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Abstract. In this paper, we re-investigate the Lai–Massey scheme, originally proposed
in the cipher IDEA. Due to the similarity with the Feistel schemes, and due to the
existence of invariant subspace attacks as originally pointed out by Vaudenay at FSE
1999, the Lai–Massey scheme has received only little attention by the community. As
first contribution, we propose new generalizations of such scheme that are not (affine)
equivalent to any generalized Feistel scheme proposed in the literature so far. Then,
inspired by the recent Horst construction, we propose the Amaryllises construction
as a generalization of the Lai–Massey scheme, in which the linear combination in
the Lai–Massey scheme is replaced by a non-linear one. Besides proposing concrete
examples of the Amaryllises construction, we discuss its (possible) advantages and
disadvantages with respect to other existing schemes/constructions published in the
literature, with particular attention on the Lai–Massey one and on the Horst one.
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1 Introduction
Probably, the two most popular design frameworks for iterated symmetric primitives are
the Substitution–Permutation Network (SPN) and the Feistel one (FN). In the SPN case,
the input of each round is divided into multiple small sub-blocks, a non-linear function
(called S-Box) is applied on each sub-block, followed by an affine transformation that mixes
the sub-blocks (for our goals, we do not make a distinction between the case in which this
affine permutation is just a shuffle plus a round–constant addition as in Present [BKL+07],
or a more complex affine transformation as in AES [DR00,DR20]). The invertibility of the
entire construction depends on the invertibility of each sub–component. The scenario is
different in the FN case. In each round of a Feistel Network, the input is split into two
halves, a function F is applied on one of the two halves, which is successively mixed with
the other part, just before the two halves are swapped, that is,

[x0, x1] 7→ [x1 + F (x0), x0] .

With respect to the SPN case, FNs are invertible by construction independently of the
details of the F -function. Hence, the designer can choose among a larger class of non-linear
functions in order to instantiate a FN with respect to what happens in SPNs, since no
condition on the invertibility is imposed. Moreover, computing a Feistel scheme in the
forward or in the backward direction is very similar (even identical in some cases), since
the same F -function is computed in the two processes. Due to these facts:

• a large proportion of schemes is based on the Feistel design approach, including DES,
Blowfish [Sch93], MISTY [Mat97], CAST-128/-256 [Ada97], among many others;

• several generalizations have been proposed in the literature, including Type-I/-II/-III
Feistel schemes [ZMI90,Nyb96], contracting and expanding Feistel schemes [SK96,
HR10], among others;

• the indistinguishability or/and of the indifferentiability of r-rounds generalized Feistel
schemes instantiated with a Pseudo-Random Function/Permutation (PRF/PRP)
have been extensively analyzed – see [Pat98,Pat01,MP03,CPS08,DS16].

Another design strategy that has many points in common with FNs is the Lai–Massey
one [Vau99], introduced after the design of IDEA [LM90]. Similar to Feistel, the input is
first split into two halves, but in this case a function F is applied on their difference, and
the result of such function is then added to each input, that is,

[x0, x1] 7→ [x0 + F (x0 − x1), x1 + F (x0 − x1)] .

As in the case of Feistel schemes, the invertibility of Lai–Massey schemes follows from its
construction, that is, it is independent of details of the function F . However, compared to
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the Feistel schemes, the Lai–Massey scheme is much less studied in the literature, and only
few concrete Lai–Massey schemes have been proposed in the literature. The motivations
of this fact can be multiple, but they certainly include the following:

1. a Lai–Massey scheme as the one just proposed can be easily broken due to the
existence of an invariant subspace attack, as first pointed out by Vaudenay [Vau99];

2. it seems that Lai–Massey schemes do not have any concrete advantage with respect
to Feistel schemes, as stated by Yun et al. in [YPL11, Sect. 8]: “as a cryptographic
design, the Lai–Massey cipher does not have any advantage over the Feistel in terms
of the Luby-Rackoff model”.

In this paper, we re-consider the Lai–Massey construction, and we present new general-
izations of it that are not (affine) equivalent to any generalized Feistel scheme proposed
in the literature so far. Moreover, we introduce the Amaryllises construction, a new
generalization of the Lai–Massey one in which the linear combination between the function
F and the halves that composed the input is replaced by a non-linear combination.

Our Contribution
Relation between Generalized Feistel and Generalized Lai–Massey Schemes

The simplest generalization of a Lai–Massey scheme recently proposed in [GØSW22] and
recalled in Sect. 3 works as following:

1. first, the input message is divided in n ≥ 2 sub-blocks;

2. a function F is applied to linear combinations of such sub-blocks, with the condition
that the sum of the coefficients that define each linear combination is zero;

3. the result of such function is then added to each input.

In Sect. 4, we prove that any Lai–Massey scheme of this form is (extended) affine equivalent
to a generalized Feistel scheme, that is, a Lai–Massey scheme of this form is equal to a
generalized Feistel scheme pre- and post-computed with an affine invertible transformation.
In particular, we show that r ≥ 2 Lai–Massey consecutive rounds are equal to r generalized
Feistel consecutive rounds in which no swapping of the components takes place (besides
an initial and a final affine transformation). This fact implies the existence of invariant
subspaces in Lai–Massey schemes, already found in [Vau99].

As next step, in Sect. 5, we generalize the Lai–Massey scheme just discussed. Instead of
limiting ourselves to consider a function which takes linear combinations of the sub-blocks
with the zero-sum condition on the coefficients as inputs, we allow for any function F for
which the entire construction is invertible. (A formal definition is given in Def. 6.) Working
over a prime field Fnp for p ≥ 3, we show concrete examples of invertible generalized Lai–
Massey schemes in which the function F depends on linear combinations of the sub-blocks
for which the sum of the coefficients of such linear combination is not zero. The simplest
example of this is given by

[x0, x1] 7→
[
x0−

ψ

2 · (x0 − x1)2 · (x0 + x1)︸ ︷︷ ︸
=F (x0,x1)

, x1−
ψ

2 · (x0 − x1)2 · (x0 + x1)︸ ︷︷ ︸
=F (x0,x1)

]

over F2
p for p ≥ 3 with the condition that ψ ∈ Fp is a quadratic non-residue modulo p (that

is, ψ 6= z2 for each z ∈ Fp). In such a case, the function F depends on x0 − x1 (whose
coefficients 1,−1 sum to zero) and on x0 + x1 (whose coefficients 1, 1 do not sum to zero).
We prove that that the obtained invertible generalized Lai–Massey scheme is not affine
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equivalence to any generalized Feistel scheme. To the best of our knowledge, this is the
first example in the literature of a generalized Lai–Massey scheme that cannot be reduced
to a generalized Feistel scheme.

The Amaryllises Construction

Let Fq be a field. Based on our (informal) definition just given, a function LM(x0, x1, . . . ,
xn−1) = y0‖y1‖ . . . ‖yn−1 (where ·‖· denotes concatenation) is a generalized Lai–Massey
scheme if

• there exists a certain function F : Fnq → Fq such that

∀i ∈ {0, 1, . . . , n− 1} : yi = xi + F (x0, x1, . . . , xn−1); (1)

• it is invertible.
Natural question arise: why should we limit ourselves to define each output yi as a linear
combination of the input xi and of the output of the function F (x0, x1, . . . , xn−1)? Is it
possible to consider non-linear combinations without loosing the invertibility condition?

Grassi et al. [GHR+22] recently faced a similar challenge in the case of Feistel schemes.
The result of their analysis is the Horst construction, defined over F2

q as

[x0, x1] 7→ [x1 ·G(x0) + F (x0), x0] .

The invertibility of such scheme holds under the condition that G never returns zero.
Generalizations of such construction over Fnq for n ≥ 3 are also possible.

Intuitively, by applying the same approach to the function proposed in (1), we get
something of the form

∀i ∈ {0, 1, . . . , n− 1} : yi = xi ·G(x0, x1, . . . , xn−1) + F (x0, x1, . . . , xn−1) ,

for two functions G,F : Fnq → Fq. We call this new construction as (generalized)
Amaryllises.1 In Sect. 6 and in Sect. 7, we formalize it by showing that such con-
struction can be invertible in the case in which the functions G and F satisfy some
particular (non-trivial) conditions. Besides that, in there:

• we show how to construct functions F,G with low-multiplicative complexity that
satisfy such conditions. When working over a small field Fq (e.g., q equal to 24, 28

or similar), it is always possible to find functions F,G that satisfy the required
conditions by using an exhaustive approach. However, this strategy immediately
fails when q is very large, e.g., q ≥ 264, as in the case of symmetric primitives used
for Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and
Zero-Knowledge (ZK) proofs. In such a case, the ability to construct F,G that satisfy
the required conditions and that are easy to compute (hence, with a simple algebraic
expression) becomes crucial;

• we discuss the advantages (and the possible disadvantages) of this new Amaryllises
construction with respect to the ones already present in the literature in terms of
efficiency and security, with particular attention with the Lai–Massey scheme and
with the Horst one.

2 Preliminary
In this initial section, we introduce the notation and recall some well-known results that
we are going to use in the following.

1We decided to call it as the flowers ama(r)yl(l)ises, since such word is (almost) the anagram of
Lai–Massey.
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Notation. Let q = ps where p ≥ 2 is a prime number and s ≥ 1 is a positive integer. Let Fq
denote the Galois Field of order q. We use small letters to denote either parameters/indexes
or variables, and greek letters to denote fixed elements in Fq. We use capital letter or
the calligraphic font to denote functions. We use the fraktur font (e.g., X) to denote
sets of elements. Given x ∈ Fnq , we denote by xi its i-th component for each i ∈
{0, 1, . . . , n− 1}, that is, x = [x0, x1, . . . , xn−1] ≡ x0‖x1‖ . . . ‖xn−1, where the symbol ·‖·
denotes concatenation. Given a matrix M ∈ Fn×mq , we denote the entry in the r-th row
and in the c-th column by Mr,c. We use 〈s(0), s(1), . . . , s(t−1)〉 ⊆ Fnq to denote the linear
span of the vectors s(0), s(1), . . . , s(t−1) ∈ Fnq . We denote by circ(µ0, µ1, . . . , µn−1) ∈ Fn×np
a circulant matrix

circ(µ0, µ1, . . . , µn−1) :=


µ0 µ1 . . . µn−2 µn−1
µn−1 µ0 . . . µn−3 µn−2
...

...
µ1 µ2 . . . µn−1 µ0

 .

Power Maps and Dickson Polynomial. Well known examples of invertible functions over
Fq include the power maps and the Dickson polynomials:

Theorem 1 ( [MP13]). Let d ≥ 1 be a positive integer, and let q = ps, where p ≥ 2 is a
prime and s is a positive integer:

• the power map x 7→ xd is invertible if and only if gcd(d, q − 1) = 1;

• given α ∈ Fq, the Dickson polynomial Dd,α defined as

Dd,α(x) :=
bd/2c∑
i=0

d

d− i

(
d− i
i

)
(−α)ixd−2i

is invertible if and only if gcd(d, q2 − 1) = 1.

We recall that Dd,0(x) = xd, and D1,α(x) = x, D2,α(x) = x2 − 2 · α, and Dd+1,α(x) :=
x · Dd,α(x) − α · Dd−1,α(x) for each d ≥ 2. Note that Dd,α only contains monomials of
degree even if d is even, and only monomials of degree odd if d is odd.

The Legendre Symbol. Here we recall some properties of the Legendre symbol used in
the following.

Definition 1. Let p ≥ 3 be a prime number. An integer α is a quadratic residue modulo
p if it is congruent to a perfect square modulo p, and it is a quadratic non–residue modulo
p otherwise.

Definition 2. The Legendre symbol Lp(·) is a function Lp : Fp → {−1, 0, 1} defined as
Lp(x) := x

p−1
2 mod p, or equivalently Lp(0) = 0 and

Lp(x) :=
{

1 if x is a non-zero quadratic residue modulo p,
−1 if x is a quadratic non-residue modulo p

.

Proposition 1 ( [MP13]). The Legendre symbol has the following properties:

1. if x = y mod p, then Lp(x) = Lp(y);

2. Lp(x · y) = Lp(x) · Lp(y).

Particular identities include:
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• Lp(−1) = 1 if p = 1 mod 4, while Lp(−1) = −1 if p = 3 mod 4;

• Lp(−3) = 1 if p = 1 mod 3, while Lp(−3) = −1 if p = 2 mod 3;

• Lp(2) = 1 if p = 1, 7 mod 8, while Lp(2) = −1 if p = 3, 5 mod 8.

3 Related Works about Lai–Massey Schemes
Let q = ps where p ≥ 2 is a prime integer and s ≥ 1. Given a function F over Fq, the
Lai–Massey construction over F2

q introduced in [LM90] is defined as

[x0, x1] 7→ [y0, y1] := [x0 + F (x0 − x1), x1 + F (x0 − x1)] . (2)

Its invertibility follows from the fact that y0 − y1 = x0 − x1, and so xj = yj − F (y0 − y1)
for each j ∈ {0, 1}.

Lai–Massey Schemes over F≥2
q from [GØSW22]. The most natural generalization of

the Lai–Massey construction over Fnq for n ≥ 2 has been recently proposed in [GØSW22].

