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Abstract. This paper presents two new techniques for the fast imple-
mentation of the Keccak permutation on the A-profile of the Arm archi-
tecture: First, the elimination of explicit rotations in the Keccak permu-
tation through Barrel shifting, applicable to scalar AArch64 implemen-
tations of Keccak-f1600. Second, the construction of hybrid implemen-
tations concurrently leveraging both the scalar and the Neon instruction
sets of AArch64. The resulting performance improvements are demon-
strated in the example of the hash-based signature scheme SPHINCS+,
one of the recently announced winners of the NIST post-quantum cryp-
tography project: We achieve up to 1.89× performance improvements
compared to the state of the art. Our implementations target the Arm
Cortex-{A55,A510,A78,A710,X1,X2} processors common in client de-
vices such as mobile phones.
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1 Introduction

Hash functions and extendable-output functions based on the Keccak-p permu-
tations have gained popularity since their standardization as SHA-3 and SHAKE
in FIPS202 [Dwo15] through the US National Institute for Standards and Tech-
nology (NIST) in 2012. Post-quantum cryptography (PQC) in particular makes
extensive use of SHA-3 and SHAKE as building blocks: In July 2022, NIST
announced [ACD+22] the four schemes it intends to include in its first PQC
standard – updating the standards for key-establishment [Nat18,Nat19] and
digital signatures [Nat13] – and all four selected schemes make use of SHA-
3. Among them is the hash-based signature scheme SPHINCS+ [HBD+22], and
three lattice-based schemes: the key-encapsulation scheme Kyber [SAB+22], and
the digital signature schemes Dilithium [LDK+22] and Falcon [PFH+22].

While the selected lattice-based schemes provide very good performance and
often outperform classical public-key cryptography, hash-based signatures come
at a much higher cost. For example, pqm4 [KPR+] – a benchmarking project
for post-quantum cryptography on the Arm Cortex-M4 – reports 4 million clock
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cycles for signing of dilithium2, 18 million clock cycles for falcon512-tree,
and 400 million clock cycles for sphincs-sha256-128f-simple – the fastest
SPHINCS+ parameter set. While signing performance appears to favour lattice-
based signatures, hash-based signatures come with two important advantages:
Firstly, they only rely on the collision-resistance and pre-image resistance of the
underlying hash function, while lattice-based signatures rely on computation
problems (M-LWE, M-SIS, and NTRU). Secondly, hash-based signatures have
much smaller public keys of just 32 to 64 bytes, while Dilithium requires at least
1 312 bytes and Falcon requires at least 897 bytes.

Due to the expected upcoming deployment of SPHINCS+, it is essential to
understand the performance of SPHINCS+ on a variety of platforms. Unsurpris-
ingly, the computational bottleneck of hash-based signatures are the invocations
of the used hash function and, consequently, having a fast hash implementation
results in a fast SPHINCS+ implementation. Furthermore, SPHINCS+ can make
use of parallel hash implementations which is particularly useful on platforms
providing SIMD instructions allowing to compute multiple hashes at once.

In this work, we study scalar and SIMD implementations of Keccak-f1600
on the AArch64 instruction set of the Arm architecture, and showcase their
performance by integrating them into implementations of SPHINCS+. We tar-
get the Arm Cortex-{A55,A510,A78,A710,X1,X2} processors common in client
devices such as mobile phones, and which are representative of the breadth
of implementations of the A-profile of the Arm architecture across the perfor-
mance/power/area spectrum.

Contributions. We make the following contributions:

1. We shorten scalar AArch64 implementations of Keccak-f1600 by trading
standalone rotations for extensive use of the Barrel shifter. On our target
CPUs, this technique leads to a significant performance improvement.

2. We show that 2-way parallel implementations of Keccak-f1600 using the
Armv8.4-A SHA-3 Neon instructions can sometimes be sped up by also mix-
ing in regular Neon instructions, leading to better hardware utilization.

3. We present Scalar/Neon hybrid implementations for 3-, 4- and 5-way parallel
Keccak-f1600. They compute a 2-way parallel Keccak on the Neon units in
parallel with further permutation(s) on the scalar execution units. We inves-
tigate such Scalar/Neon hybrids with and without the SHA-3 instructions.

4. We showcase our Keccak-f1600 implementations by plugging them into
SPHINCS+ and achieve signing speed-ups of up to 1.89× over the state
of the art.

5. We present detailed analyses of the relation between our target microarchi-
tectures and optimization potentials for our Keccak-f1600 implementations.

Source code. Our implementations are available at https://gitlab.com/
arm-research/security/pqax.

https://gitlab.com/arm-research/security/pqax
https://gitlab.com/arm-research/security/pqax
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Related work. Kölbl [Köl18] studies the implementations of SPHINCS (the
predecessor of SPHINCS+) for AArch64, targeting the Cortex-A57 and Cortex-
A72 CPUs. For Keccak, Kölbl makes use of a two-way parallel Neon imple-
mentation from the eXtended Keccak code package (XKCP) [DHP+]. Wester-
baan [Wes] presents a two-way parallel Neon implementation of Keccak using
the Armv8.4-A SHA-3 instructions. This implementation is also used in the
SPHINCS+ NIST PQC submission [HBD+22]. Lattice-based cryptography on
AArch64 has been studied by Nguyen and Gaj [NG21] as well as Becker, Hwang,
Kannwischer, Yang, and Yang [BHK+21]. Hybrid implementations have previ-
ously been applied in other contexts: Bernstein and Schwabe [BS12] present a
scalar/vector hybrid implementation of the Salsa20 cipher for Armv7-A, and
Lenngren [Len19] presents a scalar/vector hybrid implementation of the key-
exchange mechanism X25519 for Armv8-A.

Applicability beyond this work. Our work has application beyond what is
presented in this paper. In particular, it can be useful for the following:

– Stateful hash-based signatures. Stateful hash-based signature schemes
like XMSS [HBG+18] or LMS [MCF19] can also be implemented in a parallel
fashion. Hence, our implementations can be integrated into XMSS or LMS.

– Other post-quantum candidates. Other post-quantum schemes also ben-
efit from faster hashing. Notably, Kyber and Dilithium are designed to lever-
age fast parallel hashing. We therefore believe that our implementations will
enable speed-ups for those schemes, but leave a detailed evaluation to future
work.

– KangarooTwelve. Closely related to SHA-3 is KangarooTwelve [BDP+18]
which also builds on the Keccak-p permutation but uses 12 rounds instead
of 24. The techniques presented here apply to KangorooTwelve as well.

Structure. Section 2 provides background on Keccak, SPHINCS+ and the Arm
architecture. Section 3 and Section 4 present our novel implementation tech-
niques for Keccak-f1600, including improvements to scalar implementations,
parallel Neon implementations, and as the main novelty, hybrid implementations.
Finally, in Section 5 we present the performance results for our Keccak-f1600
and SPHINCS+ implementations on the Cortex-{A55,A510,A78,A710,X1,X2}.

2 Preliminaries

2.1 Keccak

Keccak [BDH+] is a family of permutations, instances of which form the
basis of the SHA-3 standard [Dwo15] including the SHA-3 hash functions and
the SHAKE extendable output functions (XOF); the reader unfamiliar with the
notion of a XOF may think of it as a cryptographic hash function with flexible
output size, generalizing the classical use case of hashing arbitrary-size inputs
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1 // r[x,y], RC[i] are constants fixed in the specification
2 keccak -f1600(A)
3 for i in 0..23:
4 // Θ step
5 C[x] = A[x,0] xor ... xor A[x,4], for x=0..4
6 D[x] = C[x-1] xor rot(C[x+1] ,1), for x=0..4
7 A[x,y] = A[x,y] xor D[x], for x,y=0..4
8 // ρ + π steps
9 B[y,2*x+3*y] = rot(A[x,y], r[x,y]), for x,y=0..4

10 // χ step
11 A[x,y] = B[x,y] xor
12 ((not B[x+1,y]) and B[x+2,y]), for x,y=0..4
13 // ι step
14 A[0,0] = A[0,0] xor RC[i]

Fig. 1: Pseudocode for Keccak-f1600

into a fixed-size output. The reverse use case – expanding a fixed-sized input
into a variable-size output – is useful, for example, for randomness expansion,
and is being used for that purpose in the various NIST PQC schemes.

