0 + a1t+ . . .+ an−1t
n−1 | a0, a1, . . . , an−1 ∈ F}

is the corresponding quotient field. Let a(t), b(t) ∈ An. Remark that the quotient
field induces a natural product

a(t) ◦ b(t) =

(
n−1∑
i=0

ait
i

)
◦

n−1∑
j=0

bit
i


=

2n−2∑
i=0

 i∑
j=0

ajbi−j

xi

=

n−1∑
i=0

 i∑
j=0

ajbi−j

xi + r

2n−2∑
i=n

 i∑
j=0

ajbi−j

xi−n

=

n−2∑
i=0

 i∑
j=0

ajbi−j + r

i+n∑
j=0

ajbi−j+n

xi +

n−1∑
j=0

ajbn−1−jx
n−1.

In order to describe our family of RSA-like cryptosystems, we need to intro-
duce another quotient group Bn = A∗

n/F∗. The elements from Bn are equivalence
classes of elements from A∗

n. More precisely, we have

[a0 + . . .+ an−1t
n−1] = {γa0 + . . .+ γan−1t

n−1 | γ ∈ F∗, a0, . . . , an−1 ∈ F},

where [a0 + . . .+ an−1t
n−1] ∈ Bn.
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Lemma 1. The cardinality of Bn is ψn(F) = (|F|n − 1)/(|F| − 1).

Proof. Let 1F∗ be the unity of F∗. When a0 ̸= 0 and a1 = . . . = an−1 = 0, we
obtain that

[a0 + . . .+ an−1t
n−1] = [a0] = [a0a

−1
0 ] = [1F∗ ].

If a1 ̸= 0 and a2 = . . . = an−1 = 0, then

[a0 + . . .+ an−1t
n−1] = [a0 + a1t] = [a0a

−1
1 + t].

From the previous two examples, we can deduce the general formula. For any
k ∈ [0, n− 1], if ak ̸= 0 and ak+1 = . . . = an−1 = 0, then

[a0 + . . .+ an−1t
n−1] = [a0 + . . .+ akt

k]

= [a0a
−1
k + a1a

−1
k t+ . . .+ ak−1a

−1
k tk−1 + tk].

For any k ∈ [0, n− 1], we define the following sets

Bk = {a0 + . . .+ ak−1t
k−1 + tk | a0, a1, . . . , ak−1 ∈ F}.

Remark that Bi ∩ Bj = ∅ for i ̸= j. From the previous analysis of the
equivalence classes of A∗

n, we can deduce that Bn = ∪n−1
k=0Bk. Therefore, we

obtain

|Bn| =
n−1∑
k=0

|Bi| = 1 + |F|+ . . .+ |F|n−1 =
|F|n − 1

|F| − 1
,

as desired. ⊓⊔

From the proof of the previous lemma we can deduce the product induced
by Bn, namely

[a(t)]⊙ [b(t)] = [a(t) ◦ b(t)] = [c(t)] = [α−1c(x)],

where α is the leading coefficient of c(x).

4 The Scheme

Let p be a prime number. When we instantiate F = Zp, we have that An =
GF (pn) is the Galois field of order pn. Moreover, Bn is a cyclic group of order
ψn(Zp) = (pn− 1)/(p− 1). Remark that an analogous of Fermat’s little theorem
holds

[a(x)]ψn(Zp) ≡ [1] mod p,

where [a(x)] ∈ Bn and the power is evaluated by ⊙-multiplying [a(x)] by itself
ψn(Zp)− 1 times. Therefore, we can build an encryption scheme that is similar
to RSA using the ⊙ as the product.
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Setup(λ): Let n > 1 be an integer. Randomly generate two distinct large prime
numbers p, q such that p, q ≥ 2λ and compute their product N = pq. Select
r such that the polynomial tn − r is irreducible in ZN [t]. Let

ψn(ZN ) = ψn(N) =
pn − 1

p− 1
· q

n − 1

q − 1
.

Choose an integer e such that gcd(e, ψn(N)) = 1 and compute d such that
ed ≡ 1 mod ψn(N). Output the public key pk = (n,N, r, e). The correspond-
ing secret key is sk = (p, q, d).

