
IACR Transactions
ISSN XXXX-XXXX, Vol. 0, No. 0, pp. 1–30. DOI:XXXXXXXX

Peek into the Black-Box: Interpretable Neural
Network using SAT Equations in Side-Channel

Analysis

Trevor Yap1, Adrien Benamira2, Shivam Bhasin3 and Thomas Peyrin4

School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

{trevor.yap,sbhasin,thomas.peyrin}@ntu.edu.sg1,3,4 adrien002@e.ntu.edu.sg2

Abstract. Deep neural networks (DNN) have become a significant threat to the
security of cryptographic implementations with regards to side-channel analysis
(SCA), as they automatically combine the leakages without any preprocessing needed,
leading to a more efficient attack. However, these DNNs for SCA remain mostly
black-box algorithms that are very difficult to interpret. Benamira et al. recently
proposed an interpretable neural network called Truth Table Deep Convolutional
Neural Network (TT-DCNN), which is both expressive and easier to interpret. In
particular, a TT-DCNN has a transparent inner structure that can entirely be
transformed into SAT equations after training. In this work, we analyze the SAT
equations extracted from a TT-DCNN when applied in SCA context, eventually
obtaining the rules and decisions that the neural networks learned when retrieving
the secret key from the cryptographic primitive (i.e., exact formula). As a result, we
can pinpoint the critical rules that the neural network uses to locate the exact Points
of Interest (PoIs). We validate our approach first on simulated traces for higher-order
masking. However, applying TT-DCNN on real traces is not straightforward. We
propose a method to adapt TT-DCNN for application on real SCA traces containing
thousands of sample points. Experimental validation is performed on software-based
ASCADv1 and hardware-based AES_HD_ext datasets. In addition, TT-DCNN is
shown to be able to learn the exact countermeasure in a best-case setting.

Keywords: Side-channel · Neural Network · Deep Learning · Profiling attack ·
Interpretability · SAT

1 Introduction
The increased usage of Internet-of-Things (IoT) devices [Lue21] has led to many ap-
plications where the data of the devices manipulated are sensitive, and such devices
might be placed in a hostile environment leading to the need to evaluate their secu-
rity capabilities. Side-channel analysis (SCA) is one of those crucial threats that is
required to be evaluated; ever since its first appearance in 1999 [KJJ99], it has become
a widely studied research area in cryptography. Physical properties such as timing de-
lay [Koc96], power consumption [KJJ99], and electromagnetic emanation [AARR03] may
reveal information on the secret data. SCA focuses on finding and exploiting these
leakages to retrieve the secret data. Over the years, the field of SCA has evolved
from classical techniques like template attacks [CRR03] to using machine learning al-
gorithms [BLR12, HZ12, HGDM+11, LBM14, LPB+15, GHO15, LBM15, HZ12], and
recently deep learning-based SCA [PPM+21].

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/XXXXXXXX
mailto:{trevor.yap,sbhasin,thomas.peyrin}@ntu.edu.sg
mailto:adrien002@e.ntu.edu.sg
http://creativecommons.org/licenses/by/4.0/

2 Peek into the Black-Box

Due to the ever-increasing computing power over the last decades, deep neural networks
(DNNs) have gained much recognition in various fields like image recognition [HZRS16],
and natural language processing [YHPC17]. In 2016, Maghrebi et al. [MPP16] succeeded
in retrieving the secret key of an unprotected AES implementation using various types
of DNNs, which has drawn much attention over the past few years [PPM+21]. One of
the advantages of deep learning-based SCA is that in the presence of countermeasures
like masking [PR13] or hiding, it requires little to no preprocessing to obtain a successful
attack. This is unlike other classical techniques, which require a tremendous amount of
preprocessing before the attack can be mounted [BPS+20, CDP17]. After understanding
what DNNs have to offer in SCA, one may want to interpret the black-box algorithm and
understand what these DNNs learn from the side-channel traces. Currently, if an attack is
unsuccessful, we have no idea why it is so. Furthermore, it is difficult to pinpoint whether
the unsuccessful attack is due to the countermeasures or because the hyperparameters
and architectures are not correctly tuned for the traces obtained. On the other hand, if
the attack is successful, evaluators would not be able to locate the origin of the leakages.
Despite that, the designer would want to improve the security of the device. Thus, there
is a need for better explainability and interpretability of these DNNs.

In order for us to understand what the DNNs learn, we have to understand where
the leakages of the secret information are found on the traces. Masking [PR13] is a very
common countermeasure used against SCA. It is theoretically proven to be secure up to
a given level against SCA [PR13]. It operates by splitting the secret information into
multiple shares. Assuming sequential executions, each share leaks in a different part of the
trace. These sample points on the trace that leak are better known as Points of Interest
(PoIs). The adversary would need to observe PoIs from all the shares and combine them
to retrieve the secret information. As of today, there has not been any work where exact
formulae are extracted from the DNN to show the neural network using the PoIs from
different shares for key recovery on both seen and unseen traces (i.e., global interpretation).

Prior Works. Various works have tried to explore the interpretability of DNN in their
own ways. The first work incorporating SCA and DNN interpretability uses Gradient
Visualization (GV) [MDP19], which is used in other studies like in [Tim19]. It calculates
the gradient of the output of the DNN with respect to the input data. The idea is to
observe how a slight change in the sample points in the traces affects the DNN’s prediction.
The authors of [MDP19] observed that the PoIs obtained through GV for unprotected
traces are very similar to the PoIs found by the classical PoI technique like Signal-to-Noise
Ratio (SNR). However, they further considered traces with masking order 1 and found
that the GV can locate the two PoIs if the DNN is trained with early stopping. In other
words, the GV can only pinpoint the PoIs of higher-order masking if the trained DNN
did not overfit the dataset. Furthermore, GV also assumes that the neural network is
differentiable over the set of all traces (i.e., non-exact formulation), which may not be the
case. Hettwer et al. extended this work by comparing other explainability techniques,
for example Layer-wise Relevance Propagation (LRP) [BBM+15] and Occlusion [ZF13],
and visualized them on heatmaps [HGG19]. [GBR22] further compared other techniques
like Integrated Gradient [STY17] and SmoothGrad [STK+17] with classical techniques in
selecting the PoIs like Difference of Mean (DOM) [KJJ99] or Correlation Power Analysis
(CPA) [BCO04]. Although all these techniques are powerful and essential, it only gives an
interpretation based on the traces given (i.e., local interpretation). Zaid et al. [ZBHV19]
provided explainability using weight visualization and feature maps. The feature maps
average the values from the same timestamp for the output of a convolution layer, while
the weights visualization averages the weights on an MLP layer. The weight visualization
proposed by them provides a global interpretation of the weights in the MLPs, while
the feature map give a local interpretation. However, both their methods are non-exact

Trevor Yap, Adrien Benamira, Shivam Bhasin and Thomas Peyrin 3

formulations of what the DNN learns. In [vdVPB21], Van der Valk et al. focus on a
different aspect of explainability. They use Singular Vector Canonical Correlation Analysis
(SVCCA) on two DNNs with the same architecture but trained on different datasets to
compare how correlated the weights of the same layers are. Interestingly, a DNN trained
on a dataset in SCA is more correlated to another DNN trained on a dataset in image
recognition than to another dataset in SCA with a different countermeasure. However,
their work requires a significant computational effort to calculate the correlation between
convolution layers [GBC16] and therefore, they only compared the fully connected lay-
ers [GBC16] of the DNN. Another technique called ablation was explored to gain insights
and better understand the trained DNN in [WWJ+21]. Ablation proceeds by randomly
removing some weights or channels in a particular layer in the DNN. The authors then
proceed to test the effect of various types of hiding countermeasure on the ablated DNN.
They concluded that simpler countermeasures like adding Gaussian noise to the traces are
processed in the early layers, while more complex countermeasures like desynchronization
are processed in the deeper layers. In terms of interpreting the training of a DNN in
SCA, Perin et al. [PBP20] created a metric for determining when to stop the training
phase based on the work by Shwartz-Ziv, and Tishby [ST17]. They use the Information
Bottleneck theory [TPB00] concepts to visualize and interpret the information that the
DNN is learning. [PWP22] furthers the work to visualize how shares are processed within
each layer of DNN. Recently, [ZBC+22] combined deep learning with a stochastic attack
using an autoencoder. Instead of learning the usual discriminative model for key recovery
(which easily retrieves the keys), their model learns a generative model. They show that
the weights of the neural networks give an equation of the traces corresponding to the
leakage. However, for higher-order implementation, the generative model they proposed
requires the usage of a classical recombination technique [PRB09], which will increase the
time complexity and the length of the traces to analyze. These suggest that analyzing a
discriminating model’s internal structure remains an open question. Although many works
stated above have tried to interpret the DNNs, there are still gaps in understanding them,
especially for analyzing traces that have not been seen and providing exact formulae for
what they learn.

Our Contributions. Our work tries to bridge the gap between explainability and
interpretability from SAT equations by using the interpretable neural network called
the Truth Table Deep Convolution Neural Networks (TT-DCNNs) [BPKY22]. The TT-
DCNN can be used as a discriminative model and provides a transparent inner structure
by converting part of the network into SAT equations. The SAT equations offer a
representation of the TT-DCNN for us to interpret on both seen and unseen traces,
providing us with an exact and global interpretation of the TT-DCNN. To the best of our
knowledge, this is the first work interpreting neural networks using SAT equations in the
context of side-channel analysis.

The contributions of the paper can be summarized as follows:

1. We provide a general methodology to analyze the SAT equations that are extracted
from TT-DCNN in the SCA context.

2. We propose a TT-DCNN-based architecture, which we call TTSCAsmall and show
that TTSCAsmall can learn the exact locations of the PoIs in simulated traces of
different masking orders (i.e., masking order 0 to 3).

3. TTSCAsmall cannot be directly applied to real traces with hundreds to thousands
of sample points. We propose a method to adapt TT-DCNN to overcome the compu-
tational limitation due to the patch size (the task of simplifying the SAT equations
relies on an NP-complete problem) and, thus, can be used on traces with extended
length. We call this adapted architecture TTSCAbig. We test this architecture on

4 Peek into the Black-Box

software-implemented traces, ASCADv1_f (fixed keys) and ASCADv1_r (random
keys), and hardware-implemented with low SNR traces, AES_HD_ext.