The core of Keccak within SHA-3 is the Keccak permutation Keccak-f1600,
operating on a 1600-bit state viewed as a 5 × 5 matrix A[x, y] of 64-bit values.
It consists of 24 rounds of 5 operations (θ, ρ, π, χ, ι) each. χ is the only non-
linear operation, while ρ and π are mere bit-permutations, and θ and ι are linear
operations. The pseudocode specification of Keccak-f1600 is given in Figure 1.

2.2 SPHINCS+

Based on SPHINCS [BHH+15], SPHINCS+ [HBD+22] is a stateless hash-based
signature scheme that was selected as one of the winners of the NIST PQC
project [NIS16]. At the core, SPHINCS+ relies on three building blocks: An
improved version of Winternitz One-Time Signatures (WOTS+), the multi-tree
version of the eXtended Merkle Signature Scheme (XMSSMT ), and the Forest
Of Random Subsets (FORS) few time signature scheme. We briefly recall the
main concepts and refer to the SPHINCS+ specification [HBD+22] for details.

WOTS+. WOTS+ [Hül13] is a hash-based one-time signature scheme, working
roughly as follows: The secret key is a tuple of random values s0, s1, . . . , sℓ−1

in the domain of an underlying hash function h, and the public key consists of
the repeated hash h2k−1(si), where k is a fixed parameter. Signing works by
splitting a message in k-bit blocks mi < 2k and revealing the partial preimages
hmi(si) of the public keys. Verification checks that they are, in fact, preimages.
As stated, this is flawed since knowing the signature for a block mi allows forging
a signature for any m′

i > mi, but this can be fixed through a checksum. We refer
the interested reader to [Hül13] for further details.

XMSSMT . The idea of XMSS [BDH11] is to combine multiple one-time public
keys into a single many-time public key by means of a hash tree. The leaves of
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the hash tree correspond to hashes of the one-time public keys, and the root of
the hash tree is the XMSS public key. Signing means signing with one of the
one-time keys at the leaves, and providing an authentication path to the root
of the hash tree. The signer must carefully track which leaf keys have already
been used, and never use the same leaf key twice. XMSSMT builds on XMSS,
replacing the single hash tree by a hyper-tree, i.e., multiple layers of XMSS where
the WOTS+ keys on upper layers are used to sign the XMSS roots of the lower
layers. By doing so, key generation is limited to the upmost tree and signing
only needs to compute relatively small trees. However, this comes at the cost of
inflated signature sizes as one XMSSMT consists of multiple XMSS signatures.

Eliminating the state. SPHINCS+ eliminates the state from XMSSMT by
using a very large hyper-tree and pseudo-randomly selecting leaves for signing.
As collisions may still occur, it uses FORS on the lowest layer.

SPHINCS+ parameters. SPHINCS+ specifies 36 parameter sets consisting
of all possible combinations of (a) a hash function (SHAKE, SHA-2, or Haraka),
(b) a security level (128, 192 or 256 bits), (c) an optimization target (s for small
signature, or f for fast signing), and (d) a tweakable hash function (“simple”, com-
parable to LMS [MCF19], or “robust”, comparable to XMSS [BDH11,HBG+18]).
Parameter sets are named accordingly, e.g., sphincs-shake-128f-simple. In
this work, we focus on the SHAKE parameter sets.

(Parallel) hashing in SPHINCS+. Key generation, signing, and verification
in SPHINCS+ are dominated by hashing and benefit from parallelization.

We begin with WOTS+-based XMSS, which offers three independent po-
tentials for parallelization: First, it is straightforward to extend WOTS+ key
generation to compute multiple hash chains in parallel. This works for any par-
allelization degree and benefits XMSS key generation, signing and verification.
Second, XMSS key generation and signing require the computation of a large
hash tree where the leaves are the hashes of freshly generated WOTS+ public
keys. This is dominated by the leaf computations and can be sped up by par-
allelizing multiple WOTS+ key generations. Again, the approach works for any
parallelization degree. Third, for 2/4-fold parallelization, a single hash-tree com-
putation may be further parallelized as demonstrated in [HBD+22], though for a
WOTS+-based hash tree, this offers only a negligible performance improvement.

We parallelize XMSS verification via the first approach for parallelization,
and XMSS key generation and signing via the second. For 2/4-fold paralleliza-
tion, we also apply the third approach, but mainly for uniformity with FORS:
FORS also relies on tree hashing and benefits from the second and third par-
allelization approaches – moreover, parallelized tree hashing is much more im-
pactful for FORS due to the cheaper leaf computations. For FORS only, which
involves multiple hash trees, there is also the potential of performing an N -way
parallel hash tree computation, but we leave exploring this for future work.
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It should be noted that for degrees of parallelization which are not aligned to
the total number of invocations, an overhead occurs. For example, the hypertrees
in sphincs-shake-128f-simple have only 8 leaves, which does not suit 5-way
parallelization. We believe that further study in the best use of the parallelization
potentials would be beneficial, and encourage research.

2.3 Arm architecture

Computing based on the Arm architecture is ubiquitous. At the coarsest level,
one can distinguish three profiles: The application (A) profile targeting high
performance markets, such as PC, mobile, and server; the real-time (R) profile
for timing-sensitive and safety-critical systems; and the embedded (M) profile
for secure, low-power, and low-cost microprocessors.

In this article, we focus on the A-profile of the Arm architecture. Numerous
iterations of the A-profile exists, such as Armv7-A, Armv8-A and, as of late,
Armv9-A, each including a respective set of extensions. We specifically focus on
the AArch64 64-bit instruction set architecture introduced with Armv8-A, as
well as the SHA-3 extension which is part of Armv8.4-A.

Implementations of the A-profile of the Arm architecture form a spectrum
in itself: To name some, it includes power-efficient CPUs like the Cortex-A7 for
Linux-based embedded IoT devices, cores like Cortex-A710 and Cortex-X2 for
client devices such as desktops or mobile phones, as well as the Arm® Neoverse™

IP for infrastructure applications. In this article, we focus on two recent genera-
tions of cores for the client market, Cortex-{A55,A510,A78,A710,X1,X2}. How-
ever, we expect that our optimizations do also apply to the Neoverse N1 and
Neoverse V1 infrastructure cores.

It is common for Arm-based SoCs, particularly in the client market, to host
multiple CPUs targeting different power/performance profiles, and to dynami-
cally switch between them depending on demand. Originally, this was known as
Arm® big.LITTLE™, distinguishing between a high-efficiency “LITTLE” CPU
and a high-performance “big” CPU. Nowadays, Arm® DynamIQ™ allows for
more flexibility in the configuration of CPUs on a SoC, and DynamIQ-based SoCs
often host three different Arm CPUs targeting different performance/power pro-
files. Two such triples are Cortex-{A55,A78,X1} and Cortex-{A510,A710,X2}.

On a microarchitectural level, “LITTLE” cores are typically based on an in-
order pipeline with some support for superscalar execution. For example, the
Cortex-A53 and Cortex-A55 CPUs support dual-issuing of scalar instructions,
while the Cortex-A510 CPU is even capable of triple-issuing scalar instructions.
In terms of SIMD capabilities, Cortex-A53 and Cortex-A55 can single-issue 128-
bit Neon instructions, while Cortex-A510 offers an interesting novelty: Pairs of
Cortex-A510 CPUs are joined to a Cortex-A510 complex, sharing up to two 128-
bit SIMD units. That is, if only one of the cores uses the SIMD units, dual-issuing
of 128-bit Neon instructions is possible.