Encrypt(pk,m): To encrypt a message m = (m0, . . . ,mn−1) ∈ ZnN we first
construct the polynomial m(t) = m0 + . . . +mn−1t

n−1 + tn ∈ Bn and then
we compute c(t) ≡ [m(t)]e mod N . Output the ciphertext c(t).

Decrypt(sk, c(t)): To recover the message, simply compute m(t) ≡ [c(t)]d mod
N and reassemble m = (m0, . . . ,mn−1).

Remark 1. When n = 3, we obtain the Murru and Saettone cryptosystem [18].

5 Useful Lemmas

In this section we provide a few useful properties of ψn(N). Before starting our
analysis, we first note that plugging q = N/p in ψn(N) leads to the following
function

fn(p) =
pn − 1

p− 1
·

(
N
p

)n
− 1

N
p − 1

,

with p as a variable. The next lemma tells us that, under certain conditions, fn
is a strictly increasing function.

Proposition 1. Let N a positive integer. Then for any integers n > 1 and√
N ≤ x < N , we have that the function

fn(x) =
xn − 1

x− 1
·
(
N
x

)n − 1
N
x − 1

,

is strictly increasing with x.

Proof. Before starting our proof, we notice that the function fn can be expanded
into fn(x) = gn(x) · hn(x), where

gn(x) = 1 + x+ x2 + . . .+ xn−1

and

hn(x) = 1 +
N

x
+

(
N

x

)2

+ . . .+

(
N

x

)n−1

.
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We will further prove our statement using induction with respect to n. When
n = 2, we have that

f2(x) = (1 + x)

(
1 +

N

x

)
= 1 +

N

x
+ x+N.

Using x ≥
√
N we obtain that

f ′2(x) = 1− N

x2
≥ 0 ⇔ 1 ≥ N

x2
⇔ x2 ≥ N,

and therefore we have that f2 is strictly increasing.
For the induction step we assume that fk is strictly increasing and we will

show that fk+1 is also strictly increasing. Hence, we have that

fk+1(x) = gk+1(x) · hk+1(x)

= gk(x) · hk(x) + gk(x) ·
(
N

x

)k
+ xk · hk(x) +Nk.

Considering the induction hypothesis, it is enough to prove that the function

sk(x) = gk(x) ·
(
N

x

)k
+ xk · hk(x)

is strictly increasing. Therefore, we have that

sk(x) =

(
Nk · 1

xk
+ xk

)
+

(
Nk · 1

xk−1
+N · xk−1

)
+

(
Nk · 1

xk−2
+N2 · xk−2

)
+ . . .+

(
Nk · 1

x
+Nk−1 · x

)
= sk,0(x) + sk,1(x) + sk,2(x) + . . .+ sk,k−1(x),

where we considered

sk,i(x) = Nk · 1

xk−i
+N i · xk−i.

Bear in mind that

s′k,i(x) = Nk · −(k − i)

xk−i+1
+N i · (k − i) · xk−i−1

= N i(k − i)

(
xk−i−1 −Nk−i · 1

xk−i+1

)
.

For any i ∈ [0, k − 1] we have that sk,i is strictly increasing since

s′k,i(x) ≥ 0 ⇔ xk−i−1 ≥ Nk−i · 1

xk−i+1
⇔ x2(k−i) ≥ Nk−i,

where for the last inequality we used x ≥
√
N . Therefore, sk is strictly increasing,

which implies that fk+1 is strictly increasing.
⊓⊔
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Using the following lemma from [21], we will compute a lower and upper
bound for ψn(N).

Lemma 2. Let N = pq be the product of two unknown primes with q < p < 2q.
Then the following property holds

√
2

2

√
N < q <

√
N < p <

√
2
√
N.

Corollary 1. Let N = pq be the product of two unknown primes with q < p <
2q. Then the following property holds(√

N
n − 1√
N − 1

)2

< ψn(N) <
(
√
2N)n − 1√
2N − 1

·

(√
2N
2

)n
− 1

√
2N
2 − 1

.

Proof. By Lemma 2 we have that
√
N < p <

√
2
√
N,

which, according to Proposition 1, leads to

fn(
√
N) < fn(p) < fn(

√
2
√
N).