4. Our analysis shows that our proposed TT-DCNN-based architecture TTSCAbig

finds the positions of the leakages and learns a function based on these leakages to
retrieve the key on both ASCADv1 and AES_HD_ext. The exact formula extracted
from our proposed TT-DCNN gives us a global interpretation of what the network
learns. In the best case, modified TTSCAbig is able to learn the exact masking
countermeasure through SAT equations.

In this work, we are only targeting synchronized traces. We validate our approach on
higher-order masking in a simulated setting, while validation on real traces is only limited
to first-order masking. The results can be publicly accessed on the following weblinks1,2.

Paper Organization. The paper is organized as follows. Section 2 will provide the
necessary background on side-channel analysis, deep learning, and TT-DCNN. In Section 3,
we give a methodology to analyze the SAT equations acquired from the TT-DCNN with
regard to side-channel attacks. In Section 4, we present the TTSCAsmall and TTSCAbig

together with the datasets that are tested on. Subsequently, we present the results and
interpretability of TTSCAsmall and TTSCAbig on each dataset that was applied and
discuss their limitation. Lastly, in Section 5, we conclude the paper and outline some
future works.

2 Background
2.1 Notation and Terminology
We denote sets through the use of calligraphic letters X . The corresponding capital letter
X defines a random variable, and the bold capital letter X denotes a random vector. We
denote the corresponding lowercase letters x and x to represent the realizations of X
and X, respectively. We let x[i] stands for the ith entry of a vector x. A side-channel
trace is defined as a vector t ∈ RD where D is the number of sample points in a trace.
Let C represents a cryptographic primitive with P denoting some public variable (e.g.,
plaintext or ciphertext), and K representing a part of the key. The targeted sensitive
variable is the output of the cryptographic primitive, Z = C(P, K) with Z taking values
in Z = {s1, s2, . . . , s|Z|}. We denote k as the key byte candidate taking its value from the
keyspace K and the correct key as k∗.

Masking is a countermeasure that was proven to be secure against side-channel up to a
given level of security [PR13]. It splits the targeted sensitive variable Z into many shares.
Formally, we say that the cryptographic primitive is of masking order d if Z is split into
d + 1 different shares,

Z = γ(m1, m2, . . . , md+1)

such that Z can be obtained back by a generic operator g (e.g., for Boolean masking,
γ is defined as the XOR of the shares mi for all i ∈ {1, . . . , d + 1}). Throughout this
paper, we shall focus on the SAT equations representation known as Disjunctive Normal
Form (DNF). This is because it provides the most intuitive interpretation of the filters
in the neural network, which will be explained in Section 2.3. A DNF, denoted as dnf ,
is defined as a set of Boolean variables x1, x2, . . . , xh such that dnf = δ1 ∨ δ2 ∨ · · · ∨ δm

where each disjunct δi is a conjunction of some literals δi = li,1 ∧ li,2 ∧ · · · ∧ li,r where each
li,j ∈ {x1, x2, . . . , xh}.

1For T T SCAsmall: https://github.com/yap231995/TTSCA_small
2For T T SCAbig : https://github.com/yap231995/TTSCA_big

https://github.com/yap231995/TTSCA_small
https://github.com/yap231995/TTSCA_big

Trevor Yap, Adrien Benamira, Shivam Bhasin and Thomas Peyrin 5

2.2 Profiling Attacks
Profiling attacks assume a worst-case scenario where the adversary has access to two
similar devices: a prototype or clone device and a target device. For the prototype device,
the adversary can manipulate or know the device’s key while the key for the target device
is unknown to him. Furthermore, the adversary is able to collect several traces from a
known set of random plaintexts (or ciphertexts) from both devices. The adversary’s goal
is to break and retrieve the unknown key from the target device.

Profiling attacks can be divided into two stages: the profiling phase and the attack
phase. In the profiling phase, the adversary will build a distinguisher F that takes in a set
of profiling traces from the prototype device and returns a conditional probability mass
function Pr(T |Z = z). During the attack phase, the distinguisher outputs a probability
score for each hypothetical sensitive value yi = F(ti) for each attack traces ti acquired
from the target device. For every key k ∈ K, the log likelihood score is defined as:

sNa
(k) =

Na∑
i=1

log(yi[zi,k])

where Na as the number of attack traces used and zi,k = C(pi, k) are the hypothetical
sensitive values based on the key k with pi being the corresponding public variable to
the trace ti. The adversary or evaluator can rank the key of the log-likelihood score in a
decreasing order and classify them into a guess vector G = [G0, G1, . . . , G|K|−1]. The key
corresponds to the score G0 is the most likely candidate, and the key of the score G|K|−1
is the least likely candidate. The index of guess vector G is called the rank of the key.
The metric called guessing entropy GE is defined as the average rank of the correct key
k∗ [SMY09]. If GE = 0, when using Na attack traces, the attack is considered successful.

In deep learning-based SCA, we train a DNN, fθ, as the distinguisher where F = fθ.
The most commonly found DNNs used in SCA are the Multilayer Perceptrons (MLPs)
and Convolutional Neural Network (CNN), but they are not interpretable. Therefore, in
the next section, we will describe an interpretable DNN that we will be exploring.

2.3 Truth Table Deep Convolutional Neural Network
In this section, we present the interpretable neural network called Truth Table Deep
Convolutional Neural Networks (TT-DCNNs) proposed by Benamira et al. [BPKY22],
which is convertible into SAT formulas by design. This is achieved by first lowering
the number of connections from one convolution layer to another and also by using the
Heaviside step function [Bra78], denoted as binact, to binarize the features while still
having real-valued weights. In order to train without much loss in performance when using
the Heaviside step function, Benamira et al. adopted the Straight-Through Estimator
(STE) proposed by [HCS+16]. Since the traces are one-dimensional, unlike the images,
which are two-dimensional, we apply the 1D-convolutional layers in our TT-DCNN instead.
For 2D-convolutional TT-DCNN, we refer readers to the original paper [BPKY22]. In
the next few paragraphs, we shall construct the TT-DCNN architecture step by step for
1D-CNN.

1D-convolution, one input channel. Suppose we denote ΦF to be a 1D-convolution
associated with the filter F of kernel size ker = n, stride s and no padding, and let the
input feature with a single input channel chninput = 1 be represented as v0 . . . vN−1 where
N is the length of the input feature. We define yi,F , the output of the function ΦF at
position i, and ybin,i,F as:

ybin,i,F = binact(yi,F) = binact(ΦF (vi×s, vi×s+1, . . . , vi×s+(n−1))).

6 Peek into the Black-Box

If vi×s+q are binary values (i.e., {0, 1}) for all q = 0, . . . , n − 1, we can express the
1D-convolutional layer ΦF as a truth table by enumerating all 2n possible input combi-
nations. The truth table can then be converted into a simplified DNF formula using the
Quine–McCluskey algorithm [Bla38] for interpretation. However, there is a computational
limitation when using this algorithm because the algorithm is solving an NP-complete
problem [UVSV06]. Therefore, we shall limit ourselves to n ≤ 12 for this paper.
Example 1. We consider a 1D-convolution with one filter of kernel size ker = 4, a
stride of size 2, and no padding. Let the weights of the 1D-convolutional layer be
W1 = (10, −1, 3, −5). We define the following DNF literals [x0 x1 x2 x3]. As the inputs
and output are binary and the number of input entries for the CNN layer is 4 (kernel
size = 4 and number of input channel chninput = 1), we have 24 = 16 possible entries:
[0 0 0 0], [0 0 0 1], · · · , [1 1 1 1]. For each input, we calculate the corre-
sponding output resulting from the convolution of W1 with the 16 possible literal entries:
[0, −5, 3, −2, −1, −5, 3, −2, 10, 5, 13, 8, 9, 4, 12, 7]. After binarization with the Heaviside step
function (i.e., Bin(x) = 1

2 + sgn(x)
2), we have ybinary = [0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1].

We then apply the Quine-McCluskey algorithm [Bla38] which gives dnf = (x2 ∧ x3) ∨ x0
(a simplified DNF). This procedure provides us with the general form of binact ◦ ΦF (·)
with binary inputs.

1D-convolution, multiple input channels. In general, a 1D-convolution takes in
several channels as input (i.e., chninput > 1), and therefore the number of input variables
of ΦF will rises substantially. For example, a 1D-CNN that takes 32 input channels with a
kernel size of 4 yields an input of size 128, which well exceeds our limit of n = 12. In order
to overcome this, we group the channels using the group parameter [DV16]. Grouped
convolutions divide the input channels into g groups, then apply separate convolutions
within each group; this effectively decreases the number of inputs of ΦF to each individual
filter by a factor of g. In that case, we have n = ker ∗ chninput/g where chninput is the
number of input channels, and ker is the kernel size. We remark that the number of output
channels must be a multiple of the number of input channels.
Example 2. We consider a 1D-convolutional layer with one filter of kernel size ker = 4, a

stride of size s = 2, and no padding. Let the 1D-CNN weights be W1 =

10 −1 3 −5
8 −2 5 −1

−3 0 2 4
−10 1 −3 5

for the 4-channel input. We can observe that W1 requires 16 = 4 × 4 binary inputs, which
leads to a truth table of size 216, which is too large according to our previous criteria
fixed at 212. Therefore, by defining a group g = 2, then W1 becomes 2 filters matri-

ces: W1,1 =
[
10 −1 3 −5
8 −2 5 −1

]
for filter 1 which takes as input only the first two input

channels, and W1,2 =
[

−3 0 2 4
−10 1 −3 5

]
for filter 2 which takes as input only the last

two input channels. Therefore, thanks to this grouping, each filter has an input size of
n = 8 = 4 × 4/2 which fits our criteria of n ≤ 12.

DNN ΦF function, multiple input channels. In general, if ΦF is a 1D-convolution, the
TT-DCNN will not be able to learn complex tasks such as image classification [BPKY22].
Therefore, we need to transform the linear function ΦF into a non-linear one to increase
the learning capacity of the neural network. The idea is to use a DNN architecture for ΦF

without increasing the input size of ΦF . The ΦF input size is now defined as n = pc/g
where p is the patch size3 instead of the kernel size ker. Figure 1 illustrates an example of a

3The patch is the region of the input that produces the feature, which is commonly referred to as the
receptive field [ANS19].