The “medium” Cortex-A7x and “big” Cortex-X cores are based on out-of-
order pipelines with multiple scalar and SIMD execution units. For example, all
of Cortex-{A78,A710,X1,X2} have four scalar execution units. In terms of their



Hybrid scalar/vector implementations of Keccak and SPHINCS+ 7

1 // θ step
2 eor C0, A00 , A10
3 eor C0, C0, A20
4 eor C0, C0, A30
5 eor C0, C0, A40
6 eor C1, A01 , A11
7 eor C1, C1, A21
8 eor C1, C1, A31
9 eor C1, C1, A41

10 eor C2, A02 , A12
11 eor C2, C2, A22
12 eor C2, C2, A32
13 eor C2, C2, A42

14 eor C3, A03 , A13
15 eor C3, C3, A23
16 eor C3, C3, A33
17 eor C3, C3, A43
18 eor C4, A04 , A14
19 eor C4, C4, A24
20 eor C4, C4, A34
21 eor C4, C4, A44
22 eor D1, C0, C2, ROR #63
23 eor D3, C2, C4, ROR #63
24 eor D0, C4, C1, ROR #63
25 eor D2, C1, C3, ROR #63
26 eor D4, C3, C0, ROR #63

27 // ρ, π, rest of θ steps
28 eor B00 , A00 , D0
29 eor B40 , A02 , D2
30 ror B40 , B40 , #2
31 eor B02 , A22 , D2
32 ror B02 , B02 , #21
33 eor B22 , A23 , D3
34 ror B22 , B22 , #39
35 eor B23 , A34 , D4
36 ror B23 , B23 , #56
37 eor B34 , A43 , D3
38 ror B34 , B34 , #8
39 ...

40 // χ step
41 bic tmp , B12 , B11
42 eor A10 , tmp , B10
43 bic tmp , B13 , B12
44 eor A11 , tmp , B11
45 bic tmp , B14 , B13
46 eor A12 , tmp , B12
47 bic tmp , B10 , B14
48 eor A13 , tmp , B13
49 ...
50
51 // ι step
52 eor A00 , A00 , RC

Fig. 2: ’Canonical’ scalar AArch64 implementation of one Keccak-f1600 round.

SIMD capabilities, Cortex-A7x cores typically have two Neon execution units,
while Cortex-X CPUs have four. Such information, as well as detailed listings of
latencies and throughput per instructions, are provided in the publicly available
software optimization guides [Armb,Arma,Armd,Armc,Arme,Armf].

3 Keccak on AArch64 — Architecture

This is the first of two section presenting our implementations of Keccak-f1600
on the AArch64 instruction set architecture, the second being Section 4. Here, we
focus on architectural considerations: We exhibit ways to express Keccak-f1600
through the AArch64 instruction set and its extensions. We discuss three ap-
proaches: A scalar implementation, an Armv8-A Neon SIMD implementations,
and an Armv8.4-A Neon SIMD implementation leveraging the SHA-3 extension.

It is difficult to define meaningful metrics for performance at the architectural
level: The number of instructions, the depth and the width (i.e., the amount of
instruction level parallelism) of a computation are first approximations, but the
actual performance will typically also heavily depend on the target microarchi-
tecture – which is to be expected considering wide range of implementations of
the Arm architecture across the performance/power spectrum.

In light of the above, the goal of this section is merely to provide us with
a ’pool’ of implementation approaches for Keccak-f1600. The study of their
suitability for our target microarchitectures, as well as further microarchitecture
specific optimizations, are the subject of Section 4.

3.1 Scalar implementation

The description of Keccak-f1600 from Section 2.1 admits a straightforward
mapping to the AArch64 instruction set architecture: The 1600-bit state can
be maintained in 25 general purpose registers of 64 bits each, and the bitwise
operations performed in the θ, ρ, χ and τ steps can be implemented using the XOR,
ROR, BIC instructions. This ’canonical’ implementation is presented in Figure 2.

Eliminating rotations. The canonical implementation can be shortened by
eliminating explicit rotations as follows. For any bitwise operation OP such as



8 H. Becker and M. Kannwischer

1 // θ step
2 eor C2, A42 , A02 , ROR #52
3 eor C0, A00 , A10 , ROR #61
4 eor C4, A24 , A14 , ROR #50
5 eor C1, A21 , A31 , ROR #57
6 eor C3, A03 , A23 , ROR #63
7 ...
8 eor C2, C2, A12 , ROR #5
9 eor C0, C0, A40 , ROR #25

10 eor C4, C4, A44 , ROR #15
11 eor C1, C1, A11 , ROR #27
12 eor C3, C3, A43 , ROR #2
13 eor D1, C0, C2, ROR #61
14 ror C2, C2, 62
15 eor D3, C2, C4, ROR #57
16 ror C4, C4, 58
17 eor D0, C4, C1, ROR #55
18 ror C1, C1, 56
19 eor D2, C1, C3, ROR #63
20 eor D4, C3, C0, ROR #63

21 // ρ, π, rest of θ steps
22 eor B00 , D0, A00
23 eor B40 , D2, A02 , ROR #50
24 eor B02 , D2, A22 , ROR #46
25 eor B22 , D3, A23 , ROR #63
26 eor B23 , D4, A34 , ROR #28
27 eor B34 , D3, A43 , ROR #2
28 eor B43 , D0, A30 , ROR #54
29 eor B20 , D1, A01 , ROR #43
30 eor B41 , D3, A13 , ROR #36
31 eor B13 , D1, A31 , ROR #49
32 eor B21 , D2, A12 , ROR #3
33 eor B12 , D0, A20 , ROR #39
34 eor B10 , D3, A03
35 eor B03 , D3, A33 , ROR #37
36 eor B33 , D2, A32 , ROR #8
37 eor B32 , D1, A21 , ROR #56
38 eor B11 , D4, A14 , ROR #44
39 eor B14 , D2, A42 , ROR #62
40 ...

41 // χ step
42 bic tmp0 , B12 , B11 , ROR #47
43 bic tmp1 , B13 , B12 , ROR #42
44 eor A10 , tmp0 , B10 , ROR #39
45 bic tmp0 , B14 , B13 , ROR #16
46 eor A11 , tmp1 , B11 , ROR #25
47 bic tmp1 , B10 , B14 , ROR #31
48 eor A12 , tmp0 , B12 , ROR #58
49 bic tmp0 , B11 , B10 , ROR #56
50 eor A13 , tmp1 , B13 , ROR #47
51 bic tmp1 , B22 , B21 , ROR #19
52 eor A14 , tmp0 , B14 , ROR #23
53 bic tmp0 , B23 , B22 , ROR #47
54 eor A20 , tmp1 , B20 , ROR #24
55 bic tmp1 , B24 , B23 , ROR #10
56 eor A21 , tmp0 , B21 , ROR #2
57 bic tmp0 , B20 , B24 , ROR #47
58 ...
59 // ι step
60 eor A00 , A00 , RC

Fig. 3: Keccak-f1600 round without explicit rotations.

XOR or BIC, it holds that (x OP y) ≪ imm = (x ≪ imm) OP (y ≪ imm), so

(x ≪ imm0) OP (y ≪ imm1) = (x OP (y ≪ imm1-imm0)) ≪ imm0 (1)

This trivial identity replaces the explicit rotations x ≪ imm0 and y ≪ imm1
with the combination of a shifted application of OP and an explicit rotation of
its result. Since AArch64 offers shifted variants of logical operations as discussed
in Section 2.3, this eliminates one explicit rotation. Moreover, if imm0 = 0 or
imm1 = 0, no explicit rotation remains. Finally, if the result is used in another
bitwise operation, the process can be repeated, deferring all explicit rotations to
the very end of the computation, where only one rotation per output has to be
performed. We call this process “lazy rotation” in the following.

The idea of lazy rotations can be applied to Keccak-f1600 in order to defer
the explicit rotations in the π-step. At first, however, it would seem that the
entire Keccak-f1600 loop would need to be unrolled to benefit from the idea, as
performing rotations at a later stage in the loop is still as expensive as performing
them at the π-step. Luckily, this is not the case, as we explain now.

Assume we have deferred explicit rotations in the π-step to the end of the first
Keccak-f1600 iteration, so that the true state A[x, y] can be obtained form the
software state A′[x, y] via A[x, y] = A′[x, y] ≪ s[x, y] for some constants s[x, y].
In the θ-step for the next iteration, we can then compute D[x] via lazy rotations,
obtaining a value D′[x] so that the true D[x] is again given by D[x] = D′[x] ⊕ t[x]
for suitable constants t[x]. If we then explicitly rotate D′[x] to obtain the true
D[x], the final part A[x, y] ← A[x, y] ⊕ D[x] = (A′[x, y] ≪ s[x, y]) ⊕ D[x]
can be computed using a shifted XOR without any deferred rotation. By breaking
the chain of deferred rotations at D[x], we prevent an accumulation of deferred
rotations which would otherwise force us to unroll the loop.