This is equivalent to(√
N
n − 1√
N − 1

)2

< ψn(N) <
(
√
2N)n − 1√
2N − 1

·

(√
2N
2

)n
− 1

√
2N
2 − 1

,

as desired.
⊓⊔

When n = 3, the following result proven in [22] becomes a special case of
Corollary 1.

Corollary 2. Let N = pq be the product of two unknown primes with q < p <
2q. Then the following property holds(

N +
√
N + 1

)2
< ψ3(N) <

(
N +

3

4

√
2N + 1

)2

− 3

8
N.

We can use Corollary 1 to find an useful approximation of ψn. This result
will be useful when devising the attack against the generalized Murru-Saettone
scheme.

Proposition 2. Let N = pq be the product of two unknown primes with q <
p < 2q. We define

ψn,0(N) =
1

2

(√
N
n − 1√
N − 1

)2

+
1

2
· (

√
2N)n − 1√
2N − 1

·

(√
2N
2

)n
− 1

√
2N
2 − 1

.
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Then the following holds

|ψn(N)− ψn,0(N)| < ∆n

2
Nn−2

√
N,

where

∆n =

(√
2
n − 1√
2− 1

)
(√

2
2

)n
− 1

√
2
2 − 1

− n2.

Proof. According to Corollary 1, ψn,0(N) is the mean value of the lower and
upper bound. The following property holds

|ψn(N)− ψn,0(N)| ≤ 1

2

 (√2N)n − 1√
2N − 1

·

(√
2N
2

)n
− 1

√
2N
2 − 1

−

(√
N
n − 1√
N − 1

)2


=
1

2

 n−1∑
i,j=0

(
√
2N)i

(√
2N

2

)j
−

n−1∑
i,j=0

√
N
i√
N
j


=

1

2

 n−1∑
i,j=0

√
N
i√
N
j

(√
2
i+j

2j
− 1

)

=
1

2

 n−1∑
i,j=0
i ̸=j

√
N
i√
N
j

(√
2
i+j

2j
− 1

) .
Note that in the last expression all the coefficients are non-zero and the leading
coefficient is

√
N
n−1+n−2

= Nn−2
√
N . Therefore, we obtain

|ψn(N)− ψn,0(N)| < 1

2
Nn−2

√
N

 n−1∑
i,j=0
i ̸=j

(√
2
i+j

2j
− 1

)
=

1

2
Nn−2

√
N

 n−1∑
i,j=0

√
2
i+j

2j
− n(n− 1)− n


=

1

2
Nn−2

√
N

(√
2
n − 1√
2− 1

)
(√

2
2

)n
− 1

√
2
2 − 1

− n2

 ,
as desired.

⊓⊔

When n = 3, the following property presented in [22] becomes a special case
of Proposition 2.
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Corollary 3. Let N = pq be the product of two unknown primes with q < p <
2q. Then the following holds

|ψ3(N)− ψ3,0(N)| < 0.372N
√
N < 0.5N

√
N.

6 Application of Continued Fractions

We further provide an upper bound for selecting d such that we can use the
continued fraction algorithm to recover d without knowing the factorisation of
the modulus N .

Theorem 2. Let N = pq be the product of two unknown primes with q < p < 2q.
If e < ψn(N) satisfies ed− kψn(N) = 1 with

d <

√
Nn−0.5

e∆n
, (1)

then we can recover d in polynomial time.

Proof. We have that∣∣∣∣kd − e

ψn,0(N)

∣∣∣∣ = |ed− kψn,0(N)|
dψn,0(N)

≤ |ed− kψn(N)|+ k|ψn(N)− ψn,0(N)|
dψn,0(N)

.

Using ed− kψn(N) = 1 and Proposition 2 we obtain∣∣∣∣kd − e

ψn,0(N)

∣∣∣∣ ≤ 1 + ∆n

2 kN
n−2

√
N

dψn,0(N)

≤ k

2d
·∆n · 2 +Nn−2

√
N

ψn,0(N)
.

Note that

ψn,0(N) >

(√
N
n − 1√
N − 1

)2

>
√
N

2(n−1)
+ 2

√
N,

which leads to ∣∣∣∣kd − e

ψn,0(N)

∣∣∣∣ ≤ k

2d
·∆n · 2 +

√
N

2n−3

√
N

2n−2
+ 2

√
N

=
k∆n

2d
√
N
. (2)
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According to Corollary 1, we have that ψn(N) >
√
N

2(n−1)
= Nn−1. Since

kψn(N) = ed− 1 < ed, we have

k

d
<

e

ψn(N)
<

e

Nn−1
.