Proposition 2 (Prop. 1, [GØSW22]). Let n ≥ 2 be an integer, and let q = ps where p ≥ 2
is a prime integer and s ≥ 1. Let l ∈ {1, 2, . . . , n− 1}. For each i ∈ {0, 1, . . . , l − 1}, let
λ

(i)
0 , λ

(i)
1 , . . . , λ

(i)
n−1 ∈ Fq be such that

∑n−1
j=0 λ

(i)
j = 0 and [λ(i)

0 , λ
(i)
1 , . . . , λ

(i)
n−1] 6= [0, 0, . . . , 0].

Let F : Flq → Fq be any function. The Lai–Massey function LM over Fnq defined as
LM(x0, x1, . . . , xn−1) := y0‖y1‖ . . . ‖yn−1 where

∀i ∈ {0, 1, . . . , n− 1} : yi = xi + F

n−1∑
j=0

λ
(0)
j · xj ,

n−1∑
j=0

λ
(1)
j · xj , . . . ,

n−1∑
j=0

λ
(l−1)
j · xj


is invertible.

As for the case of the Lai–Massey scheme over F2
q, the invertibility follows from the

fact that

∀i ∈ {0, 1, . . . , l − 1} :
n−1∑
j=0

λ
(i)
j · xj =

n−1∑
j=0

λ
(i)
j · yj .

We point out that the range of l follows from the fact that there are at most n − 1
Fnq -vectors so that (i) their entries sum to zero and that (ii) they are linearly indepen-
dent. In particular, even if not strictly necessary, it makes sense to choose the vectors
[λ(0)

0 , λ
(0)
1 , . . . , λ

(0)
n−1], [λ(1)

0 , λ
(1)
1 , . . . , λ

(1)
n−1], . . . , [λ(l−1)

0 , λ
(l−1)
1 , . . . , λ

(l−1)
n−1 ] to be linearly in-

dependent.

Invariant Subspace Trails. As already pointed out by Vaudenay in [Vau99] for the F2
q case,

there exists an invariant subspace for the Lai–Massey construction proposed in Prop. 2.
We refer to [LAAZ11,LMR15,GRR16] for a formal definition of (invariant) subspace trails.
We limit ourselves to recall the following definition.

Definition 3 ( [GRR16]). Given q, n as before, let U0, . . . ,Ur ⊆ Fnq be r + 1 subspace.
(U0, . . . ,Ur) is a subspace trail of length r ≥ 1 for a function F over Fnq if (1st) dim(Ui) ≤
dim(Ui+1) < n for each i ∈ {0, 1, . . . , r − 1} and (2nd) if for each i ∈ {0, . . . , r − 1}
and for each ϕi ∈ Fnq , there exists ϕi+1 ∈ Fnq such that F (Ui + ϕi) := {F (x) | ∀x ∈
Ui + ϕi} ⊆ Ui + ϕi+1. We say that it is an invariant subspace trail if Ui = Uj for each
i, j ∈ {0, 1, . . . , r}.
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The Lai–Massey construction LM defined as in Prop. 2 over Fnq admits

X :=

x ∈ Fnq

∣∣∣∣ ∀i ∈ {0, 1, . . . , l − 1} :
n−1∑
j=0

λ
(i)
j · xj = 0


as invariant subspace. It is easy to check that, for each ϕ ∈ Fnq , there exists ψ ∈ Fnq such
that

LM(X + ϕ) := {LM(x+ ϕ) ∈ Fnq | ∀x ∈ X} = X + ψ .

Indeed, given x ∈ X + ϕ, we have that

∀i ∈ {0, 1, . . . , n− 1} : yi = xi + F (0, 0, . . . , 0)︸ ︷︷ ︸
constant

,

which means that only the coset is changed, while the subspace itself is not affected.
Independently of the values of λ(i)

j , the subspace X for the Lai–Massey construction
proposed in Prop. 2 is never an empty set.

Lemma 1. 〈[1, 1, . . . , 1]〉 ⊆ X. Hence, dim(X) ≥ 1.

Proof. It is sufficient to note that (i) 〈[1, 1, . . . , 1]〉 ≡ {[x, x, . . . , x] ∈ Fnq | ∀x ∈ Fq} and
that (ii)

∑n−1
j=0 λ

(i)
j · x = x ·

∑n−1
j=0 λ

(i)
j = x · 0 = 0 for each i ∈ {0, 1, . . . , l − 1}, due to the

assumption on λ(i)
j .

In particular: dim(X) = n−dim(〈[λ(0)
0 , λ

(0)
1 , . . . , λ

(0)
n−1], . . . , [λ(l−1)

0 , λ
(l−1)
1 , . . . , λ

(l−1)
n−1 ]〉),

which is equal to n− l if the previous vectors are linearly independent.
In order to break such invariant subspace, in [GØSW22], authors proposed to apply an

invertible linear layer defined via the multiplication with an invertible matrix M ∈ Fn×nq

after each LM round. In such a case, an invariant subspace must be invariant both for the
LM round and for the matrix M as well. By choosing a matrix M that does not admit
any invariant subspace (i.e., such that no subspace Z ⊆ Fnq satisfies M × Z = Z), then no
invariant subspace exists for the overall construction as well. Based on [GRS21, Prop. 12],
a matrix in Fn×nq does not admit any invariant subspace if its minimal polynomial has
maximum degree n and if it is irreducible. By making used of a similar approach, it is also
possible to defeat other similar attacks, e.g., it is possible to guarantee that no iterative
subspace trail exists (that is, a subspace trail that cyclically repeats itself after r ≥ 2
rounds). We refer to [GØSW22,GRS21] for more details.

Before going on, we point out that it is possible to break the subspace trail of LM
even if the matrix M admits invariant subspaces (e.g., in the case in which the invariant
subspaces of M are incompatible with the ones of LM – see [GØSW22, GRS21] for
examples). Moreover, we note that it is not necessary to instantiate all the rounds with
the same matrix M in order to break a subspace trail (see e.g. [GSW+21] for more details).
Finally, in App. A, we briefly discuss the solution proposed in [Vau99] for breaking the
subspace trail of the Lai–Massey construction over F2

q , showing that it is analogous to the
one just described for the generic case Fnq .

4 Relation between Feistel and Lai–Massey Schemes
In this section, we show that the Lai–Massey scheme over Fnq proposed in Prop. 2 is
extended-affine equivalent to a generalized Feistel scheme.
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4.1 Preliminary: EA-Equivalence and Generalized Feistel Schemes
First, we introduce the definition of extended-affine equivalence and the one of generalized
Feistel scheme.

EA-Equivalence. Two functions F and G are EA-equivalent if they are equivalent pre- and
post-computed with affine transformations (besides the addition with an affine function).

Definition 4 (EA-Equivalence). Let q = ps where p ≥ 2 is a prime and s ≥ 1 is a positive
integer. Let n,m ≥ 1, and let F,G : Fnq → Fmq be two functions. F and G are extended-
affine equivalent (EA-equivalent) if there exist two affine permutations A : Fnq → Fnq and
B : Fmq → Fmq and an affine function C : Fnq → Fmq such that

∀x ∈ Fnq : F (x) = B ◦G ◦A(x) + C(x) .

Generalized Feistel Schemes. Regarding the definition of generalized Feistel schemes,
we propose the following:

Definition 5 (Generalized Feistel Schemes). Let q = ps where p ≥ 2 is a prime and s ≥ 1
is a positive integer, and let n ≥ 2. For each i ∈ {1, 2, . . . , n− 1}, let Fi : Fiq → Fq be a
function. The Generalized Feistel scheme FG over Fnq is defined as

FG(x0, x1, . . . , xn−1) := y0‖y1‖ . . . ‖yn−1

where

yi :=
{
xi+1 + Fi(x0, x1, . . . , xi) if i ∈ {0, 1, . . . , n− 2} ;
x0 otherwise (if i = n− 1) .

The inveritiblity of the entire construction is independent of the details of F0, F1, . . . , Fn−2.
Indeed, x0 = yn−1, and for each i ≥ 1, given yi−1 and given x0, x1, . . . , xi−1, we have that
xi = yi−1 − Fi(x0, x1, . . . , xi−1).

We highlight that any generalized Feistel scheme proposed in the literature is EA-
equivalent to the generalized Feistel scheme just proposed. In particular:

• a Type-I Feistel [ZMI90,Nyb96] is defined via Fi(x0, x1, . . . , xi) = 0 for each i ≥ 1
(while no condition on F0). The EA-equivalence holds via the affine functions
A,B = I equal to the identity function, and C = 0;

• given functions G0, G2, . . . , Gbn/2c over Fq, a Type-II Feistel [ZMI90,Nyb96] is defined
via

Fi(x0, x1, . . . , xi) =
{
Gi(xi) if i even (hence, i ∈ {0, 2, . . . , bn/2c})
0 otherwise

.

The EA-equivalence holds via the affine functions A,B = I equal to the identity
function, and C = 0;

• given functions G0, G1, . . . , Gn−2 over Fq, a Type-III Feistel [ZMI90,Nyb96] is defined
via Fi(x0, x1, . . . , xi) = Gi(xi) for each i ∈ {0, 1, 2, . . . , n− 2}. The EA-equivalence
holds via the affine functions A,B = I equal to the identity function, and C = 0;

• the Feistel schemes analyzed and proposed in [SM10,YI13,AGP+19] are Type–II/–III
Feistel schemes in which a final shuffle is applied. In such a case, the EA equivalence
holds via the affine function A = I equal to the identity function, an invertible shuffle
permutation B, and C = 0;
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• the Feistel schemes proposed by Bogdanov et al. [BS13] and by Berger et al. [BMT13]
are generalizations of Type–II/–III Feistel schemes where (i) the functions Fi are of
the form

Fi(x0, x1, . . . , xi) =
i∑

j=0
Gi,j(xj)

for functions Gi,j defined over Fq, and where (ii) a final shuffle is applied. As before,
the EA equivalence holds via the affine function A = I equal to the identity function,
an invertible shuffle permutation B, and C = 0;

• given a function G over Fq, an expanding Feistel [SK96, HR10] is defined via
Fi(x0, x1, . . . , xi) = G(x0) for each i ≥ 1. The EA-equivalence holds via the affine
functions A,B = I equal to the identity function, and C = 0;

• given G : Fn−1
q → Fq, a contracting Feistel [SK96,HR10] is defined via

Fi(x0, x1, . . . , xi) =
{
G(x0, x1, . . . , xn−2) if i = n− 2
0 otherwise

.

The EA-equivalence holds via the affine functions A,B = I equal to the identity
function, and C = 0;

• in a SP–type Feistel [SS04,BS13], the round function of the Feistel scheme is instanti-
ated via a SPN construction, as e.g. in the case of the block cipher CLEFIA [SSA+07].
Let n = 2 · n′ be an even integer. In such a case, the functions Fi are of the form

Fi(x0, x1, . . . , xi) =
{

0 if i < n/2
Gi(x0, x1, . . . , xn/2−1) otherwise

for particular functions Gn/2, . . . , Gn−1 over Fn/2
q corresponding to a SPN con-

struction. Moreover, the shuffle is of the form [x0, . . . , xn′−1, xn′ , . . . , xn−1] 7→
[xn′ , . . . , xn−1, x0, . . . , xn′−1] instead of [x0, x1, . . . , xn−1] 7→ [x1, . . . , xn−1, x0]. The
EA equivalence holds via the affine function A = I equal to the identity function, an
invertible shuffle permutation B, and C = 0.

4.2 EA-Equivalence between the Lai–Massey Schemes and the Gener-
alized Feistel Ones

Here, we prove the EA-equivalence between the Lai–Massey scheme over Fnq proposed in
Prop. 2 and the generalized Feistel scheme.
Proposition 3. Let q = ps where p ≥ 2 is a prime and s ≥ 1 is a positive integer, and
let n ≥ 2. The Lai–Massey scheme over Fnq defined as in Prop. 2 is EA-equivalent to the
generalized Feistel scheme defined in Def. 5.

In particular, we prove the following.
Proposition 4. Let q = ps where p ≥ 2 is a prime and s ≥ 1 is a positive integer, and
let n ≥ 2. For each r ≥ 2, r Lai–Massey rounds defined as in Prop. 2 are equal to r
Feistel rounds in which no swapping/shuffle takes place (besides an initial and a final linear
combination).

The proof is proposed in the following. We study the case n = 2 from the case
n ≥ 2 separately. The proof reduces to find the affine transformations A,B,C for which
the EA-equivalence holds. Since we only deal with linear (invertible) transformations
for A,B : Fnq → Fnq , we simply identify them with the corresponding matrices in Fn×nq .
Moreover, C is always equal to 0 in the following.
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4.2.1 Proof and Considerations for the Case n = 2

The Lai–Massey scheme LM over F2
q defined as [x0, x1] 7→ [x0 +F (x0−x1), x1 +F (x0−x1)]

is EA-equivalent to the Feistel scheme F defined as [x0, x1] 7→ [x1 + F (x0), x0] via the
invertible linear transformations

A =
[
1 −1
0 1

]
and B =

[
0 1
1 1

]
and C = 0. Indeed,[

x0
x1

]
A×·−−→

[
x0 − x1
x1

]
F(·)−−−→

[
x1 + F (x0 − x1)

x0 − x1

]
B×·−−−→

[
x0 + F (x0 − x1)
x1 + F (x0 − x1)

]
,

which is the Lai–Massey construction. That is, the Lai–Massey construction is basically a
Feistel construction pre-composed and post-composed with two invertible linear functions.