The above explains how to trade 25 explicit rotations in the π-step for 5
explicit rotations in the θ-step. In fact, it turns out that 2 of the 5 deferred
rotations for D[x] are 0, so that only 3 explicit rotations are necessary. The final
result is presented in Figure 3.
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Register allocation. We aim to keep most operations in-place to reduce the
number of MOV operations. In the notation of Figure 1, we’d like loc B[x, y] =
loc A[x, y] for most (x, y), where loc X is the register location used by X. Without
backup MOVs, however, we cannot have loc B[x, y] = loc A[x, y] for all x, y:
Otherwise, there’d be cyclic dependencies in the computation of both

B[x′, y′] = A[x, y] ⊕ D[x] and (θπ)
A[x, y] = B[x, y] ⊕ (¬B[x+ 1, y] & B[x+ 2, y]) (χ)

preventing in-place computation – we use the shorthand (x′, y′) := (y, 2x+ 3y)
here and below. The goal is to slightly offset {loc B[]} from {loc A[]} for the
computation of (θπ), and to move entries back to their original place in (χ).
Concretely, we set loc B[x, y] = loc A[x, y] for x ̸∈ {0, 1} and loc B[x, y] =
loc A[x, (y + 1)%5] for x ∈ {0, 1} and y ∈ {1, 2, 3, 4}, while using fresh registers
for B[0, 0] and B[1, 0] – this choice will become clear soon.

The computation of (θπ) then proceeds in a chained fashion: After computing
B[x′

0, y
′
0] from A[x0, y0], we continue with B[x′

1, y
′
1] s.t. loc B[x′

1, y
′
1] = loc A[x0, y0]

– that is, once we have used some A[] to compute the corresponding B[], we over-
write its location next. Starting with B[0, 0] or B[1, 0] (which use fresh registers),
it terminates once we reach the computation of B[0′, 0′] or B[1′, 0′] from A[0, 1] or
A[1, 1], because loc A[0, 1] and loc A[1, 1] aren’t used by B[].

In principle, the chained computation of (θπ) just described does not depend
on the particular choice of loc B[], but the lengths of the resulting chains do: Our
specific choice leads to a length-24 chain from B[0, 0] to A[0, 1], and a length-1
chain from B[1, 0] to A[1, 1]. This matters for register allocation: At the time of
(θπ), we are already using 30 registers – 25 for the state A[] and 5 for D[] – so only
one remains, yet we need two fresh locations for B[0, 0] and B[1, 0]. We solve this
by using the single free location for B[0, 0], while after computing its length-24
chain, all but one D[] are no longer needed, so B[1, 0] can use any of those.

Finally, we compute (χ), where the special role of x = 0, 1 in the definition of
loc B[] becomes important: Namely, when we compute A[0, y], A[1, y] from B[∗, y],
we cannot yet overwrite any loc B[∗, y] as they’re still needed for subsequent (χ)
steps. We thus require loc A[0, y], loc A[1, y] ̸∈ {loc B[∗, y]}. On the other hand,
after computing A[0, y], A[1, y] out-of-place, we may compute A[2, y], A[3, y], A[4, y]
in-place since they’re no longer used as input for (χ). This motivates our choice
of loc B[x, y] = loc A[x, y] for x ̸= 0, 1, while offsetting loc B[0, y], loc B[1, y].

Overall, the above yields an in-place implementation of a single Keccak-f1600
round using 31 registers, and without using any MOV instructions or stack spilling.

Statistics. Each round in our scalar Keccak-f1600 implementation uses 76×
EOR, 25× BIC and 3× ROR instructions, totalling 104 arithmetic instructions. In
fact, the first round does not require RORs, but we need 23 RORs after the last
round. Overall, we get to 24×104−3+23 = 2516 arithmetic instructions for the
core of Keccak-f1600. Taking into account function preamble and postamble,
we get to 2747 instructions executed per Keccak-f1600 invocation.
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3.2 Armv8.4-A Neon implementation

The Armv8.4-A architecture introduces the SHA-3 extension adding the fol-
lowing instructions: EOR3 for the computation of three-fold XORs; RAX1 for the
combination of a rotation-by-1 and a XOR; XAR for the combination of a XOR and
a rotation; and finally BCAX for the combination of a BIC and XOR. Those instruc-
tions enable a straightforward implementation of Keccak-f1600 on Armv8.4-A,
with EOR3 and RAX1 handling the first part of the θ-step, XAR handling the second
part of the θ-step merged with the ρ-step, and BCAX handling the τ -step. The
first public implementation along those lines was [Wes]. We slightly refine it by
removing explicit MOV instructions as detailed in Section 3.1.

Statistics Each round requires 10× EOR3 instructions, 5× RAX1 instructions,
24× XAR, 2× EOR and 25× BCAX. Overall, it thus uses 24 × 66 = 1584 vector
instructions, 24× 64 = 1536 of which from the Armv8.4-A SHA-3 extension.

3.3 Armv8-A Neon implementation

To implement Keccak-f1600 on Armv8-A Neon instructions, the structure of
the Armv8.4-A code can be retained, while implementing EOR3, RAX1, XAR, and
BCAX as macros based on Armv8-A Neon instructions. Rotations are constructed
from a left shift (SHL) and a right shift with insert (SRI). An implementation
along those lines was first developed in [Ngu] based on intrinsics; here, we use a
version in handwritten assembly, minimizing vector moves and stack spills.

Statistics When implementing EOR3 via 2× EOR, RAX1 and XAR via EOR+SHL+SRI,
and BCAX via BIC+EOR, each Keccak-f1600 round consists of 76× EOR, 29× SRI,
30× SHL and 25× BIC instructions totalling 160 Neon instructions per round,
and 24× 160 = 3840 Neon instructions for all of Keccak-f1600.

4 Keccak-f1600 on AArch64 — Microarchitecture

Here, we study the implementations presented in Section 3 from a microarchi-
tectural perspective. We first comment on each approach separately, and then
present Scalar/Neon hybrid implementations, the main novelty of this paper.

4.1 Scalar implementation

Recall from Section 3.1 the main ideas of our scalar Keccak-f1600 implementa-
tion: Eliminating explicit rotations through extensive use of shifted instructions,
and eliminating explicit MOVs through careful register management.
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1 // Naive
2 eor C0, A20 , A40 , ROR #50
3 eor C0, A30 , C0 , ROR #49
4 eor C0, A10 , C0 , ROR #57
5 eor C0, A00 , C0 , ROR #61
6 eor C1, A41 , A11 , ROR #60
7 eor C1, A01 , C1 , ROR #44
8 eor C1, A31 , C1 , ROR #58
9 eor C1, A21 , C1 , ROR #57

10 ...
11 eor C4, A04 , A44 , ROR #53
12 eor C4, A34 , C4 , ROR #56
13 eor C4, A14 , C4 , ROR #48
14 eor C4, A24 , C4 , ROR #50
15
16 ror C1, C1, 56
17 ror C4, C4, 58
18 ror C2, C2, 62
19
20 eor D1, C0, C2, ROR #63
21 eor D3, C2, C4, ROR #63
22 eor D0, C4, C1, ROR #63
23 eor D2, C1, C3, ROR #63
24 eor D4, C3, C0, ROR #63

1 // Better (fine for A55)
2 eor C0, A20 , A40 , ROR #50
3 eor C1, A41 , A11 , ROR #60
4 eor C2, A32 , A12 , ROR #59
5 eor C3, A13 , A43 , ROR #30
6 eor C4, A04 , A44 , ROR #53
7 eor C0, A30 , C0 , ROR #49
8 eor C1, A01 , C1 , ROR #44
9 eor C2, A22 , C2 , ROR #26