Trevor Yap, Adrien Benamira, Shivam Bhasin and Thomas Peyrin 7

ΦF , with one input channel and g = 1 with a patch size of 6. F now refers to the F th output
channel of the last layer for DNN ΦF . In [BPKY22], the authors proposed an architecture
for ΦF so-called Learning Truth Table (LTT) block. The LTT block is built upon a layer
known as the amplification layer. The amplification layer works by simply adding a new
convolution layer with kernel size 1 after a convolution layer. Doing so will not increase
the patch size. Overall, the LTT block comprises two 1D-convolution layers, denoted as
Conv1D, with an amplification parameter τ , which is the ratio between the number of
channels of the first layer and the number of channels of the second layer. Each layer in the
LTT block is followed by a batch normalization [IS15] and a non-linear activation function.
In our case, for the first non-linear activation function, we are using SeLU [KUMH17]
and the second non-linear activation is binact. Figure 2 shows the internal working and
an overview of the LTT block. We will define our ΦF for our proposed architectures
TTSCAsmall and TTSCAbig in Section 4.1 and Section 4.2 respectively.

Patch Size

Truth Table, x
0 0 0 0 0 0

0 0 0 0 01
0 0 0 0 01
...
...
1 1 1 1 1
1 1 1 1 1

0
1

f(x)
1
1
0
...
...
0
1

Figure 1: Example of converting a ΦF into a truth table. The above example has two
layers. The first layer has an input channel = 1, output channel = 4, kernel size = 4 with
stride = 2, and a second layer of input channel = 4, output channel = 1, kernel size = 2
with stride = 2. The patch size p of ΦF is 6 (i.e., green box) since the output feature (i.e.,
pink box) requires 6 input entries (i.e., orange and blue box).

Why TT-DCNN in SCA? There are other works that use SAT equations for their neural
network, namely the Binarized Neural Network (BNN) [HCS+16], the Concept Rule Sets
(CRS) [WZLW19], and the Rule-based Representation Learner (RRL) [WZLW21]. The
BNN and TT-DCNN are the only CNN-based networks that use SAT equations, while the
CRS and RRL are MLP-based networks that comprise of SAT formulae. Nonetheless, we
want to analyze CNN-based DNNs that found great success among the other DNNs [MPP16]
due to their shift-invariant nature. Therefore, the only two CNN-based DNNs that
use SAT equations are BNN and TT-DCNN. However, a BNN loses its interpretability
when its binarized convolution block is converted into an inequality for pseudo-Boolean
constraint [RM21, CNHR18, JR20], which is consequently mapped into SAT formulae.
Moreover, the SAT formulae of a BNN contains a large amount of disjuncts/clauses
compared to TT-DCNN, which is intractable to analyze. Furthermore, the TT-DCNN is
more expressive compared to BNN because TT-DCNN contains real-valued weights, unlike
BNN, which only has binarized weights. Therefore, TT-DCNN is a preferred choice.

Although the original design for TT-DCNN is meant for the adversarial attack on
image datasets [BPKY22], TT-DCNNs transparent inner structure allows us to interpret
the neural network easily by describing the rules/decisions made by the neural network

8 Peek into the Black-Box

through its DNF equations. Therefore, we can use them in SCA context to pinpoint the
location of the PoIs used. Using the DNF here, tell us which sample points in the traces are
used by the network in retrieving the secret key. Based on our proposed TT-DCNN-based
architectures stated in Section 4, one sample point of the traces or a window of sample
points corresponds to one literal. Moreover, the AND operations ∧ in a disjunct show
which literals are to be jointly used together. These disjuncts will give us the position of the
leakage points that are exploited by our TT-DCNN-based neural network. The disjuncts
of the DNF, which are the exact and interpretable formulation of the TT-DCNN-based
neural network, also provide us with a global interpretation by giving us the decision of
the network even on traces that the network has not encountered, unlike the usual CNN
or BNN.

(a) Learning Truth Table Block (LTT) in-
ternal working: first Conv1D layer of kernel
size 2, stride 1 and group g = 2. The am-
plification layer (second Conv1D layer) has
an amplification parameter, τ = 3 of kernel
size 1 and stride 1.

C
on

v1
D

B
at

ch
N

or
m

al
iz

at
io

n

Se
LU

C
on

v1
D

(k
er

ne
ls

iz
e

=
1)

B
at

ch
N

or
m

al
iz

at
io

n

bi
n

a
c
t

(b) Learning Truth Table Block (LTT)
overview: the Conv1D with kernel size = 1
is the amplification layer.

Figure 2: Learning Truth Table Block (LTT)

3 Methodology of Analyzing DNF Equations for Trained
TT-DCNN in SCA

After converting the filters in TT-DCNN into DNF while using the Quine-McCluskey
algorithm to simplify the DNFs, we found that there are many disjuncts or literals that
are unnecessary in retrieving the secret key. This is likely because the neural network
overfits [BPKY22] or underfits the dataset. Therefore, we propose three different steps to
remove these unnecessary disjuncts or literals to find the most miniature set of rules that
the neural network needs for key recovery:

1. Sieving disjuncts based on their size,

2. Separating disjuncts based on their combinations of literals (CoLs),

3. Trimming disjuncts based on the literals.

We remark that the three steps stated are heuristic approaches, and finding all sets of
rules or optimal rules remains an open problem. In addition, after each step, we set the

Trevor Yap, Adrien Benamira, Shivam Bhasin and Thomas Peyrin 9

channel as 0 when it does not have any disjuncts left.

Sieving Disjuncts Based on Their Size. As described by [BPKY22], a large number
of literals in a disjunct is possibly due to overfitting. On the other hand, we found that
some disjuncts with a small number of literals are irrelevant in retrieving the keys, which
probably corresponds to the neural network underfitting the dataset. Therefore, we define
the size of the disjunct as the number of literals it contains and sieves the disjuncts based
on their size. We replace the original disjuncts of TT-DCNN with the disjuncts of a
given size and compute its guessing entropy. We repeat this process individually for each
disjunct size. Then we compare the guessing entropy of each disjunct’s size and search for
the minimum size such that GE = 0 (this criterion may be adapted for other use cases).
Although there might be another set of disjuncts within the other disjuncts sizes used to
retrieve the key, considering all the disjuncts’ sizes that give us GE = 0 will become too
intractable. Moreover, taking into account the smallest disjuncts’ size allows us to observe
the least number of literals and, therefore, the fewest number of sample points (or window
of sample points) needed by the TT-DCNN to retrieve the secret key successfully.
Separating Disjuncts Based on Their Combinations of Literals (CoLs). After
separating the disjuncts based on their sizes and obtaining the minimum disjuncts’ size with
a GE = 0, there might remain a considerable amount of disjuncts to interpret (For ex., 198
disjuncts of size 4 for ASCADv1_f dataset and 190 disjuncts of size 3 for AES_HD_ext).
Therefore, we would like to separate them further based on the disjuncts’ combinations of
literals (CoLs) which we define below.

Definition 1. The Combinations of Literals (CoL) for (xi0 , xi1 , . . . , xia−1) is denoted
as the set of disjuncts

{(w1 ∧ w2 ∧ · · · ∧ wa) | wh ∈ {xih
, ¬xih

} for h = 0, . . . , a − 1}.

For example, (x1 ∧¬x3 ∧x5 ∧¬x6) and (¬x1 ∧x3 ∧x5 ∧x6) are disjuncts that are contained
in the CoL for (x1, x3, x5, x6).

After separating the disjuncts by size, we generate the list of unique CoLs from the
disjuncts with the minimum size and denote it as Lstunique. Among the different unique
CoLs, we want to obtain a set of CoLs such that replacing the original set of disjuncts
acquired from the trained TT-DCNN with it can still successfully recover the secret key.
We call these CoLs crucial for key recovery as critical CoLs. If the number of unique CoLs
is small (≤ 5), we can check all their combinations. However, if the trained TT-DCNN
has many CoLs, we would require a viable approach to find the critical CoLs. Firstly, we
replace the original disjuncts of TT-DCNN with disjuncts of a given CoL and compute its
guessing entropy. We repeat this process for each CoL found in Lstunique independently.
This is because sometimes, the trained TT-DCNN only requires one CoL to retrieve the
key successfully. However, some trained neural networks may require more than one CoL
for key recovery; therefore, we propose an algorithm to acquire the critical CoLs for further
analysis (see Algorithm 1).

The main idea of Algorithm 1 is first to set Lstin as the list of all unique CoLs,
Lstunique, then remove one CoL from Lstin and check if the guessing entropy of the correct
key increases above a certain threshold λ. Throughout the paper, we set λ = 1. If the
guessing entropy increases above the threshold λ, it means that the removed CoL is crucial
for recovering the key, so we put it back into Lstin. On the contrary, if the guessing
entropy did not increase above the threshold λ, we can remove the CoL from Lstin and
place them into Lstout, as they are currently not required for retrieving the secret key.
Note that the algorithm only helps to find one set of critical CoLs. Algorithm 1 relies on
the order of the list Lstunique, and therefore, the existence of another set of critical CoLs
is possible.

10 Peek into the Black-Box

Algorithm 1 CriticalCoLs
Input:
DNFs of all the filter DNFstart,
List of unique CoLs of DNFstart denote as Lstunique.
Threshold, λ
Output:
List of critical CoLs Lstin,
1: procedure CriticalCoLs(Lunique)
2: Lstin = Lstunique

3: DNFin = DNFstart

4: Lstout = {}
5: for CoL comblit in Lunique do
6: Remove comblit from Lstin

7: Remove disjuncts contain in comblit from DNFin

8: Run guessing entropy metric of the correct key k∗, GEk∗ with using DNFin as part of the
trained TT-DCNN

9: if GEk∗ ≥ λ then
10: Add comblit back into Lstin

11: Add back the removed disjuncts contain in comblit to DNFin

12: else
13: Add comblit into Lstout

14: end if
15: end for
16: return Lstin

17: end procedure

Trimming Disjuncts Based on the Literals. Some of the disjuncts might contain
literals with information that is not useful. We introduce an operation called trimming.
We trim a literal (xi) from a disjunct δ simply by removing xi if the literal appears in the
disjunct δ regardless of whether it is the negation. For example, if we trim the literal (x2)
from (x1 ∧ ¬x2 ∧ x4 ∧ ¬x6) and (¬x1 ∧ x2 ∧ x4 ∧ x6) then we will obtain (x1 ∧ x4 ∧ ¬x6)
and (¬x1 ∧ x4 ∧ x6) respectively.