Let’s now define F ′ : F2
q → F2

q as the Feistel scheme without the swapping, that is,

F ′(x0, x1) = [x0, x1 + F (x0)] = circ(0, 1)×F(x0, x1) .

By considering two consecutive rounds of the Lai–Massey construction (analogous for
r ≥ 2 rounds), we get the following

LM ◦ LM(x) = (B ×F ◦A)× (B ×F ◦A)× x = B′ ×F ′ ◦ M̂ ×F ′ ◦A× x ,

where B′ = B × circ(0, 1) and where

M̂ := A× (B × circ(0, 1)) .

In the Lai–Massey case, we have that

M̂ =
[
1 −1
0 1

]
×
([

0 1
1 1

]
×
[
0 1
1 0

])
=
[
1 0
0 1

]
is the identity matrix. That is, for each r ≥ 2, r Lai–Massey rounds are equal to r Feistel
rounds in which no swapping takes place, besides an initial and a final linear combination.
This implies the existence of an invariant subspace for the Lai–Massey construction (which
corresponds to the subspace that does not active the function F in the Feistel construction
F ′), as already pointed out in the previous section.

About “Quasi-Feistel” Schemes. For completeness, we point out that this result is not
new in the literature. E.g., in [YPL11], Yun et al. introduced the concept of “quasi-Feistel”
schemes, a generic class of primitives over finite quasi–groups that includes as special cases
both the Feistel ones and the Lai–Massey ones. The result just proposed pointed out the
relation between Feistel and Lai–Massey schemes in a much easier and clearer way, by
showing that they are EA-equivalent.

4.2.2 Proof and Considerations for the Case n ≥ 3

We limit ourselves to prove the result for the two extremes and most commonly used cases,
that is, (1st) the case l = 1 in which the function F in the Lai–Massey scheme over Fnq as
proposed in Prop. 2 depends only on a single linear combinations of the inputs, and (2nd)
the case l = n− 1 in which it depends on n− 1 independent linear combinations of the
inputs. The other intermediate cases can be easily proved by combining the two strategies
proposed for these two extreme cases.
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1st Case: EA-Equivalent to Type-I Feistel. Let’s start by considering a Lai–Massey
scheme over Fnq as proposed in Prop. 2 for l = 1 instantiated with F : Fq → Fq, that is,
xi 7→ yi = xi+F

(∑n−1
j=0 λj · xj

)
for each i ∈ {0, 1, . . . , n−1}, where λ0, λ1, . . . , λn−1 ∈ Fq

satisfy
∑n−1
i=0 λi = 0. W.l.o.g., let’s assume λ0 6= 0.2

The analyzed Lai–Massey scheme is EA-equivalent to a Type-I Feistel scheme FI over
Fnq defined as [x0, x1, x2 . . . , xn−1] 7→ [x1 +F (x0), x2, . . . , xn−1, x0] via the invertible linear
transformations

A =


λ0 λ1 λ2 . . . λn−1
0 1 0 . . . 0
0 −1 1 . . . 0
...

... . . . ...
0 −1 0 . . . 1

 , B =


1 −λ2

λ0
. . . −λn−1

λ0
1
λ0

1 0 . . . 0 0
1 1 . . . 0 0
... . . . ...

...
1 0 . . . 1 0

 , (3)

and C = 0. Indeed, we have that
x0
x1
x2
...

xn−1

 A×·−−−→


∑n−1

i=0 λi · xi
x1

x2 − x1
...

xn−1 − x1

 FI (·)−−−→


x1 + F

(∑n−1
i=0 λi · xi

)
x2 − x1

...
xn−1 − x1∑n−1
i=0 λi · xi

 B×·−−−→


x0 + F

(∑n−1
i=0 λi · xi

)
x1 + F

(∑n−1
i=0 λi · xi

)
x2 + F

(∑n−1
i=0 λi · xi

)
...

xn−1 + F
(∑n−1

i=0 λi · xi
)

 .

As before, r Lai–Massey rounds are equal to r Type-I Feistel rounds in which no
swapping takes place, besides an initial and a final linear combination. This follows from
the fact that

A× (B × circ(0, 1, 0, . . . , 0))

=


λ0 λ1 λ2 . . . λn−1
0 1 0 . . . 0
0 −1 1 . . . 0
...

... . . . ...
0 −1 0 . . . 1

×


1
λ0

1 −λ2
λ0

. . . −λn−1
λ0

0 1 0 . . . 0
0 1 1 . . . 0
...

... . . . ...
0 1 0 . . . 1

 = I

is again the identity matrix. This implies the existence of invariant subspaces, as pointed
out before.

2nd Case: EA-Equivalent to Contracting Feistel. Next, we consider the case of a
Lai–Massey scheme over Fnq as proposed in Prop. 2 for l = n − 1 instantiated with
F : Fn−1

q → Fq, that is, xi 7→ yi = xi + F
(∑n−1

j=0 λ
(0)
j · xj , . . . ,

∑n−1
j=0 λ

(n−2)
j · xj

)
for each

i ∈ {0, 1, . . . , n− 1}, where we assume that λ(j)
i ∈ Fq satisfy the following conditions:

i.
∑n−1
j=0 λ

(i)
j = 0 for each i ∈ {0, 1, . . . , n− 2};

ii. the vectors λ̄(0) = [λ(0)
0 , λ

(0)
1 , . . . , λ

(0)
n−1], λ̄(1) = [λ(1)

0 , λ
(1)
1 , . . . , λ

(1)
n−1], . . . , λ̄(n−2) =

[λ(n−2)
0 , λ

(n−2)
1 , . . . , λ

(n−2)
n−1 ] ∈ Fnq are linearly independent.

First of all, we point out the following.
2If λ0 = 0, then the following argument works by considering another equivalent Type-I Feistel scheme

(e.g., if λi 6= 0, then it is sufficient to work with yi = xi+1 + F (xi+2) and yj = xj+1 for j = i).
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Lemma 2. Given q, n as before, let λ̄(0), λ̄(1), . . . , λ̄(n−2) ∈ Fnq be n− 1 vectors that satisfy
the previous two conditions just given. Then, the vectors λ̂(0) = [λ(0)

0 , λ
(0)
1 , . . . , λ

(0)
n−2], λ̂(1) =

[λ(1)
0 , λ

(1)
1 , . . . , λ

(1)
n−2], . . . , λ̂(n−2) = [λ(n−2)

0 , λ
(n−2)
1 , . . . , λ

(n−2)
n−2 ] ∈ Fn−1

q (i.e., the previous
vectors without the final component) are linearly independent as well.

Proof. Assume by contradiction that there exist (non-trivial) ψ0, ψ1, . . . , ψn−2 ∈ Fq such
that

∑n−2
j=0 ψj · λ̂(j) = 0 ∈ Fn−1

q . This also implies that
∑n−2
j=0 ψj · λ̄(j) = 0 ∈ Fnq as well,

since

• for each i ∈ {0, 1, . . . , n − 2}:
∑n−2
j=0 ψj · λ

(j)
i = 0 ∈ Fq, due to the fact that∑n−2

j=0 ψj · λ̂(j) = 0 ∈ Fn−1
q ;

• about the last component:

n−2∑
j=0

ψj · λ(j)
n−1 =

n−2∑
j=0

ψj ·

(
−
n−2∑
i=0

λ
(j)
i

)
= −

n−2∑
i=0

n−2∑
j=0

ψj · λ(j)
i

 =
n−2∑
i=0

0 = 0 ∈ Fq ,

where the first equality is due to the first condition
∑n−1
j=0 λ

(i)
j = 0 ∈ Fq for each

i ∈ {0, 1, . . . , n− 2}, while the third one is due to
∑n−2
j=0 ψj · λ̂(j) = 0 ∈ Fn−1

q .

This contradicts the second condition of linear independence among λ̄(0), λ̄(1), . . . , λ̄(n−2).

In order to show that the analyzed Lai–Massey scheme is EA-equivalent to a contract-
ing Feistel scheme FC defined over Fnq as [x0, x1, x2, . . . , xn−1] = [x1, x2, . . . , xn−1, x0 +
F (x1, x2, . . . , xn−1)], we introduce the values µi,0, . . . , µi,n−2 ∈ Fq for each i ∈ {1, . . . , n−1}
as the ones that satisfy the following equality:

∀i ∈ {1, . . . , n− 1} :


λ

(0)
0 λ

(1)
0 . . . λ

(n−2)
0

λ
(0)
1 λ

(1)
1 . . . λ

(n−2)
1

... . . . ...
λ

(0)
n−1 λ

(1)
n−1 . . . λ

(n−2)
n−1

×

µi,0
µi,1
...

µi,n−2

 =


−1
δi,1
...

δi,n−2
δi,n−1

 , (4)

where δi,j is the Kronecker delta (that is, δi,j = 1 if i = j, and 0 otherwise). The left-hand
side (l.h.s.) matrix has n − 1 columns and n rows. However, its rows are not linearly
independent, since the sum of its rows is equal to the zero vector (due to the condition on
λ

(j)
i ), or equivalently, the sum of each column is equal to zero. Since the right-hand side

(r.h.s.) vector satisfies the same zero sum, the previous system of linear equations reduces
to

∀i ∈ {1, . . . , n− 1} :


λ

(0)
0 λ

(1)
0 . . . λ

(n−2)
0

λ
(0)
1 λ

(1)
1 . . . λ

(n−2)
1

... . . . ...
λ

(0)
n−2 λ

(1)
n−2 . . . λ

(n−2)
n−2

×

µi,0
µi,1
...

µi,n−2

 =


−1
δi,1
...

δi,n−2

 ,

where the l.h.s. matrix is invertible due to the fact that the vectors λ̂(0), λ̂(1), . . . , λ̂(n−2)

are linearly independent, as proved before.
Given µi,j as before, we can now show that the analyzed Lai–Massey scheme is EA-

equivalent to a contracting Feistel scheme FC defined over Fnq via the invertible linear
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transformations

A =


1 0 0 . . . 0
λ

(0)
0 λ

(0)
1 λ

(0)
2 . . . λ

(0)
n−1

λ
(1)
0 λ

(1)
1 λ

(1)
2 . . . λ

(1)
n−1

...
...

. . .
...

λ
(n−2)
0 λ

(n−2)
1 λ

(n−2)
2 . . . λ

(n−2)
n−1

 , B =


0 0 . . . 0 1
µ1,0 µ1,1 . . . µ1,n−2 1
µ2,0 µ2,1 . . . µ2,n−2 1
...

. . .
...

...
µn−1,0 µn−1,1 . . . µn−1,n−2 1

 ,

and C = 0. Indeed, we have that


x0
x1
...

xn−1

 A×·−−−→


x0∑n−1

i=0 λ
(0)
i · xi

...∑n−1
i=0 λ

(n−2)
i · xi

 FC (·)−−−−→


∑n−1

i=0 λ
(0)
i · xi

...∑n−1
i=0 λ

(n−2)
i · xi

x0 + F
(∑n−1

i=0 λ
(0)
i · xi, . . . ,

∑n−1
i=0 λ

(n−2)
i · xi

)


B×·−−−→


x0 + F

(∑n−1
i=0 λ

(0)
i · xi, . . . ,

∑n−1
i=0 λ

(n−2)
i · xi

)
∑n−2

j=0 µ1,j ·
(∑n−1

i=0 λ
(j)
i · xi

)
+ x0 + F

(∑n−1
i=0 λ

(0)
i · xi, . . . ,

∑n−1
i=0 λ

(n−2)
i · xi

)
...∑n−2

j=0 µn−1,j ·
(∑n−1

i=0 λ
(j)
i · xi

)
+ x0 + F

(∑n−1
i=0 λ

(0)
i · xi, . . . ,

∑n−1
i=0 λ

(n−2)
i · xi

)



=


x0 + F

(∑n−1
i=0 λ

(0)
i · xi, . . . ,

∑n−1
i=0 λ

(n−2)
i · xi

)
x1 + F

(∑n−1
i=0 λ

(0)
i · xi, . . . ,

∑n−1
i=0 λ

(n−2)
i · xi

)
...

xn−1 + F
(∑n−1

i=0 λ
(0)
i · xi, . . . ,

∑n−1
i=0 λ

(n−2)
i · xi

)

 ,

where the last equality holds due to the definition of µi,j .
Not surprisingly, r Lai–Massey rounds are equal to r contracting Feistel rounds in

which no swapping takes place, besides an initial and a final linear combination. As proved
in App. B, this follows from the fact that

A× (B × circ(0, 1, 0, . . . , 0)) = I .

(This also implies that bothA andB are invertible, since det (A× (B × circ(0, 1, 0, . . . , 0))) =
det(I) = 1 implies that det(A) · det(B) 6= 0, and so det(A),det(B) 6= 0.) As before, this
implies the existence of invariant subspaces for the Lai–Massey scheme.