Equation (2) becomes∣∣∣∣kd − e

ψn,0(N)

∣∣∣∣ ≤ 1

2
· e∆n

Nn−0.5
<

1

2d2
.

Using Theorem 1 we obtain that k/d is a convergent of the continued fraction
expansion of e/ψn,0(N). Therefore, d can be recovered in polynomial time.

⊓⊔

Corollary 4. Let α+0.5 < n and N = pq be the product of two unknown primes
with q < p < 2q. If we approximate e ≃ Nα and N ≃ 22λ, then Equation (1)
becomes

d <
2(n−α−0.5)λ

√
∆n

or equivalently

log2(d) < (n− α− 0.5)λ− log2(
√
∆n) ≃ (n− α− 0.5)λ.

When case n = 3 is considered, the following property presented in [22]
becomes a special case of Corollary 4.

Corollary 5. Let α < 2.5 and N = pq be the product of two unknown primes
with q < p < 2q. If we approximate e ≃ Nα and N ≃ 22λ then Equation (1) is
equivalent with

log2(d) < (2.5− α)λ− 0.43 ≃ (2.5− α)λ.

The following corollary tells us that when e is large enough we obtain roughly
the same margin as Wiener [4, 30] obtained for the classical RSA.

Corollary 6. Let N = pq be the product of two unknown primes with q < p <
2q. If we approximate e ≃ Nn−1 and N ≃ 22λ then Equation (1) is equivalent
with

log2(d) < 0.5λ− log2(
√
∆n) ≃ 0.5λ.

7 Experiment results

We further present an example for each of the n = 2 and n = 4 cases. An
example for the n = 3 case is provided in [22], and thus we omit it.
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7.1 Case n = 2

Before providing our example, we first show how to recover p and q once ψ2(N) =
(1− ed)/k is recovered using our attack.

Lemma 3. Let N = pq be the product of two unknown primes with q < p < 2q.
If ψ2(N) = (1+ p)(1+ q) is known, then p and q can be recovered in polynomial
time.

Proof. Expanding ψ2(N) we obtain that

ψ2(N) = 1 + p+ q + pq = 1 + p+ q +N,

which is equivalent to

p+ q = ψ2(N)−N − 1.

Let S = ψ2(N)−N − 1. We remark that

(p− q)2 = (p+ q)2 − 4pq = S2 − 4N.

Let D be the positive square root of the previous quantity. Taking into account
that p > q, we derive the following{

p = S+D
2

q = S−D
2

.

⊓⊔

Now, we will exemplify our attack for n = 2 using the following small public
key

N = 11939554693914055465250454114706510455824787856591,

e = 6074574633060181514768858436051302980810169830821.

Remark that e ≈ N0.994. We use the Euclidean algorithm to compute the con-
tinue fraction expansion of e/ψ2,0(N) and obtain that the first 20 partial quo-
tients are

[0, 1, 1, 27, 1, 56, 7, 23, 3, 2, 9, 2, 20, 1, 3, 1, 1, 1, 2, 7, 17, . . .].

According to Theorem 2, the set of convergents of e/ψ2,0(N) contains all the
possible candidates for k/d. From these convergents we select only those for
which ψ2 = (ed− 1)/k is an integer and the following system of equations{

ψ2 = (1 + p)(1 + q)

N = pq
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has a solution as given in Lemma 3. The 2nd, 3rd and 15th convergents satisfy
the first condition, however only the last one leads to a valid solution for p and
q. More precisely, the 15th convergent leads to

ψ2 = 11939554693914055465250461283567876958785337490000,

k

d
=

3205471919

6300343581
,

p = 4537629838266117418120249,

q = 2631231528236843131513159.

7.2 Case n = 4

As in the previous case, we first show how to factorize N once ψ4 is known.

Lemma 4. Let N = pq be the product of two unknown primes with q < p < 2q.
If ψ4(N) = (1 + p + p2 + p3)(1 + q + q2 + q3) is known, then p and q can be
recovered in polynomial time.