When the number of literals found is small, it is possible to exhaust all possible scenarios
for trimming and find the set of literals that has the highest impact on the guessing entropy.
However, the maximum number of possible cases is 2n (i.e., when every single literal is
found), which could be too computationally intensive. This is not to mention that the
calculation of the guessing entropy is also very expensive. As a result, we want to trim out
the literals that have minimal impact on the guessing entropy (i.e., literals that will lead
to key recovery) without enumerating all the possible cases. Therefore, we propose the
following algorithm called individual trimming algorithm. Given a set of disjuncts S, we
trim xi from S and check its guessing entropy, then repeat this for all i = 0, . . . , n − 1. We
set these algorithms after the previous two steps as we do not want to miss out on crucial
literals required for key recovery (see Appendix A.2 for examples).

4 Experimental Results
In this section, we propose two TT-DCNN-based neural networks called TTSCAsmall and
TTSCAbig. We train TTSCAsmall on a small-sized simulated dataset and TTSCAbig on
real-measurement traces ASCADv1 and AES_HD_ext. We also analyze their acquired
SAT equations with the proposed methodology from Section 3.

4.1 The TT-DCNN-based Neural Network, T T SCAsmall

The TT-DCNN-based architecture TTSCAsmall is illustrated in Figure 3. The TTSCAsmall

apply a batch normalization layer on the traces followed by a Heaviside step function binact.
Three layers of 1D-convolution layers are applied thereafter, with each 1D-convolution

Trevor Yap, Adrien Benamira, Shivam Bhasin and Thomas Peyrin 11

layer utilizing a convolution operation, then a SeLU activation function, and lastly, a batch
normalization. The parameters of each 1D-convolution layer can be found in Table 1, and
the patch size for the TTSCAsmall is 9, equal to the kernel size of the filter in the Conv1D
2. Moreover, instead of using MLP layers after the Flatten operation, we use a linear
regression layer to make the neural network fully interpretable.

We notice that using binact before the Flatten operation only after training and applying
a binact after the Conv1D layer 2 are necessary in recovering the key. If we apply the
binact before the Flatten operation during training or remove the binact after the Conv1D
layer 2, we observe that it does not successfully recover the secret key. This is possibly due
to the simplicity of the dataset, where some loss of information after the Conv1D layer
2 is required, but training with a binact before the Flatten operation will result in too
much information loss. Furthermore, the application of binact before the Flatten operation
only after training is required to convert the three 1D-convolution layers into truth tables.
Therefore, the function ΦF in TTSCAsmall consists of all the Conv1D layers and the
binact after the Conv1D layer 2 (colored green in Figure 3).

We employ the Glorot weight initialization [GB10], the One Cycle Policy [ST18] with
learning rate of 0.0025 to 0.005, a L2 norm with regularization factor of 0.00125 and
the Adam optimizer [KB17] when training TTSCAsmall. We train TTSCAsmall over 9
epochs.

B
at

ch
N

or
m

al
iz

at
io

n

bi
n

a
c
t

C
on

v1
D

la
ye

r
1

C
on

v1
D

la
ye

r
2

bi
n

a
c
t

C
on

v1
D

la
ye

r
3

bi
n

a
c
t

(a
ft

er
tr

ai
ni

ng
)

Fl
at

te
n

Li
ne

ar
R

eg
re

ss
io

n

So
ft

m
ax

(2
56

cl
as

se
s)

Figure 3: Overview of TTSCAsmall architecture.

Table 1: Parameters of each layers in TTSCAsmall.
Conv1D Parameters

1 Number of filters/channels = 16,kernel size = 1,stride = 1.
2 Number of filters/channels = 16, kernel size = 9, stride = 4.
3 Number of filters/channels = 16, kernel size = 1, strides = 1.

4.1.1 Simulated Data

We generated our own simulated dataset using Python code similar to [Tim19]. For each
trace that was generated, it has 20 sample points. We denote each trace as an array
trace[0 . . . 19] and set d+1 number as the leakage point where d ∈ {0, 1, 2, 3} is the masking
order of the generated dataset. The remaining 20 − (d + 1) sample points are randomly
generated bytes. Then we add a noise based on the Gaussian distribution with a mean of
0 and a standard deviation of 0.1 to all sample points. We denote Z := SBox(pt ⊕ key)
to be the sensitive variable, where pt ∈ {0, . . . , 255} being the plaintext byte, SBox is the
substitution box of the Advanced Encryption Scheme (AES) [DBN+01], and key = 0x03
is the fixed key byte. We generate the traces according to the Table 2 where m1, m2 and
m3 are randomly generated bytes. We use 14000 traces for the profiling phase and 5000

12 Peek into the Black-Box

Table 2: Leakage points of the traces generated in simulated data based on the masking
order.

Masking Order d Leakage Point

0 trace[10] = Z

1 trace[10] = Z ⊕ m1
trace[5] = m1

2 trace[10] = Z ⊕ m1 ⊕ m2
trace[5] = m1, trace[8] = m2

3 trace[10] = Z ⊕ m1 ⊕ m2 ⊕ m3
trace[5] = m1 , trace[8] = m2 , trace[12] = m3

(a) Different sizes of disjuncts. (b) Trimming with x1 and x6.

Figure 4: Guessing entropy of TTSCAsmall for simulated data with masking order 1.

traces for the attack phase.

Interpretation of the DNF Equations of TTSCAsmall on Simulated Data. After
training TTSCAsmall on the simulated traces, we convert the three 1D-convolution layers
into DNF equations by considering the truth tables obtained through enumerating all 2n

inputs. We shall only focus on masking order 1 here, since the results for masking orders 0
to 3 all show that TTSCAsmall is able to pinpoint the position of the leakage that was
allocated in the simulated traces.

We first sieve the disjuncts based on their sizes (see Figure 4a). Figure 4a shows that
the disjuncts with size 2 to 5 all have GE = 0. We shall focus on the smallest size that has
GE = 0 as stated in Section 3; in this case, 2 is the smallest size (orange line in Figure 4a).
For our trained TTSCAsmall, the disjuncts of size 2 are just (x1 ∧ ¬x6), (x6 ∧ ¬x1) and
(¬x6 ∧ ¬x1). Since the CoL for (x1, x6) is the only CoL, we simply try to trim the literals
(x1) and (x6) individually. We observe from Figure 4 that GE ̸= 0 when we trim (x1) or
(x6). This shows that both x1 and x6 are literals that the trained TTSCAsmall necessary
for key recovery. Figure 5b illustrate the neural network’s patch as it slides through a
trace. In the second timestamp when this patch slides through the trace (i.e. light blue
box in Figure 5b), the literals that corresponds to PoIs of the shares m1 and L = Z ⊕ m1
are x1 and x6 respectively. Therefore, we can conclude that our TTSCAsmall has learned
a function of m1 and Z ⊕ m1 based on x1 and x6 such that it retrieved the secret key
key. The results for masking orders of 0, 2 and 3 also show that the TTSCAsmall learns a
function for key recovery based on the literals to which the leakage points correspond. For
each masking order 1, 2 and 3, an example of a disjunct acquired from TTSCAsmall that
is necessary for key recovery is shown in Table 5a. We conclude that TTSCAsmall can
pinpoint the leakage’s position and use it to retrieve the key.

Next, we show that TTSCAsmall is unable to recover the secret key if there exists at
any point in time PoIs corresponding to a share that are not within the patch. We show
this by training TTSCAsmall on new simulated traces of masking order 1. We set m1

Trevor Yap, Adrien Benamira, Shivam Bhasin and Thomas Peyrin 13

Masking Order Example Of Disjunct
1 (x1 ∧ ¬x6)
2 (x1 ∧ ¬x4 ∧ ¬x6)
3 (x1 ∧ x4 ∧ x6 ∧ x8)

(a) Example of disjuncts of T T SCAsmall

retrieved which allow key recovery.

Lm1

x0 x1 x2 x3 x4 x5 x6 x7 x8

(b) Orange, light blue and light green boxes
shows that patch size when it is at timestamp
1, 2 and 3 respectively. Denote L = Z ⊕ m1.

Figure 5: Example of disjuncts of TTSCAsmall necessary for key recovery and a visualiza-
tion of a simulated trace.

and L = Z ⊕ m1 at trace[1] and trace[10] respectively in the new simulated traces (see
Figure 6b). Observe that at any point of time, m1 and L = Z ⊕m1 are not within the patch
together. We observe that GE ̸= 0 when TTSCAsmall is trained on the new simulated
traces (see Figure 6a). Therefore, at any point in time, both m1 and L = Z ⊕m1 need to lie
within the same patch for TTSCAsmall to retrieve the key successfully. This solidifies the
claim that capturing long-distance dependency in the deep learning literature [SXW+20]
is also an issue in the context of SCA.

(a) Blue: Guessing entropy of T T SCAsmall

trained on the new simulated traces of masking
order 1 when m1 and L = Z ⊕ m1 place at
trace[1] and trace[10] respectively.
Orange: Guessing entropy T T SCAsmall trained
on simulated traces of masking order 1 stated
in Table 2.

Lm1

(b) Orange, light blue and light green boxes
shows that patch size when it is at timestamp
1, 2 and 3 respectively. Denote L = Z ⊕ m1.

Figure 6: Guessing entropy of TTSCAsmall trained on new simulated traces and a
visualization of the new simulated trace with masking order 1.

Masking with Flaws: Next, we explore the interpretability of TTSCAsmall for masked
implementations with flaws [EST+22, MGH14]. Flaws in a d−order masking scheme can
result in exploitable leakage at lower security order ≤ d. Such flaws can be attributed to
several factors like bugs in the implementation, processor pipeline or register overwrites
between two shares etc. We create another simulated dataset for d = 4 with a reduction in
security order to d − 1 by introducing a flaw (m2 ⊕ m3) at trace[6] (see Figure 7b), due to
combination of two shares.