5 A New Generalization of the Lai–Massey Construction
The main feature of a Lai–Massey construction [x0, x1, . . . , xn−1] 7→ [y0, y1, . . . , yn−1]
regards the fact that the difference of two outputs yi − yj is always equal to the difference
of two inputs xh − xl for each i, j, h, l ∈ {0, 1, . . . , n− 1} , that is, yi − yj = xh − xl (with
the only condition that h = l if and only if i = j – note that (i, j) = (h, l) is not required).
This is related to the fact that each output yi is defined as the sum of the corresponding
input xi and of a certain element z = F (x0, x1, . . . , xn−1), that is, yi = xi + z where z is
fixed for each i ∈ {0, 1, . . . , n− 1}. However, in the original Lai–Massey construction, the
element z (and so the function F ) must be of a particular form in order to guarantee the
inveritibility.

Here, we propose the following definition that aims to formally generalize the Lai–
Massey construction by capturing the observation just pointed out.
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Definition 6. Let q = ps for p ≥ 2 being a prime and s ≥ 1 an integer, and let n ≥ 2.
Given a function F : Fnq → Fq, let LMG : Fnq → Fnq be defined as LMG(x0, x1, . . . , xn−1) =
y0‖y1‖y2‖ . . . ‖yn−1 where

∀i ∈ {0, 1, . . . , n− 1} : yi := xi + F (x0, x1, . . . , xn−1) .

We say that LMG is a Generalized Lai–Massey construction if it is invertible.

Obviously, the Lai–Massey scheme defined in Prop. 2 satisfies this definition.
The crucial point is that there exist generalized Lai–Massey constructions that are

not of the same form given in Prop. 2 (where the function F only takes as inputs linear
combinations of x0, x1, . . . , xn−1 so that the sum of the coefficients that define the linear
combination is zero), as the one given in the next example.

Lemma 3. Let q = ps for p ≥ 2 being a prime and s ≥ 1 an integer, and let n ≥ 2. Let
µ0, µ1, . . . , µn−1 ∈ Fq be such that

∑n−1
i=0 µi 6= 0. Let H : Fq → Fq be a permutation. The

generalized Lai–Massey scheme over Fnq defined as [x0, x1, . . . , xn−1] 7→ [y0, y1, . . . , yn−1]
where

∀i ∈ {0, 1, . . . , n− 1} : yi = xi + 1∑n−1
j=0 µj

·H

n−1∑
j=0

µj · xj

− ∑n−1
j=0 µj · xj∑n−1
j=0 µj

is invertible.

Proof. By simple computation:

n−1∑
i=0

µi · yi =
n−1∑
i=0

µi · xi +
n−1∑
i=0

µi ·
 1∑n−1

j=0 µj
·H

n−1∑
j=0

µj · xj

− ∑n−1
j=0 µj · xj∑n−1
j=0 µj


=
n−1∑
i=0

µi · xi +

 1∑n−1
j=0 µj

·H

n−1∑
j=0

µj · xj

− ∑n−1
j=0 µj · xj∑n−1
j=0 µj

 ·(n−1∑
i=0

µi

)

=
n−1∑
i=0

µi · xi +H

n−1∑
j=0

µj · xj

− n−1∑
j=0

µj · xj

= H

n−1∑
j=0

µj · xj

 −→
n−1∑
j=0

µj · xj = H−1

n−1∑
j=0

µj · yj

 ,

since H is invertible. Hence:

∀i ∈ {0, 1, . . . , n− 1} : xi = yi +
H−1

(∑n−1
j=0 µj · yj

)
∑n−1
j=0 µj

−
∑n−1
j=0 µj · yj∑n−1
j=0 µj

.

The proposed scheme is EA-equivalent to a contracting Feistel scheme, due to the same
argument proposed in Sect. 4.2.2. In particular, assuming µ0 6= 0, the affine equivalence
holds via the invertible matrices A,B ∈ Fn×nq equal to the ones given in (3), while the
linear transformation C is defined via the matrix C ∈ Fn×nq identically equal to zero except
for C0,1 = −(

∑n−1
j=0 µj)/µ0.

Examples of generalized Lai–Massey Schemes that are not EA-equivalent to any
generalized Feistel scheme are given in the following. We denote the “EA-equivalent class”
(or“EA-class” for brevity) of generalized Feistel schemes as “Feistel EA-class”.
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5.1 A (Small) Zoo of Generalized Lai–Massey Schemes Not Belonging
to the “Feistel EA-Class”

Here, we propose other examples of generalized Lai–Massey constructions based on Def-
inition 6 just given. With respect to the Lai–Massey scheme proposed in Prop. 2, one
of the n inputs of the function F depends on a linear combination whose coefficients do
not necessarily sum to zero. Due to this fact, in the next subsection we prove that the
following constructions are not EA-equivalent to any generalized Feistel scheme published
in the literature so far.

Proposition 5. Let p ≥ 3 be a prime integer, and let n ≥ 2. For each i ∈ {0, 1, . . . , n−2},
let λ(i)

0 , λ
(i)
1 , . . . , λ

(i)
n−1 ∈ Fp be such that

∑n−1
j=0 λ

(i)
j = 0.3 Let ψ0, ψ1, . . . , ψn−1 ∈ Fp (no

condition on
∑n−1
j=0 ψj). Let G : Fn−1

p → Fp be any function. Let β ∈ Fp \ {0} be such that

Lp

−β ·
n−1∑
j=0

ψj

 = −1 .

The generalized Lai–Massey scheme over Fnp defined as [x0, x1, . . . , xn−1] 7→ [y0, y1, . . . , yn−1]
where

∀i ∈ {0, 1, . . . , n− 1} : yi = xi + β · z2 ·

n−1∑
j=0

ψj · xj


and where

z = G

n−1∑
j=0

λ
(0)
j · xj ,

n−1∑
j=0

λ
(1)
j · xj , . . . ,

n−1∑
j=0

λ
(n−2)
j · xj


is invertible.

We point out that, if
∑n−1
j=0 ψj 6= 0 mod p, then the vector [ψ0, ψ1, . . . , ψn−1] ∈ Fnp

and the vectors [λ(0)
0 , λ

(0)
1 , . . . , λ

(0)
n−1], . . . , [λ(n−2)

0 , λ
(n−2)
1 , . . . , λ

(n−2)
n−1 ] ∈ Fnp are linearly

independent. Otherwise, if the sum is equal to zero, they are linearly dependent.

Proof. If
∑n−1
j=0 ψj = 0 mod p, then the invertibility follows from Prop. 2. Hence, let’s

assume
∑n−1
j=0 ψj 6= 0 mod p. Given y0, y1, . . . , yn−1 as before, we have

n−1∑
i=0

λ
(j)
i · yi =

n−1∑
i=0

λ
(j)
i · xi + β ·

n−1∑
i=0

λ
(j)
i︸ ︷︷ ︸

=0

·z2 ·

n−1∑
j=0

ψj · xj

 =
n−1∑
i=0

λ
(j)
i · xi

for each j ∈ {0, 1, . . . , n− 2}, where
∑n−1
i=0 λ

(j)
i = 0 by assumption. It follows that

z = G

n−1∑
j=0

λ
(0)
j · yj ,

n−1∑
j=0

λ
(1)
j · yj , . . . ,

n−1∑
j=0

λ
(n−2)
j · yj

 .

3As before, we point out that there are at most n− 1 Fnq -vectors whose elements sum to zero and that
are linearly independent. We also allow the case γ(j)

0 = γ
(j)
1 = γ

(j)
n−1 = 0 in order to make the function G

dependent on only l < n− 1 inputs without introducing the parameter l as done in Prop. 2.
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If z = 0, then xi = yi for each i ∈ {0, 1, . . . , n− 1}. Otherwise, if z 6= 0, note that

n−1∑
j=0

ψj · yj =
n−1∑
j=0

ψj ·

(
xj + β · z2 ·

(
n−1∑
l=0

ψl · xl

))

=

n−1∑
j=0

ψj · xj

+ β · z2 ·

n−1∑
j=0

ψj

 ·
n−1∑
j=0

ψj · xj


=

n−1∑
j=0

ψj · xj

 ·
1 + β · z2 ·

n−1∑
j=0

ψj

 .

Such equality is invertible if

∀z ∈ Fp : 1 6= −β · z2 ·

n−1∑
j=0

ψj

 .

Such condition is always satisfied for each z ∈ Fp by choosing β 6= 0 such that

Lp

−β ·
n−1∑
j=0

ψj

 6= −1 .

Indeed, in such a case, one term of the equality is a quadratic residue (that is, Lp(1) = 1),
while the other one is a quadratic non-residue (that is, Lp

(
−β · z2 ·

(∑n−1
j=0 ψj

))
=

Lp(z2) · Lp
(
−β ·

(∑n−1
j=0 ψj

))
= Lp

(
−β ·

(∑n−1
j=0 ψj

))
= −1 by definition of β).

As a result, for each i ∈ {0, 1, . . . , n− 1}:

xi = yi −
β · z2 ·

(∑n−1
j=0 ψj · yj

)
1 + β · z2 ·

(∑n−1
j=0 ψj

) .

By combining the two examples just given, we obtain the following generalized Lai–
Massey scheme.

Lemma 4. Let p ≥ 3 be a prime integer, and let n ≥ 2. For each i ∈ {0, 1, . . . , n − 2},
let λ(i)

0 , λ
(i)
1 , . . . , λ

(i)
n−1 ∈ Fp be such that

∑n−1
j=0 λ

(i)
j = 0. Let ψ0, ψ1, . . . , ψn−1 ∈ Fp be such

that
∑n−1
j=0 ψj 6= 0 mod p. Let α ∈ Fp be such that Lp(α) = −1. Let G : Fn−1

p → Fp be
any function, and let H : Fp → Fp be a permutation. The generalized Lai–Massey scheme
over Fnp defined as [x0, x1, . . . , xn−1] 7→ [y0, y1, . . . , yn−1] where

∀i ∈ {0, 1, . . . , n− 1} : yi = xi + (z2 − α)∑n−1
j=0 ψj

·H

n−1∑
j=0

ψj · xj

− ∑n−1
j=0 ψj · xj∑n−1
j=0 ψj

and where

z = G

n−1∑
j=0

λ
(0)
j · xj ,

n−1∑
j=0

λ
(1)
j · xj , . . . ,

n−1∑
j=0

λ
(n−2)
j · xj


is invertible.
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Proof. First of all, note that z2 = α is never possible, since Lp(z2) = 1 while Lp(α) = −1
by assumption.

Similar to before, we have that
∑n−1
j=0 λ

(i)
j ·xj =

∑n−1
j=0 λ

(i)
j ·yj for each i ∈ {0, 1, . . . , n−

2}, which implies that

z = G

n−1∑
j=0

λ
(0)
j · yj ,

n−1∑
j=0

λ
(1)
j · yj , . . . ,

n−1∑
j=0

λ
(n−2)
j · yj

 .

It follows that
n−1∑
j=0

ψj · yj = (z2 − α) ·H

n−1∑
j=0

ψj · xj

 →
n−1∑
j=0

ψj · xj = H−1

(∑n−1
j=0 ψj · yj
z2 − α

)
,

noting that (i)
∑n−1
j=0 ψj 6= 0 mod p, z2 6= α by assumption and that (ii) H is invertible.

As a result, the entire scheme is invertible.

5.2 Considerations about the Generalized Lai–Massey Schemes Pro-
posed in Sect. 5.1

Next, we make some considerations about the generalized Lai–Massey schemes just pro-
posed. We also propose and leave two open problems for future work.

5.2.1 About the Non EA-Equivalence with Generalized Feistel Schemes

If
∑n−1
j=0 ψj 6= 0 mod p and if G depends on n− 1 non-trivial inputs4, then the schemes

just proposed in Prop. 5 and in Lemma 4 are not EA-equivalent to any generalized Feistel
scheme. This follows from the fact that

• the functions Fi in Def. 5 takes at most i ≤ n− 1 independent inputs;

• both the function F (x0, . . . , xn−1) = β · z2 ·
(∑n−1

j=0 ψj · xj
)

in Prop. 5 and the

function F (x0, . . . , xn−1) = (z2−α)∑n−1
j=0

ψj

·H
(∑n−1

j=0 ψj · xj
)
−
∑n−1

j=0
ψj ·xj∑n−1

j=0
ψj

in Lemma 4

(where z := G
(∑n−1

j=0 λ
(0)
j · xj , . . . ,

∑n−1
j=0 λ

(n−2)
j · xj

)
in both cases) depend on n

independent inputs.

As a concrete example, based on the result given in Prop. 5, consider the generalized
Lai–Massey scheme

[x0, x1] 7→ [y0, y1] =
[
x0 + β · (x0 − x1)2 · (x0 + x1), x1 + β · (x0 − x1)2 · (x0 + x1)

]
over F2

p for p ≥ 3, where Lp(−2 · β) = −1, where G(x) = x is the identity function, and
where λ0 = ψ0 = ψ1 = 1 and λ1 = −1. There are no affine transformations A,B,C over
F2
p (with the conditions that A,B are invertible) for which such generalized Lai–Massey

scheme is EA-equivalent to any generalized Feistel scheme over F2
p. In order to prove

this result, let’s try to construct the affine transformations A,B,C (where A and B are
invertible) for which the previous generalized Lai–Massey scheme would be EA-equivalent
to the Feistel scheme [x1 + F (x0), x0]. Let A,B : F2

p → F2
p be defined as

A(x0, x1) =
[
a0,0 a0,1
a1,0 a1,1

]
×
[
x0
x1

]
+
[
a′0
a′1

]
, B(x0, x1) =

[
b0,0 b0,1
b1,0 b1,1

]
×
[
x0
x1

]
+
[
b′0
b′1

]
.