10 eor C3, A33 , C3 , ROR #63
11 eor C4, A34 , C4 , ROR #56
12 ...
13 eor C0, A00 , C0 , ROR #61
14 eor C1, A21 , C1 , ROR #57
15 eor C2, A42 , C2 , ROR #52
16 eor C3, A03 , C3 , ROR #63
17 eor C4, A24 , C4 , ROR #50
18
19 ror C1, C1, 56
20 ror C4, C4, 58
21 ror C2, C2, 62
22
23 eor D1, C0, C2, ROR #63
24 eor D3, C2, C4, ROR #63
25 eor D0, C4, C1, ROR #63
26 eor D2, C1, C3, ROR #63
27 eor D4, C3, C0, ROR #63

1 // Even better (for A510)
2 eor C2, A42 , A02 , ROR #52
3 eor C0, A00 , A10 , ROR #61
4 eor C4, A24 , A14 , ROR #50
5 eor C1, A21 , A31 , ROR #57
6 eor C3, A03 , A23 , ROR #63
7 eor C2, C2, A22 , ROR #48
8 eor C0, C0, A30 , ROR #54
9 eor C4, C4, A34 , ROR #34

10 eor C1, C1, A01 , ROR #51
11 eor C3, C3, A33 , ROR #37
12 ...
13 eor C2, C2, A12 , ROR #5
14 eor C0, C0, A40 , ROR #25
15 eor C4, C4, A44 , ROR #15
16 eor C1, C1, A11 , ROR #27
17 eor C3, C3, A43 , ROR #2
18
19 eor D1, C0, C2, ROR #61
20 ror C2, C2, 62
21 eor D3, C2, C4, ROR #57
22 ror C4, C4, 58
23 eor D0, C4, C1, ROR #55
24 ror C1, C1, 56
25 eor D2, C1, C3, ROR #63
26 eor D4, C3, C0, ROR #63

Fig. 4: θ-step optimized for dual-issuing capability of the A55 (middle) and triple-
issuing capability of the A510 (right) compared to the naïve approach (left)

The cost of shifted instructions. Our rotation-elimination implementation is
only useful if shifted instructions have the same throughput as unshifted instruc-
tions, which is the case for all our targets Cortex-{A55,A510,A78,A710,X1,X2}.
However, there are exceptions, such as the Cortex-A72, and for such CPUs,
rotation-elimination may lead to worse performance despite having a lower in-
struction count. However, as we see below for Cortex-A55 and Cortex-A510, an
increased latency for shifted instructions need not be problematic.

The cost of MOVs. Eliminating MOVs for general purpose registers is a microop-
timization primarily useful for LITTLE CPUs. High-end out-of-order CPUs, in
turn, can sometimes implement such MOVs with zero latency (e.g. [Arme, Section
4.14]) and therefore show little benefit from reduced register movement.

Optimization for in-order execution. Optimizing code for in-order execu-
tion requires careful scheduling of instructions for latency, throughput, and the
width of the superscalar pipeline. We now make this concrete for Keccak-f1600
and our in-order target microarchitectures Cortex-A55 and Cortex-A510.

We begin by discussing Cortex-A55. As detailed in the Software Optimization
Guide [Armb], Cortex-A55 is capable of issuing logical instructions with shift at a
rate of 2 IPC and a latency of 2 cycles. This is sufficient for a stall-free execution
of the column-wise 5-fold XORs in the θ-step, provided one alternates between
the columns; Figure 4 shows both the naïve and slow approach (left column), as
well as an interleaved implementation suitable for Cortex-A55 (middle column).

We next consider the χ-step: Looking at the naïve implementation in Figure 5
(left column), it would seem that with a dual-issuing core and a latency of 2-
cycles per shifted instruction, it should stall. However, as explained in [Armb,
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1 // Naive
2 bic tmp , A12_ , A11_ , ROR #47
3 eor A10 , tmp , A10_ , ROR #39
4 bic tmp , A13_ , A12_ , ROR #42
5 eor A11 , tmp , A11_ , ROR #25
6 bic tmp , A14_ , A13_ , ROR #16
7 eor A12 , tmp , A12_ , ROR #58
8 bic tmp , A10_ , A14_ , ROR #31
9 eor A13 , tmp , A13_ , ROR #47

10 bic tmp , A11_ , A10_ , ROR #56
11 eor A14 , tmp , A14_ , ROR #23
12 bic tmp , A22_ , A21_ , ROR #19
13 eor A20 , tmp , A20_ , ROR #24
14 bic tmp , A23_ , A22_ , ROR #47
15 eor A21 , tmp , A21_ , ROR #2
16 ...

1 // Improved for triple -issuing
2 bic tmp0 , A12_ , A11_ , ROR #47
3 bic tmp1 , A13_ , A12_ , ROR #42
4 eor A10 , tmp0 , A10_ , ROR #39
5 bic tmp0 , A14_ , A13_ , ROR #16
6 eor A11 , tmp1 , A11_ , ROR #25
7 bic tmp1 , A10_ , A14_ , ROR #31
8 eor A12 , tmp0 , A12_ , ROR #58
9 bic tmp0 , A11_ , A10_ , ROR #56

10 eor A13 , tmp1 , A13_ , ROR #47
11 bic tmp1 , A22_ , A21_ , ROR #19
12 eor A14 , tmp0 , A14_ , ROR #23
13 bic tmp0 , A23_ , A22_ , ROR #47
14 eor A20 , tmp1 , A20_ , ROR #24
15 bic tmp1 , A24_ , A23_ , ROR #10
16 eor A21 , tmp0 , A21_ , ROR #2
17 ...

Fig. 5: χ-step optimized for triple-issuing on the A510 (right) compared to the
naïve implementation (left)

Figure 1 and Section 3.1.1], the execution of shifted instructions is pipelined, and
appropriate forwarding paths provide an effective 1-cycle latency between shifted
instructions in case the output of a shifted instruction is used as an unshifted
input in the consuming instruction; luckily, we are in such a special case.

We now turn to Cortex-A510. As can be seen in the software optimization
guide [Arma], Cortex-A510 can issue shifted instructions at a rate of three in-
structions per cycle (the first “LITTLE” core with such capabilities) and 2-cycle
latency. Moreover, our experiments suggest that we again have a 1-cycle effective
latency for outputs of shifted instructions being used as non-shifted inputs.

To leverage the triple-issuing capability of Cortex-A510, the following adjust-
ments have to be made: Firstly, for the columnwise XORs in the θ-step, use the
accumulator as a non-shifted input only. The right column in Figure 4 shows an
adjusted version suitable for triple-issuing on Cortex-A510. Secondly, the χ-step
cannot be triple-issued when written as in Figure 5 (left column); instead, one
has to manually interleave the computation as in Figure 5 (right column). With
those adjustments in place, the Keccak-f1600 code is mostly triple-issuable, as
the performance numbers in Section 5 will confirm.

4.2 Armv8-A Neon implementation

Recall that our Armv8-A implementation replaces the SHA-3 instructions RAX1,
XAR, BCAX, and EOR3 by macros based on Armv8-A Neon instructions.

Suitability for in-order microarchitectures. Generally, implementations
based on defining high-level operations such as the SHA-3 operations as assembly
macros tend to be unsuitable for in-order execution, as they cannot exploit
parallelism at the macro-level and are thus unlikely to obey instruction latencies.
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For example, on Cortex-A510, EOR, SRI, and SHL have a latency of 3 cycles, so
an implementation of XAR as EOR+SHL+SRI will have a total latency of 9 cycles.

On Cortex-A55, however, we are lucky that logical SIMD instructions have a
1-cycle latency. Moreover, we observe experimentally that SHL+SRI pairs synthe-
sizing a rotation do also run without stalls – the implementations of the SHA-3
macros EOR3, BCAX, RAX1, XAR can therefore run stall-free. We should expect a
performance not far off the optimum of 1 Neon instruction per cycle, and we do
not see significant further optimization potential in this approach.

Improving performance of our Armv8-A Neon code on Cortex-A510 requires
instruction level parallelism through the interleaving of the SHA-3 macros. Due
to the very high register pressure, however, this requires a lot of stack spilling,
which is tedious to do by hand. Instead, it makes more sense in this case to work
with intrinsics as done in [Ngu], and leave register allocation and stack spilling to
the compiler. However, as we shall see in Section 5, both scalar and Armv8.4-A-
based Keccak-f1600 implementations perform better than the Armv8-A based
implementation anyway, so the point is moot and we do not explore it further.