After training TTSCAsmall, we convert the TTSCAsmall into DNF equations for
analysis. As before, we sieve the disjuncts based on their size. The disjuncts with sizes
3, 4 and 5 each obtain GE = 0 (see Figure 7a). If TTSCAsmall indeed learns a function
based on x1, x2 and x6, then TTSCAsmall will learn the exploitable leakage from mask
combination (see red literals in Figure 7b). Therefore, we separate the disjuncts with size 3
based on the CoL of (x1, x2, x6) (see Figure 8a). We further check if all these three literals
are necessary by using the individual trimming algorithm. From Figure 8b, we obtain
GE ̸= 0 whenever one of the literals is not present. This shows that all three literals are

14 Peek into the Black-Box

(a) Guessing entropy of each individual size of
T T SCAsmall for flawed masking.

m1 m2 m3LA

x0 x1 x2 x3 x4 x5 x6 x7 x8 (exploitable leakage)
x0 x1 x2 x3 x4 x5 x6 x7 x8 (original leakage)

(b) Denote L = Z ⊕ m1 and A = m2 ⊕ m3.

Figure 7: Guessing entropy when using step 1 and a visualization of the simulated data
with flawed masking.

(a) CoL of (x1, x2, x6). (b) Trimmed literals to check relevancy of x1, x2
and x6.

Figure 8: Guessing entropy of TTSCAsmall on simulated traces of masking order 3 with
flaws.

important.

Moreover, we check if TTSCAsmall also learns the original d-order leakage simultane-
ously. If TTSCAsmall learns a function based on x1, x4, x6 and x8 then TTSCAsmall will
learn the d-order leakage (see yellow literals in Figure 7b). As a result, we separate the
disjuncts of size 4 based on the CoL of (x1, x4, x6, x8) and obtain GE = 0 (see Figure 9a).
We further verify if all these four literals are necessary for key recovery. Figure 9b shows
that trimming any one of these literals will result in GE > 0, which reveals to us that
x1, x4, x6 and x8 are required for key recovery.

(a) CoL of (x1, x4, x6, x8). (b) Trimmed literals to check relevancy of
x1, x4, x6 and x8.

Figure 9: Guessing entropy of TTSCAsmall on simulated traces of masking order 3 (d + 1-
order leakage).

Trevor Yap, Adrien Benamira, Shivam Bhasin and Thomas Peyrin 15

4.2 The TT-DCNN Neural Network, T T SCAbig

As discussed in Section 4.1.1, the TTSCAsmall is unable to successfully recover the key if
there exists a share whose PoIs are not within the patch at any point in time. Meanwhile,
there are hundreds to thousands of sample points in real traces, more than our small-sized
simulated traces of 20 sample points, and PoIs corresponding to different shares might
be hundreds of sample points away from each other. The most obvious way to apply
TTSCAsmall onto longer traces is to increase its patch size but increasing the patch size
above 12 will become intractable to compute as the Quine–McCluskey algorithm is solving
an NP-complete problem whenever it simplifies a DNF equation. Therefore, applying
TTSCAsmall directly on traces with extended length is impossible. Nonetheless, we would
want a TT-DCNN-based neural network with a patch size below or equal to 12 while
still able to interpret its DNF equations with respect to the sample points without losing
its ability to retrieve the secret key when trained on longer traces. We propose a new
TT-DCNN-based architecture called TTSCAbig, which achieves all of that.

The TTSCAbig first consists of a 1D-convolution layer, followed by a batch normal-
ization and subsequently with an average pooling layer. Then, a binact is applied before
the LTT block. The LTT block is meant to be converted into SAT equations. Thereafter,
we apply the Flatten operation before utilizing three linear regressions. We use linear
regressions instead of MLPs since they are interpretable compared to MLPs. Figure 10
shows TTSCAbig architecture.

To overcome the limitation of patch size, the first 1D-convolution layer, batch nor-
malization, and average pooling [GBC16] are considered as a preprocessing block. This
preprocessing block converts each window of sample points into one literal allowing the
patch size to be contained within the acceptable range. Furthermore, the average pool-
ing is tuned to make the windows of sample points not overlap, which allows for easier
interpretation.

Our training methodology is as follows: we apply the horizontal standardization on
the traces in the same way as [WAGP20] and employ the He initialization [HZRS15], the
One Cycle Policy with a learning rate of 0.005, and the Adam optimizer [KB17] to train
TTSCAbig over 50 epochs.

C
on

v1
D

_
1

B
at

ch
N

or
m

al
iz

at
io

n

Av
er

ag
e

Po
ol

in
g

bi
n

a
c
t

LT
T

B
lo

ck

Fl
at

te
n

Li
ne

ar
R

eg
re

ss
io

n
1

Li
ne

ar
R

eg
re

ss
io

n
2

Li
ne

ar
R

eg
re

ss
io

n
3

So
ft

m
ax

(2
56

cl
as

se
s)

Figure 10: TTSCAbig architecture.

4.2.1 ASCADv1

ASCADv1 is a first-order software AES implementation running over an 8-bit AVR ar-
chitecture on the ATMega8515 device with an operating frequency of 4 MHz [BPS+20].
We focus on the synchronized traces dataset and target the third byte of the first round
Sbox, which we shall denote as SBox(pt ⊕ k∗) where pt is the third plaintext byte, and
k∗ is the third byte of the first round secret key. Since it is a first-order implementation,
the common output mask of the Sbox is denoted as rout. It consists of two forms: fixed

16 Peek into the Black-Box

keys (denoted as ASCADv1_f) and random keys (denoted as ASCADv1_r). The authors
of [BPS+20] pre-selected 700 sample points from raw traces for ASCADv1_f and 1400
sample points for ASCADv1_r, corresponding to the information regarding the third
byte of the first round Sbox. ASCADv1_f consists of 60k traces with 50k traces used for
profiling and 10k for attacking. On the other hand, ASCADv1_r consists of 300k traces
with 200k traces used for profiling and 100k for attacking.

Interpretation of the DNF Equations of TTSCAbig on ASCADv1_f. We trained
a TTSCAbig with parameters indicated in Table 3. Since the first 1D-convolution layer,
batch normalization, and average pooling layer are considered a preprocessing block, the
only portion of TTSCAbig where we convert into DNF equations is the LTT block (i.e.,
ΦF is the LTT block). Due to the preprocessing block, we obtain a patch size of 7 where
each literal represents a set of sample points in the trace. Table 4 shows which sample
points each literal represents, which can be derived from Figure 20 in Appendix A.1.

Table 3: Parameters of TT-DCNN used for ASCADv1_f dataset
Layers Parameters

Conv1D_1 Number of filters/channels out = 60, kernel size = 50, stride = 1, padding = 0.

Average Pooling kernel size = 50, stride = 100.

LTT Block Layer Number of filters/channels out = 120, kernel size = 7, strides = 1,
amplification parameter τ = 4, group = 60.

Linear Regression 1 features out = 20

Linear Regression 2 features out = 20

Linear Regression 3 features out = 256

Table 4: Sample points for each literals of TTSCAbig on ASCADv1_f.
Sample Points 0 to 99 100 to 199 200 to 299 300 to 399 400 to 499 500 to 599 600 to 699

Literal x0 x1 x2 x3 x4 x5 x6

We proceed with the steps proposed in Section 3. The execution time for each steps is
reported in Appendix A.4.

1. Firstly, we sieve the disjuncts based on their sizes (see Figure 11a). We observe that
the only disjuncts’ size where GE = 0 is 4 (see the red line in Figure 11a).

2. Next, we generate a list of unique CoL among all the size 4 disjuncts, denote as
Lst

(ASCAD_f)
unique . There are 35 of such CoLs found. We replace the original disjuncts of

TT-DCNN with disjuncts of a given CoL and compute its guessing entropy. We repeat
this process for each CoL found in Lst

(ASCAD_f)
unique . This is illustrated in Figure 22

of Appendix A.3, and we observe that for each CoL found in Lst
(ASCAD_f)
unique their

GE ̸= 0. This suggests that our trained TTSCAbig requires more than one CoL
to retrieve the secret key. Therefore, we use Algorithm 1 to obtain a list of the
critical CoLs for key recovery. Table 11b presents the critical CoLs acquired from
Algorithm 1.

3. Finally, we apply the individual trimming algorithm found in Section 3 (see Fig-
ure 12a). Notice that when the literals (x1), (x2), (x4), (x5) and (x6) are being
trimmed independently, they all have GE ≥ 1 (see the orange, green, purple, brown,
and pink lines, respectively). When trimming (x1) and (x4) individually, their GE
are relatively close to 0 (i.e, GE = 4.62 for trimming (x1) and GE = 1.92 when
trimming (x4)). This suggest that maybe both requires more traces to attain GE = 0
and might not be relevant in recovering the key.

Trevor Yap, Adrien Benamira, Shivam Bhasin and Thomas Peyrin 17

(a) Guessing entropy of different
disjuncts’ sizes.

List Of Critical CoLs

(x0, x3, x4, x5) (x0, x1, x2, x3)
(x2, x3, x5, x6) (x0, x1, x2, x5)
(x0, x3, x5, x6) (x1, x2, x4, x6)
(x0, x3, x4, x6) (x0, x4, x5, x6)
(x0, x1, x2, x4) (x3, x4, x5, x6)
(x1, x2, x3, x4) (x1, x2, x4, x5)

(b) List of critical CoLs obtained
after Algorithm 1.

Figure 11: Guessing entropy of step 1 and the list obtained after Algorithm 1 for TTSCAbig

on ASCADv1_f.

Thus, we first verify if x4 is necessary for key recovery by trimming the literals
(x1, x2, x5, x6) and (x0, x3, x4) separately from the disjuncts with critical CoLs (see orange
and blue line in Figure 12b). We see that GE = 0 when (x0, x3, x4) are trimmed (i.e.,
disjuncts left have literals x1, x2, x5 and x6), suggesting that the literal x4 is not necessary
for key recovery. Similarly, we trim (x2, x5, x6) and (x0, x1, x3, x4) separately to check if
x1 is required for key recovery (see red and green line in Figure 12b). We observe that
trimming (x2, x5, x6) results in GE ≈ 9, implying that x1 is indeed relevant in retrieving
the secret key. In a nutshell, the literals required for key recovery are x1, x2, x5 and x6.