4The “trivial inputs” case occurs either if γ(j)
0 = γ

(j)
1 = . . . = γ

(j)
n−1 = 0 for a certain j ∈ {0, 1, . . . , n−2}

or if the vectors [λ(0)
0 , λ

(0)
1 , . . . , λ

(0)
n−1], . . . , [λ(n−2)

0 , λ
(n−2)
1 , . . . , λ

(n−2)
n−1 ] ∈ Fnp are linearly independent.
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If the EA-equivalence holds, the following equality must be satisfied:

x1 + F (x0) = x0 · (b0,0 · a0,0 + b0,1 · a1,0 + c0,0) + x1 · (b0,0 · a0,1 + b0,1 · a1,1 + c0,1) + (b0,0 + b0,1)
· β · ((a0,0 − a1,0) · x0 + (a0,1 − a1,1) · x1)2 · ((a0,0 + a1,0) · x0 + (a0,1 + a1,1) · x1) ,

x0 = x0 · (b1,0 · a0,0 + b1,1 · a1,0 + c1,0) + x1 · (b1,0 · a0,1 + b1,1 · a1,1 + c1,1) + (b1,0 + b1,1)
· β · ((a0,0 − a1,0) · x0 + (a0,1 − a1,1) · x1)2 · ((a0,0 + a1,0) · x0 + (a0,1 + a1,1) · x1) .

The first equality holds only in the case in which the non-linear part in the r.h.s. depends
only on x0. This fact happens only if both a0,1 − a1,1 = 0 and a0,1 + a1,1 = 0, which can
only occur if a0,1 = a1,1 = 0. However, in such a case, A is not invertible anymore. Note
that the components a′0, a′1, b′0, b′1 would not change the result just given. Moreover, C
does not play any role, since it would only impact the linear part. This implies that the
EA-equivalence does not hold, as stated before.

Open Problem. As a future open problem, it could be interesting to understand if there
exists any non-trivial relation that links the generalized Lai–Massey schemes proposed in
this section and the generalized Feistel scheme, as the CZZ one [CCZ98,CP19].5

5.2.2 About the Existence of Invariant Subspaces

Having said that, the subspace 〈[1, 1, . . . , 1] ≡ {[x, x, . . . , x] | ∀x ∈ Fp}〉 ⊆ Fnp is still
invariant for the generalized Lai–Massey constructions just proposed in Prop. 5 and in
Lemma 4.

Let’s start with the one given in Prop. 5. Given an input [x, x, . . . , x] ⊆ Fnp , we have
that

∀i ∈ {0, 1, . . . , n− 1} : yi =
(

1 + β · (G(0, 0, . . . , 0))2 ·

n−1∑
j=0

ψj


︸ ︷︷ ︸

6=0 (constant)

)
·x ,

that is, yi = yj for each i, j ∈ {0, 1, . . . , n−1}. Since −β · (G(0, 0, . . . , 0))2 ·
(∑n−1

j=0 ψj

)
6= 1

due to the invertibility condition Lp
(
−β ·

(∑n−1
j=0 ψj

))
= −1, the subspace 〈[1, 1, . . . , 1]〉

remains invariant.
In the case of the scheme given in Lemma 4, given an input [x, x, . . . , x] ⊆ Fnp , we have

that

∀i ∈ {0, 1, . . . , n− 1} : yi =
(

(G (0, 0, . . . , 0))2 − α∑n−1
j=0 ψj

)
︸ ︷︷ ︸

6=0 (constant)

·F

x · n−1∑
j=0

ψj

 ,

that is, yi = yj for each i, j ∈ {0, 1, . . . , n − 1}. Since F is a permutation, the subspace
〈[1, 1, . . . , 1]〉 remains invariant.

Open Problem. We leave the problem to find (if exists) a generalized Lai–Massey scheme
that (i) it is not EA-equivalent to any generalized Feistel scheme and (ii) it does not admit
any invariant subspace trail as future open problem.

5Let q = ps where p ≥ 2 is a prime and s is a positive integer, and let n,m ≥ 1. Let F,G : Fnq → Fmq .
The functions F and G are CCZ-equivalent if there exists an affine transformation A over Fnq × Fmq such
that {(x, F (x)) | ∀x ∈ Fnq } = A({(x,G(x)) | ∀x ∈ Fnq }).
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6 The Amaryllises Scheme

In this section, we present a more generalized version of the Lai–Massey scheme, inspired
by the Horst construction recently proposed by Grassi et al. [GHR+22], a generalized
Feistel scheme in which the linear combination in (x, y) 7→ (y + F (x), x) is replaced by a
non-linear one, that is, (x, y) 7→ (y ×G(x), x). More formally:

Theorem 2 (The Horst Scheme [GHR+22]). Let q = ps, where p ≥ 2 is a prime and
s is a positive integer, and let n ≥ 2 be an integer. For each i ∈ {1, 2, . . . , n − 2}, let
Fi, Gi : Fiq → Fq be functions such that Gi(x0, x1, . . . , xi−1) 6= 0 for each x0, x1, . . . , xi−1 ∈
Fq. The Horst construction H over Fnq defined as H(x0, x1, . . . , xn−1) := y0‖y1‖ . . . ‖yn−1
where

yi :=
{
x0 if i = 0
xi ·Gi(x0, x1, . . . , xi−1) + Fi(x0, x1, . . . , xi−1) if i ∈ {1, . . . , n− 1}

is invertible.

Due to the similarity between Feistel and Lai–Massey schemes, we propose a new
variant of the Lai–Massey construction in which the sum operation in the Lai–Massey
scheme is replaced by a multiplication/product. We call the obtained invertible scheme
as Amaryllises.

Theorem 3 (The Amaryllises Scheme). Let q = ps, where p ≥ 2 is a prime and s is a
positive integer, and let n ≥ 2 be an integer. Let

1. F : Fq → Fq be a function such that (1st) F (0) 6= 0 and (2nd) G(x) := x · F (x) is
invertible over Fq;

2. H : Fn−1
q → Fq be any function;

3. β0, β1, . . . , βn−1 ∈ Fq \ {0} such that
∑n−1
i=0 βi = 0 if H is not identically equal to

zero (equivalently, no condition on
∑n−1
i=0 βi is imposed if H(z) = 0 for each z ∈ Fq);

4. for each j ∈ {0, 1, . . . , n − 2}, let {γ(j)
i }i∈{0,1,...,n−1} be such that γ(j)

i ∈ Fq and∑n−1
i=0 γ

(j)
i = 0.

The Amaryllises construction A over Fnq defined as A(x0, x1, . . . , xn−1) := y0‖y1‖ . . . ‖yn−1
where

yi = xi · F

n−1∑
j=0

βj · xj

+H

n−1∑
j=0

γ
(0)
j · xj ,

n−1∑
j=0

γ
(1)
j · xj , . . . ,

n−1∑
j=0

γ
(n−2)
j · xj

 (5)

for each i ∈ {0, 1, . . . , n− 1} is invertible.

Proof. First of all, we prove that F (z) 6= 0 for each z ∈ Fq. Since G is a permutation and
since G(0) = F (0) · 0 = 0 by definition, then G(x) 6= 0 for each x 6= 0. It follows that
F (x) = G(x)/x 6= 0 for any x ∈ F \ {0}, while F (0) 6= 0 by assumption.
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Given y0, y1, . . . , yn−1, it is possible to recover
∑n−1
i=0 βi · xi by noting the following:

n−1∑
i=0

βi · yi =
(
n−1∑
i=0

βi · xi

)
· F

(
n−1∑
i=0

βi · xi

)

+H

(
n−1∑
i=0

γ
(0)
i · xi,

n−1∑
i=0

γ
(1)
i · xi, . . . ,

n−1∑
i=0

γ
(n−1)
i · xi

)
·
n−1∑
i=0

βi︸ ︷︷ ︸
=0

=G

(
n−1∑
i=0

βi · xi

)
−→

n−1∑
i=0

βi · xi = G−1

(
n−1∑
i=0

βi · yi

)
,

where G is invertible by definition. Note that the condition
∑n−1
i=0 βi = 0 is not necessary

if H(x) = 0 for each x ∈ Fq.
In a similar way, it is possible to recover

∑n−1
i=0 γ

(j)
i · xi for each j ∈ {0, 1, . . . , n− 2}:

n−1∑
i=0

γ
(j)
i · yi =

n−1∑
i=0

γ
(j)
i · xi · F

(
G−1

(
n−1∑
l=0

βl · yl

))

+
n−1∑
i=0

γ
(j)
i︸ ︷︷ ︸

=0

·H

(
n−1∑
l=0

γ
(0)
l · xl,

n−1∑
l=0

γ
(1)
l · xl, . . . ,

n−1∑
l=0

γ
(n−1)
l · xl

)

=
n−1∑
i=0

γ
(j)
i · xi · F

(
G−1

(
n−1∑
l=0

βl · yl

))

−→
n−1∑
i=0

γ
(j)
i · xi =

∑n−1
i=0 γ

(j)
i · yi
z

,

where z := F
(
G−1

(∑n−1
i=0 βi · yi

))
and where z 6= 0 due to the fact that F never returns

zero by assumption.
It follows that for each i ∈ {0, . . . , n− 1}:

xi = z−1 ·

(
yi −H

(∑n−1
j=0 γ

(0)
j · yj
z

, . . . ,

∑n−1
j=0 γ

(n−2)
j · yj
z

))
.

We remark that the Lai–Massey scheme is a particular case of the Amaryllises scheme
in which F always returns one, as for case of Feistel and Horst schemes.

6.1 Constructing F as in Theorem 3
The previous construction would be meaningless if it would not be possible to construct
functions F that satisfy the required assumptions of the previous Theorem 3. Here, we
face this problem.

Lemma 5. Let q = ps, where p ≥ 2 is a prime and s is a positive integer. Let G be a
permutation over Fq. Let ψ ∈ Fq \ {0}. The function F over Fq defined as

F (x) :=
{
G(x)−G(0)

x if x 6= 0
ψ otherwise (x = 0)

satisfies the requirements of Theorem 3.
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Proof. It is sufficient to show that (i) F (0) 6= 0 and that (ii) x 7→ x ·F (x) is a permutation.
First of all, F (0) = ψ 6= 0. Secondly,

F (x) · x =
{
G(x)−G(0) if x 6= 0
x · ψ = 0 otherwise (x = 0)

= G(x)−G(0) ,

which is a permutation since G is a permutation.

Let H(x) := G(x)−G(0)
x , where note that the polynomial G(x)−G(0) is divisible by x.

The algebraic expression of the function F just given is

F (x) = H(x) + ψ −H(0)∏
i∈Fq\{0} i

·
∏

i∈Fq\{0}

(i− x) ,

Indeed:
• if x 6= 0, then

∏
i∈Fq\{0}(i− x) = 0, which implies F (x) = H(x) = G(x)−G(0)

x ;

• if x = 0, then
∏
i∈Fq\{0} i =

∏
i∈Fq\{0}(i − x), which implies F (0) = H(0) + (ψ −

H(0)) = ψ.

Constructing F via Power Maps and Dickson Polynomials. If the given function have
a very complex algebraic structure, a problem can arise in scenarios in which (i) q is
very large (e.g., q ≥ 264) and (ii) one is forced to use such an algebraic expression for
computing/evaluating the function (e.g., the MPC/FHE/ZK applications recalled in the
introduction). For this reason, as next step, we provide concrete examples of functions F
that satisfy the assumptions of Theorem 3 and that are cheap to compute, e.g., from the
point of view of the multiplicative complexity.
Lemma 6. Let q = ps, where p ≥ 2 is a prime and s ≥ 1. Let d ≥ 3 be an integer for
which x 7→ xd is invertible over Fq, hence gcd(d, q−1) = 1. Let α ∈ Fq \{0}. The function

F (x) = (x± α)d ∓ αd
x

=
d∑
i=1

(
d

i

)
xi−1 · (±α)d−i (6)

satisfies the requirements of Theorem 3.
Proof. In order to prove the result, it is sufficient to note that (i) F (0) = ±d · αd−1 6= 0
(since α 6= 0) and that (ii) F (x) · x = (x± α)d ∓ αd is invertible since x 7→ xd is invertible
by assumption on d.

Lemma 7. Let q = ps, where p ≥ 2 is a prime and s ≥ 1. Let α ∈ Fq \ {0}, and let
d = 2d′ + 1 ≥ 3 be an odd integer such that gcd(d, q2 − 1) = 1. The function F defined as

F (x) = Dd,α(x)
x

:=
bd/2c∑
j=0

d

d− j
·
(
d− j
j

)
· (−α)j · xd−2j−1 (7)

satisfies the requirements of Theorem 3.
Proof. Since d is an odd integer, then Dd,α(x) is defined as a sum of monomials of
odd degrees (hence, each monomial is divisible for x, that is, Dd,α(x) does not contain
any monomial of degree 0). In order to prove the result, it is sufficient to note that
(i) F (0) = d

dd/2e ·
(dd/2e
bd/2c

)
· (−α)bd/2c = d · (−α)bd/2c 6= 0 (since α 6= 0) and that (ii)

x 7→ x · F (x) = Dd,α(x) is invertible by assumption.