Suitability for out-of-order microarchitectures. Generally speaking, the
fact that the SHA-3 macros are not scheduled for latency is less problematic for
out-of-order cores than for in-order cores, as the microarchitecture will leverage
out-of-order execution and register renaming to create the required instruction
level parallelism. Still, there is room for further optimization, as we now explain.

The first optimization concerns the availability of functionality on the differ-
ent SIMD units. For our out-of-order target microarchitectures, the EOR and BIC
instructions can run on all SIMD units. However, the SHL and SRI instructions,
which we use heavily to synthesize 64-bit rotations, are only supported by 50%
of the SIMD units – one in the case of Cortex-A78 and Cortex-A710, and two
in the case of Cortex-X1 and Cortex-X2. This limits the maximum throughput
of the XAR and RAX blocks, at least when looked at in isolation. In the context
of an entire Keccak-f1600 round, however, SHL+SRI make up for less than 50%
of SIMD instructions, so that manual interleaving of the XAR and RAX blocks
with surrounding code mitigates the throughput loss. Additionally, we replace
instances of SHL X, A, #1 by ADD X, A, A (this applies to all RAX1 blocks and
one XAR invocation), reducing the pressure on the SHL/SRI-capable SIMD units,
since (like EOR and BIC) ADD can run on all SIMD units.

The second optimization concerns the θ step: We found that by moving the
5-fold EORs into the previous iteration, we can alleviate a performance bottleneck
at the θ step resulting from the lack of instruction level parallelism. For example,
with EOR having a latency of 2 cycles, one would need at least 8 independent
data streams to keep all 4 SIMD units on the Cortex-X1 and Cortex-X2 busy.

4.3 Armv8.4-A Neon implementation

Suitability for in-order cores. As for the scalar implementation, we schedule
code for latency to ensure fast execution on Cortex-A510, the basis being the
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latencies of the SHA-3 instructions as documented in the SWOG [Arma], and the
fact each core in a Cortex-A510 complex has up to two SIMD units, depending
on whether the other core in the complex is also performing SIMD operations.
It is noteworthy that in such a configuration, Cortex-A510 has more throughput
for SHA-3 operations than Cortex-A710 and Cortex-X2.

We found that scheduling the code for latency was mostly straightforward,
one exception being the RAX1 instruction, which on Cortex-A510 has a latency of
8 cycles: Here, it seems preferable to express the operation through other Neon
instructions of lower latencies.

Suitability for out-of-order cores. For our out-of-order Armv8.4-A targets
Cortex-A710 and Cortex-X2, we believe that a “standard” Armv8.4-A implemen-
tation along the lines of [Wes] does not have significant microarchitecture-specific
optimization potential: As explained in [Armc,Armf], both cores have a single
SIMD unit supporting the SHA-3 instructions, limiting a pure Armv8.4-A im-
plementation to 1536 cycles at best, which our implementations already come
very close to both for Cortex-A710 and Cortex-X2 – see Section 5.

4.4 Hybrid implementations

The idea for hybrid implementations is simple and general: Given code paths
A and B exercising different execution resources, interleave them to facilitate
parallel execution by the underlying microarchitecture. Ideally, if the runtimes of
A and B are tA and tB , respectively, one hopes to achieve the joint functionality
of A,B in runtime max{tA, tB}, instead of the sequential tA + tB .

When constructing a hybrid, one has to consider the individual performance
of the code paths to be interleaved, and balance them accordingly to maximize
the gain (tA + tB) −max{tA, tB} = min{tA, tB}: For example, if path A is 2×
as fast as path B, one should interleave 2 copies of A with a single copy of B.

Hybrid implementations have previously been applied in other contexts:
Bernstein and Schwabe [BS12] present a scalar/Neon hybrid implementation of
the Salsa20 cipher for Armv7-A, and Lenngren [Len19] presents a scalar/Neon
hybrid implementation of the key-exchange mechanism X25519 for Armv8-A.

Suitability for different microarchitectures. A hybrid can reach ideal per-
formance max{tA, tB} only if the target has the bandwidth to process A and
B in parallel. Otherwise, there will be arbitration, with full arbitration leading
to sequential performance tA + tB . It is therefore important to understand the
target’s maximum wmax of instructions per cycle (IPC), as well as the IPCs wA

ad wB targetted by A and B. Only if wA + wB ≤ wmax there is a chance to
unlock performance max{tA, tB} through a hybrid.

For example, Lenngren [Len19] constructs a Scalar/Neon hybrid for X25519
on Cortex-A53, leveraging that (a) generally, Cortex-A53 can achieve up to 2
IPC, but (b) scalar multiplication and SIMD instructions are limited to 1 IPC.
Manual interleaving of scalar and SIMD implementations unlocks an IPC of ≈ 2.
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For out-of-order CPUs, the necessity for manual interleaving depends on the
target microarchitecture: If the paths to be interleaved are loops of the same size
and the out-of-order execution window exceeds the loop body, an alternation of
iterations from the two paths may eventually execute in parallel even without
manual interleaving. For Keccak-f1600, however, each round is large, so we
manually interleave scalar and Neon iterations to facilitate parallel execution.

Scalar/Neon Hybrid. We apply the idea of hybrid implementations to our
scalar and Neon implementations of Keccak-f1600: Concretely, we construct im-
plementations of N -way parallel Keccak-f1600 by interleaving N−2 scalar com-
putations of Keccak-f1600 with a Neon-based computation of Keccak-f1600-x2.

Interleaving the scalar and Neon Keccak-f1600 implementations was straight-
forward since the only shared architectural resource is the loop counter. Practi-
cally, we wrote code side by side to facilitate readability, as shown in Figure 6.

The choice of N depends on the relative speed of the scalar and Neon code.
For example, on Cortex-X1 and Cortex-X2, we chose N = 3 and N = 4, imple-
menting Keccak-f1600-xN from one or two scalar Keccak-f1600 and one Neon
Keccak-f1600-x2. On Cortex-A78, we found that N = 5 was more suitable.

We comment on the feasibility of hybrids on our targets: For Cortex-A55 and
Cortex-A510, our scalar code come close to the issue limit of 2 and 3 IPC, while
the SIMD code reaches less than 1 IPC on Cortex-A55 and close to 2 IPC on
Cortex-A510. We don’t see meaningful speedup through hybrids.

For Cortex-A78 and Cortex-A710, the scalar and Neon implementations tar-
get an IPC of 4 and 2, respectively. Since Cortex-A710 has a maximum IPC of
5, they cannot be interleaved without penalty. Cortex-A78, in turn, has a max-
imum IPC of 6, so a scalar/Neon appears feasible. However, our initial attempt
of constructing Keccak-f1600-x5 on Cortex-A78 fell > 20% short of our expec-
tations, and only after a significant code-size reduction, we achieved the desired
performance. We explain this as follows: While Cortex-A78 has a maximum IPC
of 6, the instruction decoder has a maximum IPC of 4. An IPC > 4 can only be
unlocked through the use of the “MOP-cache”, hosting decoded instructions, but
our unrolled code failed to achieve a good hitrate. Once the code was shortened
to fit in the MOP-cache, performance reached the expected level.

Neon/Neon Hybrid. An implementation based purely on the Armv8.4-A
SHA-3 instructions will only exercise those Neon units implementing the SHA-3
extension. In the case of our targets Cortex-A710 and Cortex-X2, these are 50%
and 25% of all Neon units, respectively – the remaining units stay idle.