(a) Trimming with every individual literals
(describe by the individual trimming algorithm
in Section 3).

(b) Trimming to verify the relevancy
of x1 and x4.

Figure 12: Guessing entropy for TTSCAbig on ASCADv1_f for the step 3.

We observe that these 4 literals represent the position of PoIs in ASCADv1_f. From
Table 4, the literals x1 represents 100 to 199 sample points and x2 represents 200 to 299
sample points which is where the PoIs of the share rout are (see orange line Figure 13a)
while x5 and x6 represented 500 to 599 and 600 to 699 sample points respectively, where the
PoIs of the share SBox(pt ⊕ k∗) ⊕ rout are located (see blue line in Figure 13a). Therefore,
we conclude that TTSCAbig indeed learned the position of the leakages and also a function
of the shares rout and SBox(pt ⊕ k∗) ⊕ rout based on the literals x1, x2, x5 and x6. While
Figure 13a is obtained with knowledge of the key, the neural network learns the PoIs
without knowledge of the key.

To compare with previous works, we apply the explainability techniques GV on
TTSCAbig (see Figure 13b) and observe that it is difficult to tell us which points in
which TTSCAbig learns; as it differs vastly from CPA. This is because TTSCAbig overfits
the dataset since we did not use any early stopping unlike [MDP19] which managed to
differentiate the PoIs of ASCADv1_f after using early stopping when training their DNN
(refer to Appendix A.5 for GV of non-overfitting TTSCAbig model). However, our method
only extracts intervals of sample points that the TTSCAbig uses. In cases where the

18 Peek into the Black-Box

(a) CPA on the attack traces of ASCADv1_f. (b) GV of T T SCAbig

on ASCADv1_f.

Figure 13: CPA of ASCADv1_f and GV of TTSCAbig.

evaluator wants a precise value of each sample point about the leakage that the DNN is
using, GV or features map [ZBHV19] are preferred as these methods give a specific value to
each sample point. Nonetheless, our work shows the exact window of PoIs that TTSCAbig

used to retrieve the secret key despite not using early stopping and even provides the
DNF formulae that TTSCAbig used for key recovery without assuming that the neural
network is differentiable, unlike GV. The literals x1, x2, x5 and x6 also reveal to us the
critical decision that TTSCAbig used to retrieve the secret key on both seen and unseen
traces, providing us a global interpretation.

The optimal number of literals that a TTSCAbig can learn from the sequential leakage
found in ASCADv1_f is two. One literal represents the leakage from SBox(pt ⊕ k∗) ⊕ rout

and the other literal represent the leakage of rout. Therefore, the literals of TTSCAbig

that we showed in this section may not be optimal as it requires four literals to obtain
the secret key instead of two literals. In the following paragraph, we report a modified
miniature TTSCAbig. This modified TTSCAbig uses only an XOR gate of two literals for
key recovery. One reason why the literals we found are not optimal may be due to the
heuristic nature of our methods. Therefore, finding the miniature set of disjuncts for key
recovery is still an open question.

An Interesting Result. When manipulating the architecture from Wouters et al.’s
work [WAGP20], we managed to train a modified TTSCAbig (with a padding of 25 in
the first Conv1D) that gives us a miniature network. Each literal represents the sample
points of the traces stated in Table 5. We proceed by sieving the disjuncts based on their
size. We observe that the smallest disjunct size with GE = 0 is 4 (red line of Figure 14a).
Next, we found that there are 35 unique CoLs of size 4, and observed that the only critical
CoL is the CoL for (x1, x2, x3, x5) (red line of Figure 14b). There only five disjuncts (filter
66 has two disjuncts) with CoL for (x1, x2, x3, x5) and is presented in the middle column
of Table 6. We notice that when (x1) or (x5) are trimmed, GE ̸= 0 (see blue and red
line in Figure 15a), but when trimming (x2, x3), we attain GE = 0 (see the purple line
in Figure 15a). The disjuncts after trimming (x2, x3) are presented in the last column
of Table 6. By continuing to sieve the filters, we observe that filter 66 is only filter in
which GE = 0 (see Figure 15b). The two disjuncts in filter 66 correspond to an XOR
gate between x1 and ¬x5: x1 ⊕ ¬x5 = (x1 ∧ x5) ∨ (¬x1 ∧ ¬x5), which is the masking
countermeasure protecting the underlying Sbox execution. However, it is not trivial to
always learn the exact function of the countermeasure, which is the best case result we
achieved. As the weights are initialised randomly, neural network trained on same dataset
may differ and thus the function learned would differ.

To summarize, the modified TTSCAbig managed to learn a miniature set of rules with
just one preprocessing block, one XOR gate (i.e., the masking function), and one linear
regression to retrieve the key.

Trevor Yap, Adrien Benamira, Shivam Bhasin and Thomas Peyrin 19

Table 5: Sample points for each literals for the TT-DCNN trained with padding of 25.
Sample Points 0 to 74 75 to 174 175 to 274 275 to 374 375 to 474 475 to 574 575 to 674

Literal x0 x1 x2 x3 x4 x5 x6

(a) Separated by different disjunct sizes for AS-
CADv1_f dataset.

(b) Individual CoL for disjuncts with size 4.

Figure 14: Guessing entropy obtained when applying step 1 and 2 on the modified
TTSCAbig trained on ASCADv1_f.

Table 6: Disjuncts with CoL for (x1, x2, x3, x5) before and after trimming (x2, x3) using
the modified TTSCAbig.

Filter Number Disjuncts Before Trim Disjuncts After Trim

22 (¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x5) (¬x1 ∧ x5)
26 (¬x1 ∧ x2 ∧ x3 ∧ x5) (¬x1 ∧ x5)
43 (x1 ∧ ¬x2 ∧ x3 ∧ ¬x5) (x1 ∧ ¬x5)
66 (x1 ∧ ¬x2 ∧ ¬x3 ∧ x5), (¬x1 ∧ ¬x2 ∧ x3 ∧ ¬x5) (x1 ∧ x5), (¬x1 ∧ ¬x5)

(a) Different literals trimmed
(before trimming (x2, x3)).

(b) The guessing entropy of each filter
(after trimming (x2, x3)).

Figure 15: Guessing entropy of the CoL for (x1, x2, x3, x5) obtained from the modified
TTSCAbig (i.e., before and after trimming (x2, x3)).

Interpretation of the DNF Equations of TTSCAbig on ASCADv1_r. There are
1400 sample points for ASCADv1_r, and we change the Conv1D_1 to have a kernel size
of 75 and the average pooling to have a kernel size of 75 with stride 150. This gives
us TTSCAbig with a patch size of 9 where each literal xq represents the sample points
between q ∗ 150 and (q + 1) ∗ 150 − 1 for q = 0, . . . , 8 which corresponds to 150 sample
points of the traces.

We proceed with the same methodology by sieving disjuncts based on the size first.
From Figure 16a, size 4 is the smallest size with GE = 0. Next, there are 121 unique
CoLs of size 4, and observe that one of the critical CoL is the CoL for (x1, x4, x7, x8) (blue
line of Figure 16b). We further apply the individual trimming algorithm on the disjuncts
with CoLs of (x1, x4, x7, x8). We observe from Figure 17a that x1 and x7 seem to be
important. Therefore, we further trim to check if both x1 and x7 are necessary literals by
trimming (x4, x8) from disjuncts with CoLs of (x1, x4, x7, x8). When we trim (x4, x8) we

20 Peek into the Black-Box

(a) Guessing entropy of different
disjuncts’ sizes.

(b) Individual CoL for disjuncts with size 4.

Figure 16: Guessing entropy of step 1 and step 2 for TTSCAbig on ASCADv1_r.

(a) Trimming literals of disjuncts with CoL of
(x1, x4, x7, x8) for ASCADv1_r dataset.

(b) CPA on attack traces of ASCADv1_r.

Figure 17: Guessing entropy for TTSCAbig on ASCADv1_r for step 3 and CPA for
ASCADv1_r.

have GE > 0 (see purple line in Figure 17a), but if we just trim x4 or x8 individually the
GE = 0. This means that whenever x4 is trimmed away, x8 contains enough information
to obtain GE = 0, and vice versa. If we compare with CPA, we see that the literal x1
could be associated to several leakage, that is r, rout, Sbox(pt ⊕ k) ⊕ r and pt ⊕ k ⊕ rin,
while the literal x7, x8 could correspond to the leakages rin and Sbox(pt ⊕ k) ⊕ r (see
Figure 17b). In addition, x4 could represent leakage of rin. As a result, we show that
TTSCAbig uses three literals either (x1, x7, x8) or (x1, x4, x7) to recover the key. Thus,
an evaluator can obtain positions of PoIs where the TTSCAbig learns in a random key
setting.

4.2.2 AES_HD_ext

Next, we validate our approach in a low SNR setting; hence we target traces from FPGA.
We focus on the AES_HD_ext dataset, which is an extension of the AES_HD dataset. It
consists of 500k traces each with 1250 sample points. The main leakage comes from the
register writing in the last round SBox−1(ct11 ⊕ k15) ⊕ ct11 where ctj is the jth byte of
the ciphertext, k15 is the 15th byte of the last round key and SBox−1 is the AES inverse
Sbox. The SNR observed from [ZBHV19] is 0.01554. We use 50k traces for the profiling
phase and another 50k for the attack phase.

Interpretation of the DNF Equations of TTSCAbig on AES_HD_ext: Since there
are 1250 sample points, the TTSCAbig used here have the same Conv1D_1 as the one
use in ASCADv1_f and therefore having a patch size of 12 with each literal xq represent
the sample points between q ∗ 100 and (q + 1) ∗ 100 − 1 for q = 0, . . . , 11. As before, we
first sieve the disjuncts based on their size (see Figure 18a) and observe that size 3 is the
smallest disjunct’s size (see blue line in Figure 18a). We proceed with the next step by

Trevor Yap, Adrien Benamira, Shivam Bhasin and Thomas Peyrin 21

(a) Different disjuncts’ sizes. (b) Individual CoL of size 3.

Figure 18: Guessing entropy after seiving disjuncts based on their sizes and each CoL
individual of size 3 for AES_HD_ext.

(a) Trimming with all combination of
(x7, x10, x11). (b) CPA on attack traces of AES_HD_ext.