Proof. Expanding ψ4(N) we obtain that

ψ4(N) = p3q3 + p3q2 + p3q + p3 + p2q3 + p2q2 + p2q + p2

+ pq3 + pq2 + pq + p+ q3 + q2 + q + 1

= N3 + (N2 + 1)(p+ q) + (N + 1)(p2 + pq + q2)+

+ (p3 + p2q + pq2 + q3) + 1

= N3 + (N2 + 1)(p+ q) + (N + 1)(p+ q)2 − (N + 1)N

+ (p+ q)3 − 2N(p+ q) + 1.

We further consider the following form of ψ4

ψ4(N) = (p+ q)3 + (N + 1)(p+ q)2 + (N − 1)2(p+ q) +N3 −N2 −N + 1.

Finding S = p+ q is equivalent to solving (in Z) the cubic equation

x3 + (N + 1)x2 + (N − 1)2x+ (N3 −N2 −N + 1− ψ4(N)) = 0, (3)

which can be done in polynomial time as it is presented in [10]. In order to find
p and q, we compute D = p− q as in Lemma 3. This concludes our proof.

⊓⊔

The following lemma shows that in order to factor N we only need to find
one solution to Equation (3), namely its unique integer solution.

Lemma 5. Equation (3) always has exactly two non-real roots and an integer
one.
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Proof. Let x1, x2 and x3 be Equation (3)’s roots. Using Vieta’s formulas we have

x1 + x2 + x3 = −(N + 1),

x1x2 + x2x3 + x3x1 = (N − 1)2,

x1x2x3 = −(N3 −N2 −N + 1− ψ4(N)).

From the first two relations we obtain

x21 + x22 + x23 = (x1 + x2 + x3)
2 − 2(x1x2 + x2x3 + x3x1)

= (N + 1)2 − 2(N − 1)2

= −N2 + 6N − 1.

If we assume that x1, x2, x3 are all real, we get the following inequalities

0 < x21 + x22 + x23 = −(N − 3)2 + 8 < 0,

for any N ≥ 6. Therefore, we obtain a contradiction, and hence we conclude
that Equation (3) has one real root, which is p+ q ∈ Z, and two non-real roots.

⊓⊔

We will further present our attack for n = 4 using the following small public
key

N = 11939554693914055465250454114706510455824787856591,

e = 15006652287039759861337802324565215623310940476513

92542670434722550157448270887318217632962138205421

899647696285870461657741073464172612216312741409.

Note that e ≈ N2.998. Applying the continue fraction expansion of e/ψ4,0(N),
we get the first 20 partial quotients

[0, 1, 7, 2, 4, 1, 4, 6, 1, 4, 26, 1, 7, 1, 1, 10, 2, 1, 11, 1, 1, . . .].

In this case, we consider the convergents of e/ψ4,0(N), and we select only
those for which ψ4 = (ed− 1)/k is an integer and the following system of equa-
tions {

ψ4 = (1 + p+ p2 + p3)(1 + q + q2 + q3)

N = pq

has a solution as given in Lemma 4. The 2nd and 19th convergents satisfy the
first condition, however only the last one leads to a valid solution for p and q.
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More precisely, the 19th convergent leads to

ψ4 = 17020189377867860247096553094467061591207640835506

21907753457911934182387623188683187170430636727789

996180586005565732093187872678169520144124360000,

k

d
=

2425248603

2750659489
,

p = 4537629838266117418120249,

q = 2631231528236843131513159.

8 Conclusions

In this paper we introduced a family of RSA-like cryptosystems, which includes
the Murru and Saettone public key encryption scheme [18] (i.e. n = 3). Then,
we presented a small private key attack against our family of cryptosystems and
provided two instantiations of it. As a conclusion, the whole family of RSA-like
schemes allows an attacker to recover the secret exponent via continued fractions
when the public exponent is close to Nn−1 and the secret exponent is smaller
that N0.25.

Future Work. When n = 2, 3, 4, in Section 7 and [22] a method for factoring N
once ψn is known is provided. Although we found a method for particular cases
of n we could not find a generic method for factoring N . Therefore, we leave
it as an open problem. Another interesting research direction, is to find out if
the attack methods described in Section 1 for the Murru-Saetonne schemes also
work in the general case.
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