We have therefore developed hybrid Armv8-A/Armv8.4-A implementations
of Keccak-f1600-x2, mixing SHA-3 instructions with regular Neon instructions,
to achieve better utilization of the SIMD units. This is a different kind of hybrid
than the Scalar/Neon one, as we’re alternating between different implementation
strategies rather than interleaving them. The balance between SHA-3 and regular
Neon instructions depends on the share of SIMD execution units implementing
the SHA-3 instructions. For example, on Cortex-X2, we strive for 3 regular Neon
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1 eor sC0 , sA30 , sA40 ; eor3 vC0 .16b, vA00 .16b, vA10 .16b, vA20 .16b
2 eor sC1 , sA31 , sA41 ;
3 eor sC2 , sA32 , sA42 ;
4 eor sC3 , sA33 , sA43 ; eor3 vC0 .16b, vC0.16b, vA30 .16b, vA40 .16b
5 eor sC4 , sA34 , sA44 ;
6 eor sC0 , sA20 , sC0 ;
7 eor sC1 , sA21 , sC1 ; eor3 vC1 .16b, vA01 .16b, vA11 .16b, vA21 .16b
8 eor sC2 , sA22 , sC2 ;
9 eor sC3 , sA23 , sC3 ;

10 eor sC4 , sA24 , sC4 ; eor3 vC1 .16b, vC1.16b, vA31 .16b, vA41 .16b
11 eor sC0 , sA10 , sC0 ;
12 eor sC1 , sA11 , sC1 ;
13 eor sC2 , sA12 , sC2 ; eor3 vC2 .16b, vA02 .16b, vA12 .16b, vA22 .16b
14 ...

Fig. 6: Interleaving of scalar and Armv8.4-A Keccak-f1600 code

instructions for 1× SHA-3 instruction, keeping all four SIMD units busy, while
on Cortex-A710, the balance should be 1/1.

Scalar/Neon/Neon Hybrid. Finally, we have also experimented with “triple”
hybrid implementations interleaving a scalar implementation with the Neon/-
Neon hybrid described in the previous section. In addition to Keccak-f1600-x4,
we also considered an implementation Keccak-f1600-x3 interleaving one scalar
computation with one hybrid Neon/Neon implementation of Keccak-f1600-x2.

5 Results

5.1 Benchmarking environments

Cortex-{X1,A78,A55}. Our first benchmarking platform is a Lantronix Snap-
dragon 888 hardware development kit with a Qualcomm Snapdragon SM8350P
SoC. It is an Arm DynamIQ SoC featuring one high-performance Arm Cortex-X1
core, three Arm Cortex-A78 cores, and four energy-efficient in-order Cortex-A55
cores. The SoC implements the Armv8.2-A instruction set. It also implements
the Armv8.4-A dot product instructions, but not the Armv8.4-A SHA-3 instruc-
tions. The hardware development kit comes with a rooted Android 11 which
allows us to run cross-compiled static executables.

Cortex-{X2,A710,A510}. Our second benchmarking platform is a Samsung
S22 smartphone with a Samsung Exynos 2200 (S5E9925) SoC. It is an Arm Dy-
namIQ SoC consisting of one high-performance Cortex-X2 core, three Cortex-
A710 cores, and 4 energy-efficient in-order Cortex-A510 cores – the first gener-
ation of cores implementing the Armv9-A architecture. The Armv8.4-A SHA-3
extension is also implemented. The SoC is running a rooted Android 12. Our
benchmarks suggest that the four Cortex-A510 cores are paired in two Cortex-
A510 complexes with shared SIMD units; our benchmarks only use one Cortex-
A510 a time, therefore allowing it to leverage 2 SIMD units.
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Compiler and benchmarking. We cross-compile our software using the Arm
GNU toolchain3 version 11.3.Rel1. We then copy the executable to the device
and run it on a specific core via taskset. If we find the desired core disabled for
power-saving, we first create artifical load on the system to re-enable it. We use
the perf_events syscalls for cycle counting. For benchmarking our individual
Keccak-f1600 functions, we warm the cache by running the function 1 000 times,
and then report the median of 100 samples of the average performance of 100
function invocations (the averaging amortizes the cost of the perf syscalls).

5.2 Keccak-f1600 performance

The results of our performance measurements for Keccak-f1600 are shown in Ta-
ble 1. As reference points, we use the crypto_hash/keccakc512/simple scalar
C implementation from SUPERCOP [Kee], the Armv8-A implementation from
[Ngu], and the Armv8.4-A implementation from [Wes]. We will now comment
and interpret results for each CPU separately.

Approach Cortex-X1 Cortex-A78 Cortex-A55
C [Kee] 1x 811 (811) 819 (819) 1 935 (1935)

Scalar Ours 1x 690 (690) 709 (709) 1 418 (1418)
Neon [Ngu] 2x 1 370 (685) 2 409 (1204) 5 222 (2611)
Neon Ours 2x 1 317 (658) 2 197 (1098) 4 560 (2280)

Scalar/Neon Ours 4x 1 524 (381) 2 201 (550) 7 288 (1822)
Scalar/Neon Ours 5x 2 161 (432) 2 191 (438) 8 960 (1792)
Approach Cortex-X2 Cortex-A710 Cortex-A510

C [Kee] 1x 817 (817) 820 (820) 1 375 (1375)
Scalar Ours 1x 687 (687) 701 (701) 968 (968)
Neon [Ngu] 2x 1 325 (662) 2 391 (1195) 3 397 (1698)
Neon Ours 2x 1 274 (637) 2 044 (1022) 6 970 (3485)

Neon+SHA-3 [Wes] 2x 1 547 (773) 1 550 (775) 2 268 (1134)
Neon+SHA-3 Ours 2x 1 547 (773) 1 549 (774) 1 144 (572)

Neon/Neon+SHA-3 Ours 2x 944 (472) 1 502 (751) 4 449 (2224)
Scalar/Neon/Neon+SHA-3 Ours 3x 985 (328) 1 532 (510) 4 534 (1511)

Scalar/Neon Ours 4x 1 469 (367) 2 229 (557) 7 384 (1846)
Scalar/Neon+SHA-3 Ours 4x 1 551 (387) 1 608 (402) 3 545 (886)

Scalar/Neon Ours 5x 2 152 (430) 2 535 (507) 7 169 (1433)
Scalar/Neon/Neon+SHA-3 Ours 4x 1 439 (359) 1 755 (438) 4 487 (1121)

Table 1: Cycle counts for various implementations of Keccak-f1600.
“Neon+SHA-3” indicates implementations using the SHA-3 instructions. Num-
bers in brackets are normalized with respect to the amount of parallelization.

3 https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads

https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
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Cortex-A55 and Cortex-A510. We observe a significant speedup from the C
scalar implementation to our hand-optimized assembly implementation: 1.36×
for Cortex-A55 and 1.42× for Cortex-A510. We further note that the scalar
performance is close to the theoretical optimum: With ≈ 2750 instructions in
total (see Section 3.1) and a maximum issue rate of 2 instructions per cycle on
Cortex-A55, the theoretical performance limits on Cortex-A55 are ≈ 1375 cycles.
Similar, the maximum issue rate of 3 instructions per cycle on Cortex-A510 leads
to a theoretical performance limit of ≈ 917 cycles.

As expected (see Section 4.2), the pure Neon implementation is not competi-
tive for neither Cortex-A55 nor Cortex-A510. In particular, we confirm that the
macro-based implementation performs very poorly on Cortex-A510 since laten-
cies are not obeyed, while the intrinics-based implementation from [Ngu] does
better at scheduling the code for latency.

For Cortex-A510, we observe a significant speedup from the Armv8.4-A im-
plementation, explained by the presence of 2 SIMD units capable of executing
the SHA-3 Neon instructions. The very large performance gap between our im-
plementation and that of [Wes] is largely due to the high latency of RAX1, which
we have circumvented as described in Section 4.3.

Finally, we observe that hybrid implementations are not beneficial on in-order
cores, as we expected in Section 4.4.

We take away that Cortex-A55 and Cortex-A510 have very efficient scalar
implementations which fully leverage the potential for superscalar execution. On
Cortex-A55, the scalar implementation should even be used for batched applica-
tions of Keccak-f1600. On Cortex-A510, batched applications of Keccak-f1600
should use the Armv8.4-A based implementation.

Cortex-A78 and Cortex-A710. We observe a speedup of 1.15× for our scalar
implementation compared to the baseline C implementation. We don’t gain as
much as for Cortex-A55 and Cortex-A510, which is expected since scheduling for
latency is less important for out-of-order cores. Moreover, our scalar implemen-
tation is close to the theoretical optimum: With 2516 arithmetic instructions in
the core of Keccak-f1600, and 4 scalar units, performance is bounded by ≈ 629
cycles, ignoring preamble and postamble.