Figure 19: Guessing entropy after trimming and CPA of AES_HD_ext.

first generating a list of unique CoL from the disjuncts with a size equal to 3, denoted
as Lst

(AES_HD)
unique . There are a total of 127 CoLs with size 3 found. Then we replace

the original disjuncts of TTSCAbig with a given CoL and compute its guessing entropy.
We repeat this process for each CoL found in Lst

(AES_HD)
unique independently. The CoLs

with GE = 0 are (x3, x10, x11), (x4, x10, x11) and (x7, x10, x11) as depicted in Figure 18b.
All three CoLs provided similar results, thus we shall focus only on (x7, x10, x11). Since
there are only 3 literals in the CoL for (x7, x10, x11), we exhaust all possible scenario for
trimming (excluding trimming all literals). This is illustrated in Figure 19a. Whenever x11
is trimmed, we attain GE ̸= 0. In fact, if x11 is used on its own (i.e., trim literals (x7, x10))
it result in GE = 0. This reveals that the literal x11 itself is necessary for recovering the
secret key. We compare our results with CPA on AES_HD_ext dataset. The literal x11
corresponds to the PoIs found in 1100 to 1200 sample points of the traces (see Figure 19b).
This implies that our technique also works in a low SNR hardware-implemented setting.

4.3 Limitation
The first limitation of using TTSCAbig is that it requires more traces to retrieve the
secret key compared to general CNN, but this is at the expense of interpreting what the
neural network learns. We compare this trade-off between interpretability and efficiency by
showing the number of attack traces needed by TTSCAbig and the state-of-the-arts DL-
SCA models for ASCADv1_f and AES_HD_ext in Table 7. In other words, TTSCAbig is
recommended if interpretation is the primary objective rather than efficiency. We also note
that Algorithm 1 requires a significant amount of time to run (see Table 8 in Appendix A.4).
Therefore, one should also consider the time required for analysis when using TTSCAbig

for interpretation.
Secondly, our method may not always find the most miniature set of disjuncts for key

22 Peek into the Black-Box

Table 7: DLSCA benchmark of ¯NTGE value depending on datasets.
CNN Ours, T T SCAbig

ASCADv1 (fixed key, no desync) 191 [ZBHV19] 7222
AES_HD_ext 831 [ZXF+19] 50000

recovery as it is heuristic in nature. Therefore, it is still an open question to find the
optimal set of disjuncts that the TTSCAbig learns. Thirdly, there is a hard limit to the
number of literals that can be handled due to usage of Quine–McCluskey algorithm leading
to low scalability to really large real traces. Current proposal is to use larger pooling
windows in order overcome the hard limit. However, increasing pooling window may results
in the interpretation of large interval of sample points to be not interesting (low resolution
of PoI detections). Moreover, larger pooling windows might introduce more noise leading
to an unsuccessful attack. In such case, using GV or feature maps in [ZBHV19] might be
more suitable as these methods gives interpretation of each sample points. Furthermore,
TTSCAbig does not currently work on jitter/desynchronization countermeasure. We leave
the extension of TTSCAbig to these countermeasures for subsequent work. Lastly, other
explainability techniques can be used on any DNN, but our methods are only applicable
to the family of TT-DCNN. Nevertheless, our proposed methodology gives us a glimpse of
what this family of TT-DCNN learns in the SCA context.

5 Conclusion
In this work, we apply the interpretable neural network called the Truth Table Deep
Convolutional Neural Networks (TT-DCNNs) [BPKY22] in the context of SCA. The
TT-DCNN can convert the neural network into SAT equations (in the form of DNF), which
allows us to interpret what it has learned leading us to peek into the black-box. We proposed
two different TT-DCNN-based architectures, namely TTSCAsmall and TTSCAbig, where
special adjustments are made to TTSCAbig to work with real traces. We proposed a
methodology to analyze the DNF equations in the context of SCA. Our experiments show
that both TTSCAsmall and TTSCAbig indeed use the PoIs to retrieve the secret key based
on their SAT formulae. These formulae retrieve the device’s secret key even on traces that
are not observed, giving us a global interpretation of proposed TT-DCNN-based neural
networks. Application to desynchronization/jitter is left for future work.

Trevor Yap, Adrien Benamira, Shivam Bhasin and Thomas Peyrin 23

References
[AARR03] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi.

The EM Side—Channel(s). In Burton S. Kaliski, çetin K. Koç, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems - CHES 2002,
pages 29–45, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[ANS19] André Araujo, Wade Norris, and Jack Sim. Computing Re-
ceptive Fields of Convolutional Neural Networks. Distill, 2019.
https://distill.pub/2019/computing-receptive-fields.

[BBM+15] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,
Klaus-Robert Müller, and Wojciech Samek. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance propagation. PloS one,
10(7):e0130140, 2015.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power
Analysis with a Leakage Model. In Marc Joye and Jean-Jacques Quisquater,
editors, Cryptographic Hardware and Embedded Systems - CHES 2004, pages
16–29, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[Bla38] Archie Blake. Corrections to Canonical expressions in Boolean algebra.
Journal of Symbolic Logic, 3(2):112–113, 1938.

[BLR12] Timo Bartkewitz and Kerstin Lemke-Rust. Efficient template attacks based
on probabilistic multi-class support vector machines. In International Con-
ference on Smart Card Research and Advanced Applications, pages 263–276.
Springer, 2012.

[BPKY22] Adrien Benamira, Thomas Peyrin, and Bryan Hooi Kuen-Yew. Truth-table
net: A new convolutional architecture encodable by design into sat formulas,
2022.

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ASCAD
database. J. Cryptogr. Eng., 10(2):163–188, 2020.

[Bra78] R.N. Bracewell. The Fourier Transform and its Applications. McGraw-Hill
Kogakusha, Ltd., Tokyo, second edition, 1978.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional Neural
Networks with Data Augmentation Against Jitter-Based Countermeasures.
In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware
and Embedded Systems – CHES 2017, pages 45–68, Cham, 2017. Springer
International Publishing.

[CNHR18] Chih-Hong Cheng, Georg Nührenberg, Chung-Hao Huang, and Harald Ruess.
Verification of binarized neural networks via inter-neuron factoring. In
Working Conference on Verified Software: Theories, Tools, and Experiments,
pages 279–290. Springer, 2018.

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks.
In Burton S. Kaliski, çetin K. Koç, and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2002, pages 13–28, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

24 Peek into the Black-Box

[DBN+01] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence
Bassham, E. Roback, and James Dray. Advanced Encryption Standard
(AES), 2001-11-26 2001.

[DV16] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic
for deep learning. arXiv preprint arXiv:1603.07285, 2016.

[EST+22] Maximilian Egger, Thomas Schamberger, Lars Tebelmann, Florian Lippert,
and Georg Sigl. A Second Look at the ASCAD Databases. In Josep Balasch
and Colin O’Flynn, editors, Constructive Side-Channel Analysis and Secure
Design, pages 75–99, Cham, 2022. Springer International Publishing.

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Yee Whye Teh and Mike Titterington,
editors, Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, volume 9 of Proceedings of Machine Learning
Research, pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May
2010. PMLR.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[GBR22] Anupam Golder, Ashwin Bhat, and Arijit Raychowdhury. Exploration into
the Explainability of Neural Network Models for Power Side-Channel Analysis.
In Proceedings of the Great Lakes Symposium on VLSI 2022, pages 59–64,
2022.

[GHO15] Richard Gilmore, Neil Hanley, and Maire O’Neill. Neural network based
attack on a masked implementation of AES. In 2015 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages 106–111.
IEEE, 2015.

[HCS+16] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks. Advances in neural information
processing systems, 29, 2016.

[HGDM+11] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede,
and Joos Vandewalle. Machine learning in side-channel analysis: a first study.
Journal of Cryptographic Engineering, 1(4):293–302, 2011.

[HGG19] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Deep neural network
attribution methods for leakage analysis and symmetric key recovery. Cryp-
tology ePrint Archive, Report 2019/143, 2019. https://eprint.iacr.org/
2019/143.

[HZ12] Annelie Heuser and Michael Zohner. Intelligent machine homicide. In
International Workshop on Constructive Side-Channel Analysis and Secure
Design, pages 249–264. Springer, 2012.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,
2015.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

http://www.deeplearningbook.org
https://eprint.iacr.org/2019/143
https://eprint.iacr.org/2019/143

Trevor Yap, Adrien Benamira, Shivam Bhasin and Thomas Peyrin 25

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In International
conference on machine learning, pages 448–456. PMLR, 2015.

[JR20] Kai Jia and Martin Rinard. Efficient Exact Verification of Binarized Neural
Networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33,
pages 1782–1795. Curran Associates, Inc., 2020.

[KB17] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization, 2017.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Proceedings of the 19th Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO ’99, page 388–397, Berlin, Heidelberg,
1999. Springer-Verlag.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Neal Koblitz, editor, Advances in Cryptology

— CRYPTO ’96, pages 104–113, Berlin, Heidelberg, 1996. Springer Berlin
Heidelberg.

[KUMH17] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
Self-Normalizing Neural Networks, 2017.

[LBM14] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. Power analysis
attack: an approach based on machine learning. International Journal of
Applied Cryptography, 3(2):97–115, 2014.

[LBM15] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. A machine learn-
ing approach against a masked AES. Journal of Cryptographic Engineering,
5(2):123–139, 2015.

[LPB+15] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markowitch,
and François-Xavier Standaert. Template attacks vs. machine learning
revisited (and the curse of dimensionality in side-channel analysis). In
International Workshop on Constructive Side-Channel Analysis and Secure
Design, pages 20–33. Springer, 2015.

[LSL+20] Xiao-Hui Li, Yuhan Shi, Haoyang Li, Wei Bai, Yuanwei Song, Caleb Chen
Cao, and Lei Chen. Quantitative evaluations on saliency methods: An
experimental study, 2020.

[Lue21] Knud Lasse Lueth. State of the IoT 2020: 12 billion IoT connections,
surpassing non-IoT for the first time, 2021.

[MDP19] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. Gradient Visualization
for General Characterization in Profiling Attacks. In Ilia Polian and Marc
Stöttinger, editors, Constructive Side-Channel Analysis and Secure Design,
pages 145–167, Cham, 2019. Springer International Publishing.