Regarding the multiplicative cost of the two functions just proposed, the function
defined in (7) via the Dickson polynomial costs (d− 1)/2 multiplications (since it contains
only monomials of the form x2i for i ∈ {0, 1, . . . , (d− 1)/2}) versus d− 1 multiplications
for the function defined in (6) via the power map.
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About the Function G in the Horst Construction. Since the functions just listed never
return zero, we point out that they can also be exploited to instantiate the functions Gi
that satisfy the assumption of the Horst construction.

Lemma 8. Let q = ps for a prime p ≥ 2 and a positive integer s. Let G(1) : Fq → Fq \ {0}
be a function that never returns zero. For each n ≥ 2, let H(n) : Fnq → Fq be any function.
The function G(n) : Fnq → Fq defined as

G(n)(x0, x1, . . . , xn−1) := G(1) ◦H(n)(x0, x1, . . . , xn−1)

never returns zero.

The proof is trivial. If there exists an input [x0, x1, . . . , xn−1] ∈ Fnq for which G(n)

returns zero, then G(1) returns zero as well for the input H(n)(x0, x1, . . . , xn−1), which
contradicts the assumption on G(1).

6.2 Generic Observations on the Amaryllises Construction
Next, we compare the advantages and disadvantages of Amaryllises construction with
respect to other schemes/constructions proposed in the literature, focusing on the case of
the Horst scheme and on the Lai–Massey one.

Remark 1. We emphasize that the following observations do not take into account the
details of the sub-components of the considered schemes. Rather, our goal is to point out
possible high-level relations among the analyzed schemes.

6.2.1 Relation with Horst Schemes

About the Full Non-Linear Diffusion. Both in a Horst scheme as well as in a generalized
Feistel one, there exists (at least) one output Fq–element that is equal to one input
Fq–element. This scenario never happens in the Amaryllises case, since every output
Fq–element is defined via a non-linear function that depends on all input Fq–elements. To
be more precise, in the Amaryllises case, there is no linear combination of the output
Fq–elements that is the result of a linear function of the input Fq–elements. E.g., given
[x0, x1, . . . , xn−1] ∈ Fnq , let [y0, y1, . . . , yn−1] ∈ Fnq be the outputs of a Amaryllises scheme,
as in (5). The smallest degree of any relation among the inputs and the outputs is at least
two:

∀i, j, k, l ∈ {0, 1, . . . , n− 1} : (xi − xj) · (yk − yl) = (yi − yj) · (xk − xl) .

As a result, one round of the Amaryllises case is sufficient for achieving full non-linear
diffusion, while at least two rounds are necessary in the Horst/Feistel case.

This advantage comes at the price of strongest assumptions on the components of
the Amaryllises scheme in order to guarantee that the overall scheme is invertible. In
particular, while the only assumption in the case of Horst regards the fact that each
function Gi never returns zero, the function F in a Amaryllises scheme must satisfy the
further condition that x 7→ x ·F (x) is a permutation. As a direct consequence, the number
of possible choices for Gi is much larger than the corresponding number of possible choices
for F . This could represent a significant advantage for Horst in the design phase, since
the designer can e.g. choose functions Gi that are cheaper to evaluate/implement with
respect to the Amaryllises case, without sacrificing the invertibility (and potentially the
security) of the resulting primitive.
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About the Inverse. As a direct consequence of the previous fact:

• as in the Feistel/Lai–Massey case, computing Horst has almost the same cost of
computing its inverse. The only main difference regards the fact that a division takes
places instead of a multiplication, i.e.,

yi = xi ·Gi(x0, . . . , xi−1) + Fi−1(x0, . . . , xi−1) versus xi = yi − Fi−1(x0, . . . , xi−1)
Gi(x0, . . . , xi−1) ,

where x0, x1, . . . , xi−1 are given. In particular, both in the “regular/forward” and
in the “inverse/backward” computation of a Horst scheme, one never computes the
inverse of Gi and/or of Fi (which do not exist in general);

• in the case of a SPN scheme, one has to compute the inverse of each S-Box in order to
compute its inverse. Similarly, in the case of Amaryllises, one has to compute the
inverse of x 7→ x · F (x) in order to compute its inverse – see the proof of Theorem 3
for more details.

As a result of this, computing the inverse of a Amaryllises scheme could be much more
expensive than computing it, as it happens in the case in which F is instantiated via one
of the low-degree functions proposed in Sect. 6.1. E.g., if F (x) · x = G(x) = xd, then
G−1 = x1/d ≡ xd̂ where d̂ is the smallest integer for which d · d̂−1 is a multiple of q−1 (due
to Fermat’s little theorem). Since q � d, then d̂ is of the same order of q. Similarly, the
inverse of F (x) · x = G(x) = Dd,α(x) is G−1(x) = Dd̂,α(x) where d̂ · d = 1 mod (q2 − 1).

While this could represent a disadvantage if the user has to compute the inverse
of Amaryllises in order to e.g. decrypt, this fact represents an advantage in order to
prevent/frustrate backward and/or Meet-in-the-Middle (MitM) algebraic attacks. In such
a case, the idea of the attack is to exploit the low degree of the inverse of the attacked
scheme in order to break it. However, in the case in which such inverse is of high (close to
maximum) degree, attack approaches as the interpolation one [JK97] or the higher-order
differential one [Knu94] would be defeated after few rounds. For comparison, the inverse
of a Horst scheme can be potentially described by low degree functions by making used
of the fraction representation as originally proposed by Jakobsen and Knudsen in the
interpolation attack against modified versions of SHARK instantiated with x 7→ x−1

(see [JK97, Sect. 3.4] for more details). In such a scenario, a Horst scheme would require
a larger number of rounds than a Amaryllises one for preventing backward and/or Meet-
in-the-Middle algebraic attacks, with a potential negative impact on the overall cost of the
designed primitive.

Besides that, we point out that, in many applications, computing the inverse of the
Amaryllises construction is not required. Just to give some concrete examples:

• stream ciphers instantiated via a cipher Ek(·) used in a mode of operation as the
counter-mode, that is, x 7→ x + Ek(N) for a nonce N and a key k. In such a
case, both the encryption and the decryption require the computation of Ek(·) only
(never its inverse). As a concrete example, this is what MiMC’s and HadesMiMC’s
designers [AGR+16,GLR+20] proposed for their schemes: “[...] decryption is much
more expensive than encryption. Using modes where the inverse is not needed is thus
advisable.” (see [AGR+16, Sect. 1]);

• sponge hash functions [BDPA08] instantiated with permutations (in order to avoid
internal collisions). In such a case, no inverse computation of the permutation is
performed for computing the hash value;

• same considerations hold for the Farfalle mode of operation [BDH+17] instantiated
with permutations.
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As a result, the fact that computing the inverse of the Amaryllises is more expensive
than computing it in the forward direction does not represent a disadvantage in many
practical use cases.

Conclusion. To summarize, the advantages and the disadvantages of Amaryllises versus
Horst are (surprisingly) similar to the ones that one encounter when comparing an
invertible SPN scheme with a Feistel and/or a Lai–Massey scheme:

1. both in Horst and in Feistel/Lai–Massey schemes, the invertibility of the entire
construction is (almost) independent of the details of the internal components. This
implies (almost) the same cost for computing the scheme in the regular/forward
and in the inverse/backward direction, as well as the fact that algebraic attacks are
(almost) equally efficient in the forward and in the backward direction;

2. in the case of Amaryllises and of a SPN schemes, the invertibility of each subcom-
ponent is crucial in order to guarantee the invertibility of the entire construction.
Moreover, the cost of computing the inverse of such schemes could be (very) different
than computing the schemes in the regular/forward direction, with potential negative
effects on the implementation cost in the cases in which decryption is required. At
the same time, this could represent an advantage in order to prevent backward
and/or Meet-in-the-Middle algebraic attacks, as previously discussed.

6.2.2 Relation with Lai–Massey Schemes

Next, we compare the Amaryllises scheme and the Lai–Massey one, focusing on the
security aspects. Our goal is to understand the impact of the multiplication with F in the
Amaryllises scheme from a security point of view.

Invariant Subspaces. As recalled in Sect. 3, the Lai–Massey schemes proposed in Prop. 2
admit an invariant subspace of the form X = {x ∈ Fnq

∣∣∣∣ ∀i ∈ {0, 1, . . . , n−2} :
∑n−1
j=0 λ

(i)
j ·

xj = 0}. The multiplication with F in Amaryllises is not sufficient by itself to destroy it,
that is, the Amaryllises scheme admits an invariant subspace as well. Indeed

• if H is not identically equal to zero, then
∑n−1
i=0 βi =

∑n−1
i=0 γ

(0)
i =

∑n−1
i=0 γ

(1)
i =

. . . =
∑n−1
i=0 γ

(n−2)
i = 0 is required for guaranteeing the invertibility. In such a case,

〈[1, 1, . . . , 1]T 〉 is an invariant subspace for the Amaryllises scheme [x0, . . . , xn−1] 7→
[y0, . . . , yn−1] as well. Indeed, given an input [x, x, . . . , x] ∈ Fnq , we have that

∀i ∈ {0, 1, . . . , n− 1} : yi = x · F (0)︸︷︷︸
6=0

+H(0, 0, . . . , 0) ,

that is, yi = yj for each i, j ∈ {0, 1, . . . , n− 1};

• if H is identically equal to zero, then no condition is imposed on
∑n−1
i=0 βi. Still, the

subspace B = {x ∈ Fnq |
∑n−1
i=0 βi · xi = 0} is invariant for Amaryllises. Indeed, by

applying Amaryllises on B, we have

[x0, x1, . . . , xn−1] 7→ [x0 ·F (0), x1 ·F (0), . . . , xn−1 ·F (0)] ≡ F (0) · [x0, x1, . . . , xn−1] .

Since F never returns zero by assumption, the subspace B is invariant.

As in the case of the Lai–Massey schemes previously analyzed, this implies that a linear
layer is crucial in order to destroy the invariant subspace trails of the Amaryllises schemes.
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Statistical Attacks. Regarding other statistical attacks, the impact of the multiplication
with F in Amaryllises could make a big difference on the security. Let’s focus on the
case of differential attacks [BS90,BS93], in which the attacker considers the probability
distribution of the output differences produced by the analyzed cryptographic primitive for
given input differences. Let δ,∆ ∈ Fnq be respectively the input and the output differences
through a function F over Fnq . The differential probability (DP) of having a certain output
difference ∆ given a particular input difference δ is equal to

Prob(δ 6= 0→ ∆) =
|{x ∈ Fnq | F (x+ δ)− F (x) = ∆}|

qn
.

In the generalized Lai–Massey case as in Def. 6, we have that

F (x0 + δ0, x1 + δ1, . . . , xn−1 + δn−1)− F (x0, x1, . . . , xn−1) = ∆i − δi

for each i ∈ {0, 1, . . . , n− 1}. It follows that

0 ≤ Prob(δ 6= 0→ ∆) ≤
{

0 if ∃i, j ∈ {0, 1, . . . , n− 1} such that ∆i − δi 6= ∆j − δj
q−1 otherwise

,

that is, the system of equations reduces to a single non-linear equation, and the DP is
never bigger than q−1.

For comparison, in the case of a Amaryllises scheme, we have that

∆i =(xi + δi) · F

(
n−1∑
j=0

βj · (xj + δj)

)
− xi · F

(
n−1∑
j=0

βj · xj

)

+H

(
n−1∑
j=0

γ
(0)
j · (xj + δj), . . . ,

n−1∑
j=0

γ
(n−2)
j · (xj + δj)

)
−H

(
n−1∑
j=0

γ
(0)
j · xj , . . . ,

n−1∑
j=0

γ
(n−2)
j · xj

)
for each i ∈ {0, 1, . . . , n− 1}.6 As a result, the probability is – in general – proportional
to O(q−n), since such system of equations cannot be reduced to a single equation as in
the Lai–Massey case. A similar conclusion holds for linear attacks [Mat93] as well.

Algebraic Attacks. Similar conclusion holds for the case of algebraic attacks. As already
pointed out, the degree of the Lai–Massey scheme evaluated in the regular/forward direc-
tion and in the inverse/backward direction are equal. Instead, the degree of Amaryllises
scheme in the inverse/backward direction can be much higher than the one in the regu-
lar/forward direction. This fact could make a big difference when preventing backward
or/and MitM algebraic attacks.