Next, we comment at the Armv8-A Neon performance. Recalling that the core
of the implementation performs 3840 Neon arithmetic instructions, and Cortex-
A78 and Cortex-A710 have maximum Neon IPC of 2, our implementations are
reasonably close to the theoretical optimum, yet around 1.5× slower than the
scalar implementation. For Cortex-A78, the Keccak-f1600-x5 hybrid achieves
near optimal performance, leveraging up to 6 IPC on Cortex-A78. For Cortex-
A710 in turn, we confirm that the 5-way hybrid cannot work due to the maximum
of 5 IPC on Cortex-A710.

Finally, we look at the Armv8.4-A Neon performance. With a single Neon
unit implementing the SHA-3 instructions, we cannot do better than 1536 cy-
cles, and our implementation comes very close to that, providing a meaningful
speedup of 1.32× over the Armv8-A Neon implementation. Yet, it is still slightly
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slower than the scalar implementation, but a Keccak-f1600-x4 scalar/Armv8.4-
A Neon hybrid gets the best of the fast scalar implementation and the SHA-3
instructions. This implementation leverages the maximum throughput of 5 IPC
for Cortex-A710: 4 IPC for the scalar implementation, and 1 IPC for the Neon
implementation. This also explains why the Scalar/Neon/Neon hybrid is worse
than the Scalar/Neon hybrid: There is no bandwidth to leverage all four scalar
units and both Neon units in every cycle.

Cortex-X1 and Cortex-X2. For scalar Keccak-f1600, we get essentially the
same performance as for Cortex-A78 and Cortex-A710, and the same comments
apply – this is unsurprising given that Cortex-{A78,A710,X1,X2} all have the
same throughput and latency for the relevant scalar instructions.

Next, we look at the performance of the Armv8-A Neon implementations. We
observe that it is 5%-10% faster than 2× the scalar implementation – i.e., for
batched computations of Keccak-f1600, scalar and Armv8-A Neon implemen-
tation are roughly on par. We also note that the performance is lower than what
the theoretical maximum of 4 Neon IPC for Cortex-X1 and Cortex-X2 would
suggest: With 3840 Neon arithmetic instructions, one could hope for ≈ 1000 cy-
cles. We believe that the difficulty in going significantly beyond 3 IPC lies in the
Keccak-f1600 computation “narrowing” at the θ step, and in the SHL+SRI-based
rotations having a maximum IPC of 2 (see Section 4.2). Nonetheless, we cannot
exclude further optimization potential, and encourage research.

The roughly equal performance of scalar and Armv8-A Neon implementation
motivates why we pair 2× and 1× Keccak-f1600-x2 when constructing the
Scalar/Neon-Armv8-A hybrid for Keccak-f1600-x4. We observe that the hybrid
is only slightly above the theoretical optimum, confirming that the frontends of
Cortex-X1 and Cortex-X2 are wide enough to process both implementations.

Next, we comment on the performance of the Armv8.4-A Neon implementa-
tion on Cortex-X2. First, one observes that the pure Armv8.4-A implementation
is slower than the Armv8-A implementation. While this may come as a sur-
prise, the reason is clear: The SHA-3 instructions are implemented on 1 out of 4
Neon units, while the logical operations underlying the Armv8-A implementation
are available on all units. Accordingly, we observe a significant speedup for the
Neon/Neon hybrid, since it puts all Neon units to use. In fact, this hybrid is suf-
ficiently fast to make a 3-way batched Scalar/Neon/Neon hybrid useful, and this
implementation yields the best batched performance. A 4-way batched Scalar/-
Neon/Neon implementation brings little benefit compared to a Scalar/Armv8-A
Neon hybrid: that’s because the bottleneck is the scalar code anyway.

5.3 SPHINCS+ performance

Table 2 shows the performance of SPHINCS+ (v3.1) based on our Keccak-f1600
implementations, in comparison to previous implementations. We only display
results for the “robust” 128-bit parameter sets, but note that our implementations
work for all other parameter sets, too, and show similar speedups. Full results
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are available alongside the code. We see significant performance improvements
of up to 1.89× compared to the state of the art.
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Parameter set Impl. Key Generation Signing Verification
Cortex-X1

128f-robust
C [Kee] 7 358k 170 826k 11 503k
[Ngu] 6 112k (1.00 ×) 141 857k (1.00 ×) 9 835k (1.00 ×)
Ours 3 491k (1.75 ×) 81 198k (1.75 ×) 5 881k (1.67 ×)

128s-robust
C [Kee] 470 976k 3 546 272k 4 168k
[Ngu] 391 075k (1.00 ×) 2 937 624k (1.00 ×) 3 634k (1.00 ×)
Ours 223 778k (1.75 ×) 1 681 496k (1.75 ×) 2 139k (1.70 ×)

Cortex-A78

128f-robust

C [Kee] 7 507k (1.00 ×) 174 285k (1.00 ×) 11 912k (1.00 ×)
[Ngu] 10 731k 249 061k 16 939k
Ours 5 043k (1.49 ×) 117 280k (1.49 ×) 7 949k (1.50 ×)

128s-robust

C [Kee] 479 608k (1.00 ×) 3 603 102k (1.00 ×) 4 277k (1.00 ×)
[Ngu] 686 059k 5 153 452k 6 359k
Ours 262 264k (1.83 ×) 2 029 133k (1.78 ×) 2 534k (1.69 ×)

Cortex-A55

128f-robust
C [Kee] 18 035k (1.00 ×) 418 555k (1.00 ×) 27 322k (1.00 ×)
[Ngu] 23 444k 544 203k 37 017k
Ours 13 078k (1.38 ×) 304 188k (1.38 ×) 21 855k (1.25 ×)

128s-robust
C [Kee] 1 153 927k (1.00 ×) 8 667 372k (1.00 ×) 10 415k (1.00 ×)
[Ngu] 1 500 186k 11 269 260k 13 301k
Ours 835 847k (1.38 ×) 6 278 826k (1.38 ×) 6 916k (1.51 ×)

Cortex-X2

128f-robust

C [Kee] 7 481k 173 680k 11 409k
[Ngu] 5 946k (1.00 ×) 138 094k (1.00 ×) 9 400k (1.00 ×)
[Wes] 6 930k 160 942k 11 298k
Ours 3 315k (1.79 ×) 77 038k (1.79 ×) 5 544k (1.70 ×)

128s-robust

C [Kee] 479 373k 3 601 405k 4 374k
[Ngu] 381 170k (1.00 ×) 2 863 365k (1.00 ×) 3 312k (1.00 ×)
[Wes] 443 343k 3 330 902k 3 937k
Ours 194 295k (1.96 ×) 1 517 988k (1.89 ×) 1 849k (1.79 ×)

Cortex-A710

128f-robust

C [Kee] 7 571k 175 706k 11 796k
[Ngu] 10 641k 247 082k 17 210k
[Wes] 6 980k (1.00 ×) 162 090k (1.00 ×) 11 338k (1.00 ×)
Ours 3 743k (1.86 ×) 87 052k (1.86 ×) 6 071k (1.87 ×)

128s-robust

C [Kee] 483 664k 3 633 790k 4 194k
[Ngu] 681 006k 5 118 302k 6 188k
[Wes] 446 644k (1.00 ×) 3 356 044k (1.00 ×) 3 850k (1.00 ×)
Ours 239 634k (1.86 ×) 1 800 720k (1.86 ×) 2 147k (1.79 ×)

Cortex-A510

128f-robust

C [Kee] 13 787k 315 780k 21 640k
[Ngu] 15 270k 354 191k 24 771k
[Wes] 10 600k (1.00 ×) 245 623k (1.00 ×) 16 866k (1.00 ×)
Ours 5 428k (1.95 ×) 125 818k (1.95 ×) 8 920k (1.89 ×)

128s-robust

C [Kee] 871 396k 6 548 093k 7 969k
[Ngu] 974 307k 7 322 458k 8 397k
[Wes] 661 699k (1.00 ×) 4 991 715k (1.00 ×) 5 791k (1.00 ×)
Ours 347 614k (1.90 ×) 2 610 123k (1.91 ×) 3 322k (1.74 ×)

Table 2: Performance results for SPHINCS+. For each platform, we pick the
Keccak-f1600 implementation that achieves the best performance.
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