[MGH14] Amir Moradi, Sylvain Guilley, and Annelie Heuser. Detecting hidden leakages.
In Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay, editors, Applied
Cryptography and Network Security, pages 324–342, Cham, 2014. Springer
International Publishing.

26 Peek into the Black-Box

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
Cryptographic Implementations Using Deep Learning Techniques. pages
3–26, 12 2016.

[PBP20] Guilherme Perin, Ileana Buhan, and Stjepan Picek. Learning when to
stop: a mutual information approach to fight overfitting in profiled side-
channel analysis. Cryptology ePrint Archive, Report 2020/058, 2020. https:
//eprint.iacr.org/2020/058.

[PPM+21] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina.
Sok: Deep learning-based physical side-channel analysis. Cryptology ePrint
Archive, Report 2021/1092, 2021. https://eprint.iacr.org/2021/1092.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against Side-Channel
Attacks: A Formal Security Proof. In Thomas Johansson and Phong Q.
Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, pages 142–
159, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[PRB09] Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. Statistical analysis of
second order differential power analysis. IEEE Transactions on computers,
58(6):799–811, 2009.

[PWP22] Guilherme Perin, Lichao Wu, and Stjepan Picek. I know what your layers did:
Layer-wise explainability of deep learning side-channel analysis. Cryptology
ePrint Archive, Paper 2022/1087, 2022. https://eprint.iacr.org/2022/
1087.

[RM21] Olivier Roussel and Vasco Manquinho. Pseudo-Boolean and cardinality
constraints. In Handbook of satisfiability, pages 1087–1129. IOS Press, 2021.

[SMY09] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A Unified
Framework for the Analysis of Side-Channel Key Recovery Attacks. In
Antoine Joux, editor, Advances in Cryptology - EUROCRYPT 2009, pages
443–461, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[ST17] Ravid Shwartz-Ziv and Naftali Tishby. Opening the Black Box of Deep
Neural Networks via Information. CoRR, abs/1703.00810, 2017.

[ST18] Leslie N. Smith and Nicholay Topin. Super-Convergence: Very Fast Training
of Neural Networks Using Large Learning Rates, 2018.

[STK+17] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin
Wattenberg. SmoothGrad: removing noise by adding noise, 2017.

[STY17] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution
for deep networks. In International conference on machine learning, pages
3319–3328. PMLR, 2017.

[SXW+20] Hongguang Sun, Conglei Xu, Yudan Wu, Shuangdai Zou, and Fang Wan. L-
CNN: An Improved Convolutional Neural Network to Capture Long-Distance
Dependencies, pages 119–128. 01 2020.

[Tim19] Benjamin Timon. Non-Profiled Deep Learning-based Side-Channel attacks
with Sensitivity Analysis. volume 2019, page 107–131, Feb. 2019.

[TPB00] Naftali Tishby, Fernando C. Pereira, and William Bialek. The information
bottleneck method, 2000.

https://eprint.iacr.org/2020/058
https://eprint.iacr.org/2020/058
https://eprint.iacr.org/2021/1092
https://eprint.iacr.org/2022/1087
https://eprint.iacr.org/2022/1087

Trevor Yap, Adrien Benamira, Shivam Bhasin and Thomas Peyrin 27

[UVSV06] C. Umans, T. Villa, and A.L. Sangiovanni-Vincentelli. Complexity of two-
level logic minimization. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 25(7):1230–1246, 2006.

[vdVPB21] Daan van der Valk, Stjepan Picek, and Shivam Bhasin. Kilroy Was Here:
The First Step Towards Explainability of Neural Networks in Profiled Side-
Channel Analysis. In Guido Marco Bertoni and Francesco Regazzoni, editors,
Constructive Side-Channel Analysis and Secure Design, pages 175–199, Cham,
2021. Springer International Publishing.

[WAGP20] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel.
Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2020(3):147–168, Jun. 2020.

[WWJ+21] Lichao Wu, Yoo-Seung Won, Dirmanto Jap, Guilherme Perin, Shivam Bhasin,
and Stjepan Picek. Explain some noise: Ablation analysis for deep learning-
based physical side-channel analysis. Cryptology ePrint Archive, Report
2021/717, 2021. https://eprint.iacr.org/2021/717.

[WZLW19] Zhuo Wang, Wei Zhang, Ning Liu, and Jianyong Wang. Transparent Clas-
sification with Multilayer Logical Perceptrons and Random Binarization,
2019.

[WZLW21] Zhuo Wang, Wei Zhang, Ning Liu, and Jianyong Wang. Scalable Rule-Based
Representation Learning for Interpretable Classification, 2021.

[YHPC17] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Re-
cent Trends in Deep Learning Based Natural Language Processing. CoRR,
abs/1708.02709, 2017.

[ZBC+22] Gabriel Zaid, Lilian Bossuet, Mathieu Carbone, Amaury Habrard, and
Alexandre Venelli. Conditional Variational AutoEncoder based on Stochastic
Attack. Cryptology ePrint Archive, Report 2022/232, 2022. https://ia.
cr/2022/232.

[ZBHV19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for Efficient CNN Architectures in Profiling Attacks.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2020(1):1–36, Nov. 2019.

[ZF13] Matthew D Zeiler and Rob Fergus. Visualizing and Understanding Convolu-
tional Networks, 2013.

[ZXF+19] Libang Zhang, Xinpeng Xing, Junfeng Fan, Zongyue Wang, and Suying
Wang. Multi-label Deep Learning based Side Channel Attack. In 2019 Asian
Hardware Oriented Security and Trust Symposium (AsianHOST), pages 1–6,
2019.

https://eprint.iacr.org/2021/717
https://ia.cr/2022/232
https://ia.cr/2022/232

28 Peek into the Black-Box

A Appendix

A.1 Inner Working of TT-DCNN for ASCADv1_f

Figure 20: Inner working of TT-DCNN for ASCADv1_f

Figure 20 shows the inner working of our TT-DCNN architecture proposed for ASCADv1_f.
We can observe that each literal represents a 100 sample point of the traces.

A.2 Trimming Operation of T T SCAbig Before Any Preprocessing or
Before Separating the Disjuncts Based Their CoL on ASCADv1_f.

(a) Trimming before sieving disjuncts
based on their size (before step 1).

(b) Trimming before separating disjuncts based
on their CoLs (right before step 2).

Figure 21: Guessing entropy for TTSCAbig on ASCADv1_f before step 1 and right before
step 2 of proposed methodology.

Figure 21 shows the guessing entropy on ASCADv1_f when trimming individual literals
before sieving the disjuncts based on their size or their CoL. In Section 4.2.1, it was
concluded that the important literals are x1, x2, x5 and x6. However, when trimming
literals (x1), (x2) and (x6) individually before the first two steps, the guessing entropy
remains relatively close to 0, which could just mean that it requires more traces to attack
(see Figure 21a and Figure 21. Therefore, if we apply the trimming operation before either
of the first two steps, we will miss out on the literals x1, x2 and x6 as the critical literals
for retrieving the secret key.

Trevor Yap, Adrien Benamira, Shivam Bhasin and Thomas Peyrin 29

A.3 Guessing entropy of Each Individual CoL of T T SCAbig on AS-
CADv1_f.

Figure 22: Guessing entropy of each individual CoL of TTSCAbig from disjuncts of size
equal to 4

Figure 22 shows the guessing entropy of each CoL as describe in step 2 of Section 3. We
observe that none of the CoL managed to recover the key with 15k traces. The smallest
guessing entropy obtained is ≈ 10. This means that TTSCAbig combines CoLs to recover
the key. Therefore, we use Algorithm 1 to obtain the list of critical CoLs.

A.4 Execution time of the Analysis of T T SCAbig on ASCADv1_f.
In this section, we provide the readers the execution time for each steps when applying
TTSCAbig on ASCADv1_f (see Table 8). The execution timing is used for 7 literals with
10000 attack traces of ASCADv1 fixed key running on single NVIDIA-GeForce-GTX-970.

Table 8: Execution time of each steps of TTSCAbig on ASCADv1_f.
Steps Time (mins)

Training 6.59
SAT-Conversion 0.09

Sieveing disjuncts based on their size 30.91
Separate disjuncts based on their CoLs 156.94

Trimming disjuncts based on the literals 30.76

A.5 Gradient Visualization of non-overfitting T T SCAbig model on
ASCADv1_f.

We trained TTSCAbig over 200 epochs and compute its GE every 5 epoch and pick the
smallest epoch with GE = 0. The TTSCAbig trained with 20 epoch is the smallest epoch
that obtains a GE = 0. We run GV on our non-overfitting TTSCAbig and depict in
Figure 23.

Figure 23: GV of non-overfitting TTSCAbig

on ASCADv1_f.

30 Peek into the Black-Box

From Figure 23, we observe that the PoIs are not very visible. However, we consider
the two highest peaks as the PoIs even if there are not the only peaks. This provides
us with valuable information about the leakages, which is in contrast to the overfitting
case, where nothing can be concluded from GV (see Figure 13b). We shall give some
reasons why the PoIs are not as easy to observe. Firstly, GV is unstable [LSL+20]. This
means that the explanations change drastically with small perturbations to the input.
Secondly, the choice of the hyperparameter for the average pool, which resulted in the
features’ importance are by windows of sample points as in Figure 23, may contribute to
the decreased visibility of the PoIs.

	Introduction
	Background
	Notation and Terminology
	Profiling Attacks
	Truth Table Deep Convolutional Neural Network

	Methodology of Analyzing DNF Equations for Trained TT-DCNN in SCA
	Experimental Results
	The TT-DCNN-based Neural Network, TTSCAsmall
	The TT-DCNN Neural Network, TTSCAbig
	Limitation

	Conclusion
	Appendix
	Inner Working of TT-DCNN for ASCADv1_f
	Trimming Operation of TTSCAbig Before Any Preprocessing or Before Separating the Disjuncts Based Their CoL on ASCADv1_f.
	Guessing entropy of Each Individual CoL of TTSCAbig on ASCADv1_f.
	Execution time of the Analysis of TTSCAbig on ASCADv1_f.
	Gradient Visualization of non-overfitting TTSCAbig model on ASCADv1_f.