This is not the only advantage of the multiplication with F in Amaryllises schemes.
Consider e.g. the security against a Gröbner basis attack [Buc76], in which the goal is
factorize and find solution(s) – if exist – of a given system of non-linear equations that
describe the analyzed scheme (depending on the scheme, the variable could be either the
key for a cipher or a pre–image/collision for an hash function). The cost of such attack
depends on many factors, including (i) the number of non-linear equations that composed
the system of equations to solve, (ii) the number of variables, and (iii) the degrees of the
equations, besides other factors. Let [x0, x1, . . . , xn−1] 7→ [y0, y1, . . . , yn−1] be the inputs
and the outputs either of a Amaryllises scheme or of a Lai–Massey one. When comparing
such two schemes, we face the following scenario:

6Given z :=
∑n−1

j=0 βj · xj , note that one of the equations of such system can be replaced by(
z +

n−1∑
j=0

βj · δj

)
· F

(
z +

n−1∑
j=0

βj · δj

)
− z · F (z) =

n−1∑
j=0

βj ·∆j ,

which is independent of H.
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• the Lai–Massey scheme can be described by the following system of equations:{
y0 = x0 + F (x0, x1, . . . , xn−1) ,
yi − y0 = xi − x0 ∀i ∈ {1, 2, . . . , n− 1} ,

that is, one non-linear equation of degree deg(F ), and n− 1 linear ones;

• the Amaryllises scheme can be described by the following system of equations:
y0 = x0 · F

(∑n−1
j=0 βj · xj

)
+H

(∑n−1
j=0 γ

(0)
j · xj , . . . ,

∑n−1
j=0 γ

(n−2)
j · xj

)
,

y1 − y0 = (x1 − x0) · F
(∑n−1

j=0 βj · xj
)
,

(xi − x0) · (y1 − y0) = (yi − y0) · (x1 − x0) ∀i ∈ {2, 3, . . . , n− 1} ,

that is, two non-linear equations of degree max{deg(H), 1 + deg(F )} and 1 + deg(F )
respectively, and n− 2 quadratic ones.
If H is identically equal to zero, the Amaryllises scheme can be described by the
following system of equations:{

y0 = x0 · F
(∑n−1

j=0 βj · xj
)
,

yi · x0 = xi · y0 ∀i ∈ {1, 2, . . . , n− 1} ,

that is, one non-linear equations of degree 1 + deg(F ), and n− 1 quadratic ones.

Since the number of variables is the same for the two schemes, it follows that the
Amaryllises scheme is naturally more resistant than the Lai–Massey one with respect to
Gröbner basis attacks.

7 The Contracting–Amaryllises Construction
In this section, we introduce the Contracting–Amaryllises construction, as a variant
of the Amaryllises just proposed. Similar to what happens in the case of contracting
Feistel schemes, the main difference between Contracting–Amaryllises and Amaryllises
schemes relies on the details of the function F in (5): while the function F in the
Amaryllises construction is defined over Fq, it takes in input n Fq–elements and returns a
single Fq–element in the Contracting–Amaryllises construction, that is, it is of the form
F : Fnq → Fq (as also the name “contracting” suggests).

Theorem 4. Let q = ps where p ≥ 2 is a prime integer and s ≥ 1, and let n ≥ 2. Let
e ≥ 1 be an integer such that gcd(e, q − 1) = 1. Let F : Fnq → Fq a function that never
returns zero for any non-zero input, that is, such that

∀[x0, x1, . . . , xn−1] ∈ Fnq \ {[0, 0, . . . , 0]} : F (x0, x1, . . . , xn−1) 6= 0 .

If the function Gα0,α1,...,αn−1(x) : Fq → Fq defined as

Gα0,α1,...,αn−1(x) := xe · F (α0 · x, α1 · x, . . . , αn−1 · x)

is invertible for each arbitrary fixed non-null [α0, α1, . . . , αn−1] ∈ Fnq \ {[0, 0, . . . , 0]}, then
the Contracting–Amaryllises scheme AC over Fnq defined as AC(x0, x1, . . . , xn−1) =
y0‖y1‖ . . . ‖yn−1 where

∀i ∈ {0, 1, . . . , n− 1} : yi = xei · F (x0, x1, . . . , xn−1) (8)

is invertible.
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Proof. We start by pointing out two observations:

• first of all, the following equality always holds:

∀i, j ∈ {0, 1, . . . , n− 1} : yi · xej = yj · xei = xei · xej · F (x0, x1, . . . , xn−1) ; (9)

• secondly, xi = 0 if and only if yi = 0.

Regarding this second point, note that if xi = 0, then yi = 0. Vice-versa, if yi = 0, then
either xei = 0 (and so xi = 0) or F (x0, x1, . . . , xn−1) = 0. However, F (x0, x1, . . . , xn−1) = 0
if and only if [x0, x1, . . . , xn−1] = [0, 0, . . . , 0], which implies again xi = 0.

Assume that [y0, y1, . . . , yn−1] 6= [0, 0, . . . , 0] (otherwise, the input is zero due to the
previous observation). For each i ∈ {0, 1, . . . , n − 1} such that yi 6= 0 (remember that
yi = 0 implies xi = 0), then

yi = xei · F

((
y0

yi

) 1
e

· xi, . . . ,
(
yi−1

yi

) 1
e

· xi, xi,
(
yi+1

yi

) 1
e

· xi, . . . ,
(
yn−1

yi

) 1
e

· xi

)
= G(

y0
yi

) 1
e ,...,

(
yi−1

yi

) 1
e ,1,
(

yi+1
yi

) 1
e ,...,

(
yn−1

yi

) 1
e

(xi) ,

due to (9), and where x 7→ xe is invertible by assumption on e. By assumption, G is
invertible (note that αj = (yj/yi)1/e is fixed for each j ∈ {0, 1, . . . , n− 1}).

As a result, the inverse of the Contracting–Amaryllises scheme is defined as:

xi =

0 if yi = 0
G−1(

y0
yi

) 1
e ,...,

(
yi−1

yi

) 1
e , 1,

(
yi+1

yi

) 1
e ,...,

(
yn−1

yi

) 1
e

(yi) otherwise

for each i ∈ {0, 1, . . . , n− 1}.

Relation with the Amaryllises Scheme. Almost all the considerations/observations
made before for the Amaryllises schemes apply as well to Contracting–Amaryllises
schemes just defined. The main differences can be summarized as following:

• the class of functions F that can instantiate a Contracting–Amaryllises scheme is
much larger than the one for an Amaryllises scheme previously proposed;

• with respect to the Amaryllises constructions, the Contracting–Amaryllises scheme
does not necessarily admit invariant subspaces, since the function F works directly on
the inputs x0, x1, . . . , xn−1 and not on a single linear combination of them. However,
the existence of such subspace obviously depends on the details of the function F
itself;

• we are able to guarantee that the overall construction is invertible only in the case in
which the function H in (5) is identically equal to zero. The open problem to set up
an invertible Contracting–Amaryllises construction in which H is not identically
equal to zero is left for future work.

Constructing Suitable Functions F . Having said that, the main problem to face regards
the construction of a function F that satisfies the assumptions of Theorem 4. In the
following we show how to set up functions F : Fnq → Fq that (i) satisfy the assumptions
of Theorem 4 and that (ii) are efficient to compute from the multiplicative point of view
(equivalently, of low degree). The proposed constructions are based on the following result.
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Proposition 6. Let q = ps where p ≥ 2 is a prime integer and s ≥ 1, and let n ≥ 2.
Let d ≥ 3 be such that gcd(d, q − 1) = 1, and let 1 ≤ e ≤ d − 2 be an integer such that
gcd(e, q − 1) = 1. Let d′ := d− e ∈ {2, 3, . . . , d− 1}. Let F : Fnq → Fq be a homogeneous
function of degree d′ (that is, a sum of monomials of degree d′ only) of the form

F (x0, x1, . . . , xn−1) =
∑

{i0,i1,...,in−1}∈Id′

ϕi0,i1,...,in−1 · x
i0
0 · x

i1
1 · . . . · x

in−1
n−1 ,

where Id′ :=
{

[i0, i1, . . . , in−1] ∈ Zn+
∣∣∑n−1

j=0 ij = d′
}

and where ϕi0,i1,...,in−1 ∈ Fq. If

∀[x0, x1, . . . , xn−1] ∈ Fnq \ {[0, 0, . . . , 0]} : F (x0, x1, . . . , xn−1) 6= 0 ,

then the Contracting–Amaryllises construction AC defined over Fnq as in Theorem 4 (with
e = d− d′) is invertible.

Proof. It is sufficient to prove that F satisfies the assumption of Theorem 4, that is,
Gα0,α1,...,αn−1(x) = xd−d

′ · F (α0 · x, α1 · x, . . . , αn−1 · x) is invertible for each arbitrary
fixed non-null [α0, α1, . . . , αn−1] ∈ Fnq \ {[0, 0, . . . , 0]}. Since F contains only monomials of
degree d′, then

Gα0,α1,...,αn−1 (x) = xd−d
′
· F (α0 · x, α1 · x, . . . , αn−1 · x)

= xd−d
′
·

∑
{i0,i1,...,in−1}∈Id′

ϕi0,i1,...,in−1 · (α0 · x)i0 · (α1 · x)i1 · . . . · (αn−1 · x)in−1

= xd ·
∑

{i0,i1,...,in−1}∈Id′

ϕi0,i1,...,in−1 · α
i0
0 · α

i1
1 · . . . · α

in−1
n−1

= xd · F (α0, α1, . . . , αn−1) .

Since (i) x 7→ xd is invertible due to the assumption on d and since (ii) F (α0, α1, . . . , αn−1) 6=
0 for each non-null input by assumption, then function G is invertible:

G−1
α0,α1,...,αn−1

(y) =
(

y

F (α0, α1, . . . , αn−1)

) 1
d

.

7.1 Examples of the Contracting–Amaryllises Construction over F2
q

In this subsection, we propose some concrete examples of the Contracting–Amaryllises
scheme over F2

q by making used of the result proposed in Prop. 6.

Lemma 9. Let q = ps for a prime p ≥ 2 and a positive integer s ≥ 1. Let d ≥ 3 be such
that gcd(d, q− 1) = 1, and let d′ = d− 1 (and so e = 1). Let α, β ∈ Fq \ {0}. The function
F : F2

q → Fq defined as

F (x0, x1) =
d∑
i=1

(
d

i

)
· αi · βd−i · xi−1

0 · xd−i1

satisfies the assumptions of Prop. 6 (and so of Theorem 4).

Proof. It is sufficient to prove that F never returns zero for a non-zero input. This fact
follows from the following observations:

• if x1 = 0, then F (x0, 0) = αd · xd−1
0 , which is equal to zero if and only if x0 = 0;



Lorenzo Grassi 29

• if x1 6= 0, let z := x0/x1, and note that

F (z, x1) = xd−1
1 · (α · z + β)d − βd

z
.

By simple observation, F (z, x1) = 0 if and only if (α·z+β)d−βd = 0 and z 6= 0 (since
the denominator is z). However, since x 7→ xd is a permutation, (α · z + β)d = βd

occurs if and only if z = 0, which is excluded.

As a result, F (x0, x1) = 0 if and only if [x0, x1] = [0, 0].

Lemma 10. Let q = ps for a prime p ≥ 2 and a positive integer s ≥ 1. Let d ≥ 3 be an
odd integer such that gcd(d, q2 − 1) = 1, let d′ = d− 1 (and so e = 1), and let α 6= 0. The
function F : F2

q → Fq defined as

F (x0, x1) =
bd/2c∑
i=0

d

d− i

(
d− i
i

)
(−α)i · xd−2i−1

0 · xi1

satisfies the assumptions of Prop. 6 (and so of Theorem 4).

Proof. Similar to before:

• if x1 = 0, then F (x0, 0) = xd−1
0 , which is equal to zero if and only if x0 = 0;

• if x1 6= 0, let z := x0/x1, and note that

F (z, x1) = xd−1
1 ·

bd/2c∑
i=0

d

d− i

(
d− i
i

)
(−α)i · zd−2i−1 = xd−1

1 · Dd,α(z)
z

,

where Dd,α is the Dickson polynomial. The equality F (z, x1) = 0 holds if and only
if Dd,α(z) = 0 and z 6= 0. By assumption on d, the Dickson polynomial Dd,α is a
permutation, and it is equal to zero if and only if z = 0 (since d is odd), which is
however excluded.

As a result, F (x0, x1) = 0 if and only if [x0, x1] = [0, 0].

Case: Prime Fields. Next, we propose two examples for prime fields only.

Lemma 11. Let p ≥ 3 be a prime integer, and let d ≥ 3 be such that gcd(d, p− 1) = 1.
Let d′ ∈ {2, 4, . . . , d− 1} be an even integer smaller than d such that gcd(d− d′, p− 1) = 1.
Let α, β, λ, λ′, ω ∈ Fp be such that (i) λ 6= λ′ and (ii) ω is a quadratic non-residue modulo
p, that is, Lp(ω) = −1. The function

F (x0, x1) = α2 · (x0 + λ · x1)d
′
− ω · β2 · (x0 + λ′ · x1)d

′

satisfies the assumptions of Prop. 6 (and so of Theorem 4).

Proof. As before, it is sufficient to show that F (x0, x1) 6= 0 for each [x0, x1] 6= [0, 0].
Assume by contradiction that F (x0, x1) = α2 · (x0 + λ · x1)d′ − ω · β2 · (x0 + λ′ · x1)d′ = 0
for a certain [x0, x1] 6= [0, 0]:

α2 · (x0 + λ · x1)d
′

= ω · β2 · (x0 + λ′ · x1)d
′

−→
(
α · (x0 + λ · x1) d′

2

)2
= ω ·

(
β · (x0 + λ′ · x1) d′

2

)2
.

Such equality is satisfied only in the case in which both sides are equal to zero. Indeed,
note that the left-hand side of the equality is a quadratic residue modulo p, while the
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right-hand side is a quadratic non-residue modulo p, due to the choice of ω. However,
note that x0 + λ · x1 = x0 + λ′ · x1 = 0 occurs if and only if x0 = x1 = 0, since the vectors
[1, λ] ∈ F2

p and [1, λ′] ∈ F2
p are linearly independent (since λ 6= λ′). Hence, if x0 6= 0 or/and

x1 6= 0, such equality never holds.

Lemma 12. Let p ≥ 3 be a prime integer, and let d′ = 2. Let d ≥ 3 be such that
gcd(d, p − 1) = gcd(d − 2, p − 1) = 1. Let α, β be such that α2 − 4 · β is a quadratic
non-residue modulo p, that is, Lp(α2 − 4 · β) = −1. The function

F (x0, x1) = x2
0 + α · x0 · x1 + β · x2

1

satisfies the assumptions of Prop. 6 (and so of Theorem 4).

Proof. Let z := x0/x1. The proof follows from the fact that z2 + αz + β = 0 does not
admit any solution. Indeed, the only possible solutions would be

z± = (−α±
√
α2 − 4 · β)/2 ,

but Lp(α2 − 4 · β) = −1 due to the choice of α, β, which implies that no square root of
α2 − 4 · β exists.

7.2 Examples of the Contracting–Amaryllises Construction over F≥3
q

As next step, we generalize the previous F2
q–results for the case Fnq with n ≥ 3. Our

strategy is to construct the functions F that satisfy Prop. 6 (and so of Theorem 4) in an
iterated way, that is, given a function F (m) : Fmq → Fq for a certain m ≥ 2 that satisfies
the required properties, we show how to construct a function F (n) : Fnq → Fq for n > m
that satisfies the required properties as well.

Proposition 7. Let q = ps for a prime integer p ≥ 2 and for a positive integer s. Let
m ≥ 2, let n0, n1, . . . , nm−1 ≥ 1 and let n :=

∑m−1
i=0 ni.

For each i ∈ {n0, n1, . . . , nm−1,m}, let F (i) : Fiq → Fq be a function that satisfy
the same conditions given in Prop. 6, that is, (i) it is an homogeneous function of a
certain degree deg(F (i)) ≥ 2 and (ii) it never returns zero for any non-zero input (i.e.,
F (i)(x0, x1, . . . , xi−1) 6= 0 for each [x0, x1, . . . , xi−1] ∈ Fip \ {[0, 0, . . . , 0]}).

Let d ≥ 2 be the least common multiple of deg(F (n0)),deg(F (n1)), . . . ,deg(F (nm−1)),
that is,

d := lcm
(

deg(F (n0)),deg(F (n1)), . . . ,deg(F (nm−1))
)
.

Let F (n) : Fnq → Fq be defined as

F (n)(x0, x1, . . . , xn) := F (m)
((

F (n0)(x0, . . . , xn0−1)
) d

deg(F (n0)) ,(
F (n1)(xn0 , . . . , xn0+n1−1)

) d

deg(F (n1)) , . . . ,(
F (nm−1)(xn−nm

, . . . , xn−1)
) d

deg(F
(nm−1))

)
.

The function F (n) satisfies the assumptions of Prop. 6 (and so of Theorem 4), that is,

1. it is homogeneous of degree d · deg(F (m));

2. F (n) never returns zero for any non-zero input in Fnq .

Proof. Regarding the first point, note that
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• F (m) is an homogeneous function of degree deg(F (m));

• each input of F (m) is an homogeneous function of degree d.

It follows that F (n) is an homogeneous function of degree d · deg(F (m)).
Regarding the second point, note that:

• F (m) returns zero if and only if all its inputs are equal to zero;

• each input of F (m), that is, F (ni)(z0, z1, . . . , zni−1), returns zero if and only z0 =
z1 = . . . = zni−1 = 0.

It follows that F (n) returns zero if and only if all its inputs are equal to zero.

By applying the previous result iteratively, it is possible to construct functions F (n) :
Fnq → Fq for each n ≥ 2 that satisfy the assumptions of Prop. 6, as

F (3)(x0, x1, x2) = F (2)
(
F (2)(x0, x1), xdeg(F (2))

2

)
,

F (4)(x0, x1, x2, x3) = F (3)
(
F (2)(x0, x1), xdeg(F (2))

2 , x
deg(F (2))
3

)
,

F (4)(x0, x1, x2, x3) = F (2)
(
F (3)(x0, x1, x2), xdeg(F (3))

3

)
,

F (4)(x0, x1, x2, x3) = F (2)
(
F (2)(x0, x1), F (2)(x2, x3)

)
,

and so on. In particular, for each n ≥ 3, it is always possible to construct F (n) iteratively
as:

F (n)(x0, x1, . . . , xn−1) = F (2)
(
F (n−1)(x0, x1, . . . , xn−2), xdeg(F (n−1))

n−1

)
.

Note that the starting points are (i) the identity function F (1)(x) = x and (ii) the functions
F (2) : F2

q → Fq proposed in the previous subsection.
The main drawback of this strategy regards the fact that the degree of the obtained

function is strictly higher than the degrees of the input functions. We leave the problem to
propose low–degree functions F (n) that satisfy the required assumptions of Prop. 6 and/or
of Theorem 4 as an open problem for future work.

8 Future Directions
In this paper, we re–considered the Lai–Massey scheme originally proposed in [LM90,Vau99],
proposing new generalizations that are not (affine) equivalent to any generalized Feistel
scheme. Inspired by the recent Horst construction, we also present the Amaryllises
scheme, in which the linear combination that takes place in the Lai–Massey construction
is replaced by a non-linear one. In particular, we propose concrete instantiations of the
Amaryllises scheme, and we discussed possible advantages and disadvantages with respect
to other constructions proposed in the literature.

At the same time, the analysis of possible new generalizations of the Amaryllises
scheme is far from being finished. Inspired by Def. 6 introduced for the case of generalized
Lai–Massey schemes, we propose the following definition for the Generalized Amaryllises
schemes.

Definition 7. Let q = ps for p ≥ 2 being a prime and s ≥ 1 an integer. Let n ≥ 2.
Given functions F,G : Fnq → Fq, let AG : Fnq → Fnq be defined as AG(x0, x1, . . . , xn−1) =
y0‖y1‖y2‖ . . . ‖yn−1 where

∀i ∈ {0, 1, . . . , n− 1} : yi := xi · F (x0, x1, . . . , xn−1) +G(x0, x1, . . . , xn−1) .

We say that AG is a Generalized Amaryllises construction if it is invertible.
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An open problem for future work regards the analysis and the construction of (non-
trivial) generalized Amaryllises schemes.

Another possible line of research consists in the analysis of the advantages and disad-
vantages of a design instantiated with the Amaryllises scheme with respect to e.g. more
traditional designs as the SPN/AES-like ones. To be more concrete, our initial analysis pro-
posed in this paper does not take into account the details of the functions/sub-components
that define the Amaryllises scheme, besides e.g. the effect of a linear layer applied before
or after it. In particular, since the Amaryllises scheme provides full diffusion, it could
make sense to ask (i) if a linear layer is still necessary (besides for the goal of destroying
invariant subspace trails of the Amaryllises scheme itself) and/or (ii) how to design a
linear layer that maximizes the advantages of such construction with respect to several
parameters, including the diffusion, the security against statistical attacks, and so on.

In conclusion, the initial results proposed in this paper may open up new interesting
possibilities regarding the construction of non-linear layers for future designs.
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A Invariant Subspaces: the Solution proposed in [Vau99]
Here, we briefly discuss the solution proposed in [Vau99] for breaking the subspace trail
of the (generalized) Lai–Massey construction (recently re-considered in [AC21]). For
simplicity, we focus on the case F2

q only. Instead of working with a linear map that mixes
the entire state, Vaudenay proposed to apply a partial non-linear layer, that is, to work
with

[x0, x1]→ [y0, y1] = [S(x0 +H(x0 − x1)), x1 +H(x0 − x1)] (10)
for a certain function S : Fq → Fq. In particular, it is requested that S is an orthomorphism
(a function S is an orthomorphism if and only if both S and S′(x) := S(x) − x are
permutations7). The reason behind this request is the following. The invariant subspace
for the Lai–Massey construction over F2

q is X = 〈[1, 1]〉. By applying (10), we get

[x+ ϕ0, x+ ϕ1] 7→ [S(x+ ϕ0 +H(ϕ0 − ϕ1)), x+ ϕ1 +H(ϕ0 − ϕ1)] ,

where [S(x+ϕ0 +H(ϕ0−ϕ1)), x+ϕ1 +H(ϕ0−ϕ1)] ∈ X+ [ψ0, ψ1] for certain ψ0, ψ1 ∈ Fq
if and only if

∀x ∈ Fq : S(x+ ϕ0 +H(ϕ0 − ϕ1)) = x+ ϕ1 +H(ϕ0 − ϕ1) + ψ1 − ψ0 ,

7Obviously, the identity map is never an orthomorphism. We point out that non-linear orthomorphism
has usually high (e.g., almost maximum) degree – see e.g. [AW21].
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that is,
∀x ∈ Fq : S′(x+ ϕ0 +H(ϕ0 − ϕ1)) = ϕ1 − ϕ0 + ψ1 − ψ0

where S′(x) := S(x) − x. Such a condition cannot be satisfied even when consider a
linear function S(x) = σ · x for a certain σ ∈ Fq \ {0, 1}, which corresponds to apply a
multiplication after (2) with the matrix

diag(σ, 1) ≡
[
σ 0
0 1

]
,

which does not admit [1; 1] as invariant subspace. In such a case, S′(x) = σ·x−x = (σ−1)·x
is a permutation as well (since σ 6= 1), which implies that its output is uniformly distributed,
a condition that is necessary for e.g. proving that 3-round Lai–Massey construction, within
the birthday bound, is CPA-secure – see [Vau99, Sect. 3].

At the same time, we point out that the condition “S is an orthomorphism” is not
strictly necessary if one only aims to destroy the invariant subspace trails, and that a
similar result can be achieved when working with a non-linear function S (which is in
general is not an orthomorphism).

B Details for Sect. 4.2.2 – Contracting Feistel
Here we show that
A× (B × circ(0, 1, 0, . . . , 0))

=


1 0 0 . . . 0
λ

(0)
0 λ

(0)
1 λ

(0)
2 . . . λ

(0)
n−1

λ
(1)
0 λ

(1)
1 λ

(1)
2 . . . λ

(1)
n−1

...
... . . . ...

λ
(n−2)
0 λ

(n−2)
1 λ

(n−2)
2 . . . λ

(n−2)
n−1

×


1 0 0 . . . 0
1 µ1,0 µ1,1 . . . µ1,n−2
1 µ2,0 µ2,1 . . . µ2,n−2
...

... . . . ...
1 µn−1,0 µn−1,1 . . . µn−1,n−2

 = I

is again the identity matrix. Indeed, by re-writing Eq. (4), we get
λ

(0)
0 λ

(1)
0 . . . λ

(n−2)
0

λ
(0)
1 λ

(1)
1 . . . λ

(n−2)
1

λ
(0)
2 λ

(1)
2 . . . λ

(n−2)
2

... . . . ...
λ

(0)
n−1 λ

(1)
n−1 . . . λ

(n−2)
n−1

×

µ1,0 µ2,0 . . . µn−1,0
µ1,1 µ2,1 µn−1,0
... . . . ...

µ1,n−2 µ2,n−1 µn−1,n−1

 =


−1 −1 . . . −1
1 0 . . . 0
0 1 . . . 0
... . . . ...
0 0 . . . 1

 ,

that is,
λ

(0)
1 λ

(1)
1 . . . λ

(n−2)
1

λ
(0)
2 λ

(1)
2 . . . λ

(n−2)
2

... . . . ...
λ

(0)
n−1 λ

(1)
n−1 . . . λ

(n−2)
n−1


︸ ︷︷ ︸

≡Â

×


µ1,0 µ2,0 . . . µn−1,0
µ1,1 µ2,1 µn−1,0
... . . . ...

µ1,n−2 µ2,n−1 µn−1,n−1


︸ ︷︷ ︸

≡B̂

=


1 0 . . . 0
0 1 . . . 0
... . . . ...
0 0 . . . 1

 .

Hence, given Â, B̂ ∈ F(t−1)×(t−1)
q such that Â× B̂ = I, we also have that B̂ × Â = I and

that (B̂ × Â)T = ÂT × B̂T = IT = I, that is,
λ

(0)
1 λ

(0)
2 . . . λ

(0)
n−1

λ
(1)
1 λ

(1)
2 . . . λ

(1)
n−1

... . . . ...
λ

(n−2)
1 λ

(n−2)
2 . . . λ

(n−2)
n−1

×

µ1,0 µ1,1 . . . µ1,n−2
µ2,0 µ2,1 . . . µ2,n−2
... . . . ...

µn−1,0 µn−1,1 . . . µn−1,n−2

 = I .
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The result A× (B × circ(0, 1, 0, . . . , 0)) = I follows immediately.
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